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Fatigue Life of Hybrid FRP Composite Beams 

 

Jolyn Louise Senne 

 

(ABSTRACT) 

 

 

As fiber reinforced polymer (FRP) structures find application in highway bridge 

structures, methodologies for describing their long-term performance under service 

loading will be a necessity for designers.  The designer of FRP bridge structures is faced 

with out-of-plane damage and delamination at ply interfaces.  The damage most often 

occurs between hybrid plys and dominates the life time response of a thick section FRP 

structure. The focus of this work is on the performance of the 20.3 cm (8 in) pultruded, 

hybrid double web I-beam structural shape.  Experimental four-point bend fatigue results 

indicate that overall stiffness reduction of the structure is controlled by the degradation of 

the tensile flange.  The loss of stiffness in the tensile flange results in the redistribution of 

the stresses and strains, until the initiation of failure by delamination in the compression 

flange.  These observations become the basis of the assumptions used to develop an 

analytical life prediction model.  In the model, the tensile flange stiffness is reduced 

based on coupon test data, and is used to determine the overall strength reduction of the 

beam in accordance the residual strength life prediction methodology. Delamination 

initiation is based on the out-of-plane stress σz at the free edge.  The stresses are 

calculated using two different approximations, the Primitive Delamination Model and the 

Minimization of Complementary Energy.  The model successfully describes the onset of 

delamination prior to fiber failure and suggests that out-of-plane failure controls the life 

of the structure. 
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CHAPTER 1: INTRODUCTION AND 

LITERATURE REVIEW 
1.1 Introduction  

Fiber reinforced polymeric (FRP) composites have great potential for use in 

infrastructure and other civil engineering applications.  Composites may offer a number 

of advantages over traditional materials, including environmental durability and ease of 

construction due to high specific strength and stiffness.  However, a number of technical 

issues remain that must be addressed before the civil engineering community can develop 

confidence in structural design with composite members.  These issues include, but are 

not limited to, low stiffness, connection details, cost, confirmation of improved 

durability, and availability of design codes. 

 

Enviro-mechanical durability is often cited as a key advantage of FRP composite 

materials over steel designs.  Yet, composite performance under the non-deterministic 

service environment of a bridge structure is neither well understood nor can it currently 

be modeled with any level of confidence.  From the perspective of the highway bridge 

designer, the inability to quantify service life either through experience or proven 

predictive schemes presents a formidable barrier to the use of composites in even an 

experimental structure.  

 

The problem is complicated by the need to develop a life prediction tool for a path 

dependent damage material system, in the face of combined and synergistic enviro-

mechanical loading.  Although polymer composites do not exhibit corrosion (material 

state change) as does steel, polymers and their composites do experience loss in stiffness 

and strength under the influence of time, temperature, moisture and stress.  For example, 

polymer stiffness, toughness and strength can be reduced when exposed to moisture, UV, 

and temperature.  These issues inhibit our ability to accelerate these processes and extend 

the credibility of predictions to the design lives of bridges, which may be as long as 100 

years.  
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One other factor plays a role in how life prediction is approached for the civil 

infrastructure composites; most structural elements are composed of thick sections, 

hybrid composites and in some cases adhesively bonded components.  These 

characteristics present the opportunity for out-of-plane failures to dominate the life time 

performance of the structure.  Typically, highway structural design is stiffness critical to 

ensure rider comfort (reducing deflection so that it is neither not perceptible or awkward 

to the driver) and reduce tensile strains in concrete structures.  This leads to low operating 

stress levels that make it unlikely that in-plane fiber damage will dominate the response.  

Thus, delaminations and failures in adhesively bonded regions will most likely lead to 

global reduction in structural stiffness.  This has been observed by Lopez et al. during 

strength and fatigue testing of an FRP deck system composed of a thick multi-layer 

pultruded section adhesively bonded together [1].  Similar observations on failure of FRP 

shapes were reported in [2], where beams tested to failure in bending exhibited onset of 

delamination on top flanges. 

 

The focus of the thesis work presented here considers the fatigue response of a hybrid 

pultruded structural section presently employed in the Tom’s Creek Bridge, Blacksburg, 

Virginia [3].   The loading considered is only mechanical and forms the basis for future 

efforts that consider other degradation mechanisms.   Experimental four-point bend 

fatigue results will be compared to an analytical life-prediction model considering the 

same loading.  The model is developed based on coupon fatigue characterization and 

considers the delamination failure mode that occurs under bending.      
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1.2 Tom’s Creek Bridge Overview 

1.2.1  Bridge Construction and Testing 

The original Tom’s Creek Bridge, constructed in 1932 and reconstructed in 1964 in 

Blacksburg, Virginia was rehabilitated in 1997 using hybrid FRP composite beams. 

[3,4,5]   The bridge is a small structure with a HS20-44 load rating and is shown in 

Figure 1- 1.  The twelve steel stringers have been replaced with 24 composite beams in a 

project involving Virginia Tech, Strongwell Corp., the Virginia Transportation Research 

Council (VTRC), the Virginia Department of Transportation (VDOT) and the Town of 

Blacksburg, Virginia.  The project provides an opportunity to investigate the material 

behavior under vehicular loading and environmental effects over a 10-15 year period. 

Figure 1- 1:  Rehabilitated Tom's Creek Bridge 

 

The bridge has a span of 5.33 m (17.5 ft) and is 7.32 m (24 ft) wide with a skew angle of 

12.5°[4]  Prior to installation of the bridge, a full-scale laboratory test of the bridge was 

completed to validate the design.  A loading frame was built to simulate axle load and the 

foundation of the bridge.  Different scenarios were simulated to evaluate the connections 

and overall response of the structure.  [5]   

 

Several field tests have been conducted since the installation of the bridge.  The tests 

were conducted using a controlled vehicle of known weight at various speeds to assess 

static and dynamic response of the structure.  The tests indicate no chanige in stiffness.  

Beams were also removed from the bridge after fifteen months of service; and the 

composite girders had not lost a significant amount of either stiffness or ultimate strength. 
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[6] Additionally, temperature, moisture and UV effects are being investigated, and this 

research is ongoing.  The environmental conditions are being monitored in an effort to 

understand their impact on the system on an individual basis and as combined effects.  

The effects of saturation and freeze-thaw fatigue on pultruded vinyl ester E-glass 

composites is under investigation [7,8].  In the pultruded materials, the voids and 

interfacial cracking provide locations for water to reside.  Experimental results indicated 

that the volume increase during freezing results in damage accumulation in the 

composite.  Fatigued samples showed a decrease in stiffness and strength, although no 

relationship was found between diffusivity and crack density [9].  Combined moisture 

and thermal effects on the laminates appear to influence the residual strength [10,11] and 

durability [12].  All of the damage mechanisms need to be understood including 

sequencing and combined effects to properly predict the fatigue performance of the 

beams in the unpredictable infrastructure environments. 

 

1.2.2  The Hybrid Double Web I Beam 

1.2.2.1  Beam Design 

The structural shape employed in the bridge is a double web I beam, coined Extren 

DWBTM [13].  The cross section was designed as part of an Advanced Technology 

Program through the national Institute of Standards and Technology (NIST) lead by the 

Strongwell Corporation of Bristol, Virginia, with input from Dr. Abdul Zureick of 

Georgia Tech. A 20.3 cm (8 in) deep section (see Figure 1- 2 ) is serving as a sub-scale 

prototype for a 91.4 cm (36 in) beam being developed for 10 to 18 meter span bridges 

[14,15]. Optimization of the design was focused on structural efficiency and ease of 

manufacture.  Since the flanges provide the majority of the stiffness in such a beam, 

increasing flange thickness can add significant stiffness to the structure.  In a standard I-

beam, without lateral support, increasing the thickness of the flanges can results in 

twisting or buckling of the web.  In the double web design, the webs are connected using 

supplemental internal flanges improving the stiffness and torsional rotation response.  

[16]  
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The beam is a pultruded section composed of both E-glass and carbon fiber in a vinyl 

ester resin.  The approximate fiber volume fraction (both glass and carbon) for the 

structure is 55%.  The carbon is located in the flanges to increase the section’s bending 

stiffness and is oriented at 0°.  Glass fiber is present in the pultruded structure primarily 

in the form of stitched angle ply mats, roving and continuous strand mat.  In the flanges, 

mats are primarily oriented at angles of 0° and 90°, with respect to the direction of the 

length of the beam with a few mats oriented at +/-45°.  The webs are predominantly +/-

45° layups.   

 

The geometrical properties of the section are: 

Area = 88.4 cm2 (13.7 in2 ) 

Izz = 5328 cm4 (128 in4 ) 

Iyy = 1320 cm4 (31.7 in4 ) 

Figure 1- 2:  Cross Section of the 20.3 cm (8 in) Double Web I – Beam 
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1.2.2.2 Beam Manufacture 

The Tom’s Creek Bridge beams are manufactured using the pultrusion process and 

consist of unidirectional carbon and stitched mat E-glass in a vinyl-ester resin.  The 

pultrusion process is the lowest cost and most efficient way to manufacture the structural 

members used in infrastructure.  Similar to extrusion used in metals and plastics, 

pultrusion is continuous process for which a constant cross section can be created.   

Carbon or glass fibers in various forms, including continuous axial fibers, continuous 

strand mat, stitched mat or woven fabrics, can be used within a section.  The material is 

cured as the fibers are pulled though a resin bath and heated die [17].   

 

Unlike high performance composite materials used in military and aerospace 

applications, composites created by pultrusion are often inconsistent.  Fiber undulation, 

voids and variable ply thickness influence the performance of these materials under 

fatigue loading. The influence of these flaws can best be understood by looking at their 

experimental response [18]. 

 

1.2.2.3  Stiffness and Strength Characterization 

Static strength and stiffness testing has been conducted on the beams as part of a design 

manual development.  Two series of beams were tested, the 400-series and the 500-series, 

at various lengths.  The two series contain carbon fiber from two different manufacturers.   

The loading was four-point bend at the triple points, up to failure at 2.44 m, 4.27m and 

6.10 m (8 ft, 14 ft and 20 ft) spans.   The set-up is shown schematically in Figure 1- 3 for 

a 6.10 m  beam.  All of the beams failed in a catastrophic manner, characterized by 

delamination of the top flange exhibited in Figure 1- 4. Note that the two photographs 

shown are not from the same beam.  The average resulting stiffness, deflections, strains, 

failure moment and KGA (shear stiffness) values are summarized in Table 1- 1. [19] 
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Figure 1- 3:  Schematic of quasi-static testing to failure 

 

 

Figure 1- 4:  Delamination Failure of the beam under quasi-static testing 
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Table 1- 1:  Results of Static Tests to Failure on Hybrid Beams  

    Stiffness 

Failure 

Moment 

Center 

Deflection 

Top 

Flange 

Strain KGA 

    GPa Msi kN-m kip-ft cm in µε N lbs 

400 Series Mean 43.3 6.28 129.2 95.3 4.57 1.8 5874 1.17E+07 2.64E+06 

 2.4 m (8 ft) Std. Dev 0.12 0.18 21.8 16.1 0.48 0.19 620 7.56E+05 1.70E+05 

400 Series  Mean 42.8 6.21 139.0 102.5 12.7 5.0 6232 1.40E+07 3.14E+06 

4.3 m (14 ft) Std. Dev 0.62 0.09 15.6 11.5 1.47 0.58 829 3.60E+06 8.10E+05 

500 Series  Mean 45.8 6.64 100.6 74.2 17.5 6.9 4333 1.03E+07 2.31E+06 

6.1 m (20 ft) Std. Dev 1.45 0.21 17.9 13.2 3.00 1.18 753 3.25E+06 7.30E+05 

 

The failure due to delamination consistently occurs between the glass and carbon layers 

in the top flange.  The results indicate that the stiffer beams had a lower ultimate failure 

load.  This is most likely due to the idea that the carbon stiffness dictates the overall 

stiffness of the beam.  But, it is has also been shown that a greater mismatch in material 

stiffness results in higher interfacial stresses between layers [20].  Therefore, although a 

stiffer carbon fiber increases the overall stiffness, it also inherently decreases the overall 

strength of the hybrid member.  In addition to the material mismatch, the sizings used on 

the carbon fiber were developed for use in aero-space applications and are generally 

incompatible with the vinyl ester resins used in the pultruded products. [21,22] 

 

In addition to the hybrid beams, glass beams of the same shape were also tested in the 

same manor.  The failure mode was the same as the hybrid beams, although failure 

occurred at a higher ultimate moment and strain, despite the structure being less stiff.  

This confirms the idea that the material mismatch and interfacial concerns induce the 

failure by delamination.  The results of the glass tests are shown in Table 1- 2. 
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Table 1- 2 :  Results of Static Tests to Failure on Glass Beams  

Top Flange 
Strain

MPa Msi kN-m kip-ft cm in µε N lbs

400 Series Mean 31.4 4.56 179.5 132.4 8.89 3.5 11980 1.37E+07 3.08E+06

 2.4 m (8 ft) Std. Dev 0.4 0.06 11.5 8.5 0.81 0.32 1226 3.39E+06 7.62E+05

400 Series Mean 30.3 4.39 199.0 146.8 27.18 10.7 13740 1.91E+07 4.30E+06

4.3 m (14 ft) Std. Dev 0.4 0.06 9.9 7.3 1.65 0.65 888 4.42E+06 9.93E+05

500 Series Mean 32.2 4.67 163.8 120.8 43.18 17.0 9942 9.56E+06 2.15E+06

6.1 m (20 ft) Std. Dev 1.0 0.15 8.1 6.0 2.62 1.03 679 4.76E+06 1.07E+06

Stiffness Failure Moment Center Deflection KGA

 

1.2.2.4  Out of Plane Strength Characterization 

Testing was completed in an attempt to characterize the out-of-plane strength of the top 

flange of the beam [23]. The specimens were machined and mounted with aluminum tabs 

on the top of the flange.  A hole was machined in the web to complete the centric load 

path through the sample.   The specimens were then loaded in tension.  The failure 

appeared to be failure between the carbon fiber and the vinyl ester resin at the first 

carbon-resin interface from the bottom of the flange, as was seen in the failure of the 

overall structure, Figure 1- 5.  The Weibull characteristic strength of the specimens was 

found to be 276 psi.  The crack initiated  at the center of the specimen (1) and continued 

to grew toward the edge (2) and was through the entire thickness of the specimen.  

Figure 1- 5:  Resulting failure from out-of-plane strength test 

 

1.3  Literature Review 

The ability to predict the out-of-plane failure mode of delamination, the main focus of 

this thesis, requires an understanding of the three dimensional stress state, especially at 

2

1



  10

the free edge.  Understanding the interlaminar stresses requires analysis beyond standard 

Classical Lamination Theory for in-plane effects.   Additionally, since the beam is loaded 

in both tension and compression multiple strength values need to be quantified and 

understood in order to effectively evaluate a failure criterion.  A review of the literature 

considering the flexural response, the free edge problem and delamination prediction is 

summarized below.   

 

1.3.1  Flexural Response 

Buckling and compressive failures in pultruded FRP I-beams has been reported on by 

Bank for pultruded E-glass / polyester and E-glass / vinyl ester I-beams under four-point 

bend loading. [24] All of the beams failed through local buckling of the compressive 

flange, as seen for the Tom’s Creek Bridge beams.  There was a difference noted in the 

actual buckling failure for the two material types.  The vinyl ester beams failed at the 

junction between the web and flange due to a longitudinal crack at this interface, but the 

flange remained intact.  Therefore, the failure was actually a local geometry dependent 

failure.  The polyester beams failed due to compression of the material within the top 

flange. A comparison of the vinyl ester beams in Bank’s tests to the in-house tests shows 

very different ultimate moment values but similar modulus values.  This results from the 

continuous mats used in the double-web I-beam, which shifts the failure from the web-

flange interface to within the flange itself, encouraging the design used in the Tom’s 

Creek Bridge beams.  

 

Thick section hybrid composite response to three-point bend loading has been considered 

by Khatri, for unidirectional and cross ply laminates.  [25] 16 and 40-ply symmetric E-

Glass and AS4 samples were tested. The samples had an AS4 (graphite) core sandwiched 

between E-glass. 100%, 75%, 50%, and 25% AS4, and 100% E-glass combinations were 

considered.  The flexural rigidity is seen to be very dependent on the content of AS4.  

Since flexural rigidity is a function of EI, the maximum rigidity is attained by placing the 

graphite on the outermost surface.    In reality, an increase in the failure strain is 

accomplished by placing the E-glass on the surface, since it buckles at a higher strain.  

The glass layers therefore restrict the graphite from buckling prior to matrix failure in the 
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off-axis plies or delamination at the interface.  This “hybrid effect” was verified 

experimentally, the maximum failure strain is reached for a sample containing 75% AS4 

fibers.  The ultimate bending moment was also increased for the hybrid layups.   

 

The failure in the tests by Khatri, in most cases was catastrophic with no obvious damage 

prior to the drop in the load.  In all of the tests, the compressive mode controlled the 

failure and resulted in the propagation of delamination.  For the 100% graphite and 

hybrid composite, the outermost graphite layer is where the failure initiated and 

propagated as kink bands.  For the [0/90]s hybrid samples, the failure normally initiates in 

the 90° layer, resulting in kink band formation and propagation in the 0° layer.  The 

kinking in the graphite layer is the result of matrix cracking and yielding of the matrix in 

the glass region.  For the 100% glass samples, failure is compressive, but the extensive 

delamination is seen at the 90° ply interfaces with the 0° plies.  

 

1.3.2  Interfacial Stresses and Delamination 

1.3.2.1  The Free Edge Problem 

When considering laminated material systems, the solution for the stresses is complex 

near the free edge.  Classical Lamination Theory (CLT) [26] assumes plane stress, and 

therefore is only appropriate away from the free surface.  At a given free surface σx = τxy 

= 0 or σy = τxy = 0. Equilibrium arguments then require the presence of interlaminar 

stresses (σz,τxz and τyz)  in a boundary layer region at the free edge.  These stresses are 

critical since they often lead to delamination-type failures at loads below what is required 

for in-plane failures.  A general plot of the stresses is shown in Figure 1-6 where the y 

face is the free surface.  The values of τxy and σy are at their CLT value outside of the 

boundary layer region and become zero at the free edge.  σz and τxz are zero until the 

bondary layer, and attain their maximum value at the free edge. Many exact solutions 

indicate a singularity at the free edge for these values, although a finite value in reality 

must be reached there.  The value of τyz reaches a maximum within the boundary layer, 

but returns to zero at the free edge. The magnitude of the interlaminar stresses are of 

significant magnitude and can not be neglected.   
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Figure 1- 6:  Distribution of stresses at the free edge 

The interlaminar stresses are caused by material property mismatch in adjacent layers and 

non-continuous stress components between plies.  Interlaminar shear (τyz) and normal 

(σz) results from a Poisson ratio mismatch.  The coefficients of mutual influence quantify 

the axial shear coupling in off-axis laminae (ηxy,x = γxy / εx).  A mismatch between layers 

of these values can result in large values of the interlaminar shear stress τxz. The stacking 

sequence is also influential to the magnitude and type of stresses developed. [27]  

Herakovich [28] examined the influence of the material property mismatch for adjacent 

(±θ) layer combinations.   From this analytical and experimental study, interlaminar shear 

stresses are primarily a function of the coefficient of mutual influence mismatch that can 

be ten times larger than the poisson ratio mismatch.  The largest mismatch and therefore 

largest stresses are reached for laminates with orientations between ±10° and ±15°.  The 

normal stresses are primarily dependent on the stacking sequence selected rather than the 

material properties.  The special case of the cross ply laminate (0/90) results in the 

interfacial shear stress being zero and delamination resulting only from σz.  
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1.3.2.2  Interlaminar Boundary Layer Stresses 

Quantification of the stresses developed in the “free edge problem” was first done by 

Pipes and Pagano.  Following their initial work, several Finite Element solutions and 

experimental studies were conducted to understand the influence of the free surface.  The 

delamination failure resulting from the interlaminar stresses and methods to predict this 

failure mode have also been investigated.   A chronological look at the development of 

work in this area will be presented below.   

 

The first solution by Pipes and Pagano (1970) [29] considers the response of a finite-

width symmetric four layer laminate under tractions applied in the x-directions at the 

ends.   The theory of elasticity is used to establish the relations for the solution and finite-

difference techniques are used to solve the system.  The results of this solution are most 

useful for giving an indication of how the shear transfer mechanism occurs in the 

laminate.   The in-plane shear stress creates a moment that must be balanced over the 

boundary layer with the free edge interlaminar shear stress.  Since the distance the 

interlaminar stress acts over is small, the stress developed is significant and it appears 

that a singularity exists at the intersection of the interface and the free edge.  The idea of 

a singularity existing at this intersection is also shown in work by Bogy [30] and Hess 

[31].  The numerical solution was completed for several geometries, and indicated that 

the interlaminar stress components quickly decay from the free edge.  The boundary layer 

that the interlaminar stressed are confined to are approximately equal to the thickness of 

the laminate.  Beyond this region, in-plane stress calculations using CLT are appropriate.  

 

A second paper by Pagano and Pipes (1971) [32] focuses on the how delamination, 

namely the normal (σz) stress is influenced by the stacking sequence of a laminate.  This 

work was encouraged by experimental results from Foye and Baker [33] on angle-ply 

(±15°, ±45) boron-epoxy laminates in different configurations resulted in a difference in 

strength of as much as 25,000 psi.  Lamination theory yields the same in-plane stress 

levels for a symmetric laminate regardless of the sequence, indicating something else was 

influencing the onset of delamination.   In conjunction with the assumptions for the shear 

transfer mechanism and ideas of equilibrium, the distribution of σz on a surface will be a 
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couple which that a gradient at the free edge which could be infinite, and depending on 

the width of the laminate, approach zero in the middle.  Analysis of free body diagrams 

of the stress state show that by varying the stacking sequence, σz can change from tensile 

to compressive at the free edge.  The interlaminar shear stresses are independent of the 

stacking arrangement, and were therefore considered minor contributors to delamination. 

The conclusions from this work were that the normal σz   stresses are influential on 

differences in strength of the laminates.     

 

The concepts presented in the finite difference solution and the influence of stacking 

sequence were confirmed in subsequent work by Rybicki [34].  The theorem of minimum 

complementary energy was used for the analysis.  A finite element representation was 

used for the Maxwell stress functions.  The obtained solution closely matched the 

interlaminar shear results from the Finite Difference solution by Pipes and Pagano.  It 

also verified that a change in sign for σz can be accomplished by changing the stacking 

sequence.  Several other finite element models have been used in solving this problem 

and look at mesh refinement and different types of elements at the free edge.  [27, 35] 

 

The 1972 paper by Pagano and Pipes [36] develops an approximate distribution and 

solution for the interlaminar stresses and report on experimental results to support their 

hypothesis. This method later became known as the Primitive Delamination Model [37].   

Previous numerical solutions yielded a mathematical singularity at the free edge, 

encouraging an approximate stress analysis to be considered.  A piece-wise linear 

distribution is then assumed for σz across the width of the laminate, shown in Figure 1-7.  

Since the resultant of the distribution is a couple, the areas under the curves can then be 

balanced, and a solution for the stress can be obtained.  (It should be noted that there is an 

error in Ref. [36] and the correct form of the moment equation is shown in Ref [37].  

There is also an error in the stress distribution figure in Ref [36], but it is properly shown 

in Ref [37] and in Figure 1-7 below )  
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Figure 1- 7:  Assumed linear stress distribution in the Primitive Delamination Model 

 

Specimens were then designed which were considered susceptible to delamination. The 

stacking sequences were arranged so one laminate would have tensile values for the 

interlaminar normal stresses and one would be compressive.  The predicted tensile σz 

specimen did in fact delaminate, whereas the compressive did not.  Additional testing 

indicated that the crack did initiate at the point of predicted maximum σz, and the crack 

opened in a manner that made the cross section appear like a deformed double cantilever 

beam.  Further confirmation of the approximations for σz  and its influence on 

delamination was done by Whitney and Browning [38] who investigated (±45, 90) 

graphite-epoxy laminates.  Delamination occurred for the predicted tensile interlaminar 

normal samples under both static and fatigue loading.  Kim and Aoki [39] also used this 

method to predict the failure loads in quasi-static tests for laminates with stacking 

sequences of (0/90n/±45) and (0/±45/90n).  The results matched well for n = 1 and 3, but a 

discrepancy existed when n = 6.   

 

An approximate analytical elasticity solution (Pipes and Pagano, 1974) was then 

evaluated and agreed very well with the numerical finite difference solution. [40] The 

approximation was used to investigate the response of multi-layer layer laminates that 
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were computationally intense for the numerical solution.  Evaluation of this solution for 

laminates of varying thickness confirmed that the boundary layer region is equal to the 

laminate thickness.    

 

A global-local variational model was introduced in 1983 by Pagano and Soni [41] to 

further streamline the computation process.  In this methodology, the laminate is divided 

into global and local regions.  The region of interest is the “local” region wherein stresses 

are considered on a ply-level basis.  The remaining plies are grouped together as a 

“global” region, over which the laminate properties are smeared.  Matching conditions 

are then in place at the interface and stresses in critical plies can be computed for much 

larger structures.  The model predicts well for stresses outside of the transition region.   

 

Wang and Choi [42,43] used an eigenvalue approach to the problem and confirmed that 

the singularity at the free edge of the laminate controls the response in the boundary layer 

region.  They also concluded that the boundary-layer width is dependent on the 

lamination and geometric variables, loading and environmental conditions.  Their 

solution allows for asymmetric lamiates to be considered under various loading 

conditions, beyond the axial tension considered in the previous models.  

 

The accuracy of finite element models and the idea of a singularity at the interface and 

the free edge was looked at experimentally by Herakovich et. al [44] in 1985.  Moiré 

interferometry was used to characterize the out-of-plane shear strain γxz at the free edge.  

The results showed that the shear strains on the free edge are in fact finite; and the ratio 

of the strain did not exceed a ratio of 7.5 when compared to the applied strain.  

Comparison of the moiré results to finite element results suggest that a four-node 

isoperimetric rectangular element mesh yields the best results. 

 

In order to analyze thick laminates, Kassapoglou and Lagace [45, 46,47] presented an 

efficient method to evaluate the stresses for symmetric laminates under uniaxial and 

thermal loading.  The method is based on assumed stress shapes and is optimized by 

minimizing the complementary energy of the entire laminate.  The solutions compared 
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well with previous solutions completed using finite element analysis and convergence to 

the solution was attained for up to 100 plies in under 70 iterations.  This model was then 

expanded to a more general loading case by Lin and Hsu [48].    

 

Based on the minimization of complementary approach, Kassapoglou [49] presented a 

closed form solution, that employs variational calculus approach to determine the 

functional form of the stress shapes.  Yin [50] used a similar but simplified variational 

approach to approximate the interlaminar stresses at the free edge.  (The Lekhnitskii 

stress functions are used along the interfaces.)  The method is simple and demonstrated 

satisfactory agreement for cross-ply and angle-ply laminates.   

 

1.3.2.3 Delamination and Crack Growth 

Knowledge of analysis techniques for the free edge stresses allows for delamination 

initiation and the crack growth that follows to be investigated.  An understanding of these 

phenomenon is important in predicting when failure occurs in the beams.  An overview 

of the literature in this area will be presented in the following section. 

 

O’Brien has done extensive work in determining the effects on the fatigue life of a 

laminate once delamination initiates. [51-54].  A delamination at the free edge or within 

the matrix, results in isolation of a ply and inhibits its ability to carry load, thus changing 

modulus and load distribution of the entire laminate.   This effect was seen both under 

quasi-static loading to failure and under tension-tension fatigue.  A rule of mixtures 

approach was suggested to understand the influence of delamination and crack length on 

the change in modulus of the laminate.  Such an approach resulted in the laminate 

modulus decreases linearly with delamination size.   

 

O’Brien characterized the onset of delamination and then the crack growth which follows 

using fracture mechanics.  The strain energy release rate, G, was found to be dependent 

on the in-plane strain, laminate thickness and the modulus before and after delamination.  

Using a finite element model, a critical value for G can be attained and used as a 

prediction for delamination.  Crack growth can then be found using a different value for 
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G which accounts for the region that has delaminated.  The value of G  is dependent on 

the stacking sequence of the laminate and there is also an indication that delamination is 

the result of both opening and shear modes.  The disadvantage of such a model is that it is 

extremely sensitive to uncertainties in the applied load and due to the multiple load paths 

available in a composite, and failure may not be as catastrophic as would be predicted.   

 

In order to justify the use of strain energy release rate, O’Brien and Hooper conducted 

studies to better understand how matrix cracks can influence delamination (Ref  52 and 

53).  Tension tests were conducted on (02/θ2/-θ2) graphite/epoxy laminates and a quasi-

3D finite element analysis was conducted to calculate the stresses.  Experimentally it was 

shown that matrix cracking in the central -θ  resulted in local delamination onset in the 

θ/-θ interface at the intersection of the matrix crack and the free edge.  The finite element 

model indicated that in-plane stresses may not be capable of properly predicting these 

matrix cracks, since they represent the minimum values in the interior of the laminate.  

Fatigue testing indicated that for constant amplitude tension tests, matrix cracking in the 

central plies always preceded the onset of delamination.  Additionally, calculations show 

that the strain energy release rate for local delamination exceeded that of edge 

delamination.  This suggests that delaminations from matrix cracks would initiate prior to 

edge delamination.  

 

Strain energy release rates were also considered by Rybicki et. al [55].   Ultrasonic pulse-

echo methods were used to measure crack propagation during the test.  Energy release 

rates were calculated using a finite element model for specific amount of delamination.  

The study did indicate that the method predicted stable crack growth and was an accurate 

methodology.  

 

Prediction of delamination based on stress type criterions has also been investigated. 

Initial work in this area was done by Kim and Soni [20] in 1983.  The criterion used was 

essentially a maximum stress criterion, assuming that σz is solely responsible for the 

failure. The transverse strength of the laminate was used as the interlaminar strength of 

the material, and the stresses were calculated using the global-local model.  Several 
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laminates were loaded and acoustic emission techniques were used to quantify when 

delamination occurred.  When a maximum point stress at the free edge was used to 

predict failure, the results were very conservative.  Averaging the stress value over a 

distance from the free edge equal to the ply thickness gave a good prediction to the onset 

of delamination. 

 

A maximum stress criterion approach was also used by Kim and Aoki [39] for 

(0/90n/±45) and (0/±45/90n) quasi-isotropic laminates.  As previously mentioned in the 

discussion on interlaminar stresses, the Primitive Delamination Model was used to 

predict the failure well for n = 1 and 3, but a discrepancy existed when n = 6.  Their 

experimental study also looked at crack density and growth in the laminates.  They found 

that with increasing layer thickness, crack density decreases, but cracks extends at lower 

stresses and fatigue cycles and will continually grow versus arresting for a period of time 

as seen in the thinner laminates.  They also concluded that delamination is controlled by a 

combination of tensile interlaminar normal stresses and the size of a transverse crack.   

 

A quadratic delamination criterion was proposed by Brewer and Lagace [56].  Similar to 

Kim and Soni, an average stress at the free edge is used to avoid the effects of a stress 

singularity.  The length to average over is experimentally determined, and found to differ 

slightly from the ply thickness but appears to be a property of the material.  The criterion 

only considers out-of-plane stresses and assumes failure is independent of the sign on the 

shear stress.  No interaction terms are present, but the difference in compressive and 

tensile normal strengths is accounted for.  As with other criterions of this nature, attaining 

the appropriate out-of-plane strengths is a complication to the method.   Experimental 

testing resulted in delamination between plies of different angular orientation prior to any 

transverse cracking.  The criterion could be correlated to the tests and data in the 

literature.  This prediction appeared to be more consistent than the strain energy release 

rate methodology proposed by O’Brien which also requires a finite element analysis to 

determine Gc. 
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A modified Tsai-Wu criterion has been proposed by Naik et. al [57] to try to characterize 

failure under combined loading.  The assumption in the criteria is that only interlaminar 

stresses interact to influence interlaminar failure; and are therefore decoupled from in-

plane stresses.  This proposed criteria was then compared with other interactive criteria 

by Greszczuk, Sun and Hashin.  The samples under combined compression and shear 

indicated an increase in shear strength for small values of transverse compression.  The 

modified Tsai-Wu and Sun criteria predicted this well, whereas the Greszczuk and 

Hashin criteria under predicted the strengths.   
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CHAPTER 2: EXPERIMENTAL PROCEDURE 

AND RESULTS 
 

2.1 Experimental Overview 

In order to understand the fatigue characteristics of the entire bridge, the beam level 

characteristics must too be understood.  In order to do this, full-scale static and fatigue 

tests were run at a 4.27 m (14 ft) span, similar to the bridge.  The stiffness response of the 

beam under four-point bend mechanical loading was monitored for the two different 

beam batches. Four beams were tested in fatigue in an effort to create an S-N curve for 

the beam.    

 

2.1.1  Hybrid Beam Static Test to Failure 

The maximum moment capacity of the beam was determined based on static load to 

failure tests completed on beams as discussed in Chapter 1.  The average results of the 3 

sets of test run have been included again in Table 2- 1 for convenience with the A and B 

allowable values as described in the Strongwell Extren DWBTM Design Guide [13].  

Table 2- 1:  Results of Static Tests to Failure on Hybrid Beams  

  
Stiffness Failure Moment 

  

Mean 
GPa 
(Msi) 

A-Allow 
GPa 
(Msi) 

B-Allow 
GPa 
(Msi) 

Mean 
kN-m 
(kip-ft) 

A-Allow 
kN-m 
(kip-ft) 

B-Allow 
kN-m 
(kip-ft) 

400 Series 8’ 43.3 
(6.28) 

39.0 
(5.66) 

41.2 
(5.97) 

129.2 
(95.3) 

65.3 
(48.2) 

91.6 
(67.6) 

400 Series 14’ 42.8 
(6.21) 

40.7 
(5.90) 

41.7 
(6.05) 

139.0 
(102.5) 

89.7 
(66.2) 

112 
(82.4) 

500 Series 20’ 45.8 
(6.21) 

40.8 
(5.92) 

43.2 
(6.27) 

100.6 
(74.2) 

48.9 
(36.1) 

70.0 
(51.6) 
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2.2 Hybrid Beam Bending Fatigue Test 

2.2.1  Test Setup 

The fatigue test selected was a four-point bend test loaded at 1/3 points.  This test 

configuration was similar to the quasi-static tests and simplifies the analysis due to the 

constant moment region [13].  The test configuration can be seen in Figure 2- 1.   

Figure 2- 1:  Four Point Bend Fatigue Test 

The data collected from the test was predominately to monitor stiffness reduction 

throughout the test, and ensure there was no torsional loading on the beam.  The data was 

collected using the MEGADAC 3108 data acquisition system, which allows for 200 

scans/second/channel.  The data collected was: 

1. Actuator Load 

2. Actuator Deflection 

3. Mid-span Deflection 

4. Quarter Point Deflection 

5. Top Center Bending Strain 

6. Top Right Bending Strain 
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7. Top Left Bending Strain 

8. Top Right Flange Bending Strain 

9. Top Left Flange Bending Strain 

10. Bottom Center Bending Strain  

11. Shear Strain 1” outside of the constant moment region 

12. Torsional Strain at the ¼ point. 

 

The loading and gage locations are shown in Figure 2- 2 

 

 

Figure 2- 2: Schematic of fatigue test set up 

 

The loads applied were based on the moment capacity found in the static tests discussed 

above. Two batches of beams were tested, the 400 series and the 500 series.  The 400 

series beams had a higher average ultimate moment and lower average stiffness values 

than the 500 series beams. Four beams were subjected to the fatigue loading, two from 

each batch.  These loads are at approximately 9 times the actual loading the bridge beams 

will see in service at the Tom’s Creek Bridge [6].  The testing matrix comparing the 

loading to the ultimate moment and strains at failure is show in Table 2- 2 .  The loading 

is compared to the batch properties and also to an overall average of both batches.  
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Table 2- 2:  Test matrix of beams subjected to fatigue loading 

 

Actuator 

Load 

kN 

Applied 

Moment 

kN-m 

% Mult 

Batch  

A-Allow % Mult Top Strain % ε failure % ε failure 

 (kips) (kip-ft) B-Allow Average (µε) Batch Average 

Beam 425 
71 

(16) 

50.6 

(37.3) 

36% 

56% 

45% 

42% 2824 37% 43% 

Beam 421 
89 

(20) 

63.3 

(46.7) 

45% 

71% 

57% 

53% 2277 46% 54% 

Beam 514 
89 

(20) 

63.3 

(46.7) 

63% 

129% 

91% 

53% 2664 62% 51% 

Beam 517 
120 

(27) 

85.4 

(63.0) 

85% 

175% 

122% 

71% 3689 86% 70% 

The tests were run in load control, using an MTS controller.  The R-ratio (min load/ max 

load) was desired to be 0.1.   In actuality, due to the large deflections, the pump 

controlled the load ratios and speed of the test; the maximum and minimum actuator 

loads and the frequencies are summarized in Table 2- 3. These values were consistently 

held throughout the test. 

Table 2- 3:  Fatigue test conditions for each beam 

 

Max Actuator 

Load 

Min Actuator 

Load R-Ratio Frequency 

 (lbs) (lbs) (Min/Max) (Hz) 

Beam 425 16,000 1720 0.11 0.85 

Beam 421 20,100 1300 0.06 0.60 

Beam 514 20,010 2700 0.13 0.82 

Beam 517 27,085 7500 0.28 0.70 
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Periodic quasi-static tests were completed on the beams and the strains and deflections 

listed above were collected.  The load was applied in displacement control up to the 

maximum load of the respective test.  From the data, stiffness values could be calculated 

and the influence of cyclic loading on the system analyzed.  The data analysis procedures 

are outlined below.  

 

2.2.2  Data Analysis 

As the beam undergoes fatigue, there is a reduction in stiffness, and a related shift in the 

neutral axis.   Modulus values were calculated using top and bottom strain values and 

also deflection data.  Comparison of these values allows for the shear influence and 

neutral axis shift to be quantified. 

 

Mid-span top and bottom strain values were used to determine the modulus based on  

beam theory, Equation 2-1. 

εI
Mc

Estrain =      (2-1) 

In this expression, M is the moment in the constant moment region, the moment of inertia 

is I= Izz = 5328 cm4 (128.5 in4 ) and ε is the gage reading at the top or bottom of the 

beam.  The value of c is taken as either the distance from the section mid-plane to the 

gage or the distance from the neutral axis to the beam.  Using the mid-plane as the 

reference point will result in different values of E in the top and bottom flange, showing 

how each are independently influenced by the loading.  To determine an overall effective 

modulus of the beam, the value of c is used as the distance from the neutral axis of the 

beam to the gage.  The location of the neutral axis was simply found as the intercept of 

the line connecting top and bottom strain values.   

 

The modulus was also calculated using the mid-span deflection value.  This calculation 

includes the influence of shear deformation and results in a lower modulus value than 

when calculated based on strain alone:  
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







+−=

3242

222 aLL
Iy

M
Edeflection     (2-2) 

 

In Equation 2-2, M is the moment, I=Izz= 5328 cm4 (128.5 in4 ) and y  is the measured 

deflection value under the maximum load.  L represents the length of the beam, and a is 

the distance from the load point to the support. 

 

From the modulus values, calculated using strain and deflection, KGA is calculated.  The 

KGA term is from shear deformable beam theory (Timoshenko).  The predicted 

deflection without shear can be found as: 

 









+−=

3242

222 aLL
IE

M
y

strain
strain     (2-3) 

 

The measured deflection is a combination of this value and the shear contribution:  

 

ymeasured = yshear +  ystrain    (2-4) 

 

Equation 2-4 can be solved for the yshear, based on the known deflection ( ymeasured).  KGA 

is then found from Equation 2-5, where P is the actuator load, and L  is the length of the 

beam.  

KGA
PL

yshear  8
=     (2-5) 

 

2.3 Results  

The initial stiffness properties and neutral axis location for the beams tested are 

summarized in Table 2-4  The data collected for each beams is shown and discussed in 

detail below.  In the plots of data for each beam, the lines connecting the data are used to 

demonstrate a trend between data points, and are in no way a prediction of the actual 

response of the beam under loading.  The error bars shown on the modulus plots are 
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conservative and account for error all of the inputs into the respective stiffness 

calculation. 

Table 2- 4 :  Intial Properties of tested beams and batch data 

 Initial Properties Batch Properties 

 Modulus Modulus NA Location Beam NA 

 Deflection Strain From Bottom Modulus Location 

 

GPa 

(Msi) 

GPa 

(Msi) 

cm 

(in) 

GPa 

(Msi) 

cm 

(in) 

Beam 421 

39.5 

(5.74) 

42.9 

(6.23) 

10.0 

(3.94) 

Beam 425 

39.9 

(5.79) 

43.5 

(6.31) 

9.78 

(3.85) 

42.8 

(6.21) 

10.2 

(4.03) 

Beam 514 

42.0 

(6.09) 

47.1 

(6.83) 

9.73 

(3.83) 

Beam 517 

39.6 

(5.74) 

44.1 

(6.39) 

10.0 

(3.95) 

45.8 

(6.64) 

10.1 

(3.98) 

 

2.3.1  Test Results at 45% of Mult 

The first beam tested was beam 421 at 45% of the average ultimate load of its batch.  The 

beam failed after 130,000 cycles.  The failure mode was delamination of the top flange in 

the constant moment region (Figure 2- 3) and was located at the carbon-glass interface.  

This served as an initial verification that the fatigue failure mode is the same as that of 

quasi-static failure.   

 

Very little stiffness reduction is evident prior to beam failure, shown in Figure 2- 4.  After 

delamination, the beam remained capable of carrying load, and about 60% of the stiffness 

was retained.  The bottom (tensile) flange calculation indicates a higher modulus value 

than the compression side, possibly because the carbon acts stiffer in tension than in 

compression.  The modulus found from deflection is about 7% lower than the strain 

values, indicating there are shear contributions at this load and span.  Because of the top 
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and bottom modulus mismatch, the neutral axis was initially offset below the midplane 

(Figure 2- 5).   The plot also indicates that after delamination there is a significant shift in 

the neutral axis away from the failed flange.  Similar to the other data trends for this 

beam, the mid-span deflection is constant until delamination, and then increases 

significantly thereafter (Figure 2- 6).  The deflection values shown are normalized by 

dividing the deflection value by the load, and multiplying by the maximum desired load 

of 89 kN (20 kips) 

 

 

 
Figure 2- 3:  Delamination failure of Beam #421 after 130,000 cycles, at 47% of the ultimate moment. 

 

Delaminated Region of the 

Compression Flange 
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Figure 2- 4:  Modulus Reduction of Beam #421, loaded to 45% of the Ultimate Moment 

Figure 2- 5: Neutral Axis location of Beam #421, loaded to 45% of the Ultimate Moment 
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Figure 2- 6:  Mid-span deflection of Beam #421, loaded to 45% of the Ultimate Moment 
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batch.  In this case, the beam did not fail and was removed after 10 million cycles.  As in 

the previous test, the tensile flange had a higher stiffness value than the compression 

flange. This difference was higher than before, resulting in a larger neutral axis shift 

(Figure 2- 7 and Figure 2- 8).  Some initial degradation in stiffness was noted at the very 
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Figure 2- 7:  Modulus Reduction of Beam #425, loaded to 36% of the Ultimate Moment 

Figure 2- 8: Neutral Axis location of Beam #425, loaded to 36% of the Ultimate Moment 
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2.3.3  Test Results at 63% of Mult 

To understand if stiffness or moment capacity dominated the response of the beams, the 

next test was at the same applied actuator load as the first test, for a beam from the 

second batch.  Beam #514 was loaded at 63% of the average ultimate moment of the 

batch.  The initial 2% stiffness degradation and was captured well in this data as shown in 

Figure 2- 9, and is notably higher than in the 400 series beams. The loss in stiffness 

appears to be constrained to the first 90,000 cycles.  It appears that the overall stiffness 

reduction is controlled by the tensile flange, as it correlates best with the stiffness trend 

shown by the deflection calculations.  Initially, the neutral axis is located closer to the 

tensile flange.  As the stiffness is reduced, there is a neutral axis shift away from the 

tensile flange, toward the compression side, which maintains its initial properties (Figure 

2- 10).  After this initial stage, the modulus values and neutral axis locations appear to 

remain constant.  The deflection of the beam was normalized, as discussed above, and 

underwent a 0.35 cm (0.14 in) increase in deflection over the duration of the test (Figure 

2- 11).   

 

The beam was stopped after 7,600,000 cycles, to allow another beam to be tested.  

Additionally, it appeared to be exhibiting similar trends with the beam from the 400 

series.  After the beam was removed, there was residual camber deformation in the beam.  

At midspan the deflection was measured by stretching a string tight from the two 

endpoints and measuring the distance from the string to the beam.  The beam was turned 

on its side to ensure the weight effects were not included in the measurement. The 

deflection was roughly 0.5 cm (0.2 in).   
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Figure 2- 9:   Modulus Reduction of Beam #514, loaded to 63% of the Ultimate Moment 

Figure 2- 10: Neutral Axis location of Beam #514, loaded to 63% of the Ultimate Moment 
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Figure 2- 11: Normalized mid-span deflection of Beam #514, loaded to 63% of the Ultimate Moment 
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Figure 2- 12:  Failure under load point for Beam #517 after 370,000 cycles at 82% of the ultimate 

load 

 

 

 

Figure 2- 13: Crack resulting from delamination of the top flange 
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Similar to Beam #514, the initial stiffness loss was just under 2%, but occurred within the 

first 10,000 cycles, rather than 90,000 cycles at 63% of the ultimate load. Figure 2- 14 

shows this and the second drop in stiffness prior to delamination, after which 80% of the 

stiffness was maintained. The beam was still capable of carrying the same test load level 

after delamination.  The neutral axis location and deflection plots are Figure 2- 15 and 

Figure 2- 16 respectively.  The anticipated trend is followed for each plot.  Once again 

the tension flange controls the stiffness, and the neutral axis is shifted toward the 

compression flange until the crack occurs.   

 

 

Figure 2- 14:  Modulus Reduction of Beam #517, loaded to 82% of the Ultimate Moment 
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Figure 2- 15: Neutral Axis location of Beam #517, loaded to 82% of the Ultimate Moment 

Figure 2- 16: Normalized mid-span deflection of Beam #517, loaded to 82% of the Ultimate Moment 
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2.3.5  Summary of Test Results 

The test results confirm that the fatigue failure mode is the same as had been seen in 

quasi-static four point bend tests, delamination of the top flange.  Following this failure, 

the structure remains capable of carrying load, and retains between 60% and 80% of the 

initial stiffness.   There is an initial 2% stiffness reduction in the beams, after the 

reduction, the modulus remains constant up to failure.  The amount of stiffness reduction 

was independent of load, although the speed of the degradation was load dependent.  The 

number of cycles for each beam is summarized in Table 2-5. 

 Table 2- 5 :  Summary of fatigue test results 

 % Mult % Mult % εfailure % εfailure Total  

 Batch Average Batch Average Cycles 

Beam 425 36% 42% 37% 43% 10,000,000   Runout 

Beam 421 45% 53% 46% 51%   130,000   Failed 

Beam 514 63% 53% 62% 51%  7,600,000   Runout 

Beam 517 85% 71% 86% 70%   370,000   Failed 

 

The two tests run at the same actuator load of 89 kN (20 kips) from the two different 

batches indicated a significant difference in fatigue life.  The 1.5 order of magnitude 

fatigue life difference cannot be fully explained, but is consistent with the idea that the 

life is stiffness, rather than strength dominated.  The higher the stiffness, the lower the in-

plane strain values and the less degradation in the tensile flange.  Another explanation for 

this large difference are inconsistencies in the manufacturing processes.   

 

Trends in the data indicate there is a shear contribution to the deflection, ranging from 

9% to 11% of the total deflection.  The values for KGA had an average value of 10.9 MN 

(2.46 (106) lbs) for the 400 series and 7.65 MN (1.72 (106) lbs) for the 500 series.  These 

values do not appear to be a function of cyclic loading, demonstrated in Figure 2- 17 for 

Beam #517.  The plot shows the total measured deflection, and the calculated value for 

the deflection based on the strain modulus alone.  The difference between the two curves 
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represents the shear contribution to the deflection and remains constant over the course of 

the test.  The lack of influence of fatigue on KGA enforces the idea that the webs 

contribute very little stiffness to the overall structure and are of negligible consideration 

in the fatigue life of the structure. 

 

The mid-span deflections are proportional to the applied load, although permanent 

deformation does occur after cyclic loading. The stiffness reduction in the compression 

flange appears to be less than the tension and deflection value reductions.  Inherent in this 

mismatch of stiffness is a shift in the neutral axis, which does not originate at the 

midplane.  Finally, there is an insignificant amount of torsional strain seen on the 

structure under this loading which is neglected. 

  

Figure 2- 17: Shear contribution to deflection for Beam #517, loaded to 82% of Mult 
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CHAPTER 3:  ANALYTICAL DEVELOPMENT 
 

Due to the limited amount of fatigue data available for structural FRP beams, and the 

large scale testing required to attain this data, a means must be developed to predict the 

life of the structural member.  Ideally, small-scale coupon test data can be used to 

characterize the structure in its entirety. A life prediction methodology is developed in 

this chapter using tension fatigue coupon data in conjunction with assumptions and 

observations made in the full four-point bend fatigue test of the beam.  The model 

accounts for the out-of-plane failure mode of delamination, and attempts to mimic the 

stiffness reduction up to failure. 

 

3.1 Laminated Beam Theory 

 

3.1.1  Stiffness Characteristics 

Prediction of the stiffness properties is necessary to evaluate the response of the beam.  

The overall stiffness is calculated based on the known ply-level orientation and 

properties.  The loading considered is the four-point bend configuration discussed in 

Chapter 2.  Laminated beam theory [58], within the constant moment region, is then used 

to evaluate the ply-level stresses and strains.  This approach has been verified in work 

done by Davalos et. al [59] 
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The cross-section is divided into 4 web and 6 flange subsections for the analysis as 

shown in Figure 3- 1.  The photograph of the beam shows the ply waviness and 

nonuniform thickness, although for the analysis, the plies are assumed uniform and 

parallel. 

Figure 3- 1:  Division of the cross section into 4 flange and 6 web subsections 

For the case of bending, the stiffness value is calculated based on the assumptions that the 

curvature through the cross-section is constant. The total moment in the beam is equal to 

the sum of the sections. 

∑∑ += webflangebeam MMM      (3-1) 

The moment in a given section is:  

iκ
i

i
(EI)

  M =      (3-2) 

Since κι is constant, the effective stiffness of the beam becomes:  

∑∑ += webflangeeff EIEIEI        (3-3) 

The EI values for each web and flange are calculated using the ABD matrix used in 

Classic Lamination Theory (CLT).  The EI values for the flanges and webs are then 

calculated using Equations 3-4 and 3-5. In the expressions, ξ represents the distance from 

the NA of the beam to the NA of the section in the z direction. The b and h values are the 

base and height dimensions with respect to the ply direction of the section. The properties 

for each section and resulting stiffness is shown in Table 3- 1. 
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Table 3- 1:  Sub-Section geometric properties and EI values 

Section Dist to NA (ξ) 

cm  

(in)  

b 

cm  

(in) 

h 

cm  

(in) 

EIeff    

MPa-m4  

(psi-in4) 

Top Flange -9.60   

(-3.78) 

15.24 

(6.00) 

1.57 

(0.62) 

1.14 

(4.00 x 108) 

Bottom Flange 9.60   

(3.78) 

15.24 

(6.00) 

1.57 

(0.62) 

1.17 

(4.09 x 108) 

Top Subflange -6.22 

(-2.45) 

5.49 

(2.16) 

0.70 

(0.28) 

.037 

(1.29 x 107) 

Bottom Subflange 6.22 

(2.45) 

5.49 

(2.16) 

0.70 

(0.28) 

.038 

(1.32 x 107) 

Left Top Web -5.96 

(-2.35) 

5.26 

(2.07) 

0.42 

(1.07) 

.002 

(8.43 x 105) 

Right Top Web -5.96 

(-2.35) 

5.26 

(2.07) 

0.42 

(1.07) 

.002 

(8.43 x 105) 

Left Bottom Web 5.96 

(2.35) 

5.26 

(2.07) 

0.42 

(1.07) 

.002 

(8.43 x 105) 

Right Bottom Web 5.96 

(2.35) 

5.26 

(2.07) 

0.42 

(1.07) 

.002 

(8.43 x 105) 

Left Center Web 0.00 

(0.00) 

6.65 

(2.62) 

0.36 

(0.91) 

.004 

(1.54 x 106) 

Right Center Web 0.00 

(0.00) 

6.65 

(2.62) 

0.36 

(0.91) 

.004 

(1.54 x 106) 
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The total EIeff value for the hybrid beam was found to be 2.41 MPa-m4 (8.41x108 psi-in4).  

The contribution of the webs and interior flanges is only 3.9% of this value.  Because of 

this fact, and the location of the failure, ply-level stresses are only calculated for the top 

and bottom flanges.   

 

3.1.2  In-Plane Stress and Strain Analysis     

 The curvature in the constant moment region is the loading used to determine in-plane 

ply-level strains and stresses. The curvature of the beam, κο
x, for a given bending 

moment can be simply calculated using the effective stiffness as shown in Equation 3-6.  

beam

eff

M
EI

=o
xκ       (3-6) 

The coordinate systems for the analysis are shown in Figure 3- 2.  

 

 
 

Figure 3- 2:  Coordinate systems used in analysis. 
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The known curvature value can be used to determine the value of My required for CLT 

using the inverse ABD matrix: 
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Knowing that Nx=Ny= Nxy=Mx=Mxy=0, My is defined as: 
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The value for My can be substituted back into (3-7) to attain values for the other mid-

plane strain values. The relations for the strain response of the laminates then become: 
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In these expressions the value of z is measured with respect to the neutral axis of the 

beam cross section.  The strain values shown are the engineering strain values.  The 

stresses can then be calculated in each ply using the Q-bar matrix: 

  

































=
















xy

y

x

xy

y

x

QQQ
QQQ
QQQ

γ
ε
ε

τ
σ
σ

662613

262212

131211

   (3-12) 

 



  45

3.1.3  Out of Plane Stresses      

The delamination failure mode of the beam, is the result of the out-of-plane free-edge  τxz 

and σz stresses.  The standard CLT stress calculations do not predict these stresses, and as 

discussed in Chapter 1, there are several analysis techniques to calculate them. The 

distance away from the free edge that the stresses act over, the boundary layer, is a 

constant of the laminate, independent of the loading or the location of the analysis.  The 

boundary layer is directly proportional to the effective ply thickness of the laminate.  This 

has been demonstrated both analytically and experimentally [20, 60]. The free body 

diagram below (Figure 3-3) demonstrates the stresses influenced by the free edge effect 

are distributed in a cut away of several plies. Two methods will be considered for the 

stress analysis, the Primitive Delamination Model [37]  and the Minimization of 

Complementary Energy [49] as discussed in Chapter 1.   

 

Figure 3- 3: Free body diagram including out-of-plane stresses. 

 

In both methods, the beam is simplified to the symmetric case by representing the webs 

and internal flange to one equivalent ply (Figure 3- 4), and also as four equivalent plies 

(Figure 3-5 ).  The overall EIeff of the beam is maintained in this “smearing” process, but 

this simplification violates the stress free boundary condition on the bottom face of the 

flange.  The boundary layer is often taken as the half-thickness of the laminate, but to 
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best represent the stress state, the boundary layer is assumed to be the thickness of the top 

flange.  

 

Figure 3- 4: Smearing properties of the web and flanges into one equivalent ply 

 

 

 

Figure 3- 5: Smearing properties of the web and flanges into 4 equivalent  plies 

 

There is some discrepancy between the in-plane stress values calculated using Laminated 

Beam Theory and the smeared properties.  The results are shown comparatively in Figure 

3- 6 through Figure 3- 8 below, all normalized to the magnitude of the σx value at the top 

of the flange calculated from Laminated Beam Theory.  This maintains the convention 

that negative stresses are compressive. The plots shown represent the stresses through the 

thickness of the top flange.  The distances are measured from the mid-plane of the beam 
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in accordance with the coordinate system shown in Figure 3- 2.  Normalizing to the same 

value demonstrates that most of the stress is carried in the x-direction by the carbon plies.  

  

Smearing the subflange and webs separately, is a closer match to the LBT distribution for 

the x-direction and shear stresses.  For the y-direction stresses, it is a mixed response, 

where the one equivalent ply is better for the positive stress values and the four 

equivalent plies are more accurate for the negative values.  Both models under predict the 

tensile stresses and over predict the compressive stresses.  This is due to the fact the 

smeared plies are assumed isotropic, increasing the stiffness in the y-direction (i.e. stiffer 

90° plies) and reducing the tensile stresses but increasing the compressive stresses. The 

overall increase in stiffness for the four smeared plies results in lower magnitudes of 

stresses, thus matching the compressive stresses better. The inverse becomes true for the 

one smeared ply.  Overall, the stiffness of the smeared properties are low, and therefore 

these plies do not carry any significant amount of load, justifying the approximation.   

Figure 3- 6: Comparison of axial stresses using Laminated Beam Theory to the smeared cross section 

results 
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Figure 3- 7: Comparison of transverse stresses using Laminated Beam Theory to the smeared cross 

section results 

Figure 3- 8: Comparison of the shear stresses using Laminated Beam Theory to the smeared cross 

section results  
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3.1.3.1 Primitive Delamination Model 

The first model considered for determining the three-dimensional stress state is the  

“Primitive Delamination Model”, developed by Pagano and Pipes, [36,37]. This 

mathematically simple model is essentially a moment balance of the σy stresses with the 

σz stresses, which are a couple at the free edge.  Using this method, the value of σz 

reaches a maximum at the free edge, which agrees with the more complicated analysis 

techniques and also changes sign in the boundary layer.  The model assumes that the free 

edge effects are only contributors over a distance from the edge equal to the laminate 

thickness.  An approximation was made on the stress distribution to linearize it as shown 

in Figure 3- 9.  In the figure σm represents the maximum stress at the free edge. 

 

Figure 3- 9:  Assumed σz stress distribution across laminate half-width 

Equating the areas under the curve, the stresses are related by Equation 3-13: 
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For our calculations, the hb in the stress expression represents the boundary layer and is 

therefore the thickness of the top flange.  The h value in Equation 3-15 is the distance 

from the midplane to the top of the cross section (10.16 cm ; 4.0 in).    The value of  z is 

the distance from the midplane to the interface being considered. The expressions are 

then evaluated at each interface, to determine the interfacial σz at the free edge. The 

coordinate system and variable definitions are shown in Figure 3- 10.   

 

Figure 3- 10: Variable Definition for the Primitive Delamination Model 

 

 

Since σy is linear over each layer, the integral can be computed by looking at the sum of 

the moments of the layers above or below the respective interface.  From CLT, the 

stresses at the top and bottom of each layer are known, making the linear relationship for 

σy  through a ply to be: 
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In these equations σy,1 and σy,2  are the stresses at the top and bottom of a layer 

respectively.  The thickness of the layer is ti,  z2 is the location of the bottom of the layer 

with respect to the neutral axis of the section. The integral of the expression for an 

interface then becomes: 
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where zint  represents the interface being evaluated and z1 and z2 are the z locations at the 

top and bottom of the ply respectively.   The moments are then summed for the plies 

above or below the interface being evaluated and this value of  M(z) is used in Equation 

3-17 to determine the stress at the free edge. 

 

The resulting ply-level stress distribution in the top flange of σz under the ultimate 

moment is shown in Figure 3- 11 and Figure 3- 12 for both methods of approximating 

EIeff.  The ultimate load is the average moment capacity of all of the beams tested at all 

spans, Mult = 135 kN-m (100 kip-ft).  This value will be used for all of the calculations in 

the remainder of the chapter.  The moment balance for the analysis is completely 

dependent on the σy values.  Comparison of the approximated in-plane stresses to 

Laminated Beam Theory did not clearly indicate which stiffness approximation is best for 

σy,  therefore both are compared in the figures below.  The use of 1 equivialent ply for the 

section is more conservative, as it yields the higher stress levels by as much as 16%.   

Figure 3- 11: Stress Distribution through top half of beam cross section at failure loading using the 

Primitive Delamination model 
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Figure 3- 12:  Stress distribution "zoomed-in" on top flange using the Primitive Delamination Model 

 

The Primitive Delamination Model continuously sums the effects of the plies above it, 

therefore it suggests that the maximum σz is actually reached at the bottom of the top 

flange.  Based on this, the stress free conditions are certainly not met at the bottom face 

of the flange. Experimentally, the failure is consistently occurring at the first carbon 

matrix interface from the midplane, so the critical free edge stress will be considered the 

maximum σz at that interface, called out in Figure 3- 12   

 

3.1.3.2  Minimization of Complementary Energy 

The second approach, more appropriate for the non-symmetric top flange laminate, is the 

Minimization of Complementary Energy.   This approach is outlined in Reference [49] 

and will be summarized below. 
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In order to simplify the mathematics, a new coordinate system is introduced.  The zero 

value is shifted to the free edge and normalized: 

 

h
yb

y
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=      (3-18) 

 

Additionally, a local coordinate,  zp ,  is introduced for each ply.  At the bottom of the ply, 

zp = 0, and at the top of the ply, zp = tk , where tk is the thickness of ply k.  See  Figure 3- 

13. 

 

Figure 3- 13:  Coordinate System for interfacial stress analysis using the Minimization of 

Complementary Energy approach 

 

The stresses are assumed independent of the x direction and multiplicatively independent 

of  y  and z.  For the most general loading conditions the in-plane stresses cannot be more 

than linear in z, and must regain the CLT values away from the free edge.  The stresses 

for a given ply are assumed to take the form: 
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The equilibrium equations, in accordance with the above assumptions, become: 
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The g1 and g2 functions are solved for the entire laminate, where as the other constants 

change for each ply, as indicated by the k  superscript.  At the free edge, stress free 

conditions must be met: 
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In order to regain the CLT values, the following conditions must be met away from the 

free edge: 
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To attain the CLT stresses, using the local ply coordinate system, the constants are 

defined from the CLT solution are are: 
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The constants for the first ply can be found by knowing that the top of the laminate is 

stress free: 
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Using the matching conditions at the ply interfaces, the constants can be defined as 

follows for the other plies: 
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The stress functions are now only functions of g1 and g2 and the appropriate derivatives.  

The functional forms are found using the minimization of complementary energy and 

variational calculus.  The expression for the complementary energy is: 
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For a given ply, in the top half of a symmetric laminate, the expression of complementary 

energy becomes: 
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Calculus of variation procedures, give the governing equations for g1( y ) and g2( y )  to 

be of the form: 

0
111

2

2

=
∂
Π∂

+







′∂

Π∂
−








′′∂

Π∂
ggyd

d
gyd

d ccc     (3-41) 

0
22

=







∂
Π∂

−
′∂

Π∂
ggyd

d cc      (3-42) 

The solution is outlined in Reference 49 and results in the solution for g1( y ) and g2( y )  

to be: 
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In these equations the m1, m2 and m3 values are the complex roots to the characteristic 

equations with negative real parts.  The constants can be solved for by recalling the 

boundary equations (3-24 through 3-26)  

 

In summary the stresses have the form: 
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An example of the stress distribution is shown along the y-direction of the carbon-glass 

interface in Figure 3- 14.  The solution is symmetrical, over the full beam width, and only 

one half is shown.  The shaded area represents the boundary layer region, equal to the 

thickness of the top flange.  The plot represents the solution for the case when 4 smeared 

plies are used.  The in-plane σy and τxy do return to the CLT values outside of the 

boundary layer, and the maximum σz and τxz occur at the free edge.  The value of τyz is 

significant within the boundary layer region, and is nearly as large as the in plane stress 

value.  It should be noted that the σx mismatch at this interface is large.  The stress value 

in the carbon ply is 689 MPa (100 ksi) and in the glass ply is 86.2 MPa (12.5 ksi). 
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Figure 3- 14:  Stress distribution at failure interface using the minimization of complementary 

energy using four smeared plies to represent the web and  internal flanges. 

 

 

The stress distribution through the top flange, using the one and four ply approximations, 

are shown in Figure 3- 15 and Figure 3- 16.   The figures show the maximum values for 

σz within a given ply at a given z location.   The out-of-plane stresses are continuous as 

required by the boundary conditions.  The z-face stresses do not return to zero at the 

bottom of the laminate because of the smeared properties. 
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Figure 3- 15:  : Stress Distribution through top half of beam cross section at failure loading using the 

Minimization of Complementary Energy approach  

Figure 3- 16:  : Stress Distribution “zoomed-in” through top flange at failure loading using the 

Minimization of Complementary Energy approach 
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3.1.3.3 Model Comparison 

The overall shapes of the models are very consistent, demonstrated in Figure 3- 17.  Both 

models have the highest stress for a glass-carbon interface at the location of the failure 

experimentally. Each model is a summation of the properties in the plies above a given 

infterface, and therefore the models both reach the maximum values at the bottom of the 

flange. There is a significant increase in the stresses across through the stiffer carbon 

plies in each model. The energy method uses all the in-plane stresses for the analysis and 

is therefore more sensitive to the stress approximation used.  The models range from 683 

kPa to 2470 kPa  (99 psi –358 psi) at this critical carbon-glass interface, under the 

ultimate loading.  The use of one smeared ply yields the more conservative result in each 

model.  The stress values at the critical carbon-glass interface will be used in life 

prediction as the out-of-plane strength values for the beam, Zt.   

Figure 3- 17:  Comparison of the two out-of-plane stress models, and the equivalent property 

approximations 
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3.2 Life Prediction 

Knowledge of the stiffness properties and ply level stresses and strains allows for a life 

prediction model to be developed.  The model employs the idea that initially stiffness 

reduction only occurs in the tensile flange. As the stiffness of the bottom flange is 

reduced, there is a redistribution of strain to the compressive flange and an inherent shift 

in the neutral axis.  A remaining strength approach [61], in conjunction an iterative stress 

analysis is then used to determine the onset of delamination and the crack growth to 

failure.  The assumptions employed in the residual strength model include: 

• Reduction in tensile stiffness of the beam will be evaluated, based on tensile coupon 

data of similar material conducted by Phifer [18] which focuses on off-axis plies . 

• The unidirectional carbon plies do not experience any stiffness reduction.  

• Strength reduction is uniform for both the tensile and compression flanges and is 

related to the in-plane strength reduction of the tensile flange. 

• The carbon acts stiffer in tension than in compression, therefore the neutral axis is 

initially offset toward the tensile flange but during loading shifts toward the 

compressive side. 

• The tensile out-of-plane strength (Zt )  is calculated from the Mult found from quasi-

static failure testing. 

• Once delamination initiates, stiffness reduction must be accounted for in the 

compression flange in addition to the tensile flange.   

• Crack growth, once delamination is initiated, is symmetric from each side of the 

beam, across the width of the beam (in the y-direction) 

• Failure occurs when the crack propagates across the width of the beam or if the in-

plane remaining strength matches the loading.   

 

The flow chart, Figure 3- 18, demonstrates the process up to delamination inititaion, and 

the steps are further detailed in the sections to follow. The process begins by inputting the 

geometry, layup and loading.  Using this information the stresses and strains are 

evaluated.  The free edge stresses are then compared to the strength of the top flange. If 

the stress exceeds the strength, delamination is assumed.  If the stress does not exceed the 

strength, the stiffness in the tensile flange is reduced based on a maximum strain 
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criterion.  The neutral axis shift corresponding to the stiffness reduction is then 

calculated.  The new stiffness and neutral axis location are used in Laminated Beam 

Theory to determine the new EIeff and curvature.  The κx
o becomes the new loading 

condition for the stress evaluation.  The process is continued until delamination initiation. 

 Delamination 
Initiation

EIeff

Evaluate 
σij and εij 

κx
o Reduce 

Ebottom(     ) max,x

x

ε
ε

σz > Zt

Y

N

Neutral Axis
Shift

Input
 Properties

 

Figure 3- 18: Flow Chart of Stress Analysis and Stiffness reduction up to delamination 

   

3.2.1  Stiffness Reduction      

3.2.1.1 Stiffness reduction of the Tensile Flange      

 All of the initial stiffness reduction is assumed to occur in the tensile flange, based on 

what was seen experimentally.  Prior tensile fatigue testing of pultruded, E-glass, vinyl 

ester laminates is used to characterize the stiffness reduction of the bottom flange.  The 

dynamic stiffness reduction was monitored in the tests; and indicates a linear reduction in 

stiffness occurs with respect to cycles at a given load [18], following an intial drop off. 

The carbon plies are assumed to experience no stiffness reduction in the analysis. The 

flange is divided into sublaminates that mimic the cross-ply and quasi-isotropic coupons 

tested, and the stiffness reduced on a sub-laminate basis.  A summary of the initial 

properties for the crossply CP1 lamaintes, (0/90)5T , and the quasi-isotropic QI2 laminates 

(0/90/+45/-45/90/0)2T  is given in Table 3- 2 . 
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Table 3- 2:  Summary of coupon laminate properties tested in tensile fatigue by Phifer 

 Ply 

Orientation 

Vf 

% Fiber  

Volume 

ET  

Tensile 

Modulus 

GPa 

(Msi) 

ε 90f  

90° % 

Failure 

Strain 

 

ε f  

% Failure 

Strain  

 

Xt 

Ult 

Strength 

MPa 

(ksi) 

CP1 (0/90)5T 56.2 27.3 

(3.96) 

.32 2.077 430 

(62.4) 

QI2 (0/90/+45/ 

-45/90/0)2T 

56.3 24.1 

(3.50) 

.37 2.060 357 

(51.9) 

 

Based on the fatigue data, Phifer used a linear fit was to describe the dynamic modulus 

reduction.  The cross-ply laminate stiffness reduction (Figure 3- 19) was dependent on 

the load level, resulting in two different fits, where Fa represents the ratio of the load to 

the ultimate load.  For the quasi-isotropic laminates both overall laminate reduction was 

determined and the reduction of the off-axis plies was also calculated as shown in Figure 

3- 19.  Although the linear fit does not capture the initial degradation of the laminate, it is 

representative thereafter.  

 

Figure 3- 19:  Linear curve fits used by Phifer for tensile coupon fatigue data of  Quasi-Isotropic 

(Left) and Cross-Ply (right) laminates 
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For modeling the beam, it seems that the initial coupon degradation is similar to what 

occurs in the beam itself, therefore the data was fit to a logarithmic curve to capture the 

initial area, and then flatten out.  It is also important to note that the inplane strains in the 

beam are lower than what the coupon tests are loaded to.  Therefore the data was 

averaged using the lower  Fa  (εapplied/εmax )values. The data and fit are shown for the 

quasi-isotropic laminates in Figure 3- 20  and the cross-ply laminates in Figure 3- 21.  

The resulting curve fits were: 

Quasi-Isotropic: 8281.ln0124.0 +





−=

N
n

E
E

o

x       (3-45)  

Cross Ply: 8933.ln0118.0 +





−=

N
n

E
E

o

x    (3-46) 

The sublaminate reductions are comparatively plotted in Figure 3- 22.  The reduction of 

the Quasi-Isotropic laminates is more severe initially, but both have similar attributes 

thereafter due to the nature of the logarithmic curve fit.   

Figure 3- 20 :  Curve fit of coupon dynamic stiffness reduction for quasi-isotropic laminates 

y = -0.012376Ln(x) + 0.828107

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.00 0.20 0.40 0.60 0.80 1.00

Normalized Cycles (n/Nfail)

N
o

rm
al

iz
ed

 M
o

d
u

lu
s 

( 
E

(n
)/

E
o

 )



  65

Figure 3- 21:  Curve fit of coupon dynamic stiffness reduction for cross-ply laminates 

Figure 3- 22:  Comparison of sub-laminate level stiffness reductions 
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3.2.1.2  Flange Stiffness Calculation 

In the analysis, the effective modulus of a sublaminate is found from a rule of mixtures 

approach:  

∑
∑=

i

iiix
eff t

tE
E ,     (3-47) 

where Ex,i  is the equivalent modulus in the axial direction for a ply of any orientation and 

ti  is the thickness of the respective ply.  This effective stiffness was then used in the same 

manner to determine the stiffness of the entire flange.  For the entire flange the Ex,i  and ti 

are the sublaminate Eeff  and thickness respectively.  

 

 The use of the inverse ABD values to attain the effective stiffness was also considered: 

  
ta

Eeff
11

1
=       (3-48) 

Jones notes that this expression is not accurate for laminates with plies of different 

thicknesses [62].  It also needed to be used at the sublaminate level and then to determine 

the overall stiffness of the flange, doubling the inaccuracy and adding complexity.  This 

approach also results in a different Ex  for the top and bottom flanges, which are 

symmetric to each other,  prior to any reduction.   

 

The EIeff values using both approaches are compared to LBT in Table 3- 3.  

Table 3- 3:  Comparison of approximated EIeff values to Laminated Beam Theory results 

 Rule of Mixtures 

MPa-m4 

(psi-in4) 

Inverse ABD 

MPa-m4 

(psi-in4) 

LBT 

MPa-m4 

(psi-in4) 

Top Flange 1.10 

(3.83 x 108) 

1.02 

(3.57 x 108) 

1.14 

(4.00 x 108) 

Bottom Flange 1.10 

(3.83  x 108) 

.832 

(2.91 x 108) 

1.17 

(4.09 x 108) 
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The rule of mixtures approach yields a modulus value closer to the Laminated Beam 

Theory prediction.  It is also simpler to employ, and is used in the model.   

 

3.2.1.3  Stiffness Reduction of the Compression Flange    

 Stiffness reduction occurs only in the tensile flange until delamination initiates.  The 

reduction is then controlled by the number of delaminations and the crack length.  This 

method will be further described in the section following. 

 

3.2.1.4  Neutral Axis Shift    

Initially, the neutral axis shift is toward the tensile flange, as carbon acts stiffer in tension 

than in compression.  As the stiffness of the flanges change, there is a shift in the neutral 

axis. This shift inherently changes the strain distribution across the section and will 

influence the in-plane stiffness reduction.  Initially, the neutral axis moves toward the 

compression flange, and once delamination occurs, it begins to shift toward the bottom 

flange.  The location of the neutral axis is simply found by considering the effective Ex 

for the top and bottom flanges, in the standard mechanics of materials calculation: 

      
iix

iiix

tE
ytE

NA
,

,

Σ
Σ

=     (3-49) 

The influence of the neutral axis shift on the inertia properties is negligible and is not 

accounted for in the analysis.  A .635 cm (0.25 in) shift, representing the carbon acting 

76% less stiff in compression, results in a less than 1% change in inertia values.   

 

3.2.2  Strength Properties      

The out-of-plane strength in the z-direction (Zt) is assumed to be the maximum σz at the 

critical glass carbon interface at failure.  The average  moment capacity of the beam is 

used in the previously defined stress analysis yielding Zt. The strength values are 

summarized for the different methodologies in Table 3- 4   
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Table 3- 4:  Summary of predicted strength values at the critical interface 

 Strength Values Zt   

kPa  (psi) 

Model 1 Smeared Ply 4 Smeared Plies 

Minimization of Energy 
2470 

(358) 

683 

(99) 

Primitive Delamination Model 
1700 

(246) 

1500 

(218) 

 

3.2.3  Prediction of Remaining Strength   

For the analysis, the strength reduction of the beam is considered to be uniform and is 

evaluated with consideration to the stiffness reduction of the bottom flange until the onset 

of delamination.  This selection was made since fatigue is assumed to initially occur in 

the tensile bottom flange due to in-plane effects.  Based on the increased curvature and 

stresses from the reducing EIeff value, the remaining strength of the beam is then 

predicted using the following expression [61] : 

j

fail

n
j

N
dn

FaFr })1({1
0

1∫ −−=     (3-50) 

In Equation 3-50, the Fr term represents the percentage of the strength remaining due to 

the loading over n cycles.  Fa  is a failure criteria selected for a given system, and will be 

further defined for the ply-level and sublaminate level reduction schemes.  The parameter 

j, is a material parameter, which is taken to be 1.2, based on experimental curve fits from 

characterizing a similar material [63].  The value of Nfail represents the predicted number 

of cycles to failure at a given load level, and is therefore a function of Fa.   Nfail is taken 

from coupon fatigue data [18].   

 

3.2.3.1  Failure Criteria for Sub-Laminate Level Reduction 

For each sublaminate, a value Fa is calculated based on the in-plane tensile loading in the 

sublaminate. Fa for this application is also a maximum strain criterion, and is defined as 
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the ratio of the average strain in the laminate to the experimental strain to failure of the 

respective test laminate summarized above in Table 3- 2 .   

eminatla

ave n
nFa

max,

)(
)(

ε
ε

=     (3-51) 

The Nfail values are then calculated for each respective sublaminate using Equation 3-52, 

which is directly from the coupon fatigue data by Phifer.   

    
d

sublamfail b
anFa

c
N

/1

,
)(

ln
1

















−
−

−=    (3-52) 

The constants in Equation 3-52 and the strain values they are valid for are in Table 3- 5 : 

Table 3- 5:  Constants for defining the number of cycles to failure for the sublaminates 

  

a 

 

b 

 

c 

 

d 

Valid for 

Fa(n) > 

QI2 1.0000 .82203 15.803 -.43840 .16 

CP1 .69202 .55922 142.86 -.61808 .14 

 

Due to the low loading in the tensile flange, relative to the coupon tests conducted, 

extrapolation of the data was necessary for many of the simulations. At the ultimate 

moment, the strains are between 26% and 29% of the failure strain values, which is lower 

than the loading many of the coupon tests were conducted at.  The data was linearly 

extrapolated, on the log scale,  and the final piecewise continuous curves are shown in 

Figure 3- 23 for both types of laminates.  The fatigue life is plotted vs the maximum 

strain criterion, over the range that this analysis will focus on.  After Nfail is determined 

for each sublaminate, the limiting, least number of cycles to failure, value is then used to 

evaluate the remaining strength for the entire beam. 
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Figure 3- 23:  Fit for prediction of number of cycles to failure based on maximum strain criteria 

 

3.2.3.2  Strength Reduction 

The analysis is iterative and the reduction can be summed over set increments (∆n) [64].  

For each iteration, the Fa and Nfail value will change, as the strain values will be 

gradually increasing.   In order to determine the strength reduction, the ∆Fri must be 

calculated for the interval and then summed and raised to the j power as shown in 

Equation 3-54. 

     
)(

))(1( 1

nN
n

nFaFr
fail

j
i

∆
−=∆    (3-53) 

And the remaining strength in the beam then becomes: 

j

iFrFr 







∆−= ∑  1     (3-54) 

The Fr value calculated was then considered to be the overall reduction in strength of the 

beam.  Since the beam is considered to degrade uniformly, this reduction will also adjust 

the Zt value.  Knowing the reduction in strength, the criteria for initiation of delamination 

can be evaluated. 
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3.2.3 Delamination and Crack Growth 

The quadratic failure criterion was used to predict the onset of delamination in the 

compression flange. Following the onset of delamination, stiffness reduction of the 

compressive flange must also be considered with the tensile in-plane effects.  These 

effects are also coupled with the crack growth and propagation to predict the ultimate 

failure of the beam. The reduction scheme is shown in Figure 3- 24. Once delamination is 

predicted, the length of the crack can be calculated and compared to the width of the 

beam.  If the crack has fully propagated across the width ultimate failure is assumed, 

otherwise the stiffness of the top flange is reduced.  This stiffness reduction is used in 

with the continued modulus reduction in the bottom (tensile) flange to determine the 

neutral axis shift.  The new stiffness values and neutral axis location are then used to 

determine EIeff and κx
o that allow for calcuation of the stress state.  The drop in stiffness 

and increase in curvature will inherently raise the stresses and may cause additional 

failures.  The initial crack, and any newly formed cracks, are then monitored and 

continue through this evaluation cycle until failure.   

Reduce 
Etop 

Crack
Length =
Width?

Crack
Length

Y

N

Delamination 
Initiation Failure

Reduce 
Ebottom

EIeffκx
o Neutral Axis

Shift

Evaluate 
σij and εij 

Additional
Failures ? 

 
 

Figure 3- 24:  Flow chart of stiffness reduction and stress redistribution following delamination 
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3.2.3.1  Quadratic Delamination Theory     

The Quadratic Delamination Theory proposed by Brewer and Lagace [56] predicts 

delamination initiation, based on the out-of-plane stresses and strengths.  Failure is 

assumed when Equation 3-55 is satisfied.  

1
22

≥







+











t

z

xz

xz

ZZ

στ
    (3-55) 

The value of τxz is negligible in this analysis when compared to the matrix strength, 

allowing the criteria to be simplified. Also, on the assumption that the Zt strength 

degrades the same as the in-plane strength, the failure is assumed when: 

1≥
FrZ t

zσ
    (3-56) 

This essentially becomes a maximum stress criterion in the out-of-plane direction. 

 

3.2.3.2  Compressive Flange Stiffness Reduction and Crack Growth      

Once delamination is initiated, indicated by the delamination criterion exceeding 1, 

further reduction of top flange stiffness needs to be included in the reduction scheme.  

The new modulus calculations implement a rule of mixtures approach developed by 

O’Brien [51]. 

lamlamx E
b
a

EEE +−= )*(    (3-57) 

In Equation 3-57, a is the crack length of the largest crack in the laminate, b is the half 

width of the laminate, E* represents the effective modulus of the laminate if the layers 

are completely delaminated from each other (Equation 3-59), and  Elam is the initial 

effective modulus value of the laminate. The variables are demonstrated in Figure 3- 25. 
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Figure 3- 25:  Variable definition for crack growth prediction 

Despite the issues discussed above, in accordance with O’Brien’s approach, an effective 

modulus can be calculated using Equation 3-58 where a11 is from the inverse ABD matrix 

and t is the total thickness of the laminate being evaluated.   

ta
Eeff

11

1
=           (3-58)   

The rule of mixtures is used to determine E* : 

t

ti∑= ix,E
E*       (3-59) 

where  Ex,i and ti represent the effective modulus and thickness of the sublaminates 

formed by the cracks (See Figure 3- 25).   

 

3.2.3.3  Crack Growth 

Once delamination initiates, crack growth is considered symmetric from each free edge 

of the beam.  O’Brien has shown a good estimation of crack growth is based on the 

relation [51-54]:  









−
=

dn
dE
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dE/dn is the change in modulus over the step size, all other terms are consistent with their 

definitions above.  The crack growth rate (da/dn) is not constant, since it is dependent on 

the number of layers that have delaminated at a given time, thus as more layers 

delaminate, the rate of crack growth increases. 

 

3.2.3.4  Determining Failure of the Beam 

The model predicts failure due to in-plane effects and also due to delamination.  Failure is 

assumed when either of the following criteria are met: 

1. The crack completely propagates across the width of the beam 

2. The remaining strength of the beam matches the loading (Fa=Fr).  
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CHAPTER 4: ANALYTICAL RESULTS 
 

The results of model developed in Chapter 3 will be discussed in this chapter.  The model 

will be compared to experimental results in Chapter 5, the purpose of this chapter will be 

to understand how the parameters in the model effect the predicted fatigue life and failure 

mode.  S-N curves were developed by running the model at numerous load levels, and are 

then compared to understand the important parameters in the model.   

 

4.1  Life Prediction Model Output 

Regardless of the strength values used or the method to predict σz the program always 

predicts out-of-plane failure prior to in-plane tensile failure of the bottom flange.  The 

results shown are typical and are used to demonstrate the program output.  The plots are 

from an input load of 58% of the ultimate moment, using the Minimization of Energy 

approach to solve for σz, and one ply to represent the webs and flange. 

 

Using the MRLife methodology, failure will occur at the intersection of the remaining 

strength curve and the applied load curve.  In Figure 4- 1 both the out-of-plane stress 

criteria and in-plane maximum strain criteria are shown with the remaining strength 

curve.  For this case, delamination occurs at 401,000 cycles, the intersection of the 

curves.  Ultimate failure is at 404,500 when the crack has propagated across the entire 

width of the beam.  The crack growth is shown in Figure 4- 2.  The points on the plot are 

over equal intervals, thus the rate of crack growth increases, as further stiffness is lost.  

At the load considered here, there is a 2% loss in modulus in the tensile flange over the 

first 50,000 cycles (Figure 4- 3).  There is no loss in stiffness in the top flange until 

delamination, followed by a sudden drop in the modulus.   These modulus changes are 

reflected in the neutral axis location, which shifts toward the stiffer flange as 

demonstrated in Figure 4- 4  
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Figure 4- 1:  MRLife plot of remaining strength and in-plane and out-of-plane normalized loading 

Figure 4- 2:  Crack growth in the top flange following delamination initiation 
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Figure 4- 3:  Top and bottom flange stiffness reduction, normalized to the initial stiffness 

Figure 4- 4:  Neutral Axis Shift from the midplane predicted by the life prediction model 
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 4.2 Model Comparison Using Calculated Strength 

The strength values (Zt) were calculated for each model based on the average Mult found 

in experimental testing of all the beams.  The four different out-of-plane strengths are 

summarized in Chapter 3.  When the calculated strength values are used in their 

respective models, as expected, the same S-N curve is attained for the beam.  The 

coincident curves are plotted in Figure 4- 5.  The matching results occur because this 

technique normalizes out the different strengths in the failure criterion which is a ratio of 

σz  to Zt.  Attaining the same S-N curve using the calculated strength values confirms that 

the model is consistent in the life prediction calculations.  Additionally, if a strength 

value is calculated for a model from the Mult of the beams, the use of any model and its 

respective strength can be used without altering the life prediction. 

Figure 4- 5:  Comparison of S-N curves for different methods of calculating σz and approximating 

the effective stiffness 
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4.3 Model Sensitivity to Strength Value 

The data by Garcia [23] on the strength of the top flange was then used with the four 

combinations as the Zt value.  Figure 4- 6 shows the S-N curves using this approach and 

compares them to the curve developed from the calculated Zt.  The energy method curves 

using the experimental data deviate from the prior calculations (dashed line in the plot) 

more than the curves found using the primitive delamination model.  This is the result of 

the calculated strength values for the method being closer to the experimental strength.  

The percent change in strength values are compared to the percent change in life in   

Table 4- 1  for four different loads.  The change in life is both a function of the change in 

strength value and the loading applied.   

Table 4- 1:  Influence of strength value on the fatigue life 

% change 

Zt 

%  change life 

46% Mult 

%  change life 

58% Mult 

%  change life 

63% Mult 

%  change life 

81% Mult 

-23% -27% -34% -57% -98% 

12% 10% 13% 21% 65% 

27% 19% 25% 40% 125% 

179% 58% 75% 122% 378% 
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Figure 4- 6:  S-N curves developed using the experimental out-of-plane strength value 
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in stiffness in the tension flange increases the predicted life, even with the compression 

flange degraded.  Additionally, the shift in the S-N curve for an increase in the tension 

flange is greater than the shift in the opposite direction for a degradation of equal 

magnitude in the compression flange.  

 

The shift in the neutral axis for all of the cases is plotted at 63% of the ultimate moment 

in Figure 4- 8.  The higher the effective modulus of the tensile flange, the more gradual 

the shift in stress is to the top flange, increasing the life. Figure 4- 9 demonstrates the 

influence of  the in-plane Fa value on the remaining strength curve. The slight 

differences in Fa result in a large change in the slope of the remaining strength curves 

also controlling the life prediction.. 

 

 

Figure 4- 7:  Comparison of Life prediction for different carbon stiffness values 
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Figure 4- 8:  Comparison of the neutral axis shift for different carbon stiffness values 

Figure 4- 9:  Comparison of reamaining strength curves for different carbon stiffness values 
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4.5 Summary 

The program output gives reasonable results and suggests that delamination is the 

controlling failure mechanism, and in-plane fiber failure will not occur prior to failure of 

the top flange.  The calculated neutral axis shift and stiffness reductions follow the 

anticipated trends. 

 

The sensitivity of the model to several parameters was investigated. The predicted life is 

not sensitive to the method used to calculate σz or the number of plies used to mimic the 

webs and internal flange.  The strength value used in the model becomes of greater 

importance at higher loads; a slight change in the value can result in a large change in the 

life predictions at loading over 75% of the ultimate moment.  Finally the model indicates 

that the life is controlled by the stiffness of the tensile flange.    An increase in stiffness of 

the tensile flange (or a neutral axis shift toward the tensile flange) even with a decrease in 

the properties of the compression flange will shift the S-N curve right, increasing the life.  

The tensile flange stiffness controls the redistribution of stresses and also the slope of the 

remaining strength curve.    



  84

CHAPTER 5:  COMPARISON OF 

ANALYTICAL AND EXPERIEMENTAL 

RESULTS 
 

In order to validate the analytical ideas developed in Chapters 3 and 4 the calculated 

values must be compared to experimental results.  The comparison of these values will be 

shown in the sections that follow 

 

5.1 Comparison to Laminated Beam Theory 

Laminated beam theory was used to predict the stiffness, deflections and strain values for 

the beam under four-point bend loading.  Using this method to predict the beam response 

assumes and ideal case where plies are of uniform thickness and do not have any ply 

waviness.  In reality, manufacturing of the section by pultrusion results in plies with 

varying thicknesses and flaws such as fiber undulation.  Despite the simplification used in 

the analysis, the effective stiffness values compared well as shown in Table 5- 1. 

Table 5- 1:  Comparison of predicted and experimental stiffness values 

 EIeff  (MPa-m4) EIeff  (Mpsi-in4) % error 
(data-prediction)/data * 100% 

Prediction 2.41 841  

400 Series (14 ft) 2.29 798 -5.39 % 

500 Series (20 ft) 2.45 855 1.58 % 

Average 2.37 826 -1.78 % 

 

The mid-span deflection, calculated using beam theory was then compared to 

experimental results.  The calculations do not account for shear deformation, and are 

therefore conservative as seen in Figure 5- 1.  The average error between the calculated 

values and the prediction is 9.52 %, which is the same as the shear contribution to 

deflection found in the fatigue test.   The experimental points shown are from the quasi-
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static tests to failure and initial readings on the beams that underwent fatigue.  This 

includes data from both batches of beams.  

Figure 5- 1:  Comparison of predicted and experimental mid-span deflection values 
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Figure 5- 2:  Comparison of predicted and experimental axial top flange strain values 

Figure 5- 3:  Comparison of predicted and experimental axial bottom strain values 
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5.2 Out-of-Plane Stresses 

The prior testing by Garcia, discussed in Chapter 1, resulted in a Weibull out-of-plane 

strength of the specimens of 1900 kPa (276 psi).  The failure was at the first carbon-glass 

interface from the midplane.  The stresses at this interface at the failure moment for the 

two batches are summarized in Table 5- 2.  The predictions are in reasonable agreement 

with the tested strength values, and encourage the use of these simple models.  The use of 

one smeared ply for both models gives a better approximation to the strength value seen 

in the test.   

Table 5- 2:  Summary of predicted strength values at the carbon-glass interface for each series of  

beams 

Primitive Delamination Model Minimization of Energy  

1 Smeared Ply 

kPa 

(psi) 

4 Smeared Plies 

kPa 

(psi) 

1 Smeared Ply 

kPa 

(psi) 

4 Smeared Plies 

kPa 

(psi) 

400 Series 1760 

(255) 

1550 

(225) 

2540 

(369) 

703 

(102) 

500 Series 1250 

(182) 

1110 

(161) 

1820 

(264) 

503 

(73) 

 

The prediction for the all glass beams was also examined at the ultimate loading under 

four-point bend.  The predicted value using the primitive delamination model with four 

smeared plies is 3658 kPa (530 psi), at the same interface.  This is reasonable agreement 

with the known value of over 2100 kPa (300 psi).  

 

5.3 Life Prediction comparison 

 

An S-N curve was created based on the average failure moment from the 14 ft and 20 ft 

quasi-static tests.  The predicted curve is calculated using the Primitive Delamination 
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Model for σz and the calculated value for Zt at the ultimate moment of 120 kN-m (88.7 

kip-ft). No neutral axis shift was considered, based on the average data for the beams.   

 

The experimental points and the predicted S-N curve are plotted in Figure 5- 4 

normalized to the average ultimate moment of all of the hybrid beams tested from both 

batches.  The beam failure at 53% (Beam #425) is about 6 orders of magnitude from the 

prediction.  The two beams (#514 & #421) which experienced runout at 8 and 10 million 

cycles were under the predicted failure.  Beam #517 failed at 370,000  cycles at 71% of 

the ultimate moment agrees well with the prediction of 300,000 cycles at the same load.  

Without further data, the validity of the model overall cannot be determined.   

Figure 5- 4:  Comparison of predicted S-N curve to experimental data 
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5.4 Comparison of Prediction to Beam #517 

The overall life prediction of Beam #517 based on average strength values had excellent 

agreement.  The correlation between the model at the experimental data is looked at in 

further detail below.  The results shown account for the initial neutral axis shift of the 

beam.  Experimental results indicate this shift was 0.14 cm (.055 in) toward the tensile 

flange.  Since the 500 series is stiffer than the overall average, the shift was attained by 

increasing the stiffness of the carbon by 6.0% in the tensile flange, rather than decreasing 

the stiffness of the carbon flange.  The strength value was calculated based on the 

ultimate moment of the batch, 101 kN (74.6 kip-ft).  The resulting remaining strength 

plot is show in  Figure 5- 5.  Using these inputs the predicted life is 265,000 cycles.  This 

life is shorter than the prediction using the average data.  The increase in stiffness and 

decrease in the in-plane Fa values did not offset the decrease in strength and increase in 

the out-of-plane Fa, thus predicting a shorter life.  These trends are identified in  Figure 

5- 6.  

 

The modulus values, normalized to their respective initial stiffness are compared in 

Figure 5- 7.  The initial reduction in the tensile flange matches well, although the model 

does not predict any reduction in the compression flange, which experimentally reduces 

about 1%.  The final stiffness after delamination, is predicted based on different flanges, 

but is about 89% of the initial stiffness in both cases. The compression flange stiffness 

experimentally can not be determined once the flange fails, because the gage is in the 

buckled zone.  In the model, the final stiffness is controlled by the compression flange.  

The shift in neutral axis is related to the changes in relative stiffness and compared  in 

Figure 5- 8.  The model under-predicts the shift, but captures the region of the most 

change.  Finally, the deflection values are compared.  The model does not account for 

shear deformation, and therefore underestimates the total measured deflection.  When 

compared to the calculated “non-shear” deformation (as discussed in Chapter 2), the 

prediction matches the data, including the final increase in deflection after failure.   
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Figure 5- 5:  Remaining strength plot for Beam #517 using batch properties 

 Figure 5- 6:  Life Prediction comparison for Beam #517 using average and batch Mult data 
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Figure 5- 7:  Comparison of predicted stiffness reduction to experimental results for Beam #517 

Figure 5- 8:  Comparison of the predicted and experimental neutral axis shift for Beam #517 
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Figure 5- 9: Comparison of the predicted and experimental mid-span deflection for Beam #517 
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extrapolation used to determine the stiffness reduction.  Because of the lack of stiffness 

reduction, the shift in neutral axis is also very slight (Figure 5- 11).   The deflection data, 

as before agrees with the non-shear portion of the deformation, exhibited in Figure 5- 12.    

Figure 5- 10:  Comparison of predicted and experimental modulus values for Beam #514 

0.90

0.92

0.94

0.96

0.98

1.00

1.02

0E+00 2E+06 4E+06 6E+06 8E+06 1E+07

Cycles

N
o

rm
al

iz
ed

 M
o

d
u

lu
s

Experimental Tensile (Bottom)

Experimental Compression (Top)

Analytical Tension (Bottom)

Analytical Compression (Top)



  94

Figure 5- 11:  Neutral Axis shift, experiemental and predicted response Beam #514 

Figure 5- 12:  Comparison of deflection values for the Beam #514 
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CHAPTER 6:  CONCLUSIONS AND 

RECOMMENDATIONS 
 

6.1 Conclusions 

 

The work presented is an analytical and experimental study of the response of hybrid 

FRP composite beams under four-point bend fatigue loading.  This loading requires both 

the tension and compression response of the material to be accounted for.  The beams 

tested and analyzed were the 8” pultruded beams used in the Tom’s Creek Bridge in 

Blacksburg, VA.  Beyond predicting the life of the beams for that structure, 

understanding the durability and failure mode of such members is essential for the 

infrastructure community to accept FRP materials for larger scale applications.  Prior 

quasi-static testing indicated the failure of the beams was due to delamination in the 

compression flange. In the beams under bending, at the failure load, the in-plane strains 

are insignificant when compared to failure strain levels. Commonly, fatigue life of 

laminated structures is the result of in-plane fiber or matrix damage, for which fatigue life 

is fairly well understood. Delamination is an out-of-plane failure mode, therefore many of 

the techniques developed could not be used in their entirety, requiring a new methodolgy 

to be investigated. 

 

Experimentally, the beams were subjected to cyclic four-point bend load. Two batches of 

beams were tested, wherein the batch with a higher stiffness had a lower ultimate 

moment.   The beams from the first batch were tested at 35% and 46% of their ultimate 

moment.  The beam at 46% failed after 130,000 cycles and the test was stopped at 10 

million cycles for the second beam.  The first beam from the second batch was tested at 

65% (same actuator load as the 46% beam from batch #1) and was stopped after 7.6 

million cycles.  The final beam failed at 370,000 cycles at 82% of the ultimate moment. 

The beams that failed, exhibited failure by delamination, as seen in quasi-static testing.   
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The test was periodically stopped to capture data and characterize the stiffness response 

of the beam.  The modulus was monitored based on the strain in the top and bottom 

flanges and also from mid-span deflection.  Testing indicated an initial drop in stiffness 

to a value that was then maintained for the remainder of the test.   The stiffness reduction 

seems to be controlled by the tensile flange, while the compression flange maintains its 

properties until delamination occurs.   There is a shear component to the response, 

accounting for on average 10% of the total deflection, and remains constant with cyclic 

loading.    The test results indicate that the fatigue life is dependent on the stiffness of the 

beam rather than the strength, and is a strain controlled problem.   

 

A model to predict the life of the beams under the same loading was developed in 

accordance with the experimental observations.  The methodology accounts for the 

different response of the flanges under tension and compression, and predicts the out-of-

plane failure mode of delamination.  In order to predict delamination, a three-dimensional 

stress analysis must be done on the top flange.  Laminated beam theory is used to 

determine the in-plane stresses in the flanges.  Two approximations are then used to 

attain the out-of-plane stresses at the free edge, the Primitive Delamination Model, and 

the Minimization of Complementary Energy.   

 

The model then uses the critical element residual strength theory to degrade the 

properties based on assumptions made in conjunction with experimental results.  The 

overall stiffness reduction is controlled purely by the tensile flange, which results in a 

redistribution of strains and a shift in the neutral axis. As the stiffness is reduced, the 

overall strength of the beam is also degrading until the stresses reach a critical level at the 

free edge in the compression flange resulting in delamination initiation. The compression 

flange does not have any stiffness reduction until delamination, and then degrades further 

as the crack grows until ultimate failure.   

 

The stiffness degradation scheme is based on experimental fatigue data. Prior fatigue 

testing by Phifer on pultruded laminates under tension showed a similar trend to what 

was exhibited in the tensile flange of the beams.  There was an initial drop in stiffness 
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followed by a constant region.  Therefore, the coupon laminate data was used to 

characterize sublaminate stiffness reduction in the tensile flange, and the carbon was 

assumed to retain all of its stiffness. 

 

The static analysis from the model agreed well with experimental data.  The predicted 

EIeff was under 6% error from the measured value, and the top and bottom flange strains 

were with 2% of the measured values.  Comparison of the S-N curve to the four 

experimental data points suggested the life prediction model is reasonable.  A detailed 

comparison of Beam #517 to the model accounting for the initial neutral axis offset and 

500 series strength, suggests the model captures the data trends.  The model predicted a 

life of 265,000 cycles compared to the actual 370,000 cycles and accurately characterized 

the stiffness reduction of the tensile flange.     

 

In conclusion, a life prediction model has been developed which predicts delamination of 

the top flange as the dominant failure mode.  The use of coupon fatigue data to 

characterize the stiffness reduction results in correlation to the fatigue response  of the 

entire structure.  The simplified methods of calculating the out-of-plane stresses also 

seem reasonable for this application.  The model could act as a design tool for predicting 

the stiffness and ultimate moment of similar structures.      

 

6.2 Recommendations for Future Work 

 

In order to truly understand the correlation of the model to what is actually occurring 

further full-scale fatigue testing is necessary.  The beams from the fatigue tests which 

were stopped, should be failed to determine the residual strength.  Using the analysis and 

conducting tests on other layups, such as the all glass beam is also advised. 

 

The strength value used in the model, and the out-of-plane stress values are crucial to 

characterizing the fatigue life based on delamination.  The simplified calculations for 

stresses need to be compared to more exact solutions, such as Finite Element Analysis or 
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elasticity.  Additionally, further experimental data on the out-of-plane strengths should be 

obtained.    

 

The tension coupon fatigue data characterized the response of the tensile flange well for 

the loading investigated.  This correlation was in the region where the coupon tests were 

run.  The agreement in the region where the data was extrapolated is not known.  

Attaining coupon data at these lower regions to avoid the extrapolation will allow for a 

better prediction at the loads that the beams would actually see in service. 

  

Finally, the compression response under fatigue needs to be understood and included in 

the model.  This can be done based on compression coupon fatigue data similar to what is 

currently known for the tensile flange.  The beam fatigue test resulted in reduction in 

stiffness of the compression flange although less than the tension flange.  This reduction 

is not currently included in the model.  Understanding the compression response will also 

allow for the remaining strength to be determined based on more than just the in-plane 

tensile response of the beam.       
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APPENDIX-A 
The following are the terms of the symmetric 6 x 6 anisotropic compliance matrix used in 

the outlined analysis. 

 

Note: m = cos θ; n = sin θ , and the S terms without an overbar are the compliances of a 

zero degree ply. 
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