The Influence of Dense Understory Shrubs on the Ecology of Canopy Tree Recruitment in Southern Appalachian Forests

Colin M Beier
Dept. of Biology, Virginia Polytechnic Institute and State University

ABSTRACT

Suppression of canopy tree recruitment beneath rapidly spreading thickets of *Rhododendron maximum* L. (Ericaceae) in southern Appalachian forests is an issue of major concern because of the potential impacts on forest productivity, hydrology and wildlife habitat. Many studies have investigated the causes of seedling inhibition beneath dense shrub understories, but few have uncovered specific mechanisms leading to seedling decline. In this study, I have examined the influence of the evergreen understory (*R. maximum* and *Kalmia latifolia* L.) on tree recruitment processes at multiple stages – seed rain, seed bank, and post-establishment seedling growth and survivorship. Effects of dense shrub cover on seed rain and seed bank density and composition were examined using a paired treatment design in which samples were collected beneath shrub-influenced and open understories. A second experiment investigated the influence of *R. maximum* and *K. latifolia* density on the growth and survivorship of *Quercus* seedlings, resource availability, and the rates / causes of seedling damage. I found that neither seed rain, nor seed bank density or species richness was inhibited by the presence of *R. maximum* or *K. latifolia*. Forest seed banks were dominated by sweet birch (*Betula lenta* L.), and were compositionally disparate from the overstory. Analysis of resource competition between shrubs and seedlings indicated that seedling performance and survivorship was a negative function of *R. maximum* density. Open-canopy light availability, nitrogen content in the organic horizon (litter and humus), and soil nutrient availability were potential resource-related mechanisms. Further, I found that the rates of insect herbivory on *Quercus* seedlings were positively correlated with *R. maximum* density. *Kalmia latifolia* had little influence on resource availability, seedling performance or herbivory rates, and does not appear to have a suppressive effect on tree seedlings. Overall, this research indicates that resource competition is the primary mechanism by which seedling suppression occurs beneath *R. maximum*, and that increased herbivory on seedlings may be an additional mechanism that demands further study.
FOREWORD

In the completion of this thesis, I am deeply indebted and grateful to the many researchers who have contributed their expertise and effort towards understanding Southern Appalachian forest ecosystems over the last century. Without their hard work and insight, we would have little foundation for the detailed and important research in which we are currently engaged.

Thanks to Erik Nilsen for giving me the opportunity to develop my scientific acumen within the framework of an excellent project, his mentorship and knowledge, and his best efforts to juggle a very hectic position with NSF and my needs as a student over the past year.

Thanks to Bob Jones for being consistently helpful, constructive and patient, and despite his extremely busy schedule, acting often as a sounding board for ideas.

Thanks to John Seiler for his helpful advice and unparalleled teaching ability.

Thanks to Jonathan Horton for being a top-notch project manager, an incredibly hard field worker, strong thinker, and for his efforts towards becoming a good mentor.

Further, I would like to express my gratitude to Orson K. Miller, Tom Lei, John Walker and Shawn Semones for their intellectual contributions to our research program over the years, without which I would not have had the foundation to complete this work.

This thesis is dedicated first and foremost to my mother, Donna, my father, Tim, my grandfather Herbert Beier for instilling my love of plants at an early age, and my extended family of friends and loved ones who have always provided me with strength and happiness throughout the years. I am grateful to know all of you.
ACKNOWLEDGMENTS

This research would not have been possible without the help of many people who have assisted in field and lab work:

Jonathan Horton Barry Clinton Erik Nilsen
Darren DeStefano Irene Van Horne Preston Galusky
Keli Goodman Tina Keesee Andrea Venetz
Lara Call Holly Eppard John Walker
Duane Van Hook Megan Dondero Stephanie Garman

I would also like to thank:

Advisory Committee
USDA-NRI
The Biology Department at Virginia Tech
Debbie Wiley (Greenhouse Curator)
Tom Wieboldt (Herbarium Curator)
Coweeta Staff and the LTER program at CHL
Sue Rasmussen

The Influence of Dense Understory Shrubs on the Ecology of Canopy Tree Recruitment in Southern Appalachian Forests
TABLE OF CONTENTS

ABSTRACT ii

FOREWORD ... ii

ACKNOWLEDGMENTS iii

LIST of TABLES and FIGURES vi

CHAPTER I. Review of Literature and Study Objectives

Introduction ... 1

Factors influencing seed dispersal and seed bank characteristics.............. 3

Ecology of the *Rhododendron* understory in Appalachian forests 7

Resource requirements for shade tolerant seedlings 9

Impact of herbivory on tree recruitment ... 11

Research objectives and hypotheses .. 13

 Hypotheses 1.1 and 1.2 ... 14

 Hypotheses 2.1, 2.2, and 2.3 .. 16, 17

CHAPTER II.

Manuscript 1. The effect of dense subcanopy shrub layers on seed rain and seed bank dynamics in southern Appalachian forests 19

Title page and abstract ... 19

Introduction ... 20

Methods ... 22
CHAPTER III.

Manuscript II. Resource availability and tree seedling performance along natural gradients of understory shrub density in an eastern deciduous forest ... 38

Title page and abstract .. 38

Introduction ... 39

Methods .. 42

Results ... 50

Discussion .. 57

Tables and Figures ... 62-70

CHAPTER IV. Summary and conclusions .. 71

LITERATURE CITED .. 78

BIOGRAPHY ... 89

LIST of TABLES and FIGURES
CHAPTER II

Figure 2.1 Sampling design for paired seed traps beneath _R. maximum_ and _K. latifolia_ shrub cover ... 32

Table 2.1 Effects of shrub cover treatments on seed rain parameters 33

Table 2.2 Summary of woody species in seed banks sampled at two sites in the Coweeta Basin, NC ... 34

Table 2.3 Effects of shrub cover treatments on seed bank parameters 35

Figure 2.2 Rank abundance plots for tree seeds collected beneath _K. latifolia, R. maximum_, and open understories .. 36

Figure 2.3 Comparison of rank abundance relationships among shrub cover treatments for tree species in seed rain and seed bank samples 37

CHAPTER III

Table 3.1 A summary of linear regression models .. 62

Table 3.2 Regression analysis of shrub influence on seedling biomass and growth parameters, for all harvested seedlings at each site 63

Table 3.3 Linear regressions between basal area of _R. maximum_ and _K. latifolia_ and light availability in March and July, 2001 64
Table 3.4 Summary of linear regressions between shrub density and belowground resources (moisture, nutrients) and substrate characteristics (soil, humus, litter) .. 65

Table 3.5 Summary of multiple regression models of oak seedling response (aboveground biomass) to measures of resource availability in forest plots.. 66

Table 3.6 Summary of major competitive linkages between *R. maximum* and seedlings of *Q. rubrum* and *Q. prinus* in forest plots at two sites in the Coweeta Basin... 67

Figure 3.1 An example of a qualitative effect of *R. maximum* on a seedling response parameter (i.e. leaf biomass).. 68

Figure 3.2 Frequency of observed seedling damage by herbivores and pathogens during the 2001 growing season... 69

Figure 3.3 Relationships between *R. maximum* density and mean leaf area loss observed for all seedlings in each plot during the first two census periods at Dryman Fork... 70