
On Best-Effort Utility Accrual Real-Time Scheduling on
Multiprocessors

Piyush Garyali

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Binoy Ravindran, Chair
Paul E. Plassmann

Robert P. Broadwater

July 16, 2010
Blacksburg, Virginia

Keywords: Multiprocessor Real-Time Scheduling, Utility Accrual Scheduling, Time/Utility
Functions, Real-Time Linux

Copyright 2010, Piyush Garyali

On Best-Effort Utility Accrual Real-Time Scheduling on Multiprocessors

Piyush Garyali

(ABSTRACT)

We consider the problem of scheduling real-time tasks on a multiprocessor system. Our
primary focus is scheduling on multiprocessor systems where the total task utilization de-
mand, U , is greater than m, the number of processors on a multiprocessor system—i.e., the
total available processing capacity of the system. When U > m, the system is said to be
overloaded; otherwise, the system is said to be underloaded.

While significant literature exists on multiprocessor real-time scheduling during underloads,
little is known about scheduling during overloads, in particular, in the presence of task
dependencies—e.g., due to synchronization constraints. We consider real-time tasks that
are subject to time/utility function (or TUF) time constraints, which allow task urgency to
be expressed independently of task importance—e.g., the most urgent task being the least
important. The urgency/importance decoupling allowed by TUFs is especially important
during overloads, when not all tasks can be optimally completed. We consider the timeliness
optimization objective of maximizing the total accrued utility and the number of deadlines
satisfied during overloads, while ensuring task mutual exclusion constraints and freedom
from deadlocks. This problem is NP-hard. We develop a class of polynomial-time heuristic
algorithms, called the Global Utility Accrual (or GUA) class of algorithms.

The algorithms construct a directed acyclic graph representation of the task dependency
relationship, and build a global multiprocessor schedule of the zero in-degree tasks to heuris-
tically maximize the total accrued utility and ensure mutual exclusion. Potential deadlocks
are detected through a cycle-detection algorithm, and resolved by aborting a task in the dead-
lock cycle. The GUA class of algorithms include two algorithms, namely, the Non-Greedy
Global Utility Accrual (or NG-GUA) and Greedy Global Utility Accrual (or G-GUA) algo-
rithms. NG-GUA and G-GUA differ in the way schedules are constructed towards meeting
all task deadlines, when possible to do so. We establish several properties of the algorithms
including conditions under which all task deadlines are met, satisfaction of mutual exclusion
constraints, and deadlock-freedom.

We create a Linux-based real-time kernel called ChronOS for multiprocessors. ChronOS is
extended from the PREEMPT RT real-time Linux patch, which provides optimized interrupt
service latencies and real-time locking primitives. ChronOS provides a scheduling framework
for the implementation of a broad range of real-time scheduling algorithms, including utility
accrual, non-utility accrual, global, and partitioned scheduling algorithms.

We implement the GUA class of algorithms and their competitors in ChronOS and conduct
experimental studies. The competitors include G-EDF, G-NP-EDF, G-FIFO, gMUA, P-
EDF and P-DASA. Our study reveals that the GUA class of algorithms accrue higher utility
and satisfy greater number of deadlines than the deadline-based scheduling algorithms by as
much as 750% and 600%, respectively. In addition, we observe that G-GUA accrues higher
utility than NG-GUA during overloads by as much as 25% while NG-GUA satisfies greater
number of deadlines than G-GUA by as much as 5% during underloads.

This work was supported by the US National Science Foundation CCF (Software and Hard-
ware Foundations) under Grant 0915895.

iii

Dedication

I dedicate this thesis to my wife, Kalpana.

Without your support this would not have been possible.

iv

Acknowledgments

I would like to thank my advisor, Dr. Binoy Ravindran, for his help and guidance on both
technical and personal topics. It has been an honor to work under him and I am highly
indebted to him for his trust in me.

I would also like to thank Dr. Paul Plassmann and Dr. Robert Broadwater, for serving
on my committee and providing their valuable feedback and direction. In addition, I would
like to thank all of my colleagues at the real-time systems lab. I would particularly like to
thank Matthew Dellinger and Sherif Fahmy for their support and encouragement. It was a
pleasure to work with them and make ChronOS a reality.

Finally, I would like to thank my family and friends for all the love and support they have
given me, without which this thesis would not have been possible.

All figures in thesis are the work of the author, unless specified otherwise.

v

Contents

1 Introduction 1

1.1 Timeliness Model . 2

1.2 Multiprocessor Real-Time Scheduling . 4

1.3 Multiprocessor Real-Time Scheduling During Overloads 6

1.4 Research Contributions . 7

1.5 Thesis Organization . 9

2 Related Work 10

2.1 Classification Based on Degree of Task Migration 10

2.2 Classification Based on Utilization Load . 11

2.3 Summary . 12

3 Models and Objective 14

3.1 Thread Model . 14

3.2 Timeliness Model . 14

3.3 Resource Model . 15

3.4 Processor Model . 15

3.5 Abort Model . 15

3.6 Scheduling Objective . 16

4 The GUA Class of Real-Time Scheduling Algorithms 17

4.1 Ensuring Mutual Exclusion . 17

vi

4.2 Maximizing Accrued Utility . 18

4.3 Deadlock Detection and Resolution . 20

4.4 Assigning Zero In-degree Phases to Processors 20

4.5 Data Structures and Auxiliary Functions . 21

4.5.1 Data Structure for Timeliness Model 21

4.5.2 Data Structure for Resource Model 22

4.5.3 Auxiliary Functions . 23

4.5.4 Creation of DAG with Detection/Resolution of Deadlocks 25

4.6 Non-greedy Global Utility Accrual (NG-GUA) 27

4.7 Greedy Global Utility Accrual (G-GUA) . 30

4.8 Algorithm Properties . 33

5 ChronOS Real-Time Linux 37

5.1 Background . 37

5.2 Architecture . 38

5.2.1 PREEMPT RT Real-Time Patch . 39

5.3 ChronOS Real-Time Scheduler . 40

5.3.1 Priority Bit-map and Run-queues . 40

5.3.2 Scheduling Real-Time Tasks . 41

5.4 Multiprocessor Scheduling . 43

5.4.1 Partitioned Scheduling . 43

5.4.2 Global Scheduling . 44

5.4.2.1 Application Concurrent Scheduling Model 46

5.4.2.2 Stop-the-World Scheduling Model 47

5.4.3 Mapping Tasks to Processors . 49

5.5 Implementing Scheduling Algorithms in ChronOS 50

5.5.1 Single-processor Scheduling . 50

5.5.2 Multiprocessor Scheduling . 51

vii

6 Experimental Results 52

6.1 Experimental Setup . 52

6.1.1 Platform Specifications . 52

6.1.2 Test Application . 52

6.1.3 Performance Parameters . 53

6.2 Results Without Dependencies . 54

6.2.1 Comparison with Global Scheduling Algorithms 54

6.2.1.1 Two-core Platform Results 56

6.2.1.2 Four-core Platform Results 67

6.2.1.3 Eight-core Platform Results 78

6.2.2 Comparison with Partitioned Scheduling Algorithms 85

6.3 Results With Dependencies . 90

6.3.1 Varying CPU utilization Load . 91

6.3.2 Varying Lock Critical Section Length 97

6.3.3 Varying Number of Locks per Task 100

6.4 Overhead Measurements . 103

6.5 Conclusions . 107

7 Conclusions and Future Work 108

7.1 Contributions . 111

7.2 Future Work . 111

7.2.1 Parallelizing Schedule Creation . 111

7.2.2 Reducing Scheduling Overheads . 112

7.2.3 Cache-Aware Algorithms . 112

7.2.4 Approximate Algorithms . 112

A ChronOS System Calls 113

B ChronOS Kernel Data Structures 114

viii

C Sample ChronOS Scheduling Kernel Modules 117

Bibliography 120

ix

List of Figures

1.1 Example TUF time constraints. (a) MITRE Airborne Warning and Control
System (AWACS) association TUF [30]; (b-c) GD/CMU air defense plot cor-
relation, track maintenance, and missle control TUFs [58]; (d) step TUFs . . 3

1.2 Sample EDF schedule on two processors – (a) that cannot be scheduled; and
(b) that can be scheduled. 5

1.3 Schedulability bounds of multiprocessor scheduling algorithms from [49]. . . 6

2.1 Characterization of scheduling algorithms during underloads (U ≤ m) and
overloads (U > m) based on ability to meet all deadlines and bounded best-
effort real-time time interval. 12

4.1 A phase and resource dependency chain with nine phases and three resources 18

4.2 Directed Acyclic Graph (DAG) for the dependency chain shown in Fig 4.1.
The nodes with a zero in-degree are eligible for final schedule in order to
preserve mutual exclusion. 19

4.3 Computing the global value density for a graph 19

4.4 A phase and resource dependency chain with a deadlock condition. 20

4.5 Deadlock detection and resolution. 21

4.6 Data structure representation of the DAG 23

4.7 Sample schedule for NG-GUA . 29

4.8 Sample schedule for G-GUA . 32

5.1 ChronOS architecture . 38

5.2 Linux real-time priority bitmap and run-queues 40

5.3 ChronOS real-time priority run-queue for a given real-time priority 41

x

5.4 ChronOS scheduling approach on a single-processor system 43

5.5 ChronOS partitioned scheduling approach on a multiprocessor system 44

5.6 ChronOS global scheduling approach on a multiprocessor system 45

5.7 “Application Concurrent” architecture model for global scheduling algorithms 47

5.8 “Stop-the-World” architecture model for global scheduling algorithms 48

5.9 Task mapping for global scheduling algorithms in ChronOS 50

6.1 Task-sets created with variable TUFs (a) Increasing Utility (IU); (b) Decreas-
ing Utility (DU); (c) Random Utility(RU) 54

6.2 AUR vs. CPU utilization (5T, 2C, NL, DU) 57

6.3 DSR vs. CPU utilization (5T, 2C, NL, DU) 58

6.4 AUR vs. CPU utilization (5T, 2C, NL, IU) 59

6.5 DSR vs. CPU utilization (5T, 2C, NL, IU) 59

6.6 AUR vs. CPU utilization (5T, 2C, NL, RU) 60

6.7 DSR vs. CPU utilization (5T, 2C, NL, RU) 60

6.8 AUR vs. CPU utilization (12T, 2C, NL, DU) 61

6.9 DSR vs. CPU utilization (12T, 2C, NL, DU) 62

6.10 AUR vs. CPU utilization (12T, 2C, NL, IU) 62

6.11 DSR vs. CPU utilization (12T, 2C, NL, IU) 63

6.12 AUR vs. CPU utilization (12T, 2C, NL, RU) 63

6.13 DSR vs. CPU utilization (12T, 2C, NL, RU) 64

6.14 AUR vs. CPU utilization (27T, 2C, NL, DU) 64

6.15 DSR vs. CPU utilization (27T, 2C, NL, DU) 65

6.16 AUR vs. CPU utilization (27T, 2C, NL, IU) 65

6.17 DSR vs. CPU utilization (27T, 2C, NL, IU) 66

6.18 AUR vs. CPU utilization (27T, 2C, NL, RU) 66

6.19 DSR vs. CPU utilization (27T, 2C, NL, RU) 67

6.20 AUR vs. CPU utilization (5T, 4C, NL, DU) 68

6.21 DSR vs. CPU utilization (5T, 4C, NL, DU) 69

xi

6.22 AUR vs. CPU utilization (5T, 4C, NL, IU) 69

6.23 DSR vs. CPU utilization (5T, 4C, NL, IU) 70

6.24 AUR vs. CPU utilization (5T, 4C, NL, RU) 70

6.25 DSR vs. CPU utilization (5T, 4C, NL, RU) 71

6.26 AUR vs. CPU utilization (12T, 4C, NL, DU) 72

6.27 DSR vs. CPU utilization (12T, 4C, NL, DU) 72

6.28 AUR vs. CPU utilization (12T, 4C, NL, IU) 73

6.29 DSR vs. CPU utilization (12T, 4C, NL, IU) 73

6.30 AUR vs. CPU utilization (12T, 4C, NL, RU) 74

6.31 DSR vs. CPU utilization (12T, 4C, NL, RU) 74

6.32 AUR vs. CPU utilization (27T, 4C, NL, DU) 75

6.33 DSR vs. CPU utilization (27T, 4C, NL, DU) 75

6.34 AUR vs. CPU utilization (27T, 4C, NL, IU) 76

6.35 DSR vs. CPU utilization (27T, 4C, NL, IU) 76

6.36 AUR vs. CPU utilization (27T, 4C, NL, RU) 77

6.37 DSR vs. CPU utilization (27T, 4C, NL, RU) 77

6.38 AUR vs. CPU utilization (27T, 8C, NL, DU) 79

6.39 DSR vs. CPU utilization (27T, 8C, NL, DU) 79

6.40 AUR vs. CPU utilization (27T, 8C, NL, IU) 80

6.41 DSR vs. CPU utilization (27T, 8C, NL, IU) 81

6.42 AUR vs. CPU utilization (27T, 8C, NL RU) 81

6.43 DSR vs. CPU utilization (27T, 8C, NL, RU) 82

6.44 AUR vs. CPU utilization (50T, 8C, NL, DU) 82

6.45 DSR vs. CPU utilization (50T, 8C, NL, DU) 83

6.46 AUR vs. CPU utilization (50T, 8C, NL, IU) 83

6.47 DSR vs. CPU utilization (50T, 8C, NL, IU) 84

6.48 AUR vs. CPU utilization (50T, 8C, NL, RU) 84

6.49 DSR vs. CPU utilization (50T, 8C, NL, RU) 85

xii

6.50 AUR vs. CPU utilization (12T, 4C, NL, RU, BF) 88

6.51 DSR vs. CPU utilization (12T, 4C, NL, RU, BF) 88

6.52 AUR vs. CPU utilization (27T, 4C, NL, RU, BF) 89

6.53 DSR vs. CPU utilization (27T, 4C, NL, RU, BF) 89

6.54 AUR vs. CPU utilization (12T, 4C, 1L, RU, 5% CS) 92

6.55 DSR vs. CPU utilization (12T, 4C, 1L, RU, 5% CS) 93

6.56 AUR vs. CPU utilization (12T, 4C, 1L, RU, 25% CS) 93

6.57 DSR vs. CPU utilization (12T, 4C, 1L, RU, 25% CS) 94

6.58 AUR vs. CPU utilization (12T, 4C, 4L, RU, 5% CS) 95

6.59 DSR vs. CPU utilization (12T, 4C, 4L, RU, 5% CS) 95

6.60 AUR vs. CPU utilization (12T, 4C, 4L, RU, 25% CS) 96

6.61 DSR vs. CPU utilization (12T, 4C, 4L, RU, 25% CS) 96

6.62 AUR vs. Critical section length (12T, 4C, 1L, RU, 400% CPU utilization) . 98

6.63 AUR vs. Critical section length (12T, 4C, 1L, RU, 800% CPU utilization) . 98

6.64 AUR vs. Critical section length (12T, 4C, 4L, RU, 400% CPU utilization) . 99

6.65 AUR vs. Critical section length (12T, 4C, 4L, RU, 800% CPU utilization) . 99

6.66 AUR vs. Number of locks (12T, 4C, RU, 5% CS, 400% CPU utilization) . . 101

6.67 AUR vs. Number of locks (12T, 4C, RU, 25% CS, 400% CPU utilization) . 101

6.68 AUR vs. Number of locks (12T, 4C, RU, 5% CS, 800% CPU utilization) . . 102

6.69 AUR vs. Number of locks (12T, 4C, RU, 25% CS, 800% CPU utilization) . . 102

6.70 Scheduling overheads for G-GUA under variable utilization load 104

6.71 Scheduling overheads for NG-GUA under variable utilization load 104

6.72 G-GUA vs. NG-GUA, scheduling overheads with variable number of tasks . 105

6.73 Comparison of scheduling overheads at 100% utilization load 105

6.74 Comparison of scheduling overheads at 800% utilization load 106

xiii

List of Algorithms

1 Creation of DAG with detection/resolution of deadlocks 26
2 NG-GUA: Non-greedy Global Utility Accrual 28
3 G-GUA: Greedy Global Utility Accrual . 31

xiv

List of Tables

6.1 Specifications of the various platforms used for experimental evaluation . . . 53

6.2 Legend used in experimental results, based on TUF-based models, for com-
parison with other global scheduling algorithms 56

6.3 Legend used in experimental results for comparison with other partitioned
scheduling algorithms . 86

6.4 Legend used in experimental results for comparison with other global schedul-
ing algorithms in the presence of dependencies 91

xv

Nomenclature

ACUA Asynchronous Consensus-based Utility Accrual scheduling algorithm, page 38

API Application Programming Interface, page 38

AUR Accrued Utility Ratio, page 53

CPU Central Processing Unit, page 11

CRT-RQ ChronOS Real-Time Run-Queue, page 41

CUA Consensus-based Utility Accrual scheduling algorithm, page 38

D-TPR Distributed Thread Polling with bounded Recovery, page 38

DAG Directed Acyclic Graph, page 17

DASA Dependent Activity Scheduling Algorithm, page 7

DMS Deadline Monotonic Scheduling, page 2

DSR Deadline Satisfaction Ratio, page 53

DT Distributed Thread, page 37

DU Decreasing Utility model, page 55

EDF Earliest Deadline First, page 2

G-EDF Global Earliest Deadline First scheduling algorithm, page 28

G-FIFO Global First In First Out scheduling algorithm, page 38

G-GUA Greedy Global Utility Accrual, page 7

G-NP-EDF Global Non-Preemptive Earliest Deadline First scheduling algorithm, page 38

gMUA Global Multiprocessor Utility Accrual, page 6

xvi

GNU Gnu is Not Unix, page 37

GPLv2 GNU Public License version 2.0, page 37

GVD Global Value Density, page 19

HT Hyper-Threading, page 78

HUA Handler-assured Utility Accrual scheduling algorithm, page 38

HVDF Highest Value Density First scheduling algorithm, page 38

IPI Inter-Processor Interrupt, page 48

IRQ Interrupt Request, page 39

IU Increasing Utility model, page 54

LLF Least Laxity First, page 2

LLREF Largest Local Remaining Execution time First scheduling algorithm, page 5

LVD Local Value Density, page 19

MOCA Multiprocessor On-Line Competitive Algorithm, page 6

NG-GUA Non-Greedy Global Utility Accrual, page 7

P-DASA Parallel Dependent Activity Scheduling Algorithm, page 44

P-EDF Partitioned Earliest Deadline First scheduling algorithm, page 10

PFair Proportionate Fair Scheduling Algorithm, page 11

PIP Priority Inheritance Protocol, page 22

POSIX Portable Operating System Interface [for Unix], page 39

PUD Potential Utility Density, page 7

RMS Rate Monotonic Scheduling algorithm, page 2

RU Random Utility model, page 55

SMP Symmetrical Multiprocessor System, page 40

STW Stop-the-World architecture model, page 46

TPR Thread Polling with bounded Recovery, page 38

TUF Time/Utility Functions, page 3

UA Utility Accrual, page 3

xvii

Chapter 1

Introduction

Recently, there has been a shift in the computer industry from increasing clock rates to
designing multi-core and hyper-threading architectures in a quest to produce faster com-
puters [65]. Motivated by heat and power issues, most chip manufacturers have chosen the
route of increasing system and chip level parallelism in preference to increasing clock rates
in order to satisfy the need for improving performance. This trend extends to embedded
systems [14] as well as to traditional computing systems. Consequently, the design of multi-
processor1 real-time scheduling algorithms has become important in order to allow real-time
applications to take advantage of these emerging architectures.

Scheduling of real-time multiprocessor systems has received increased attention recently [18].
However, most of these works target “underloaded” systems—i.e., systems where the total
application task utilization demand, U , is always less than the total available processing
capacity of the system, which is m for an m-processor system. Majority of the research
focus in multiprocessor real-time systems is on developing scheduling algorithms and un-
derstanding their schedulability utilization bounds—i.e., task utilization bounds below which
all task deadlines are met. The premise of this approach is that it is possible to determine
the worst-case execution-time behaviors of applications (e.g., task arrival behaviors, task
worst-case execution times) and thereby determine the total task utilization demands. Once
the task utilization demand is known, task schedulability—i.e., the ability to meet all task
deadlines—can be ensured off-line by selecting the appropriate scheduling algorithm with a
higher utilization bound.

For some applications (e.g., [68, 30, 66]), it is difficult to determine worst-case execution-time
behaviors a priori, as they are subject to run-time exigencies, such as execution time overruns
and unpredictable thread arrival patterns, causing transient and permanent overloads. When
overloads occur, often, such applications desire graceful timeliness degradation—e.g., meeting
as many deadlines of high importance tasks as possible, irrespective of task urgency.

1We will use multiprocessor and multi-core interchangeably in the rest of the thesis unless explicitly stated
otherwise.

1

Piyush Garyali Chapter 1. Introduction 2

1.1 Timeliness Model

The state-of-the-real-time practice is to handle application time constraints using the concept
of priorities. This approach is the basis for the vast majority of real-time OS, language,
and middleware standards including POSIX [42], Real-time CORBA [61], Ada 95 [5], and
RTSJ [71]. However, using priorities have inherent shortcomings, which include:

1. The process of assigning time constraints to priorities is generally difficult, and some-
times intractable. Often, there is significant loss of information during this process
which makes it difficult to dependably satisfy time constraints.

2. Real-time systems usually comprise of various sub-systems. In order to assign priorities
to express urgency, it is necessary to know the entire system and its various sub-
systems, along with the knowledge of the global assignment of priorities for the entire
system. Such knowledge can sometimes be difficult to obtain due to organizational
boundaries.

3. The urgency and importance of a real-time task can be orthogonal—e.g., the most
important task can be the most urgent; the most important task can be the least
urgent, etc. However, a priority cannot express both. This causes serious difficulties
during overload situations, when not all task deadlines can be met, and applications
desire to differentially allocate resources in the order of decreasing task importance,
irrespective of task urgency—e.g., most important task first; second-most important
task second, and so on.

One solution that overcomes these shortcomings is to provide system developers with ab-
stractions for directly specifying time constraints (instead of mapping time constraints to
priorities) and using those time constraint specifications to manage resources (instead of
indirectly managing resources through the priority artifact). This is the basis for the tradi-
tional real-time theory [47, 54]. In that theory, time constraints (which are largely limited to
deadlines) are mapped to fixed priorities in algorithms such as Rate Monotonic Scheduling
(RMS) [53] and Deadline Monotonic Scheduling (DMS) [53], or are mapped to dynamic pri-
orities as in Least Laxity First (LLF) [59], or are directly used for scheduling as in Earliest
Deadline First (EDF) [41].

However, deadline and deadline-based scheduling suffer from some drawbacks. A deadline of
a task can be expressed in two forms. First, as a binary-valued expression which evaluates
to the deadline being met or not met; and second, a linear-valued expression for the penalty
of lateness. However, the penalty of being late per unit time is constant irrespective of how
late the task actually is. Thus, deadlines per se cannot be used to distinguish between task
urgency and task importance, which is a limitation during overloads. Furthermore, classical
deadline-based scheduling algorithms (e.g., EDF) suffer from the domino effect [55] during
overloads. This is because, these algorithms always favor tasks with an earlier deadline,

Piyush Garyali Chapter 1. Introduction 3

irrespective of how close such tasks are towards missing their deadlines. This results in those
tasks missing their deadlines, and also causing others, which are now delayed, to miss their
deadlines.

Timeliness optimality criteria that can be specified using deadlines fall into the following
categories: (i) the criterion of meeting all deadlines; (ii) criteria that are based on number of
missed deadlines—e.g., minimize the number of deadline misses; upper bound the number of
deadlines missed; and (iii) the criteria expressed using lateness—e.g., minimize the maximum
lateness; upper bound the lateness.

Figure 1.1: Example TUF time constraints. (a) MITRE Airborne Warning and Control
System (AWACS) association TUF [30]; (b-c) GD/CMU air defense plot correlation, track
maintenance, and missle control TUFs [58]; (d) step TUFs

The shortcomings of deadlines and deadline-based scheduling are overcome in the Time/U-
tility Function (TUF) model, first introduced in [43]. A TUF specifies the utility obtained by
the completion of a task, as a function of that task’s completion time. Figure 1.1 shows some
example TUFs. Figure 1.1(a)-(c) show time constraints of some applications in the defense
domain [30, 58]. A TUF decouples importance and urgency, with the urgency measured as
a deadline on the X-axis, and importance measured as a utility (or value) on the Y-axis.
The classical deadline is a special case of a TUF: a binary-valued, downward “step” TUF.
Figure 1.1(d) shows an example.

When task time constraints are expressed using TUFs, the scheduling optimality criteria are
often based on accrued utility—e.g., maximizing the sum of the tasks’ attained utilities. Such
criteria are called Utility Accrual (or UA) criteria and scheduling algorithms that optimize
such criteria are called UA scheduling algorithms (e.g., [31, 55]).

UA scheduling algorithms that maximize total accrued utility under downward “step” TUFs,
default to EDF during underloads, since EDF satisfies all deadlines during underloads. As
a result, these algorithms obtain optimal total accrued utility during underloads. During
overloads, UA scheduling algorithms favor tasks from whom greater utility can be accrued
(as that generally tends to maximize the total accrued utility), irrespective of task urgency.
This behavior of UA scheduling algorithms is called “best-effort” — i.e., the algorithms
strive their best to feasibly complete as many high importance tasks as possible (where task
importance is explicitly described using TUFs).2 Note that the optimal timeliness behavior

2Note that the term “best-effort” as used in the networking context is intended to mean “least-effort.”

Piyush Garyali Chapter 1. Introduction 4

of EDF is a special case of UA-scheduling.

A number of UA algorithms have been designed in the past. These cover a wide range of
problem spaces: from processor scheduling [55, 31, 22, 50, 51, 52, 27]; to memory management
and garbage collection [28, 23, 34]; to non-blocking synchronization [22, 24, 26]; to energy
management [72, 73, 7, 74]; to packet scheduling [69, 70]; and to network routing [19, 20, 62];
They also cover step TUFs [31]; to non-step TUFs [22, 24, 26, 69, 72, 19, 62]; to abitrarily-
shaped TUFs [50].

1.2 Multiprocessor Real-Time Scheduling

One unique aspect of multiprocessor real-time scheduling is the degree of run-time migration
that is allowed for job instances of a task across processors (at scheduling events). Example
migration models include: (1) full migration, where jobs are allowed to arbitrarily migrate
across processors during their execution. This usually implies a global scheduling strategy,
where a single shared scheduling queue is maintained for all processors and a processor-wide
scheduling decision is made by a single (global) scheduling algorithm; (2) no migration,
where tasks are statically (off-line) partitioned and allocated to processors. At run-time, job
instances of tasks are scheduled on their respective processors by processors’ local scheduling
algorithm, like single processor scheduling; and (3) restricted migration, where some form of
migration is allowed—e.g., at job boundaries.

The partitioned scheduling paradigm has several advantages over the global approach. First,
once tasks are allocated to processors, the multiprocessor real-time scheduling problem be-
comes a set of single processor real-time scheduling problems, one for each processor, which
has been well-studied and for which optimal algorithms exist. Second, not migrating tasks
at run-time means reduced run-time overhead as opposed to migrating tasks that may suffer
cache misses on the newly assigned processor. If the task set is fixed and known a priori,
the partitioned approach provides appropriate solutions [15].

The global scheduling paradigm also has advantages over the partitioned approach. First,
if tasks can join and leave the system at run-time, then it may be necessary to reallocate
tasks to processors in the partitioned approach [15]. Second, the partitioned approach cannot
produce optimal real-time schedules — one that meets all task deadlines when task utilization
demand does not exceed the total processor capacity — for periodic task sets [63], since the
partitioning problem is analogous to the bin-packing problem which is known to be NP-hard
in the strong sense. Third, in some embedded processor architectures with no cache and
simpler structures, the overhead of migration has a lower impact on the performance [15].
Finally, global scheduling can theoretically contribute to an increased understanding of the
properties and behaviors of real-time scheduling algorithms for multiprocessors.(See [40] for
a detailed discussion on this).

Carpenter et al. [18] have catalogued multiprocessor real-time scheduling algorithms con-

Piyush Garyali Chapter 1. Introduction 5

sidering the degree of job migration and the complexity of priority mechanisms employed.
The latter includes classes such as (1) static, where task priorities never change, e.g., rate-
monotonic (RM); (2) dynamic but fixed within a job, where job priorities are fixed, e.g.,
earliest-deadline-first (EDF); and (3) fully-dynamic, where job priorities are dynamic.

The Pfair class of algorithms [11] that allow full migration and fully dynamic priorities have
been shown to be theoretically optimal—i.e., they achieve a schedulable utilization bound
(below which all tasks meet their deadlines) that equals the total capacity of all processors.
However, Pfair algorithms incur significant run-time overhead due to their quantum-based
scheduling approach [32, 63]. Under Pfair, tasks can be decomposed into several small
uniform segments, which are then scheduled, causing frequent scheduling and migration.

(a) (b)

Figure 1.2: Sample EDF schedule on two processors – (a) that cannot be scheduled; and (b)
that can be scheduled.

Thus, scheduling algorithms other than Pfair—e.g., global-EDF [15, 10, 2] have also been
intensively studied though their schedulable utilization bounds are lower. Figure 1.2(a)
shows an example task set that global-EDF cannot feasibly schedule. In Figure 1.2(a), task
T1 will miss its deadline when the system is given two processors. However, for the same
task-set, there exists a schedule that meets all task deadlines, as shown in Figure 1.2(b).

There have also been efforts on designing optimal multiprocessor real-time scheduling algo-
rithms that are not based on time quantum, unlike Pfair. Examples include the Largest
Local Remaining Execution Time (or LLREF) algorithm and its derivatives [25, 21, 37].

Interestingly, all of these works exclude any run-time exigencies and consequent transien-
t/permanent overloads—i.e., they presume that it is possible to determine the worst-case
execution-time behaviors of applications (e.g., task arrival behaviors, task worst-case exe-
cution times), determine the total task utilization demands, and thus conduct off-line task
schedulability, as mentioned before. Thus, the need for graceful timeliness degradation and
best-effort timing assurances are outside their scope.

Piyush Garyali Chapter 1. Introduction 6

In [49], Lakshmanan et al. provide a classification of multiprocessor scheduling algorithms
based on their schedulability bounds and we summarize the classification in Figure 1.3. In
the global scheduling space, (at the time of writing this thesis), PFair and LLREF are the
only known optimal multiprocessor scheduling algorithms that are able to meet all deadlines
and have the optimal utilization bound of 100% (i.e., U = m) [11]. The dynamic priority
algorithms that include deadline-based algorithms, such as G-EDF, and UA-based algorithms
that default to G-EDF, such as gMUA, have the higher utilization bound of 50% [6, 22] (i.e.,
U ≈ m/2). On the other hand, fixed priority algorithms, such as RMS, have a utilization
bound of 33% [4] (i.e., U ≈ 3m/8). In the partitioned scheduling space, both the dynamic
priority algorithms, such as P-EDF and the fixed priority algorithms like P-DMS, have a
utilization bound of 50% [56] (i.e., U ≈ m/2). However, in [49], a version of P-DMS called
PDMS-HPTS-DS, that uses high priority task-splitting (HPTS) with decreasing order of size
(DS) is shown to have a utilization bound of 65%.

Figure 1.3: Schedulability bounds of multiprocessor scheduling algorithms from [49].

1.3 Multiprocessor Real-Time Scheduling During Over-

loads

Almost all of the past work on overload real-time scheduling [55, 31, 22, 50, 51, 52, 27],
has focused on single processor systems, with very few exceptions. The only multiprocessor
overload real-time scheduling algorithms that we are aware of (at the time of writing this
thesis) include the Multiprocessor On-Line Competitive Algorithm (or MOCA) [48] and
Global Multiprocessor Utility Accrual (or gMUA) [22] algorithms.

Piyush Garyali Chapter 1. Introduction 7

In [48], the authors determine the inherent upper bound on the best competitive ratio,
in terms of accrued utility, that can be achieved by an online scheduler. They present a
scheduling algorithm, MOCA, with a competitive ratio within a constant factor of the best
competitive ratio found. MOCA divides the processors in a system into several “bands”,
each band being assigned a certain utility density. MOCA attempts to schedule an incoming
task on a band that corresponds to its utility. If it is not possible to do so, the task is
moved down the bands until one is found that can schedule it. As a result of this design,
if a large number of low utility tasks arrive, they will quickly exhaust the lower bands of
the system. This scenario may cause incoming low utility tasks to be rejected even though
bands associated with higher utilities are idle.

gMUA is a global, best-effort real-time scheduling algorithm for multiprocessors. Like its
single-processor counterparts [55, 31, 22, 50, 51, 52, 27], during underloads (i.e., U ≤ m),
gMUA defaults to global-EDF, and thus meets all deadlines (and accrues optimal total
utility) up to a utilization bound of m/2. Also, like its single-processor counterparts, during
overloads, the algorithm constructs a global multiprocessor schedule, favoring tasks from
whom greater utility can be accrued, irrespective of task urgency, yielding graceful timeliness
degradation and best-effort timeliness behavior.

Both MOCA and gMUA exclude task dependencies–i.e., they exclude task synchronization
constraints (e.g., due to mutual exclusion) or precedence constraints.

1.4 Research Contributions

Thus, we observe a clear gap in the literature: how to schedule real-time tasks on multiproces-
sors that are subject to run-time uncertainties causing transient and permanent overloads,
and task dependencies, such that optimal total utility can be accrued when possible and
best-effort timeliness behavior, otherwise?

This problem is NP-hard because its one-processor version is shown to be NP-hard [31]. We
solve this problem in the thesis by developing a class of polynomial-time heuristic algorithms,
called the Global Utility Accrual (or GUA) class of algorithms. The algorithms construct a
directed acyclic graph representation of the task dependency relationship, and build a global
multiprocessor schedule of the zero in-degree tasks to ensure mutual exclusion. Potential
deadlocks are detected through a cycle-detection algorithm, and resolved by aborting a task
in the deadlock cycle. We use the heuristics of the Potential Utility Density (or PUD), which
was defined by Clark in [31], to heuristically maximize the total accrued utility.

The GUA class of algorithms include two algorithms, namely, the Non-Greedy Global Utility
Accrual (or NG-GUA) and Greedy Global Utility Accrual (or G-GUA) algorithms. NG-GUA
and G-GUA differ in the way schedules are constructed towards meeting all task deadlines,
when possible to do so. While NG-GUA constructs a global schedule that defaults to G-
EDF’s schedulability bound, G-GUA does not default to any algorithm. However, both

Piyush Garyali Chapter 1. Introduction 8

NG-GUA and G-GUA try to maximize the total accrued utility. The greediness in the name
of these algorithms describes the tendency of the algorithms to accrue as much total utility
as possible. As the names suggest, G-GUA is more greedy for utility accrual when compared
to NG-GUA. We establish several properties of the algorithms including conditions under
which all task deadlines are met, satisfaction of mutual exclusion constraints, and deadlock-
freedom. We also establish the asymptotic cost of both the algorithms.

We create a Linux-based real-time kernel called ChronOS for multiprocessors. ChronOS
is extended from the PREEMPT RT real-time Linux patch [60], which provides optimized in-
terrupt service latencies and real-time locking primitives. ChronOS provides a scheduling
framework for the implementation of a broad range of real-time scheduling algorithms, in-
cluding utility accrual, non-utility accrual, global, and partitioned scheduling algorithms.
ChronOS provides a modular approach for development of the scheduling algorithms which
can be implemented as kernel modules using the provided scheduler plugins.

We implement the GUA class of algorithms and their competitors in ChronOS and conduct
experimental studies. The competitors include: EDF, G-EDF, G-NP-EDF, G-FIFO, gMUA,
G-FIFO-PIP, G-NP-EDF-PIP, P-EDF and P-DASA. Our study reveals the following results:

(1) In the absence of dependencies, the GUA class of algorithms accrue higher utility and
satisfy greater number of deadlines than the deadline-based algorithms (G-EDF, G-NP-EDF)
by as much as 750% and 600%, respectively.

(2) In the absence of dependencies, the GUA class of algorithms accrue higher utility and
satisfy greater number of deadlines compared to the partitioned algorithms by as much as
90% and 75%, respectively for P-DASA; and 450% and 600%, respectively for P-EDF.

(3) As gMUA defaults to NG-GUA without dependencies, the performance of NG-GUA and
gMUA is similar.

(4) However, G-GUA outperforms NG-GUA and gMUA by accruing 25% more utility, while
both NG-GUA and gMUA satisfy 5% more deadlines during underloads than G-GUA.

(5) In the presence of dependencies, both NG-GUA and G-GUA accrue higher utility and
satisfy greater number of deadlines than G-NP-EDF-PIP by as much as 250% and 150%,
respectively.

To summarize, the research contributions of the thesis include:

1. the GUA class of multiprocessor real-time scheduling algorithms that allow tasks to
be subject to run-time uncertainties, overloads, and dependencies, and yield optimal
total utility when possible and best-effort timeliness behavior otherwise — the first
such multiprocessor real-time scheduling algorithms to do so.

2. the ChronOS multiprocessor real-time Linux kernel that provides optimized interrupt
service latencies and real-time locking primitives (by virtue of PREEMPT RT patch) and
a scheduling framework that allows the implementation of a broad range of real-time

Piyush Garyali Chapter 1. Introduction 9

scheduling algorithms, including utility accrual, non-utility accrual, global, and parti-
tioned scheduling algorithms – the first such multiprocessor real-time Linux kernel.

1.5 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 overviews past and related work in
the multiprocessor real-time scheduling space, and contrasts them with the thesis’s problem
space. Chapter 3 describes our models and scheduling objective. Chapter 4 presents the
GUA class of algorithms, including G-GUA and NG-GUA. The algorithm rationale, design,
pseudo-code description, and algorithm properties are described in this chapter.

Chapter 5 describes the ChronOS real-time Linux. We report our experimental studies in
Chapter 6. Finally, we conclude the thesis in Chapter 7.

Chapter 2

Related Work

In this chapter we survey the past and related work focusing on the problem of scheduling
on multiprocessors. The work can be classified into two categories — (i) classification based
on the degree of run-time migration; and (ii) classification based on the utilization load. We
discuss these in Sections 2.1 and 2.2, respectively.

2.1 Classification Based on Degree of Task Migration

Carpenter et al. [18] have classified the scheduling algorithms based on the degree of run-time
migration, considering three categories: (i) no migration; (ii) restricted migration; (iii) and
full migration.

No migration refers to the approach of partitioned scheduling. In this approach, tasks are
assigned to processors using an off-line assignment algorithm and each processor runs an
instance of an independent single processor algorithm. Partitioned Earliest Deadline First
(P-EDF) [2] is one example that uses the optimal uniprocessor scheduling algorithm EDF. As
the partitioned approach involves partitioning the tasks among processors, it can be shown
to be equivalent to the NP-Hard bin-packing problem. The tasks are usually partitioned
using polynomial time heuristic algorithms such as, first-fit, worst-fit and best-fit. In [9],
Baruah et al. present an optimized first-fit partitioning algorithm. The key idea of the
algorithm is to assign tasks to processor bins such that the tasks assigned to the processors
create a feasible schedule.

In the restricted migration category, jobs are executed entirely on a single processor but they
are allowed to migrate on job boundaries – with different jobs of the same task allowed to
execute on different processors. Each job’s runtime context needs to be maintained only on
a single processor. However, the task-level context is allowed to be migrated. In [2], for
a restricted migration model, where migration is allowed only at job boundaries, Anderson

10

Piyush Garyali Chapter 2. Related Work 11

et al. present an EDF-based partitioning scheme and scheduling algorithm that ensures
bounded tardiness.

The full migration algorithms are the global algorithms that place no restriction upon inter-
processor migration. The key idea of global scheduling is to maintain a single ready queue
that has all the tasks released in the system which are eligible to be scheduled. The global
queue is maintained according to some scheduling discipline and tasks are dispatched from
this queue to any free processor.

Most of the global scheduling algorithms default to a single processor optimal algorithm
such as Earliest Deadline First (EDF), or Rate Monotonic (RMS) algorithm. G-EDF [15]
(Global Earliest Deadline First) orders the global queue based on the earliest deadline first
order and the tasks are assigned to processors accordingly. However, once a scheduling event
is triggered on one processor, a new schedule is created for which all tasks executing on
other processors need to be preempted. In [10], Baruah derives the feasibility conditions for
the non-preemptive version of G-EDF called the G-NP-EDF (Global non-preemptive EDF).
In [32], Devi et al. derive the tardiness bounds for G-EDF and G-NP-EDF.

In [11, 12] Baruah et al. present a different global scheduling approach, called PFair [11]
(Proportionate Fair) scheduling, which divides a task into quantum sized “sub-tasks” that
are treated as the scheduleable entities. Each “sub-task” must execute within a “window”
of time slots, where the last “window” is the deadline of the task. This approach has been
shown to realize full system utilization and hence Pfair-based algorithms are optimal during
underloads (U ≤ m) [11, 12]. A particularly efficient version of Pfair scheduling, PD2, was
developed in [3] and its scalability was showcased in [16]. However, Pfair algorithms incur
significant scheduling overheads due to their quantum-based scheduling approach as shown
in [32]. Although, Pfair is optimal during underloads, its behavior during overloads follows
an EDF-like pattern. This is because Pfair continues to use the notion of earliest deadline,
even at the “sub-task” level. In [25] Cho et al. describe the LLREF scheduling algorithm.
LLREF is a optimal real-time scheduling algorithm for multiprocessors which is not based
on time quanta.

2.2 Classification Based on Utilization Load

Scheduling algorithms can also be classified based on those that assume the total utilization
U ≤ m, where m is the number of CPUs and those that assume U to be arbitrary. The
former condition is referred to as underload while the later is referred to as overload. For
multiprocessor systems, it has been shown that partitioned and non-Pfair global scheduling
have similar schedulability bounds [18] and that these bounds are significantly below full
system utilization. Algorithms that are not specifically designed to address overloads can
suffer an unacceptable amount of degradation when they occur [13, 48]. What is needed is a
set of algorithms that are designed with overload scheduling specifically in mind. This would

Piyush Garyali Chapter 2. Related Work 12

allow these algorithms to successfully schedule as many high importance tasks as possible
during overloads.

On single processor systems, Utility Accrual algorithms, such as DASA [31] and LBESA [55],
that maximize accrued utility for downward “step” TUFs default to EDF during under-
loads, since EDF satisfies all deadlines during underloads, consequently maximizing possible
accrued utility. During overloads, they favor more important activities, irrespective of ur-
gency. Thus, deadline scheduling’s optimal timeliness behavior is a special case of utility
accrual scheduling for single processor systems.

For a multiprocessor system, gMUA [22] and MOCA [48] scheduling algorithms provide
best-effort utility accrual during overloads. gMUA defaults to global-EDF, a non-optimal
scheduling algorithm, during underloads. During overloads, gMUA tries to maximize accrued
utility. MOCA, on the other hand, divides the processors into “bands” where each band is
assigned a certain utility density. MOCA attempts to schedule an incoming task on a band
that corresponds to its utility. If it is not possible to execute the task on its utility band,
MOCA moves the task down the bands until one is found that can schedule it. As a result of
this design, if a large number of low utility tasks arrive, they will quickly exhaust the lower
bands of the system and this scenario may cause incoming low utility tasks to be rejected
even though bands associated with higher utilities are idle.

Both gMUA and MOCA suffer from lack of support for resources, such as locks, and their
behavior in the presence of dependencies has not been studied.

Figure 2.1: Characterization of scheduling algorithms during underloads (U ≤ m) and over-
loads (U > m) based on ability to meet all deadlines and bounded best-effort real-time time
interval.

2.3 Summary

Figure 2.1 gives a summary of the classification discussed in this chapter. We observe the
following:

Piyush Garyali Chapter 2. Related Work 13

1. During underloads (for U ≤ m) only Pfair (PD2) and LLREF scheduling algorithms
can meet all deadlines. This is primarily because these algorithms have been proven
to be optimal during underloads.

2. During underloads, G-EDF, G-NP-EDF and P-EDF scheduling algorithms can only
meet their deadlines upto U ≈ m/2.

3. During underloads, an optimal best-effort behavior can be seen in Pfair(PD2) and
LLREF. This is due to the fact that they are optimal during underloads.

4. During overloads, none of the scheduling algorithm can meet their deadlines.

5. During overloads, none of the scheduling algorithms provide a best-effort bound on the
real-time interval.

6. There are no scheduling algorithms that provide best-effort behavior during overloads
in the presence of dependencies.

There is a clear gap in the past work, that establishes a need for best-effort utility accrual
real-time scheduling algorithms for multiprocessors, that provides best-effort behavior during
overloads for dependent tasks. We bridge this gap by designing the NG-GUA and G-GUA
scheduling algorithms which we discuss in detail in the subsequent chapters.

Chapter 3

Models and Objective

3.1 Thread Model

We consider the programming model where each task, Ti, can have a periodic or an aperiodic
execution. Each such invocation of the task, Ti, is referred to as phase Ji. Each phase has
an estimated best-faith1 execution time ei and a deadline di. No specific task arrival pattern
is assumed.

Tasks can be implemented using threads on an operating system. There are two models that
can be used. A single thread can be created that represents the task and all its phases. At
the end of the task’s period, the thread goes to sleep and wakes up at the next period. Hence,
each phase of the task can be executed on the same thread with a call to a function such as
sleep until next period() between phase invocations. We call this the “thread-is-a-task”
model. On the other hand, an individual thread could represent each phase of a task. Hence,
at the invocation of each phase of a given task, a separate thread is fired. We call this the
“thread-is-a-phase” model.

3.2 Timeliness Model

We specify the time constraint of each task using a Time/Utility Function (TUF) [43]. A
TUF allows us to decouple the urgency of a task from its importance. This decoupling is
a key property allowed by TUFs since the urgency of a phase may be orthogonal to its
importance. A task Ti’s TUF is denoted as Ui (t). A classical deadline is unit-valued—
i.e., Ui(t) = {1, 0}, since importance is not considered. Downward step TUFs generalize
classical deadlines where Ui(t) = {{m}, 0}. We focus on downward step TUFs, and denote
the maximum, constant utility of a TUF Ui (t), simply as Ui.

1This is an estimate of execution time, not an upper bound, and may be violated at runtime

14

Piyush Garyali Chapter 3. Models and Objective 15

Each TUF has an initial time Ii, which is the earliest time for which the TUF is defined, and
a termination time Xi, which, for the special case of downward “step” TUFs we consider,
is its discontinuity point. Equations 3.1a-b describe the mathematical representation of a
downward “step” TUF.

Ui (t) > 0,∀t ∈ [Ii, Xi] ,∀i (3.1a)

Ui (t) = 0,∀t /∈ [Ii, Xi] ,∀i (3.1b)

3.3 Resource Model

A resource Rj has a critical section length, Cj. The length of the critical section can be
variable. Any phases Ji can request a resource Rj and enter critical sections by invoking
APIs such as ResRequest(). Until the request for Rj is granted, the phase is said to be
blocked on the resource. Once Rj is granted to Ji, we refer to Ji as the Owner of the resource.
Ji invokes ResRelease()2 to complete the critical section. There is no restriction on the
number of phases that may request a resource. However, a phase can only be blocked on a
single resource which is being owned by another phase. We refer to this as the single-unit
resource model.

3.4 Processor Model

We consider a multiprocessor/multi-core architecture with M cores/processors. In the rest
of the thesis, cores and processors will be used interchangeably unless explicitly stated oth-
erwise.

3.5 Abort Model

We consider the model in which any phase that has blown its deadline can be aborted by
the system. The phase is sent an abort signal which is handled by the phase using an
abort handler. The handler is used by the phase to release any resources that it may have
requested or owned.

2These sample APIs have been used for the sake of explanation of the concept

Piyush Garyali Chapter 3. Models and Objective 16

3.6 Scheduling Objective

As mentioned earlier, the problem of scheduling real-time tasks on multiprocessors that are
subject to run-time uncertainties causing transient and permanent overloads, is NP-Hard.

Our primary objective is to design a class of polynomial-time heuristic3 algorithms that
provide best-effort utility accrual during overloads in the presence of dependencies (such as
locks) on a multiprocessor system. The algorithms should yield optimal total utility when
possible and best-effort timeliness behavior otherwise.

3Another approach of solving this problem is by designing approximate algorithms. We chose the heuris-
tics route because it is easier to design a heuristic algorithm as compared to an approximation. Also, the
insights provided by a heuristic algorithm can be useful in the design of approximate algorithms.

Chapter 4

The GUA Class of Real-Time
Scheduling Algorithms

In this chapter we present the Global Utility Accrual (GUA) class of algorithms. We discuss
two algorithms in detail — Non-Greedy Global Utility Accrual (NG-GUA) and Greedy Global
Utility Accrual (G-GUA). The non-greedy variant defaults to Global Earliest Deadline First
scheduling algorithm with Priority Inheritance Protocol (G-EDF-PIP) during underloads,
while maximizing the total accrued utility during overloads. On the other hand, the greedy
algorithm uses the concept of Global Value Density (GVD) to maximize accrued utility
during both underloads as well as overloads.

4.1 Ensuring Mutual Exclusion

When resources, such as locks, are used, it is important to ensure mutual exclusion. Consider
Figure 4.1 which shows a dependency chain consisting of nine phases and three resources.
Phases T1 and T2 require resource R1, which is owned by T4. Phases T4 and T5 require
resource R2, which is owned by phase T6. Phase T3 requires resource R3, which is owned
by phase T7. Phases T8 and T9 do not require any resources and are independent. In order
to ensure mutual exclusion, we can only schedule phases that do not have a dependency on
other phases.

We construct a global precedence graph, which is a directed acyclic graph (DAG), of the
phases with the nodes representing the phases and the edges representing the resources
being requested. Figure 4.2 gives the graph representation of the dependency chain shown
in Figure 4.1. Phase T6 owns resource R2, which is being requested by phases T4 and T5 and
therefore they are dependent on phase T6. This is represented in the graph as an edge R2

from T6 directed towards phases T4 and T5. In a similar fashion, phase T4 currently owns
resource R1, which is being requested by phases T1 and T2. Hence, we see an edge from

17

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 18

Figure 4.1: A phase and resource dependency chain with nine phases and three resources

phase T4 towards phases T1 and T2. Similarly, we have an edge from phase T7 to T3, which
requires resource R3 that is being owned by phase T7. Phases T8 and T9 do not have any
resources requested and hence are represented as independent nodes.

All the nodes in the given DAG that do not have any edges from any other node are referred
to as zero in-degree phases. In order to construct a schedule that respects mutual exclusion,
we consider only the zero in-degree phases, as these represent phases that are not dependent
on any other phase.

4.2 Maximizing Accrued Utility

In order to define a measure for the benefit that a given phases’ completion can bring to
the total accrued utility of the system, we use the concept of Potential Utility Density (or
PUD), which was first defined by Clark in [31]. PUD is defined as the ratio of the remaining
execution time of a phase at time t to the utility of the phase defined by the TUF at time t,
i.e., U(t). The PUD of a phase is a dynamic value as it depends on the remaining execution
time of a phase and hence at any given time it denotes the “return on investment” that can
be gained for each unit of processing time assigned to that particular phase.

Clark defines and uses PUD in DASA [31] when considering phases that are dependent
on each other. Clark considers the PUD of the entire group involved in a dependency
relationship and uses the concept as an indicator of the urgency to execute a phase that
blocks other phases; and also as a measure of the total benefit that the system will accrue
if the entire dependency chain is executed while respecting mutual exclusion. However, as
DASA is a uniprocessor scheduling algorithm, only a single phase can be executed at any
given time t.

The problem with multiprocessor scheduling is, that it is possible for a scheduler to schedule
a phase and one or more of its dependents on two or more processors concurrently. This
does not benefit the total system utility accrual given the fact that the phase blocked on a
resource is going to waste its CPU cycles. In order to prevent this, we use the DAG to find
the set of zero in-degree phases that do not have any dependency relationship among each

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 19

Figure 4.2: Directed Acyclic Graph (DAG) for the dependency chain shown in Fig 4.1.
The nodes with a zero in-degree are eligible for final schedule in order to preserve mutual
exclusion.

other and hence can be executed concurrently on any given M processors (as discussed in
Section 4.1).

However, given a set of N zero in-degree phases, we require a method to select the M phases
that, when executed on the M processors, would maximize the total accrued utility of the
system. For this we define the term Global Value Density (or GVD). To avoid any confusion
with the PUD of a phase, we define the term Local Value Density (or LVD) which is equal
to the PUD of a given phase and is used instead of PUD in the rest of the thesis. GVD is
computed only for the zero in-degree phases and it is defined as the sum of the LVD’s of
individual phases that are in a dependency relation with the given zero in-degree phase.

Consider Figure 4.3. We compute the GVD for phases T6, T8 and T9 as these represent the
current set of zero in-degree phases. The GVD for T6 is computed as: GVD(T6) = GVD(T4)

+ GVD(T5) + LVD(T6). This is equivalent to: GVD(T6) = LVD(T6) + LVD(T4) + LVD(T5)

+ LVD(T1) + LVD(T2). The GVD for T8 and T9 is equivalent to their respective LVDs as
these phases do not have dependents.

Figure 4.3: Computing the global value density for a graph

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 20

4.3 Deadlock Detection and Resolution

A deadlock can occur if a phase T1, which owns a resource R1, makes a request for another
resource R2, which is being owned by a phase currently blocked on a resource Ri in the
dependency chain of T1. Figure 4.4 gives an example of a deadlock. Phase T4 requires
resource R2 which is currently owned by phase T3. Phase T3 requires resource R3 which is
owned by phase T2. However, phase T2 is currently blocked on resource R1 which is owned
by T4. Hence the deadlock.

Figure 4.4: A phase and resource dependency chain with a deadlock condition.

A deadlock can be detected during the construction of the DAG. For the given set of phases
that are ready for being scheduled, the construction of the DAG involves traversing the list
of ready phases and creating a graph that establishes an edge relationship between nodes.
For each phase Ti, we use API calls such as ResRequested(Ti) and Owner(Ri) to find the
parent node in the DAG. We compute the relationship between all the dependent nodes in
the chain. While the dependency chain is being computed, a list σi is created with a reference
to the nodes in the dependency chain of Ti such that at every step in the construction of the
DAG, we check σi to verify if the node has already been inserted into the DAG. If the node
is already in σi, it establishes the presence of a deadlock.

Fig 4.5 shows the process of DAG construction for the dependency chain of Figure 4.4. We
see that there is deadlock between phases T6 → T2 → T4 → T6. At this point we need to
remove one of the phases from the deadlocked loop to resolve the deadlock. We remove the
Least Local Value Density (or Least-LVD) phase amongst the phases that are currently in a
deadlock. The rationale behind this approach is to ensure that we only abort a phase that
provides the least utility to the total system accrued utility.

Aborting a phase involves marking the phase for immediate completion by sending it a
signal. The phase can catch this signal and invoke its abort handler to perform a cleanup;
releasing resources such as locks.

4.4 Assigning Zero In-degree Phases to Processors

In order to assign the zero in-degree phases to the processors, we use the concept of the “least
sum of total phase remaining execution time” on each processor, which was first described

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 21

Figure 4.5: Deadlock detection and resolution.

by Cho in [22].

Let us assume a set of zero in-degree phases along with their respective remaining execution
times: {T1 : 10}, {T2 : 12}, {T3 : 5}, {T4 : 15}. Let us consider a multiprocessor system with
M = 2. Initially, the sum of the remaining execution times for phases on each processor is
set to zero: {p1 : 0}, {p2 : 0}. This is because no phase has been currently assigned to the
processors. Now, T1 can be assigned either to p1 or p2. Let us assume that T1 is assigned to
p1. T1’s remaining phase execution cost gets added to p1. We have, {p1 : 10}, {p2 : 0}. T2

gets assigned to p2 and we get, {p1 : 10}, {p2 : 12}. At this point, T3 needs to be assigned to
the processors that has the least sum of total phase remaining execution time, which is p1.
The process continues until all the phases have been assigned to processors.

4.5 Data Structures and Auxiliary Functions

Before describing the algorithms in detail we list the member variables that can be added
to the phase data structure to describe the timeliness model and the DAG representation of
the resource model.

4.5.1 Data Structure for Timeliness Model

The following member variables can be used to define the timeliness model for each phase:

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 22

J.ExecCost

The good faith execution cost of phase J .

J.Deadline

The deadline of phase J .

J.RemExec

The remaining execution time of a phase J . This represents the time that is left of the
phase’s execution cost. The value can be updated every time the phase is preempted
by the scheduler or just before the new schedule is created. This value is used for the
calculation of the Value Density for the phase.

J.Utility

The utility of the phase J as represented by its TUF.

J.LocalValDen

The Local Value Density (LVD) of a phase J . The LVD is calcuated as J.Utility
J.RemExec

.

4.5.2 Data Structure for Resource Model

The following member variables can be used to define the resource model for each phase
represented as a DAG:

J.AggUtil

The aggregate utility of a phase J . This is used for the calculation of the Global Value
Density.

J.AggExec

The aggregate remaining execution time of a phase J . This is used for the calculation
of the Global Value Density.

J.GlobalValDen

The Global Value Density (GVD) of a phase J . GVD is calculated as ΣJ.AggUtil
ΣJ.AggExec

for
phase J and all its dependents.

J.PIPDeadLn

The PIP deadline of a zero in-degree phase J is equal to the deadline of the phase in J ’s
dependency chain that has the earliest deadline. The PIP deadline is only calculated
for zero in-degree phases. If a zero in-degree phase J does not have any dependents,
the PIP deadline is equal to J.Deadline.

J.InDegree

The total number of links that come into a phase J in the DAG. The in-degree of a
phase J can not be more than one.

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 23

J.OutDegree

The total number of links that go out of a phase in the DAG. A phase J can have a
value of zero or more for the out-degree.

J.ResourceReq

The reference to the resource that has been requested by a phase J .

J.NeighborList

The reference to the first dependent child node of a phase J in the DAG.

J.NextNeighbor

The reference to the next dependent child node of a phase J in the DAG.

J.Parent

The reference to the phase which owns the resource that the phase J has requested. Fig-
ure 4.6 illustrates how the DAG can be represented using J.NeighborList, J.NextNeighbor
and J.Parent.

Figure 4.6: Data structure representation of the DAG

4.5.3 Auxiliary Functions

In this section, we define the auxiliary functions that are used by the NG-GUA and G-GUA
scheduling algorithms. These methods perform small functions which are implementation
independent.

InsertList(J, σ)
Insert the phase J into the list σ.

RemoveList(U, σ)
Remove phase J from the list σ.

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 24

ComputeGVD(σin)

For the given list of zero in-degree phases in σin, compute the global value density,
which is calculated as ΣJ.AggUtil

ΣJ.AggExec
for phase J and its dependents represented as child

nodes of the zero in-degree phase in the graph.

SortByGVD(σin)

Sort the list σin by the decreasing global value density and return the new ordered list
in σout.

SortByDeadLn(σin)

Sort the list σin by the decreasing deadline (EDF order) and return the new ordered
list in σout.

HeadOf(σ)
Return the phase J which is at the head of the list σ.

InsDeadLnPos(J, σ)
Insert phase J in the list σ at its deadline position.

FindZIDPhases(σt)

Return the list σz of zero in-degree phases in σt.

FindPIPDeadLn(σz)

For each zero in-degree phase J ∈ σz, assign the PIP deadline for J equal to the
deadline of the phase which has the earliest deadline amongst the dependents of J . If
J does not have any dependents, the PIP deadline of J equals its deadline.

RemoveLeastLVD(σ)
Remove the phase with the least LVD from σ.

RemoveLeastGVD(σ)
Remove the phase with the least GVD from σ.

IsPresent(J, σ)
Return true if the phase J is present in list σ, else return false.

IsFeasible(σ)
Return true if the given schedule in list σ is feasible. For σ to be feasible, the predicted
completion time of each phase in σ must never exceed its deadline.

IsEmpty(σ)
Return true if the list σ is empty, else return false.

InsertEdge(J,DepJ)
Insert an edge between DepJ and J .

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 25

RemoveEdge(J)
Remove all in-degree and out-degree edges of J .

Owner(R)
Return the phase J that holds resource R. If there is no phase that holds resource R,
return NULL.

ResRequested(J)
Return the resource R requested by phase J .

FindProcessor()

Return the processor p which has the least sum of total phase execution cost.

FindProcessor(cpu mask)

This version of FindProcessor() takes an argument called cpu mask, which is a list
of processors that have been checked before and need to be masked (avoided) while
selecting the processor with the least sum of total phase execution cost. If all the
processors on the system are included in the mask, the function returns NULL.

AddCpuToMask(p, cpu mask)

Add processor p to the cpu mask. The cpu mask can be a bit array where each bit
corresponds to each online processor, in which case, set the bit corresponding to p.

FindLeastLVD(J)
For the given phase J ’s dependency chain, find the phase with the least Local Value
Density (LVD).

UpdateCpuEC(p, J, b)
If b is true, add the execution cost of J to the total phase execution count for processor
p, else subtract the execution cost of J from the total phase execution count.

AbortPhase(J)
Send an aborting signal to the phase J .

IsPhaseAborted(J)
Return true if the phase J has been marked to be aborted.

4.5.4 Creation of DAG with Detection/Resolution of Deadlocks

In this section, we give the details of the auxiliary function used to create the DAG along
with detection and resolution of deadlocks. In Algorithm 1, we describe the pseudo-code for
CreateDAGwithDRD(σT) that uses the list of phases, σT , which are ready and eligible to be
scheduled. For the rest of the thesis, we will refer to the phase that has requested a resource
as a child while the phase that owns the resource being requested as a parent.

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 26

Algorithm 1: Creation of DAG with detection/resolution of deadlocks

Procedure: CreateDAGwithDRD (σT)1:

2:

Input: σT // List of released phases3:

Vars: S, J, V, next // Phase pointers4:

Vars: σJ // Phase J ’s list of dependents5:

6:

next = φ;7:

for each phase J in σT do8:

σJ = φ ;9:

J.LocalV alDen = J.utility
J.RemExec ;10:

11:

InsertList(J, σJ);12:

next = Owner(ResRequested(J));13:

while next 6= φ do14:

InsertEdge(J, next) ;15:

if IsPhaseAborted(next) then16:

break;17:

if IsPresent(next, σJ) = false then18:

InsertList(next, σJ);19:

J = next;20:

next = Owner(ResRequested(next));21:

else22:

V = FindLeastLVD(next);23:

AbortPhase(V);24:

RemoveEdge(V);25:

break;26:

In lines 8-26, the algorithm iterates over the list, σT , and for each phase, J , checks if a parent
node exists. If there exists a parent (line 13), the algorithm adds an edge from the parent to
the child node (line 15). The main objective of the algorithm is to construct the complete
dependency chain for a given phase. In lines 20-21, the algorithm sets the current parent
node as the new child and checks if it has requested a resource. The steps are repeated for
all the phases in the dependency chain of J .

To perform deadlock detection, for each phase, J , whose dependency chain is being analyzed,
we create a temporary list σJ (line 9) and insert all the dependencies for phase J into σJ

(line 12). Before adding an edge between a child and a parent, we first check if the parent
node is already present in σJ (line 18). The existence of the phase in σJ means that the
phase has already been added to the graph. This implies that we have detected a circular
dependency and hence a deadlock. To resolve the deadlock, we need to find the least local
value density phase in σJ , abort the phase and remove it from the graph (lines 23-26).

Once the DAG has been created, we need to compute the Global Value Density for the zero
in-degree phases. Finding the zero in-degree phases involves iterating over the list of released

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 27

phases σT and creating another list σz of phases which have J.InDegree equal to zero. For
each of the zero in-degree phases, the global value density (or GVD) needs to be computed.
The GVD of a zero in-degree phase J is given as J.AggUtility

J.AggRemExec
where J.AggUtility is the

aggregate utility of J and all its child nodes in the graph and J.AggRemExec is the aggregate
remaining execution time of J and all its child nodes in the graph. The ComputeGVD(σ)
auxiliary function describes one of the methods of computing GVD. As an optimization, the
computation of the aggregate utility and the aggregate remaining execution time for zero
in-degree phases can be coupled with the InsertEdge() or the FindZIDPhases() auxiliary
functions.

4.6 Non-greedy Global Utility Accrual (NG-GUA)

Algorithm 2 describes the pseudo-code for the Non-Greedy Global Utility Accrual (NG-
GUA) algorithm. The pseudo-code uses auxiliary functions that have been discussed earlier
in Section 4.5.3.

In line 5, for a given list of phases σT that are ready to be scheduled, we compute the
global precedence graph (DAG) and detect/resolve deadlocks. This is done by calling
ComputeDAGwithDRD().

In line 6, after the DAG has been created, we find the list σz of all the zero in-degree phases.
A zero in-degree phase does not depend on any other phase in the system.

In line 7, for all the phases in σz, we compute the global value density. This is done using
the ComputeGVD() function.

In order to ensure that NG-GUA defaults to G-EDF-PIP behavior (in the presence of de-
pendencies), we compute the PIP deadlines for each of the zero in-degree phases. The PIP
deadline of a zero in-degree phase Jz can be found as the earliest deadline of a phase Ji
which is dependent on the given zero in-degree phase Jz in the graph. In the absence of
dependencies, the PIP deadline of Jz is the same as the given deadline of Jz.

In lines 8-9, we compute the PIP deadline for all the zero in-degree phases and sort them
based on those deadlines. The sorted list is stored in σd. The key idea here is to sort the
zero in-degree phases by the deadlines of the phases which have the earliest deadline but are
currently blocked on a resource that is being held by the zero in-degree phases.

In lines 11-13, we use the method defined in Section 4.4 to find the processor with the
least sum of total remaining execution cost and start assigning the phases to the individual
processor lists σp.

In lines 14-16, we check the individual processors lists σp for schedule feasibility. This is
done using the IsFeasible() function which returns true, if the given schedule in list σp is
feasible. For a schedule to be feasible, the predicted completion time for each phase in σp

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 28

Algorithm 2: NG-GUA: Non-greedy Global Utility Accrual

Input: σT // List of released phases1:

Vars: σ1 · · ·σM // Per processor ready queues for M processors2:

Vars: σz // Zero in-degree phase list3:

4:

ComputeDAGwithDRD(σT);5:

σz ← FindZIDPhases(σT);6:

ComputeGVD(σz);7:

σz ← FindPIPDeadLn(σz);8:

σd ← SortByPIPDeadLn(σz);9:

10:

for each phase J in σd do11:

p← FindProcessor();12:

InsertList(J, σp);13:

for each processor p do14:

while IsFeasible(σp) = false do15:

RemoveLeastGVD(σp);16:

for each p processor’s schedule σp in M do17:

Jobp ← HeadOf(σp) ;18:

return { Job1, · · · , JobM };19:

must never exceed its deadline.

If the schedule is not feasible, the system is in an overload with U > M . During overloads,
we need to attempt to maximize the total utility of the system by allowing phases that have
a higher value density to be executed. In line 16, we find the phase in σp that has the
least GVD, remove it from σp and check the schedule again for feasibility. Lines 15-16 are
executed until we find a feasible schedule.

The reason for using GVD while removing the phase during an infeasible schedule is to
ensure that we respect the dependency chain. It is possible that the zero in-degree phase
having the highest GVD, has the least LVD. In such a case, using LVD to remove a phase
would not be a correct representation of the dependency chain and hence would degrade the
overall performance during overloads.

In lines 17-19, the head of the final feasible schedule σp for each processor p is dispatched on
that processor.

Algorithm 2 is referred to as non-greedy because it defaults to a deadline order rather than a
value density order along with support for priority inheritance protocol, thus following a G-
EDF-PIP behavior during underloads and maximizing total accrued utility during overloads.

Figure 4.7 shows a sample schedule for NG-GUA. T1, T2, T3, T4, T5, and T6 represent real-
time phases in the global queue. We assume that the subscripts on each phase represent the
relative deadlines. So, T1 has an earlier deadline than T6. The precedence graph shows the

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 29

Figure 4.7: Sample schedule for NG-GUA

relationship of phases with each other. T4, T5, and T6 represent the zero in-degree phases.
We find the PIP deadlines for these phases. For zero in-degree phase T4, T1 has the earliest
deadline. Similarly, for phase T6, T3 has the earliest deadline. We sort the phases based on
the PIP deadlines. Assuming the system is underloaded, the assignment of all the phases
to the processors would result in a feasible schedule. T4 and T6 are the most eligible phases
and they are assigned to processors CPU0 and CPU1, respectively.

Let us assume that T4 finishes before T6. As a result, a scheduling event is generated on
CPU1, which sends an IPI to all the processors in the system and enters the scheduler1. CPU0

receives the IPI and enters the scheduler. However, as CPU1 is already in the scheduler,
CPU0 blocks. CPU1 prepares the global schedule. T6, T5, and T2 represent the zero in-degree
phases (as T4 has finished execution). We find the PIP deadlines and sort the phases based
on those deadlines. T2 and T6 are now the most eligible phases and they are assigned to the
processors. As T6 was running on CPU0 before the scheduling event was generated, we assign
T6 to CPU0 to preserve cache-coherence. The assigned tasks are mapped to the processors.
The processors pull the assigned tasks and start executing them.

During overloads, after the phases have been sorted based on PIP deadlines, they are assigned
to the processors with the least sum of remaining phase execution cost. For each of the
processors, schedule feasibility is checked. During overloads, some (or all) of the processors
might show infeasible schedules. At that time, for each of processors which have an infeasible

1The details on the IPI are discussed in detail in Chapter 5

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 30

schedule, we remove the phase with the least GVD (and continue doing this till the schedule
is feasible). If there are no dependencies, all the phases are treated as zero in-degree and
the PIP deadlines for all those phases are equivalent to the actual deadlines of the phases.
Hence, the same mechanism follows.

4.7 Greedy Global Utility Accrual (G-GUA)

Algorithm 3 describes the pseudo-code for the Greedy Global Utility Accrual (G-GUA)
scheduling algorithm. The pseudo-code uses auxiliary functions that have been discussed
earlier in Section 4.5.3.

Lines 8-10 are similar to the NG-GUA algorithm, described in Section 4.6. We compute the
DAG, find the list of zero in-degree phases and compute the GVD for all the zero in-degree
phases in σz. As G-GUA does not default to G-EDF-PIP, we do not need to find the PIP
deadlines.

G-GUA differs from NG-GUA in two ways — (i) the zero in-degree phases are sorted by
GVD instead of the PIP deadlines (line 11), and (ii) instead of assigning phases to all the
processors and then running the feasibility check, G-GUA follows a much more greedier
approach to accrue total utility.

For all individual GVD sorted zero in-degree phases in σd (lines 13-30), G-GUA assigns the
phase to a processor which has the least sum of total remaining execution cost and checks for
feasibility of schedule on that processor. If the schedule is feasible, only then does G-GUA
move to the next phase in σd. However, if the schedule is not feasible after the phase was
added to the first processor it was assigned to, G-GUA removes it from that processor and
tries the same phase on all the other available processors. This is done to ensure that a
phase is tried on all processors before being rejected. This behavior is greedy as it tries to
ensure that a high GVD phase is not rejected and thus provides greater accrued utility.

G-GUA uses two variables called cpu mask and not fes. These are used to make sure that
a phase which was not feasible on the first processor it was assigned to, is tried on all the
available processors. For every phase, the cpu mask is initially set to zero (line 14). If a phase
is not feasible on a processor, it is removed from that processor (line 25) and the processor
is added to the cpu mask (line 28). The cpu mask is used by FindProcessor() to find the
processors that have the least sum of total remaining execution cost avoiding (masking) the
processors which have been already checked (line 18).

In lines 24-30, G-GUA checks if the current phase added to a processor makes a feasible
schedule. If it does, G-GUA moves to the next phase by setting the not fes flag to false.
If the schedule is not feasible, lines 25-28 remove the phase from the processor and add the
processor to the cpu mask. The not fes continues to be true, due to which the loop 17-30 is
activated again. The FindProcessor is called with the cpu mask which either returns a new

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 31

Algorithm 3: G-GUA: Greedy Global Utility Accrual

Input: T // List of released phases1:

Vars: σ1 · · ·σM // Per processor ready queues for M processors2:

Vars: σz // Zero in-degree phase list3:

Vars: cpu mask // Mask of all processors on which feasibility check of a given phase failed4:

Vars: not fes // Flag to check if the feasibility check failed for a given phase5:

// on last processor it was assigned to6:

7:

ComputeDAGwithDRD(T);8:

σz ← FindZIDPhases(T);9:

ComputeGVD(σz);10:

σd ← SortByGVD(σz);11:

12:

for each phase J in σd do13:

cpu mask = 0;14:

not fes = true;15:

16:

while not fes == true do17:

p← FindProcessor();18:

if p == NULL then19:

break;20:

InsDeadLnPos(J, σp);21:

UpdateCpuEC(p, J, true);22:

23:

if IsFeasible(σp) == false then24:

RemoveList(J, σp);25:

UpdateCpuEC(p, J, false);26:

not fes = true;27:

AddCpuToMask(p, cpu mask);28:

else29:

not fes = false;30:

for each p processor’s schedule σp in M do31:

Jobp ← HeadOf(σp) ;32:

return { Job1, · · · , Jobm };33:

processor (line 18), or returns NULL if the phase has been tried on all the processors (lines
19-20). In that case, the phase is rejected and the next phase is considered in line 13.

In lines 31-32, the head of the final feasible schedule (σp) for each processor p is taken and
dispatched to the individual processor for scheduling.

Figure 4.8 shows a sample schedule for G-GUA. T1, T2, T3, T4, T5, T6, T7, T8, and T9

represent real-time phases in the global queue. We assume that the subscripts on each phase
represent the relative deadlines while as the superscript represents the LVD. The precedence
graph shows the relationship of phases with each other. T4, T7, and T6 represent the zero
in-degree phases. For all of the zero in-degree phases we compute the GVD. We find that

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 32

Figure 4.8: Sample schedule for G-GUA

T4 has the highest GVD of 22 and T7 has the least GVD of 10. We sort the phases based
on the decreasing values of GVD. At this point, we take each phase, assign it to a processor
with the least sum of total phase remaining execution cost and check for schedule feasibility.
During underloads, the schedules would be feasible on all processors. As a result, T4 and
T6 are found to be the most eligible phases and assigned to processors CPU0 and CPU1,
respectively.

Let us assume that T4 finishes before T6. As a result, a scheduling event is generated on
CPU1, which sends an IPI to all the processors in the system and enters the scheduler2. CPU0

receives the IPI and enters the scheduler. However, as CPU1 is already in the scheduler,
CPU0 blocks. CPU1 prepares the global schedule. As phase T4 has finished execution, T8,
T2, T6, and T7 represent the new zero in-degree phases. We compute the GVD for the phases.
T8 has the least GVD. We follow the same mechanism as discussed earlier and find that T6

and T7 are the most eligible phases.

During overloads, while the phases are being assigned to processors with the least sum of
phase remaining execution cost, addition of a phase might result in an infeasible schedule
on a given processor. At that point, the phase is tried on the other processors before being
rejected. This ensures greedy behavior. If there are no dependencies, all the phases are

2The details on the IPI are discussed in detail in Chapter 5

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 33

treated as zero in-degree and the GVD for all those phases is equivalent to their LVD.
Hence, the same mechanism follows.

4.8 Algorithm Properties

From now onwards in this thesis, “underload” is defined to exist when thread utilization de-
mand satisfies one of the G-EDF schedulability conditions in [15], while “overload” is defined
to exist when thread utilization demand exceeds the global EDF schedulability conditions
in [15]3.

We define some of the properties of G-GUA and NG-GUA.

Theorem 1. NG-GUA, with no dependencies, defaults to global-EDF scheduling during
underloads.

Proof. Global-EDF sorts the ready phases in deadline order and then dispatches the head of
this queue to available processors. NG-GUA mimics this behavior by first sorting the ready
phases in deadline order and then dispatching them to processors that have the least sum of
remaining phase execution cost. The processor p with the least sum of remaining execution
cost would be the first processor to be available in the system. Therefore, the top of the
ready queue would be assigned to processor p in global-EDF and we assign the phase to p in
NG-GUA as well. Hence, NG-GUA mimics the scheduling semantics of global-EDF during
underloads.

Theorem 2. NG-GUA, with dependencies, defaults to global-EDF with PIP scheduling dur-
ing underloads.

Proof. Global-EDF with PIP sorts the ready phases in deadline order. It then checks if the
phase Ja at the head of the queue is blocked by another phase Jb. Instead of executing Ja,
G-EDF does a priority inheritance by allowing Jb to be executed instead. NG-GUA mimics
this behavior by finding out the PIP deadline of all the zero in-degree phases (line 8) and
sorting the zero in-degree phases based on the PIP deadlines (line 9). This ensures that the
phase Jb which is now at the head of the queue after the sort, is a zero in-degree phase which
is blocking another phase Ja, that has the earliest deadline in the system. Hence NG-GUA
mimics the scheduling semantics of global-EDF with PIP scheduling during underloads, in
the presence of dependencies.

Theorem 3. The gMUA scheduling algorithm is a special case of NG-GUA scheduling al-
gorithms

3As EDF is optimal on a uniprocessor, underload is defined when task utilization U ≤ 1 and an overload
when U > 1. However, for multiprocessors, G-EDF is not optimal and can meet deadlines for U ≈ m/2, for
m processors. Hence, underload is defined equivalent to the utilization bounds of G-EDF.

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 34

Proof. At every scheduling event, gMUA [22] takes the phases that have been released in the
system and are ready for execution and sorts them based on their deadlines. gMUA assigns
the deadline sorted phases to processor queues. Each phase is assigned to a processor which
has the least sum to total remaining execution cost. Once the phases have been assigned,
gMUA runs the schedule feasibility check on individual processors queues. If the phases
assigned to a processor result in an infeasible schedule, gMUA removes the phase with the
least value density, until the schedule is feasible. Finally, the head of each of the processor
queue is considered as the final schedule.

This behavior is similar to NG-GUA without dependencies. In the absence of any dependency
relationship between phases, line 5 of NG-GUA treats all the phases as zero in-degree nodes
in the graph. Thus in line 6, all the phases that were initially in the ready queue are eligible
for the final schedule. As there are no dependencies, the PIP deadline of each phase is equal
to its own deadline. Hence, in line 9, the SortByPIPDeadLn() function sorts the phases
based on their actual deadlines. In lines 11-13, NG-GUA uses FindProcessor() function
to assign phases to processors that have the least sum to total remaining execution cost. In
lines 14-16 NG-GUA, runs a schedule feasibility check on individual processor queues and
in case of an infeasible schedule, removes the phases with the least GVD. However, as there
are no dependencies, the GVD of a phase is equal to its LVD.

Thus, gMUA is a special case of NG-GUA.

Theorem 4. During overloads, NG-GUA attempts to accrue as much utility as possible by
attempting to maximize the utility accrued at each scheduling step.

Proof. NG-GUA, in lines 8-9, first constructs a global deadline ordered schedule. Once the
entire schedule is constructed, the algorithm goes over the system to check for feasibility
(lines 14-16), and removes the least GVD phase if the schedule is not feasible. Thus, during
overloads, when phases first begin to miss deadlines, NG-GUA begins to shed phases in
inverse proportion to their utility density. This method allows the algorithm to gracefully
degrade in the presence of overloads by eliminating the threads that would be least beneficial
to the system in terms of accrued utility. The algorithm therefore attempts to minimize the
loss in accrued utility, or, equivalently, to maximize the remaining accrued utility, at each
scheduling step.

Theorem 5. Both algorithms ensure mutual exclusion.

Proof. In order to ensure mutual exclusion, it should not be possible for two or more phases
that have critical sections, which access the same variables, to execute at the same time.
Phases that access the same variables in their critical sections protect these sections using the
same locks. The algorithms detect this dependency while constructing the DAG. Since both
algorithms only execute zero in-degree phases, they ensure that a phase and its dependents
do not execute at the same time, thus ensuring that mutual exclusion is guaranteed.

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 35

Theorem 6. For both algorithms considered, an application always makes progress, i.e., ex-
ecutes application specific code, if there is work offered and the application is not deadlocked.

Proof. Both algorithms are based on the concept of zero in-degree phases. Given a DAG, line
5 in NG-GUA and line 8 in G-GUA, select a set of phases that do not depend on any other
phases. These phases are then sorted according to deadline or GVD order and dispatched to
the appropriate processor. If the application still has work offered, and it is not deadlocked,
there will always be at least one zero in-degree node in the DAG. The phase represented
by this node is dispatched to one of the processors in the system, thus making progress in
accordance with application logic.

Property 1. In [39], Theorem 16.3.1 shows that when the schedule length is used as a
criteria, a greedy scheduling algorithm that schedules the zero in-degree nodes in a DAG
produces a schedule that is within a factor of two from being optimal. Further, for a multi-
threaded application with P threads, work T1 and critical path length T∞, the length of the
schedule is bounded by

T1

PA

+
T∞(P − 1)

PA

where PA is defined as the average number of threads executed at each scheduling interval.

Theorem 7. Property 1 applies for both NG-GUA and G-GUA.

Proof. The “greedy” nature discussed in [39] refers to the ability of an algorithm to schedule
as many ready phases as possible. More specifically, an algorithm is considered “greedy” in
the context of [39] if the number of threads scheduled at each step is the minimum of the
number of available processors and the number of threads that are ready to be executed.

Both G-GUA and NG-GUA have this property, since they both select the zero in-degree
nodes in a DAG and schedule the threads they represent on the available processors – note
that these are the phases that are ready for immediate execution. The main difference
between them and the general greedy algorithm discussed in [39] is that they sort the zero
in-degree phases according to some real-time criteria (whether deadlines or GVD) and select
the first n phases from this ordered list for immediate dispatching (where n is the number
of available processors). Therefore, NG-GUA and G-GUA are in the class of algorithms
discussed in [39] and the theorem follows.

Theorem 8. Form processors and n phases, the asymptotic cost of NG-GUA is O(mn log n).

Proof. In line 5 we take the list of released phases and compute the dependency relationship
for each phase, which has a cost of O(n). In line 6 we find the zero in-degree phases from
the DAG, which can be completed in O(1). For computing the GVD, the worst case cost is

Piyush Garyali Chapter 4. The GUA Class of Real-Time Scheduling Algorithms 36

O(n), assuming all the n phases in the ready queue are zero in-degree. This is possible if
there are no dependencies.

In line 8 we find the PIP deadline for all the zero in-degree phases, which has a cost of
O(n). In line 9 we sort the phases by the PIP deadline. The worst-case execution cost of
the most efficient sorting methods is O(n log n). Lines 11-16 have a cost of O(n), so with m
processors, the overall cost is O(mn).

Hence, the total asymptotic cost of NG-GUA is: O(n) +O(1) +O(n) +O(n) +O(n log n) +
O(mn) = O(mn log n).

Theorem 9. For m processors and n phases, the asymptotic cost of G-GUA is O(mn log n).

Proof. In line 8 we take the list of released phases and compute the dependency relationship
for each phase, which has a cost of O(n). In line 9 we find the zero in-degree phases from
the DAG, which can be completed in O(1). For computing the GVD, the worst case cost is
O(n), assuming all the n phases in the ready queue are zero in-degree. This is possible if
there are no dependencies.

In line 11 we sort the phases by the GVD. The worst-case execution cost of the most efficient
sorting methods is O(n log n). Lines 17-30 can be repeated for m processors, with a cost of
O(m). Lines 13-30 are computed for n phases, with a total cost of O(mn).

Hence, the total worst-case asymptotic cost of G-GUA is: O(n)+O(1)+O(n)+O(n log n)+
O(mn) = O(mn log n).

Chapter 5

ChronOS Real-Time Linux

5.1 Background

In order to implement and evaluate our scheduling algorithms we developed ChronOS [1],
which provides real-time extensions to the Linux kernel. ChronOS is derived from the
2.6.31.12 version of the Linux kernel and uses Ingo Molnar’s PREEMPT RT real-time patch [60]
which enables complete preemption in Linux and improves interrupt latencies. The patch is
released under GPLv2 [36] and makes it suitable for academic research. ChronOS provides a
set of APIs and a scheduler plugin infrastructure that can be used to implement and evaluate
various single-processor and multiprocessor scheduling algorithms.

The two main objectives of implementing ChronOS are — (i) to provide a first-class ab-
straction of Distributed Threads; and (ii) to provide a real-time scheduling framework. The
Distributable Thread (also know as DT) programming abstraction first appeared in the Al-
pha OS [29] and subsequently in Mach 3.0 [35], MK7.3 [67], Real-Time CORBA 2.0 [61], and
the emerging Distributed Real-Time Specification for Java (DRTSJ) [45]. A Distributable
Thread is a single thread of execution with a globally unique identity that transparently ex-
tends and retracts through local and remote objects. A real-time Distributed Thread carries
along its timing constraints (deadline, TUF, worst-case execution cost) as it makes remote
invocations and travels through multiple nodes. On each node, the local instance of the
Distributed Thread is scheduled with these timing constraints1.

The rest of the chapter outlines the architecture of ChronOS and the modifications that we
have made to the Linux kernel to achieve the real-time behavior. We primarily focus on the
scheduling infrastructure concentrating on the design and implementation of multiprocessor
scheduling algorithms.

1The DTs will not be discussed in detail as the topic is outside the scope of this thesis.

37

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 38

Figure 5.1: ChronOS architecture

5.2 Architecture

Figure 5.1 shows the overall architecture of ChronOS real-time Linux. ChronOS is derived
from the Linux kernel and we rely on all the kernel primitives for basic operating system
objectives such as process and memory management, timers, interrupts, drivers, file-system,
and networking. As shown in Figure 5.1, Linux provides the basic foundation of ChronOS.

We extend the Linux O(1) scheduler and implement the ChronOS real-time scheduler where
various single-processor scheduling algorithms, such as EDF, DASA, LBESA, HVDF, RMA and
multiprocessor algorithms, such as G-EDF, G-NP-EDF, G-FIFO, NG-GUA, G-GUA have been
implemented. At the same level, the Distributed Thread manager is implemented which
provides first-class kernel level abstraction for Distributed Threads. Various Distributed
Thread related algorithms, such as TPR, D-TPR, HUA, CUA, ACUA [33] have been implemented.

The Distributed Thread manager and the scheduling framework extensions are exposed to
the user-space through system calls. ChronOS adds a set of new system calls to Linux that
are used to enable the DT and scheduling extensions. At the user-space level, a middleware
API abstraction layer is provided that maps the system calls to the user-space. ChronOS
provides the application developer the freedom to write real-time applications directly using
the middleware APIs without using any of the Distributed Thread services or to create a
distributed applications using DTs without using any of the real-time functionality.

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 39

5.2.1 PREEMPT RT Real-Time Patch

The stock Linux kernel provides soft real-time capabilities, such as the POSIX primitives
and the ability to set priorities. The kernel provides two real-time scheduling policies -
SCHED FIFO and SCHED RR and a “nice” based scheduling policy called SCHED NORMAL. In
SCHED FIFO processes are given CPU for as long as they want, until the arrival of a higher
priority task. This is primarily a POSIX-specified feature. SCHED RR, on the other hand,
schedules processes of the same priority in a round robin fashion. This is done while fa-
voring higher priority tasks. The ChronOS real-time scheduler uses the SCHED FIFO as the
underlying base scheduling algorithm and builds up the scheduling framework on that. The
scheduler is described in detail in the subsequent sections.

In order to bring in real-time semantics to the kernel, it is required to have a preemptable
kernel. The stock Linux kernel does not allow “complete” kernel preemption. However, in
order to implement scheduling algorithms such as G-EDF or G-GUA, it is necessary to be able
to preempt the kernel. To achieve this we use the PREEMPT RT patch. The patch enables
complete kernel preemption along with a generic clock event layer with high resolution
support, thus providing hard real-time capabilities in the Linux kernel.

With the PREEMPT RT patch most parts of the kernel, except for a few small regions (which
are inherently unpreemptible, such as the task scheduler), can be preempted. In order to
achieve complete preemption the following changes were made to the Linux kernel.

1. All the in-kernel locking primitives, such as spinlocks have been re-implemented us-
ing rtmutexes. As a result, all critical sections that are protected with spinlock t

or rwlock t are preemptable. However, the patch still enables the creation of non-
preemptable sections in the kernel, if that is required.

2. Priority Inheritance has been implemented for all in-kernel spinlocks and semaphores.

3. All interrupt handlers in the kernel have been converted into kernel threads. All the
soft interrupt handlers are treated in the kernel thread context (i.e., they have a struct
task struct associated) such that they can be treated as threads with higher priority
and scheduled accordingly. However, it is still possible to register an IRQ in the kernel
context.

4. The existing Linux timer APIs have been converted into separate infrastructure for
high resolution kernel timers, including those for timeouts, which enable the use of
user-space POSIX timers with high resolution.

Overall, the PREEMPT RT patch improves the interrupt latencies and provides a completely
preemptable kernel.

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 40

5.3 ChronOS Real-Time Scheduler

Since version 2.6, the Linux kernel features an 0(1) scheduler [57]. Every scheduling algo-
rithm provided in the default Linux kernel (SCHED NORMAL, SCHED FIFO, SCHED RR) completes
in constant-time, regardless of the number of processes in the system that are in the running
state. The O(1) scheduler also implements SMP scalability where each processor has its
own locking and individual run-queues. The scheduler also implements SMP affinity which
enables processes to be assigned to a specific CPU.

5.3.1 Priority Bit-map and Run-queues

Figure 5.2: Linux real-time priority bitmap and run-queues

In order to achieve an O(1) scheduler, Linux implements a bit-map for each priority. There
are 140 priority levels. [0 . . . 99] are referred to as real-time priorities while [100 . . . 140] are
called “nice” priorities. In the kernel-space, “0” is the highest real-time priority while “99”
is the least (which is opposite to that in the user-space). Figure 5.2 shows the section of the
priority bit-map which maps to the real-time priorities inside the kernel. As shown in the
figure, each priority has a run-queue of active tasks on the system. The default scheduling
algorithm used in Linux is SCHED NORMAL in which the amount of CPU that each process
consumes, and the latency that it will get, is determined by the “nice” values, which are
calculated by the kernel over time in an interactive fashion looking at the consumption
patterns of processes in the system. The kernel starts from the highest priority bit in the
bit-map, looks for tasks at that priority level and executes them before going to the next
level. The key idea is to give preference to higher priority tasks.

The ChronOS scheduler extends the Linux O(1) scheduler. However, to differentiate between
normal tasks and real-time tasks created by the ChronOS middle-ware, we add additional
parameters to the struct task struct to specify the real-time properties of a task, such

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 41

as the task’s worst case execution cost, deadline, period and TUFs. The ChronOS real-time
tasks are tagged so that they stand out in the run-queue. In order to facilitate working on
the real-time tasks, for every priority level in the bit-map we create another queue called
the ChronOS real-time run-queue (CRT-RQ) which holds a reference to the real-time tasks in
the Linux run-queue. This is illustrated in Fig 5.3. As shown in the figure, the tasks in the
CRT-RQ are references of the real-time tasks in the default Linux run-queue.

Figure 5.3: ChronOS real-time priority run-queue for a given real-time priority

The working of the CRT-RQ is similar to the Linux run-queue. When a task enters the system,
it is added to the run-queue corresponding to its priority. If the new task is tagged as a
ChronOS real-time task, a reference to the task is also added in the CRT-RQ for the specific
priority level. When the ChronOS scheduler is enabled, it looks at the CRT-RQ, orders the
run-queue based on the scheduling algorithm selected, and picks up the first task at the head
of CRT-RQ. When the ChronOS scheduler picks up a real-time task, it is removed from both
the default Linux run-queue and the CRT-RQ.

5.3.2 Scheduling Real-Time Tasks

A real-time application in ChronOS needs to specify the start and end of a real-time segment.
A real-time segment is defined as a portion of the thread, which needs to be executed with
real-time time constraints. This can be done using the following system calls provided by
ChronOS. The detailed description of the system calls is provided in Appendix A.

begin rt seg()

This system call is used to indicate the start of a real-time scheduling segment and
also to provide the real-time timing constraints for a given task.

end rt seg()

This system call is used to indicate the end of a real-time scheduling segment.

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 42

set scheduler()

This system call is used to enable a scheduling algorithm.

The real-time scheduler is invoked at various scheduling events. A scheduling event is defined
as a trigger that forces the system into a scheduling cycle resulting in a call to the scheduler
where a new task is picked based on the scheduling algorithms. In ChronOS we define the
following scheduling events.

A task entering the system
When a new task is added to the system, the scheduler is invoked. At that time, the
scheduling algorithm looks at the CRT-RQ, orders the queue and picks the task at the
head of the queue for scheduling.

A task leaving the system
When a task finishes its scheduling segment and leaves the system, the scheduler is
invoked. The scheduling algorithm looks at the CRT-RQ, orders the queues and picks
the task at the head of the queue for scheduling.

A resource being requested
When a task requests for a resource, ChronOS tags the task as RESOURCE REQUESTED

and invokes the scheduler. This is done to let the scheduling algorithm look at the
dependency chain based on the resource requested and pick the task that is best suited
for execution.

A resource being released
When a task releases a resource, ChronOS invokes the scheduler in order to allow a
new task to be picked which might be blocking on the resource that was just released.
The decision to choose the new task is done by the scheduling algorithm.

Using the set scheduler() system call, a scheduling algorithm can be selected. All schedul-
ing algorithms are created as Linux modules in ChronOS which provides the flexibility to
add or remove any scheduling algorithm from a running kernel without restarting the system.
The scheduling algorithms are implemented in a modular fashion using a set of functions
that we refer to as the “scheduler plugin”. Once a scheduler is selected for a set of proces-
sors, all the real-time tasks that are added to the system on those processors are scheduled
using the the selected scheduling algorithm. The scheduler plugin is described in detail in
the subsequent section.

Figure 5.4 illustrates an example of scheduling on a single processor machine. As the schedul-
ing algorithms are written as modules in ChronOS, they can be loaded into a running kernel
using modprobe, which registers the scheduling algorithms, adding them to the list of avail-
able schedulers in ChronOS. In Figure 5.4, the call to set scheduler() system call is made
from the real-time application to select EDF as the real-time scheduler. ChronOS checks if

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 43

Figure 5.4: ChronOS scheduling approach on a single-processor system

EDF kernel module is available. If the scheduler is found, ChronOS loads the plugin and
makes it the default ChronOS local scheduler for running real-time tasks. All the real-time
tasks are now added to the CRT-RQ. At every scheduling event, the ChronOS scheduler in-
vokes sched edf(), which sorts the CRT-RQ in Earliest Deadline First order. The head of
the queue now represents the earliest deadline task which is pulled by the ChronOS local
scheduler and given to the Linux O(1) scheduler for execution.

5.4 Multiprocessor Scheduling

Scheduling on multiprocessors can be mainly categorized into two forms – partitioned schedul-
ing and global scheduling. ChronOS supports both these variants. In this section we describe
the details of both these architectures, and discuss their design and implementation.

5.4.1 Partitioned Scheduling

Partitioned scheduling can be described as uniprocessor scheduling done on multiprocessors.
The key idea of partitioned scheduling is to divide the task-set using an off-line heuristic,
as partitioning a set of tasks on M processors has been shown to be equivalent to the
bin-packing problem [46] and hence NP-hard in the strong sense. Baruah et al. present
a polynomial-time algorithm to partition collection of sporadic tasks onto a M processors
in [8].

Figure 5.5 illustrates the partitioned scheduling approach used in ChronOS. The task-set is
partitioned off-line using polynomial-time heuristics such as first-fit, worst-fit, and best-fit.
In Figure 5.5 we simulate a two processor system. The heuristic divides the task-set into
two processor bins as shown. Once all the tasks have been divided, the real-time application
sets the affinity of each of the tasks to the processors they have been assigned to. This is
done to ensure that the tasks are added to the run-queue of their respective assigned proces-

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 44

Figure 5.5: ChronOS partitioned scheduling approach on a multiprocessor system

sors. The reference to these real-time tasks is also added to the CRT-RQ of their respective
assigned processors. As partitioned scheduling is an extension of uniprocessor scheduling,
we set the partitioned scheduler as the local ChronOS scheduler on all processors using the
set scheduler() system call. Each processor runs its scheduling algorithm independently.
At every scheduling event, the processor enters its local scheduler, looks at the local run-
queue, and using the selected scheduling algorithm (in the figure shown as P-EDF), picks the
next task to be executed. As the tasks have already been partitioned, we disable Linux’s
load balancing mechanism to prevent tasks from being migrated between processors. Some
of the algorithms that have been implemented using this approach in ChronOS are P-EDF

and P-DASA.

5.4.2 Global Scheduling

Most of the multiprocessor scheduling algorithms, such as G-EDF, G-NP-EDF, Pfair, gMUA,
G-GUA, and NG-GUA are based on global scheduling. The main idea behind global schedul-
ing is that the tasks are assigned to a global queue instead of individual local queues. The
scheduling algorithm on each processor looks at the global queue and either makes a schedul-
ing decision for itself and every other processor in the system (such as G-EDF, Pfair, G-GUA,
NG-GUA) or picks a task only for itself (such as G-NP-EDF).

Figure 5.6 illustrates the global scheduling approach used in ChronOS. In order to implement
global scheduling inside ChronOS, we create another level of scheduling abstraction. At

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 45

Figure 5.6: ChronOS global scheduling approach on a multiprocessor system

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 46

the top we have the “global scheduler” which looks at the “global task queue”. The global
scheduler maps to a “local scheduler” on individual processors which extends from the Linux
O(1) scheduler. The global scheduler (invoked on a processor) can either pick a task for itself
or decide for all the processors on the system (depending on the scheduling policy used). If
the global scheduler needs to choose tasks for all available processors on the system (such
as G-EDF, G-GUA or NG-GUA), it picks the top M tasks. These tasks are given to the task
mapping algorithm which maps these tasks on M underlying processors. The tasks assigned
by the task mapping algorithm are pushed into the “globally assigned task” block from where
the “task puller” on each CPU picks up the task and moves it to the head of its local queue.
The default local scheduling algorithm for global scheduling algorithms on each processor is
SCHED FIFO, which picks the head of the CRT-RQ queue and gives the task to the Linux O(1)

scheduler for execution.

In global scheduling under ChronOS, tasks can be created and assigned to any processor.
The tasks continue to reside on the Linux run-queue of the processor they were created on.
The global queue has a reference to all the real-time tasks from all the processors.

As mentioned earlier, there are two ways in which global scheduling can be achieved. In
the first approach, the global scheduler picks a task for itself from the global queue, such as
G-NP-EDF. We refer to this as the “Application Concurrent Scheduling Model”. In the second
approach, the global scheduler picks the tasks for all M available processors, such as Pfair,
NG-GUA, G-GUA. We refer to this as the “Stop-the-World Scheduling Model” (STW). These
architecture models are described in detail in Sections 5.4.2.1 and 5.4.2.2, respectively.

5.4.2.1 Application Concurrent Scheduling Model

Figure 5.7 illustrates the application concurrent scheduling model for global scheduling in
ChronOS. For the sake of explanation of the model, we will assume that the scheduling
algorithm picks the first task that is at the head of the queue. At the beginning, task T6

is running on processor P0 and task T8 is running on processor P1. As shown in the figure,
T8 finishes before T6. However, T6 is not preempted on P0. It continues to run. After T8

finishes, it generates a scheduling event. P1 enters the global scheduler, picks the first task
T3 from the global queue and assigns it to the “globally assigned task” block. The local
scheduler on P1 pulls the task T3 and starts executing it. While P1 is pulling the task, T6

finishes on processor P0 and generates a scheduling event. It pulls T1 from the global queue
and starts executing it without preempting T3 on P1. The same procedure is repeated for
other scheduling events.

There might be a scenario when both processors finish their tasks at the same time. As shown
in the Figure 5.7, when T2 finishes on P0, T4 finishes on P1 around the same time. As the
global task queue is common between all the processors, while P0 enters the global scheduler,
P1 blocks. The moment P0 is done with the schedule, P1 unblocks and enters the scheduler.
The G-NP-EDF and G-FIFO are some of the algorithms that use such an architecture model.

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 47

Figure 5.7: “Application Concurrent” architecture model for global scheduling algorithms

The downside of the application concurrent model is that it can only be used by scheduling
algorithms that do not have resource dependencies (such as locks). This is because when
resources are used, we need to look into more complicated scheduling mechanisms to figure
out the best task to be executed that respects resource boundaries.

5.4.2.2 Stop-the-World Scheduling Model

In order to allow global scheduling algorithms with resource management, ChronOS imple-
ments the Stop-the-World scheduling model. Figure 5.8 provides an illustration of the model.
For the sake of explanation of the model we will assume that the scheduling algorithm se-
lects the tasks for execution that are not dependent on any other tasks in the system. Let
us assume that the global task queue has the tasks eligible for the final schedule. The figure
shows the dependency relation of the tasks in the global task queue with each other. Task
T4 needs a resource which is owned by task T2 which in turn requires a resource that is

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 48

Figure 5.8: “Stop-the-World” architecture model for global scheduling algorithms

being held by task T1. In a similar fashion, task T6 needs a resource which is owned by task
T5. Task T3, on the other hand, does not have any dependents. Let us assume that the
scheduling algorithm considers the tasks that have the maximum dependents as the most
eligible tasks for the final schedule.

Given all the assumptions, Figure 5.8 shows that tasks T1 and T5 are the current executing
tasks on processors P0 and P1, respectively. Task T5 finishes first and generates a scheduling
event. In the Stop-the-World model, once a scheduling event is generated, the schedule needs
to be created for all the processors. This requires a processor to be able to force a scheduling
event on all other processors. When task T5 triggers the scheduling event, processor P1 sends
an “Inter-processor Interrupt” (IPI) to all the processors on the system. In Linux, at the
end of every interrupt handler, the call to the scheduler is made. This is done in order to
pick up the next task for execution after the interrupt has been handled. The IPI used by
the scheduler is a dummy interrupt. The interrupt handler for the scheduling IPI does not
do anything but call the schedule() function at the end, which forces the processor to enter
the scheduler.

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 49

In the example shown in Figure 5.8, processor P1 sends an IPI to all the available processors
on the system. After sending the IPI, processor P1 enters its global scheduler and looks at
the available tasks in the run-queue to create the schedule. In the meanwhile, processor P0

receives the IPI and is forced into the scheduler. However, as processor P1 is already in the
global scheduler, processor P0 blocks. The global scheduler on processor P1 picks two eligible
tasks (assuming a two-processor system) and hands these tasks to the mapping algorithm.
The task mapper pushes these tasks into the “globally assigned task” block of each processor.
Once the mapper is done, each individual processor pulls its globally assigned task to the
head of their local queue. The local scheduler (which is SCHED FIFO) on each processor,
picks the task at the head of the local queue and gives it to the Linux O(1) scheduler for
execution.

Even if the tasks do not have a dependency relationship, the Stop-the-World model works the
same way as mentioned above. The scheduling algorithm looks at the global queue and picks
the M tasks that are eligible for final schedule and hands them to the mapping algorithm,
which is explained in detail in the next section.

5.4.3 Mapping Tasks to Processors

Figure 5.9 illustrates the default mapping algorithm used in ChronOS for global scheduling.
The job of the mapping algorithm is to take theM most eligible tasks that have been selected
by the scheduling algorithm and map them to the M available processors on the system.
The key idea is to be able to reduce task migrations, thus preserving cache coherence. The
algorithm shown in Figure 5.9 is selected as the default for all global scheduling algorithms.
However, the scheduler plugin infrastructure of ChronOS allows users to override the default
mapping algorithm and provide their own implementation.

In ChronOS the mapping is done using a three-pass algorithm. In Figure 5.9 tasks RT5, RT8,
RT1 and RT4 represent four real-time tasks that have been selected by the global scheduling
algorithm at the end of a scheduling event. In order to understand the mapping algorithm
we give a snapshot of the per-processor run-queues. Each run-queue shows the tasks that
belong to the individual processors. We also highlight the current running task on each of
the processors before the scheduling event was triggered, which led to the creation of the
new global schedule. Task RT2 is the current running task on processor P0, task RT5 on P1,
task RT9 on P3 while task RT7 is the current running task on P3.

In the first pass, the algorithm goes over the final schedule and maps tasks to processors
that are the current running tasks on that processor. This provides cache coherence. As
shown in Figure 5.9, task RT5 is the current running task on P1. Hence, it is mapped to
processor P1. In the second pass, the algorithm goes over the final schedule and maps tasks
to processors that belong to that processor’s run-queue. This prevents tasks from being
unnecessarily migrated. As shown in the figure, task RT4 belongs to processor P0 and hence
it is mapped to processor P0. In the similar fashion, task RT8 belongs to processor P2 and

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 50

Figure 5.9: Task mapping for global scheduling algorithms in ChronOS

it gets mapped to the same processor. In the last pass, the mapping algorithm randomly
assigns the leftover tasks to the remaining processor(s). As shown in the figure, task RT1 is
assigned to processor P3. However, task RT1 actually belongs to processor P0. As a result,
this step results in the migration of the mapped tasks.

The key idea of the mapping algorithm is to reduce task migrations. However, if the final
schedule consists of M tasks that all belong to the same processor, the worst case migration
cost is M − 1 task migrations. In such a case, cache-aware scheduling algorithms can be
used to create a cache conscious schedule, and thus handle their own mapping, overriding
the default mapping algorithm. Guan et al. [38] and Calandrino et al. [17] present different
cache-aware real-time scheduling algorithms. Stenstrm provides a survey of various cache
coherence schemes on multiprocessors in [64].

5.5 Implementing Scheduling Algorithms in ChronOS

5.5.1 Single-processor Scheduling

1 struct r t s c h e d l o c a l
2 {
3 char ∗name ;
4 int number ;

Piyush Garyali Chapter 5. ChronOS Real-Time Linux 51

5 struct r t i n f o ∗ (∗ schedu le) (struct l i s t h e a d ∗head , int f l a g s) ;
6 } ;

Listing 5.1: ChronOS Single-processor Scheduler Plugin

The code listing 5.1 shows the ChronOS plugin for single-processor scheduling. When im-
plementing a new scheduler, the user needs to specify a name and a unique number for
the scheduler. The *schedule function pointer provides the function syntax for the main
scheduling function where the algorithmic logic for the scheduler needs to be implemented.
The function provides the head pointer to the CRT-RQ which has the list of all the real-time
tasks released and eligible for schedule.

5.5.2 Multiprocessor Scheduling

1 struct r t s c h e d g l o b a l
2 {
3 char ∗name ;
4 int number ;
5 struct r t i n f o ∗ (∗ schedu le) (struct l i s t h e a d ∗head , int f l a g s , int cpus) ;
6 struct r t i n f o ∗ (∗ pre schedu l e) (struct l i s t h e a d ∗head , int f l a g s) ;
7 struct r t s ch ed a r ch ∗ arch ;
8 } ;

Listing 5.2: ChronOS Multiprocessor Scheduler Plugin

The code listing 5.2 shows the ChronOS plugin for multiprocessor scheduling. When im-
plementing a new scheduler, the user needs to specify a name and a unique number for
the scheduler. The *schedule function pointer provides the function syntax for the main
scheduling function where the algorithmic logic for the scheduler needs to be implemented.
The function provides the head pointer to the global real-time queue which has the list of
all the real-time tasks released across the system and eligible for schedule. The function also
provides the number of processors on which multiprocessor scheduling has been enabled.
The *preschedule function pointer provides the function syntax for pre-scheduling. This
is an architecture feature provided by ChronOS for scheduling algorithms that need to do
some preprocessing before entering the main scheduler (such as checking if the tasks have
missed their deadlines and in such a case aborting them).

Appendix C shows a sample implementation of the kernel modules for single-processor and
multi-processor scheduling.

Chapter 6

Experimental Results

In order to evaluate the performance of NG-GUA and G-GUA, we implement the scheduling
algorithms in ChronOS along with their state-of-the-art competitors, such as G-EDF, G-
NP-EDF, G-FIFO, gMUA, P-EDF, P-DASA. We conduct experiments and evaluate the
results on a two-core, four-core and an eight-core platform. In this section, we discuss the
experimental setup in detail and present the result and the analysis.

6.1 Experimental Setup

6.1.1 Platform Specifications

We conduct our experiments on three different platforms, each with an increasing number
of processing units. Table 6.1 gives the detailed specifications of each platform used.

The first platform is based on the Intel dual-core P8600 processor with a CPU frequency
of 2.4 GHz and a 3 MB L2 cache. The second platform is a quad-core machine based on
AMD Phenom 9650 processor with a CPU frequency of 2.3 GHz and a 2 MB L3 cache.
Finally, we use an eight-core platform using two Intel Xeon E5520 quad-core processors,
each having a CPU frequency of 2.8 GHz and an 8 MB L3 cache. These platforms provide a
rich environment with different processing speeds and cache footprints, thus allowing us to
verify the viability of multiprocessor scheduling algorithms under different platforms.

6.1.2 Test Application

The NG-GUA and G-GUA algorithms are flexible about the task arrival pattern. We do not
assume any specific model (such as periodic, aperiodic, sporadic). Tasks can arrive at any
time in the system and create scheduling events. However, in order to evaluate our algorithms

52

Piyush Garyali Chapter 6. Experimental Results 53

Table 6.1: Specifications of the various platforms used for experimental evaluation

Specifications Two-core Four-core Eight-core
Processor Type Intel Core 2

Duo P8600
AMD quad-core
Phenom 9650

Intel quad-core Xeon E5520

No of processors 1 1 2
Total physical

cores
2 4 8

Total logical
cores

2 4 16

CPU Frequency 2.4 GHz 2.3 GHz 2.8 GHz
Memory 2 GB 2 GB 8 GB
Cache 3 MB L2 128 KB L1, 512

KB L2, 2 MB L3
4x256 KB L2, 8 MB L3

against the other state-of-the-art algorithms, which specify a particular task arrival pattern,
we default to a periodic model. This helps to easily quantify the schedulability criteria of
the algorithms and allows us to compare the performance with other scheduling algorithms.

We create a real-time test application using ChronOS APIs. The test application periodically
fires real-time tasks with specified time-constraints. For each task, we use a burn cpu(wcet)

function, which takes the wcet (worst case execution time) as an input and burns processor
cycles for that amount of time. This allows us to simulate a real-time task which executes
until its worst case execution time. In our test application we use the “thread-is-a-phase”
model, where each periodic instance of the task is represented as a separate thread. Using
the task’s period as the relative deadline, we fire threads periodically.

6.1.3 Performance Parameters

We measure the Deadline Satisfaction Ratio (DSR) and the Accrued Utility Ratio(AUR).
Equations 6.1 and 6.2 give the formulas for finding the DSR and AUR.

DSRU =
Tasks that met their deadlines at utilization load U

Total tasks in the system
(6.1)

AURU =
Accrued utility of tasks that met their deadlines at utilization load U

Total possible accrued utility
(6.2)

At a given utilization load U , the DSR is measured as the ratio of the tasks that met their
deadlines to the total number of tasks in the system. In the similar fashion, the AUR is

Piyush Garyali Chapter 6. Experimental Results 54

measured as the total accrued utility of the tasks that met their deadlines to the total possible
accrued utility in the system.

We create various task-sets using a random task-set generator. We discuss the task-sets used
in detail in the individual sections. All the results are presented as an average of ten runs.
We also present the standard deviation variation for each data point. Our focus is primarily
on two types of experiments — (1) we evaluate the performance of NG-GUA and G-GUA
without dependencies (locks), whose results are discussed in Section 6.2; and (2) we evaluate
the performance of the algorithms in the presence of dependencies (locks), whose results are
discussed in Section 6.3.

6.2 Results Without Dependencies

In this section we evaluate the performance of NG-GUA and G-GUA without dependencies
(such as locks). We compare the results with other state-of-the-art global scheduling algo-
rithms, such as G-EDF, G-NP-EDF and G-FIFO. As mentioned earlier, gMUA is a special
case of NG-GUA without dependencies. As a result, for the non-dependent case, the imple-
mentation of gMUA in ChronOS is similar to NG-GUA (as we skip the function to create
the DAG and treat all the tasks as zero in-degree). Hence, for the non-dependent case, the
results for gMUA are similar to NG-GUA. In order to avoid confusion, we do not show the
gMUA results on the plots but it is considered in the final summary. We also compare the
results of our algorithms with partitioned algorithms, such as P-EDF and P-DASA.

6.2.1 Comparison with Global Scheduling Algorithms

In order to compare with global scheduling algorithms, we consider downward “step” TUF
based model. We create random task-sets with three types of TUF assignment policies.
Figure 6.1 illustrates the model used.

Figure 6.1: Task-sets created with variable TUFs (a) Increasing Utility (IU); (b) Decreasing
Utility (DU); (c) Random Utility(RU)

In the Increasing Utility (IU) model, the utilities assigned to the tasks are proportional to
their deadlines. The task with the earliest deadline has the least utility while the task with

Piyush Garyali Chapter 6. Experimental Results 55

a later deadline has the highest utility. In the Decreasing Utility (DU) model, the utilities
assigned to a task are inversely proportional to their deadlines. The task with the earliest
deadline has the highest utility while the task with a later deadline has the least utility.
In the Random Utility (RU) model, the tasks are assigned random utilities with no two
tasks having the same utility. These models are used to accomplish two main goals — (i) to
ascertain whether, irrespective of the TUF ordering, our algorithms perform comparable to
the competitors; and (ii) to ensure that we do not create a bias based on the TUF assignment
against the deadline-based algorithms. Hence, the model covers the worst-case to the best-
case scenarios.

On the two-core and four-core platform, we consider three types of task-sets with an increas-
ing number of tasks.

1. The first task-set uses 5 tasks with deadlines/periods in the range of [500ms−5000ms],
with the utilization load for each task in the range of [0.1− 0.4].

2. The second task-set uses 12 tasks with deadlines/periods in the range of [300ms −
20000ms], with the utilization load for each task in the range of [0.01− 0.4].

3. The third task-set uses 27 tasks with deadlines/periods in the range of [50ms−7500ms],
with the utilization load for each task in the range of [0.01− 0.3].

On the eight-core platform, we consider two types of task-sets.

1. The first task-set uses 27 tasks with deadlines/periods in the range of [50ms−7500ms],
with the utilization load for each task in the range of [0.01− 0.3].

2. The second task-set uses 50 tasks with deadlines/periods in the range of [50ms −
10000ms], with the utilization load of each task in the range of [0.001− 0.3].

Using these task-sets we cover a total deadline/period range from [50ms−20s]. The tasks are
assigned utilities in the range of [50−10000]. In the IU model, the task with the least period
is assigned a utility of 50 and the task with the largest period is assigned a utility of 10000,
and vice-versa for the DU model. In the RU model, tasks are assigned utilities randomly.
As we are using a utility based model, we ensure that we cover a wide deadline/period range
in order to avoid any bias against deadline-based scheduling algorithms.

Table 6.2 shows the legend used in the experimental results. All the experimental result are
shown as an average of ten runs. The plots cover a utilization load in the range of [0 − 8]
for the two-core platform, [0− 10] for the four-core platform and [0− 12] for the eight-core
platform. Each data point shows the standard deviation as a vertical error bar.

In the subsequent sections we discuss the results on two-core, four-core and eight-core plat-
forms.

Piyush Garyali Chapter 6. Experimental Results 56

Table 6.2: Legend used in experimental results, based on TUF-based models, for comparison
with other global scheduling algorithms

Symbol Description
IU Increasing Utility model
DU Decreasing Utility model
RU Random Utility model
NL No locks used
xT Task-set used with x number of tasks
xC Experiment using x number of processors

6.2.1.1 Two-core Platform Results

On the two-core platform, we ran the experiments using the 5-task (5T), 12-task (12T) and
27-task (27T) task-sets using IU, RU and DU models. Figures 6.2 and 6.3, respectively, show
the AUR and DSR results for the 5T using the DU model. We observe that both NG-GUA
and G-GUA outperform other deadline-based algorithms.

We observe the following:

(1) G-EDF meets all deadlines for U ≤ 1(m/2), as m = 2 for a two-core platform, which is
the lower utilization bound for G-EDF. However, during overloads, G-EDF suffers from the
domino effect and starts losing deadlines.

(2) NG-GUA and G-GUA provide a better deadline satisfaction ratio during overloads. The
main benefit of the algorithms can be observed in Figure 6.2 for the accrued utility. At
250% utilization load we see an improvement of around 300% in AUR over that of G-EDF,
G-NP-EDF and G-FIFO. At 400% utilization load, there is an improvement of around 350%
in AUR.

(3) Finally, the task-set uses a DU model, which gives the highest utility to the tasks that
have the earliest periods/deadlines. We observe that NG-GUA and G-GUA perform better
in the DU model as compared to the deadline-based algorithms.

When compared with each other, we see that G-GUA performs better than NG-GUA, which
is an expected behavior. G-GUA is optimized to accrue more utility during overloads. On the
other hand, NG-GUA performs well during underloads by trying to meet as many deadlines
as possible, thus following a G-EDF behavior, but it accrues higher utility during overloads.

We observe some variability in the results (shown as the standard deviation). This amount of
variance is acceptable given the fact that it is impossible to have the same operating system
environment for every test execution. Due to the PREEMPT RT patch, ChronOS is able to
withstand jitter from non real-time based applications. However, there are critical operating

Piyush Garyali Chapter 6. Experimental Results 57

system primitives that have higher priority in ChronOS which are required for the proper
functioning of the operating system. These include (to name a few), the timer interrupts
and the I/O interrupts, which are used while our test application fires periodic threads using
timers and also when it writes the test results to a file after every data-point is captured.
This also explains why most of the variability is observed during the overload scenarios and
not during underloads. This is because during underloads, the total task utilization is still
below the processing capacity of the system1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 5T,2C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.2: AUR vs. CPU utilization (5T, 2C, NL, DU)

The results for the AUR and DSR using the IU model for 5T are shown in Figures 6.4 and 6.5,
respectively. We observe a performance improvement over the deadline-based scheduling
algorithms. Both NG-GUA and G-GUA consistently accrue high utility during overloads
with 700% improvement in AUR for 250% utilization load. NG-GUA performs better at
meeting deadlines during underloads and its performance is comparable to G-EDF. G-NP-
EDF falls behind G-EDF in meeting deadlines, which is an expected behavior [10]. In
Figure 6.4, we observe a constant utility from 450% to 800% utilization load for G-GUA.
This is primarily because of the smaller task-set used. The task-set has only five tasks;
during high overloads, G-GUA finds at least one task that is feasible. This highlights the
concept of importance over urgency. For a two-processor system, 450% utilization load is

1Unless stated otherwise, we will assume that the variability shown by the standard deviation in all plots
is due to the same reason, as mentioned above.

Piyush Garyali Chapter 6. Experimental Results 58

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 5T,2C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.3: DSR vs. CPU utilization (5T, 2C, NL, DU)

twice the normal load. We observe that none of the deadline-based scheduling algorithms
consider any task eligible to be scheduled. On the other hand, the UA based scheduling
algorithms find at least one “important” task to be scheduled that can accrue total system
utility.

Figures 6.6 and 6.7 show the AUR and DSR results, respectively, for the 5T task-set using
the RU model. In the RU model, tasks are assigned random utilities. We continue to observe
similar performance as seen in the earlier results for IU and DU.

In order to see the effect of increase in the number of tasks on the performance of NG-
GUA and G-GUA, we use the 12T and 27T task-sets on the two-core platform. Figures 6.8,
6.9, 6.10, 6.11, 6.12 and 6.13 show the DSR and AUR results for the DU, IU and RU models,
respectively, for the 12T task-set. The AUR results show that both NG-GUA and G-GUA
perform better during overloads even when the number of tasks in the system are increased
three-fold. Figure 6.8 shows the AUR result for the DU model. As the deadline-based
schedulers are only able to meet task deadlines for U ≈ m/2, there is a sharp plunge in the
number of deadlines met (as seen in Figure 6.9). As a result, the AUR falls down drastically.
This behavior is common among all the models under 12T.

We notice that the AUR results for G-GUA do not represent a constant line as was seen
with the 5T results. This happens because the number of tasks in the system have increased

Piyush Garyali Chapter 6. Experimental Results 59

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 5T,2C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.4: AUR vs. CPU utilization (5T, 2C, NL, IU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 5T,2C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.5: DSR vs. CPU utilization (5T, 2C, NL, IU)

Piyush Garyali Chapter 6. Experimental Results 60

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 5T,2C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.6: AUR vs. CPU utilization (5T, 2C, NL, RU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 5T,2C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.7: DSR vs. CPU utilization (5T, 2C, NL, RU)

Piyush Garyali Chapter 6. Experimental Results 61

and as a result G-GUA is able to schedule more high utility tasks. Also, the average AUR
accrued between 250% utilization load and 800% utilization load is around 85%, which is
higher than the average AUR accrued in the same range for the 5T task-set.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 12T,2C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.8: AUR vs. CPU utilization (12T, 2C, NL, DU)

We further increase the number of real-time tasks in the system and use the 27T task-set.
The results are shown in Figures 6.14, 6.15, 6.16, 6.17, 6.18, and 6.19.

Figures 6.18 and 6.19 show the AUR and DSR results, respectively, for the RU model using
a 27T task-set. With an increase in the number of tasks in the system, we do not see much
improvement in the performance of the deadline-based scheduling algorithms. Both G-EDF
and G-NP-EDF are able to meet all deadlines up until 200% (m = 2). During overloads,
the DSR of all the deadline-based algorithms is close to zero. For 250% utilization load
(m = 2.5), which represents a system with a light overloads, G-EDF meets around 5% of
task deadlines, while NG-GUA is able to meet around 95% task deadlines. The improvement
in AUR at 250% CPU utilization load is around 1800%. We notice that G-GUA performs
better than NG-GUA. This is an expected behavior. However, we observe that between
250% to 650%, NG-GUA performs lower than expected. As we are using a RU model, this
can be attributed to the way the utilities are assigned to the tasks. This is confirmed in
the IU and DU models for the same task-set. Figure 6.16 shows the AUR results for the
IU model using 27T task-set. We observe that the performance of NG-GUA is in sync with
G-GUA. The same is true for the DU model as shown in Figure 6.14.

Piyush Garyali Chapter 6. Experimental Results 62

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 12T,2C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.9: DSR vs. CPU utilization (12T, 2C, NL, DU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 12T,2C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.10: AUR vs. CPU utilization (12T, 2C, NL, IU)

Piyush Garyali Chapter 6. Experimental Results 63

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 12T,2C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.11: DSR vs. CPU utilization (12T, 2C, NL, IU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 12T,2C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.12: AUR vs. CPU utilization (12T, 2C, NL, RU)

Piyush Garyali Chapter 6. Experimental Results 64

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 12T,2C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.13: DSR vs. CPU utilization (12T, 2C, NL, RU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 27T,2C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.14: AUR vs. CPU utilization (27T, 2C, NL, DU)

Piyush Garyali Chapter 6. Experimental Results 65

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 27T,2C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.15: DSR vs. CPU utilization (27T, 2C, NL, DU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 27T,2C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.16: AUR vs. CPU utilization (27T, 2C, NL, IU)

Piyush Garyali Chapter 6. Experimental Results 66

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 27T,2C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.17: DSR vs. CPU utilization (27T, 2C, NL, IU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 27T,2C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.18: AUR vs. CPU utilization (27T, 2C, NL, RU)

Piyush Garyali Chapter 6. Experimental Results 67

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 27T,2C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.19: DSR vs. CPU utilization (27T, 2C, NL, RU)

6.2.1.2 Four-core Platform Results

In this section, we discuss the experimental results on the four-core platform. We use the
5T, 12T and 27T task-sets using all three models. Figures 6.20 and 6.21 show the AUR
and DSR results, respectively, for the DU model using the 5T task-set. Although, the total
accrued utility appears to be lower for this task-set on the four-core platform when compared
to the two-core results for the same task-set in Figure 6.2, the behavior can be explained.
The reason for this is the relationship between the number of cores and real-time tasks used.
There are 4 processors in the system and we are using a 5T task-set. This means that a
deadline-based scheduling algorithm is able to assign four out of the five tasks to processors
during underloads. However, during overloads, there is a much sharper decline in the DSR
(and as a result the AUR) because there are not many real-time tasks left in the system to
be executed when other tasks start missing deadlines. As a result, after 350% utilization
load, the DSR for the deadline-based scheduling algorithms is zero. NG-GUA and G-GUA,
on the other hand, are still able to find at least one task to execute.

At 400% utilization load, G-EDF, G-NP-EDF and G-FIFO meet zero deadlines. On the
other hand, NG-GUA is able to schedule at least one task, while G-GUA schedules two.
During underloads both G-GUA and NG-GUA try to meet deadlines and accrue as much
utility as possible. NG-GUA is able to meet all the deadlines till 350% and performs better

Piyush Garyali Chapter 6. Experimental Results 68

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 5T,4C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.20: AUR vs. CPU utilization (5T, 4C, NL, DU)

than G-GUA while the latter provides better utility accrual during overloads. Figures 6.20
and 6.21 provide a good example of utility based scheduling during overloads and we have
included the 5T results on the four-core platform for the same reason.

The DSR results for the IU and RU models for the 5T task-set are shown in Figures 6.23
and 6.25, respectively, while the AUR results for the IU and RU models for the 5T task-set
are shown in Figures 6.22 and 6.24, respectively. As the utility assignments in IU and RU
favor UA scheduling, we observe that for a similar DSR curve for IU and RU (when compared
with the DU model for 5T in Figure 6.21), the system accrues better utility. This is because
tasks with earlier deadlines are given smaller utilities in the IU model while the assignment of
utilities in RU is totally random. This explains that given a TUF ordering such as DU, NG-
GUA and G-GUA still outperforms other deadline-based scheduling algorithms. The average
AUR improvement of G-GUA between the DU and the IU model is around 250%. G-GUA
continues to perform better than NG-GUA in light overloads. In Figure 6.24, at 350%
utilization load, G-GUA performs 5% better than NG-GUA. However at 400% utilization
load, G-GUA performs 50% better than NG-GUA.

We now consider the behavior of our algorithm when the number of real-time tasks in the
system are increased. We use the 12T and 27T task-set with all three TUF assignment
models. Figure 6.26 and 6.27 show the AUR and DSR results for the DU model using the
12T task-set. Both G-GUA and NG-GUA perform better than the deadline-based schedulers.

Piyush Garyali Chapter 6. Experimental Results 69

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 5T,4C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.21: DSR vs. CPU utilization (5T, 4C, NL, DU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 5T,4C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.22: AUR vs. CPU utilization (5T, 4C, NL, IU)

Piyush Garyali Chapter 6. Experimental Results 70

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 5T,4C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.23: DSR vs. CPU utilization (5T, 4C, NL, IU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 5T,4C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.24: AUR vs. CPU utilization (5T, 4C, NL, RU)

Piyush Garyali Chapter 6. Experimental Results 71

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 5T,4C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.25: DSR vs. CPU utilization (5T, 4C, NL, RU)

In Figure 6.26, G-GUA is able to accrue 90% total utility up until 750% utilization load.
NG-GUA is able to accrue around 80% total utility up until 750% utilization load. G-EDF
and G-NP-EDF meet all deadlines and accrue 100% utility during underloads, but during
overloads the domino effect prevents them from both meeting deadlines and accruing utility.

We observe a consistent performance improvement using all models with the 12T task-set.
Figures 6.28 and 6.29 show the AUR and DSR results, respectively, for IU model using
the 12T task-set. Figures 6.30 and 6.31 show the AUR and DSR results, respectively, for
RU model using the 12T task-set. In the RU model, we observe that NG-GUA meets all
deadlines similar to G-EDF at 350%, while G-GUA is only able to meet 95% of deadlines.
However, G-GUA performs consistently better than NG-GUA from 400% utilization load
to 950% utilization load with an average improvement of around 15% in the total accrued
utility.

The performance with the 27T task-set is almost identical to the 12T results. Figures 6.32
and 6.33 show the AUR and DSR results, respectively, for the DU model using the 27T
task-set, while Figures 6.34 and 6.35 show the AUR anad DSR results, respectively, for the
IU model using the 27T task-set. G-GUA performs better than NG-GUA in the DU model
with an average improvement of 15% in AUR values. Figures 6.36 and 6.37 show the AUR
and DSR results, respectively, for the RU model for the 27T task-set. As the number of
tasks increase, we observe an average standard deviation of around 6-8%. This amount of

Piyush Garyali Chapter 6. Experimental Results 72

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 12T,4C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.26: AUR vs. CPU utilization (12T, 4C, NL, DU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 12T,4C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.27: DSR vs. CPU utilization (12T, 4C, NL, DU)

Piyush Garyali Chapter 6. Experimental Results 73

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 12T,4C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.28: AUR vs. CPU utilization (12T, 4C, NL, IU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 12T,4C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.29: DSR vs. CPU utilization (12T, 4C, NL, IU)

Piyush Garyali Chapter 6. Experimental Results 74

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 12T,4C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.30: AUR vs. CPU utilization (12T, 4C, NL, RU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 12T,4C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.31: DSR vs. CPU utilization (12T, 4C, NL, RU)

Piyush Garyali Chapter 6. Experimental Results 75

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 27T,4C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.32: AUR vs. CPU utilization (27T, 4C, NL, DU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 27T,4C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.33: DSR vs. CPU utilization (27T, 4C, NL, DU)

Piyush Garyali Chapter 6. Experimental Results 76

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 27T,4C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.34: AUR vs. CPU utilization (27T, 4C, NL, IU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 27T,4C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.35: DSR vs. CPU utilization (27T, 4C, NL, IU)

Piyush Garyali Chapter 6. Experimental Results 77

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 27T,4C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.36: AUR vs. CPU utilization (27T, 4C, NL, RU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 27T,4C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.37: DSR vs. CPU utilization (27T, 4C, NL, RU)

Piyush Garyali Chapter 6. Experimental Results 78

variance is acceptable given the fact that it is impossible to have the same operating system
environment for every test execution. Due to the PREEMPT RT patch, ChronOS is able to
withstand jitter from non real-time based applications. However, as mentioned earlier, there
are critical operating system primitives that have higher priority in ChronOS which are
required for the proper functioning of the operating system, such as the timer interrupts and
the I/O interrupts.

6.2.1.3 Eight-core Platform Results

In order to establish the performance of both NG-GUA and G-GUA, we move to a higher
platform. The eight-core platform uses two Intel Xeon E5520 quad-core processors which
have four physical cores, thus supporting four hardware threads. The processors provide
Hyper-Threading (HT) using which we can simulate eight logical processors. However,
ChronOS does not support HT. As a result, we need to disable HT and use two Intel Xeon
E5520 quad-core processors to create an eight-core platform with eight hardware threads.

With the increase in the number of processors, we avoid using the 5T and 12T task-sets,
as the number of tasks in these task-sets do not scale up to the number of processors used.
Instead, we use the 27T and 50T task-sets. Using a 50T task-set allows us to ascertain if
our scheduling algorithms incur any scalability issues and also provides a better perspective
to the experimental results on the eight-core platform.

Figures 6.38 and 6.39 show the AUR and DSR results, respectively, with the DU model
using the 27T task-set. As we are using an eight-core platform, we observe that G-EDF
is able to meet all deadlines up until 780% utilization load while G-NP-EDF is able to
meet all deadlines up until 750% utilization load. These results are as expected and meet
the schedulability tests for both these algorithms [10]. G-FIFO, on the other hand, starts
missing deadlines at 400% utilization load and at full system load (800%), it has already
degraded to around 10% deadline satisfaction ratio.

During overloads, both G-NP-EDF and G-EDF start missing deadlines rapidly and reach
to a 20% deadline satisfaction ratio during the light overload of 900% utilization load. G-
FIFO, on the other hand, does not meet any deadlines during overloads. When compared
to the deadline-based algorithms, G-GUA and NG-GUA not only provide a better deadline
satisfaction ratio, but also accrue greater utility in the system. In Figure 6.38, we observe
that G-GUA at the CPU utilization load of 900% provides around 99% accrued utility. This
measures to an overall improvement of around 400% in total accrued utility. However, at
1200% CPU utilization load, G-GUA provides a 95% accrued utility, which measures to an
overall improvement of around 1800% in total accrued utility. NG-GUA performs better
than the deadline-based algorithms. However, G-GUA outperforms NG-GUA, as expected,
by an average of 5-10% across 800-1200% CPU utilization load.

In Figures 6.40 and 6.41 we show the AUR and DSR results, respectively, for IU model using

Piyush Garyali Chapter 6. Experimental Results 79

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 27T,8C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.38: AUR vs. CPU utilization (27T, 8C, NL, DU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 27T,8C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.39: DSR vs. CPU utilization (27T, 8C, NL, DU)

Piyush Garyali Chapter 6. Experimental Results 80

the 27T task-set. The results are similar to the DU model. However, we observe that NG-
GUA is able to meet all deadlines during underloads and defaults to the G-EDF behavior.
In Figures 6.42 and 6.43 we show the AUR and DSR results, respectively, for the RU model
using 27T task-set. The standard deviation of the results on eight-core are in the range of
0.01− 0.03, which show that the results are consistent across multiple runs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 27T,8C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.40: AUR vs. CPU utilization (27T, 8C, NL, IU)

We now consider the effect of increasing the number of tasks. We use the 50T task-set with
all the three models. Figures 6.44, 6.46 and 6.48 show the AUR results for DU, IU and RU
models, respectively, using 50T task-set while, Figures 6.45, 6.47 and 6.49 show the DSR
results for DU, IU and RU models, respectively, using the 50T task-set.

We observe that the performance of NG-GUA and G-GUA is consistent with the DU model
results of 27T task-set shown in Figure 6.38. However, with the increase in the number of
tasks, there is a slight drop in the total accrued utility at certain CPU utilization loads. In
Figure 6.48 at 900% CPU utilization load, we observe an accrued utility of 94%. At the
same load on the 27T task-set, we observe an accrued utility of around 99%, which is a drop
of around 5%. However at 1200% CPU utilization load, we observe an accrued utility of
85% with the 27T task-set and around 83% with the 50T task-set, which is a drop of around
3%. We cover this is detail in Section 6.4, where we present the scheduling overheads for
NG-GUA and G-GUA as a function of increased number of tasks and CPU utilization load.

Overall, we observe that the performance of both NG-GUA and G-GUA outperforms that

Piyush Garyali Chapter 6. Experimental Results 81

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 27T,8C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.41: DSR vs. CPU utilization (27T, 8C, NL, IU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 27T,8C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.42: AUR vs. CPU utilization (27T, 8C, NL RU)

Piyush Garyali Chapter 6. Experimental Results 82

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 27T,8C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.43: DSR vs. CPU utilization (27T, 8C, NL, RU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 50T,8C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.44: AUR vs. CPU utilization (50T, 8C, NL, DU)

Piyush Garyali Chapter 6. Experimental Results 83

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 50T,8C,NL,DU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.45: DSR vs. CPU utilization (50T, 8C, NL, DU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 50T,8C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.46: AUR vs. CPU utilization (50T, 8C, NL, IU)

Piyush Garyali Chapter 6. Experimental Results 84

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 50T,8C,NL,IU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.47: DSR vs. CPU utilization (50T, 8C, NL, IU)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 50T,8C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.48: AUR vs. CPU utilization (50T, 8C, NL, RU)

Piyush Garyali Chapter 6. Experimental Results 85

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 50T,8C,NL,RU

G-GUA NG-GUA G-EDF G-NP-EDF G-FIFO

Figure 6.49: DSR vs. CPU utilization (50T, 8C, NL, RU)

of the deadline-based scheduling algorithms, such as G-EDF and G-NP-EDF. Between the
two UA scheduling algorithms, NG-GUA provides a better deadline satisfaction ratio than
G-GUA during underloads. This is due to the fact that NG-GUA defaults to a G-EDF-
like behavior. However during overloads, NG-GUA accrues better utility than G-EDF. As
gMUA defaults to NG-GUA for the non-dependent case, its performance is similar to NG-
GUA. G-GUA, on the other hand, outperforms NG-GUA (and gMUA) in accrued utility
during overloads and provides an average improvement of about 15% over NG-GUA/gMUA
across CPU utilizations.

6.2.2 Comparison with Partitioned Scheduling Algorithms

In this section we compare NG-GUA and G-GUA with partitioned scheduling algorithms.
We consider the two state-of-the-art competitors P-EDF and P-DASA. The partitioned
scheduling algorithms work differently than the global scheduling algorithms. While global
scheduling algorithms provide an on-line scheduler where a single ready queue is maintained
for all the real-time tasks across processors; partitioned scheduling algorithms, on the other
hand, use an off-line bin-packing heuristic to divide the tasks into processor bins. The tasks
are then assigned to the processors, where each processor runs the single processor variant
of the algorithm and schedules only the tasks that have been assigned to it. As a result,

Piyush Garyali Chapter 6. Experimental Results 86

partitioned schedulers may or may-not incur less overheads than their global variants.

We compare NG-GUA and G-GUA with P-EDF and P-DASA to find if, even with global
scheduling overheads, our algorithms compare in performance with the partitioned algo-
rithms. P-EDF runs EDF on each of the processors. EDF uses the real-time tasks that have
been assigned to it using the off-line partitioning heuristic. As EDF, on a single processor,
is optimal for U ≤ 1, P-EDF tries to mimic EDF behavior to meet as many deadlines as
possible. However, during overloads, P-EDF starts missing deadlines rapidly. In a similar
fashion, P-DASA runs the UA scheduling algorithm DASA on each of the processors, wherein
DASA tries to accrue greater overall utility on each of the processors.

In order to partition the tasks on to the processors, we implement Baruah’s first-fit par-
titioning algorithm [9] to divide the task-sets off-line into processor bins. The algorithm
uses the EDF schedulability criteria and assigns tasks to processors such that the resultant
task-set is feasible on that processor. Once the partitioned task-sets are created, they are
set a processor affinity.

We perform the comparisons on a four-core platform and consider two types of task-sets
with an increasing number of tasks.

1. The first task-set uses 12 tasks with deadlines/periods in the range of [300ms −
20000ms] and the utilization load for each task in the range of [0.01− 0.4].

2. The second task-set uses 27 tasks with deadlines/periods in the range of [50ms −
7500ms] and the utilization load for each task in the range of [0.01− 0.3].

The task-sets do not use any locks. We assign random utilities to the tasks in the range of
[100 − 5000]. The task-set is used “as-is” with the global scheduling algorithms (NG-GUA
and G-GUA), while it is partitioned using Baruah’s first-fit algorithm for the partitioned
scheduling algorithms. Table 6.3 shows the legend used in the experimental results.

Table 6.3: Legend used in experimental results for comparison with other partitioned schedul-
ing algorithms

Symbol Description
RU Random Utility
NL No locks used
BF Baruah’s first-fit partition [9]
xC Experiment using x number of processors
xT Experiment using x number of tasks

Figures 6.50 and 6.51 show the AUR and DSR results, respectively, for the RU model using
a partitioned 12T task-set for partitioned algorithms and the “as-is” 12T task-set for global

Piyush Garyali Chapter 6. Experimental Results 87

scheduling algorithms. From Figure 6.51, we observe that P-EDF is able to meet all deadlines
till 375% utilization load. As we are using a four-core platform, the result is in accordance
with the schedulability criteria of P-EDF [2]. However, during overloads, P-EDF starts
missing deadlines and by 550% utilization load, we observe that P-EDF meets only around
5% deadlines. This is primarily due to the domino effect of EDF based algorithms during
overloads.

P-DASA, on the other hand, does not meet all its deadlines during underloads, as ex-
pected [31]. DASA is a utility accrual scheduling algorithm that does not default to EDF
during underloads. As a result, we observe that P-DASA starts missing deadlines at around
300% utilization load. On the other hand, P-DASA performs better than P-EDF during over-
loads and it not only meets more deadlines that P-EDF, but also provides better accrued
utility.

However, when compared with NG-GUA and G-GUA, the total accrued utility of P-DASA
is lower. At 400% utilization load, P-DASA provide a total accrued utility of around 70%,
while both NG-GUA and G-GUA provide a 100% accrued utility, which is a performance
improvement of around 40%. For higher utilization loads, both NG-GUA and G-GUA accrue
higher utilities with G-GUA outperforming every other scheduler. At 700% utilization load,
G-GUA has around 150% improvement in total accrued utility. The vertical errors bars show
the variance in the results, the reason for which has been discussed in the earlier sections
and remains the same.

Figures 6.52 and 6.53 show the AUR and DSR results, respectively, for RU model using
the 27T partitioned task-set for the partitioned algorithms and “as-is” 27T task-set for
the global scheduling algorithms. P-EDF behaves as expected and starts missing deadlines
during overloads. P-DASA accrues utility during overloads and has a better AUR compared
to P-EDF. NG-GUA and G-GUA perform better than P-DASA during overloads. At 450%
utilization load, NG-GUA has an improvement of around 50% in accrued utility over P-
DASA. Between 550% to 800% utilization load, both NG-GUA and G-GUA have an average
improvement of 60% in accrued utility over P-DASA. The results show some variability in the
total accrued utility of NG-GUA and G-GUA with a standard deviation of around 6-8%. As
mentioned earlier, this amount of variability is expected due to the various operating system
primitives. Between 400% and 600% utilization loads, we observe that NG-GUA performs
better than G-GUA by around 4%. This can be attributed to issues with cache-warm up or
other I/O interruptions inside ChronOS.

Overall, we observe that the deadline-based partitioned scheduling (such as P-EDF) do
not perform well during overload conditions. On the other hand, the partitioned UA based
scheduling algorithms (such as P-DASA) perform better than the deadline variant. However,
G-GUA and NG-GUA outperform the partitioned algorithms in total accrued utility during
overloads.

Piyush Garyali Chapter 6. Experimental Results 88

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 12T,4C,NL,RU,BF

G-GUA NG-GUA P-EDF P-DASA

Figure 6.50: AUR vs. CPU utilization (12T, 4C, NL, RU, BF)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 12T,4C,NL,RU,BF

G-GUA NG-GUA P-EDF P-DASA

Figure 6.51: DSR vs. CPU utilization (12T, 4C, NL, RU, BF)

Piyush Garyali Chapter 6. Experimental Results 89

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 27T,4C,NL,RU,BF

G-GUA NG-GUA P-EDF P-DASA

Figure 6.52: AUR vs. CPU utilization (27T, 4C, NL, RU, BF)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 27T,4C,NL,RU,BF

G-GUA NG-GUA P-EDF P-DASA

Figure 6.53: DSR vs. CPU utilization (27T, 4C, NL, RU, BF)

Piyush Garyali Chapter 6. Experimental Results 90

6.3 Results With Dependencies

In this section we present the experimental results of our evaluation of NG-GUA and G-GUA
in the presence of dependencies. We compare the results with PIP based algorithms, such
as G-FIFO-PIP, GNP-EDF-PIP.

We use locks as a means of creating contention between tasks and use the following models:

• Fixing the number of locks per task and the critical section length for each lock but
varying the total utilization load.

• Fixing the total utilization load and the number of locks per task but varying the
critical section length for each lock.

• Fixing the total utilization load and the critical section length for each lock but varying
the number of locks per task.

In ChronOS, we implement locks as futexes, which allows us to share a context from the
kernel-space to the user-space. The test application uses the ChronOS system call to request
for a lock. This is done using the do vt rt mutex(struct mutex data user *mutexreq,

int operation) system call. The operation can be a MUTEX REQUEST or MUTEX RELEASE.
The application provides the futex information using the mutexreq data-structure.

We compare NG-GUA and G-GUA with the other PIP enabled scheduling algorithms on
the four-core platform. We consider a 12T base task-set that creates 12 tasks with deadli-
nes/periods in the range of [150ms− 3000ms]; with the utilization load for each task in the
range of [0.01− 0.4]. We consider the RU model and assign random utilities to the tasks in
the range of [100− 5000].

The base task-set creates a total of 12 locks in the system which are distributed amongst
individual tasks in the task-set in order to create four different variants.

1 lock per task - We distribute the locks in the 12T task-set such that each task gets to
request for a single lock.

2 locks per task - We distribute the locks in the 12T task-set such that each task gets to
request two locks.

3 locks per task - We distribute the locks in the 12T task-set such that each task gets to
request three locks.

4 locks per task - We distribute the locks in the 12T task-set such that each task gets to
request four locks.

Piyush Garyali Chapter 6. Experimental Results 91

Note that more than one task can request the same lock. The assignment of locks in the
task-set is done randomly using an automatic task-set generator application. Table 6.4 shows
the legend used in experimental result.

Table 6.4: Legend used in experimental results for comparison with other global scheduling
algorithms in the presence of dependencies

Symbol Description
RU Random Utility
xL Experiment using x number of locks per task
xCS Experiment using critical section length equal to x per-

cent of total task execution cost
xUt Experiment using x utilization load
xC Experiment using x number of processors
xT Experiment using x number of tasks

6.3.1 Varying CPU utilization Load

In this section we discuss the experimental results of running NG-GUA and G-GUA in the
presence of dependencies. The results are compared with other deadline-based scheduling
algorithms that handle resource using the priority inheritance protocol. Using PIP, if the
task Ja with higher priority is blocked on a resource Ri, which is being owned by a task
Jb that has a lower priority, the scheduler bumps the priority of task Jb to that of task Ja.
This is done to allow Jb to finish execution and release the resource. For the deadline-based
scheduler, the priorities can be mapped to the deadlines. A task with an earlier deadline is
the most eligible task in the system. If that task is blocked on a resource owned by another
task that has a later deadline, the scheduler allows the latter task to be executed such that
the resource is released and made available.

In this experiment, we desire to find the effect of increasing CPU utilization load on the
accrued utility in the presence of locks. We consider the following combinations:

1. We use the 12T task-set with 1 lock per task and fix the critical section length of the
lock to 5% of the task’s worst case execution cost, while varying the CPU utilization
load from 100-1000%.

2. We use the 12T task-set with 1 lock per task and fix the critical section length of the
lock to 25% of the task’s worst case execution cost, while varying the CPU utilization
load from 100-1000%.

Piyush Garyali Chapter 6. Experimental Results 92

3. We use the 12T task-set with 4 locks per tasks and fix the total critical section length
of the locks to 5% of the task’s worst case execution, while varying the CPU utilization
load from 100-1000%.

4. We use the 12T task-set with 4 locks per tasks and fix the total critical section length of
the locks to 25% of the task’s worst case execution, while varying the CPU utilization
load from 100-1000%.

Figures 6.54 and 6.55 show the AUR and DSR results, respectively, for the RU model with
12T task-set with one lock and 5% critical section length. Even with a 5% critical section
length and a single lock, we observe that both G-NP-EDF and G-FIFO are not able to meet
most of their deadlines during underloads. During overloads, they continue to miss deadlines
and as a result the overall accrued utility of the system comes down. Both NG-GUA and G-
GUA perform much better than the deadline-based scheduler, with an average improvement
of around 120% in the total accrued utility of the system. As we increase the critical section
length to 25%, we observe in Figures 6.56 and 6.57 that total accrued utility of NG-GUA and
G-GUA falls downs. However, the AUR is still higher than the deadline-based scheduling
algorithms. GNP-EDF starts losing deadlines as early as 200% CPU utilization load. On
the other hand, between 200% to 400% utilization load, G-GUA shows an improvement in
AUR by around 40%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 12T,4C,1L,RU,5% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.54: AUR vs. CPU utilization (12T, 4C, 1L, RU, 5% CS)

Piyush Garyali Chapter 6. Experimental Results 93

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 12T,4C,1L,RU,5% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.55: DSR vs. CPU utilization (12T, 4C, 1L, RU, 5% CS)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 12T,4C,1L,RU,25% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.56: AUR vs. CPU utilization (12T, 4C, 1L, RU, 25% CS)

Piyush Garyali Chapter 6. Experimental Results 94

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 12T,4C,1L,RU,25% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.57: DSR vs. CPU utilization (12T, 4C, 1L, RU, 25% CS)

In Figures 6.58 and 6.59, which shows the results with 4 locks per task, with the critical
section length as 5% of the WCET. We observe that by increasing the number of locks for the
same critical section length, the performance of NG-GUA and G-GUA remains consistent.
In Figure 6.58, NG-GUA is able to meet all deadlines till 350% utilization load. After 350%
utilization load, G-NP-EDF’s DSR falls down drastically and as a result its overall AUR
is reduced. NG-GUA, on the other hand, provides an average of 75% AUR from 300%
utilization load, all the way up to 1000% utilization load.

At 25% critical section length, the AUR results, as shown in Figures 6.60, indicates that,
although the overall accrued utility of the system is low, G-GUA and NG-GUA still provide
the highest utility accrual, especially during light overloads, ranging from 350% utilization
load to 500% utilization load.

Piyush Garyali Chapter 6. Experimental Results 95

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 12T,4C,4L,RU,5% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.58: AUR vs. CPU utilization (12T, 4C, 4L, RU, 5% CS)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 12T,4C,4L,RU,5% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.59: DSR vs. CPU utilization (12T, 4C, 4L, RU, 5% CS)

Piyush Garyali Chapter 6. Experimental Results 96

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
U

R

CPU Utilization Load

Accrued Utility Ratio, 12T,4C,4L,RU,25% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.60: AUR vs. CPU utilization (12T, 4C, 4L, RU, 25% CS)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
S

R

CPU Utilization Load

Deadline Satisfaction Ratio, 12T,4C,4L,RU,25% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.61: DSR vs. CPU utilization (12T, 4C, 4L, RU, 25% CS)

Piyush Garyali Chapter 6. Experimental Results 97

6.3.2 Varying Lock Critical Section Length

In this section, we consider the effects of varying the critical section length of locks while
keeping the number of locks and the utilization load fixed. We consider the utilization loads
of 400% and 800% that show a light-overload and a heavy-overload scenarios.

We consider the following combinations:

1. We use the 12T task-set with 1 lock per task and fix the utilization load at 400%; while
varying the critical section length from 5% to 25%

2. We use the 12T task-set with 1 lock per task and fix the utilization load at 800%; while
varying the critical section length from 5% to 25%

3. We use the 12T task-set with 4 locks per task and fix the utilization load at 400%;
while varying the critical section length from 5% to 25%

4. We use the 12T task-set with 4 locks per task and fix the utilization load at 800%;
while varying the critical section length from 5% to 25%

Figure 6.62 shows the AUR values across various scheduling algorithms for critical section
lengths equal to 5%, 10% and 25% of the total worst case execution time. We observe that
G-GUA provides a consistent average accrued utility of around 80% across all critical section
lengths when a single lock is used. This is at 400% utilization load which, on a four-core
platform, is light-overload as the system reaches its full utilization potential. Figure 6.63
provides the same comparison at 800% utilization load, which is a heavy-overload, consid-
ering a four-core system. We observe that G-GUA still provides an average of 60% accrued
utility, even when the system has a heavy-overload. NG-GUA performs equally as G-GUA.
On the other hand, G-GUA performs better than NG-GUA by around 5%. This behavior
is consistent with the increase in critical section lengths. At 25% critical section length,
G-GUA has an AUR of 50%, which is an improvement of 150% over G-NP-EDF with PIP
for the same point.

Figure 6.64 shows the AUR results when 4 locks are used at 400% utilization load. We observe
that G-GUA outperforms every other algorithm and provides a consistent average AUR of
80% across critical section lengths. NG-GUA is seen to provide a similar behavior, with
G-GUA performing better by an average of 10%. G-GUA shows around 90% improvement
in AUR for a critical section length of 5%. Figure 6.65 shows the same results at 800%
utilization load. We observe that with 4 locks, the performance of deadline-based algorithm
has degraded. G-GUA and N-GUA consistently perform better. Both G-GUA and NG-GUA
provide an average AUR of around 60% across all critical section lengths.

Piyush Garyali Chapter 6. Experimental Results 98

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 25

A
U

R

Critical Section Length (percent)

Accrued Utility Ratio, 12T,4C,1L,RU,400% Ut

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.62: AUR vs. Critical section length (12T, 4C, 1L, RU, 400% CPU utilization)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 25

A
U

R

Critical Section Length (percent)

Accrued Utility Ratio, 12T,4C,1L,RU,800% Ut

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.63: AUR vs. Critical section length (12T, 4C, 1L, RU, 800% CPU utilization)

Piyush Garyali Chapter 6. Experimental Results 99

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 25

A
U

R

Critical Section Length (percent)

Accrued Utility Ratio, 12T,4C,4L,RU,400% Ut

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.64: AUR vs. Critical section length (12T, 4C, 4L, RU, 400% CPU utilization)

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 25

A
U

R

Critical Section Length (percent)

Accrued Utility Ratio, 12T,4C,4L,RU,800% Ut

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.65: AUR vs. Critical section length (12T, 4C, 4L, RU, 800% CPU utilization)

Piyush Garyali Chapter 6. Experimental Results 100

6.3.3 Varying Number of Locks per Task

In this section, we consider the effects of varying the number of locks per task, while keeping
the critical section length and the utilization load fixed. We consider the utilization loads of
400% and 800% that show light-overload and heavy-overload scenarios.

We consider the following combinations:

1. We fix the critical section length at 5% and the utilization load at 400%; while varying
the total number of locks per task

2. We fix the critical section length at 5% and the utilization load at 800%; while varying
the total number of locks per task

3. We fix the critical section length at 25% and the utilization load at 400%; while varying
the total number of locks per task

4. We fix the critical section length at 25% and the utilization load at 800%; while varying
the total number of locks per task

Figure 6.66 shows the total accrued utility as a function of the number of locks, with a fixed
critical section length of 5% and a utilization load of 400%. This is a light-overload scenario.
We observe that increasing the number of locks does not have an impact on the overall
accrued utility for all the algorithms. G-GUA consistently outperforms other scheduling
algorithms by providing an average AUR of around 85% across all locks. NG-GUA performs
equally better with G-GUA providing an average 6% better performance. The deadline-
based schedulers provide around 50% AUR across all locks. Figure 6.67 considers the same
scenario with 25% critical section length and we observe a similar behavior.

However, during heavy-overloads, the performance of the UA scheduling algorithms is better
than the deadline-based algorithms. This is shown in Figure 6.68 for an 800% utilization
load with 5% critical section length and in Figure 6.69 for the same load with 25% critical
section length. We consider the worst-case scenario with 25% critical section length and a
heavy-overload at 800% utilization load. G-GUA provides an average 50% utility accrual
across varying number of locks, while NG-GUA provides an average 45% utility accrual.
G-GUA provides an average improvement of 120% in AUR over GNP-EDF.

Piyush Garyali Chapter 6. Experimental Results 101

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

A
U

R

Number of Locks

Accrued Utility Ratio, 12T,4C,RU,400% Ut,5% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.66: AUR vs. Number of locks (12T, 4C, RU, 5% CS, 400% CPU utilization)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

A
U

R

Number of Locks

Accrued Utility Ratio, 12T,4C,RU,400% Ut,25% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.67: AUR vs. Number of locks (12T, 4C, RU, 25% CS, 400% CPU utilization)

Piyush Garyali Chapter 6. Experimental Results 102

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

A
U

R

Number of Locks

Accrued Utility Ratio, 12T,4C,RU,800% Ut,5% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.68: AUR vs. Number of locks (12T, 4C, RU, 5% CS, 800% CPU utilization)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

A
U

R

Number of Locks

Accrued Utility Ratio, 12T,4C,RU,800% Ut,25% CS

G-GUA NG-GUA GNP-EDF-PIP G-FIFO-PIP

Figure 6.69: AUR vs. Number of locks (12T, 4C, RU, 25% CS, 800% CPU utilization)

Piyush Garyali Chapter 6. Experimental Results 103

6.4 Overhead Measurements

In this section, we measure and compare the scheduling overheads for G-GUA and NG-GUA
on ChronOS. We consider a four-core platform and use three task-sets. The details of the
task-sets follow:

1. The first task-set uses 5 tasks, with deadline/periods in the range of [50000µs −
5000000µs]; and a utilization load of each task in the range of [0.1− 0.4].

2. The second task-set uses 12 tasks, with deadlines/periods in the range of [300000µs−
20000000µs]; and a utilization load of each task in the range of [0.01− 0.4].

3. The third task-set uses 27 tasks, with deadlines/periods in the range of [50000µs −
7500000µs]; and a utilization load of each task in the range of [0.01− 0, 3].

These task-set are the same that were used in the earlier experimental evaluation. Instead of
representing the deadline range in millisecond (ms), we present the values in microseconds
(µs). This has been done so that the overhead numbers can be matched with the total task
execution costs for a fairer comparison.

In order to measure the overheads in ChronOS, we instrument the Linux kernel and capture
various triggers such as, task migration and global scheduling; and use the read tsc() call
to get the time with a nanosecond granularity. We measure the overheads for each task-set
over an increasing utilization load. We find that that average task migration overhead in
ChronOS is 8µs, with a standard deviation of 3µs.

Figure 6.70 shows the scheduling overheads for G-GUA under a variable utilization load for
task-sets with 5, 12 and 27 tasks, respectively. The time is presented in microseconds within
a [0− 40]µsec range. We observe that with increasing number of tasks, the total scheduling
overhead of G-GUA increases. At a 400% utilization load, we observe that when the number
of tasks are increased from 5 to 27, the average scheduling overhead increases from 10µs to
17µs. Similarly at 800%, we observe that the average scheduling overhead increases from
11µs to 30µs.

On the other hand, we observe that the non-greedy-GUA has a lesser overhead than the
greedy variant. Figure 6.71 shows the results for NG-GUA. The average scheduling overhead
increases as the number of tasks in the system are increased but the overhead is lower than
that of G-GUA. At 100% utilization load, NG-GUA has around 5µs scheduler overhead
as compared to 10µs for G-GUA. However, at 800% utilization load, we observe that the
average scheduler overhead increases to around 15µs for the 27 task-set as compared to 30µs
for G-GUA. The high overhead of G-GUA is expected as it is more aggressive while trying
to maximize the accrued utility when compared to NG-GUA.

Figure 6.72 compares both NG-GUA and G-GUA overheads at 100% and 800% utilization
loads, with an increasing number of tasks. As the number of tasks in the system increase,

Piyush Garyali Chapter 6. Experimental Results 104

 0

 5

 10

 15

 20

 25

 30

 35

 40

100 400 800

T
im

e
(m

ic
ro

se
co

nd
s)

Utilization Load (percent)

G-GUA Scheduling Overheads

5 tasks 12 tasks 27 tasks

Figure 6.70: Scheduling overheads for G-GUA under variable utilization load

 0

 5

 10

 15

 20

 25

 30

 35

 40

100 400 800

T
im

e
(m

ic
ro

se
co

nd
s)

Utilization Load (percent)

NG-GUA Scheduling Overheads

5 tasks 12 tasks 27 tasks

Figure 6.71: Scheduling overheads for NG-GUA under variable utilization load

Piyush Garyali Chapter 6. Experimental Results 105

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 12 27

T
im

e
(m

ic
ro

se
co

nd
s)

Number of tasks

G-GUA vs. NG-GUA, Scheduling Overheads, Variable Number of Tasks

G-GUA, 100% Load
NG-GUA, 100% Load

G-GUA, 800% Load
NG-GUA, 800% Load

Figure 6.72: G-GUA vs. NG-GUA, scheduling overheads with variable number of tasks

 0

 2

 4

 6

 8

 10

5 12 27

T
im

e
(m

ic
ro

se
co

nd
s)

Number of tasks

Scheduling overhead comparison, 100% Utilization Load

G-GUA NG-GUA G-EDF G-NP-EDF

Figure 6.73: Comparison of scheduling overheads at 100% utilization load

Piyush Garyali Chapter 6. Experimental Results 106

 0

 10

 20

 30

 40

 50

5 12 27

T
im

e
(m

ic
ro

se
co

nd
s)

Number of tasks

Scheduling overhead comparison, 800% Utilization Load

G-GUA NG-GUA G-EDF G-NP-EDF

Figure 6.74: Comparison of scheduling overheads at 800% utilization load

the average scheduling overhead for NG-GUA and G-GUA increases. As mentioned earlier,
NG-GUA observes lesser overhead as compared to G-GUA. In Figures 6.73 and 6.74, we
compare the scheduling overheads of NG-GUA and G-GUA with G-EDF and G-NP-EDF.
It can be seen that during 100% utilization loads, G-EDF has similar overheads like our
algorithms. G-NP-EDF, on the other hand, has a lower scheduler overhead when compared
with the other algorithms. However, we observe that during 800% utilization load, G-NP-
EDF’s overhead shoots up from around 1µs during 100% utilization load to around 35µs
under 800% utilization load.

NG-GUA and G-GUA perform sorting of the zero in-degree tasks based on the PIP deadlines
and GVD, respectively. In our implementation of these algorithms in ChronOS, we have used
a quicksort-based sorting algorithms, which has a worst-case performance cost of O(n2). As
we measured the overheads using task-sets that do not use any locks, all the tasks in the
ready queue are zero in-degree and hence eligible for schedule. We observe that the total
cost of sorting can be reduced if we use more optimized data structures (e.g., binomial heap
has a worst case cost of O(log n) and O(1) for lookup of the minimum key).

Piyush Garyali Chapter 6. Experimental Results 107

6.5 Conclusions

In this chapter, we performed a number of experiments to compare the performance of the
GUA class of algorithms with other global and partitioned scheduling algorithms in the
absence and presence of dependencies.

The results indicate that G-GUA and NG-GUA perform better than other algorithms during
overloads in accruing total utility. We also observe that G-GUA and NG-GUA meet more
deadlines during overloads than the various deadline-based scheduling algorithms, such as
G-EDF, G-NP-EDF and P-EDF.

We also measure the average scheduling overheads of the algorithms and find that for 27
tasks with periods in the range of [50000µs−7500000µs], NG-GUA has an average scheduling
overhead of 15µs, while that of G-GUA is around 30µs.

Chapter 7

Conclusions and Future Work

In this thesis, we addressed the problem of real-time scheduling on multiprocessors, focus-
ing on applications that are subject to run-time uncertainties causing overloads, and task
dependencies — a previously open problem. The thesis presents the GUA class of algo-
rithms for this problem. Since the problem is NP-hard, the algorithms are polynomial-time
heuristics. The algorithms construct a directed acyclic graph representation of the task
dependency relationship, and build a global multiprocessor schedule of the zero in-degree
tasks to heuristically maximize the total accrued utility and ensure mutual exclusion. Dead-
locks are detected through a cycle-detection algorithm, and resolved by aborting a task in
the deadlock cycle. The GUA class of algorithms include the NG-GUA and G-GUA algo-
rithms. The two algorithms differ in the way schedules are constructed towards meeting all
task deadlines, when possible to do so. We establish several properties of the algorithms
including conditions under which all task deadlines are met, satisfaction of mutual exclusion
constraints, and deadlock-freedom.

We also create a Linux-based real-time kernel for multiprocessors called ChronOS, which is
extended from the PREEMPT RT real-time Linux patch. ChronOS provides optimized inter-
rupt service latencies and real-time locking primitives (by virtue of the PREEMPT RT patch),
and provides a scheduling framework for the implementation of a broad range of real-time
scheduling algorithms, including utility accrual, non-utility accrual, global, and partitioned
scheduling algorithms.

We implement the GUA class of algorithms and their competitors in ChronOS and conduct
experimental studies. Our study reveals that —

(1) In the absence of dependencies, the GUA class of algorithms accrue higher utility and
satisfy greater number of deadlines than the deadline-based algorithms (G-EDF, G-NP-EDF)
by as much as 750% and 600%, respectively.

(2) In the absence of dependencies, the GUA class of algorithms accrue higher utility and
satisfy greater number of deadlines compared to the partitioned algorithms by as much as

108

Piyush Garyali Chapter 7. Conclusions and Future Work 109

90% and 75%, respectively for P-DASA; and 450% and 600%, respectively for P-EDF.

(3) As gMUA defaults to NG-GUA without dependencies, the performance of NG-GUA and
gMUA is similar.

(4) G-GUA outperforms NG-GUA and gMUA by accruing 25% more utility, while both
NG-GUA and gMUA satisfy 5% more deadlines during underloads than G-GUA.

(5) In the presence of dependencies, both NG-GUA and G-GUA accrue higher utility and
satisfy greater number of deadlines than G-NP-EDF-PIP by as much as 250% and 150%,
respectively.

Our research demonstrates that it is possible to design scheduling algorithms for the dy-
namic, multiprocessor real-time scheduling problem space (i.e., those characterized by exe-
cution overruns, unpredictable task arrivals, etc.), such that they yield an optimal timeliness
behavior (e.g., meeting all deadlines; obtaining maximum total utility), when total utiliza-
tion demand does not exceed the algorithms’ utilization bound, and a best-effort timeliness
behavior at all other times.

This approach was pioneered in the Alpha OS kernel [44], which included two generations
of TUF/UA scheduling algorithms for scheduling single-processor systems [55, 31]. At its
core, this thesis demonstrates that a similar approach can also be successfully extended for
multiprocessors. The key challenge in doing so is the construction of m-processor schedules
with best-effort timeliness behavior during overloads (U > m) with or without dependen-
cies, that seamlessly yield optimal timeliness behavior during underloads (U ≤ m) without
dependencies. This is a difficult problem because, deadline scheduling is non-optimal for mul-
tiprocessors, unlike that for single-processors (for which deadline scheduling is optimal). In
particular, global EDF has a utilization bound of≈ m/2 (without dependencies). Thus, using
deadline schedulers as the basis for multiprocessor TUF/UA scheduling, as done in Alpha’s
TUF/UA schedulers [55, 31] for the single-processor case, will result in loss of utilization—
e.g., with global EDF as the basis, as is the case with NG-GUA, “overloads” start at ≈ m/2.
Optimal multiprocessor real-time schedulers are either quantum-based (e.g., the Pfair class
of algorithms) [11] or are strongly dependent upon presumptions made about task arrival
and task execution-time behaviors (e.g., periodic/sporadic arrivals, WCETs) [25, 21, 37].
Thus, it is very difficult to seamlessly extend them to have best-effort timeliness behaviors
for the dynamic problem space, where tasks may have execution overruns and unpredictable
arrivals. The thesis therefore designs NG-GUA with global EDF as its basis (suffering from
this utilization loss), and G-GUA as an alternative solution without global EDF as its basis
and one that greedily constructs schedules at all times. Designing multiprocessor TUF/UA
scheduling algorithms with utilization bounds that are greater than ≈ m/2 is a direction for
future work.

In addition, the presence of task dependencies can result in many task dependency chains,
similar to the single-processor case. But unlike the single-processor case, since there are
m > 1 processors, for the multiprocessor case, up to m of these chains (or tasks at the head

Piyush Garyali Chapter 7. Conclusions and Future Work 110

of those chains) can potentially be executed. In [31], the dependency chains are computed
at the per task level. This works well for the single-processor case as only one task needs
to be selected at the end of schedule. However, we can not take this method and apply it
to the multiprocessor case because to ensure mutual exclusion we can not execute tasks on
processors that depend on each other. Hence, we need to find the dependency relationship
of all the tasks. The challenge is to find out the most effective way in which this can be
done. In the design of the GUA algorithms, we solve this problem by creating a directed
acyclic graph to represent the dependency relationship between tasks. Thus, at the end of
the graph creation, we can consider the zero in-degree nodes, which are not dependent on
other tasks, as eligible for the final schedule.

However, which m head tasks (or zero in-degree tasks) should have the highest execution
eligibility? The potential utility density (or PUD) metric pioneered in [31] is shown to be
highly effective in determining task execution eligibility for the single-processor case. But
how can we determine task potential utility densities when similar tasks can appear in the
dependency chains of several tasks? Unlike the single processor case, here, many tasks can
be concurrently dispatched for execution. The PUD metric works in [31] for the single-
processor case as a single task needs to be selected at the end of the schedule. However, on
the multiprocessor case we can not use the PUD metric alone in order to pick one task over
another. This is because there could be a zero in-degree task Ti that owns a resource Rj

and blocks other tasks in the system, but has a low PUD value. As a result, (due to the low
PUD value), Ti would always be pushed to the back of the queue, thus preventing other tasks
that are currently blocked on it from executing. The challenge here is to find a metric that
provides a way to represent the overall benefit the system can accrue if a particular task,
say Ti, is selected for execution. We answer this question in the design of the GUA class of
algorithms by defining a metric called the Global Value Density (or GVD). The GVD for a
zero in-degree task represents the aggregate value density for the entire dependency chain,
which gives a fair representation of the dependency chain and thus provides the highest
execution eligibility for a task that is currently blocking other tasks.

The GUA class of algorithms have higher scheduling costs than past multiprocessor real-
time scheduling algorithms. The asymptotic cost of G-GUA is O(mn log n) and NG-GUA
is O(mn log n) for n tasks on m processors. In contrast, the asymptotic cost of gMUA is
O(mn log n), G-EDF is O(n log n) and P-EDF is O(n log n). On our four-core platform, the
worst-case and average-case scheduling overheads of G-GUA for 27 tasks at 800% utiliza-
tion load were 80µs and 30µs, respectively, while those for NG-GUA were 45µs and 15µs,
respectively. We observe an average 8µs migration cost. Thus, the GUA class of algorithms
are effective only if the application can tolerate their higher scheduling overheads. Design-
ing multiprocessor TUF/UA scheduling algorithms with smaller scheduling costs is another
important direction for future work.

Piyush Garyali Chapter 7. Conclusions and Future Work 111

7.1 Contributions

To summarize, the research contributions of the thesis include:

1. the GUA class of multiprocessor real-time scheduling algorithms that allow tasks to
be subject to run-time uncertainties, overloads, and dependencies, and yield optimal
total utility when possible and best-effort timeliness behavior otherwise — the first
such multiprocessor real-time scheduling algorithms to do so.

2. the ChronOS multiprocessor real-time Linux kernel that provides optimized interrupt
service latencies and real-time locking primitives (by virtue of PREEMPT RT patch) and
a scheduling framework that allows the implementation of a broad range of real-time
scheduling algorithms, including utility accrual, non-utility accrual, global, and parti-
tioned scheduling algorithms – the first such multiprocessor real-time Linux kernel.

7.2 Future Work

Although, our results in this thesis show that NG-GUA and G-GUA provide improvements
in the overall accrued utility, there are some open research problems that can be used to
optimize this performance further. Below, we enumerate some of these.

7.2.1 Parallelizing Schedule Creation

The current approach used by the GUA class of algorithms is to create a global schedule for all
available processors in the system at every scheduling event. This has been implemented in
ChronOS as the “Stop-the-World” model. In this architecture model, the processor creating
the global schedule sends an IPI to all the other processors to stop what they are doing and
enter the scheduler.

For global scheduling algorithms, such as NG-GUA and G-GUA, it is necessary to have all
the processors wait until the creation of the new schedule to avoid schedule complications.
This is primarily because the GUA class of algorithms use the heuristic of Global Value
Density which is calculated based on a task’s remaining execution cost. However, while
all the processors are blocked before the final schedule is available, we can optimize the
GUA class of algorithms such that the creation of the final schedule uses all the available
processors. One approach of doing this is for the scheduling algorithm to create jobs that
can be assigned to worker threads dedicated for scheduling on each of the processors.

At this point, it is not known if this approach would provide any additional optimization
benefits to the overall performance of the GUA class of algorithms; or if the parallel approach

Piyush Garyali Chapter 7. Conclusions and Future Work 112

would scale with the increase in the number of processors. We propose the future work to
consider the design of a parallel versions of the GUA class of algorithms.

7.2.2 Reducing Scheduling Overheads

The current asymptotic cost of the GUA class of algorithms is O(mn log n). This is primarily
because the algorithms require the list of zero in-degree tasks to be sorted either by deadline
or by the GVD. In the current design and implementation of the algorithms, we have used
quicksort-based sort which suffers from a worst-case performance penalty of O(n2), thus
contributing to the main overhead cost of the algorithms. We propose the future work to
design TUF/UA scheduling algorithms with a lesser scheduling overheads.

7.2.3 Cache-Aware Algorithms

One of the most important aspects of global scheduling algorithms is to be able to assign
tasks to processors such that cache warm-up issues and task migrations from one processor
run-queue to another are avoided. This happens when the final schedule created by the
algorithms have tasks that belong to the same processor.

We implement a default mapping algorithm in ChronOS that assigns tasks from the final
schedule to processors based on their origin. However, if the final schedule has tasks that
belong to the same processor, the mapping algorithm suffers a worst-case task migration
cost of m− 1, for a m processor system.

We propose the future work to look at two ways in which this problem can be solved – (i) pro-
vide a better mapping algorithm in ChronOS; or (ii) ensure that the scheduling algorithm
is cache-aware [38, 17]. Stenström provides a survey of various cache coherence schemes on
multiprocessors in [64].

7.2.4 Approximate Algorithms

As mentioned earlier, the problem of scheduling real-time dependent tasks on multiprocessors
is NP-Hard. In this thesis, we present polynomial-time real-time scheduling heuristics algo-
rithms (NG-GUA and G-GUA) that yield optimal total utility when possible and best-effort
timeliness behavior otherwise.

Another approach of solving this problem is to consider the design of approximate algorithms
instead of a heuristic approach by defining it as an optimization problem. We believe that
the results presented in this thesis can provide a useful insight to the overall performance
and can be used as an input while designing an approximate algorithm. We propose this as
a future work.

Appendix A

ChronOS System Calls

In code listing A.1, we show the ChronOS system calls related to the real-time scheduling
that were added to 2.6.31.12 Linux kernel. The system calls related to Distributed Threads
have been omitted due to the lack of context with the research contributions of this thesis.

1 /∗ Set the rea l−t ime schedu l e r ∗/
2 long s y s s e t s c h e du l e r (int r t s ched ,
3 int prio ,
4 unsigned int len ,
5 unsigned long u s e r ∗ user mask ptr) ;
6
7 /∗ Begin a rea l−t ime segment ∗/
8 long s y s b e g i n r t s e g (struct r t da ta u s e r ∗ data ,
9 struct t imespec u s e r ∗ deadl ine ,
10 struct t imespec u s e r ∗ per iod) ;
11
12 /∗ End a rea l−t ime segment ∗/
13 long s y s e nd r t s e g (int t id , int newprio) ;
14
15 /∗ Request /Release l o c k s ∗/
16 long sy s do vt r t mutex (struct mutex data u s e r ∗mutexreq , int op)
17
18 /∗ Add an abor t hand ler to a rea l−t ime ta s k ∗/
19 long sy s add abor t hand l e r (int t id ,
20 int max uti l ,
21 struct t imespec u s e r ∗ deadl ine ,
22 unsigned long exec t ime)
23
24 /∗ Perform atomic opera t i ons ∗/
25 long s y s a t om i c i n t op (int u s e r ∗ re source , int op , int va l)

Listing A.1: The ChronOS system calls added to the Linux 2.6.31.12 kernel

113

Appendix B

ChronOS Kernel Data Structures

In this section. we show the data structure that were added to the 2.6.31.12 Linux kernel for
real-time scheduling. The data structures related to Distributed Threads have been omitted
due to the lack of context with the research contributions of this thesis.

1 struct mutex data {
2 atomic t va l ;
3 int owner ;
4 } ;

Listing B.1: Data structure used to define locks

1 struct abo r t i n f o {
2 struct t imespec dead l ine ;
3 unsigned long exec t ime ;
4 int max ut i l ;
5 struct s igqueue ∗ abo r t s i g ;
6 } ;

Listing B.2: Data structure used for abort handlers

1 struct r t g raph {
2 struct t imespec a g g l e f t ;
3 unsigned long a g g u t i l ;
4 long g l o b a l i v d ;
5 long i n d eg r e e ;
6 long out degree ;
7 struct r t i n f o ∗ n e i g h b o r l i s t ;
8 struct r t i n f o ∗ next ne ighbor ;
9 struct r t i n f o ∗parent ;
10 struct r t i n f o ∗depchain ;
11 } ;

Listing B.3: Data structure for the DAG representation of the dependency chain

114

Piyush Garyali Appendix B. ChronOS Kernel Data Structures 115

1 /∗ St ruc tu re a t tached to s t r u c t t a s k s t r u c t ∗/
2 struct r t i n f o {
3 /∗ Real−Time in format ion
4 ∗
5 ∗ s t a r t t ime i s the s t a r t time o f the r t segment , not to be confused
6 ∗ with s t r u c t t a s k s t r u c t . s t a r t t ime , which i s the c r ea t i on time
7 ∗ o f the thread .
8 ∗/
9 struct t imespec s t a r t t ime ; /∗ monotonic time ∗/
10 struct t imespec dead l ine ; /∗ monotonic time ∗/
11 struct t imespec temp deadl ine ; /∗ monotonic time ∗/
12 struct t imespec per iod ; /∗ r e l a t i v e time ∗/
13 struct t imespec l e f t ; /∗ r e l a t i v e time ∗/
14 unsigned long exec t ime ; /∗ WCET, us ∗/
15 int max ut i l ;
16 long i nv va l den ;
17
18 /∗ L i s t s ∗/
19 struct l i s t h e a d g t a s k l i s t ;
20 struct l i s t h e a d l o c a l t a s k l i s t ;
21 struct l i s t e n t r y l i s t [SCHED LISTS] ;
22
23 /∗ DAG used by x−GUA c l a s s o f a l go r th ims ∗/
24 struct r t g raph graph ;
25
26 /∗ Lock in format ion ∗/
27 struct mutex data ∗ r e qu e s t ed r e s ou r c e ;
28 struct r t i n f o ∗dep ;
29 int l o ck count ;
30
31 /∗ Abort in format ion ∗/
32 struct abo r t i n f o abo r t i n f o ;
33
34 /∗ Task s t a t e in format ion ∗/
35 unsigned char f l a g s ;
36 int cpu ;
37 } ;

Listing B.4: The ChronOS main real-time data structure

Piyush Garyali Appendix B. ChronOS Kernel Data Structures 116

1 struct r t s c h e d l o c a l {
2 struct l i s t h e a d l i s t ;
3 /∗ Schedu ler Name ∗/
4 char ∗name ;
5 /∗ Schedu l ing number and f l a g s ∗/
6 int number ;
7 int f l a g s ;
8 /∗ Schedu l ing func t i on ∗/
9 struct r t i n f o ∗ (∗ schedu le) (struct l i s t h e a d ∗head , int f l a g s) ;
10 } ;

Listing B.5: Scheduler plugin for single-processor schedulers

1 struct r t s c h e d g l o b a l {
2 struct l i s t h e a d l i s t ;
3 /∗ Schedu ler Name ∗/
4 char ∗name ;
5 /∗ Schedu l ing number and f l a g s ∗/
6 int number ;
7 int f l a g s ;
8 /∗ Schedu l ing f unc t i on s ∗/
9 struct r t i n f o ∗ (∗ schedu le) (struct l i s t h e a d ∗head , int f l a g s , int cpus) ;
10 struct r t i n f o ∗ (∗ pre schedu l e) (struct l i s t h e a d ∗head , int f l a g s) ;
11 int (∗ a r c h i n i t) (void) ;
12 void (∗ a r c h r e l e a s e) (void) ;
13 void (∗ block) (void) ;
14 int (∗map tasks) (struct r t i n f o ∗head) ;
15 /∗ The l o c a l s chedu l e r to be used wi th t h i s g l o b a l ∗/
16 int l o c a l ;
17 } ;

Listing B.6: Scheduler plugin for multiprocessor schedulers

Appendix C

Sample ChronOS Scheduling Kernel
Modules

In code listing C.1, we show a sample kernel module used to implement the EDF schedul-
ing algorithm in ChronOS. EDF is a uniprocessor scheduling algorithm. Hence, we use the
scheduling plugin for local schedulers in ChronOS.

1 #include <l i nux /module . h>
2 #include <l i nux / l i s t . h>
3
4 struct r t i n f o ∗ s ched ed f (struct l i s t h e a d ∗head , int f l a g s)
5 {
6 /∗ Schedu l ing l o g i c here ∗/
7 return task ;
8 }
9
10 struct r t s c h e d l o c a l r t s c h e d ed f = {
11 . name = ‘ ‘EDF’ ’ ,
12 . number = SCHED RT EDF,
13 . f l a g s = 0 ,
14 . s chedu le = sched ed f
15 } ;
16
17 struct r t s c h e d l o c a l ∗ ed f = &r t s c h e d ed f ;
18
19 stat ic int i n i t e d f i n i t (void)
20 {
21 return add l o c a l s c h edu l e r (ed f) ;
22 }
23 modu l e in i t (e d f i n i t) ;
24
25 stat ic void e x i t e d f e x i t (void)
26 {

117

Piyush Garyali Appendix C. Sample ChronOS Scheduling Kernel Modules 118

27 r emove l o c a l s ch edu l e r (ed f) ;
28 }
29 module ex i t (e d f e x i t) ;
30
31 MODULE DESCRIPTION(‘ ‘ d e s c r i p t i o n ’ ’) ;
32 MODULEAUTHOR(‘ ‘ name ’ ’) ;
33 MODULE LICENSE(‘ ‘GPL ’ ’) ;

Listing C.1: Sample kernel module for EDF

In code listing C.2, we show a sample kernel module used to implement the NG-GUA schedul-
ing algorithm in ChronOS. NG-GUA is a multiprocessor, global scheduling algorithm which
uses the Stop-the-World architecture model. Hence, we use the scheduling plugin for global
schedulers in ChronOS.

1 #include <l i nux /module . h>
2 #include <l i nux / l i s t . h>
3
4 struct r t i n f o ∗ presched nggua (struct l i s t h e a d ∗head , int f l a g s)
5 {
6 /∗ Pre−s chedu l i n g l o g i c here ∗/
7 return NULL;
8 }
9
10 struct r t i n f o ∗ sched nggua (struct l i s t h e a d ∗head , int f l a g s , int cpus)
11 {
12 /∗ Schedu l ing l o g i c here ∗/
13 return NULL;
14 }
15
16 struct r t s c h e d g l o b a l r t s ched nggua = {
17 . name = ‘ ‘NGGUA’ ’ ,
18 . number = SCHED RT NGGUA,
19 . f l a g s = 0 ,
20 . s chedu le = sched nggua ,
21 . pre schedu l e = presched nggua ,
22 . arch = &rt s ched ar ch s tw ,
23 . l o c a l = SCHED RT FIFO RA
24 } ;
25
26 struct r t s c h e d g l o b a l ∗nggua = &rt sched nggua ;
27
28 stat ic int i n i t nggua in i t (void)
29 {
30 return add g l oba l s ch edu l e r (nggua) ;
31 }
32 modu l e in i t (nggua in i t) ;
33
34 stat ic void e x i t nggua ex i t (void)

Piyush Garyali Appendix C. Sample ChronOS Scheduling Kernel Modules 119

35 {
36 r emove g l oba l s chedu l e r (nggua) ;
37 }
38 module ex i t (nggua ex i t) ;
39
40 MODULE DESCRIPTION(‘ ‘ d e s c r i p t i o n ’ ’) ;
41 MODULEAUTHOR(‘ ‘ name ’ ’) ;
42 MODULE LICENSE(‘ ‘GPL ’ ’) ;

Listing C.2: Sample kernel module for NG-GUA

Bibliography

[1] Chronos - linux based real-time multiprocessor scheduling framework. http://www.

chronoslinux.org.

[2] J. H. Anderson, V. Bud, and U. C. Devi. An edf-based scheduling algorithm for mul-
tiprocessor soft real-time systems. In ECRTS ’05: Proceedings of the 17th Euromicro
Conference on Real-Time Systems, pages 199–208, Washington, DC, USA, 2005. IEEE
Computer Society.

[3] J. H. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous
periodic tasks. J. Comput. Syst. Sci., 68(1):157–204, 2004.

[4] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multiprocessors.
Technical report, Chapel Hill, NC, USA, 2001.

[5] S. ANSI/ISO/IEC-8652:1995. Ada 95 reference manual. intermetrics, inc. January 1995.

[6] T. Baker. An analysis of edf schedulability on a multiprocessor. Parallel and Distributed
Systems, IEEE Transactions on, 16(8):760–768, aug. 2005.

[7] U. Balli, H. Wu, B. Ravindran, J. S. Anderson, and E. Douglas Jensen. Utility accrual
real-time scheduling under variable cost functions. IEEE Trans. Comput., 56(3):385–
401, 2007.

[8] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of sporadic task
systems. In RTSS ’05: Proceedings of the 26th IEEE International Real-Time Systems
Symposium, pages 321–329, Washington, DC, USA, 2005. IEEE Computer Society.

[9] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of deadline-
constrained sporadic task systems. IEEE Trans. Comput., 55(7):918–923, 2006.

[10] S. K. Baruah. The non-preemptive scheduling of periodic tasks upon multiprocessors.
Real-Time Syst., 32(1-2):9–20, 2006.

[11] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress:
A notion of fairness in resource allocation. Algorithmica, 15(6):600–625, 1996.

120

Piyush Garyali Bibliography 121

[12] S. K. Baruah, J. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on multiple
resources. In IPPS ’95: Proceedings of the 9th International Symposium on Parallel
Processing, pages 280–288, Washington, DC, USA, 1995. IEEE Computer Society.

[13] S. K. Baruah and J. R. Haritsa. Scheduling for overload in real-time systems. IEEE
Trans. Comput., 46(9):1034–1039, 1997.

[14] A. Bechini and C. A. Prete. Performance-steered design of software architectures for
embedded multicore systems. Softw. Pract. Exper., 32(12):1155–1173, 2002.

[15] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability analysis of EDF on
multiprocessor platforms. In ECRTS ’05, pages 209–218, 2005.

[16] B. B. Brandenburg, J. M. Calandrino, and J. H. Anderson. On the scalability of real-
time scheduling algorithms on multicore platforms: A case study. In RTSS ’08, pages
157–169, Washington, DC, USA, 2008. IEEE Computer Society.

[17] J. M. Calandrino and J. H. Anderson. On the design and implementation of a cache-
aware multicore real-time scheduler. In ECRTS ’09: Proceedings of the 2009 21st Eu-
romicro Conference on Real-Time Systems, pages 194–204, Washington, DC, USA, 2009.
IEEE Computer Society.

[18] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah. A cate-
gorization of real-time multiprocessor scheduling problems and algorithms. In Handbook
on Scheduling Algorithms, Methods, and Models. Chapman Hall/CRC, Boca, 2004.

[19] K. Channakeshava. Utility accrual real-time channel establishment in multi-hop net-
works. Master’s thesis, Virginia Tech, Aug 2008.

[20] K. Channakeshava, B. Ravindran, and E. D. Jensen. Utility accrual channel establish-
ment in multihop networks. IEEE Trans. Comput., 55(4):428–442, 2006.

[21] S.-Y. Chen and C.-W. Hsueh. Optimal dynamic-priority real-time scheduling algorithms
for uniform multiprocessors. In RTSS ’08: Proceedings of the 2008 Real-Time Systems
Symposium, pages 147–156, Washington, DC, USA, 2008. IEEE Computer Society.

[22] H. Cho. Utility Accrual Real-Time Scheduling and Synchronization on Single and Mul-
tiprocessors: Models, Algorithms, and Tradeoffs. PhD thesis, Virginia Tech, 2006.

[23] H. Cho, C. Na, B. Ravindran, and E. D. Jensen. On scheduling garbage collector in
dynamic real-time systems with statistical timing assurances. Real-Time Syst., 36(1-
2):23–46, 2007.

[24] H. Cho, B. Ravindran, and E. D. Jensen. Lock-free synchronization for dynamic em-
bedded real-time systems. In DATE ’06: Proceedings of the conference on Design,
automation and test in Europe, pages 438–443, 3001 Leuven, Belgium, Belgium, 2006.
European Design and Automation Association.

Piyush Garyali Bibliography 122

[25] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-time scheduling algorithm for
multiprocessors. In RTSS ’06: Proceedings of the 27th IEEE International Real-Time
Systems Symposium, pages 101–110, Washington, DC, USA, 2006. IEEE Computer
Society.

[26] H. Cho, B. Ravindran, and E. D. Jensen. Space-optimal, wait-free real-time synchro-
nization. IEEE Transactions on Computers, 56(3):373–384, 2007.

[27] H. Cho, B. Ravindran, and E. D. Jensen. T-l plane-based real-time scheduling for
homogeneous multiprocessors. J. Parallel Distrib. Comput., 70(3):225–236, 2010.

[28] H. Cho, B. Ravindran, and C. Na. Garbage collector scheduling in dynamic, multipro-
cessor real-time systems. IEEE Trans. Parallel Distrib. Syst., 20(6):845–856, 2009.

[29] R. Clark, E. Jensen, and F. Reynolds. An architectural overview of the alpha real-time
distributed kernel. In 1993 Winter USENIX Conf., pages 127–146, 1993.

[30] R. Clark, E. D. Jensen, A. Kanevsky, J. Maurer, P. Wallace, T. Wheeler, Y. Zhang,
D. Wells, T. Lawrence, and P. Hurley. An adaptive, distributed airborne tracking system
(“process the right tracks at the right time”). In In IEEE WPDRTS, volume 1586 of
LNCS, pages 353–362. Springer-Verlag, 1999.

[31] R. K. Clark. Scheduling Dependent Real-Time Activities. PhD thesis, CMU, 1990.
CMU-CS-90-155.

[32] U. C. Devi and J. H. Anderson. Tardiness bounds under global edf scheduling on a
multiprocessor. In RTSS ’05: Proceedings of the 26th IEEE International Real-Time
Systems Symposium, pages 330–341, Washington, DC, USA, 2005. IEEE Computer
Society.

[33] S. Fahmy. Collaborative Scheduling and Synchronization of Distributable Real-Time
Threads. PhD thesis, Virginia Tech, 2010.

[34] S. Feizabadi, B. Ravindran, and E. D. Jensen. Msa: a memory-aware utility accrual
scheduling algorithm. In SAC ’05: Proceedings of the 2005 ACM symposium on Applied
computing, pages 857–862, New York, NY, USA, 2005. ACM.

[35] B. Ford and J. Lepreau. Evolving mach 3.0 to a migrating thread model. In USENIX
Technical Conference, pages 97–114, 1994.

[36] F. S. Foundation. Gnu general public license. http://www.gnu.org/licenses/gpl.

html.

[37] K. Funaoka, S. Kato, and N. Yamasaki. Work-conserving optimal real-time scheduling
on multiprocessors. In Real-Time Systems, 2008. ECRTS ’08. Euromicro Conference
on, pages 13–22, 2-4 2008.

Piyush Garyali Bibliography 123

[38] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and analysis for
multicores. In EMSOFT ’09: Proceedings of the seventh ACM international conference
on Embedded software, pages 245–254, New York, NY, USA, 2009. ACM.

[39] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,
2008.

[40] P. Holman and J. Anderson. Adapting pfair scheduling for symmetric multiprocessors.
Journal of Embedded Computing, 1(4):543–564, 2005.

[41] W. Horn. Some simple scheduling algorithms. Naval Research Logistics Quaterly, pages
21:177–185, 1974.

[42] IEEE. IEEE Std 1003.1-2001 Standard for Information Technology – Portable Operating
System Interface (POSIX) System Interfaces, Issue 6. 2001. Open Group Technical
Standard Base Specifications, Issue 6, 1992.

[43] E. Jensen, C. Locke, and H. Tokuda. A time driven scheduling model for real-time
operating systems, 1985. IEEE RTSS, pages 112–122, 1985.

[44] E. Jensen and J. Northcutt. Alpha: a nonproprietary os for large, complex, distributed
real-time systems. In Experimental Distributed Systems, 1990. Proceedings., IEEE
Workshop on, pages 35–41, 11-12 1990.

[45] E. D. Jensen, A. Wellings, R. Clark, and D. Wells. The distributed real-time specification
for java: A status report. In Proceedings of The Embedded Systems Conference, 2002.

[46] D. S. Johnson. Fast algorithms for bin packing. J. Comput. Syst. Sci., 8(3):272–314,
1974.

[47] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour. A practitioner’s
handbook for real-time analysis. Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[48] G. Koren and D. Shasha. MOCA: a multiprocessor on-line competitive algorithm for
real-time system scheduling. Theor. Comput. Sci., 128(1-2):75–97, 1994.

[49] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned fixed-priority preemptive
scheduling for multi-core processors. In Real-Time Systems, 2009. ECRTS ’09. 21st
Euromicro Conference on, pages 239–248, 1-3 2009.

[50] P. Li. Utility Accrual Real-Time Scheduling: Models and Algorithms. PhD thesis,
Virginia Tech, July 2004.

[51] P. Li and B. Ravindran. Fast, best-effort real-time scheduling algorithms. IEEE Trans.
Comput., 53(9):1159–1175, 2004.

Piyush Garyali Bibliography 124

[52] P. Li, H. Wu, B. Ravindran, and E. D. Jensen. A utility accrual scheduling algorithm for
real-time activities with mutual exclusion resource constraints. IEEE Trans. Comput.,
55(4):454–469, 2006.

[53] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[54] J. W. S. Liu. Real-Time Systems. Prentice Hall, New Jersey, 2000.

[55] C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling. PhD thesis, CMU,
1986. CMU-CS-86-134.

[56] J. M. López, J. L. Dı́az, and D. F. Garćıa. Utilization bounds for edf scheduling on
real-time multiprocessor systems. Real-Time Syst., 28(1):39–68, 2004.

[57] R. Love. Linux Kernel Development. Novell Press, 2005.

[58] D. P. Maynard and S. E. Shipman. An example real-time command, control, and battle
management application for alpha. Technical Report Archons Project 88121, CMU CS
Dept., December 1988.

[59] A. K.-L. Mok. Fundamental design problems of distributed systems for the hard-real-time
environment. PhD thesis, Massachusetts Institute of Technology, 1983.

[60] I. Molnar. Config preempt realtime, fully preemptible kernel, vp-2.6.9-rc4-mm1-t4.
http://lwn.net/Articles/105948/.

[61] OMG. Real-time corba 2.0: Dynamic scheduling specification. Technical report, Object
Management Group, September 2001.

[62] L. Ramaswamy and B. Ravindran. A best-effort communication protocol for real-time
broadcast networks. In ICPP ’02: Proceedings of the 2002 International Conference on
Parallel Processing, page 519, Washington, DC, USA, 2002. IEEE Computer Society.

[63] A. Srinivasan, P. Holman, J. H. Anderson, and S. Baruah. The case for fair multipro-
cessor scheduling. In IEEE Workshop on Parallel and Distributed Real-Time Systems,
page 114.1, April 2003.

[64] P. Stenström. A survey of cache coherence schemes for multiprocessors. Computer,
23(6):12–24, 1990.

[65] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobb’s Journal, 30(3), 2005.

[66] T. G. Tan and W. Hsu. Scheduling multimedia applications under overload and non-
deterministic conditions. IEEE RTSS, 0:178, 1997.

Piyush Garyali Bibliography 125

[67] The Open Group. MK7.3a Release Notes. The Open Group Research Institute, Cam-
bridge, Massachusetts, October 1998.

[68] N. M. Vallidis. Whisper: a spread spectrum approach to occlusion in acoustic tracking.
PhD thesis, The University of North Carolina at Chapel Hill, 2002.

[69] J. Wang. Soft real-time switched ethernet: Best-effort packet scheduling algorithm,
implementation, and feasibility analysis. Master’s thesis, Virginia Tech, Sep 2002.

[70] J. Wang and B. Ravindran. Time-utility function-driven switched ethernet: Packet
scheduling algorithm, implementation, and feasibility analysis. IEEE Trans. Parallel
Distrib. Syst., 15(2):119–133, 2004.

[71] A. Wellings. Concurrent and Real-Time Programming in Java. John Wiley & Sons,
2004.

[72] H. Wu. Energy-Efficient, Utility Accrual Real-Time Scheduling. PhD thesis, Virginia
Tech, July 2005.

[73] H. Wu, B. Ravindran, and E. D. Jensen. Utility accrual real-time scheduling under
the unimodal arbitrary arrival model with energy bounds. IEEE Trans. Comput.,
56(10):1358–1371, 2007.

[74] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. Energy-efficient, utility accrual scheduling
under resource constraints for mobile embedded systems. ACM Trans. Embed. Comput.
Syst., 5(3):513–542, 2006.

