
Analysis and Evaluation of Methods for Activities in the Expanded

Requirements Generation Model (x-RGM)

Lester Oscar Lobo

Thesis submitted to the Faculty of

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

Approved:

James D. Arthur, Chair

_________________________ _________________________

Richard E. Nance Stephen H. Edwards

July, 2004

Blacksburg, Virginia

Keywords: Requirements Generation, Software Engineering, Methods, Techniques

Copyright 2004, Lester Lobo

Analysis and Evaluation of Methods for Activities in the Expanded

Requirements Generation Model (x-RGM)

Lester Oscar Lobo

(ABSTRACT)

In recent years, the requirements engineering community has proposed a number of

models for the generation of a well-formulated, complete set of requirements. However,

these models are often highly abstract or narrowly focused, providing only pieces of

structure and parts of guidance to the requirements generation process. Furthermore,

many of the models fail to identify methods that can be employed to achieve the activity

objectives. As a consequence of these problems, the requirements engineer lacks the

necessary guidance to effectively apply the requirements generation process, and thus,

resulting in the production of an inadequate set of requirements.

To address these concerns, we propose the expanded Requirements Generation Model

(x-RGM), which consists of activities at a more appropriate level of abstraction. This

decomposition of the model ensures that the requirements engineer has a clear

understanding of the activities involved in the requirements generation process. In

addition, the objectives of all the activities defined by the x-RGM are identified and

explicitly stated so that no assumptions are made about the goals of the activities

involved in the generation of requirements. We also identify sets of methods that can be

used during each activity to effectively achieve its objectives. The mapping of methods to

activities guides the requirements engineer in selecting the appropriate techniques for a

particular activity in the requirements engineering process. Furthermore, we prescribe

small subsets of methods for each activity based on commonly used selection criteria

such that the chosen criterion is optimized. This list of methods is created with the

intention of simplifying the task of choosing methods for the activities defined by the x-

RGM that best meet the selection criterion goal.

 iii

ACKNOWLEDGEMENTS

I am thankful for the encouragements and guidance of my advisor, Dr. James Arthur,

who has continuously provided me with constructive and insightful feedback on my work.

I could always count on him for moral and intellectual support, and I owe him a great

deal more than just this thesis. I am thankful to Dr. Richard Nance and Dr. Stephen

Edwards for agreeing to participate in the evolution and evaluation of the research effort.

I am extremely grateful to my parents and loved ones, who have always supported and

encouraged me in my endeavors. In addition, I am thankful to the wonderful Indian

community that has helped me in adjusting and flourishing in a new environment.

Last but not least I am grateful to the computer science department, faculty, staff and

fellow graduate students who were an essential part of my overall learning experience.

 iv

TABLE OF CONTENTS

1. Introduction.. 1

1.1 State of Affairs in the Software Industry .. 1

1.1.1 Software Development Life Cycle Approach... 2

1.1.2 Shifting Focus in the SDLC.. 3

1.2 Importance of Requirements... 4

1.3 Problem Motivation .. 6

1.4 Problem statement... 8

1.4.1 Key Issues ... 9

1.5 Solution Approach .. 12

2. Background .. 13

2.1 Requirements Engineering and the Development Life Cycle........................... 14

2.1.1 Waterfall Model .. 14

2.1.2 Prototyping Model .. 16

2.1.3 Incremental Model .. 17

2.1.4 Spiral Model.. 19

2.1.5 Extreme Programming (XP) ... 21

2.2 Requirements Engineering Process and Models... 23

2.2.1 Requirements Generation.. 23

2.2.1.1 Requirements Elicitation... 24

2.2.1.2 Requirements Analysis ... 26

2.2.1.3 Requirements Specification .. 27

2.2.1.4 Requirements verification and validation ... 29

2.2.1.5 Requirements Management .. 30

2.2.2 Requirement Models... 31

2.2.2.1 Requirements Engineering Process Model ... 32

2.2.2.2 Requirements Triage... 34

2.2.2.3 Knowledge Level Process Model ... 36

 v

2.2.2.4 Win-Win Spiral Model ... 38

2.2.2.5 Process Framework... 40

2.2.2.6 Requirements Generation Model (RGM) ... 42

2.2.2.7 Comparison of the Requirement Engineering Models.......................... 43

2.3 Requirement Engineering Methods .. 45

2.3.1 Methods for Problem Synthesis .. 45

2.3.2 Methods for Requirements Elicitation .. 47

2.3.3 Methods for Requirements Analysis... 48

2.3.4 Methods for Requirements Specification.. 49

2.3.5 Methods for Requirements Verification and Validation........................... 50

2.3.6 Methods for Requirements Management.. 51

2.4 Research Issues Revisited ... 52

2.4.1 Problem Statement and Issues ... 52

3. The Expanded Requirements Generation Model (x-RGM) 54

3.1 Requirements Capturing ... 56

3.1.1 Customer / Requirements Engineer Indoctrination................................... 57

3.1.2 Requirements Elicitation Meeting .. 58

3.1.3 Local Analysis .. 61

3.1.3.1 Rationalization and Justification... 62

3.1.3.2 Prioritization ... 64

3.1.3.3 Verifying Quality Attributes ... 66

3.1.3.4 Stakeholder Validation.. 68

3.2 Global Analysis... 70

3.2.1 Risk Analysis .. 71

3.2.2 Cost/Schedule Estimation ... 73

3.2.3 Price Analysis ... 76

3.2.4 Feasibility Analysis... 78

3.2.5 Conflict Resolution ... 80

3.3 Organization and Compilation.. 82

3.4 Confirmational Analysis ... 84

 vi

3.4.1 Quality Adherence .. 85

3.4.2 Traceability Analysis .. 87

3.4.3 Customer Validation Meeting... 89

3.4.4 Requirements Reformulation .. 91

3.5 Summary... 92

4. Synchronization of Methods and Activities... 93

4.1 Methods for Requirements Capturing Phase .. 94

4.1.1 Customer/requirements engineer Indoctrination....................................... 94

4.1.1.1 Print Material .. 95

4.1.1.2 Oral Presentation... 96

4.1.2 Requirements Elicitation Meeting .. 97

4.1.2.1 Interviews.. 97

4.1.2.2 Observation ... 99

4.1.2.3 Task Demonstration .. 100

4.1.2.4 Document Studies ... 101

4.1.2.5 Questionnaires... 102

4.1.2.6 Brainstorming ... 103

4.1.2.7 Focus Groups .. 104

4.1.2.8 Requirements Workshops ... 105

4.1.2.9 Prototyping.. 106

4.1.3 Rationalization and Justification... 107

4.1.3.1 Brainstorming ... 107

4.1.3.2 I-Time ... 108

4.1.3.3 Task Oriented Discussion ... 109

4.1.3.4 IBIS ... 110

4.1.4 Prioritization ... 111

4.1.4.1 Interview / Guided Discussion.. 111

4.1.4.2 Analytic Hierarchy Process (AHP)... 112

4.1.4.3 Binary Search Tree ... 113

4.1.4.4 Priority Groups.. 113

 vii

4.1.5 Verifying Quality Attributes ... 114

4.1.5.1 Round-Robin Review.. 115

4.1.5.2 Inspections .. 116

4.1.5.3 Audits.. 117

4.1.6 Stakeholder Validation.. 118

4.1.6.1 Walkthroughs.. 118

4.1.6.2 Scenarios ... 119

4.1.6.3 Storyboarding.. 120

4.1.6.4 Interview, Prototyping and Guided Discussion 121

4.2 Methods for Global Analysis Phase.. 121

4.2.1 Risk Analysis .. 122

4.2.1.1 Criticality Analysis ... 123

4.2.1.2 Failure Modes, Effects and Criticality Analysis (FMECA)................ 124

4.2.1.3 Risk Reduction Leverage (RRL) .. 125

4.2.1.4 Fault Tree Analysis ... 127

4.2.1.5 Event Tree Analysis.. 128

4.2.1.6 Monte Carlo Simulation.. 130

4.2.2 Cost Schedule Estimation ... 131

4.2.2.1 Software Life Cycle Management (SLIM) ... 131

4.2.2.2 Constructive Cost Model (COCOMO) ... 132

4.2.2.3 COCOMO II ... 134

4.2.2.4 Functions Points.. 135

4.2.2.5 Work Breakdown Structure .. 138

4.2.2.6 Gantt Chart.. 140

4.2.2.7 Program Evaluation and Review Technique (PERT) 141

4.2.2.8 Critical Path Method (CPM)... 143

4.2.3 Price Analysis ... 145

4.2.3.1 Comparative Price Analysis.. 145

4.2.3.2 Comparisons to Independent Cost Estimates...................................... 147

4.2.3.3 Value Analysis .. 148

4.2.3.4 Written Surveys / Questionnaires .. 149

 viii

4.2.3.5 Oral Survey ... 150

4.2.3.6 Study of Similar Companies / Products .. 151

4.2.3.7 Ask Suppliers .. 152

4.2.4 Feasibility Analysis... 153

4.2.4.1 Decision Analysis under Uncertainty ... 153

4.2.4.2 PMI ... 156

4.2.4.3 Payback Period.. 157

4.2.4.4 Net Present Value ... 158

4.2.4.5 Internal Rate of Return.. 160

4.2.4.6 Pilot experiments .. 161

4.2.5 Conflict Resolution ... 161

4.2.5.1 Brainstorming / Interviews ... 162

4.2.5.2 Go-Around .. 163

4.2.5.3 Positional Bargaining.. 164

4.2.5.4 Interest Based Bargaining ... 165

4.3 Methods for Organization and Compilation Phase... 166

4.3.1 Affinity Analysis... 167

4.3.2 Functional Hierarchy Decomposition ... 168

4.4 Methods for Confirmational analysis Phase ... 169

4.4.1 Quality Adherence .. 169

4.4.2 Traceability Analysis .. 170

4.4.2.1 Traceability Matrix ... 170

4.4.2.2 Traceability Tree... 172

4.4.2.3 Inspections / Round-Robin Review .. 173

4.4.3 Customer Validation Meeting... 173

4.4.4 Requirements Reformulation .. 174

4.5 Selection of Methods for Optimization of Common Criteria 175

4.5.1 Methods Based on Time Criteria .. 175

4.5.2 Methods Based on Personnel Criteria... 180

4.5.3 Methods Based on Cost Criteria ... 187

4.5.4 Methods Based on Completeness Criteria .. 193

 ix

4.6 Summary... 200

5. Summary and Future Work .. 201

5.1 Summary... 202

5.2 Contributions... 203

5.3 Future Work .. 207

References.. 209

Appendix A: Organization Templates for Requirements ... 232

Appendix B: The Expanded Requirements Generation Model................................ 237

Appendix C: Description of Activities in the x-RGM.. 241

Appendix D: Methods for Activities in the x-RGM..249

 x

LIST OF FIGURES

 Figure 1.1 Waterfall model .. 2

 Figure 1.2 Distribution of defects and effort distributions to fix defects....................... 5

 Figure 2.1 Waterfall model .. 15

 Figure 2.2 Prototyping model .. 16

 Figure 2.3 Incremental model .. 18

 Figure 2.4 Spiral model.. 19

 Figure 2.5 Requirements engineering phase in Extreme Programming 21

 Figure 2.6 Requirements Engineering Process Model... 32

 Figure 2.7 Requirements Triage .. 35

 Figure2.8 Knowledge Level Process Model... 36

 Figure 2.9 Win-Win Spiral Model ... 38

 Figure 2.10 Win-Win Negotiation Model.. 39

 Figure 2.11 Requirements Engineering Process Framework.. 41

 Figure 2.12 Requirements Generation Model... 42

 Figure 2.13 Fishbone diagram .. 46

 Figure 3.1 Expanded Requirements Generation Model.. 55

 Figure 3.2 Requirements capturing... 56

 Figure 3.3 Customer/requirements engineer indoctrination 57

 Figure 3.4 Requirements elicitation meeting .. 59

 Figure 3.5 Local analysis .. 61

 Figure 3.6 Rationalization and justification.. 62

 Figure 3.7 Prioritization .. 65

 Figure 3.8 Verifying quality attributes.. 66

 Figure 3.9 Requirements quality attributes ... 67

 Figure 3.10 Stakeholder validation ... 68

 Figure 3.11 Global analysis phase .. 70

 Figure 3.12 Cost and price analysis .. 77

 Figure 3.13 Conflict resolution... 81

 xi

 Figure 3.14 Organization and compilation ... 83

 Figure 3.15 Confirmational analysis... 85

 Figure 3.16 Quality attributes ... 86

 Figure 3.17 Customer validation and reformulation... 90

 Figure 4.1 Requirements capturing phase... 94

 Figure 4.2 Global analysis phase .. 122

 Figure 4.3 Risk exposure contours.. 126

 Figure 4.4 Simple fault tree .. 128

 Figure 4.5 Event tree shown with fault trees used to evaluate probabilities of different

risk factors... 129

 Figure 4.6 Types of probability distributions ... 130

 Figure 4.7 Gantt chart ... 140

 Figure 4.8 PERT chart .. 142

 Figure 4.9 Example decision tree.. 154

 Figure 4.10 Propagation of costs in the decision tree .. 155

 Figure 4.11 Functional hierarchy diagram... 168

 Figure 4.12 Traceability matrix in Requisite Pro... 171

 Figure 4.13 Traceability tree in Requisite Pro ... 172

 xii

LIST OF TABLES

 Table 2.1 Input and output flows in the Knowledge Level Process Model................. 37

 Table 2.2 Pros / cons and process coverage of requirement engineering models........ 44

 Table 3.1 Activity characteristics .. 55

 Table 3.2 Comparison of needs and requirements... 60

 Table 3.3 Comparison of traceability approaches [Kean 97] 88

 Table 4.1 Scale for pair-wise comparison.. 112

 Table 4.2 Modes of development... 133

 Table 4.3 Values of a, b and c for the Basic COCOMO.. 133

 Table 4.4 Weighting scale for the function types .. 136

 Table 4.5 Complexity of the function types... 136

 Table 4.6 Factors of influence ... 138

 Table 4.7 Example of using PMI technique... 157

 Table 4.8 Calculations in the Net Present Value technique....................................... 159

 Table 4.9 Calculations in the Internal Rate of Return technique............................... 160

 Table 5.1 Activities identified in the x-RGM .. 204

 Table 5.2 Number of methods identified for activities in the x-RGM....................... 206

 Table 5.3 Number of methods identified based on selection criteria 207

Chapter 1. Introduction

 1

Chapter 1

Introduction

1. Introduction
This thesis presents the synchronization of methods/techniques with requirement

engineering activities, which are conducted by the requirements engineer to obtain a

well-defined requirement specification. This chapter motivates the need for this research,

and introduces the research issues involved and the solution approach taken to address

them.

1.1 State of Affairs in the Software Industry
Beginning in the early seventies, the software industry has seen an increase in the

complexity of the applications developed. However, the software methodologies in the

seventies were inadequate for complex and large scale projects; this resulted in frequent

budget overruns and schedule delays. To overcome these problems, it was necessary to

modify software development approaches in order to cope with project complexities.

The software industry of the present day has a better understanding of the activities

involved in the development of software. The different phases of development have been

identified and organized in the form of life cycle models, which have provided a much

needed structure to the development process [Sud 2003]. In addition, several techniques

have been proposed to support the various activities in the software development life

Chapter 1. Introduction

 2

cycle [Leffingwell 2000]. However, these advances have not ended the problems

encountered during software development; projects continue to exceed budget and

schedule constraints. An additional problem is that the software delivered often does not

meet the customer’s intent.

In the sections that follow, we provide a brief description of the software development

life cycle and its evolution.

1.1.1 Software Development Life Cycle Approach

In order to address the initial of lack of structure in the software development process,

several models were proposed. These models typically contained the following phases:

Requirements Analysis, Design, Implementation, Integration and Testing, and

Maintenance [Pressman 2001].

The first software development life cycle model (SDLC) that was proposed was the

Waterfall Model [Royce 70], which placed these phases in a sequential order as shown in

Figure 1.

 Figure 1.1 Waterfall model

The objectives of each of these phases are given below:

• Requirements Analysis: This phase involves understanding the function,

behavior, performance and interface of the proposed system. In addition, the

software requirements are documented and reviewed by the customer.

• Design: It involves translating requirements into a system representation that can

be assessed for quality before coding begins. The focus is on data structures,

software architecture, interface representation and algorithmic details.

• Coding: This phase translates design into a machine readable form.

• Testing: This involves conducting tests to uncover errors in code and to ensure

that the results produced are correct for a given input.

Requirements
Analysis

Design

Coding

Testing

Maintenance

Chapter 1. Introduction

 3

• Maintenance: This phase is necessary to incorporate changes to the software.

The drawback to the waterfall model is its rigidity and its oversight of requirements creep

[Carter 2001]. However, the model did identify the major software development phases

which formed the core of the models proposed thereafter.

To overcome inadequacies of the waterfall model, several other models such as the

iterative enhancement model [Basili 75], prototyping model [Gomma 81], spiral model

[Boehm 88], and Extreme Programming [Beck 99] have been proposed.

1.1.2 Shifting Focus in the SDLC

With the advent of the SDLC models, the phases in the development process became

more apparent. However, the techniques and activities for these phases were still not

clearly defined; this resulted in the software engineer having difficulties in conducting the

different phases. Hence, it was crucial to begin refining the SDLC phases in order to

provide the necessary guidance on performing these phases during the development

process.

Although logic dictates that attention should be directed towards the first SDLC phase,

requirements analysis, most of the examination emphasis was initially placed on the end

product. As a result, we have seen the re-examination and phase refinement being

addressed in reverse order [Groener 2002]. Studies show that 60-70% of the product life

cycle is spent in the maintenance phase [Bravo 93]. The high cost and difficulty of

maintaining code prompted the software engineers to focus on the testing phase.

Techniques for black box and white box testing were identified and used extensively for

the detection on errors in code [IPL 96]. Testing was further facilitated by tools which

automated testing methods.

On analyzing the code during testing, it was realized that the code was being written in an

ad-hoc fashion, which made the code difficult to comprehend. Hence, coding guidelines

were developed; this improved the readability and understandability of the code.

Chapter 1. Introduction

 4

Integrated Development Environments (IDE)1 were developed to help the programmers

in writing and debugging the code.

After the coding phase, the refinement focus shifted to the design phase. The design

phase was broken down to high level and low level phases on realizing that “step-wise”

refinement, (solving complex problems by breaking them down to smaller units) could be

successfully applied to design. The high level phase provides an abstract view of the

design whereas low level design is more detailed and refined [Robertson 99]. Besides this

development, new design paradigms, such as the object-oriented paradigm, were

proposed as it helped in adding better structure and maintainability to the code. Design

notations, such as those proposed by the Unified Modeling Language (UML), and

supporting tools were developed for better design representations [Jacobson 99].

The requirements analysis phase was the last phase to receive attention from the software

engineering community, and it is only in recent years that a meaningful refinement of this

phase is taking place. Prior to this, the somewhat inappropriate name “Requirements

Analysis” contributed to the perception that activities like problem analysis and

elicitation were minor ones [Davis 93].

1.2 Importance of Requirements

The focus on the requirements phase is crucial as a system is only as good as its

requirements. Moreover, all of the other phases in the SDLC depend on the requirements

phase in one way or another. The importance of requirements is continuously reinforced

as we recognize the manifold relationships between the quality of the product and the

quality of the requirements from which the product is developed [Sidky 2003]. In

addition, empirical studies have shown that incomplete, inconsistent or ambiguous

requirements have a critical impact on the quality of the developed product [Thayer 76].

The significance of requirements is succinctly captured by the following statement

[Brooks 87]:

1 IDEs provide an integrated set of tools and artifacts supporting a process; e.g. Microsoft’s Visual Studio

Chapter 1. Introduction

 5

Distribution of Defects

����������	
����������	
����������	
����������	
����
�
��
��
��
�����

��������������������
������������

� 	���� 	���� 	���� 	�������
������������ ��
�����
�����
�����
�������

����������������

��
�����
�����
�����
�������

��
��
��
������

� 	���� 	���� 	���� 	�������
����������������

��������������������

����������������������	
����������	
����������	
����������	
����
�������������

Distribution of Effort to Fix Defects

“The hardest single part of building a software system is

deciding precisely what to build. No other part of the conceptual

work is as difficult as establishing the detailed technical

requirements, including all the interfaces to people, to machines,

and to other software systems. No part of the work so cripples

the resulting system if done wrong. No other part is more

difficult to rectify later”

 - F.P. Brooks

Supporting the above statement, Boehm claims that corrections of faulty requirements

later in the life cycle could cost up to 200 times more than correction during the

requirements phase [Boehm 81]. The importance of requirements is further emphasized

by Figure 1.2, which depicts the distribution of defects in the SDLC and the effort needed

to fix those defects [Leffingwell 2000]. It can be clearly seen that the bulk of the effort

(82%) is attributed to fixing requirement errors.

 Figure 1.2 Distribution of defects and effort distributions to fix defects

Several studies have been conducted which illustrate that requirements hold the key for

the success of a project. The CHAOS report states that five of the top eight causes for

project failure relate to requirements [Standish 95]. Also, the study conducted by

Williams cites poor requirements as the main risk factor for project success [Williams 98].

Chapter 1. Introduction

 6

These studies indicate that a clear and complete set of requirements lays the foundation

for a successful project.

With greater awareness of requirements by the software engineering community, the

‘requirements analysis’ phase is now termed as ‘requirements engineering’ and comprises

the following activities [Thayer 97]:

• Requirements Elicitation: The process through which the customers and the

requirements engineer discover, articulate, record and understand the user needs

and constraints.

• Requirements Analysis: This involves examining the customers’ and users’

needs in order to obtain a set of requirements. This activity involves assessing the

risk, feasibility, cost, schedule and other factors which affect the requirements.

• Requirements Specification: This activity records the elicited and analyzed

requirements in a precise and unambiguous manner. The deliverable of this

activity is the software requirements specification (SRS), which is the binding

document between the customer and the developer.

• Requirements Verification: The process of ensuring that the SRS is compliant

with system standards, conformant to document standards, and is adequate

enough to support the design phase.

• Requirements Management: This activity involves the planning and controlling

of all the other requirement engineering activities. In addition, this activity

facilitates communication, in case any changes are made.

Software engineering researchers are now re-examining the activities in the requirements

engineering phase in order to make the task of conducting these activities easier.

1.3 Problem Motivation

Over the past few years, the software engineering community has acknowledged the

significance of research on requirements and, as a consequence, the present day software

industry has a better understanding of the requirements engineering phase. However, in

Chapter 1. Introduction

 7

spite of the increased awareness, requirements engineering is still plagued with problems

which have hampered the effective application of this discipline in the software industry.

In this section, we highlight the hurdles in requirements engineering that motivate the

need for our research.

The main problem in applying requirements engineering in the industry is the lack of a

comprehensive requirements engineering model that can be followed to produce a good

requirements document [Bubenko 95]. Most of the literature describes requirements

models as being composed of activities such as elicitation, analysis, specification,

verification and management. These descriptions, however, are at a high level of

abstraction which makes it difficult to conduct them in real project scenarios. For

example, the analysis activity consists of several sub-activities to evaluate risk, cost,

feasibility, schedule, etc. Knowledge of the interaction among these sub-activities and the

sequence in which they are executed is necessary in order to achieve the goals of the

higher-level activities. In effect, the lack of specific details in the definition of the

requirements engineering model also results in unclear procedures for conducting the

required activities. Consequently, the requirements engineer faces several problems when

such an abstract model drives the requirements phase.

Another problem is that a majority of the requirements engineering models address only

portions of the complete requirements process. For example, the RE process model

proposed by Debbie Richards provides a set of guidelines for the elicitation and analysis

phases, but fails to address the verification and specification phases [Richards 2000]. The

integration of models focusing on different segments of the requirements process is a

difficult task because the models tend to overlap and have their own specific

characteristics. Moreover, such an amalgamation of different models can result in a loose

coupling of activities causing a loss of information as requirements evolve through the

engineering process. Finally, models that do address the entire requirements process often

lack the descriptive detail needed for the defined activities.

One last concern with existing requirement engineering models is that activity objectives

are often implied rather than explicitly stated. As a consequence, the requirements

engineer lacks a clear understanding of the appropriate objective(s) which, in turn, has a

Chapter 1. Introduction

 8

negative impact on the outcome of the requirements engineering phase. Thus, the

problems with the current requirements engineering models strongly indicate the need for

a clear enunciation of activities and associated objectives.

An additional obstacle in requirements engineering is concerned with the selection of

methods to achieve the objectives of the activities defined by the requirements generation

process. Currently there exist a number of methods for the requirements engineering

process, but these methods are mapped to the high level activities (elicitation, analysis,

specification, verification and management); there is a lack of coordination of methods

with lower level activities. [Davis 2003]. For example, the literature specifies techniques

such as scenarios, interviews, and inspections, for the high level analysis activity.

Methods are not listed for evaluating the cost, rationale, feasibility as defined by lower

level activities. The consequence of methods being mapped to activities of higher-level

abstraction is that the requirements engineer has difficulty in selecting the appropriate

methods for a sub-activity. Hence, the requirements engineer often selects methods in an

ad-hoc fashion, resulting in an output which inadequately addresses the activity objective.

To compensate, an additional set of methods are applied, causing additional burden on

the budget and the schedule. Thus, it is crucial to map methods to activities of the

requirements process model, which also must be specified at the right level of granularity,

to aid the requirements engineer in his/her selection of methods.

This research is motivated by the need to solve the problems discussed above in order to

make the requirements engineering discipline easier to implement within the software

development life cycle.

1.4 Problem statement

The problems examined in the previous section have shown that the lack of a structured,

well-defined requirements engineering model can hamper the goal of obtaining a

complete and precise set of requirements. In addition, we note that the absence of

coupling methods and activities at the right level of decomposition affects the

requirements engineer in his decisions regarding the choice of methods. In effect, the

problems stem from the lack of an appropriately decomposed/refined requirement

Chapter 1. Introduction

 9

engineering model, and from the lack of a well-defined mapping between methods and

activities of that model.

This research attempts to address these problems by defining a prescriptive model for the

selection of methods for various activities in the requirements engineering process, so

that the objectives of the activities are achieved. This model is prescriptive because it

prescribes an appropriate set of methods to be used for each activity defined at lower

levels of decomposition. In addition, the model further refines the selected set of methods

for each activity based on common selection criteria such as cost, time, etc. (detailed

explanation in Chapter 4)

The next two sections discuss the issues involved in solving the recognized problem and

the approach taken to obtain the solution.

1.4.1 Key Issues

To obtain the solution to the problems discussed, the following key issues need to be

addressed.

• Incomplete RE model

• Inadequate level of activity abstraction

• Implicit activity objectives

• Methods mapped to high level activities only

• Lack of guidance in selecting among methods for a specific RE activity

We explain each of these issues in detail in the next few paragraphs.

•••• Incomplete RE model: One of the research problems concerns the lack of a

comprehensive requirements engineering model. To overcome this obstacle, a

model is required which covers the entire requirements engineering process and

can accommodate change (decomposition / refinement). However, most of the

existing requirements engineering models are incomplete and / or ill-defined.

Many of the models consider only a subset of the major phases in the

requirements process. For example: Requirements Triage by Alan Davis covers

Chapter 1. Introduction

 10

only the analysis activity and overlooks the other activities in the requirements

process [Davis 99]. Although there are models which address the complete

requirements engineering process, unfortunately they often are either overly

complicated, or difficult to change. For example, the Knowledge level process

model [Herlea 99] addresses the complete requirements process but the

interactions in the model are complex, which makes the task of decomposing the

model difficult. Thus, the first issue is the identification of a model which

encompasses all the major phases in the requirements process and accommodates

change.

•••• Inadequate level of activity abstraction: The high level abstraction of the

activities in the requirements engineering models is another factor which

complicates the application of these activities in a real project scenario. The high

level of abstraction at which these activities are defined results in the hiding of

sub-activities, their interrelationships and their sequence of execution. As a

consequence, the requirements engineer may skip crucial sub-activities, and can

adversely affect the outcome of the requirements phase. Hence, the second issue

is the decomposition of the high level activities to the right level of abstraction so

that the model covers all the important sub-activities. The decomposition should

be performed such that the activities are neither too high level (e.g. analysis

activity) nor too low level (e.g. steps within verification activity).

•••• Activity objectives implicit: Another aspect of the current requirements

engineering models that complicates the requirements engineering process is that

the activity objectives are often implied rather than stated. As the models are

highly abstract, the defined activities specify only the top level objective, while

the objectives of the lower level activities are either ignored or simply implied.

For example, the requirements engineering model proposed by Kotonya states

that the objective of the analysis phase is to establish a set of unambiguous

requirements that can be used as the basis for system development [Kotonya 98].

In this model, the lower level activity objectives are implied in the description of

the analysis phase. Thus, when such models are followed it is possible that some

Chapter 1. Introduction

 11

of the objectives are overlooked, and this may prove to be critical. Hence, to make

the requirements engineering model easy to follow, it is necessary to present

activities at the right level of abstraction and to state their objectives explicitly.

•••• Methods mapped to high level activities: In the current requirements

engineering scenario, a major problem faced by the requirements engineers is the

selection of methods for achieving the objectives of the activities. This is mainly

because the methods are defined only for the high level activities in the

requirements engineering model. The mapping of methods to higher level

activities is a result of models being specified at a high level of abstraction. Thus,

the requirements engineer lacks the necessary guidance in selecting the

appropriate methods for particular lower level activities. Put in this situation, the

requirements engineer chooses the methods in an ad-hoc fashion; this may

compromise the quality of the requirements. Hence, in order to assist the

requirements engineer in choosing the appropriate methods to perform a particular

activity, the appropriate set of methods must be identified and synchronized with

the activity objectives.

•••• Lack of guidance in selecting among methods for a specific RE activity: Each

activity in the requirements engineering process can be performed using any

number of methods; each method has its own pros and cons, satisfying the activity

objectives to varying extents. The choice of method to use should be based on

some common selection criteria like time, cost, personnel needed, etc. For

example, for the elicitation activity, brainstorming is less time consuming when

compared to interviews. The task of selecting methods for a particular activity is

simplified if the requirements engineer is provided with a list of activity specific

methods that is organized according to the achievement of the selection criteria.

Thus, the final issue is to find such common selection criteria and determine the

path of methods for a requirements engineering process based on a chosen criteria.

Chapter 1. Introduction

 12

1.5 Solution Approach

The solution approach consists of two major phases:

• Phase 1: Enhancement to the requirements engineering model – Involves

identifying requirements engineering model, identifying activities at the

appropriate level of abstraction and determining activity objectives

• Phase 2: Synchronization of the methods with activities – involves mapping

methods to activities and choosing methods based on selection criteria.

Phase 1: Enhancement to the requirements engineering model: The starting point of

this phase is the selection of a requirements engineering model which is well-defined and

complete. The Requirements Generation Model (RGM) [Arthur 99] is a partial answer to

this need as it includes all the major requirements engineering phases and is easy to

modify. In addition, the RGM has decomposed the requirements capturing activity into

its constituent sub-activities. However, the activities are still at a high level of abstraction

and hence, must be further decomposed and refined to reflect the appropriate level of

granularity. The objectives for the activities in the expanded RGM (x-RGM) must then be

identified and explicitly stated.

Phase 2: Synchronization of the methods with activities: After the requirements

engineering model is identified, the activities refined and the objectives determined,

phase 2 of the research commences. In this phase, methods used in the industry are

analyzed and their pros and cons are recorded. The methods are then mapped to the

activities of the x-RGM based on the activity objectives. Finally, commonly used criteria,

like time and effort, are identified and linked to methods that support them.

Chapter 2. Background

 13

Chapter 2

Background

2. Introduction

The focus of this chapter is to present the background for the research described in this

thesis. Specifically, the contents of this chapter are structured to address four main

objectives:

• To provide a comprehensive description of the software development life cycle

models (SDLC) used in the industry, with the emphasis on the requirements phase.

The focus is on obtaining insights into the requirements process and how this

phase relates to these models.

• To present a literature review on different requirements engineering processes and

highlight the advantages of these processes. The positive features of the reviewed

requirement engineering models are useful in developing the expanded RGM.

• To describe the research conducted on identifying methods for the various phases

in the requirements generation process.

• To summarize the problems faced in the field of requirements engineering and the

issues that need to be addressed to obtain solutions.

Chapter 2. Background

 14

The first objective is addressed in Section 2.1, where the role of requirements engineering

in the SDLC is explored. This section provides a description of the various SDLC models

and examines the integration of the requirements phase with the rest of the model. In

addition, the models are studied to gather insights about how the requirements

engineering phase is conducted.

Section 2.2 addresses the second objective and introduces the various requirements

engineering approaches presented in the literature. The main purpose of this section is to

provide an understanding of these approaches and also to emphasize on the pros and cons

of these approaches. The strengths and weaknesses of these approaches guide the

enhancement and refinement of the requirements model described in Chapter 3.

The third objective is covered in Section 2.3, where the research on identifying methods

for the requirements engineering phase is discussed. This section highlights the methods

proposed for the different requirement engineering activities, but does not provide

detailed description of these methods - this is the focus of Chapter 4.

Section 2.4 addresses the final objective and places it in context of the problems and

issues addressed in this research. This main purpose of this section is to serve as a

prelude for Chapter 3 and Chapter 4.

2.1 Requirements Engineering and the Development Life Cycle

In this section, we examine several life cycle models used in the industry and the role of

the requirements engineering phase in these models. Many models exist for the software

life cycle, the series of steps that a system goes through from the first realization of need,

through construction, operation and retirement [IEEE 90]. Due to the large number of

SDLC models, we briefly describe only a few of the better- known life cycle models.

2.1.1 Waterfall Model

The waterfall model suggests a linear, systematic and sequential approach to the

development of software as depicted in Figure 2.1. The model begins with the

Chapter 2. Background

 15

Requirements
Analysis

Design

Implementation

Integration
and Test

Elicitation
Analysis

Specification
V&V

Management

requirements analysis phase and progresses through design, implementation, integration

and testing.

.

 Figure 2.1 Waterfall model

The requirements phase appears at the start of the model and it culminates with the

production of the SRS. This phase is at a high level of abstraction and is not explained in

detail. The high level requirement objectives pertaining to the activities of elicitation,

analysis, specification, verification and validation (V&V), and management are identified.

However, neither the process of achieving these objectives nor the methods for this phase

are well-defined.

The waterfall model has been criticized for representing an unrealistic approach to

software development [Charette 86]. Software projects in industry seldom follow the

sequential pattern that the waterfall model proposes. To overcome this drawback, the

model can be modified to incorporate iteration. Because iteration is often indirectly

implemented, changes in specification and design can cause confusion as the project

proceeds [Pressman 2001]. Furthermore, the waterfall model stipulates that requirements

be completely specified before rest of the development can proceed. Freezing

requirements before design may be possible for some projects, but it is difficult for the

majority of the software projects because the user is often unsure about his/her

requirements. The waterfall model has problems in accommodating this uncertainty

during requirements analysis and the effective management of changing requirements. In

Chapter 2. Background

 16

Management

Specification
V&V

Analysis Elicitation

effect, the requirements engineering phase in this model is rigid and provides process

details at a high level of abstraction.

Despite these limitations, the waterfall model is the most widely used process model. It is

well suited for projects where the requirements are well understood. To provide

flexibility to the waterfall model, the literature includes a number of variations of this

model [Holt 97].

2.1.2 Prototyping Model

The goal of the prototyping model is to address several limitations of the waterfall model.

Instead of freezing the requirements before design, a throwaway prototype is developed

to help better understand the requirements. As a result, the model produces more stable

requirements that change less frequently.

 Figure 2.2 Prototyping model

The prototyping model consists of an iterative requirements analysis phase as shown in

Figure 2.2. [Gomaa 81] Requirements analysis commences with the preliminary

requirements gathering activity. This is followed by a rapid design phase which focuses

on the parts of requirements that are visible to the users. The design results in the

construction of a prototype that is functionally a subset of the final product. The users

then allowed to “play” with the prototype and the feedback obtained is used to drive the

next iteration of the requirements phase. Prototypes are generally throwaways and it is

Chapter 2. Background

 17

the responsibility of the software engineer to make the customer understand that the

product has to be rebuilt in order to maintain a high level of quality [Brooks 95]. The

prototyping cycle is repeated until, in the judgment of the software engineers, the benefit

from further changing the system and obtaining feedback is outweighed by the cost and

time involved in conducting the iteration [Jalote 99].

The requirements analysis phase in the prototyping model is highly iterative and

culminates with the generation of the SRS. Prototyping is an iterative cycle comprising

design, coding and testing. Thus, the requirements phase is like an iterative waterfall

model generating the SRS. An important characteristic of the prototyping model is that it

emphasizes user feedback to obtain a clear and stable set of requirements. The literature

does provide a description of the requirements generation process in the prototyping

model, but this description lacks the identification of activities, objectives and methods.

Prototyping is an attractive approach for complicated and large systems for which there

are no existing systems to help determine the requirements. In addition, prototypes are an

effective method to demonstrate project feasibility and identify risks associated with the

project.

2.1.3 Incremental Model

The incremental model combines the iterative process of prototyping and the linear

waterfall model [Basili 75]. The basic idea is that the software should be developed in

increments with each increment adding some functional capability to the product until the

complete system is developed. Thus, the incremental model applies the waterfall

approach in a staged fashion as time progresses, as shown in Figure 2.3. Each application

of the waterfall model results in a deliverable increment [McDermid 93]. In addition, the

incremental model is iterative with each increment providing user feedback for the next

iteration.

The first increment produced is the core product, which addresses the basic requirements;

supplementary features are delivered in the subsequent increments. Each of the developed

increments is used / evaluated by the user and the feedback obtained is used to drive the

Chapter 2. Background

 18

plan for the next increment. This model is very similar to the prototyping model except

that the increment is the part of the final product and is not a throwaway.

 Figure 2.3 Incremental model

Unlike the waterfall model, the incremental approach does not produce the complete

requirements upfront. In the first increment, the requirements phase lists the basic

requirements, which is implemented as part of that iteration. The SRS for the first

increment briefly mentions the features which are to be implemented in subsequent

iterations. Thus in each incremental iteration, the SRS is expanded and modified to

include new requirements and changes. The complete SRS is generated only in the final

iteration of the incremental model. A key characteristic of the requirements phase is that

it encourages user feedback, which drives the completion of the SRS. Conducting the

requirements phase of the incremental model is problematic, as the literature provides

only a brief explanation of the objectives of this phase and also fails to provide the

necessary guidance about the activities involved and the techniques that can be utilized.

One such problem that is inadequately addressed is how the incremental model can be

applied in a situation where the client has to essentially approve every specification.

The incremental model is effective for the development of a product, whose

specifications are provided by the developers themselves. This approach can be applied

to other projects too, provided the customer has a clear understanding of the requirements,

so that problems / misunderstandings do not arise while agreeing to the specification for

Chapter 2. Background

 19

each incremental cycle. The benefits of this model are better product testing and the

continuous incorporation of user feedback into the development cycle.

2.1.4 Spiral Model

The objective of the Spiral model is to combine the best features of the waterfall and

prototyping approaches, and add to it the element of risk analysis [Boehm 88]. This

model was proposed by Boehm and the idea is to minimize the risk through prototyping

[Pressman 2001]. Activities in the spiral model are organized in the form of a spiral that

has cycles. The radial dimension of the model represents the cumulative cost incurred in

conducting the steps performed thus far, and the angular dimension represents the

progress made in each spiral.

A simple explanation of this model is to look at it as the waterfall model with each phase

preceded by a risk analysis activity. Before the commencement of each phase, an attempt

is made to control or resolve the risks identified. If it is impossible to resolve the main

risks then the software engineer can decide to terminate the project [Schach 96]. At the

completion of each phase, the product developed is validated to obtain feedback, which is

useful in making the plans for the next spiral. (Figure 2.4)

Figure 2.4 Spiral model

Chapter 2. Background

 20

The requirements phase in the spiral model is different from those in other SDLC models

in that this phase explicitly identifies the high level activities. The phase includes

customer communication, planning, analysis, and customer evaluation (validation). These

activities correspond closely to the activities in the general requirements engineering

process, which is explained in Section 2.2. Another positive feature of the requirements

phase is that it is iterative in nature and encourages user feedback. Even though this

model identifies the activities in the requirements phase, it fails to give an in-depth

explanation of these activities and the techniques that can be used to achieve the activity

objectives.

A drawback of the spiral model is that the customer communication activity does not

completely reflect the negotiations between the customer and the software engineer. This

shortcoming has been overcome by the Win-Win spiral model, which provides a better

representation of the customer communication activity by including the following sub

activities:

• Identifying stakeholders.

• Identifying stakeholder win conditions2.

• Reconciliation of win conditions.

Negotiation in the win-win spiral model is supported by the win-win negotiation model,

which specifies the steps for resolving conflicts. The negotiation model is well-defined

and can easily be incorporated into the requirements process to handle conflicts among

requirements.

The spiral model is a robust and realistic approach to software development and is

suitable for large scale software systems. Compared to the other SDLC models, the spiral

model has a better requirements phase. However, like the other models, the requirements

phase is not clearly described and there is inadequate information about the methods to be

used in this phase.

2 Win conditions capture the customer’s goals and concerns.

Chapter 2. Background

 21

2.1.5 Extreme Programming (XP)

Extreme programming is one of the new SDLC models and is a light weight, low-risk and

flexible approach [Beck 99]. Extreme programming proposes a set of principles such as

on-site customer, no prototyping, simple design, small increments, no documentation, etc,

which form the essence of this approach.

The requirements phase in extreme programming includes elicitation, analysis, and

validation (Figure 2.5). Elicitation is performed with the on-site customer using

brainstorming techniques to obtain the customer needs in the form of stories/scenarios.

The customer, along with the requirements engineer, analyzes the stories and determines

the priority the elicited stories. Once prioritization is complete, the test cases for the

stories are determined and the stories are broken down into small tasks, which can be

taken up by the developers for design and coding [Clifton 2001]. Testing of the stories

provides customer feedback, which is useful for making necessary changes to the system

in the next iteration. Requirements documentation is skipped as it is considered to be a

factor for project delay and increase in cost [Horrian 2003]. Thus, the requirements phase

is iterative with an emphasis on continuous user involvement throughout the process.

 Figure 2.5 Requirements engineering phase in Extreme Programming

Chapter 2. Background

 22

Since XP is a new development model, an attempt is made to provide some structure to

the requirements phase. Thus, we see a decomposition of the phase into different sub-

activities. However, this decomposition is again at a high level of granularity with the

objectives still being abstract. This model (XP) proposes brainstorming as a technique for

elicitation but it fails to list the other possible methods. In addition, techniques for the

other activities in the requirements phase have not been adequately identified.

Extreme programming is a light-weight approach which is suitable for small to medium

projects. Handling large projects is problematic as one of the core concepts is “no

documentation” and without a clear requirements specification, confusion and

misunderstandings can arise.

In the previous sections, some of the better known development models are discussed.

The focus of this section is on understanding the requirements process in these models

and identifying the features that are useful for this research.

All of the models have a requirements phase under the name requirements analysis,

requirements definition, etc. While the waterfall, prototyping and incremental model have

a single activity for the requirements phase, the spiral and extreme programming model

have several activities for the generation of requirements. A common characteristic of all

the models reviewed is that the requirements phase is described briefly with the

objectives implied. Furthermore, the models have paid inadequate attention to methods

that can be used for the requirements phase. While some models do specify techniques,

the coverage of the methods is minimal. Moreover, the methods fail to address all the

requirements engineering objectives.

The SDLC models discussed provide some useful insights to the requirements process. A

majority of the models recognize the fact that requirements generation is not sequential

but an iterative process. Customer feedback is another aspect that is featured in all of the

models and the feedback often directs the next iteration. Extreme programming

emphasizes the importance of customer participation by including continuous customer

involvement as one of its core concepts. The negotiation model in the Win-Win spiral

approach is well-defined and can be a good inclusion to the requirements model.

Chapter 2. Background

 23

The examination of different SDLC models shows that the requirements phase is

inadequate in two ways:

• Decomposition of the requirements process into activities, and

• Identification of methods for activities

The next section presents the research addressing the refinement of the requirements

process; Section 2.3 reviews the literature that identifies methods for the requirements

phase.

2.2 Requirements Engineering Process and Models

Models such as the spiral model and extreme programming have attempted to decompose

the requirements phase but this decomposition fails to consider all aspects of the

requirements process. To provide a better understanding of how requirements are

generated, we present the major phases of the requirements process in the next section.

We also describe research focusing on refining each of the phases within the

requirements generation process (Section 2.2.2).

2.2.1 Requirements Generation

Traditionally requirements engineering was considered as a fuzzy and rather “dirty” stage

of software development where a formal specification (SRS) is generated from some

possibly vague and informally expressed ideas. However, over the years the realization of

the importance of requirements and related research has resulted in a better understanding

of the requirements phase. This awareness in the software engineering community has

resulted in redefining the term “requirements engineering” as [IEEE 90]:

(1) The process of studying user needs to arrive at a definition of system, hardware, or

software requirements;

(2) The process of studying and refining system, hardware or software requirements.

Thus, the requirements phase focuses on generating a clear and well-defined set of

requirements, which specify what the system should implement, how the system should

behave and what constraints bound the system [Sommerville 97]. In the requirements

engineering literature, the phases or activities of the requirements process have been

Chapter 2. Background

 24

given different names. Krasner identifies five phases of requirements engineering: need

identification and problem analysis, requirements determination, requirements

specification, requirements fulfillment, and requirements change management [Krasner

85]. Leite and Freeman proposes that requirements engineering activities be comprised of

elicitation and modeling activities, the former being concerned with fact finding,

communication and fact validation, and the latter with representation and organization of

requirements [Liete 91]. Davis developed a requirements model which included five

phases: problem recognition, evaluation and synthesis, modeling, specification, and

review [Davis 1993]. Apart from the above decompositions of the requirements phase,

there are several others, which are described in the literature [Sommerville 97a][Potts

94][Jirotka 94].

Even though the literature specifies diverse names for the requirements engineering

phases, the essence of these phases can be effectively captured by the following five

components of the requirements process:

• Requirements elicitation

• Requirements analysis

• Requirements specification

• Requirements verification and validation

• Requirements management.

Each of these phases is discussed in the sections that follow.

2.2.1.1 Requirements Elicitation

Requirements elicitation is the iterative process of seeking, uncovering, acquiring and

elaborating user needs and constraints. It is the means by which the requirements

engineer determines the problems and needs of the customers, so that system

development personnel can construct a system that actually resolves the problems and

addresses the customer’s needs [Davis 2003].

The requirements elicitation process comprises the following steps [Rzepka 89]:

Chapter 2. Background

 25

• Identify the sources of requirements for the system. Sources include problem

owners, organizational documentation, end users, interfacing system and

environmental factors.

• Obtain the “wish-list” for each relevant party. This list is likely to be ambiguous,

incomplete, inconsistent, and untestable.

• Analyze, refine and document the “wish list” obtained. The refined “wish-list”,

henceforth called requirements, is precise and unambiguous.

• Finally the non-functional requirements such as reliability and performance, are

determined and documented

The steps described are common to most of the definitions of the requirements elicitation

process found in the literature. Methodologies such a as Joint Application Design (JAD),

Participatory Design (PD) [Carmel 93] and Facilitated Application Specification

Techniques (FAST) [Zahniser 90] are commonly used for the elicitation phase. These

methodologies employ various techniques to achieve the objectives of the elicitation

process and the choice of the method is based on criteria such as cost, ease of conducting,

time required, etc. Research related to the identification of methods for the elicitation

process is discussed in Section 2.3.

Several problems are faced by the requirements engineer in the process of eliciting

system requirements. These problems can be classified into three broad categories:

• Problems of scope – Requirements address too little or too much information.

• Problems of understanding – Occurrence of misunderstanding within groups and

between groups (e.g. customers and developers).

• Problems of volatility – Problems related to continuous change in requirements.

The problems that generally appear under these categories are listed below: [Christel 92].

Problems of scope

• The boundary of the system is ill-defined

• Unnecessary design information may be given

Problems of understanding

• Users have incomplete understanding of their needs

• Users have poor understanding of computer capabilities and limitations

• Analysts have poor knowledge of problem domain

Chapter 2. Background

 26

• User and analyst speak different languages

• Ease of omitting “obvious” information

• Conflicting views of different users

• Requirements are often vague and untestable

Problems of volatility

• Requirements evolve over time

The problems listed above appear in some form or the other during the elicitation phase

of the requirements generation process. In spite of the large number of elicitation

techniques, the difficulties faced during elicitation cannot be completely overcome.

However, the problems can be minimized by involving the stakeholders throughout the

requirements elicitation process. This ensures that all the stakeholders have a better

understanding of the requirements process, and as a consequence, the task of obtaining a

stable and complete set of requirements becomes easier.

 2.2.1.2 Requirements Analysis

Requirements analysis is the process of analyzing the users’ and customers’ needs to

obtain a definition of the software requirements. This phase includes representing the

requirements in different forms in order to facilitate the analysis of requirements from

different perspectives. Hence some authors refer to this phase as requirements modeling

[Greenspan 94] or conceptual modeling [Loucopoulos 92]. Requirements analysis entails

elaborating the alternative models for the target system and negotiating the conflicting

aspects of the models so that the final model is agreeable to the systems stakeholders.

Models that are explicit and sufficiently formal can be shared by a group of people and

can be used for reasoning about the requirements [Yeh et. al. 84].

Requirements modeling improves the communication between the customers and the

requirements engineer since graphic representations of the requirements are easier to

comprehend by the customer. Thus, any misunderstandings in the requirements are

identified early on in the requirements engineering life cycle. Modeling also helps the

requirements engineer to better comprehend the requirements and to identify the impact

of requirements changes more rapidly.

Chapter 2. Background

 27

Another objective of requirements analysis is to analyze the requirements from different

perspectives. To accomplish this, it is necessary to identify requirement attributes such as

risk factors, importance of the requirement, value of the requirement to the product and

so on. These attributes are helpful while evaluating the requirements against factors like

risk, cost, schedule, etc [Nord 2003]. In addition, during the requirements analysis phase,

the requirements engineer has to decide whether or not to continue with the project.

Furthermore, the requirements analysis phase also identifies conflicts among

requirements and attempts to resolve them through negotiation techniques. Thus,

requirements analysis is concerned with the evaluation and modeling of the requirements.

Customer participation is critical for requirements analysis as the goal of this phase is to

ensure that all stakeholders arrive at a common understanding of what they will have

when the software is deployed [Weigers 2001]. Several authors have proposed techniques

to achieve the goals of the requirements analysis phase and this research is discussed in

Section 2.3. A detailed description of the methods for the different activities in the

requirements analysis phase is provided in Chapter 4.

2.2.1.3 Requirements Specification

In conjunction with requirements elicitation and analysis, it is necessary that the captured

requirements are also documented. During requirements specification, the requirements

are precisely and clearly recorded to act as a basis for a contract between the customer

and the problem solver/developer. The need for a well-defined requirements specification

has led to the emergence of several different specification languages such as

Requirements Specification Language (RSL) [Bixler 76], Gist [Balzer 82], Problem

Statement language (PSL) [Teichroew 1982], etc.

A well-defined software requirements specification (SRS) has the following benefits:

• Acts as a binding contract between the customers and the suppliers

• Reduces the effort needed for maintenance and changes

• Provides a basis for estimating costs and schedules

• Provides a baseline for verification and validation

Chapter 2. Background

 28

The exact contents of the requirements specification varies from situation to situation.

However, the SRS should include the functionality of the system, description of the

environment and the system objectives, function and design constraints, and data and

communication protocols. In addition, the contents of the SRS should adhere to the

quality characteristics listed below [IEEE 93]:

• Correctness: Every stated requirement is one that the system shall meet.

• Unambiguity: Every stated requirement has only one interpretation.

• Completeness: Requirements capture all aspects of the system

• Consistency: Requirements stated have no conflicts

• Ordered: Requirements stated are ranked for importance and/or stability

• Verifiable: Each requirement should be testable of performing its function in a

given amount of time

• Modifiable: Structure and style of the SRS should be such that changes are

incorporated easily

• Traceable: Origin of each requirement should be traceable.

The content of the SRS can be presented in different formats and styles with the textual

format being the most commonly used in the industry. A textual format of the

requirements can be cumbersome to validate if the SRS is large and unstructured. In such

situations, other alternatives like prototypes or context diagrams may be advantageous.

Prototypes are best used for applications that include visual displays and interact heavily

with the user [Pressman 2001]. Context diagrams depict the product as a black box

surrounded by users and external system with which it interacts [Lauesen 2002]. The

focus is on the interfaces of the system, and thus it enables the users to easily identify

missing functionalities or interfaces. Use cases and scenarios provide a “story-like”

description of the system and this facilitates easier comprehension and validation.

However, translating these informal descriptions into design is difficult because of the

lack the formal structure and the potential for multiple interpretations.

Each of the above mentioned formats are suitable for the specification of requirements.

However, an ideal SRS should include a blend of these formats so that the specification

facilitates user validation and translation of requirements to design.

Chapter 2. Background

 29

2.2.1.4 Requirements Verification and Validation

Verification is the process that ensures the high quality of the Software Requirements

Specification (SRS) and the adequacy of requirements to continue with design,

construction and testing. In addition, verification determines whether the requirements

are correctly derived from the system requirements. The compliance of the SRS with the

documentation standards is also checked during verification.

Verification examines the requirements as soon as they are generated and determines if

the requirements possess the desired quality attributes [Weigers 2001]. When

requirements elicitation is still under progress, quality attributes 3 like correctness,

verifiability, modifiability, etc. are considered for the verification of each individual

requirement. Other attributes like completeness and traceability are assessed only after

obtaining the complete set of requirements. Several techniques are used during

verification and the most widely used methods are internal and external reviews, audits,

walkthroughs and inspections.

Validation is the process which ensures that the requirements accurately capture the

customer’s intent/needs. Its main objective is to find if there are disagreements between

what the user desires and what the requirements state. Conflicts are identified for

corrections to the requirements in order to minimize the probability of changes made to

the SRS in the future.

Validation is conducted after verification at different stages in the requirements

engineering phase. Initially, when the subset of requirements is captured during the

elicitation phase, the requirements are first verified and then validated by the user.

Similarly, on obtaining the complete set of requirements, validation is once again

performed. Finally, at the end of the requirements engineering life cycle, validation is

carried out on the SRS, which is created as per the documentation standards and formats

[IEEE 98].

Commonly used techniques for validation are scenarios, walkthroughs, guided

discussions, prototyping, storyboarding, etc. Techniques should be chosen based on the

3 Quality attributes are explained in Section 2.2.1.3

Chapter 2. Background

 30

stage in the requirements engineering life cycle and the product being validated. For

example, prototyping is better suited to validate the complete set of requirements than the

individual requirements. In addition, interactive applications are more easily validated

using prototypes than by other methods.

The terms verification and validation are sometimes used interchangeably in the literature

but as pointed out in this section, they are indeed different activities. The task of

verification is to ascertain that the SRS complies with standards, and is consistent,

complete and unambiguous. On the other hand, validation determines whether the

requirements satisfy the users’ intentions. Requirements verification and validation

(V&V) can uncover and rectify many deficiencies that may otherwise go undetected until

late in the development cycle, where the correction would be much more expensive. Thus,

requirements V&V has a critical impact on the outcome of the software development life

cycle and should be conducted carefully.

2.2.1.5 Requirements Management

Requirements managements refers to the set of procedures that assist in the management

of the requirements process and product as well as maintaining the evolution of the

requirements throughout the development life cycle. Effective requirements management

is essential for producing a good SRS and eventually a good quality product. The

activities in requirements management include planning, prioritization, traceability,

impact assessment of changing requirements, configuration control, and so on.

Requirements management encompasses the entire development life cycle, starting from

the requirements phase till the testing phase.

The main issues in the requirements management phase are

• Requirements traceability, and

• Change management

A requirement is traceable if one can discover who the owner of the requirement is, the

rationale behind the requirement, the relationships to other requirements, and how the

requirement relates to other artifacts such as design and documentation [Sawyer 97].

Requirements traceability is useful in determining the impact of requirements changes on

Chapter 2. Background

 31

design and implementation. In addition, traceability facilitates the identification of

inconsistencies among requirements by linking all the requirements to the user needs.

Furthermore, traceability provides insights to non-functional components such as quality,

completeness, impact analysis and process improvement [Palmer 96].

Requirements are volatile in nature and it calls for effective change management in order

to maintain the consistency of the requirements. Once the requirements engineering phase

is completed, requirements management is mainly concerned with change management,

which includes the following activities:

• Identification of the required changes

• Impact analysis of the requirement changes

• Alternative ways of incorporating the requested changes

• Updating the SRS without causing any inconsistencies

• Recording the changes and its rationale

Documentation of the rationale and the traceability matrix are valuable artifacts in

handling changes to requirements. Recordings of tentative requirements4 [Robertson 99]

as well as discarded requirements 5 [Sommerville 97] are also useful strategies for

effective change management. To maintain the consistency of the SRS, several

approaches such as Software cost reduction (SCR) [Heitmeyer 96], Requirements state

machine language (RSML) [Heimdahl 95], etc, have been proposed.

Requirements management is a complex phase, which is supported by a number of tools

that are readily available in the software market. Tools such as Rational Suite, DOORS,

Caliber-RM, Omni Vista, etc. provide document templates, configuration control, visual

representations and other features, which make requirements management more effective

and easier to conduct.

2.2.2 Requirement Models

In this section, we present a survey of different requirements engineering models, which

attempt to refine the requirements process by decomposing the major phases – elicitation,

4 Requirements that are currently under consideration/negotiation
5 Requirements that have been proposed and subsequently rejected after analysis and negotiations

Chapter 2. Background

 32

analysis, specification, verification and validation, and management. The models

discussed provide additional insights into the requirements generation phases and help in

the development of the requirements model for this research. At the end of this section,

we provide a comparison of the different models, listing their pros, cons and the coverage

of the requirements process.

2.2.2.1 Requirements Engineering Process Model

The requirements engineering process model is proposed by Debbie Richards and

considers the requirements phase to be composed of the following phases – gathering

(elicitation), modeling (analysis), validation, specification and management [Richards

2000]. However, the model addresses the refinement of only the first three phases.

 The model is comprised of five stages as shown in Figure 2.6:

• Requirements acquisition

• Concept generation

• Concept comparison and conflict resolution

• Negotiation

• Evaluation

Figure 2.6 Requirements engineering process model

Requirements acquisition involves capturing the stakeholders’ requirements and

corresponds to the elicitation phase of the requirements generation process. The model

proposes the use of interviews as a technique for the elicitation of the requirements. This

Chapter 2. Background

 33

activity results in the gathering of requirements in formats such as use case descriptions

and interview transcripts.

Concept generation is the second stage in this model and involves representing the

requirements of different stakeholders in the form of a table, which has requirement

objects as rows and object attributes as columns. The visual representation of the

viewpoints of different stakeholders helps in easier understanding and comparison of the

viewpoints.

Once the table representations of the requirements are generated, the tables are compared

for conflicts. Requirements which appear in the tables are classified as being in one of the

four states [Gaines 88]:

1. Consensus is the situation where the same requirement is described using the

same terminology.

2. Correspondence occurs when the same requirement is described using different

terminology.

3. Conflict is where different requirements are being described but the same terms

are used.

4. Contrast is where there is no similarity between requirements or the terminology

used.

States 2,3 and 4 correspond to misunderstandings among the viewpoints of different

stakeholders.

On detecting the conflicts, the next stage is to resolve them through different negotiation

techniques. This model adopts the five strategies of conflict resolution proposed by

Easterbook and Nuseibeh [Easterbook 96]:

• Resolving - remove inconsistency

• Ignoring - take no action

• Circumventing - don’t include

• Delaying - put on hold

• Ameliorating - reduce the degree of inconsistency

Chapter 2. Background

 34

Evaluation is the last stage of the model and determines if another iteration of the model

is necessary. The requirements engineering process model uses the number of conflicts to

decide whether to go through another cycle of the model.

This model identifies activities in the requirements phase such as negotiation and conflict

detection. However, the model is inadequately decomposed and fails to identify all the

activities in the requirements phases, which the model attempts to refine. In addition, the

model covers only the elicitation, analysis (partly) and validation phases and overlooks

the management, verification and specification aspects. Methods are specified for each

stage or activity but the methods are limited to only one or two and this restricts the

application of the model. Furthermore, this model provides only an overview of the

activities and does not explicitly state the activity objectives.

2.2.2.2 Requirements Triage

Requirements triage is a requirements engineering model proposed by Alan Davis and it

is the process of deciding precisely what features the product will include in its

implementation. From a naïve development manager’s perspective, requirements triage

is simple. The time and effort needed to develop the features of a system are compared

with the project budget and schedule. If there is incompatibility of these project

parameters (time, effort, schedule, cost), then the features are removed so that the project

parameters synergize. However, this strategy completely overlooks the impact of market,

price, revenue and profit. To incorporate these features, the requirements triage considers

marketing, financial and development factors.

The requirements triage is a collection of activities, which fit into the requirements

analysis phase and the goal of this model is: a set of features, which can be developed

using available resources within acceptable levels of risk and which can be sold at an

acceptable price to a known market in sufficient quantities to achieve satisfactory levels

of profit and thus achieve a reasonable return on investment [Yourdon 99].

This model includes five activities (Figure 2.7), which are briefly described below:

• Risk analysis: Determines acceptable levels of risk for the requirements

Chapter 2. Background

 35

• Cost and Schedule Estimation: Determines the effort and time required to

implement potential features of the system.

• Price Analysis: Determines the optimal price to charge customers.

• Market Analysis: Determines the types of customers, their numbers, their buying

power/capability, urgency for a particular feature, and so on.

• Feature Triage. The process which determines the features that are the right ones

to be developed.

 Figure 2.7 Requirements triage

In order to achieve a balance of the market, financial and development factors, the

following variables need to be adjusted until a reasonable result is produced [Davis 99]:

• Add, delete or change a feature

• Make the delivery date earlier or later

• Increase or decrease the resources applied to development

• Increase or decrease the price

• Increase or decrease costs of good sold

• Increase or decrease the resources devoted to marketing and sales.

Chapter 2. Background

 36

Several tools such as Omni-Vista SP6, Primavera Monte Carlo7, QSS TechPlan 28, etc.

have been developed to support the requirements triage model. These tools allow the

requirements engineer to visualize the effects of various factors like cost, schedule, price,

etc. on the development of the project.

The requirements triage model attempts to refine the analysis phase of the requirements

generation process. Specifically, the model focuses on the analysis portion where the

requirements are complete. The decomposition into activities is adequate and at the right

level of abstraction. However, the model fails to describe in detail what transpires within

each of these activities. In addition, since the model addresses only a portion of the

analysis phase, the applicability of the model is restricted and it has to be plugged into

other models for effective usage.

2.2.2.3 Knowledge Level Process Model

The knowledge level process model attempts to address the entire requirements

generation process and provides different levels of process abstraction as illustrated in

Figure 2.8.

 Figure2.8 Knowledge level process model

6 See www.omni-vista.com/products
7 See www.primavera.com/products/monte.html
8 See www.qssinc.com/products/visiontools/techplan.html

Chapter 2. Background

 37

As shown in the figure, the knowledge level process model is comprised of three

processes:

• Elicitation – It involves the identification of problems, elicitation of requirements

and scenarios from the stakeholders, and documentation of the domain knowledge.

• Manipulation of requirements and scenarios – It entails resolving the ambiguity

and inconsistency among the requirements and scenarios. In addition, this process

reformulates the informal requirements to semi-formal and formal requirements and

establishes the relationships between the requirements and the scenarios.

• Maintenance of requirements and scenario specification – This process involves

the configuration control of traceability information and documents containing the

requirements and scenarios.

Each of these processes is further broken down into activities and the inputs and outputs

for each of these activities are identified. The interfaces (input and output information) of

the high level process abstraction are shown in Table 2.1 [Herlea 99].

Process Input information type Output information type

Elicitation Requirements and scenarios

information

Elicitation results

Elicitation basic material (problem

description and domain knowledge)

Manipulation of

requirements and

scenarios

Elicitation results Requirements and scenarios

information

Maintenance of

requirements and

scenarios specification

Elicitation results

Requirements and scenarios

information

Elicitation basic material

Elicitation results

Requirements and scenarios

information

Elicitation basic material

Table 2.1 Input and output flows in the Knowledge Level Process Model

The knowledge level process model is a complex model, which addresses the complete

requirements generation process. It includes all the major requirements phases and refines

Chapter 2. Background

 38

the elicitation, analysis and V&V (verification and validation) phases. The decomposition

of the requirement phases into activities is inconsistent as some of the activities are at a

low level of granularity (describing steps within activities) while others are highly

abstract (grouping of activities). Also, since the model is scenario based with the

requirements and scenario activities closely intertwined, it is difficult to incorporate

changes into the model. Another drawback is that even though the model identifies

activities in the requirements process, the literature fails to provide adequate information

about the activities and their objectives. Furthermore, this model skips the issue of

providing techniques for conducting the activities identified. Compared to the triage and

the requirements engineering process model, this model has better coverage of the

requirements process.

2.2.2.4 Win-Win Spiral Model

The spiral model discussed in Section 2.1.4 lacked the activities for customer negotiation

and, as a result, the Win-Win Negotiation model was developed to fill this gap. On

combining the two models, we have the Win-Win spiral model, which has a better

representation of the customer communication activity. The Win-Win spiral model has

been proposed as a requirements model because it incorporates the major components of

the requirements process (Figure:2.9):

 Figure 2.9 Win-Win spiral model

Chapter 2. Background

 39

The requirements generation process in the Win-Win spiral model comprises the

following steps:

• The first step is the identification of the stakeholders and their win conditions

(needs, requirements and concerns). This activity corresponds to the elicitation of

requirements form the stakeholders.

• The next step in the spiral is to resolve the conflicts in the requirements and

identify system constraints. In addition, the requirements are also evaluated for

risk and the system alternatives. These set of activities map to the analysis phase

in the requirements process.

• Finally the requirements are validated and reviewed; this step matches the

objectives of the requirements verification and validation phase.

The above mentioned steps are repeated until a complete and well-defined software

requirements specification (SRS) is obtained.

The negotiation model is based on four artifact types: Win conditions, issue, options and

agreements (see Figure 2.10) [Boehm et al., 1994].

 Figure 2.10 Win-Win negotiation model

Chapter 2. Background

 40

Win conditions capture the stakeholder goals and concerns with respect to a new system.

If a win condition (requirement) is non-conflicting, it is accepted and included in the

agreement/specification. Otherwise, an issue artifact is created that records the conflict

among the win conditions. To resolve the issues, the stakeholders are allowed to suggest

alternative solutions, which form the content of the options document. The solutions are

then evaluated and the option agreeable to the stakeholders is adopted in the agreement

artifact. The negotiation model includes a tailorable domain taxonomy, which links to the

artifacts and this ensures that the stakeholders have a unified understanding of the

artifacts generated during the negotiation process.

The Win-Win spiral model presents a general framework for the requirements process but

lacks the adequate decomposition of activities. Moreover, all the activities except

negotiation are briefly explained with their objectives being implied. Also, the issue of

identifying techniques for the activities is left unaddressed. The positive feature of this

model is the clearly defined negotiation activity, which can be adapted to the conflict

resolution activity in the requirements process.

2.2.2.5 Process Framework

The process framework attempts to address the issue of providing a framework for the

requirements generation process. This model consists of four main activities, which are

conducted iteratively until a precise and complete SRS is obtained (Figure 2.11) [Alcazar

2000]:

• Capture user requirements

• Analyze requirements

• Build solution specification

• Verify specification

Capture user requirements: This activity involves the elicitation of requirements and

other pertinent information such as business process, organization description,

stakeholders profile, etc. The model recommends the use of requirements lists, graphs,

and free texts for the representation of requirements.

Chapter 2. Background

 41

Verify
Specification

Build Solution
Specification

Capture User
Requirements

Analyze
Requirements

Analyze requirements: This activity focuses on building a common understanding of the

requirements, problem domain, vocabulary and other relevant information among the

stakeholders. To capture this information, UML and ER diagrams have been prescribed

to the requirements engineer. A second objective of this activity is to classify the

requirements in a hierarchical order and to identify the relationship among the

requirements.

Build solution specification: The objective of this activity is to express what the system

has to accomplish in such a way that the requirements engineer and the customer get a

clear picture, and the latter accepts it. This model advocates the use of use cases

[Jacobson 92] for the presentation of requirements to the customer.

Verify specification: This activity allows the requirements engineer to confirm that all

the requirements have been captured and recorded. In addition, the requirements are

checked for adherence to the quality characteristics such as correctness, preciseness,

verifiability, etc.

 Figure 2.11 Requirements engineering process framework

The process framework identifies the main phases of the requirements generation process

but fails to provide the decomposition of these phases. In addition, the activities are

explained briefly with the objectives being specified at a high level of abstraction. The

focus of this model seems to be on determining how the information generated from each

phase is to be represented rather than on the decomposition of the process itself.

Chapter 2. Background

 42

2.2.2.6 Requirements Generation Model (RGM)

The requirements generation model provides a structured framework for the requirements

phase and identifies the major components of the requirements process (Figure 2.12).

[Arthur 99]. This model splits the requirements generation process into two parts:

• Requirements Definition, where the requirements are elicited and evaluated

iteratively until the exit criteria is satisfied.

• Requirements Analysis, where the complete set of requirements is analyzed,

documented, verified and validated.

 Figure 2.12 Requirements generation model

The requirements definition phase is decomposed into indoctrination and an iterative

requirements capturing sub-phase. Indoctrination is concerned with familiarizing the

customer about the RGM, educating the requirements engineer about the problem domain,

and specifying the customer’s responsibilities. The requirements capturing phase is

further refined into sub-activities, which focus on obtaining requirements from the

customer and refining them in an iterative manner until the complete set of requirements

is collected. The RGM also provides protocols and guidelines to structure the activities

identified. Protocols define boundaries for the RGM within which the customer and the

requirements engineer must operate whereas guidelines are recommendations or

suggestions that are optional for the requirements engineer or the customer [Groner 2002].

The RGM identifies all the major requirements engineering phases – elicitation, analysis,

specification, verification and validation, and management. In addition, the model

R e q u i r e m e n t s M a n a g e m e n t

Requirements Definition

Chapter 2. Background

 43

decomposes the capturing phase into activities, which are clearly defined. Furthermore,

the RGM specifies constraining and guiding components in the form of protocols and

guidelines, which help in effectively conducting the activities. The drawback of the RGM

is that the decomposition of the model into activities is inadequate and as a result the

objectives are stated at a high level of granularity. However, the RGM does facilitate

future decomposition by providing detailed explanations of the activities identified.

Another shortcoming of the RGM is that the techniques that can be applied to achieve the

objectives of the activities are not identified.

2.2.2.7 Comparison of the Requirement Engineering Models

Pros / Cons of Requirement Engineering models
RE process

coverage

Requirements engineering process model
+

-

Methods specified for each activity

Inadequate decomposition

Overview of activities

Single method specified for each activity

Overlooks phases of the requirements process

Elicitation

Analysis

Validation

Requirements triage model

+

-

Adequate decomposition of activities identified

Overview of activities

Methods not specified for the activities

Overlooks phases of the requirements process

Portion of

analysis

Knowledge level process model

+

-

Identifies all phases of the requirements process

Inadequate decomposition

Overview of activities

Methods not specified for the activities

Complex, difficult to change

Not general in nature (scenario based)

All phases

(Elicitation

Analysis

Specification

V&V

Management)

Chapter 2. Background

 44

Pros / Cons of Requirement Engineering models
RE process

coverage

Win-Win spiral model
+

-

Clear and well defined negotiation activity

Inadequate decomposition

Overview of activities

Methods not specified for the activities

Overlooks phases of the requirements process

Elicitation,

Analysis

V&V

Process framework

+

-

Identifies all phases of the requirements process

Focus on documents produced

Inadequate decomposition

Overview of activities

Methods not specified for the activities

All phases

(Elicitation

Analysis

Specification

V&V

Management)

Requirements generation model

+

-

Identifies all phases of the requirements process

Detailed explanation of identified activities

Facilitates future decomposition

Inadequate decomposition

Methods not specified for the activities

All phases

(Elicitation

Analysis

Specification

V&V

Management)

Table 2.2 Pros/cons and process coverage of requirement engineering models

From Table 2.2, it is clear that only three models include all the phases of the

requirements generation process – Knowledge level process model, Process Framework

and Requirements Generation Model. All the three models inadequately decompose the

model and fail to specify methods for the activities identified. Among these models, the

process framework has the least amount of decomposition and the activities have a one to

one mapping to the phases of the requirements generation process. The knowledge level

process model is complex and is scenario based making it difficult to decompose and

Chapter 2. Background

 45

incorporate changes. The RGM facilitates decomposition and provides a detailed

explanation of activities. Comparing the models, which cover all the phases in the

requirements process, the RGM looks most promising for decomposition.

Among the other models, which cover one or more phases of the requirement process, the

requirements triage and win-win spiral model provide useful insights. Requirements

triage examines and decomposes the portion of the analysis phase that evaluates the

complete set of requirements. This model considers the effects of financial, marketing

and development factors on the requirements and proposes activities at the right level of

abstraction. The win-win spiral model includes a well-defined negotiation activity that

synergizes comfortably with the conflict resolution activity of the requirements

generation process.

2.3 Requirement Engineering Methods

One of the drawbacks of the requirement engineering models is that they fail to specify

the techniques for the activities in the models. This section focuses on the research

conducted in identifying methods for the activities in the requirements phase. We do not

provide an explanation of the methods, as this is the objective of Chapter 4.

This section is structured according to the research conducted in the different phases of

the requirements engineering process. Prior to requirements elicitation, the needs of the

customer are determined and this is accomplished through the problem synthesis phase.

Section 2.3.1 will discuss the research on identifying methods for this phase. Subsequent

sections will present the literature review on method identification for the different

requirement phases.

2.3.1 Methods for Problem Synthesis

Problem synthesis is the phase that entails learning about the problem to be solved,

understanding the customer needs and identifying the constraints on the solution. The

problem synthesis phase includes two main activities:

• Problem analysis: Involves understanding and decomposing the problem in

addition to identifying the problem context and constraints.

Chapter 2. Background

 46

Slow Response
to Web Page
Request

Network Overload

Slow CPU
Inefficient Search
Algorithm

Disk Access too
Slow

• Needs generation: Involves elicitation, analysis and evaluation of the user needs.

Alan Davis identifies brainstorming and interviewing as the main techniques for

understanding the problem and the domain [Davis 90]. Brainstorming provides a number

of ideas in a short amount of time and it can bring out details which cannot be obtained

through a prolonged interview process. Brainstorming works well in understanding the

real problem if the customer is unsure about his/her problem. In order to determine the

needs of the customer, it is necessary to identify the cause of a particular problem and for

this purpose Leffingwell recommends the use of the Fish bone diagram [Leffingwell

2000]. Figure 2.13 illustrates how the Cause-Effect (or Fishbone Diagram) is used to

decompose the perceived problem into potential causes of that problem.

 Figure 2.13 Fishbone diagram

Leffingwell also prescribes demographic studies and brainstorming for identifying the

stakeholder profiles and the constraints on the solution. Context free questions is another

method that poses high-level questions to understand the problem and its domain [Gause

89]. Furthermore, the walkthrough technique (WALT), which poses questions to the user

as s/he is guided through a description of the problem, is an effective method to obtain

information about the problem as a whole and the potential causes of the problem [Lenart

98].

Research on identifying methods for needs generation is less compared to problem

analysis. Techniques such as interviews, storyboarding, brainstorming, questionnaires,

etc, which apply to requirements elicitation can be used for capturing user needs [Davis

90]. Prioritization and conflict resolution techniques are useful during the analysis of the

user needs [Leffingwell 2000]. Inspection techniques are usually applied for the needs

Chapter 2. Background

 47

evaluation activity, which separates the needs to be incorporated in the system from the

ones which are to be left out or delayed for the next release [Gilb 93].

2.3.2 Methods for Requirements Elicitation

Requirements elicitation is the process through which the customers and requirements

engineers of a software system discover, review, articulate, and understand the user needs

and constraints of the software and development activity [Thayer 97]. A number of

methods have been proposed to elicit requirements from the users and these techniques

are best used in combination with each other.

Requirements are usually elicited through discussion and interviews with the stakeholders

[Gause 89]. Workshops, brainstorming, storyboards, role playing and prototyping9 are

some of the other techniques for capturing requirements.[Leffingwell 2000]. Each of

these methods have their own advantages and disadvantages and the choice of the

techniques should be based on several factors such as type of application, technology

used, skill and sophistication of the customer, etc. Lauesen proposes methods such as

focus groups, questionnaires, observation, document studies and pilot experiments for

this phase [Lauesen 2002]. Scenarios [Weidenhaupt 98] and use cases [Cockburn 2002]

are some of the more recent techniques that have been found to be effective.

In addition to these methods, there are some other useful techniques that have emerged in

recent years from sociology and sociolinguistics that seem promising. Goguen examines

the elicitation phase from a social science perspective and discusses the use of techniques

like introspection, discussion, open ended interviews and protocol analysis [Goguen 93].

The Human Computer Interaction (HCI) community has also contributed to the research

on identifying methods for the elicitation phases. Techniques such as ethnography studies,

contextual inquiry [Holtzblatt 93], artifact analysis [Rosson 2002] and scenarios, which

are an integral part of usability engineering 10 , are now being used effectively for

requirements elicitation.

9 Techniques listed are explained in Chapter 4
10 Process that ensures that a system is easy to learn, pleasant to use, error-free and error-forgiving, easy to
remember and efficient.

Chapter 2. Background

 48

Apart form the methods listed in this section, there are several other elicitation techniques

and a detailed list of these is provided by [Young 2001] and [Sommerville 97].

2.3.3 Methods for Requirements Analysis

Requirements analysis is the process of analyzing the users’ and customers’ needs to

obtain a definition of the software requirements. The analysis phase encompasses a large

number of activities, which the current requirements engineering models fail to include.

As a consequence, most of the requirements engineering literature identify methods for

the high level objectives of the analysis phase. Hence, in this section, we review the

literature from various disciplines (including requirements engineering) and focus on the

research that identifies methods for objectives which map to the ones of the requirements

analysis phase.

One of the objectives in the analysis phase is to obtain the rationale for the requirements

and prioritize them. Techniques such as brainstorming, I-time, discussions and slip

method [NYS 2003] have been found effective in determining the rationale behind an

idea in the management industry. Prioritization techniques such as analytic hierarchy

process (AHP), priority groups, minimal spanning tree, etc. can be used to organize the

requirements as this helps in easier evaluation of the requirements [Wohlin 97].

Requirements can also be effectively organized based on prioritization scales such as

high, low, medium or essential, conditional, optional [Weigers 99].

Analysis also involves evaluation of the effects of factors like risk, cost, price, etc on the

elicited requirements. The software engineering community has classified the software

estimation techniques as: model based, expertise based, learning oriented, dynamics

based and regression based [Boehm 99]. Under each of these categories various methods

like COCOMO, SLIM, Delphi, etc have been proposed and successfully used in the

industry [Chulani 98]. Evaluation of the risk and feasibility of requirements can be

accomplished through techniques like decision tree analysis [Pfeiffer 97], net present

value, criticality analysis [MIL 80] and fault tree analysis [Elliot 98].

Conflict resolution is an integral part of requirements analysis as it is critical to resolve

misunderstandings in order to generate a good requirements specification. There are a

Chapter 2. Background

 49

number of resolution methods, which include negotiation [Thomas 76], arbitration,

coercion and education [Strauss 78]. Furthermore, the software engineering literature

provides clear guidelines for each resolution technique [Easterbook 91].

2.3.4 Methods for Requirements Specification

Requirements specification is the development of a document that clearly and precisely

records each requirement of the software system [Dorfman 97]. This aspect of

requirements engineering is one of the most researched areas that has resulted in the

emergence of several specification techniques. However, the use of each method depends

on the type of requirements being specified.

Finite state machines have been used effectively for representing requirements which are

described in terms of input and output states [Whitis 81]. When it is necessary to describe

the behavior of a system and relate a set of conditions to prescribed actions, decision

table and decision tress are the most suitable [Matsumoto 77]. Decision trees capture the

same information as decision table but are more visual than the other. Even though both

of these techniques have been known for many decades, it was only in the past two

decades that its uses have been thoroughly explored [Chvalovsky 83].

Natural language, though inherently ambiguous, is the most commonly used technique

for requirements specification. This method facilitates easier comprehension but it makes

the task of translating requirements into design difficult. Another similar technique is the

program design language (PDL), which uses structured English and pseudo code for

representing requirements [McMenamin 84]. This results in a specification which is

neither too informal nor formal.

Finite state machines (FSM) were incapable of representing complex behavioral

requirements. Hence, they were extended by Harel, who proposes the statecharts for

specifying complex requirements [Harel 88]. The requirements engineering validation

system (REVS) [Davis 77] and requirements language processor [Davis 79] were

developed with the motivation of handling complex specifications.

Several specification languages such as specification and description language (SDL)

[Rockstrom 82], requirements specification language (RSL), etc., have been developed

Chapter 2. Background

 50

with the intention of generating unambiguous and precise requirements. Other

specification techniques included in the literature are PAISLey11 [Zave 81], Petri nets

[PET 62] and Gist [Balzer 82].

2.3.5 Methods for Requirements Verification and Validation

Verification ensures that the requirements specification conforms to document standards,

and is an adequate basis for design. During the verification phase, the requirements are

checked for various quality characteristics like completeness, ambiguity, verifiability,

correctness, etc. Several techniques have been presented in the literature that enable

achieving the verification objectives effectively.

Sutcliffe discusses inspection as the main technique for ensuring the adherence of

requirements to the quality attributes [Sutcliffe 2003]. Inspection is a rigorous process

and identifies a high percentage of errors. Hence, inspection is the most widely used

method for the verification of requirements. The other techniques included in the

literature are reviews and walkthroughs [Melo 2001]. The walkthrough technique is an

informal process and involves the stakeholders in the verification process, unlike the

inspection method [Collofello 88]. Hence, walkthroughs are usually conducted to

supplement the inspections technique.

Validation is the process by which the stakeholders indicate the extent to which the

requirements reflect their intent and that the SRS describes the right system. Prototyping

is one of the most commonly used techniques to illustrate the capabilities of the system to

the customer [Luqi 93]. The customer get a “hands on” experience of the requirements

formulated and can recommend further changes to the requirements. Young describes the

use of scenarios and walkthroughs to effectively validate the requirements with the users

of the system [Young 2002]. The HCI community uses techniques such as storyboarding,

role playing, discussions, high/low fidelity prototyping and interviews, to obtain user

feedback on the requirements specification [Rosson 2002]. Some of the occasionally used

validation methods described in the literature are simulation [Lerch 95], animation

[Siddiqi 97] and formal reviews.

11 Process oriented, Applicative, and Interpretable Specification Language

Chapter 2. Background

 51

2.3.6 Methods for Requirements Management

Requirements management is the process involving the planning and controlling of the

requirements elicitation, specification, analysis, and verification activities. The two main

concerns of requirements management are traceability and change management, and this

section focuses on methods for these issues.

Requirements traceability is defined as the ability to describe and follow the life of a

requirement, in both a forward and backward direction. Cross referencing is the simplest

technique to achieve traceability. This method involves embedding phrases like "see

section x" throughout the project documentation (e.g., tagging, numbering, or indexing of

requirements) [Kean 97]. Gotel recommends the restructuring method, which organized

the requirements in terms of an underlying graph to keep track of the requirements

changes [Gotel 95]. Another technique is the traceability framework that attempts to

capture links between the requirements by answering questions pertaining to rationale of

the requirements [Pohl 96]

Change management is concerned with ensuring the consistency of the SRS, in spite of

changes to the requirements. To achieve this objective, the impact of requirements

changes needs to be determined and this is accomplished through traceable requirements.

Automation of consistency checking stipulates that the SRS is expressed in formal

notation. Techniques such as Software Cost Reduction [Heitmeyer 96], requirements

state machine language (RSML) [Heimdahl 95], etc, represent the requirements in a form,

which can be automatically checked for inconsistency. Another technique for handling

changes to requirements is the logic based framework, which ensures that the

specification is complete and consistent.[Zowghi 99]. If the requirements specification is

checked manually for inconsistency, methods such as inspections, reviews, internal and

external audits and discussions can be used [Pressman 2001]. External audits and reviews

are usually performed to get a third party view of the consistency of the document and

this strengthens the confidence of the customer in the requirements specification (SRS).

In addition to these techniques, applications such as DOORS and Requisite Pro provide

graphical tools which ensure faster and efficient change management.

Chapter 2. Background

 52

2.4 Research Issues Revisited

The previous sections in this chapter provided the necessary background for this thesis.

Research on the SDLC models, requirements engineering models, and methods for

requirements process activities was discussed. This section is a prelude to Chapter 3 and

4 and aims to provide a brief recapitulation of the issues12 addressed in this research.

2.4.1 Problem Statement and Issues

The literature review highlighted some of the problems faced in the requirements

engineering field. The first problem is concerned with the abstraction level of the

requirements phase and this hampers the effective implementation of the requirements

process. Most of the requirement engineering models consist of activities presented at a

high level of abstraction and fail to consider the entire requirement generation process.

The second problem in requirements engineering is that there is a lack of synchronization

between the methods and activities at the right level of decomposition. As a consequence,

the requirements engineer lacks the necessary guidance in the selection of methods for

achieving the objectives of a particular activity in the requirements generation process.

This research attempts to overcome these problems by decomposing the requirements

process to the right level of abstraction and mapping methods to the activities identified.

In order to achieve the proposed solution, the following steps must be taken:

1. Identify an amenable requirements engineering model: The foundation for this

research is a well defined requirements engineering model. After analyzing a

number of requirement engineering models (see Section 2.2), we chose RGM for

this research because it includes all the major requirement phases and facilitates

further decomposition

2. Decompose activities to proper level abstraction: The current requirement

engineering models provide activities at a high level of abstraction making it

necessary to decompose the requirements process to the right level of abstraction.

12 A detailed explanation of the issues is provided in Chapter 1

Chapter 2. Background

 53

The decomposition should be such that the activities identified should neither be

too low level nor too high level and is discussed is Chapter 3.

3. Identify activity objectives: Another problem with the requirement engineering

models that was identified in the literature review was that the models express the

objectives of the activities implicitly. As a result, the requirements engineer may

overlook some objectives, which are crucial to the requirements phase. Hence,

along with the decomposition of the model, it is necessary to identify the

objectives of each activity and explicitly state them. This issue is also addressed

in Chapter 3.

4. Map methods to activity objectives: Since the requirement engineering models

lack the necessary level of decomposition, methods are synchronized with the

high level activities. Hence, the requirements engineer chooses methods in an as-

hoc manner, which may have a negative impact on the quality of the product.

Thus, it is necessary to map methods to the activities at the right level of

decomposition in order to assist the requirements engineer in his/her task of

selecting methods for activities and this issue is resolved in Chapter 4.

5. Method selection driven by priority criteria: The task of choosing methods for

activities is based on certain criteria like cost, time, etc. In order to simplify this

job of the requirements engineer, it is essential to identify the selection criteria

and determine the path of methods satisfying these criteria for the entire

requirements generation process. This issue is also addressed in Chapter 4.

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 54

Chapter 3

The Expanded Requirements Generation

Model (x-RGM)

3. Introduction

The previous chapter highlights the issues that need to be addressed in order to solve the

problem of mapping methods to activities in the requirements process. This chapter

focuses on the first two of those issues: providing a well defined requirements

engineering model, and defining the objectives of activities. Chapter 4 will explain the

mapping of methods to the activities based on the activity objectives.

In order to avoid reinventing the wheel, a suitable requirements engineering model had to

be chosen as a starting point for the research. The RGM was selected over other

requirements engineering models for expansion as it covers all the major requirements

generation phases. An added advantage of the RGM is that it goes one step further and

decomposes the requirements capturing activity.

The objective of x-RGM is to provide a framework for the requirements engineering

process so that methods can be mapped to the activities in the model. In addition, the

x-RGM is intended to capture the positive features of the various models discussed in

Chapter 2 and to provide a much needed structure to the requirements engineering

process. Thus, with RGM as the basis, the x-RGM decomposes the requirements

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 55

Requirements
capturing

Global analysis Organization and
compilation

Confirmational
analysis

generation process to the right level of abstraction by identifying the necessary activities

and their objectives.

Note: The x-RGM has been developed for a contract based development project of a

medium to large size. The primary stakeholders in such a project are the user, customer

and developer. Furthermore, the customer is clearly identified and is an active participant

in the requirements generation process.

Components of the expanded Requirements Generation Model (x-RGM)

At the highest level, the x-RGM consists of four major phases: Requirements capturing,

global analysis, organization and compilation, and confirmational analysis shown below.

 Figure 3.1 Expanded requirements generation model

The concept of “Separation of concerns” [ICSE 2001, OOPSLA 99, Hursh 95], which

focuses on identifying and satisfying a small set of concerns for organizing and

decomposing processes, is used for modeling the requirements engineering process. The

phases in the x-RGM are decomposed in such a way that activities have clear, well-

defined objectives, which drive the selection of methods. The activities in the x-RGM are

characterized by the following attributes [Kingston 96]:

����������	
� �	
���
�����	�������

��������� 	
��
����
��������������

����
���
���� ������
�����
����������������������������

�����
�����
� �
�����
����
�����������������
�������������
����������

�
�� ����
���
���������������������

������������� �����������������������������

 ������
������� Documents needed for the activity to begin

��������
������� Documents produced at the completion of the activity

Table 3.1 Activity characteristics

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 56

The decomposition of the phases into activities and the objectives identified for these

activities are discussed in detail in the sections that follow.

3.1 Requirements Capturing

Requirements capturing comes after the problem analysis phase, which encompasses

learning and understanding the problem, needs of the stakeholders, and constraints on the

solution [Davis 93]. The problem analysis phase produces the needs document, which

documents the customer problem and needs. In the requirements capturing phase, the

needs document drives the elicitation of requirements from the stakeholders. As

illustrated in Figure 3.2, prior to elicitation, there is a customer indoctrination activity,

which educates the customers about the requirements engineering model and their

responsibilities during the process. In addition, the indoctrination activity familiarizes the

requirements engineer with the customer problem and domain. Once the elicitation is

complete, the requirements are analyzed; and this entails identifying the rationale for

each requirement and justifying them with the stakeholders. In addition, the set of

requirements are evaluated for quality standards, which are decided in consultation with

the customer. Finally, the requirements are validated by the stakeholders.

 Figure 3.2 Requirements capturing

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 57

The subsequent sections elucidate the activities in the requirements capturing phase.

3.1.1 Customer/Requirements Engineer Indoctrination

This activity is performed after the needs generation phase [Song 2002] and can be

bypassed by directly performing the requirements elicitation activity. However, educating

the customer about the requirements engineering process helps in the goal of achieving a

good set of requirements. Familiarization with the process helps the customer appreciate

the importance of a particular activity, and his/her role in the activity. It is recommended

that the indoctrination be carried out not only for the customers but also for all the

stakeholders. (The customer is the organization paying for the software while the

stakeholders are the parties affected by the development. The stakeholders include

customer, user, developer, etc.) Indoctrination results in greater awareness about the

requirements process among all the stakeholders. As a consequence, the stakeholders

have a better understanding of the process being followed.

 Figure 3.3 Customer/requirements engineer indoctrination

The requirements engineer should focus on the following points during indoctrination:

• A description of the software development life cycle and the importance of

requirements engineering

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 58

• Explanation of what constitutes a good requirement and what does not

• Overview of the requirements generation model and the description of

responsibilities of each participant in the requirements process

• Preparation on the part of the participants for the upcoming elicitation activity

Preparation and readiness for requirements elicitation is critical in obtaining requirements

which reflect the needs of the customer. It is the responsibility of the requirements

engineer to accentuate the importance of ownership and preparation, and to maintain an

open communication channel with all participants.

Software projects are constrained by time and cost, and the stakeholders themselves may

be uninterested in spending time on this activity. Hence, the indoctrination of the

customer is not mandatory but is a guideline which helps in attaining a clear set of

requirements.

The indoctrination activity also involves the education of the requirements engineer that

is accomplished by the customer. The requirements engineer is presented with

information about the current system and how it provides for the customer needs. In

addition, the customer discusses the motivation for changes to the current system,

outlining the purpose and overall scope for the new system. The objective of educating

the requirements engineer is to provide them with as much preliminary information about

the current and proposed system, so that they ask relevant questions to the stakeholders as

the requirements are elicited and defined. Unlike the indoctrination of the customer, the

education of the requirements engineer is mandatory as it significantly affects the

outcome of the requirements phase.

3.1.2 Requirements Elicitation Meeting

The problem and the needs of the customer are identified in the needs generation phase,

which precedes the requirements capturing phase. Once the needs are finalized, the

requirements capturing phase commences with the elicitation meeting, which focuses on

the solution to the problem. The participants, i.e. customers, users and developers, need

to be prepared for the elicitation meeting. Hence, in order to facilitate the preparation of

the participants, we included the customer/requirements engineer indoctrination activity

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 59

in this phase. The indoctrination of the participants prepares them for the elicitation

meeting, yet even the best prepared participants can make mistakes during the

requirements communication sessions [Arthur 99].

The objective of the requirements elicitation meeting is to correctly identify and capture

requirements of the stakeholders. The participants of the meeting may be unclear in the

description of the requirements. In addition, they may make certain assumptions about

the requirements. For example, a participant may assume that a requirement is trivial, and

hence may not convey it to the requirements engineer. Therefore, the task of identifying

the requirements is a difficult one for which the requirements engineer should be well

prepared. Several approaches such as Joint Application Design (JAD)[CMS 87] ,

Participatory Design (PD) [Floyd 89] and Facilitated Application Specification

Techniques (FAST) [Zahniser 90] have been proposed for requirements elicitation; the

choice of the approach taken is left to the requirements engineer.

 Figure 3.4 Requirements elicitation meeting

The input to the elicitation meeting is the needs document which is produced after the

completion of the needs generation phase. There are some subtle differences between the

needs and requirements. This is described in the table below

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 60

Needs Requirements

Needs represent the problem domain Requirements represent the solution

domain

Needs are derived from problem elements,

which is a breakdown of the main problem

Requirements are derived from needs

obtained in the needs generation phase

Needs lack formal representation Requirements follow standards prescribed

by the software requirements specification

(SRS)

Table 3.2 Comparison of needs and requirements

Before the elicitation starts, the requirements engineer must identify the participants of

the meeting. The Joint Application Design (JAD) or Participatory Design (PD) approach

can be used to assist the identification process. The JAD approach advocates the selection

of participants by taking a vertical slice of the organizational hierarchy. However, the PD

differs from JAD by selecting participants from the same hierarchy level in the

organization [Carmel 93]. Again, the choice of approach taken is left up to the

requirements engineer.

Once the participants have been selected, the requirements engineer then selects conducts

elicitation techniques such as interviews, brainstorming, focus groups, etc., to produce a

set of requirements. The success of these techniques depends largely on the active

involvement of the participants, and hence selecting the right participants is critical.

In addition, the selection of the techniques is also important as some methods are better

suited to a specific situation than the other methods. For example, brainstorming is

superior to interviews in eliciting new ideas. The proceedings of the elicitation activity

should be recorded as they form an important source of requirements. The recorded

proceedings can be analyzed later to provide information about implicit requirements and

assumptions made by the participants.

The roles of the requirements engineer and the participants in the meeting differ. It is the

participant’s responsibility to convey all necessary information to the requirements

engineer about the system. The participants should make no assumptions about the

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 61

requirements and should be precise in their description. The requirements engineer’s

responsibility is to capture the requirements and the context for each requirement

conveyed by the participants. Moreover, s/he should probe for more information if the

requirements are unclear. Thus the roles of the participants and the requirements engineer

for the elicitation meeting differ – one provides information, the other captures that

information.

3.1.3 Local Analysis

As depicted in Figure 3.2, the local analysis activity is conducted after the elicitation

activity. The elicitation activity produces small sets of requirements, and hence the

iteration of the elicitation meeting becomes inevitable in order to get the complete set of

requirements for the system. The term “Local” refers to the analysis being performed on

requirements as and when they are generated. The requirements are not for the whole

system, but may be for a single or several small components. The information collected

during this activity helps the “global analysis” phase, which analyzes the requirements in

its entirety. Local Analysis is further decomposed into subordinate activities as shown in

Figure 3.5.

 Figure 3.5 Local analysis

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 62

Local analysis begins with identifying the rationale of the requirements and confirming

the requirements with the stakeholders. The set of requirements is then prioritized,

verified and validated. Each of these activities is described in detail in the next few

sections.

3.1.3.1 Rationalization and Justification

On completion of a requirements elicitation meeting, a list of requirements is obtained

that should be examined with the stakeholders. The rationale of the requirements

gathered in the elicitation activity should be analyzed to determine whether the true

requirements are hidden in this rationale [Christel 92]. Moreover, identifying the

rationale helps in justifying whether a particular requirement is valid, i.e. the requirement

maps to a stakeholder need.

Besides attempting to find the rationale of the requirements from the stakeholders, this

activity also justifies the requirements identified during elicitation. If the requirements are

found to be of a high level, they are decomposed or refined after discussions with the

stakeholders. The requirements engineer is in control of this activity, and it is his/her

responsibility to identify the rationale behind the requirements from the stakeholders.

 Figure 3.6 Rationalization and justification

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 63

The inputs to this activity are the unstructured requirements list, domain information, and

the organization standards/regulations document as shown in Figure 3.6.

• Unstructured requirements list: This document consists of the list of

requirements obtained during the elicitation activity

• Domain information: It specifies the working environment of the system and the

constraints on the proposed system.

• Organization standards/regulations: This documents also specifies constraints

but from the management perspective.

These documents help in justifying the requirements obtained from the requirements

elicitation meeting.

The rationalization and justification activity begins with the requirements engineer

identifying the functional and non-functional requirements for the system components.

Once the identification is complete, the stakeholders are asked to answer the question

“why” underlying the requirements. This is usually accomplished during a meeting that is

headed by the requirements engineer. Several techniques like brainstorming, issue based

information system (IBIS) [Kunz 70], etc. are used for this activity. Stakeholder

participation is key to the success of this activity.

After the rationale has been collected and examined, the requirements engineer identifies

any hidden requirements, and also determines if the requirements conform to the system

and organizational constraints. If requirements are found within the rationale, then the

current requirement is at too high of a level and needs to be further decomposed or

refined. The stakeholders are involved when the requirement is changed in order to

develop the feeling of collective ownership of the requirement. An added benefit of

identifying the rationale is that the requirements engineer knows about the dependencies

between requirements and how they trace back to the needs. This helps in the later phase

of traceability analysis when the actual traceability document is created.

After rationalization, the requirements are examined by the stakeholders to determine if

the requirements satisfy the constraints specified for the system and organization. There

may be requirements that lack traceability to the needs; this lack of traceability indicates

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 64

that either the requirements are unnecessary, or that the needs are incomplete. This

inconsistency must be conveyed to the stakeholders, and either the needs document or the

requirements list is updated depending on the stakeholders’ decision.

This is an iterative activity and it continues until the local set of requirements is justified

and their rationales identified. Before continuing further into the local analysis activity,

the requirements engineer should make sure that the requirements are at an acceptable

level of decomposition. Requirements should address “what” a system should do NOT

“how” to achieve it [Davis 90]. Also, the requirements should not be at too high of a level

which might allow latitude for misinterpretation. A fine balance between the two should

be achieved and, it is the responsibility of the requirements engineer to accomplish this

equilibrium.

3.1.3.2 Prioritization

The prioritization activity is conducted after the justification and rationalization of the

requirements identified during the elicitation activity. The objective of the prioritization

activity is to identify the pertinent attributes of the requirements and determine their

values. Requirements are also ranked based on the priority ratings given by the

stakeholders. The requirements engineer conducts this activity with active participation

from the stakeholders. Prioritization is an iterative activity as seen in Figure 3.7.

Meetings are held with the stakeholders to determine the objective of the activity and the

proceedings are documented for later reference. On completion of this activity, a

prioritized list of requirements is obtained and is then submitted to the next activity.

Several requirement attributes are identified and their values determined during the local

analysis activity. The major attributes are listed below:

• Risk factors – The stakeholders determine the main risk factors for a requirement,

e.g. cost, time, lack of expertise, etc

• User urgency – The user determines how important the requirement is to him/her.

A numerical rating scale is often used for this purpose.

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 65

• Value to product – A customer representative determines the relative benefit that

each requirement provides to the customer or the business on a scale from 1 to 9,

with 1 indicating very little benefit and 9 being the maximum possible

benefit.[Weigers 99] These benefits indicate alignment with the product’s

business requirements.

• Effort – The developer determines the rough estimate for the work needed to

implement the requirement.

 Figure 3.7 Prioritization

After obtaining requirement attributes, the requirements engineer asks the customer to

rank the requirements into high, medium and low priority categories. To prevent the

customer from ranking all requirements as high priority, the requirements engineer

provides an example of a requirement within each priority class. This gives the customer

an idea of the priority classes and assists him/her in ranking the requirements relative to

these requirements.

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 66

The next activity, verifying quality attributes, begins after all of the requirements have

been ranked and their respective attributes determined. The output of the prioritization

activity is a list of ranked requirements with their associated attribute values.

3.1.3.3 Verifying Quality Attributes

After the prioritization of the requirements is completed, the next step is to verify the

local set of requirements for adherence to quality attributes. Verification enables the

identification of inconsistencies and redundancies in the requirements. The requirements

engineer can verify the requirements provided he has the necessary experience and

expertise. But usually, verification is performed by quality experts. As illustrated in

Figure 3.8, on completion of this activity, we have a local set of requirements verified for

quality attributes.

 Figure 3.8 Verifying quality attributes

Before the verification of requirements begins, the quality attributes that need to be

verified must be identified. There are several sources which provide a number of

requirements quality attributes [IEEE 99]. Several of those attributes are shown in Figure

3.9. In order to conduct this activity, it is necessary to identify quality experts, who are

either internal or external to the organization.

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 67

Correctness

Ambiguity

Ranked

Verifiable

Modifiable

Understandable

Testability

Necessity

Requirements

 Figure 3.9 Requirements quality attributes

During local analysis not all quality attributes can be verified for the set of requirements

captured. Attributes such as completeness and consistency cannot be checked at this stage

as only small portions f the whole set of requirements are being examined. At this stage it

is recommended that the following attributes be examined

• Ambiguity – each requirement has one and only one possible interpretation

• Correctness – each requirement represents something required of the system to be

built

• Testability/verifiability – each requirement should be testable through inspection

or demonstration to perform its desired functionality within a reasonable amount

of time [Gröner 2002]

• Understandability – each requirement should be comprehendible by all classes of

readers (users, customers, developers, etc.)

• Precise – When appropriate each requirement should be stated in numerical terms,

and are at the right level of precision

Several techniques are used to perform the verification of requirements for the quality

attributes – the most common technique being inspections [Fagan 76]. After the

requirements are verified for quality adherence, the quality experts prepare reports stating

the extent to which the requirements satisfy the quality attributes. Requirements which

fail to meet the quality standards are also included in the reports. These documents are

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 68

helpful when the decision regarding whether or not an additional iteration of the

requirements capturing phase is to be taken. After verification, the list of requirements is

analyzed with the stakeholders in the validation activity.

3.1.3.4 Stakeholder Validation

Validation is necessary to determine if the requirements captured meet the stakeholders’

intent. The main objective is to uncover disagreements between what the stakeholder

desires and what the requirements state. If the incorrect requirements have been elicited,

then validation identifies these discrepancies so that they can be rectified. The

requirements engineer conducts the stakeholder validation activity, which takes place

after verification of the requirements. At the end of validation, a decision is made by the

requirements engineer whether to continue to the next phase or to have another iteration

of the requirements capturing phase as shown in Figure 3.10.

 Figure 3.10 Stakeholder validation

Validation at this stage in requirements generation is performed on individual sets of

requirements and not on the set as a whole. We propose early validation, as compared to

the conventional validation activity at the end of the process, because it reduces the

schedule and cost as inconsistencies are identified earlier in the life cycle. An added

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 69

advantage is that the stakeholders now feel involved in the process and their confidence

in the requirements is also increased.

The proceedings of the validation activity and disagreements (on requirements) with the

stakeholders are recorded. If there is a misinterpretation of the stakeholders’ intent, it

indicates that elicitation was incomplete and that an additional iteration of the elicitation

meeting is necessary. This decision is made after the validation activity is completed.

Validation is a process which increases the confidence of the stakeholder in the

requirements. Hence, it is difficult to predict the right time to stop. However, in the real

world, time and cost act as principal controlling factors for validation. There are several

techniques for determining whether the stakeholders’ needs are met. Prototyping and

walkthroughs are the most commonly used methods for validation during the

requirements generation process.

Once the stakeholder validation activity is concluded, the requirements engineer must

decide whether to have an additional iteration through the requirements capturing process.

The requirements engineer, in consultation with the stakeholder, determines whether the

requirements capturing phase is complete. To answer this question, the following exit

criteria are examined. As described by Groener [Groener 2002], each criterion consists of

a checklist of items pertaining to:

• Inspecting quality attributes of requirements

• Ensuring no open or unresolved issues remain

• Finding agreement among all stakeholders that all requirements have been

collected

The first exit criterion is addressed in the verification activity; the requirements engineer

uses the report prepared by the quality expert(s) to answer the questions in the checklist.

The validation activity identifies unresolved issues or problems with requirements; the

outcome of this activity answers the second criterion. Finally, the stakeholders need to

answer questions whether their requirements and intent have been captured. If the answer

to any of the above criteria is in the negative, then it indicates that another iteration of the

capturing process is needed.

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 70

The exit criteria listed above are necessary items to determine if the transition to the

global analysis phase can be made. This list is not a comprehensive list and we encourage

the users of x-RGM to include any additional items, which are necessary for their

development effort.

3.2 Global Analysis

Once the complete set of requirements have been captured and evaluated from a “local”

perspective, the next step is to evaluate the requirements as one whole set. The set of

activities which accomplish this task collectively form the global analysis phase. In effect,

it is in the global analysis phase where we analyze factors that globally affect the system

under development [Nord 2003]. In this phase, the requirements are examined from the

development, market, sales and management perspectives as seen in Figure 3.11.

Conflicts among stakeholders emerge during global analysis, and hence negotiation is an

integral part of this phase.

 Figure 3.11 Global analysis phase

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 71

Global analysis can be divided into two parts – the first part (adapter from [Davis 2003a])

analyzes the requirements and the second part resolves the conflicts. The input to the

activities at the start of global analysis comprises three documents – requirements list,

organizational factors document and technological factors document.

• Requirements list: It is the complete set of requirements obtained from the

requirements capturing phase.

• Organizational factors document: It arises from the business establishment and

has an external influence on the development of the system. These factors include

cost, profit margins, personnel available, etc., which constrain options in defining

the system.

• Technological factors document: This lays down the technological constraints

such as the availability of operating systems, hardware, etc. Just like the

organizational factors, technological factors affect the system externally, the

difference being that the technological factors affect the system throughout its

lifetime.

During the process of evaluating the complete set of requirements from the global

perspective, conflicts within the requirements are identified and documented. It is the

responsibility of the requirements engineer to resolve these conflicts with the

stakeholders in an amicable manner.

The sections which follow will explicate the activities in the global analysis phase in

detail.

3.2.1 Risk Analysis

One of the first activities in the global analysis phase is risk analysis. The objective of

this activity is to analyze the complete set of requirements for the risk factors identified

during local analysis. Risk factors are broadly classified into 3 categories - Product

engineering, development environment and program constraints [SEI 96].

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 72

• Product engineering: The risk factors considered in this category pertain to

technical aspects of the work to be accomplished. Questions such as the following

are considered under this category:

o Are there requirements that are technically difficult to implement?

o Is the system size or complexity a concern?

o Does the hardware limit the ability to meet any requirements?

o Are the safety requirements infeasible and not demonstrable?

• Development environment: In this category, risk factors related to the

development process, management practices and work environment are examined.

A sample set of questions are listed below:

o Are there mechanisms for controlling changes in the product?

o Are the managers experienced in software development, software

management, the application domain, and the development process?

o Is there a non-productive, non-creative atmosphere?

• Program constraints: Risk factors associated with resources, contract and

stakeholders are examined in this category. Questions such as the following are

considered:

o Are the facilities inadequate for building and delivering the product?

o Is the funding insufficient or unstable?

o Does the contract include any inappropriate restrictions?

o Are there any customer problems such as a lengthy document-approval

cycle, poor communication, or inadequate domain expertise?

The person who analyzes the requirements for risk is usually an expert in risk analysis.

However, the requirements engineer can perform this activity provided s/he has the

necessary competence. The number of risk analysts needed depends on the size of the

project.

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 73

During risk analysis, the risk analyst must review each risk factor, estimate the

probability of its occurrence, and the loss if the risk occurs. The loss could be represented

financially (in dollars) or on a scale of 1 to 10. The risk analyst then estimates the risk

exposure for the requirements. Risk exposure is defined as the product of the likelihood

that the risk will occur and the magnitude of the consequences of its occurrence. Once

this estimation is complete, requirements are ranked based on their risk exposure values.

The ranked list indicates the high risk requirements, which are at the top of the ordering.

This document is then reviewed by the analyst(s) for errors and is submitted as an input

for the feasibility analysis activity, where the requirements engineer in consultation with

the management decides whether or not to proceed with the project. In some cases, the

overall project risk exposure can be so high that the project intent cannot be attained at a

reasonably probable expense.

3.2.2 Cost/Schedule Estimation

Cost and schedule estimation can be performed in serial or in parallel with the risk

analysis activity. This activity is conducted by the requirements engineer in consultation

with the developers. The objective of this activity is to determine the cost of developing

the software components and the time needed for the implementation. The cost and

schedule estimates are critical to the success of the project as they affect the budgeting

decisions, project planning and control, and tradeoff analysis. In addition, these estimates

are one of the drivers for the feasibility analysis activity.

Cost estimation is the evaluation of separate elements (e.g. personnel experience,

platform difficulty, etc.) that affect the development of the system to determine if the

total cost estimate satisfies the customers’ budget. Put in simpler terms – cost estimation

is the process of predicting the amount of work or effort required in developing the

system.

There exist several techniques for estimating the cost of the requirements. Whichever

method is selected, the requirements engineer must pay attention to the following points

to get the best results [Leung 2002]:

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 74

• Coverage of the estimate (some methods consider the effort for the whole life

cycle, while others leave out the requirements phase)

• Assumptions made by the technique

• Sensitivity of the estimate to the different cost parameters

• Deviation of the estimate from the actual cost

The size of the software is a major factor in determining the cost of the project. There are

several metrics for determining project size. The organization can choose any of these as

long as the metrics are used consistently throughout the project life cycle. The following

metrics are the most commonly used in industry:

Lines of code: This is referred to as LOC and it is the number of lines of delivered source

code, excluding the comments and blank lines [Fenton 97]. This is the most widely used

metric even though it is language dependent and can fail in providing consistently

accurate estimates.

Function Points: This metric measures the functionality of the system to determine the

cost. The functions of the system are classified under different categories such as user

output, user input, etc. Each of these functions are then weighed on a scale of 1 to 3

(1=simple, 2=medium, 3=complex). These weights are then used in a mathematical

formula to calculate the cost [Albrecht 83].

In addition to these metrics, there are several others which have been proposed as

extensions to the existing metrics. Function points have been extended to include

algorithms [Jones 97] and control aspects [St-Pierre 97] of the systems. Software science

is another metric, which estimates the cost based on code length and storage space used

by the implemented software [Halstead 77].

The requirements engineer should choose a metric which can provide an estimate closest

to the actual cost. A good cost estimate should be [Royce 98]:

• Conceived and supported by the development team and management

• Based on a well-defined cost technique, which has credibility in the industry

• Based on the knowledge of relevant projects

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 75

• Defined in sufficient detail so that the key cost parameters are understood.

Schedule estimation involves determining the development time of the components and

identifying the critical components of the software system. The schedule estimate

document helps management in the planning phases as it shows the dependencies of the

various software components. In addition, schedule estimation enhances control over

complex development work and enables management to use resources in an appropriate

manner.

There are five inputs to schedule estimation – requirements list, constraints, resource

requirements, resource capabilities/availability and historical information [Burns 2003].

An organization may use one or more of the following approaches to get a good estimate

of the schedule.

• Expert judgment: Calculation of the schedule is performed based on the

knowledge of an expert in the field.

• Analogous estimating: Similar projects are considered and the time for

development of a similar component is used as the current estimate.

• Simulation: It calculates multiple durations for different assumptions.

A good schedule estimate should provide a range of the duration times. For example: a

GUI component may take one week plus or minus three days for development. Moreover,

schedule estimation must be performed aggressively i.e. the requirements engineer should

strive to get an estimate that deviates as little as possible from the actual time needed. If it

is estimated that a component will need two weeks instead of three weeks for

development, then there is a high probability that the task will take two weeks. People

tend to use the time allotted even if the task can be accomplished earlier. Hence, it is

important that the requirements engineer involves the right developers to get a good

estimate. On completion of the activity, a project schedule document is prepared,

reviewed and submitted as input for feasibility analysis.

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 76

3.2.3 Price Analysis

Price analysis is the process of deciding a product price which is fair and reasonable,

without evaluating the separate cost components and proposed profit [FAST 2004]. In

addition, it also determines which functionalities are optional and can be dropped without

affecting the value of the product.

The concept of fairness is a relative term, and depends on the perspective of the different

party’s involved. The users’ perspective of a fair price is one that covers the maximum

number of functionalities desired. However, the customer’s perspective of fairness is a

price which provides maximum profit. This indicates that the customer desires a decrease

in implementation cost, perhaps at the expense of user functionality. It is the

responsibility of the requirements engineer to establish an equitable price which

synchronizes the concerns of the user with those of the customer. Reasonability of price

depends on the market environment – that is, what is reasonable today may not be so

tomorrow. The requirements engineer should examine factors such as supply, demand,

economic conditions and competitor’s price, before making a decision about the product

price.

While both cost estimation/analysis and price analysis deal with the total cost of the

product, they differ in their approach. Cost analysis looks at the total cost from the

developers’ perspective while price analysis is more from the management perspective.

Both activities complement each other as can be seen in the example provided in the

shaded box (Figure 3.12) [FAST 2004]. Even though cost analysis may provide the total

cost in terms of the individual components, the cost may still be unreasonable.

The requirements engineer conducts the price analysis activity and s/he relies on the

market survey data for the analysis. The market survey document should provide

information about the following factors of reasonability:

• Number of buyers and sellers in the market

• Prices of similar/competitor products

• Intensity of demand

• Quality of products in the market

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 77

Background:

Suppose the Government wants to purchase a new vehicle for Government use

only. The Government decides to have a mechanic build the car from "scratch"

instead of buying a pre-assembled vehicle. Competitive quotes are received on

all the individual parts and necessary tooling. All workers receive minimum

wage, and the mechanic asks for a very small profit.

Evaluation:

• Even though cost analysis determined that the proposed costs for parts

and labor are reasonable, the final price of this car will be much more

expensive than a car bought off the assembly line.

• Parts purchased independently may be many times more expensive than

when bought in bulk quantities to support an assembly line.

• The entire cost of tooling will be charged to one car, instead of

thousands.

• Labor might be cheaper, but it will not be as efficient as assembly line

labor.

Conclusion:

Even though all parts were purchased from competitive quotes and the labor

rates are reasonable, this does not ensure the final price will be reasonable

In addition to this information, the requirements engineer should also be knowledgeable

about the production costs and the functionalities of the system. Several techniques such

as historical data, cost estimation relationships, etc. can be used in determining a fair and

reasonable price.

 Figure 3.12 Cost and price analysis

The output of price analysis is a price estimate document, which is one of the inputs for

analyzing the feasibility of the project. This document should clearly state the proposed

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 78

price, the functionalities for the proposed price, and the functionalities recommended for

implementation in later releases. Also, if the proposed price estimate conflicts with the

customer’s estimate, then it should be documented for discussion with the customer.

3.2.4 Feasibility Analysis

Feasibility analysis is performed during the global analysis phase, but after the

completion of the risk, cost and price analysis activities. It is the process by which the

requirements engineer examines how beneficial or practical the development of a system

will be to the customer organization. After evaluating the feasibility of the requirements

from the business, technological and cost perspective, a ‘go - no go’ decision is made at

the end of the activity. Since this activity involves managerial decisions, the requirements

engineer works with managers on this activity.

The previous activities in the global analysis phase provide estimates for the risk, cost,

schedule and the price. These estimates are used for the five types of feasibility tests –

Operational, Technical, Schedule, Economic, and Legal and Contractual feasibility.

Operational Feasibility: It deals with determining how well the solution will meet its

business objective and whether the users feel comfortable using it. Operational feasibility

is based on issues such as managerial support, training required, workforce reduction and

effects on customers and users. The solution should solve the business problems and at

the same time should help the users in their work rather than causing a hindrance.

Prototypes are often used to determine if the proposed solution satisfies its objective. If

the solution is for the entire organization, then the prototype is deployed only in a small

portion of the organization to examine how well it works. If the solution is for individual

users, then the prototype is tested for effectiveness by a sample of users. Usability is an

important factor during these tests and should be considered while evaluating the

prototypes.

Technical feasibility: The objective of technical feasibility is to determine the

development team’s ability to build the proposed system. The development team’s

understanding of the target hardware, software and operating environment is assessed. In

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 79

addition, the group’s experience with systems of similar size and complexity is also

examined. Questions such as the following are analyzed:

• Is the proposed technology or solution practical?

• Do we currently possess the necessary technology?

• Do we possess the necessary technical expertise?

Expertise in the target software is essential, otherwise the learning curve will be longer

and can have an adverse affect on the schedule of the project.

Schedule feasibility: The schedule estimate that is determined during the cost and

schedule estimation activity is checked for reasonability. Factors such as the sensitivity to

variations, assumptions of methods, number of schedule parameters, expertise of the

participants involved, etc. are analyzed to determine a level of confidence in the estimate.

Economic feasibility: The purpose of economic feasibility is to evaluate whether or not

the projected benefits of the system outweigh the estimated cost of the system. It is

commonly referred to as cost-benefit analysis. To determine the economic feasibility,

costs for acquisition, development and maintenance is evaluated against the tangible and

intangible benefits. Tangible benefits are those which can be measured financially, e.g.

cost reduction and avoidance, error reduction, increased flexibility, improvement of

management planning and control. Intangible benefits are those which cannot be assessed

monetarily. They include competitive necessity, increased organizational flexibility,

promotion of organizational learning and understanding.

Legal and contractual feasibility: This is the process of assessing potential legal and

contractual ramifications due to the construction of a system. Considerations might

include copyright or nondisclosure infringements, labor laws, antitrust legislation, foreign

trade regulation, and financial reporting standards.

During feasibility analysis, the documents produced by the preceding activities (risk, cost

and schedule, price analysis) are analyzed. The requirements engineer has to determine if

all the risk items have been considered. The profit margin is the main concern of the

customer, and hence it is necessary to examine if the projected profits meet the customers

expectations. There is a possibility that the project may end up in losses if the technology

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 80

is unavailable or if the product is ahead of the times. Schedule is another important aspect

to examine as customers want their products as early as possible - their time-lines,

however, may be unreasonable. As feasibility analysis progresses, the requirements

engineer observes conflicts with the customers requirements, and these are documented

for discussion with the customer. In addition, conflicts between requirements are also

detected as the activities – risk analysis, cost and schedule estimation, price analysis and

feasibility analysis – are used to evaluate the whole set of requirements. On completion

of feasibility analysis, the requirements engineer collects all the conflicting requirements

and documents them. The document also includes the decision whether to proceed with

the project and the reasons responsible for reaching this decision.

If the project is infeasible, then discussions can be held with the customer so that the

project expectations are made more realistic and practical. Even if the project is given the

“green light”, negotiations must be held with the stakeholders to smoothen out the

conflicts in the requirements.

3.2.5 Conflict Resolution

This is the final activity of the global analysis phase and is conducted by the requirements

engineer. The initial activities of global analysis identify requirements which are

inconsistent and are counter to the customer’s project constraints. Conflict resolution is a

process by which differences are negotiated to reach a satisfactory solution. The parties

involved usually communicate through face-to-face discussions and trade demands and

counter proposals.

The success of conflict resolution depends on the requirements engineer. S/he should

have good communication skills in addition to possessing the qualities of being honest

and respectful. A key concept of negotiation is group ownership of the decisions taken,

since solutions are agreed to and not imposed. There is a perceived commitment on the

part of all parties to reach an agreement through compromise. If an agreement cannot be

owned, the requirements engineer should examine alternative solutions.

Conflict resolution consists of three mains steps: Identify issues, Identify options and

Finalize agreements (Figure 3.13) [Boehm et al. 94].

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 81

 Figure 3.13 Conflict resolution

Issues specify the conflicts in requirements along with the arguments from the

stakeholders who own the requirements. The options specify various alternatives to

resolve the conflict. Agreements are the final solutions which are agreed upon by all the

stakeholders. Conflict resolution is a difficult activity to perform, and there is no single

clear-cut strategy which ensures that an agreement will be reached. If the discussion with

the stakeholders is in a deadlock situation, the requirements engineer has to approach a

higher authority who can make a decision on behalf of the stakeholders. (For example,

when the negotiation with the customer representatives is in a stalemate situation, then

the customer management can be contacted to intervene.) If the negotiation still fails,

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 82

then the requirements engineer conveys the status of the negotiation to management so

that they can decide upon the appropriate action.

Before the meeting with the stakeholders, the requirements engineer has to plan for the

discussion. The conflicting requirements need to be prioritized so that the most critical

are addressed first. In addition, facts which highlight the pros and cons of the different

opinions should be collected and documented. Requirements which can(not) be

compromised are also listed. The requirements engineer also has to establish judgment

criteria. For example, a prioritized list of merits (cost, time, effort, etc.) for the evaluation

of the alternate options. These judgment criteria help participants in making consistent

judgments about different options [Sutcliffe 2002]. During the meeting with the

stakeholders, the requirements engineer has to exhibit his/her communication and

negotiation skills. A good strategy is to open the discussion with a position which the

stakeholder agrees to. Threats can play an important role if used minimally and carefully.

Negotiations should be under control so that it does not digress to an unrelated issue.

Once negotiations are complete, the agreements are documented and signed by all

participants. The global analysis phase is repeated if the conflict resolution activity

results in requirement updates or additions, whose impact has not been evaluated.

At the end of the global analysis phase, the conflict free requirements list is produced

which is then used by the next phase for structuring the requirements.

3.3 Organization and Compilation

After the conflict free requirements list is obtained, it needs to be organized and compiled

into a single unit such that it fits into the software requirements specification (SRS). This

phase consists of a single activity, which excludes any analysis of the requirements.

Hence this activity is neither grouped under global analysis nor confirmational analysis

phase so that there is a clear understanding of what each phase and its activities

accomplish. The specification of requirements, which is a section of the SRS, is the

output of the activity; the SRS is NOT the output. During the structuring of the

requirements list, the format for the requirements as specified by the SRS is followed.

The organization and compilation phase is shown in Figure 3.14

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 83

 Figure 3.14 Organization and compilation

Coming into this activity the requirements have been classified into functional and non-

functional requirements for the different system components during the rationalization

and justification activity. However, the requirements need to be organized in a manner

which is optimal for understanding. Modification of requirements should also be a

concern so that changes to requirements can be made easily, completely and consistently

while retaining the structure and style [IEEE 98a]. There are several ways in which the

requirements can be organized. Some of these are described below:

System mode: A system may have different behavior depending on the mode of

operation. For example, a critical control component may provide different sets of

functionalities depending on whether it is operating in normal or emergency mode of

operation. Thus, the requirements are structured according to the modes of operation. The

template for this organization is provided in A.1 of Appendix A.

User Class: A system may provide different functionality for different set of users. For

example, a web application provides different capabilities to users, database

administrators, maintenance personnel, etc. Section A.2 of Appendix A provides an

outline for the requirements organization based on user class.

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 84

Stimulus: For some systems, stimulus is critical for the different operations. For example,

a control system can be perceived by the different trigger signals that it receives.

Requirements of such systems are best presented based on trigger classification, which is

outlined in section A.3 of Appendix A.

Response: Just like the organization based on stimulus, the requirements can also be

organized based on response. Requirements which are responsible for obtaining a

particular response are grouped under the same category. For example, in a web

application, all of the functional requirements responsible for generating the credit card

payment report can be clustered together. The template for this organization can be seen

in section A.4 of Appendix A.

Functional hierarchy: The overall functionality of a system can be structured into a

hierarchy of functions that reflect the information flowing in the system. For example, a

high level functionality could be database manipulation while a sub-function of this

functionality can be an authorization check. Section A.5 of Appendix A shows the outline

for this organization.

Any of these organizations can be selected for representing requirements - the choice is

left to the requirements engineer. The organization and compilation phase produces a

structured requirements list which forms a subset of the SRS. The organized requirements

list is now passed to the confirmational analysis, which forms the last phase of the

expanded requirements generation model (x-RGM).

3.4 Confirmational Analysis

This phase performs the final verification and validation of the complete set of

requirements. Traceability diagrams are created and the requirements are checked if they

trace back to the needs. In addition, minor changes to the requirements are made in

response to customer validation. Figure 3.15 shows the activities that comprise the

confirmational analysis phase.

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 85

Figure 3.15 Confirmational analysis

On completion of this phase, the validated and structured list of requirements is ready to

be included into the SRS. The activities in the global analysis phase are explained in

more detail in the sections that follow.

3.4.1 Quality Adherence

This activity checks the requirements from the global perspective, and differs from the

quality adherence activity in the requirements capturing phase. The verification of quality

attributes in local analysis examines a small set of requirements, and hence attributes like

completeness and consistency cannot be evaluated. However, during confirmational

analysis the whole set of requirements can be analyzed for quality attributes since this

phase is entered only after all the requirements have been captured.

The adherence of requirements to quality attributes is verified by a quality expert.

However, a requirements engineer can perform the task provided he has the necessary

expertise. The quality analyst verifies additional quality attributes, some of which are

shown in Figure 3.16.

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 86

Consistent

Concise

Modifiable

Non redundant

Organized

Complete

Requirements

 Figure 3.16 Quality attributes

Consistent: The requirements are consistent if and only if no subset of individual

requirements conflict with each other [IEEE 84].

Concise: The requirements list is concise if it is as short as possible without adversely

affecting other quality attributes of requirements.

Modifiable: The collection of requirements is modifiable if its codified structure is such

that changes can be made easily, completely and consistently. This property is important

because requirements change frequently during the software life cycle and these changes

need to be incorporated with minimal effort.

Non redundant: Requirements should not be stated more than once in a document. This

may improve the readability of requirements but the problem arises when the

requirements are revised. If redundancy exists, then there is a possibility that the

requirements can become inconsistent on revision.

Organized: The requirements are organized if the grouping of requirements are easily

understood and the logical relationships between adjacent groupings and sections are

apparent.

Complete: The requirements are complete if everything that the software is supposed to

accomplish is included and is there are no “To be determined” requirements [Davis 90].

The attributes described form only a small portion of a long list of quality attributes

[Davis et al. 93]. In addition to checking the requirements for the attributes mentioned,

the quality analyst also has to confirm that during local analysis the requirements were

checked for ambiguity, correctness, etc (Figure 3.9) and this is done to ensure that there is

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 87

no duplication of effort. The findings of this activity are documented so that any needed

action can be taken by the requirements engineer. After checking for the adherence to

quality attributes, the requirements list is used as input for the traceability analysis

activity.

3.4.2 Traceability Analysis

Traceability analysis is the activity by which the life of a requirement is described and

followed i.e. from its origins, through its development and specification, to its subsequent

deployment and use [Gotel 95]. This activity is performed after checking the

requirements for adherence to the quality attributes listed in Figure 3.15. The

requirements engineer conducts traceability analysis, which addresses the following

important questions:

• What need is addressed by a requirement?

• Are all requirements allocated?

• Has any need been overlooked?

• What is the impact of changing the requirement [SPS 94]?

Initially, the requirements engineer must determine dependencies or links between the

requirements. In addition, the links between the requirements and needs are also

identified. This linking of requirements is achieved by examining the results of the

rationalization and justification activity (requirements capturing phase), which analyzes

each requirement and identifies the rationale behind it. In effect, the rationale of the

requirement points to the need from which the requirement is derived, and it also helps in

identifying the links between the requirements.

Once the links have been identified, the approach for representing traceability must be

determined. One approach is the use of general purpose tools (word processors,

spreadsheets, etc.) which support cross linking of requirements among documents.

However, this approach is not scalable and is suitable for only small projects. The second

approach is the use of a dedicated workbench environment centered on a database

management system for the storage of requirements. This environment would provide

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 88

tools for editing, storing, linking, organizing and managing requirements. The strengths

and weaknesses of each of these approaches are presented in Table 3.3

Approach Pros Cons

Readily available Limited integration with other

software tools

Good for small projects High maintenance cost for

traceability

Tools have to be configured

for supporting traceability

General purpose tools

Flexible

Limited control on the

traceability requirements

Provides a number of tools

for traceability maintenance

Expensive

Good for large projects Learning curve is bigger than

general purpose tools

Provides visualizations for

traceability

Requirement

Workbenches (includes

requirement

management tools)

Integrates with a number of

software tools

Rarely covers traceability in

the other phases

Table 3.3 Comparison of traceability approaches [Kean 97]

Most of the office tools available in the market have database and spreadsheet

capabilities, which can be configured to support requirements tracing. Moreover, there

are several products under the workbench category which support traceability [STSC 98].

Some of the requirement management tools available in the market are DOORS,

Requisite Pro, Caliber RTM, and so forth. The minimum functionality provided by these

tools is listed below:

• Bidirectional requirements tracing

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 89

• Capture of requirements rationale and accountability

• Identification of inconsistencies

• History of requirement changes

• Verification of requirements

• Impact of requirements change

Traceability matrix and tree representations are the most commonly used in industry to

show the dependencies of the requirements. Once the traceability diagrams have been

created, the requirements engineer should review the traceability of the requirements for

errors. This helps in identifying if the requirements have “dangling pointers”, i.e. they do

not trace back to any need. In addition, inspection of the traceability helps in detecting

inconsistency problems in the requirements. The requirements engineer documents

his/her observations and passes the traceable requirements list to the next activity, which

is customer validation.

3.4.3 Customer Validation Meeting

Validation is a critical part of confirmational analysis as it determines if the customer

expectations are met by the requirements. This activity differs from the validation in the

local analysis in that the whole set of requirements are validated as compared to sets of

requirements that are validated during local analysis. The objective of the customer

validation meeting is to identify if there are disagreements between the customer needs

and the requirements. Validation at this stage identifies any remaining discrepancies in

the set of requirements. Upon completion of the customer validation activity, the

requirements engineer has to decide whether the confirmational analysis phase is

complete (Figure 3.17).

All validation discrepancies are recorded by the requirements engineer, and the necessary

changes to the requirements are made in the reformulation activity. Validation of the

whole set of requirements is accomplished using a number of techniques. The most

common method is prototyping because the customer “sees” what the proposed system

looks like, and because identifying flaws in the prototyped system is easier when

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 90

compared to the use of other techniques. Besides prototyping, reviews and walkthroughs

are also popular methods for validation.

Figure 3.17 Customer validation and reformulation

The requirements engineer decides whether the confirmational analysis phase is complete

on the basis of the output from the quality adherence and customer validation meeting

activities. If the quality analyst determines that the requirements are incomplete or

inconsistent, iteration to previous phases will be needed. The requirements are

incomplete if some needs of the stakeholder are not addressed during elicitation. This

error is usually identified by the validation activity during local analysis. But in case such

an error does slip through, then the requirements engineer must perform an additional

iteration starting from the elicitation meeting in order to capture the requirements for the

needs that have been overlooked. The other possibility of iteration to previous phases is

when the requirements are inconsistent i.e. the requirements have conflicts with each

other. Even though the global analysis phase identifies conflicts and resolves them, there

is a likelihood that requirements conflicts can pass to the next phase unnoticed. In such a

situation, iteration back to the conflict resolution activity is necessary.

If the quality analyst is of the opinion that the requirements need some changes to meet

the other quality attributes (Figure 3.16), then as shown in Figure 3.17 the requirements

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 91

document is passed to the reformulation activity. Similarly, if the customer is unhappy

with the phrasing of the requirements or if s/he needs to introduce in some minor changes

to the requirements, these problems are documented so that they can be addressed in the

reformulation activity.

The confirmational analysis phase is complete when all of the requirements satisfy the

quality attributes, and the customer agrees that his/her intent is captured by the

requirements.

3.4.4 Requirements Reformulation

This activity is conducted by the requirements engineer in order to rectify the

requirement problems identified by the quality analyst and the customer (Figure 3.17).

Such problems pertain to requirements quality and customers disagreement with the

requirements.

The requirements document may be organized in an improper fashion for the system

being built or it may have redundant requirements, which makes maintenance of the

document difficult. An additional quality concern is the verbosity of the requirements

document and its non-modifiability. If these concerns are overlooked, the requirements

engineer must modify the requirements in consultation with the quality expert.

Customers also play a role in the reformulation of the requirements. During validation,

some of the requirements may be unclear to the customer, and s/he may want to change

the requirements to make it more comprehensible. As the requirements generation

process is conducted, the customer acquires more knowledge about the solution and

his/her expectations also rise. Hence, while validation is performed using prototypes or

other techniques, the customer may want to make some minor additions to the

requirements. These changes to the document are performed during the requirements

reformulation activity. Once the updates have been completed, the document goes

through an iteration of the confirmational analysis phase, starting with the quality

adherence activity, but building on the results from all previous activities.

Chapter 3. The Expanded Requirements Generation Model (x-RGM)

 92

3.5 Summary

This chapter focuses on the activities and their objectives in the Expanded Requirements

Generation Model (x-RGM). The model begins with the iterative requirements capturing

phase which elicits requirements and analyzes them from the local standpoint. This phase

is followed by global analysis where the requirements are analyzed as a complete set and

requirement conflicts are resolved. The organization and compilation phase structures the

requirements as a part of the SRS; the confirmational analysis phase verifies and

validates the complete set of requirements. The model terminates with the generation of

the requirements specification, which forms a section of the SRS. Creation of the SRS, its

validation and version control is not included in the x-RGM because the focus of this

model is on the generation of requirements and not the SRS. However, if necessary the

model can be easily extended to incorporate the generation of the SRS.

We are not aware of any shortcomings of the x-RGM. It was conceived as an expansion

of the requirements phase in the conventional waterfall model as depicted in the RGM.

The intent was to concentrate on identifying activities and objectives for the requirements

phase with minimal overlap between other phases. Even though the x-RGM in its current

form is incapable of addressing the other development paradigms such as OOA, XP, we

conjecture that the x-RGM can be adapted to accommodate them.

Chapter 4 examines the methods mapped to the different activities in the x-RGM. In

addition, the chapter explains the selection of method paths based on different “fitting”

criteria for the requirements generation process as a whole.

Chapter 4. Synchronization of Methods and Activities

 93

Chapter 4

Synchronization of Methods and Activities

4. Introduction

Chapter 3 focused on the issues of developing a well-defined requirements engineering

model and identifying the objectives of the activities in the proposed model (x-RGM).

This chapter addresses the second phase of our solution approach and focuses on

identifying methods for the activities in the x-RGM and determining a path of methods

for the entire requirements generation process based on some commonly used selection

criteria.

This chapter is organized such that Sections 4.1 – 4.4 describe the methods that can be

used to achieve the objectives of the activities comprising the different requirement

engineering phases (Requirements capturing phase, Global analysis phase, Organization

and compilation phase, Confirmational analysis phase). Section 4.5 addresses the issue of

identifying the selection criteria and the path of methods which optimize the different

selection criteria. Appendix D provides a summary of the pros and cons of the methods

mapped to the activities in the x-RGM.

Chapter 4. Synchronization of Methods and Activities

 94

4.1 Methods for Requirements Capturing Phase

The requirements capturing phase begins after the generation of the needs document in

the problem analysis phase. This phase is iterative in nature and involves the elicitation,

analysis, verification and validation of requirements as shown in Figure 4.1. During the

requirements capturing phase, requirements are gathered and analyzed in increments, and

on completion of this phase a complete set of requirements is obtained.

 Figure 4.1 Requirements capturing phase

In the sections that follow, we discuss the methods used to achieve the objectives of the

activities in the requirements capturing phase.

4.1.1 Customer/requirements engineer Indoctrination

Customer indoctrination is an optional activity, which is performed with the intention of

educating the customer about the requirements engineering process. During this activity,

the requirements engineer provides the following information to the customer:

• A description of the software development life cycle and the importance of

requirements engineering.

Chapter 4. Synchronization of Methods and Activities

 95

• Explanation of what constitutes a good requirement and what does not.

• Overview of the requirements generation model and the description of

responsibilities of each participant in the requirements process.

In addition, this activity involves the education of the requirements engineer about the

problem domain and user needs. The communication of information in this activity is

accomplished through techniques discussed in the subsequent sections.

4.1.1.1 Print Material

Print material is one of the most common methods used in the industry for the purpose of

education. Printed material provides a comprehensive coverage of the information that

needs to be understood by the readers.

The printed material should follow certain guidelines in order to convey the information

effectively. It is crucial that the objective of the document is understood and stated in a

clear and precise manner. In addition, the document should be organized so that the

readers can easily follow the flow of information. Diagrams should be used to explain

difficult concepts and font size should be large enough to read from a fair distance. The

document should also include an index and appendix, which provides supplementary

information to the data presented. Furthermore, the language level used in the document

should be in harmony with the reader’s expertise in the language. For example, if the

readers’ native language is not English, it is highly recommended to create a document

using simple English vocabulary rather than complex terminology.

Well planned and worded documents are informative and cover a lot of information. Also,

this method can reach large numbers of people at low cost, since the only effort needed is

in creating the document [Stocks 99]. In addition, print material (documents) allows

people time to digest information and return to it for future reference whenever necessary.

The downside of this method is that it involves one way communication, which does not

encourage questioning, clarification or feedback [EPA 2003]. In addition, it is difficult to

create a document which interests every reader because different people respond to

different writing styles, language and tone. There is also the risk that the reader may get

frustrated with the bulk of information presented, and as a consequence, some of the

Chapter 4. Synchronization of Methods and Activities

 96

important details may be overlooked by the reader. Furthermore, this technique puts the

burden of understanding the material on the readers. Hence, this method requires

significant amount of time to convey the information to the audience / readers

4.1.1.2 Oral Presentation

The purpose of using the oral presentation technique is to eliminate, or greatly reduce, the

need for written material, where information can be conveyed in a more meaningful and

efficient way through visual and verbal means. Nothing has more impact, or is quite as

impressive, as a well-delivered oral presentation [PAHO 2003].

During the customer indoctrination activity, the requirements engineer presents his/her

knowledge about the requirements process and the life cycle models in general. However,

for this presentation to be effective, proper planning and preparation is necessary. The

following guidelines should be adhered to for a good presentation.

• Understand the context for the presentation

• Analyze the audience

• Understand and articulate the purpose of the presentation clearly

• Develop sufficient and appropriate supporting material

• Organize the material so it is easy for the audience to follow

• Choose a speaking style, level of language, approach to the subject, and tone

suitable to the occasion and environment

• Select graphics that enhances the audience's understanding of the message.

The design of the slides is also crucial in getting the attention of the audience. Some of

the design tips commonly followed in the industry are as follows [UTK 2003]:

• Avoid busy, confusing backgrounds

• Use a font large enough to be seen from the back of the room. Use a color for the

text that has a very high contrast to the background. Background colors that

transition from dark to light can make words difficult to read as the contrast

changes.

• Keep the background simple.

• Animations should be minimal.

Chapter 4. Synchronization of Methods and Activities

 97

• Use bar graphs, pie charts and line graphs to show trends and statistics.

• Use contrasting, bright colors to delineate between categories.

• Simplify graphs, and only present one graph or figure per slide.

• Handouts of the presentation should include details or explanations.

The advantage of presentations is that they cover the essential points in a shorter time

span than the document studies technique. In addition, the audience grasps more

information as this technique allows for questioning and clarification of difficult concepts.

Furthermore, this method is cost effective and is useful in establishing relationships with

the audience. The disadvantage of presentations is that the information will not reach

large numbers unless a series of presentations are scheduled. Also, the effectiveness of

presentations depends heavily on the speakers, and hence, it is necessary that the

presenters spend considerable time on their presentation. Furthermore, the speaker should

be adept in managing the time in order to balance the audience needs for discussion and

the speaker's needs to cover all the key issues. One more disadvantage is that the

information coverage is not complete, and as a consequence, some of the important

details may not reach the audience [EPA 2003a].�

4.1.2 Requirements Elicitation Meeting

The requirements elicitation meeting focuses on correctly identifying and capturing the

requirements of the stakeholders. During this activity, it is the stakeholder’s

responsibility to convey all the necessary information about the system to the

requirements engineer. On the other hand, it is the responsibility of the requirements

engineer to capture all the requirements along with their related information (contextual

details). In order to achieve the objective of this activity, the requirements engineer can

employ several techniques, which we describe in the sections that follow.

4.1.2.1 Interviews

Interviews are perhaps the most common technique for elicitation and have been

effectively employed in a large number of domains [Moser 71]. If the stakeholders are

asked the right questions, the interview technique can provide valuable information about

Chapter 4. Synchronization of Methods and Activities

 98

the system and its problems. While the questions play a critical role in the success of an

interview, the social aspects of dealing with the stakeholders are also equally important

[Zucconi 89].

The interview method begins by asking broad questions known as context free questions,

which do not suggest a particular response from the stakeholder [Gause 89]. Context free

questions pertain to day-to-day work, day-to-day problems, critical tasks, and so forth.

For example, who is the client for this system? What is the real reason for wanting to

solve this problem? What environment is this product likely to encounter? What kind of

product precision is required? These questions enable the identification of critical issues,

which are probed further through detailed questions at a later time.

Interviews can be conducted on a one to one or group basis. The advantage of

interviewing a group of people is that they can inspire each participant to remember

critical issues and describe day-to-day work [Lausen, 2002]. As a consequence, the

requirements engineer can get more information about the system and its problems.

However, it is important that a balance in participation is maintained so that no one

person dominates the interaction process.

Interviews are advantageous because it is a mature technique and there is lots of literature

on how to conduct them [Christel 92]. Also, this method requires little or no equipment

except for the interviewer and an interviewee. As a result, the cost involved in conducting

interviews is minimal. However, the time taken is considerably long because the

requirements engineer has to interview the stakeholders on an individual basis. This holds

for the group interviews too, because each interviewee is required to answer the question

either by consenting to the previous answers or by adding to it. Another drawback of the

interview technique is the tremendous responsibility placed on the requirements engineer,

who has the critical task of framing the interview questions. Furthermore, this technique

assumes that the interviewee has access to conscious accurate knowledge [Maiden 96].

However, a lot of information is tacit and is held back from the interviewer because the

interviewees find it difficult to explain.

Chapter 4. Synchronization of Methods and Activities

 99

4.1.2.2 Observation

Observation is useful in understanding the users’ domain, main tasks and priorities, and

work habits that the users themselves are unaware of such as workarounds, failures, and

exceptions. In addition, this technique helps in determining the context around the use of

a particular system and the relationship of the system with the other systems in the

environment [HExp 2001].

One example of a task that the user is unaware of is finding a section in a manual, novel

or any book. It would seem logical that people would use the index to find a particular

section. On the contrary, observation shows that in most cases, people skim through the

book assuming that they know where the section is. Only when their efforts fail do they

actually refer the index for a particular section.

This method is intended to obtain information by observing what actually transpires in

the work environment. Hence, to conduct this technique, the observer / analyst visits the

work site and takes notes about the system and its interactions. Observation is easy to

perform and does not require much training and preparation. Furthermore, it does not

require any special equipment and can be conducted by a single person. However, the use

of technology such as a video camera is beneficial as it provides a better coverage of the

system and also allows the analyst to examine the collected data later.

The main advantage of the observation technique is its simplicity and cost effectiveness.

Though video cameras can be used in this method, it is not compulsory. Another aspect

which brings down the cost further is the possibility of conducting this method by a

single person. Another advantage is that this method effectively enhances the knowledge

on the current system and the related work problems. The problem with the observation

technique is that it usually cannot collect information about events / interactions that

happen rarely, because the observer can spend only a specific amount of time in the work

environment of the target system [Lauesen 2002]. Since this method requires that the

analyst be present in the actual work environment of the system, there might be problems

regarding access to the sites and workplaces. Another drawback of the observation

Chapter 4. Synchronization of Methods and Activities

 100

technique is that it can generate a lot of unnecessary information and take a long time to

perform if complete coverage of the system is required [Maiden 96].

4.1.2.3 Task Demonstration

This method is a variant of the interview and observation technique and involves the

study of what a user is required to do, in terms of actions and / or cognitive processes, to

achieve a task objective [Kirwan 92]. In many situations, users cannot explain the tacit

knowledge that they posses, but they are able to demonstrate how a particular task is

performed - this enables the observer / analyst to get a better understanding of the user’s

knowledge. Task demonstration can be applied to studying how users use existing

products. Such an analysis helps in identifying the difficulties the users face in using

existing products, and improvements that might be needed [Rauterberg 2003].

Task demonstration technique requires the users to perform tasks while describing what

they are doing and why. The other alternative is to have the analyst perform the tasks

with the users commenting and guiding him/her. Video cameras may be used to record

the session so that they can be referred for later analysis. The information collected by

this method is usually evaluated by the requirements engineer to obtain the initial set of

requirements for the system. This method has many similarities to the think aloud

protocol technique used in usability engineering [Lindgaard 94] and typically produces

the following information:

• Roles and related tasks

• Sequences of events and relationships between them

• Objects involved in tasks and their attributes

• Users' actions and resulting behavior

• Breakdowns and problems

The main benefit of the task demonstration technique is a better understanding of the

user's mental model and interaction with the product. Thus, the use of this technique is

largely limited to eliciting requirements for interactive applications. Another advantage is

that this method takes less time to perform because the user usually performs all the tasks

in one session. Furthermore, since no expensive equipment is employed, the cost of this

technique is also less and is comparable to that of the observation method. The drawback

Chapter 4. Synchronization of Methods and Activities

 101

of this method is that the success of the technique depends heavily on the tasks assigned

to the users [Dumas 93]. Hence, it is very important to create the right tasks for a

particular application.

4.1.2.4 Document Studies

An effective elicitation activity often involves a certain level of the study of documents

such as business plans, market studies, contracts, requests for proposals, statements of

work, existing guidelines, analyses of existing systems, and procedures [Hofmann 2001].

Hence, document studies are essential in providing a complete coverage of the

requirements for the system under development.

Documents provide information about the current system and its functionalities. In

addition, the documents also explicate the need for a particular feature and the arguments

against a rejected / delayed functionality. Furthermore, domain information such as the

relationship and interaction of the system with the other components, and organizational

work procedures are clearly outlined in the documents. Thus, the analyst can obtain

considerable amounts of useful information from the study of documents.

The main advantage of the document studies technique is that it provides the analyst with

useful insights about the system and its domain. This technique can be effectively used to

cross check the information elicited from users through methods such as interviews,

brainstorming, and so forth. In addition, this technique allows the analyst to study the

documents at his/her own leisure. Document studies are usually conducted by a single

analyst, and hence, is cost effective like the other elicitation methods described in the

previous sections. However, this method can be time consuming depending on the

number of documents examined by the analyst. The drawback of the document studies

technique is that the communication is one sided and impeded the clarification of and

questioning about the information presented. Another disadvantage is that the analyst

may get overwhelmed by the available information and, as a result, may skip certain

important aspects / details of the system. Furthermore, document studies are more useful

as a supplementary technique than as a primary method for requirements elicitation.

Chapter 4. Synchronization of Methods and Activities

 102

4.1.2.5 Questionnaires

Questionnaires are written lists of questions that are distributed to a large number of

people. Depending on the information that needs to be elicited, the analyst formulates the

questions as either open-ended or closed. Questionnaires with closed questions can be

statistically analyzed whereas open-ended questionnaires can be difficult to interpret

[Lauesen 2002].

Closed question questionnaires are suited for situations where it is necessary to obtain

statistical evidence for assumptions. The questions provide the respondents with a set of

alternatives as answers, and hence, the results are easier to evaluate statistically. An

example of a closed question is: “Is the length of time the most important problem at

work: Yes / No”. However, because the questions are closed, the respondents have no

latitude in explaining their choices. Furthermore, it is also possible that the respondents

can misunderstand the question and make a wrong selection.

Questionnaires with open-ended questions give the respondents the freedom to answer in

any way that s/he chooses. This type of questionnaire is best suited for eliciting opinions

and suggestions. Such questionnaires enable the respondents to convey their reasoning

for the choice they make for a particular question. However, in this case there is not only

the risk that the respondents misunderstand the questions, but also that the analyst

misinterprets the answers [Berntsen 2003].

Even though the writer of the questions has a clear understanding, the respondents may

perceive the questions in a different way. Hence, it is critical that the author is

knowledgeable about the product domain and is skilled at writing clear and unambiguous

questions. A precaution that is highly recommended for preventing misunderstandings is

to use the questionnaire on a sample group before distributing it to the respondents.

Questionnaires are an effective way of reaching a large number of people quickly.

Among the elicitation techniques, this method covers the largest number of subjects in

order to collect information. In addition, this method is cost effective because the only

effort involved is in creating the questionnaires and distributing it either through post or

through the internet. The drawback is that the results may be misleading because the

Chapter 4. Synchronization of Methods and Activities

 103

respondents may misunderstand the questions and respond incorrectly. Moreover,

misinterpretation of the answers by the analyst can also impact the reliability of the

results.

4.1.2.6 Brainstorming

Brainstorming is a conference technique by which a group attempts to find a solution for

a specific problem by amassing spontaneous ideas by its members [Osborn 53]. This

method has been employed successfully by many industrial and research organizations

involving business, engineering, scientific, and management problems.

The steps involved in a brainstorming session are given below [Lewis 2003]:

• The group leader writes the problem for which solutions are sought on the

blackboard or conference pad. The problem should be brief, specific, and

stimulating.

• The reasoning and background information for the problem is conveyed to the

group.

• The Ground Rules for "brainstorming" are clearly explained. These include:

o Every idea is acceptable.

o Neither verbal evaluation nor nonverbal expressions of approval or

disapproval is permitted during the brainstorming session.

o The quantity of ideas is the main goal of brainstorming. This concept is

called "freewheeling."

o Building on the ideas of others, referred to as "hitchhiking," is encouraged.

o A time limit for the "brainstorming" stage should be set.

• The brainstorming session usually begins with a spurt of ideas and then slows

down as the meeting progresses. The group leader lists each idea on a board or

pad as soon as it is mentioned and should not hesitate in his/her action as this can

give the impression of disapproval. Furthermore, the ideas are written exactly as

spoken by the group member. The brainstorming session continues till all ideas

have been exhausted.

Chapter 4. Synchronization of Methods and Activities

 104

The brainstorming session is usually followed by a discussion where the most promising

ideas are identified and ranked. Ideas should not be discarded as it is extremely

demoralizing for the group members who have suggested those ideas.

Brainstorming is the most time efficient technique compared to the other elicitation

methods. In addition, the brainstorming session is also one of the cheapest methods to

perform because of its simple procedure. An added benefit is that this technique promotes

creativity and co-operation among the group members. The drawback of this method is

that it needs to be followed up by some additional effort to filter out the unrealistic ideas.

Furthermore, the effectiveness of the technique depends largely on the knowledge and

management skills of the leader / analyst.

4.1.2.7 Focus Groups

Focus groups are in-depth, qualitative interviews with a small number of carefully

selected people brought together to discuss a host of topics [Patton 90]. Thus, focus

groups combine elements of both interviewing and participant observation. Unlike the

one-way flow of information in a one-to-one interview, focus groups generate data and

insights through the give and take concept of group interaction [Templeton 94].

The questions posed during the focus group technique should be open-ended so that the

participants can generate several ideas. Short answer questions that can be answered with

“Yes / No” and leading questions that suggest the leaders opinion, should be avoided.

Questions should be [ASA 97]:

• Clearly formulated and easily understood

• Neutral so that the question does not influence the answer

• Carefully sequenced with easier, general questions preceding more difficult ones

• Ordered so that less intimate topics precede the more personal questions

Focus groups are usually comprised of eight to twelve people. The discussion begins with

the moderator’s introduction which should include the following:

• Explanation of the purpose of the group

• Description of some basic ground rules for group participation and interaction

• Introduction of the moderator and any co-moderators

Chapter 4. Synchronization of Methods and Activities

 105

• Explanation of how and why the group members were invited to participate

• Description of the purpose of note-taking

After the introduction, the moderator presents a set of questions related to the problem.

As the group responds to each question, the moderator can probe for detailed information,

and ask follow up questions to elicit more discussion. Focus groups are generally

scheduled for two hours and conclude with the moderator summing up the major points

of the discussion [Morgan 88].

Focus groups are effective in collecting a wide range of information and are more flexible

compared to interviews. In addition, this technique can be conducted in a short duration

of time similar to that of the brainstorming method. Focus groups are beneficial to the

organization because they ensure greater involvement and co-operation among the

members. However, this technique is criticized because the information gathered is based

on the views of a small sample, which may not be representative of the target population.

Also, the quality of the data elicited is influenced by the skills and motivation of the

moderator. Another drawback of this method is the high cost involved because the group

members are carefully picked people, who need to be paid for their time, energy and

creativity.

4.1.2.8 Requirements Workshops

Requirements workshop is perhaps the most powerful elicitation technique and is

designed to encourage consensus on the requirements of a particular application in a very

short time frame. This technique involves gathering the key stakeholders together for a

short, intensive period, typically for one to two days. The workshop is best facilitated by

an outside expert, who focuses on the elicitation of requirements [Young 2002]. The

responsibilities of the facilitator are to:

• Establish a professional and objective tone for the meeting

• Establish and enforce the rules for the meeting

• Manage the timing of the meeting

• Facilitate the decision making process and avoid pushing his / her ideas

• Ensure that the meeting is on track

• Control disruptive or unproductive behavior

Chapter 4. Synchronization of Methods and Activities

 106

The most important part of the workshop is the elicitation of ideas; this is accomplished

in a manner similar to brainstorming. It involves a group setting, where the moderator

asks open-ended questions while the participants answer the questions with spontaneous

ideas. The difference between the workshop and brainstorming is the preparation for the

group session. Requirements workshop involves sending out background material in

advance to the participants while brainstorming does not. On obtaining the ideas, the

group focuses on classifying, filtering and prioritizing the ideas. After the workshop, the

facilitator distributes the minutes and outputs of the meeting to all the attendees

[Leffingwell 2000].

Requirements workshops are advantageous because they assist in building a co-operative

team, having a sole purpose – the success of the project. It is one of the best methods

compared to all the other elicitation techniques. In addition, requirements workshops

require a smaller time frame compared to the interview and observation techniques. The

drawback of this method is that it is cost intensive because a lot of effort and expense is

needed in preparing and conducting the workshop. Moreover, if the facilitator is an

outside expert, s/he has to be paid for services provided.

4.1.2.9 Prototyping

Prototyping is used to better understand the poorly defined and fuzzy requirements of the

system. This technique involves creating a partial implementation of the system in order

to help the developers, users, and customers understand the requirements.

A prototype should avoid implementing well-understood requirements as this is a waste

of resources. For example, if a system is to be extended, there is no need for prototyping

because it is clear what most of the new functionalities need to be. However, the well-

defined requirements may have to be prototyped to understand the fuzzy needs of the

customers and users.

Once the prototype is built, the users of the system should ‘play’ with the prototype in an

environment which closely simulates the target setting of the final system. This enables

observing the influence of the environmental and other external factors that affect the

system [Leffingwell 2000]. Furthermore, for the results to be reliable it is recommended

Chapter 4. Synchronization of Methods and Activities

 107

that various types of users be selected for exercising the prototype. After using the

prototype, the users usually give a “Yes, But” response, which makes the unknown user

needs visible. In addition, the users and the analyst now have a better picture of what the

system requirements are.

The result of prototyping can be two kinds of requirements [Lauesen 2002]:

• Product-level requirements: These are requirements for the product

functionalities, which have been shown to be realistic and useful by the prototype

• Design-level requirements: These are requirements which specify that the real

product should have an interface exactly or similar to that of the prototype

Prototyping is a useful technique in situations where the users are unclear about their

needs and requirements. This method is also effective in eliciting requirements for new

and innovative applications. The main drawbacks of this technique are the high demands

of cost and time. This is because of the need to implement a rough version of the

application. However, it is argued that since this technique involves the customer early in

the development process, fewer change requests will be made at a later stage, and this

might eventually reduce the project time and cost [Sommerville 2001].

4.1.3 Rationalization and Justification

This activity aims to find the rationale of the requirements and also justify the

requirements identified during elicitation. In addition, if the requirements are found to be

of a high level, they are decomposed or refined in consultation with the stakeholders. In

this section, we describe the techniques that can be employed for achieving the objective

of the ‘rationalization and justification’ activity.

4.1.3.1 Brainstorming

This method involves a group session, where the participants interact and provide ideas

spontaneously without the fear of being ridiculed. When used in the rationalization and

justification activity, the brainstorming technique raises questions about the rationale of

the requirements identified by the stakeholders.

Chapter 4. Synchronization of Methods and Activities

 108

This technique is advantageous because of its cost-effectiveness, simplicity, and time

efficiency. The drawbacks of this method include the dependency on the moderator’s

management skills for success, and the need to filter out unreasonable ideas through

additional supplementary techniques.

A detailed description of this technique is provided in Section 4.1.2.6

4.1.3.2 I-Time

I-Time is commonly used for determining the rationale of the requirements and is

referred to as individual time or introvert time. In this technique, the participants spend a

few quiet moments reflecting on the question and problems. This method involves a

group session that is usually non-interactive.

I-Time is conducted using the following steps [NYS 2003a]:

• Give a brief introduction of the topic / issue (requirements whose rationale is to be

determined)

• Instruct team members to either sit quietly or leave the room briefly to find space

where they can concentrate and focus

• Establish a time limit depending on the topic or question the team is considering

• Repeat the question or instructions, or display them on a slide or overhead during

the break

• The participants present their ideas after the break and this process is repeated in

subsequent rounds

This technique should be used depending on the characteristics of the group members. If

the participants have not had the opportunity to think about the problem or issue at hand,

then this method is effective in avoiding an embarrassing situation for the group members.

Also, if the team members are diverse or introverts, I-Time allows the participants to be

alone with their thoughts without feeling pressured to come up with ideas or push their

way into a conversation.

I-Time is effective when participants need time to think about the question or when they

are introverts. This method is easy to perform and requires almost the same amount of

Chapter 4. Synchronization of Methods and Activities

 109

time as brainstorming. Another benefit is the low cost involved in conducting this method

because there is a minimal need for resources. On the downside, the success of this

method depends heavily on the questions posed and the management skills of the

facilitator.

4.1.3.3 Task Oriented Discussion

This technique, also known as directed or guided discussion, can be used to identify the

rationale of the requirements and to justify them. Moreover, they are often used as a

follow-up for techniques such as brainstorming and I-time, which only identify the

rationale of the requirements and fail to justify them.

In a task-oriented discussion, the moderator (usually an external expert) plays an

important role in guiding the group towards a goal, overcoming obstacles and

disagreements, keeping to a schedule and reaching an agreeable conclusion. One of the

important skills that the moderator must possess is the ability to ask the right questions,

which [MAHR 2003]:

• increase comprehension

• monitor and evaluate the group's level of perception

• help guide the group, i.e. when the group doesn't understand something,

additional questions may cover more territory in areas that require assistance

• focus the group's attention on the relevant topic

The guided discussion is conducted through the following steps [DoD 99]:

• Prepare an open-ended question for each of the topics to be discussed

• Give introductory background information and briefly mention each topic or

issue that will be covered during the discussion. State the amount of time that

will be allowed for each topic or issue

• Ask the first question and observe the proceedings intently. Guide the

discussion without being involved in the content. Intervene whenever it is

necessary to assist the discussion process

• Monitor the time and move to the next topic using a transition statement

• Ask the question for the next topic

Chapter 4. Synchronization of Methods and Activities

 110

• If discussion digresses from the topic, bring it back on track without stifling

additional ideas

• After discussing all topics, give a quick summary of the ideas presented and

decisions made. Express appreciation for the group's participation

The advantage of guided discussion is that it encourages co-operation and interaction,

which in turn leads to better understanding and commitment to the decisions taken. In

addition, this technique enables free interchange of ideas, stimulates and clarifies

thinking. Task oriented discussion takes more time than brainstorming and I-Time

because it not only identifies different ideas but also determines the solution. As a

consequence, more effort is needed making this method more expensive than the

brainstorming and I-Time techniques. Furthermore, discussions may suppress convictions

resulting in the first solution being accepted [USMC 98].

4.1.3.4 IBIS

The Issues Based Information System (IBIS) method can be used effectively to achieve

the objective of the rationalization and justification activity. It is similar to the task

oriented discussion technique but is more structured with a number of guidelines.

This technique consists of the following steps [Armstrong 2001]:

• Discussions are led by a moderator

• Every issue begins with one or more questions

• More questions are asked whenever appropriate

• As answers are proposed, they are grouped under the question

• Pro's (arguments for) and con's (arguments against) are listed under each answer

• Additional information is added anywhere it makes sense

• A decision cannot be reached until all answers and arguments have been

evaluated

When used for the rationalization and justification activity, this technique focuses on

identifying the rationale of different requirements through discussions. Once the rationale

is obtained, the technique attempts to justify the requirements by eliciting the positions /

opinions of the participants on a particular requirement. The participants are also required

Chapter 4. Synchronization of Methods and Activities

 111

to justify their stand through arguments, which are discussed and analyzed to determine

whether or not the requirement is necessary [Conklin 88].

IBIS discussions tend to be calm and rational without heated battles. This is mainly

because ideas are not discarded and every argument is considered. In addition, a decision

is never reached until all the arguments are evaluated. The IBIS method covers all aspects

of the rationalization and justification activity and is the best technique to achieve the

objective of this activity. On the downside, this method is time consuming because it

involves the evaluation of all the generated ideas and arguments. As a result, the cost of

conducting this method is also more than the other techniques for this activity.

4.1.4 Prioritization

The prioritization activity is intended to identify the attributes of the requirements and

determine the values of these attributes. In addition, this activity also involves the ranking

of the requirements based on the priority ratings given by the stakeholders. Thus, this

section discusses techniques which are useful in identifying requirement attributes as well

as methods which help in prioritizing requirements.

4.1.4.1 Interview / Guided Discussion

Interviews and guided discussions are effective in determining the value of the

requirements attributes. Guided discussion or task oriented discussion is better suited if

the stakeholders are participative and interactive. On the other hand, interviews appeal to

people, who are comfortable when spoken to on an individual basis. Interviews are cost

effective compared to discussions since there is no overhead cost involved in hiring an

external moderator. However, interviews take a longer time to elicit information than

guided discussions. The pros and cons of both the techniques should be taken into

consideration while selecting a method for the prioritization activity.

A detailed description of the interview technique is provided in Section 4.1.2.1. Guided /

task oriented discussion is explained in Section 4.1.3.3.

Chapter 4. Synchronization of Methods and Activities

 112

4.1.4.2 Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process can be used in prioritizing requirements if the complete

set of requirements is obtained in one execution of the elicitation activity. It involves

comparing all unique pairs of requirements to determine which of the two is of higher

priority. Thus, if a software project consists of n requirements, the requirements engineer

must make n(n-1)/2 pair wise comparisons to rank the requirements. This is feasible for a

small project, but as n becomes large, the effort required dramatically increases. However,

the resultant ranking is trustworthy and can be helpful to the management in deciding

which features to implement first.

This technique consists of three major steps [Saaty 80]:

• Outline all unique pairs of requirements

• Compare the pairs using the scale in Table 4.1. The comparison results in a

hierarchy structure.

• Estimate the relative priority of each requirement on the basis of the hierarchy.

Intensity of importance Description

1 Of equal importance

3 Moderate difference in importance

5 Essential difference in importance

7 Major difference in importance

9 Extreme difference in importance

Reciprocals If requirement ‘a’ has one of the above
numbers assigned to it when compared
with another requirement ‘b’, then ‘a’ has
the reciprocal value of that of ‘b’.

Table 4.1 Scale for pair-wise comparison

The only advantage of this technique is that it provides the priorities of each requirement

relative to every other requirement. The disadvantage is that it is time consuming and

cost intensive. In addition, it is not applicable to project which elicit requirements in

iterations.

Chapter 4. Synchronization of Methods and Activities

 113

4.1.4.3 Binary Search Tree

Like the AHP, the binary search tree is a ranking technique applicable to projects, whose

requirements are not obtained in increments. Prioritizing n requirements using this

technique involves the construction of a binary search tree consisting of n nodes. Initially,

the tree is composed of one node representing the first requirement. The next requirement

is then compared to the top node in the tree. If the requirement is of lower priority than

the node, it is compared to the node’s left child, and so forth. If the requirement is of

higher priority than the node, it is compared to the node’s right child, and so forth. The

comparison continues until a position is reached where the requirement can be inserted

into the tree.

This method uses three steps in determining the priorities of the requirements [Wohlin

97]:

• Outline the candidate requirements

• Create the binary search tree from the requirements

• Traverse the list inorder13 and add it to a list. The requirements in the list are then

given a priority value

The number of comparisons required by this technique to create the tree structure for n

requirements is approximately (N log N), which is an improvement over the analytic

hierarchy process method. Another advantage is that the requirements are ranked relative

to one another. However, the relative ranking of requirements makes this technique

unsuitable for projects whose requirements are obtained through several iterations of the

elicitation activity. Furthermore, this method is still cost and time intensive even though

the number of comparisons required is less than that of AHP.

4.1.4.4 Priority Groups

The drawback of AHP and binary search tree technique is overcome through the use of

priority groups, where the requirements are categorized into different priority groups.

Thus, there is no need to compare the requirements with each other and as a consequence

13 Inorder refers to when the root is processed in between its two subtrees

Chapter 4. Synchronization of Methods and Activities

 114

this method is applicable to incrementally elicited requirements. The number of priority

groups chosen depends on the situation and the knowledge of the stakeholders, who

determine the priority of the requirements [Karlsson 96]. A simple strategy is to classify

the requirements into three distinct priority groups: low, medium and high. Such a scale

for the requirements illustrates the features which are critical for the success of the

project.

Thus the prioritization of requirements using this technique is accomplished in three steps:

• Outline the candidate requirements

• Put each requirement into one of the priority groups.

• All the requirements in a particular group are assigned the same priority.

If there are a large number of requirements in a particular group, the requirements

engineer can create a few more subgroups and allocate the requirements to each of these

sub groups. To ensure that the stakeholders do not assign high priority to all the

requirements, it is necessary to provide a sample requirement for each priority group. The

stakeholders can then assign the priorities relative to the sample requirements provided

by the requirements engineer.

The main advantage of this method is its applicability to projects which are developed

incrementally. In addition, the priority groups technique requires very little effort and

time to prioritize the requirements. As a result, the cost of this technique is the least

among the methods for requirements prioritization. The disadvantage of this method is

that the requirements within a particular priority group are unranked, which can lead to a

lower priority requirement being implemented ahead of a higher priority requirement.

4.1.5 Verifying Quality Attributes

This objective of this activity is to ensure that the requirements adhere to the quality

characteristics such as ambiguity, correctness, understandability, preciseness, and so forth.

The subsequent sections elaborate on the techniques that are commonly used for the

verification activity.

Chapter 4. Synchronization of Methods and Activities

 115

4.1.5.1 Round-Robin Review

This technique does not involve group discussions like the other verification techniques and

it gives each reviewer an equal opportunity to study and present the evaluation of the

product. It involves circulating the work product in round robin fashion among the

reviewers for their comments [Hart 82]. Over the years, the round-robin review technique

has undergone several changes spawning new review methods, most of which emphasize

the importance of interaction during the meetings.

The usual number of personnel involved in this type of peer review is four to six. Each

reviewer is given the work product two to three days prior to the meeting. Reviewers

should make notes of any errors or inconsistencies, from the most minor details all the

way up to major conceptual problems. In the requirements phase, the main focus of the

reviewers is to identify requirements which do not satisfy the quality attributes. During

the review meeting, each reviewer gets to present their comments on the product in a

sequential order. On getting their turn, the reviewer should not mention issues that have

already been raised. However, they are allowed to present related issues, or raise a

different view of the same defect as an issue. If a reviewer has no additional issue, then

s/he may pass when their turn comes around. At the end of the review, all the major

comments are summarized and the group decides on one of the following

recommendations [Leif 95]:

• Accept: to accept the product / requirements as is with no changes

• Re-Review: to reject the product and require another review before acceptance

• Simple Check: to reject the product and require a simple conformance check

against any identified issues before acceptance

Round-robin reviews take less time to perform the quality check on the requirements

because the method involves minimal discussions during the meeting. In addition, this

technique is cost effective because it is conducted by peers, and as a result, no cost is

incurred in arranging for the reviewers. The drawback of this method is that it does not

provide any checklists to support the task of verification. As a consequence, the result of

this technique solely depends on the expertise of the reviewers. Due to these

disadvantages, this method is unsuitable for large or critical projects.

Chapter 4. Synchronization of Methods and Activities

 116

4.1.5.2 Inspections

Inspection is a formal technique, which was first performed by Fagan at IBM [Fagan 76].

This method is the most commonly used technique for the verification of requirements

because it ensures the detection of a high percentage of errors. There are several

variations of the inspection technique such as phased inspection, N-fold inspection, Gilb

inspection, FTarm, etc, but they all retain the essence of the classical inspection technique,

which is described here.

Inspections are conducted by a team of four to six members for any software

development work product such as requirements specification, design specification, or

code. The inspection process typically goes through the following phases:

1. Overview: In phase I, the members of the inspection team are given an overview of

the work product / module to be inspected. The module characteristics such as

purpose, logic and related documentation are distributed to all participants for study

purposes.

2. Preparation: In phase II, the team members prepare individually for the inspection

by examining the work product in detail. The moderator arranges the inspection

meeting with an established agenda and chairs it in phase III.

3. Inspection: In phase III, one of the team members, referred to as the reader,

summarizes the purpose of the meeting and briefly introduces the work product. The

inspection team is aided by a checklist of queries during the fault finding process.

Each of the faults that are identified is recorded in a report immediately after the

meeting.

During the meeting, the team discusses the problems identified and attempts to determine

the remedies. If there is an impasse, then it is the responsibility of the moderator to come

up with a possible solution to the problem [Wixon 94]. Furthermore, as in the previous

technique, the team also decides on one of the following recommendations: Accept, re-

review and simple check.

Inspection is the most effective technique for identifying the faults in the requirements. In

addition, it uses elaborate checklists which help in the preparation of the reviewers for the

Chapter 4. Synchronization of Methods and Activities

 117

meeting [Susan 94]. The main drawback of this technique is that it is cost and time

intensive because it involves the rigorous analysis of the work product.

4.1.5.3 Audits

An audit is a technique through which the work product / system is checked for

conformance to documented quality characteristics and standards. Unlike inspections,

audits are performed by a single person, who is independent of the work product, process,

or function being reviewed.

There are three different types of audits [NCCL 96]:

• First party audits: These are conducted by the company itself and the auditor is

an employee of the company. The results of such audits are generally not trusted

by the customer.

• Second party audits: These are performed by the customer or a representative of

the customer. However, the developers tend to lack confidence in the results as

the auditors could be biased in their review.

• Third party audits: These are performed by agencies, which are independent of

the customer and the developer. Since these agencies have no stake in the project,

the results are valued by both customer and developer.

Audits are usually performed by third party auditors, who use detailed checklist to

identify the faults in the work products. The auditor also suggests possible fixes for the

faults in his/her final report on the work product. In addition, s/he also recommends

whether to accept or re-audit the product based on the number of faults detected and their

seriousness.

This technique (third party audits) is advantageous because it gives a non-biased opinion

which is unaffected by organizational politics. Moreover, customers tend to have more

confidence in the results generated by third party audits. Furthermore, this method

requires lesser time and cost to perform than the inspection method, yet these values (cost

and time) are much higher than those of round-robin reviews.

Chapter 4. Synchronization of Methods and Activities

 118

4.1.6 Stakeholder Validation

The stakeholder validation activity attempts to uncover disagreements between what the

stakeholder desires and what the requirements state. This objective can be achieved

through several techniques, which we describe in the sections that follow.

4.1.6.1 Walkthroughs

Walkthroughs can be viewed as presentation reviews in which a review participant,

usually the requirements engineer / developer, provides a narrative description of the

software / work product and the rest of the group provides their feedback throughout the

presentation. This technique is called a presentation review because feedback is obtained

only for the material that is presented [Yourdon 78].

A walkthrough team consists of a moderator and four to eight other members. The roles

of the different members are listed below:

• Presenter: most often is the software developer / requirements engineer

• Coordinator: Organizes, moderates, and follows up the walkthrough activities

and is usually from the SQA department or an external expert

• Scribe: Documents the proceedings of the meeting

• Maintenance Oracle: Considers long-term implications

• Standards Bearer: Concerned with adherence to standards

• User / Customer Representative: Reflects the needs and concerns of the user

and customer

• Other Reviewers: (e.g., auditors)

The coordinator contacts participants, prepares and distributes documentation, and selects

a schedule for the walkthrough meeting. Participants spend time preparing for the

walkthrough by examining the product and related information. Although the meeting is

opened by the coordinator, the presenter is responsible for leading the group through the

product [Freedman 82]. In the case of requirements walkthrough, the presenter has to

present the requirements in such a way that each participant can comment on the product

based on his/her areas of specialization. A list of problems is maintained, and at the end

Chapter 4. Synchronization of Methods and Activities

 119

of the meeting the participants sign the list indicating whether the product is accepted as

is, accepted with recommended changes, or rejected.

Walkthroughs are effective in obtaining the feedback of all the stakeholders and not just

the customer. Also, since all the stakeholders are involved, the participants can learn from

each other, resulting in a better understanding of the product [Melo 2001]. The

walkthrough meeting is time efficient and can be conducted in a few hours. However, it

requires considerable preparation on the part of the participants and, as a result, this

method is fairly expensive. Another drawback is that feedback is elicited for only the

material that is presented, and hence, the advance preparation of the participants is often

not detectable. In addition, this technique can be stressful to the presenter as s/he is the

producer of the product.

4.1.6.2 Scenarios

Scenarios are descriptions of how the users can interact with the system in different

situations. This method makes it easier for a user to visualize system interactions and

provide feedback about them. When used for the validation of requirements, the analyst

needs to create scenarios for the requirements which are often complex and difficult to

understand by the user / customer.

A scenario provides the sequence of steps in the interaction between the system and the

end user. Scenarios can be generated in different formats, but they should at least have

the following information:

• A description of the state of the system before entering the scenario.

• The normal flow of events in the scenario.

• Exceptions to the normal flow of events.

• Information about other activities which might be going on at the same time.

• A description of the state of the system after completion of the scenario.

The cost of using scenarios include the cost of training the staff in writing scenarios and

the cost of actually using scenarios. For large projects, the number of scenarios is

Chapter 4. Synchronization of Methods and Activities

 120

considerably large and it may take several months of work [Sawyer 97]. Hence, this

technique is more suitable for smaller size projects.

The main advantage of scenarios is that it enables the users to understand the work

product (system / requirements) better. As a consequence, the users provide better

feedback about the work product and this reduces the occurrence of change requests in

future. Furthermore, scenarios help the user to identify any features that have been

overlooked by the requirements engineer. The drawback of scenarios is that it is time

consuming and cost intensive because of the large amount of effort involved in creating

the scenarios.

4.1.6.3 Storyboarding

Storyboarding involves creating drawings depicting a set of user activities that occurs in a

particular system. In simpler words, a storyboard is a visual representation of a scenario.

When employed in the stakeholder validation activity, the storyboarding technique

involves representing the complex requirements through dialogs, toolbars, pictures, etc.,

for better user comprehension and feedback.

Storyboards are grouped into three types based on the mode of interaction with the user

[Leffingwell 2000]:

• Passive storyboard: In this kind of storyboard, the requirements engineer simply

walks the user through the interactions, with a “when you do this, this happens”

explanation.

• Active storyboard: These provide an automated description of the way the

system interacts in a typical usage scenario.

• Interactive storyboard: It allows the user to experience the system interactions

and comes close to being a throwaway prototype.

While creating the storyboards, the requirements engineer should follow the guidelines

listed below:

• Do not invest too much in a storyboard.

• Make the storyboards easy to modify to incorporate user feedback

Chapter 4. Synchronization of Methods and Activities

 121

• Whenever possible, make the storyboard interactive

Storyboarding is a simple and effective validation technique, which enhances the user

comprehension of the requirements. Like scenarios, storyboarding also helps to identify

features that have been missed by the requirements engineer through “Yes, But”

responses. Furthermore, the time and cost involved in this method is comparable to that

of the scenario technique.

4.1.6.4 Interview, Prototyping and Guided Discussion

Interviews, prototyping and guided discussions are other methods that can be employed

for the stakeholder validation activity. We have grouped them together as these methods

have been described in the previous sections (4.1.2.1, 4.1.2.9, 4.1.3.3).

Interviews are occasionally used for the validation of requirements. During the interview

process, the requirements engineer asks the user whether the product requirements meet

their needs. The framing of the questions, both open-ended as well as closed, is critical to

the success of this technique.

Prototyping is the most effective validation technique and it allows the user to ‘play’ with

a partial implementation of the system. At this stage in the requirements phase

(stakeholder validation activity), it is beneficial to build a low fidelity prototype such as a

paper prototype, rather than a high fidelity one.

Guided discussion involves all the stakeholders in the validation of the requirements.

This technique results in obtaining a better feedback than interviews, because a group

effort produces better results than an individual effort. However, guided discussions are

more expensive than interviews because more work is involved in conducting this

technique and also additional cost is incurred in payment to the moderator.

4.2 Methods for Global Analysis Phase

The global analysis phase, which comes after the requirements capturing phase, consists

of activities that examine the requirements from the development, market, sales and

management perspectives, as seen in Figure 4.2. During this phase, inconsistencies

Chapter 4. Synchronization of Methods and Activities

 122

among the requirements are identified and are resolved through the negotiation activity.

Thus, the objective of the global analysis phase is to analyze factors that globally affect

the system under development [Nord 2003].

In the sections that follow, we describe the methods for the different activities in the

global analysis phase.

Figure 4.2 Global analysis phase

4.2.1 Risk Analysis

Risk analysis involves evaluating the complete set of requirements for risk factors

identified during the prioritization activity of the previous phase. The risk factors are

generally concerned with product engineering, development environment and program

constraints 14[SEI 96]. The software engineering literature includes several techniques for

performing the risk analysis activity. Each of these methods is explained in this section.

14 Explanation of the different categories of risk factors is provided in Section 3.2.1

Chapter 4. Synchronization of Methods and Activities

 123

One or more of these methods can be utilized by the risk analyst to effectively achieve

the objectives of this activity.

4.2.1.1 Criticality Analysis

Criticality analysis is a technique which ranks the item under consideration (requirements)

according to the combined influence of the severity and probability of occurrence of the

risk factors [MIL 77].

The MIL-STD-1629A document describes two types of criticality analysis: quantitative

and qualitative. The steps involved in using the quantitative criticality analysis technique

are as follows [Weibull 92]:

• Define the reliability/unreliability for each item

• Determine the portion of the item’s unreliability that can be attributed to each risk

factor.

• Rate the probability of loss that will result from each risk factor occurring.

• Calculate the criticality for each risk factor by:

Risk factor criticality = Item unreliability x Ratio of unreliability associated

with the risk factor x Probability of loss

• Calculate the criticality of each item by obtaining the sum of criticalities for each

risk factor that has been identified for the item:

Item Criticality = SUM of risk factor criticalities

The steps involved for the qualitative criticality analysis are:

• Rate the severity of the potential risk factors

• Rate the likelihood of occurrence of each risk factor.

• Compare the risk factors via a Criticality Matrix, which identifies severity on the

horizontal axis and occurrence on the vertical axis!�

Upon completion of this technique, the risk involved in the development of the

requirements elicited is determined and the high risk requirements are identified.

The advantage of this technique is that it is easy to perform and time efficient. This

method provides a good estimate of the risk, provided all the important risk factors are

Chapter 4. Synchronization of Methods and Activities

 124

identified and their values accurately estimated. Since it is difficult to obtain an exact

estimate of the risk factors, a value close to the correct estimate is acceptable during risk

analysis. A drawback of criticality analysis is that it relies heavily on the expertise of the

risk analyst to provide suitable values for the risk factors. Furthermore, since each risk

factor has a single estimate rather than a range of values, this technique is not considered

as a rigorous risk analysis method. Another disadvantage of this method is that it assumes

that all the risk sources / factors have been identified - this can reduce the effectiveness of

the risk estimate if certain risk factors have been overlooked.

4.2.1.2 Failure Modes, Effects and Criticality Analysis (FMECA)

FMECA identifies all the sources of risk before attempting to determine the risk estimate.

This overcomes one of the drawbacks of criticality analysis. The basic steps involves in

FMECA are:

• Assemble the team of risk analysts

• Identify items (requirements) to be analyzed

• Identify failure (s), effect(s) of failure, cause(s) of failure for each item to be

analyzed through discussions among the risk analysts and requirement engineers.

• Evaluate the risk associated with the items under analysis

• Prioritize and assign corrective actions

The standard MIL-STD-1629A provides the detailed guidelines for performing this

technique [MIL 77]. In addition to calculating the risk through criticality analysis,

FMECA proposes the use of risk priority numbers (RPN) to calculate risk, as an

alternative to criticality analysis. The risk estimate for the requirements using RPNs is

determined through the following steps:

• Rate the severity of each risk factor

• Rate the likelihood of occurrence of each risk factor

• Rate the likelihood of detecting the problem before it reaches the end user or

customer

• Calculate the RPN using the formula:

RPN = Severity x Occurrence x Detection

Chapter 4. Synchronization of Methods and Activities

 125

Risk Exposure (RE) = Probability (UO) x Loss (UO)

Risk Reduction Leverage (RRL) = (RE Before – RE After) / Risk Reduction Cost

The risk estimate is obtained by the summation of the RPNs of all risk factors.

FMECA has the same drawbacks as criticality analysis except that the risk factors

identified are more comprehensive. In addition, FMECA is costlier than criticality

analysis because of the added effort in identifying the risk factors. This method is easy to

perform and time efficient, although it takes longer to perform than criticality analysis.

4.2.1.3 Risk Reduction Leverage (RRL)

RRL is a technique which not only determines the risk of the items under consideration

but also determines the risk of the various alternatives when the risk estimate is high.

This technique involves the calculation of two values:

Risk Exposure is the product of the probability of an unsatisfactory outcome (risk factor)

occurring and the loss incurred due to the occurrence of the outcome. The requirements

engineer has to calculate the Risk Exposure for each risk factor and determine an

acceptable threshold. If the estimate crosses this ceiling, the requirements engineer has to

reduce the probability of the risk factor occurring or / and the loss associated with the risk

factor as shown in Figure 4.3 [Moores 96]. For each alternative, which reduces the risk,

the Risk Reduction Leverage is calculated, which takes into account the Risk Exposure

before and after risk resolution, and the cost incurred in the attempt to mitigate the risk.

Thus, the overall risk estimate for an item is obtained by summing up the Risk Exposure

values associated with all the risk factors. The Risk Reduction Leverage (RRL) illustrates

how a large estimate coupled to a risk factor can be reduced. All the estimates calculated

are documented for consideration by the management and the customer.

Chapter 4. Synchronization of Methods and Activities

 126

 Figure 4.3 Risk exposure contours

An example of the usage Risk Reduction Leverage method is shown below [Boehm 89].

If the loss associated with having a particular type of interface error is estimated at US$1

million and from experience it is estimated that the probability of such a fault is 0.30,

then the risk exposure is given as:

RE = 0.30 * 1000K = US$300K

Buying a requirements and design interface checker for US$20K would reduce the

probability of this risk occurring to 0.1. Carrying out a detailed interface test for

US$150K of manpower would reduce the same probability to 0.05. The RRL for these

two approaches can be calculated as follows:

RRL1 = ([0.30] * 1000K - [0.10] * 1000K) / 20K = 10

RRL2 = ([0.30] * 1000K - [0.05] * 1000K) / 150K = 1.67

The RRL technique is useful in evaluating different ways of reducing the risk comparing

the Reduction Leverage values with each other. This method is more time consuming

than the previous techniques because in addition to determining the risk, it also evaluates

Chapter 4. Synchronization of Methods and Activities

 127

the alternatives for reducing the risk estimate. Similar to the other techniques, this

method depends solely on the expertise of the analyst to obtain a good risk estimate and

considers a single value for the probability of occurrence of each risk factor. Compared to

FMECA and criticality analysis, this technique produces a weaker risk estimate since

only two variables (probability of occurrence and loss) are considered in the risk

estimation formula.

4.2.1.4 Fault Tree Analysis

Fault tree analysis was developed in 1962 at Bell Telephone Laboratories. A fault tree is a

graphical representation of certain relations which traces an undesirable outcome (risk factor)

backwards to search for all its possible causes. Such an outcome is named as the top event of the

fault tree. Traditionally, quantitative analysis evaluates the probability of the occurrence of the

top event in which case the probability of each basic event is already known or guesstimated.

Thus, during the risk analysis of the requirements, a fault tree is created for each risk factor and

the probability of the risk factor occurring is determined from the causes for this risk factor

[Cheng 2000].

Fault tree analysis consists of the following steps [TWCC 2002]:

• Define the top event / risk factor

• Understand the system and its environment

• Construct the fault tree (Construction guidelines provided in [Zio 2002].

• Validate the tree for completeness and accuracy.

• Perform quantitative analysis (i.e. determine the probability).

The calculation of the probability for the top event in a simple fault tree (see Figure 4.4)

is given below:

Top Event T = X1 U A1 U A2 (Union of inputs due to the OR gate)

Where A1 = X2 � X3 (Intersection of inputs due to the AND gate)

 A2 = X4 U X5 (Union of inputs due to the OR gate)

If Pxi denotes the probability of the occurrence of the cause xi, then probability of the top

event would be

Pt = 1 – { (1 – PX1) (1 – PA1) (1 – PA2) } where

Chapter 4. Synchronization of Methods and Activities

 128

PA1 = PX2PX3

PA2 = 1 – { (1 – PX4) (1 – PX5) }

 Figure 4.4 Simple fault tree

Fault tree analysis provides a better estimate of the risk compared to the previous

techniques discussed because it considers several probability estimates in the risk

calculation procedure. This technique is rigorous and involves construction of fault trees

for each risk factor, which are assumed to be complete. Hence, fault tree analysis is more

time consuming and costlier than the other techniques. The analyst is crucial in this

method as s/he has to foresee all the causes for the undesirable events and also determine

the probability estimates of these causes.

4.2.1.5 Event Tree Analysis

Event tree analysis is complementary to the fault tree analysis technique [Zio 2002a].

This technique provides an overview of the possible risk factors which affect the system

under analysis. Thus, this method is useful in the scenario where the risk factors for the

requirements are incomplete. Event tree analysis is based on binary logic, in which an

event either has or has not happened or a component has or has not failed. It is valuable

in analyzing the consequences arising from a failure or undesired event [Raafat 89].

Chapter 4. Synchronization of Methods and Activities

 129

Fault Trees

An event tree is constructed by first identifying an initiating event or an undesirable

outcome. This event is either absorbed (success state) or aggravated (failure state) by the

system. The branches in the event tree represent the consequences as a result of the

initiating event. Each of the failure states correspond to the risk factors, which are

evaluated using fault trees15 as shown in Figure 4.5.

Figure 4.5 Event tree shown with fault trees used to evaluate probabilities of different
risk factors

The advantage of this technique is that it gives on overview of all the risk factors

affecting the system. Furthermore, since this method is easy to perform, a single risk

analyst having knowledge about the system is sufficient for conducting this technique. By

itself, this method fails to provide a good risk estimate and hence, this method is used

along with the fault tree analysis technique. Another drawback of this technique is that

the event trees can get very large and complicated to handle.

15 Fault tree analysis explained in Section 4.2.1.4

Chapter 4. Synchronization of Methods and Activities

 130

4.2.1.6 Monte Carlo Simulation

Simulation is any analytical method meant to imitate a real-life system, especially when

other analyses are too mathematically complex or too difficult to reproduce. Monte Carlo

simulation is a form of simulation that randomly generates values for uncertain variables

(risk factors) over and over to simulate a model [Goldman 2000].

For each risk factor, Monte Carlo simulation allows the requirements engineer to define a

range of possible values with a probability distribution. A distribution is an equation that

describes shape and range that represent the natural uncertainty around the input value.

The type of distribution can be one of the following types:

 Figure 4.6 Types of probability distributions

During the simulation, the values generated for the different risk factors are evaluated and

the overall risk estimate is calculated. This is repeated for several thousands of sample

input values and the output is usually graphically displayed for better comprehension and

analysis.

Monte Carlo simulation results in a far more rigorous risk analysis compared to other

techniques discussed in this section. As the values are represented in ranges, this method

is not completely dependent on the expertise of the risk analyst. However, this method

needs reasonable range values for the risk factors from the analyst to perform effectively.

Furthermore, this method is the fastest of all the risk analysis techniques because it is

automated. A disadvantage of this method is its dependency on a large number of

samples to provide accurate results. Hence, a wrong choice for the sample size can result

in misleading risk estimates. Another drawback is that the effectiveness of the results

generated by this method is dependent on the risk analyst’s proficiency in analyzing the

output. Furthermore, since Monte Carlo simulation is computer based, the initial

investment in this technique is much larger than the other risk analysis methods. However,

this investment is recovered in the long run and is beneficial to the organization.

Chapter 4. Synchronization of Methods and Activities

 131

K = (LOC / (C * t4/3)) * 3

K � Total effort in terms of years

C � Technology constant, which combines the effect of using tools, languages,

methodology, quality assurance procedures, standards etc. It is determined on

the basis of historical data (past projects).

t � Development time in years

LOC � Size estimate in terms of lines of code

4.2.2 Cost Schedule Estimation

Cost estimation is the process of determining the amount of work and effort needed to

implement a system. It involves the evaluation of factors such as personnel experience,

platform difficulty, etc., that affect the system development to determine whether the

total cost estimate satisfies the customers’ budget. The objective of the schedule

estimation activity is to determine the development time of the components and to

identify the critical components of the software system. This section focuses on the

techniques which effectively achieve these objectives.

4.2.2.1 Software Life Cycle Management (SLIM)

Software Life Cycle Management (SLIM) is one of the first techniques for estimating the

cost associated with the project [Putnam 78]. It is generally known as a macro estimation

model and is based on the Norden/Rayleigh function.

SLIM uses the following formula to calculate the effort needed for the development of a

system / component:

The value of the technology constant depends on the readiness of the project relative to

existing technology and is assigned according to the scale:

C= 2000 -- poor, C = 8000 -- good, C = 11000 – excellent

Thus, for an assignment, which is easy or similar to a successfully completed project in

the past, the value of C is high and is around 11000. Once the effort is calculated, the cost

estimate is obtained by multiplying the effort with the cost per working year.

Chapter 4. Synchronization of Methods and Activities

 132

The SLIM technique is easy to perform as it involves few parameters in the calculation of

the effort. In addition, this method consumes very little time and is suitable for large

projects. On the downside, the SLIM technique produces a cost estimate which is

extremely sensitive to the technology factor; this uncertainty in the cost makes it

unsuitable for small projects.

4.2.2.2 Constructive Cost Model (COCOMO)

COCOMO is one of the most widely used techniques for cost and effort estimation [Boehm 81].

This method is also referred to as COCOMO ’81 and consists of three different variants: basic,

intermediate and advanced.

• The basic COCOMO'81 computes software development effort (and cost) as a

function of program size expressed in estimated thousand delivered source

instructions (KDSI).

• The intermediate COCOMO'81 computes software development effort as a

function of program size and a set of fifteen "cost drivers" that include subjective

assessments of product, hardware, personnel, and project attributes.

• The advanced COCOMO'81 incorporates all characteristics of the intermediate

version with an assessment of the cost driver’s impact on each step (analysis,

design, etc.) of the software engineering process.

COCOMO depends on two main equations:

Development effort: MM = a * KDSI b

MM - man-month / person month / staff-month is one month of effort by one person. In

COCOMO, there are 152 hours per Person month and this value may change by 10% to

20% depending on the organization

Effort and development time (TDEV): TDEV = 2.5 * MM c

The coefficients a, b and c depend one of the three modes of the development as shown in

the Table 4.2. Once the development mode is identified, the values of a. b and c are

Chapter 4. Synchronization of Methods and Activities

 133

determined from the Table 4.3. The cost estimate is obtained by multiplying the effort

estimate in terms of person months with the cost incurred for each person month.

Project Characteristics Development

Mode
Size Innovation Deadline /

Constraints

Dev. Environment

Organic Small Little Not tight Stable

Semi-detached Medium Medium Medium Medium

Embedded Large Greater Tight Complex hardware /

customer interfaces

Table 4.2 Modes of development

Basic COCOMO a b c

Organic 2.4 1.05 0.38

Semi-detached 3.0 1.12 0.35

Embedded 3.6 1.2 0.32

Table 4.3 Values of a, b and c for the Basic COCOMO.

In the intermediate COCOMO, the same basic equation is used, but fifteen cost drivers

are rated on a scale of 'very low' to 'very high' to calculate the total EAF (Effort

Adjustment Factor). The adjustment factor is 1 for a cost driver that's judged as normal.

Thus, for the intermediate COCOMO, we use the following formula:

MM = EAF * a * KDSI b

The Advanced COCOMO model computes the EAF by having the cost drivers weighted

according to each phase of the software lifecycle.

The advantage of COCOMO is that it is simple, easy and time efficient. The cost drivers

in the intermediate and advanced COCOMO identify factors affecting the project costs

and help in obtaining a better cost estimate. The drawback of the COCOMO technique is

Chapter 4. Synchronization of Methods and Activities

 134

Effort = 2.94 * EAF * (SLOC)E

Where

 EAF Is the Effort Adjustment Factor derived from the Cost Drivers

 E Is an exponent derived from the five Scale Drivers

 SLOC Is the source lines of code

that it is hard to accurately estimate KDSI early on in the project. Also, the COCOMO

defines KDSI as a length measure rather than a size measure. Furthermore, this technique

is extremely vulnerable to misclassification of the development mode, resulting in

misleading cost estimates.

4.2.2.3 COCOMO ���

The COCOMO II method is the enhanced version of COCOMO ’81 and it produces a

better cost estimate. It defines the size of the project in terms of source lines of code

(SLOC) such that:

• Only Source lines that are DELIVERED as part of the product are included -- test

drivers and other support software is excluded

• SOURCE lines are created by the project staff -- code created by applications

generators is excluded

• One SLOC is one logical line of code

• Declarations are counted as SLOC

• Comments are not counted as SLOC

The effort estimate is calculated using the formula:

COCOMO II replaces the development modes in COCOMO ’81 with scale drivers,

which are used in determining the exponent E. In addition, COCOMO II provides a set of

17 cost drivers16, which help in calculating the EAF.

As an example [Softstar 2003], a project with all Nominal Cost Drivers and Scale Drivers

would have an EAF of 1.00 and exponent, E, of 1.0997. Assuming that the project is

16 See http://ksi.cpsc.ucalgary.ca/courses/451-96/mildred/451/CostEffort.html

Chapter 4. Synchronization of Methods and Activities

 135

Duration = 3.67 * (Effort)SE

Where

 Effort Is the effort from the COCOMO II effort equation

 SE Is the schedule exponent derived from the five Scale Drivers

projected to consist of 8,000 source lines of code, COCOMO II estimates that 28.9

Person-Months of effort is required to complete it:

 Effort = 2.94 * (1.0) * (8)1.0997 = 28.9 Person-Months

COCOMO II also calculates the duration of the project using the equation:

Continuing with the example, and substituting the exponent of 0.3179 that is calculated

from the scale drivers, we have an estimate of just below a year, and an average staffing

of between 2 to 3 people:

 Duration = 3.67 * (28.7)0.3179 = 10.66 months

 Average staffing = (28.7 Person-Months) / (10.6 Months) = 2.6 people

COCOMO II has the same advantages as COCOMO ’81 though it takes more time to

perform the estimation than the latter. It also overcomes the drawbacks of COCOMO ’81

by including scale drivers and SLOC instead of development modes and KDSI. It

provides a good cost estimate and a reasonable time estimate. A drawback is that the

calculations can get very complicated because of the number of factors to be considered

to obtain the estimate. Also, it has been shown that the duration estimate is unreasonable

for small projects [Merlo 2002].

4.2.2.4 Functions Points

Allan Albrecht, in collaboration with John Gaffney, Jr., designed Function Points as a

direct measure of functionality [Albrecht 83]. Function Points are used in two ways:

• As a measure of the "size", calculated from a functional, or user, point of view.

• As metrics used in conjunction with estimation variables to develop cost and

effort projections.

In order to obtain the function points, the systems functionality is broken down into five

basic categories [Heller 2002]. Two of these address the data requirements of an end user

Chapter 4. Synchronization of Methods and Activities

 136

and are referred to as Data Functions. The remaining three focus on the user's need to

access data and are referred to as Transactional Functions.

Data Functions

• Internal Logical Files – Functions handling files/data invisible outside the system

• External Interface Files – Functions handling files shared with other software

systems

Transactional Functions

• External Inputs – Functions allowing read / write capabilities

• External Outputs – Functions displaying reports, messages, etc

• External Inquiries – Functions handling interactive inputs needing a response

The Function point technique counts the functions under each category. These counts are

then multiplied by a weighting scale (Table 4.4) based on the complexity of the functions

(Table 4.5). On multiplying the counts with the weights, the resultant values are summed

up to produce Unadjusted function points (UFP) estimate.

Function Type Low Average High

Internal Logical Files 7 10 15

External Interface Files 5 7 10

External Input 3 4 6

External Input 4 5 7

External Inquiry 3 4 6

Table 4.4 Weighting scale for the function types

 1-5 Data element

types

6-19 Data element

types

20+ Data

element types

0-1 File types referenced Low Low Average

2-3 File types referenced Low Average High

4+ File types referenced Average High High

Table 4.5 Complexity of the function types

Chapter 4. Synchronization of Methods and Activities

 137

FP = UFP x TCF

TCF = 0.65 + 0.01 * DI

DI = Σ Fi

 Where

FP is the Function Points estimate

UFP is Unadjusted Function Points estimate

TCF is the Technical Complexity Factor

DI is the Degree of Influence, and Fi are the Factors of influence.

To obtain the overall function point estimate, three fundamental equations are used:

To calculate DI, the factors listed in Table 4.6 are rated on a scale of 0 to 5:

0 1 2 3 4 5

No Incidental Moderate Average Significant Essential
Influence

S/N Question

1 Does the system require reliable backup and recovery?

2 Are data communications required?

3 Are there distributed processing functions?

4 Is performance critical?

5 Will the system run in an existing heavily utilized operational

environment?

6 Does the system require online data entry?

7 Does the online data entry require the input transaction to be built over

multiple screens or operations?

8 Are the master files updated online?

9 Are the inputs, outputs, files, or inquires complex?

10 Is the internal processing complex?

Chapter 4. Synchronization of Methods and Activities

 138

11 Is the code designed to be reusable?

12 Are conversion and installation included in the design?

13 Is the system designed for multiple installations in different

organizations?

14 Is the application designed to facilitate change and ease of use by the

user?

Table 4.6 Factors of influence

The function point estimate can be used to calculate the cost estimate in two ways. The

first option is to assume a certain cost estimate for each function point. The second option

is to convert the function point count into an equivalent number of lines of code and use a

macro estimating model like COCOMO [Heller 2002].

The advantage of the function point method is that it is independent of the computer

language, code, development methodology, technology or capability of the project team

used to develop the application. In addition, it is more accurate than using the LOC

estimate for size. The disadvantage is that this method is hard to automate and difficult to

compute. Hence, compared to the other techniques discussed, this method is costlier and

more time consuming. Furthermore, this technique is subjective in the counting of

functions and is oriented more towards traditional data processing applications.

4.2.2.5 Work Breakdown Structure

The work breakdown structure is an expertise based technique which organizes the

project elements / components into a hierarchy for budget estimation and control. If cost

is associated with each element in the hierarchy, an overall cost estimate for the project

development can be determined traversing the tree bottom up [Baird 89]. Expertise

comes into play in this method when identifying the components of the hierarchy and

determining the estimates of the individual elements.

A work break down structure consists of two hierarchies, one representing the product

and the other illustrating the activities needed to develop the product [Boehm 81]. The

product hierarchy identifies the components in the software product and describes the

Chapter 4. Synchronization of Methods and Activities

 139

basic structure of the overall system. The activity hierarchy shows the various activities

that may be associated with a given software component.

The steps involved in defining the work breakdown structure hierarchy and then using it

for estimation purposes are listed below:

1. Understand project related information such as project goals and objectives,

the scope, etc.

2. Identify all major activities that will be required to achieve the goals and

objectives (Activity hierarchy).

3. Identify all major components of the software product (product hierarchy)

4. Refine and decompose the hierarchies.

5. Continue step 4 until fairly sure that everything has been accounted for

6. Determine the effort required for each of the lowest level tasks / elements in

the hierarchy. One practical way to do this is to have the people involved

provide the following estimates of time:

To = an optimistic estimate of how long the task will take

Tp = a pessimistic estimate of how long the task will take

Tm = the most probably estimate of how long the task will take

Then determine the expected time Te by using the following formula

Te = (To + 4 Tm + Tp) / 6

7. Multiply the estimates by either the cost of the actual person responsible or by

an average staff cost and combine the estimates for all elements in the

hierarchy.

8. Add the costs of equipment or any materials not covered by the tasks. This

will provide the cost estimate for the entire project.

The work breakdown structure method provides a good schedule estimate and a

reasonable cost estimate. This method is comparable to the COCOMO technique in terms

of time efficiency. However, the work breakdown structure needs more effort than the

COCOMO method because of the additional task of creating the hierarchies and hence, is

costlier than the latter. The drawback of this technique is that it fails to provide factors

(e.g. COCOMO II), which guide the analyst in his/her estimations.

Chapter 4. Synchronization of Methods and Activities

 140

4.2.2.6 Gantt Chart

The Gantt chart was developed as a production control technique in 1917 by Henry L.

Gantt, an American engineer and social scientist. It provides a graphical illustration of a

schedule that helps in the following tasks:

• Planning out the tasks that need to be completed

• Determining the schedule of the different tasks.

• Planning the allocation of resources needed to complete the project

A Gantt chart is a matrix, which lists on the vertical axis all the tasks to be performed as

shown in Figure 4.7. The tasks include the activities necessary for the development of the

system requirements / components. The horizontal axis is headed by columns indicating

estimated duration for the completion of each task. Gantt charts may also include skill

level needed to perform the task, as well as the name of the person assigned to the task.

Task duration may be expressed in hours, days, weeks, months, and other time units.

 Figure 4.7 Gantt chart

The construction of the Gantt chart and the schedule estimation is accomplished through

the following steps:

• List all the tasks of the system and identify whether they need to be developed in

sequential order.

• Plot each task on a graph paper, starting on the earliest possible date length of the

task bar being the duration of the task. Above the task bars, mark the time taken to

complete them. This results in the rough draft of the Gantt chart.

Chapter 4. Synchronization of Methods and Activities

 141

• Schedule the tasks in such a way that sequential activities are carried out in the

required sequence. Ensure that dependent activities do not start until the activities

they depend on have been completed. In addition, schedule tasks in parallel

without interfering with the other activities in the chart. The sum of all the

durations along the horizontal axis gives the schedule estimate for the entire

project

Gantt chart is a graphical scheduling technique, which is simple to use and understand.

Hence, this method is time efficient as well as cost effective. Furthermore, Gantt charts

show the sequence in which the tasks are conducted and this can be useful in project

tracking. However, this method fails to show the interrelationships among the tasks and

the critical path in a chain of activities. Another disadvantage is that the activity times are

deterministic, which reduce the level of confidence in the overall schedule estimate, and

hence, this technique is not recommended for systems with critical deadlines.

4.2.2.7 Program Evaluation and Review Technique (PERT)

A Program evaluation and review technique (PERT) chart is a project management

technique developed by the U.S. Navy in the 1950s to manage the Polaris submarine

missile program. PERT charts are used to schedule, organize, and coordinate tasks

within a project.

The PERT technique for estimating the schedule consists of the following steps:

• Identify the tasks involved in developing the requirements.

• Determine the proper sequences of activities (sequential / parallel).

• Construct the PERT chart / activity diagram.

• Estimate the time for each activity

• Determine the critical path.

The PERT chart is drawn based on the knowledge of the serial and parallel activities.

Each task in the chart is depicted by arrowed lines and milestones are represented by

bubbles or circles as illustrated in Figure 4.8. In addition, each arrow (task) in the chart is

Chapter 4. Synchronization of Methods and Activities

 142

identified by a task name and duration. Software applications simplify this task of

generating the PERT charts automatically converting the tabular activity information.

 Figure 4.8 PERT chart

The duration of each task is calculated using the formula:

 Optimistic time + 4 x likely time + longest time
Expected time (te)= ---
 6

Optimistic time: Shortest time in which an activity can be completed. It can be

obtained under unusual, good luck situations.

Likely time: Normal time that an activity will take, a result which is most likely to

happen.

Pessimistic time: Maximum time that an activity will take, a result which can occur,

only if unusually bad luck is experienced

Chapter 4. Synchronization of Methods and Activities

 143

The critical path in the PERT chart is obtained by summing up the times for the activities

in each sequence and determining the longest path in the project. The duration of the

critical path gives the time needed for the completion of the component / project. If any

event on the critical path slips beyond its expected date of completion, then the final

event can be expected to slip a similar amount. The amount of time that a non-critical

path activity can be delayed without delaying the project is referred to as slack time,

which is useful in the management of resources allocated to the activities [NetMBA

2002]. Thus, PERT not only estimates the overall schedule but also helps in better

management and control of the activities.

PERT charts are advantageous because they show the dependencies of the various tasks

and identify the critical activities of the project. This method enables management to use

the resources wisely and improves control over complex and large development projects.

Furthermore, PERT charts are easy to understand because they provide a visual

representation of the tasks [Bedworth 87]. The drawback of this method is that

considerable effort is involved in creating the activity diagrams and verifying them for

non-existence of cycles (job ‘a’ is a predecessor for ‘b’, ‘b’ is a predecessor for ‘c’, and

‘c’ is a predecessor for ‘a’). As a result, this technique is time consuming and costly.

Another disadvantage is that the activity times are subjectively estimated and even if they

are well-estimated, PERT assumes a beta distribution for the time estimates (te), but the

actual distribution may be different [Stamatis 97]. In addition, this method fails to give

attention to the calculation of the cost estimate, and hence is best used in combination

with other techniques.

4.2.2.8 Critical Path Method (CPM)

Critical Path Method (CPM) charts are similar to PERT charts and are sometimes known

as PERT/CPM. The critical-path method (CPM), developed by Du Pont and Remington

Rand, is a powerful, but basically simple technique for analyzing, planning, and

scheduling large, complex projects [Wickwire 89]. This method provides a means for

determining:

• How long the project will take to complete

Chapter 4. Synchronization of Methods and Activities

 144

• Which jobs or activities are "critical" in their effect on the total project time?

If information about the cost of each activity and how much it costs to speed up each

activity is provided, CPM can determine [Baker 2004]:

• Whether it is beneficial to speed up the project, and, if so,

• What is the optimal plan for speeding up the project?

The steps involved in the CPM method are similar to that of PERT and are as follows:

• Identify the tasks involved in developing the requirements.

• Determine the proper sequences of activities (sequential / parallel).

• Construct the network diagram.

• Estimate the completion time for each activity.

• Determine the critical path (longest path in the network).

• Determine how best to schedule all jobs in the project in order to meet a target

date at minimum cost

Thus, CPM differs from PERT in two aspects:

• The use of a single time estimate for each activity

• The inclusion of a procedure for time/cost tradeoff to determine the scheduling of

activities.

The advantages of the CPM technique are the same as PERT. An added benefit of this

method is its ability to schedule the activities based on the costs. A drawback of CPM is

that it fails to consider the effects of variability in path completion times, since it uses a

single time estimate for the tasks [Hulett 95]. As a result, the schedule estimate of CPM is

not as reliable as the one generated by PERT. Another disadvantage of CPM is that it is

cost intensive and time consuming [Jaafari 84].

Since the PERT technique has a better schedule estimating process and CPM has a good

time/cost tradeoff procedure, an ideal work strategy would be to combine the best

features of both these methods to produce optimum project duration and cost.

Chapter 4. Synchronization of Methods and Activities

 145

4.2.3 Price Analysis

Price analysis is the process of determining the product price, which is fair and

reasonable to the market as well as the management [FAST 2004]. It also entails

determining the features which could be dropped for the current delivery but included in

future releases, without affecting the product value. In order to achieve this objective, it is

necessary to obtain information about the market needs. Hence, in this section we not

only discuss techniques which help in determining the product price, but also examine

methods which elicit market information.

4.2.3.1 Comparative Price Analysis

Comparative price analysis involves the comparison of the proposed product price with

quotes or prices for the same or similar items. Several factors need to be considered by

the analyst during the comparison of prices. Some of the factors are listed below:

• Number of competitors in the market

• Intensity of demand

• Inflation / deflation of the currency

• Market trends, etc.

For the purpose of comparison, this technique considers prices of:

• Older, similar / same functionality products (historical prices).

• Competitor’s products

• Products’ having a few features in common.

Hence, it is necessary to adjust these prices in order to make a fair direct comparison of

prices. This method balances the prices through the use of indices, trends analysis, and

product variance.

Price index numbers are ratios, usually expressed as percentages, indicating changes in

values, quantities, or prices, with respect to the base year. These indices are useful in

manipulating the prices to reflect the inflation / deflation of the currency to facilitate

direct comparison. An example of the use of indices to inflate the price of a product for

Chapter 4. Synchronization of Methods and Activities

 146

Use of Indices

Product: Computer Monitor
Objective: Adjust 2003 price to the 2004 price level by using ratio analysis

Available data: 2003 price (unadjusted)

 2004 price index = Adjusted price to 2004
 2003 price index 2003 price

 110 = Adjusted price to 2004
 105 100

 $104.76 = Adjusted price to 2004

comparison is shown below [FAST 2004]:

Trends analysis is based on the assumption that the trends reported in the past will

continue in the future. The analysis of the market can provide insights into the price

patterns and this can be used in predicting the price of a product or service.

Product variance analyzes the technical differences among the various products (whose

prices are being compared) and based on this evaluation the prices are compared. For

example, consider a high resolution and a low resolution monitor. The price of the former

will definitely be greater than the latter, and hence it is imperative to analyze the products

technical aspects with respect to the costs, before weighing the product prices against

each other.

This technique is the most commonly used method in the industry for predicting the

prices of products / services. It is a comprehensive method and provides a good price

estimate for the product. Furthermore, the comparative price analysis technique

determines the prices for various combinations of product features to match different

desirability levels of the users / market. The drawback of this technique is that it fails to

determine whether a particular feature is desirable or not. In addition, this method can get

complicated if several comparison factors and product prices are considered. Moreover,

the comparative price analysis technique assumes that the market information already

exists, and hence, this method needs to be supported by market analysis techniques. As a

consequence, this method is time consuming and expensive.

Chapter 4. Synchronization of Methods and Activities

 147

4.2.3.2 Comparisons to Independent Cost Estimates

Independent cost estimate (ICE) is the assessment of the total cost incurred if the product

is developed. The Comparison to independent cost estimates technique ensures that the

proposed price is greater than the cost of development and, at the same time, is

reasonable to the user. Since, obtaining cost estimates of similar/same products

developed by other organizations is difficult, this method uses the cost estimates of

products that have already been developed by the current organization. However, it is

necessary that the product under analysis is compared with a very similar past product;

otherwise the cost estimates of the previous project will not be applicable to the current

one.

The Comparison to independent cost estimates technique is useful in situations where the

current project is very similar to a previous one. The cost estimate of the previous project

is utilized for the current project and the price is then tested for reasonability and fairness.

As a consequence, it becomes unnecessary to conduct the cost analysis activity. For

example, a company may develop e-commerce websites for its customers. The

characteristics of all these websites are more or less the same. Hence, if the cost for the

development of one website is done thoroughly, the estimate can then be used for

subsequent efforts.

To determine if the basis of the independent cost estimate is reliable and can be used as a

standard for comparison, the analyst must examine the following factors [FAST 2004]:

• Is the product comparable?

• What information and techniques were used?

• How reliable were earlier estimates?

• Is the cost estimate based upon the same technical approach as the current product

or service?

The cost estimates may have to be adjusted due to the inflation of the currency, and this

can be accomplished through the use of value indices explained in the previous section.

Once the cost estimate is obtained, the analyst determines the reasonability of the

proposed price by comparing it with the cost estimate and also accounting for factors

such as the user demand, urgency of the user, and competitors in the market.

Chapter 4. Synchronization of Methods and Activities

 148

This technique can be used effectively for a particular set of situations such as the

repetitive development of similar software. It is faster and more cost effective than

comparative price analysis because there is no effort involved in comparing prices of

several similar / same products. An added advantage is that this method proposes a price

which is definitely profitable and reasonable. The drawback of this technique like the

previous method is that it fails to determine whether a particular feature is desirable or

not. In addition, the ‘Comparison to independent cost estimates’ technique assumes that

the previous cost estimates are applicable to the current project. This may not hold true if

there are changes to the technology, organizational procedures, and so forth.

4.2.3.3 Value Analysis

Value analysis is an auxiliary technique to the methods discussed above and attempts to

overcome one of their drawbacks – determining whether a particular product feature is

desirable or not. This method involves a systematic and objective evaluation of the

functionality of the product and its related costs. The objective of value analysis is to

eliminate the superfluous product features and thus reduce the costs involved. In order to

achieve this objective, the analyst should be knowledgeable about the product, its features

/ functions, and its use.

Value analysis is performed after the market information has been elicited. It analyzes

whether each functionality of the product is necessary and how desirable it is to the user.

In addition, this method determines the contribution of each feature to the product’s value.

If a particular functionality provides no additional value, it is dropped from the product

feature list. Furthermore, value analysis also attempts to reduce costs by examining

various alternatives to perform the functions and the possibility of purchasing the

software components of the product from an external organization.

Thus, the requirements engineer should consider the following factors during the analysis

of the product [USAID 2002]:

• What must the product do?

• Which features are essential, desirable, and unwanted?

• What are the other ways that a function can be performed?

• Can any part of the product be eliminated without affecting its market appeal?

Chapter 4. Synchronization of Methods and Activities

 149

• Can a lower cost component be procured rather than developed?

• What are the product’s operation and maintenance costs?

• What will the alternatives cost?

Value analysis is an effective technique in identifying features which do not add value to

the product and thus, helps in reducing the product related costs. On the downside, this

method cannot predict the product price and hence, is used as a supplementary method to

other price analysis techniques. Another drawback of value analysis is that it assumes that

the market information is available beforehand; thus making it necessary to precede this

method with market analysis techniques. This adds to the cost and effort of conducting

the value analysis method, and hence, it is considered to be one of the costliest price

analysis techniques.

4.2.3.4 Written Surveys/Questionnaires

Written survey is one of the most commonly used technique for eliciting market

information as it facilitates contacting a large section of the society/market [Angus 53]. A

questionnaire, or written survey, can be a written document or an online questionnaire

that is completed by the person being surveyed.

Written surveys are usually one of the following types:

• Mail Surveys – Involves sending the survey questions to the people through post

[Bourque 95].

• Drop-off Surveys – Similar to mail surveys but involves meeting the person and

giving the questionnaire.

• Electronic surveys – questionnaires distributed through the World Wide Web.

Questionnaires can be used in two ways – to get statistical evidence for an assumption, or

to elicit opinions and suggestions. In the first case, the questionnaire includes closed

questions such as: “How easy is it to get the precise information using product X: very

difficult, difficult, easy, and very easy.” For the second case, we include open ended

questions such as: “what are your suggestions to improve the product X?”. Closed

questions have a high risk of misinterpretation and hence, the questions should be

carefully examined before passing it on to the people [Converse 86]. The answers to open

Chapter 4. Synchronization of Methods and Activities

 150

ended questions can give good insights, but at the same time they can be vague and

confusing [Weissberg 86].

The advantage of surveys is that they are cost-effective and allow responses to be

obtained from a large number of people. In addition, many questions can be asked about

a given topic, giving considerable flexibility to the analysis. The disadvantage of this

method is that the results can be misleading because the respondents may misinterpret the

questions and give wrong or inappropriate answers. Furthermore, a particular section of

the contacted people may be more participative than the others, resulting in responses

which cannot be generalized.

4.2.3.5 Oral Survey

Oral surveys are considered to be more personal than the written surveys / questionnaires.

The oral survey technique can be administered in the following ways:

• Group Interview: It involves gathering a select group of people and instead of

handing them a written questionnaire, the questions are posed verbally. The

respondents are allowed to work in groups to answer these questions while one

person takes notes of the proceedings.

• Phone survey: It involves contacting people over the telephone line, and is

generally used to get short one word answers such as Yes/No and occasionally

longer ones [Oishi 95].

As in written surveys, the questions that are posed can be either open ended or closed.

However, compared to written surveys the information obtained is better understood as

oral survey techniques provide the flexibility to react to the respondent's situation, probe

for more detail, seek more reflective replies and ask questions which are complex or

personally intrusive [Glastonbury 91]. Thus, oral surveys are communicative sessions,

which need to be well managed since it is easy for the respondents to diverge from the

topic under discussion.

Oral surveys are advantageous over written surveys as it gives the interviewer the ability

to answer questions from the participant. If the participant, for example, misunderstands a

question or needs further explanation on a particular issue, it is possible to converse with

Chapter 4. Synchronization of Methods and Activities

 151

the participant. Another advantage of this technique is that the requirements engineer has

more control over the response rate compared to the written surveys. The main drawback

of this method is the large amount of time needed to obtain complete results; as a result

this technique is costly. Also, certain types of questions17 are inconvenient for this type

of survey, particularly for phone surveys where the respondent does not have a chance to

look at the questionnaire [Dillman 78]. For example, if the respondent has a choice of

five different answers, it will be very difficult for the respondents to remember all of the

choices, as well as the question, without a visual reminder [CSU 97]. Another drawback

is that a face-to-face interview survey may introduce bias, either from the interviewer or

the respondent.

4.2.3.6 Study of Similar Companies/Products

Determining a reasonable and fair price for the product requires the knowledge of the

competitors, their products and their development processes. A study of the competitor’s

procedures provides realistic ideas about handling various product related problems. In

addition, the competitors may have more experience with the specific product and the

knowledge about their processes may provide insights about how the current

development process can be enhanced. This technique employs various strategies to

obtain information about the competitor’s processes and products.

Competitors may not be forthright with the information about the procedures they follow.

In that case, the analyst can approach certain international auditing and consultancy firms,

which have a benchmark database with performance figures for companies in the same

field. Performance is measured for various internal processes such as IT support,

maintenance, and so forth. These statistics of the competitors can indicate which

processes need to be improved. Furthermore, the consultancy may give a clue about how

the processes can be enhanced for a fee [Lauesen 2002].

This method also focuses on identifying the main features of the competitor’s products

and their appeal to the users. The analyst achieves this objective by analyzing the sales of

different products and the marketing strategies of the competitors. On examining the ads

17 See http://writing.colostate.edu/references/research/survey/com4a2a.cfm

Chapter 4. Synchronization of Methods and Activities

 152

of the products it is possible to determine the features which are emphasized by the

competitor. Furthermore, the popular products and their features can be evaluated to

determine the features which are desirable to the public.

The advantage of this method is that it provides realistic ways of enhancing the

development procedures and handling product related problems. In addition, it

determines the advantages and disadvantages of similar products in the market. In turn,

this provides ideas for improving the product. The drawback of this method is that it is

difficult to procure information of the competitor’s development procedures. Furthermore,

the analysis of various similar products and their features is time consuming. The

difficulty in obtaining competitor information and the lengthy period of operation makes

this method one of the costliest market analysis techniques.

4.2.3.7 Ask Suppliers

This technique gathers information about the suppliers of software components /

functionalities in the market. It provides ideas about new functionalities and helps in

deciding whether the functionality should be developed in-house or procured from a

supplier. The ‘Ask Suppliers’ method supplements the value analysis technique, which

focuses on reducing product related costs.

Suppliers know a great deal about how the customers use their products. This information

may be helpful in identifying new functionality for the system, thereby increasing the

value of the product [Lauesen 2002]. In addition, each supplier provides a long list of

features of the product they sell. Comparing the list of features of several suppliers helps

in determining the best product satisfying the budget. Furthermore, if the prices of the

products are beyond the budget limit and the cost of in-house product development is

lower, then the analyst may decide to develop the product internally. Thus, information

collected from suppliers facilitates decision making on issues related to enhancement of

product value and reduction in development costs (using COTS18).

18 Commercial off the shelf components: commercial items already developed and readily
available for purchase.

Chapter 4. Synchronization of Methods and Activities

 153

The advantage of this method is that it provides comprehensive information about the

supplier’s products and their features. In addition, this technique is an effective

complementary method to value analysis. The ‘Ask Suppliers’ technique is cost effective

even though it may take a long period to collect all the information. This is because the

information collected is dependent on the supplier’s response and the suppliers may take

time to respond.

4.2.4 Feasibility Analysis

Feasibility analysis determines how beneficial or practical the development of a system

will be to the customer, by evaluating for:

• Operational feasibility

• Technical feasibility

• Schedule feasibility

• Economic feasibility

Thus, feasibility analysis involves examining the requirements of the system through

business, technological and cost perspectives and this evaluation is achievable through

various techniques, which are discussed in this section.

4.2.4.1 Decision Analysis Under Uncertainty

Decision analysis under uncertainty is also known as the Expected monetary value (EMV)

technique. It provides a highly organized structure within which various options can be

laid out and investigated [Howard 88]. Hence, given an infeasible project, the

requirements engineer can utilize the decision analysis method to choose the right

alternative that is economically and practically sound.

Decision analysis begins with the construction of the decision tree, which consists of

solution alternatives represented as lines [Clemen 96]. If the result of taking a decision /

alternative is uncertain, a small circle is drawn. If the result is another decision that is to

be taken then a square is drawn as shown in Figure 4.9 [Mindtools 95]. At each circle,

Chapter 4. Synchronization of Methods and Activities

 154

possible outcomes are drawn and the probability / cash value of each outcome is

guesstimated.

 Figure 4.9 Example decision tree

Once the decision tree is constructed, it is evaluated backwards by multiplying the cash

values of the outcomes with their probabilities. Thus from Figure 4.8, the value for ‘new

product’ through development is:

0.4 (probability good outcome) x $500,000 (value) = 200,000

0.4 (probability moderate outcome) x $25,000 (value) = 10,000

0.2 (probability poor outcome) x $1,000 (value) = 200

Total value $210,200

Chapter 4. Synchronization of Methods and Activities

 155

The value of a node/decision is obtained by subtracting the costs incurred in

implementing the decision from the outcome value. Thus, the tree is evaluated bottom up

until the root of the tree is reached. The propagation of costs up the decision tree is shown

in Figure 4.10 [Mindtools 95].

 Figure 4.10 Propagation of costs in the decision tree

From Figure 4.9, it is clear that the best option is to develop a new product through

development. Thus, decision trees are helpful in evaluating various alternatives and

guiding the requirements engineer in the decision making process.

The decision analysis technique is advantageous because it clearly lays out the problem

so that all options are challenged. In addition, it allows the analysis of all possible

consequences of the decision and provides guidance in taking the best decision. The

disadvantage of this method is that it relies on the requirements engineer for identifying

the consequences of the decisions and the associated probabilities. This is a costly

technique as considerable effort and time is required to perform a complete analysis of all

the decisions [Ngatagize 86].

Chapter 4. Synchronization of Methods and Activities

 156

4.2.4.2 PMI

PMI stands for 'Plus/Minus/Implications' and is the most commonly used technique for

feasibility analysis [Bono 92]. It is a decision making technique which helps evaluate the

pros and cons of any item (requirements and its global factors19) under consideration.

The PMI technique starts with the drawing of a table with the headings: Plus, Minus and

Implications. In the column underneath ‘Plus’ all the positive aspects of the item / project

are included. For example, the requirements engineer may list out all points which make

the project technically, operationally and economically feasible [Frame 2002]. Under the

column ‘Minus’, the negative aspects of the project are listed. The last column,

‘Implications’, records the effects (either positive or negative) which are expected to

occur when the product is completed and delivered. Examples of project implications

could be: capturing a large percentage of the market share or the necessity to include

localization features.

Once the table is filled, each of the points listed are subjectively assigned a positive or

negative score. The scores are then added up to determine if the project is feasible or not.

A strong positive tally indicates that the project is feasible while a high negative count

alerts the requirements engineer about the non-practicality of the project [Mindtools 95].

On completion of the PMI technique, if a project is found to be infeasible, the decision

analysis method can be employed to identify means by which the project can be made

more attractive for development. An example of the usage of this technique is provided in

the table below [McGuire 2002]:

Take up new post in London?

Plus Minus Implications

Better social life +5 Have to sell house -6 Better promotion

opportunities +2

Change of scenery +4 More pollution -5 Meet more people +2

Higher salary +4 Higher cost of living -6

19 Global factors include risk, price and schedule

Chapter 4. Synchronization of Methods and Activities

 157

Let’s assume that Jim's Printing is considering the purchase of a new printing press.

The press will cost $2000 to produce and will generate cash flows of $900 per year for

3 years.

Payback Period = 2.22 years.

During the first year $900 of the $2000 is paid back. This leaves $1100. Then during

the second year another $900 is paid back, leaving $200 of the initial investment yet to

be recovered. Assuming the $900 comes in evenly throughout the year, it will take 2/9

or .22 of the last year to pay back the initial $2000.

 Further away from friend and

family -5

Less disposable income -3

Total score = 17 – 25 = -8 (Analysis loaded against going to London)

Table 4.7 Example of using PMI technique

The PMI technique is the most popular method in the software industry for

feasibility analysis as it is simple, cost effective and time efficient. However, this

method is unclear about the weighting of points and relies heavily on the

experience of the analyst. As a consequence, the results obtained can be

misleading if this method is performed by inexperienced analysts.

4.2.4.3 Payback Period

The payback period technique estimates the economic feasibility of the product by

measuring the amount of time it would take to earn back the initial investment in the

project. This is the simplest of the feasibility techniques and is usually used for small

investments. The payback period is calculated using the following formula:

 Initial Investment
Payback Period (years) = ----------------------------------
 Annual net benefits

A project is termed ‘economically feasible’ if the payback period is less than the critical

value. In addition if there are mutually exclusive projects which achieve the same

objective, the one with the lower payback period is selected for development [Bracker

2003]. An example of the usage of this technique is given below:

Chapter 4. Synchronization of Methods and Activities

 158

Payback period is advantageous because of its simplicity and easiness of application. In

addition, it is easy to understand and time efficient. Furthermore, this method provides

information about how long the funds will be tied up in a project and this can be a useful

statistic for the management. There are two primary situations when payback period can

be useful. The first situation is when the distant cash flows are highly uncertain. For

instance, the projected life span of a technology dependent project may be six years but

after two years of development there is a possibility that the technology becomes obsolete.

In a situation like this, it would be extremely helpful to have had the entire project paid

back by the end of the second year. The second situation where Payback Period is

extremely helpful is when the firm is facing significant financial problems. For example,

a company having financial problems should preferably avoid investing in a project

which has very low cash flows in the first couple years and high cash flows in the later

years. Ideally, such an organization should look for early payback of the investment to

prevent bankruptcy.

The disadvantage of this method is that it ignores cash flows after the payback period

[deNeufville 90]. Moreover, this method assumes that cash flows come in evenly

throughout the year and this may result in misleading estimates. Furthermore, the

payback period method uses an arbitrarily chosen cut off period value for accepting or

rejecting the project. Because of these limitations, this technique is biased against long

term capital intensive projects.

4.2.4.4 Net Present Value

Net present value (NPV) is widely used by industry to determine the profitability of a

project. The net present value of a project is the present value of all cash flows less the

initial investment. Cash flow is defined as the benefits minus the cost incurred in each

period. Net present value can be calculated as follows:

 NPV = CF0 + CF1/(1+r) + CF2/(1+r)2 +. . . + CFn/(1+r) n.

Where NPV ���� Net present value (dollars)

 CF ���� Cash flow

 r ���� Discount rate

Chapter 4. Synchronization of Methods and Activities

 159

As seen in the formula, the cash flow for each year is discounted by a discount rate [r],

which represents the conversion of future year money to current year money. Discount

rate is the measure of the value of money over time, that is, a dollar today is worth more

than a dollar tomorrow because one can invest the dollar today and have more tomorrow.

The choice of the discount rate plays a critical role in the feasibility analysis of projects

competing for funding. Low discount rates favor capital intensive projects with low

operating costs while high discount rates support solutions with lower investment costs

but higher operating costs [OMB 2000]. The rate for the commercial industry is typically

between 10% and 15% depending on the risk and stability of the industry.

If a project has a positive Net present value, it indicates that the project is profitable and

if funded, will increase the value of the company. If there are two projects competing for

funding, then the one with greater Net present value should be selected. An example

showing the calculations involved in the application of the Net present value technique is

presented below [Williamson 2001]:

Year

Cash

Flows

($)

Discount

Factors

(15%)

Present

Values

($)

0 -25,000 1.0000 -25,000.00

1 20,000 0.8696 17,391.30

2 25,000 0.7561 18,903.59

3 12,500 0.6575 8,218.95

4 9,000 0.5718 5,145.78

Net Present Value 24,659.63

Table 4.8 Calculations in the Net Present Value technique

The Net Present Value method addresses the value of money over time, considers all cash

flows, and acknowledges the risk involved in cash flows by incorporating discount rates.

As a result, compared to other techniques for estimating economic feasibility, this

technique is the most effective and widely used. The drawback is that this method

requires more time and effort than the other techniques because of its comprehensive

Chapter 4. Synchronization of Methods and Activities

 160

evaluation. In addition, this technique fails to specify the size of the investment required

to achieve the results [DoD 2001].

4.2.4.5 Internal Rate of Return

While the net present value technique estimates an absolute value for the returns, internal

rate of return (IRR) provides a relative measure of the value. This technique calculates

the discount rate at which the net present value becomes zero [Baker 97].

NPV = CF0 + CF1/(1+r) + CF2/(1+r)2 +. . . + CFn/(1+r) n = 0

Where NPV ���� Net present value (dollars)

 CF ���� Cash flow

 r ���� Discount rate

As seen from the above formula, the discounted cash flows (CF) together equal the

present value of the investment in the project. The feasibility of the project is determined

on the basis of the discount rate [r]. If the estimated rate is higher than the required rate of

return, the project is said to be financially feasible. The computations involved in this

technique are shown in the following table.

Year

Cash

Flows

($)

Discount

Factors

(r=13.114%)

Present

Values

($)

0 -$3,000 1.00 -3,000.00

1 1,500 .884063865 1,326.10

2 1,200 .781568917 937.88

3 800 .690956837 552.77

4 300 .610849972 183.25

Net Present Value 0

Table 4.9 Calculations in the Internal Rate of Return technique

Chapter 4. Synchronization of Methods and Activities

 161

The table is the same as that for net present value, but in this method the focus is on

estimating the value of r in order to obtain a value of zero for the net present value. This

difference is highlighted in Figure 4.9.

The IRR technique is an effective method for determining the economic feasibility of a

project. It also provides the same advantages as that of the net present value technique.

However, compared to the net present value method, this technique is more complicated

and time consuming. Moreover, there is a possibility of dealing with multiple internal

rates of return if there is a change in sign of the cash flows after the initial cash outflow

[DSU 2003].

4.2.4.6 Pilot Experiments

In some projects, the main risk is whether the customer organization can adapt to the final

product. For such projects, determining the operational feasibility is critical before

developing the product. This objective is effectively achieved through pilot experiments.

In order to determine the operational feasibility using this technique, a working system

needs to be developed, preferably through the use of COTS components. A small part of

the target organization tries this system on a trial basis using real production data. In

order to incorporate the system efficiently, the organization needs to make certain

changes in the working procedures [Lauesen 2002]. The requirements engineer observes

the results and evaluates the benefits and costs of deploying the real system. Analysis of

the project feasibility is done in a way similar to that of the PMI technique.

Pilot experiments are useful in situations where the organizations adaptability to the

system is a major risk factor. It is an elaborate technique which is time consuming as the

requirements engineer has to observe the system in its real environment. Furthermore,

this is an expensive method because the system has to be developed using COTS

components and deployed in the customer organization.

4.2.5 Conflict Resolution

Conflict resolution is a process by which conflicts in requirements are resolved to reach a

solution agreeable to all parties. This activity consists of three major steps: identify issues,

Chapter 4. Synchronization of Methods and Activities

 162

identify options and finalize agreements. Issues specify the conflicts in requirements

along with the arguments from the stakeholders, who own the requirements. The options

list various alternatives to resolve the identified conflicts. Agreements are the final

solutions which are approved by all the stakeholders.

In this section, we discuss different techniques employed by the software industry to

perform the three steps -identify issues, identify options and finalize agreements, which

constitute the backbone of the conflict resolution activity.

4.2.5.1 Brainstorming/Interviews

Both of these techniques have been explained under the requirements elicitation meeting

activity in Sections 4.1.2.1 and 4.1.2.6. Hence, in this section, we will provide a brief

recapitulation of each method and highlight their pros and cons.

In the conflict resolution activity, brainstorming and interview techniques are effective in

capturing the stakeholders’ viewpoints and their solutions for the various conflicts. Both

these methods have their own characteristics and should be employed based on the

situation.

Brainstorming consists of gathering the stakeholders, creating a stimulating atmosphere,

and letting the participants come up with spontaneous ideas without the fear of being

ridiculed. On the contrary, interview is a face-to-face session, where the participant is

briefed about the conflicting interests and his/her arguments are recorded.

Brainstorming takes lesser time and cost to perform compared to interviews and is

effective in identifying innovative ideas / solutions. However, interviews are more

personal than brainstorming and allow for discussion between the analyst and the

stakeholder. Since brainstorming generates ideas that are not criticized, several unrealistic

solutions may be proposed that need to be filtered out and this requires some additional

effort. Furthermore, the success of the interview and brainstorming techniques depend on

the questions asked and the management skills of the moderator / analyst.

Chapter 4. Synchronization of Methods and Activities

 163

4.2.5.2 Go-Around

This technique attempts to combine the positive features of interviewing and

brainstorming methods. In a go-around, the facilitator sequentially asks each participant

to submit his/her viewpoint. If a person doesn't have anything to say, s/he can pass during

a round. Team members can also rejoin the process and contribute on subsequent rounds

of the technique [NYS 2003b].

The Go-Around technique consists of the following steps during conflict resolution:

• Give a brief introduction to the conflicting items

• Give the members a break (around five minutes) to collect their thoughts

• In the first round, ask each member to state their position on the conflict and the

arguments associated with their decision.

• Clarify / discuss the unclear arguments of the participants in the next round.

• In the subsequent rounds, assist and encourage people to find ways to overcome

the conflict. The proceedings of each round are recorded by a scribe.

The industry uses several variations of the Go-Around technique such as Take five,

Constructive response, and Nominal group technique20 [DoD 99]. The ‘take five’ method

proposes notifying the participants of the conflicting issues before the meeting takes

place. It also includes a break of five minutes before commencing each round.

Constructive response technique is very similar to Go-around with the addition being the

use of chalkboards for a visual representation of the member viewpoints and concerns.

The nominal group technique has the same steps as Go-around but in addition it provides

a simple voting procedure to resolve the conflicts. Thus, we see that each of these

methods build on top of the Go-Around technique, providing a few additional

enhancements.

This technique allows introverted people the chance to provide input without having to

"push" their way into the conversation. Furthermore, since the participants are given time

to think about the conflicts, the ideas contributed are likely to be more realistic. This

method requires more time than brainstorming but lesser time than interviewing. In

20 See http://instruction.bus.wisc.edu/obdemo/readings/ngt.html

Chapter 4. Synchronization of Methods and Activities

 164

addition, this technique builds team spirit and requires lesser effort than the interview

method. The drawback is that this method relies heavily on the facilitator for the success

of the group session.

4.2.5.3 Positional Bargaining

Positional bargaining, also known as distributive negotiation, is a conflict resolution

strategy which involves each party taking a stand and arguing for their position regardless

of any underlying interests. This technique consists of three basic steps:

• take a position

• argue for this position

• make concessions to reach a compromise

Positional bargaining tends to be the first strategy employed by people when they enter

into a negotiation. This can result in problems, because as the negotiation proceeds the

participants get more committed to their positions, continually restating and defending

them. A strong commitment to a position often results in lack of attention to the

participants underlying interests. Therefore, any agreement that is reached will "probably

reflect a mechanical splitting of the difference between final positions rather than a

solution carefully crafted to meet the legitimate interests of the parties” [Fisher 81].

We see many examples in the real world that illustrate the use of this method [Spangler

2003]. For instance, at a flea market, a man offers a vendor $10 for a rug he has for sale.

The vendor asks for $30, so the customer offers $15. The merchant then says he will

accept $25, but the customer says the highest he will go is $20. The vendor agrees that

$20 is acceptable and the sale is made at $20. So the customer pays $10 more than he

originally wanted and the vendor receives $10 less.

Positional bargaining focuses on the issues rather than the interests of the parties involved

in the negotiation. Issues are universal and are shared between each party in a conflict,

while interests are specific to each party. In the example outlined above, what the

customer wants is a bargain, while what the seller wants is a profit.

This technique is advantageous for situations that involve extremely conflicting interests

[Lax 91]. For example, suppose two nations are in a dispute over water rights. They also

Chapter 4. Synchronization of Methods and Activities

 165

have a difference in opinion on issues such as trade, religion, etc. Broadening the debate

to include all the underlying interests may further polarize the countries. It is much easier

to reach an agreement by negotiating one particular issue at a time in terms of positions.

The drawback of positional bargaining is the inflexibility of positions of both parties.

This may result in bad feelings between the parties. This technique is inefficient because

it may take a long time to reach a compromise in the event the opening positions are

extreme. Furthermore, the method focuses on splitting the differences between parties

rather than on the development of a solution beneficial to both sides.

4.2.5.4 Interest Based Bargaining

The main difference between positional bargaining and interest based bargaining is the

underlying assumption that each party brings to the negotiation table. While the former

focuses on position, the latter concentrated on the interests of the two sides. This

technique attempts to create a win-win situation, where both sides have the impression of

being on the winning side of the negotiation [Palmer 2000].

Interest-based bargaining goes by a host of names such as “consensus bargaining”,

“problem-solving negotiations,” “win-win,” “mutual gains,” “collaborative bargaining,”

and “principled negotiations”. This technique has the following characteristics

[Hammond 95]:

• People: View the problem as that which needs to be resolved rather than viewing

someone holding a contrary viewpoint as a person to be defeated [Cohen 2002]

One specific technique that can work is to make both the parties face a flip chart

or blackboard where the problem is presented, rather than facing each other as

opponents.

• Interests: Take care of the human needs of the participants by identifying each

side's needs, desires, concerns and fears.

• Options: Invent alternatives for mutual gain. The interests and options can be

elicited from the participants through techniques such as interviewing,

brainstorming or Go-around.

Chapter 4. Synchronization of Methods and Activities

 166

• Criteria: Develop objective criteria for judging merits of agreement such as

market value, precedent, scientific judgment, professional standards, efficiency,

costs, tradition, reciprocity, equal treatment, and time.

This technique examines all the identified options keeping in mind the interests of both

parties and analyzes each option against the selection criteria. Once an option is selected,

an agreement is prepared that clearly states the resolutions arrived at during the

negotiation.

Interest based bargaining is an effective technique in finalizing an agreement for conflicts

among different parties. This technique focuses on the underlying concerns of the

disputing parties and hence, there is very little scope to develop bad feelings towards the

other party [Sebenius 86]. In addition, this method fosters co-operation among the

participants in an informal atmosphere. Compared to positional bargaining, this technique

is more likely to reach an agreement, which is beneficial to both the sides. Furthermore,

interest based bargaining requires lesser effort, cost and time than positional bargaining

because it is more structured and has clear guidelines for identifying and finalizing

agreements. A possible drawback of this method is that it requires the two parties to trust

each other, which is not often the case.

4.3 Methods for Organization and Compilation Phase

This phase consists of a single activity, which is concerned with grouping the complete

set of requirements in a manner which is optimal for understanding. Requirements can be

classified based on user class, stimulus, response, system mode21, etc. The organization

and compilation phase / activity produces a structured requirements list, which represents

a sections of the final SRS.

This section describes methods that can be employed for structuring the requirements list

based on the type of classification.

21 See Section 3.3 for more details.

Chapter 4. Synchronization of Methods and Activities

 167

4.3.1 Affinity Analysis

Affinity analysis is a categorization method where users sort various concepts into

several groups. This is an effective technique to use when there is a large amount of data

that needs to be classified. Basically this technique involves writing each concept on a

Post-It note and sticking it on a wall or board. The team then moves the notes around to

form groups based on how they feel the concept relates to the others.

The steps involved in affinity analysis are as follows [Brassard 88]:

• Form a team of four to six people so that there is good mix of experience and

perspectives.

• Clearly state what the team is trying to accomplish and what the end result of the

exercise should be.

• Use Post-It notes to record concepts (requirements) in whole and not just as a

single word.

• Tack cards to wall or whiteboard in no particular order.

• The team members sort the cards into groups based on their intuition. No person

should influence the other person’s decision.

• For each group, create header cards which concisely describe what each group

represents. The header cards should be single word titles and meaningful. Rite

sub-header cards for subgroups, if necessary.

• Connect the related headers and sub-headers with lines to generate the affinity

diagram.

Affinity analysis is an effective method for classifying requirements so that they are easy

to comprehend. It is a simple technique which can be performed in a short time frame.

The drawback of affinity analysis is that for large amount of data, a huge canvas is

necessary to conduct this method. In addition, this method is fairly expensive because it

involves approximately six people and a moderator, who manages the proceedings of the

meeting.

Chapter 4. Synchronization of Methods and Activities

 168

4.3.2 Functional Hierarchy Decomposition

Functional hierarchy decomposition represents the data / requirements in terms of what

the system must perform. Thus, this technique is applicable when the requirements are to

be organized based on the functional hierarchy of the system. In order to facilitate the

organization, this method necessitates the creation of a hierarchy diagram similar to the

one illustrated in Figure 4.11

 Figure 4.11 Functional hierarchy diagram

The overall functionality of a system can be structured into a hierarchy of functions to

illustrate the information flow in the system. Thus, the root node in the hierarchy

represents the system objective. The second tier of the hierarchy includes those

components / functionalities that help in achieving the system objective [CMSD 2003].

For example, a high level functionality could be database manipulation while a sub-

function of this functionality could be an authorization check. The functionalities are

decomposed successively until the leaf nodes represent the smallest unit of functionality

(requirements). Each high level node represents a grouping of lower level nodes. This

hierarchy is used in organizing the requirements.

Chapter 4. Synchronization of Methods and Activities

 169

Functional hierarchy decomposition is beneficial only for the situation where

requirements need to be organized in a hierarchy of functions. This technique is simple

and is generally performed by a single person. It is cost effective, but time consuming

because the task is performed by a single person. A disadvantage of this method is that its

success is dependent on the product knowledge and expertise of the analyst /

requirements engineer. Hence, it is imperative that s/he have a clear understanding of the

system and its functions.

4.4 Methods for Confirmational analysis Phase

This phase creates the traceability diagrams and determines whether the requirements

trace back to user needs. In addition, this phase performs the final verification and

validation on the complete set of requirements. This phase concludes with the generation

of the validated and structured requirements list, which is ready for inclusion in the SRS.

In the sections which follow, we describe the methods that achieve the objectives of this

phase.

4.4.1 Quality Adherence

This activity verifies the total set of requirements for quality characteristics such as

completeness and consistency. These quality characteristics cannot be checked earlier in

the ‘verifying quality attributes’ activity because they can be determined only when the

entire set of requirements is elicited. However, the techniques that are applicable to the

‘verifying quality attributes’ activity are effective for the ‘quality adherence’ activity too.

Thus, the techniques that can be used to achieve the objectives of this activity are:

Inspections, round robin reviews and audits (from Section 4.1.5)

Inspection is a formal technique, which is widely used to verify the requirements

because it detects the most number of errors. Inspections are conducted using a group of

about six people, who refer to elaborate checklists to determine the adherence of the

requirements to the quality characteristics. The main drawback is that this technique is

time consuming and cost intensive because of its rigorous nature.

Chapter 4. Synchronization of Methods and Activities

 170

Round robin reviews involves circulating the requirements among the reviewers for

their comments on the quality attributes of the requirements. The unique feature of this

method is the lack of discussion among the reviewers. Compared to the other verification

techniques, round-robin reviews require the least amount of time and money for

performing the quality check on the requirements. However, this method is not as

effective as inspections in detecting faults.

Audits, unlike the previous methods, are performed by a single person, who is

independent of the project being reviewed. Like inspections, audits use checklists during

the verification of requirements. In terms of time and money required, this technique lies

in between inspections and round-robin reviews. The main advantage of this technique is

that the customers tend to have a strong belief / confidence in the generated results.

4.4.2 Traceability Analysis

Traceability analysis involves the creation of traceability diagrams, which show the

function decomposition dependencies among the elicited requirements. In addition, once

the traceability diagrams have been generated, the requirements engineer should verify

the traceability of the requirements for errors. Hence, in this section we describe

techniques which help in depicting the traceability as well as for verifying the

requirements dependencies.

4.4.2.1 Traceability Matrix

A traceability matrix illustrates the dependency relationship between two requirements in

the form of a matrix. Each requirement in the matrix should have the following

information [DoE 2002]:

• A unique identification number by which it can be referred to.

• The requirement statement.

• Requirement source (Developer, customer, Configuration Control Board, etc.).

• Software Requirements Specification paragraph number containing the

requirement.

• Design Specification paragraph number containing the requirement.

Chapter 4. Synchronization of Methods and Activities

 171

• Program Module containing the requirement.

• Test Specification containing the requirement test.

• Test Case number(s) where requirement is to be tested (optional).

• Verification of successful testing of requirements.

• Modification field - Requirement changed, eliminated, or replaced

• Remarks

All the above information cannot be obtained in the requirements phase and is

incorporated into the matrix throughout the product development life cycle. In the

requirements phase, the analyst creates the matrix and identifies the links between the

requirements. The ID number and requirements statement is also incorporated into the

matrix. The software industry uses several different formats of the traceability matrix.

One of the most popular formats for the matrix is the one included in Requisite Pro and is

shown in Figure 4.12

 Figure 4.12 Traceability matrix in Requisite Pro

Chapter 4. Synchronization of Methods and Activities

 172

Tree dependency
structure

The advantage of the traceability matrix is that it shows all the requirements on the

matrix and is very comprehensive. Moreover, the matrix shows the same requirements

along the rows and columns and this ensures that no dependency is overlooked. The

drawback of this method is that the matrix can get very large and difficult to handle. Also,

this technique is time consuming because each requirement is checked against every

other requirement for dependencies.

4.4.2.2 Traceability Tree

Traceability tree is another technique for representing the dependencies among the

requirements. Each requirement in the traceability tree possesses the same information as

that in the traceability matrix. The only modification is in the representation of the links

so that the diagram becomes more manageable [Letelier 2003]. Thus, instead of having

the matrix structure, the dependencies are represented in the form of a tree. An example

of the traceability tree used in Requisite Pro22 is shown in Figure 4.13.

 Figure 4.13 Traceability tree in Requisite Pro

The advantage of this technique is that the diagram is smaller than the traceability matrix

and hence, is more manageable. Also, this method requires lesser time to create the tree

structure because the links are created by the analyst based on his/her understanding of

22 For more details see www.ibm.com/software/awdtools/reqpro

Chapter 4. Synchronization of Methods and Activities

 173

the system. However, this can be disadvantageous because the analyst may now

unknowingly overlook certain dependencies. The cost of using this technique is almost

the same as that of the traceability matrix because the main investment is in the software

which facilitates the creation of these diagrams.

4.4.2.3 Inspections/Round-Robin Review

Inspections and round robin reviews are effective in verifying the traceability of

requirements in the traceability diagrams. Sections 4.1.5.1 and 4.1.5.2 describe these

techniques in detail.

Inspection is the commonly used technique for identifying errors in a work product

(traceability diagrams.). It involves several people, who use detailed checklists for

identifying faults in the traceability diagrams. However, the drawback of inspections is

that it is time consuming and cost intensive.

Round robin reviews involves the verification of the product individually and not as a

group. This technique is not as rigorous as inspections and hence, involves lesser cost and

time. Also, this technique does not employ checklists - it depends entirely on the

expertise of the reviewer to identify the errors.

4.4.3 Customer Validation Meeting

This activity differs from the validation in local analysis in that the whole set of

requirements are validated, compared to component sets of requirements that are

validated during local analysis. The objective of the customer validation meeting is to

identify disagreements between the customer needs and the requirements. The techniques

applicable to the ‘stakeholder validation’ activity of the requirements capturing phase can

be used for this activity, too. Detailed explanations of the methods are provided in

Section 4.1.6. In this section, we present only a brief description of these methods.

Walkthroughs, also referred to as presentation reviews, involve a group meeting in

which the requirements engineer presents the requirements to the participants. The group

consists of company employees, managers, users, customers and reviewers.

Chapter 4. Synchronization of Methods and Activities

 174

Walkthroughs require a lot of preparation before the group meeting and this is

responsible for high cost involved. In addition, the feedback is obtained only for the

material presented by the requirements engineer. The main advantage of this method is

that its time efficiency and involvement of all the stakeholders.

Scenarios describe how the users can interact with the system in different situations

while storyboarding transforms the textual scenarios into pictures, drawings, etc. Both

of these techniques make it easier for the user to visual the interactions with the system.

However, both methods are time consuming and cost intensive because of the large

amount of work involved in creating scenarios and storyboards.

Interviews and guided discussions are occasionally used for validating requirements.

While interviews involve individual face-to-face sessions, guided discussions involve

interactive group meetings. Guided discussions require lesser time to validate the product

compared to interviews. However, cost wise guided discussions are more expensive to

conduct than interviews.

Prototyping is the most commonly used technique for validating a product /

requirements. It allows the user to visualize how the final system will look like. This

enhances the user understanding of the system requirements. The prototype developed at

this stage of the requirements phase is usually a high fidelity prototype. As a result,

prototyping is the most expensive and time consuming validation technique.

4.4.4 Requirements Reformulation

This activity is conducted by the requirements engineer in order to rectify the

requirement problems identified by the quality analyst and the customer. These problems

should be relatively minor and pertain to requirements quality and customer disagreement

with the requirements. Requirements are often reformulated to overcome identified

problems.

Guided discussion is the commonly used technique for this activity to resolve the minor

problems of the customer. The discussion occurs in an informal atmosphere and the

various solutions (reformulation) to the problems are analyzed. Guided discussion takes

around two hours to perform and hence, is time efficient. The technique is fairly

Chapter 4. Synchronization of Methods and Activities

 175

expensive if the moderator is from an external agency. Several other techniques may be

employed, but they all include some form of a discussion to resolve the customer

problems.

4.5 Selection of Methods for Optimization of Common Criteria

The previous sections described the techniques that can be used to achieve the objectives

of the activities defined by the x-RGM. Each activity can be performed by any of several

methods and the choice of a particular method is a difficult task. We aim to simplify this

task of the requirements engineer by identifying commonly used selection criteria and

filtering out methods which do not satisfy these criteria. We choose to illustrate the

selection process by example. In particular, for each selection criteria, we identify the set

of methods for all activities defined by the x-RGM that best meet the selection criteria

goal. Furthermore, the requirements engineer may have to employ one or more of the

prescribed set of methods in order to achieve the objective of a particular activity.

We chose the following four criteria for the selection of methods:

• Time - Selection based on the amount of time needed to perform the technique.

• Cost - Selection based on the expenses involved in conducting the method

• Personnel - Selection based on the number of staff needed and their expertise.

• Completeness - Selection based on the coverage of the activity objectives

In the subsequent sections, we list the methods for each activity in the x-RGM based on

the selection criteria and record the pros and cons of each approach.

4.5.1 Methods Based on Time Criteria

Often the requirements engineer has very limited time to perform a particular activity. In

such a situation, it is necessary to employ the best possible technique, which achieves the

objective in the least amount of time. However, many of the methods which satisfy the

time criteria introduce compromises on other factors such as cost and completeness.

Chapter 4. Synchronization of Methods and Activities

 176

In this section, we record the methods that achieve the activity objectives in the least

amount of time along with their benefits and drawbacks.

Activity Name Methods Pros / Cons

Requirements Capturing Phase

+ Cost effective

 Better comprehension

- May skip necessary information

 Audience coverage is limited

Customer
Indoctrination

Oral Presentation

 Dependent on moderators skills

+ Suited for interactive applications

 Cost effective, simple

Task
Demonstration

- Success dependent on tasks assigned

+ Large user coverage

 Cost effective, simple

- Results may be misleading

Questionnaires

 Success dependent on the questions

+ Elicits news ideas, cost effective, simple

 Promotes creativity, team spirit

- Needs good management

Brainstorming

 Should be followed by idea reduction
techniques

+ Promotes co-operation

- Participants may not be representative of
users

Focus groups

 Needs management, cost intensive

+ Elicits maximum information

 Promotes co-operation

- Cost intensive

Requirements
Elicitation
Meeting

Requirements
Workshops

 Needs management

Chapter 4. Synchronization of Methods and Activities

 177

Activity Name Methods Pros / Cons

+ Elicits news ideas , cost effective, simple

 Promotes creativity, team spirit

- Needs good management

Brainstorming
(elicits only
rationale)

 Should be followed by idea reduction
techniques / discussion

+ Effective on closed participants

 Cost effective, simple

- Questions posed are critical to success

I-Time (elicits only
rationale)

 Needs to be followed by a discussion

+ Encourages co-operation

 Cost effective

- May opt for first available solution

Rationalization
and
Justification

Task oriented
discussion

 Needs management

+ Encourages co-operation

 Cost effective

- May opt for first available solution

 Needs management

Guided discussion
(elicits requirement
attributes)

 Followed by ranking techniques

+ Simple, Cost effective

Prioritization

Priority Groups

- Priorities not relative to each other

+ Cost effective

- Cannot detect all errors

 Dependent on reviewer’s expertise

Verifying
Quality
Attributes

Round – Robin
Review

 Minimal discussion among reviewers

+ Participation of all stakeholders

- Cost intensive

Stakeholder
validation

Walkthroughs

 Validation only for material presented

Chapter 4. Synchronization of Methods and Activities

 178

Activity Name Methods Pros / Cons

+ Encourages co-operation

 Cost effective

- Needs management

 Guided discussion

 May suppress convictions

Global Analysis Phase

+ Simple analysis

 Cost effective

- Not a rigorous technique

FMECA

 Single estimate for risk factors

+ Rigorous risk analysis

 Consider range of values for risk factors

Risk Analysis

Monte Carlo
simulation

- Cost intensive

+ Simple, cost effective

- Extremely sensitive to technology factor

SLIM (cost
estimation)

 Unsuitable for small projects

+ Simple, cost effective

- KDSI is not a size measure

COCOMO (cost
estimation)

 vulnerable to misclassification of the
development mode

+ Simple, easy to use

 Cost effective

 Visual representation

- Does not show the critical path in a chain of
activities

 activity times are deterministic

Cost / schedule
estimation

Gantt Chart
(schedule
estimation)

 fails to show the interrelationships among
the tasks

Chapter 4. Synchronization of Methods and Activities

 179

Activity Name Methods Pros / Cons

+ Cost effective

 Provides a good estimate

- Not applicable to innovative projects

 Previous estimate may not hold

Comparison to
independent cost
estimates

 Cannot elicit market information

+ Large user coverage

 Cost effective, simple

- Results may be misleading

Price Analysis

Questionnaires
(market
information)

 Success dependent on the questions

+ Cost effective

 Easy, simple

- Weighing of points is not clear

 Can be misleading if not done with a
unbiased mind

PMI

 Needs to determine cost feasibility through
other methods

+ Cost effective

 Provides a good estimate for small
investments

- Ignores cash flows after the payback period

Feasibility
Analysis

Payback Period
(cost feasibility)

 Results can be misleading

+ Elicits news ideas, cost effective, simple

 Promotes creativity, team spirit

- Needs good management

Brainstorming
(elicits arguments
and options)

 Should be followed by idea reduction

+ Focuses on concerns

 Fosters co-operation

Conflict
Resolution

Interest Based
Bargaining
(finalizes
agreements) - Requires both parties to trust each other

Chapter 4. Synchronization of Methods and Activities

 180

Activity Name Methods Pros / Cons

Organization and Compilation Phase

+ Simple, Fosters team spirit

- Difficult to manage for large amount of data

Organization
and
Compilation

Affinity analysis

 Fairly expensive

Confirmational analysis Phase

Quality
Adherence

Same as the ‘Verifying quality attributes’ activity

+ Easy to comprehend and use

 Easily manageable structure

Traceability Tree
(dependency
creation)

- Certain links may be overlooked

+ Cost effective

- Cannot detect all errors

 Dependent on reviewer’s expertise

Traceability
Analysis

Round – Robin
Review
(traceability
verification)

 Minimal discussion among reviewers

Customer
Validation
Meeting

Same as the ‘Stakeholder validation’ activity

+ Encourages co-operation

 Cost effective

- May suppress participant convictions

Requirements
Reformulation

Guided discussion

 Needs management

.

4.5.2 Methods Based on Personnel Criteria

Personnel is a common criteria used in the industry for the selection of methods because

a project usually has limited work staff. Hence, in this section, we list those techniques

which require minimum staff and expertise, and thus, aim to provide the necessary

guidance to the requirements engineer. Most of the techniques listed below are conducted

/ supported by a single person (requirements engineer), unless explicitly stated.

Chapter 4. Synchronization of Methods and Activities

 181

Activity Name Methods Pros / Cons

Requirements Capturing Phase

+ Cost effective, Time efficient

- May skip necessary information

 Audience coverage is limited

Oral Presentation

 Dependent on moderators skills

+ Provides comprehensive information

 Cost effective

 Documents can be read in leisure

- Involves one-way communication

 Reader may get frustrated

Customer
Indoctrination

Print material

 Takes a long time to read the documents

+ Large user coverage

 Cost effective, fast to perform

- Results may be misleading

Questionnaires

 Success dependent on the questions

+ Elicits new ideas

 Promotes creativity, team spirit

 Cost effective, time efficient

- Needs good management

Brainstorming

 Should be followed by idea reduction
techniques

+ Cost effective

 Provides opportunity to explore topics in
depth

- Time consuming

 Interview questions are critical for success

Requirements
Elicitation
Meeting

Interviews

 Assumes interviewee has access to accurate
knowledge

Chapter 4. Synchronization of Methods and Activities

 182

Activity Name Methods Pros / Cons

+ Simple, cost effective

 Can study documents in leisure

- Involves one-way communication

 Reader may get frustrated

 Document studies

 Takes a long time to read the documents

+ Elicits news ideas , cost effective, simple

 Promotes creativity, team spirit

 Time efficient

- Needs good management

Brainstorming
(elicits only
rationale)

 Should be followed by idea reduction
techniques / discussion

+ Encourages co-operation

 Cost effective, time efficient

- May opt for first available solution

Rationalization
and
Justification

Task oriented
discussion

 Needs management

+ Cost effective

 Provides opportunity to explore topics in
depth

- Time consuming

 Interview questions are critical for success

 Assumes interviewee has access to accurate
knowledge

Interviews

 Cannot perform ranking of requirements

+ Simple, Cost effective Priority Groups

- Priorities not relative to each other

+ Provides relative priorities

- Time consuming, cost intensive

Prioritization

AHP or Binary
Search Tree

 Applicable if requirements obtained in a
single iteration

Chapter 4. Synchronization of Methods and Activities

 183

Activity Name Methods Pros / Cons

+ Cost effective, time efficient

- Cannot detect all errors

 Dependent on reviewer’s expertise

Round – Robin
Review (4-6 peers)

 Minimal discussion among reviewers

+ Detects maximum errors

- Time consuming

Inspections (4-6
peers)

 Cost intensive

+ Customers have confidence in the results

 Non biased opinion

- Auditors need to be highly experienced

Verifying
Quality
Attributes

Audits (single
expert)

 Cost and time intensive

+ Cost effective

 Provides opportunity to explore topics in
depth

- Time consuming

Interviews

 Interview questions are critical for success

+ Easy to comprehend

 Better feedback from users

Stakeholder
validation

Scenarios or
storyboarding

- Cost and time intensive

Global Analysis Phase

+ Rigorous technique, time efficient

 Consider range of values for risk factors

Monte Carlo
simulation

- Cost intensive

+ Simple, cost effective, time efficient

- Assumes all risk factors are known before
analysis

Risk Analysis

Criticality Analysis

 Single estimate for risk factors

Chapter 4. Synchronization of Methods and Activities

 184

Activity Name Methods Pros / Cons

+ Simple, cost effective

 Time efficient

- Extremely sensitive to technology factor

SLIM (cost
estimation)

 Unsuitable for small projects

+ Simple, cost effective

 Time efficient

- KDSI is not a size measure

COCOMO (cost
estimation)

 Vulnerable to misclassification of the
development mode

+ Independent of language and code

 More accurate than LOC estimate of size

- Cost and time intensive

Functions Points
(cost estimation)

 Difficult to automate

+ Simple, cost effective

 Visual representation

- Does not show the critical path in a chain of
activities

 Activity times are deterministic

Cost / schedule
estimation

Gantt Chart
(schedule
estimation)

 Fails to show the interrelationships among
the tasks

+ Cost effective, Time efficient

 Provides a good estimate

- Not applicable to innovative projects

 Previous estimate may not hold

Comparison to
independent cost
estimates

 Assumes market information already exists

+ Produces a good price estimate

- Cannot determine if a feature is desirable

 Assumes market information already exists

Price Analysis

Comparative Price
Analysis

 Time consuming and expensive

Chapter 4. Synchronization of Methods and Activities

 185

Activity Name Methods Pros / Cons

+ Determines if a feature is desirable or not

- Auxiliary technique, time consuming

Value Analysis

 Assumes market information already exists

+ Large user coverage

 Cost effective, Time efficient

- Results may be misleading

Questionnaires
(market
information)

 Success dependent on the questions

+ Provides information about product
alternatives

- Difficult to obtain information

Study of similar
companies /
products (market
information)

 Time consuming

+ Cost effective, simple

- Weighing of points is not clear

 Can be misleading if not done with a
unbiased mind

PMI

 Needs to determine cost feasibility through
other methods

+ Cost effective

 Provides a good estimate for small
investments

- Ignores cash flows after the payback period

Payback Period
(cost feasibility)

 Results can be misleading

+ Generates good estimates

- Cost and time intensive

Feasibility
Analysis

Internal Rate of
Return (or) Net
Present Value (cost
feasibility) Calculation can get complex

+ Elicits news ideas, cost effective, simple

 Promotes creativity, team spirit

- Needs good management

Conflict
Resolution

Brainstorming
(elicits arguments
and options)

 Should be followed by idea reduction

Chapter 4. Synchronization of Methods and Activities

 186

Activity Name Methods Pros / Cons

+ Cost effective

 Provides opportunity to explore topics in
depth

- Time consuming

Interviews (elicits
arguments and
options)

 Interview questions are critical for success

+ Applicable to situations that involve
extremely conflicting interests

- inflexibility of positions

 Time consuming

Positional
Bargaining
(finalizes
agreements)

 Focus on splitting differences between
parties

+ Focuses on concerns

 Fosters co-operation

 Can be conducted in a shorter time frame
than positional bargaining

Interest Based
Bargaining
(finalizes
agreements)

- Requires both parties to trust each other

Organization and Compilation Phase

+ Simple, Fosters team spirit

 Can be conducted in a short time frame

- Difficult to manage for large amount of data

Affinity analysis
(4-6 peers)

 Fairly expensive

+ Applicable for organizing requirements into
a hierarchy of functions

 Cost effective

- Time consuming

Organization
and
Compilation

Functional
Hierarchy
Decomposition
(single expert)

 Dependent on expertise of analyst

Confirmational analysis Phase

Quality
Adherence

Same as the ‘Verifying quality attributes’ activity

Chapter 4. Synchronization of Methods and Activities

 187

Activity Name Methods Pros / Cons

+ Easy to comprehend and use

 Time efficient

 Easily manageable structure

Traceability Tree
(dependency
creation)

- Certain links may be overlooked

+ Easy to comprehend and use

 Ensures links are not overlooked

- Difficult to manage

Traceability Matrix
(dependency
creation)

 Time consuming

+ Cost effective, time efficient

- Cannot detect all errors

 Dependent on reviewer’s expertise

Round – Robin
Review (4-6 peers)
[Traceability
verification]

 Minimal discussion among reviewers

+ Detects maximum errors

- Time consuming

Traceability
Analysis

Inspections (4-6
peers)
[Traceability
verification] Cost intensive

Customer
Validation
Meeting

Same as the ‘Stakeholder validation’ activity

+ Encourages co-operation

 Cost effective

- May suppress participant convictions

Requirements
Reformulation

Guided discussion

 Needs management

4.5.3 Methods Based on Cost Criteria

Cost involved in conducting a method is another important criterion for selecting a

particular method for an activity. This section lists the methods, which achieve the

objectives of the activities in the x-RGM at a minimal cost.

Chapter 4. Synchronization of Methods and Activities

 188

Activity Name Methods Pros / Cons

Requirements Capturing Phase

+ Time efficient

 Better comprehension

- May skip necessary information

 Audience coverage is limited

Oral Presentation

 Dependent on moderators skills

+ Provides comprehensive information

 Documents can be read in leisure

- Involves one-way communication

 Reader may get frustrated

Customer
Indoctrination

Print material

 Takes a long time to read the documents

+ Large user coverage

 Time efficient

- Results may be misleading

Questionnaires

 Success dependent on the questions

+ Elicits news ideas

 Promotes creativity, team spirit

 Time efficient

- Needs good management

Brainstorming

 Should be followed by idea reduction
techniques

+ Provides opportunity to explore topics in
depth

- Long execution time frame

 Interview questions are critical for success

Requirements
Elicitation
Meeting

Interviews

 Assumes interviewee has access to accurate
knowledge

Chapter 4. Synchronization of Methods and Activities

 189

Activity Name Methods Pros / Cons

+ Provide comprehensive information

 Can study documents in leisure

- Involves one-way communication

 Reader may get frustrated

Document studies

 Takes a long time to read the documents

+ Suited for interactive applications

 Time efficient

Task Demonstration

- Success dependent on tasks assigned

+ Elicits news ideas , simple, time efficient

 Promotes creativity, team spirit

- Needs good management

Brainstorming
(elicits only
rationale)

 Should be followed by idea reduction
techniques / discussion

+ Effective on closed participants

 Time efficient

- Questions posed are critical to success

I-Time (elicits only
rationale)

 Needs to be followed by a discussion

+ Encourages co-operation

 Time efficient

- May opt for first available solution

Rationalization
and
Justification

Task oriented
discussion

 Needs management

+ Provides opportunity to explore topics in
depth

 Allows clarification of answers

- Time consuming

 Interview questions are critical for success

Prioritization Interviews (elicits
requirement
attributes)

 Cannot perform ranking of requirements

Chapter 4. Synchronization of Methods and Activities

 190

Activity Name Methods Pros / Cons

+ Encourages co-operation

 Time efficient

- May opt for first available solution

 Needs management

Guided discussion
(elicits requirement
attributes)

 Cannot perform ranking of requirements

+ Simple, time efficient

Priority Groups

- Priorities not relative to each other

+ time efficient

- Cannot detect all errors

 Dependent on reviewer’s expertise

Verifying
Quality
Attributes

Round – Robin
Review

 Minimal discussion among reviewers

+ Provides opportunity to explore topics in
depth

 Allows clarification of answers

- Time consuming

Interviews

 Interview questions are critical for success

+ Encourages co-operation

 Time efficient

- Needs management

Stakeholder
validation

Guided discussions

 May suppress convictions

Global Analysis Phase

+ Simple, time efficient

- Provides a reasonable estimate

FMECA

 Single estimate for risk factors

+ Simple, cost effective, time efficient

- Assumes all risk factors are known before
analysis

Risk Analysis

Criticality Analysis

 Single estimate for risk factors

Chapter 4. Synchronization of Methods and Activities

 191

Activity Name Methods Pros / Cons

+ Simple, time efficient

- Extremely sensitive to technology factor

SLIM (cost
estimation)

 Unsuitable for small projects

+ Simple, time efficient

- KDSI is not a size measure

COCOMO (cost
estimation)

 vulnerable to misclassification of the
development mode

+ Simple, easy to use

 Time efficient

 Visual representation

- Does not show the critical path in a chain of
activities

 activity times are deterministic

Cost / schedule
estimation

Gantt Chart
(schedule
estimation)

 fails to show the interrelationships among
the tasks

+ Time efficient

 Provides a good estimate

- Not applicable to innovative projects

 Previous estimate may not hold

Comparison to
independent cost
estimates

 Cannot elicit market information

+ Large user coverage

 Cost effective, simple

- Results may be misleading

Questionnaires
(market
information)

 Success dependent on the questions

+ Determines if a feature is desirable or not

- Cannot predict the price estimate

 Auxiliary technique

Price Analysis

Value Analysis

 Assumes market information already exists

Chapter 4. Synchronization of Methods and Activities

 192

Activity Name Methods Pros / Cons

+ Time efficient

 Easy, simple

- Weighing of points is not clear

 Can be misleading if not done with a
unbiased mind

PMI

 Needs to determine cost feasibility through
other methods

+ Time efficient

 Provides a good estimate for small
investments

- Ignores cash flows after the payback period

Feasibility
Analysis

Payback Period
(cost feasibility)

 Results can be misleading

+ Elicits news ideas, cost effective, simple

 Promotes creativity, team spirit

- Needs good management

Brainstorming
(elicits arguments
and options)

 Should be followed by idea reduction

+ Allows clarification of interviewee answers

 Provides opportunity to explore topics in
depth

- Time consuming

Interviews (elicits
arguments and
options)

 Interview questions are critical for success

+ Focuses on concerns

 Fosters co-operation

Conflict
Resolution

Interest Based
Bargaining
(finalizes
agreements) - Requires both parties to trust each other

Organization and Compilation Phase

+ Simple, Fosters team spirit

 Time efficient

- Difficult to manage for large amount of data

Organization
and
Compilation

Affinity analysis

 Fairly expensive

Chapter 4. Synchronization of Methods and Activities

 193

Activity Name Methods Pros / Cons

+ Applicable for organizing requirements into
a hierarchy of functions

- Time consuming

 Functional
Hierarchy
Decomposition

 Dependent on expertise of analyst

Confirmational analysis Phase

Quality
Adherence

Same as the ‘Verifying quality attributes’ activity

+ Easy to comprehend and use

 Easily manageable structure

Traceability Tree
(dependency
creation)

- Certain links may be overlooked

+ Time efficient

- Cannot detect all errors

 Dependent on reviewer’s expertise

Traceability
Analysis

Round – Robin
Review
(traceability
verification)

 Minimal discussion among reviewers

Customer
Validation
Meeting

Same as the ‘Stakeholder validation’ activity

+ Encourages co-operation

 Time efficient

- May suppress participant convictions

Requirements
Reformulation

Guided discussion

 Needs management

.

4.5.4 Methods Based on Completeness Criteria

In some projects, it is necessary that the objective of each activity is completely met

before proceeding to the next activity. In such situations, the completeness criterion is

used to determine the methods that will be employed in the project. This section attempts

to facilitate the above cause by providing a list of methods that will satisfy the objective

of the requirements engineering activities to the maximum extent.

Chapter 4. Synchronization of Methods and Activities

 194

Activity Name Methods Pros / Cons

Requirements Capturing Phase

+ Provides comprehensive information

 Cost effective

 Documents can be read in leisure

- Involves one-way communication

 Reader may get frustrated

Customer
Indoctrination

Print material

 Takes a long time to read the documents

+ Promotes co-operation

- Participants may not be representative of
users

 Needs management

Focus groups

 Cost intensive

+ Elicits maximum information

 Promotes co-operation

- Cost intensive

Requirements
Workshops

 Needs management

+ Cost effective

 Provides opportunity to explore topics in
depth

- Time consuming

 Interview questions are critical for success

Requirements
Elicitation
Meeting

Interviews

 Assumes interviewee has access to accurate
knowledge

+ Rigorous technique

 Fosters co-operation and team spirit

- Cost and time intensive

 Need management

Rationalization
and
Justification

IBIS

 Dependent on expertise of the analyst

Chapter 4. Synchronization of Methods and Activities

 195

Activity Name Methods Pros / Cons

+ Encourages co-operation

 Cost effective, time efficient

- May opt for first available solution

 Task oriented
discussion

 Needs management

+ Cost effective

 Provides opportunity to explore topics in
depth

- Time consuming

 Interview questions are critical for success

 Assumes interviewee has access to accurate
knowledge

Interviews (elicits
requirements
attributes)

 Cannot perform ranking of requirements

+ Provides opportunity to explore topics in
depth

 Allows clarification of answers

- Time consuming

 Interview questions are critical for success

Guided discussion
(elicits
requirements
attributes)

 Cannot perform ranking of requirements

+ Simple, Cost effective

 Time efficient

Prioritization

Priority Groups

- Priorities not relative to each other

+ Detects maximum errors

- Time consuming

Inspections (4-6
peers)

 Cost intensive

+ Customers have confidence in the results

 Non biased opinion

- Auditors need to be highly experienced

Verifying
Quality
Attributes

Audits (single
expert)

 Cost and time intensive

Chapter 4. Synchronization of Methods and Activities

 196

Activity Name Methods Pros / Cons

+ Involves the participation of all stakeholders

 Time efficient

- Cost intensive

Walkthroughs

 Validation only for material presented

+ Provides good user feedback

 Helps user in comprehending the
requirements

Prototyping

- Cost and time intensive

+ Easy to comprehend

 Useful for interactive applications

 Better feedback from users

Stakeholder
validation

Scenarios or
storyboarding

- Cost and time intensive

Global Analysis Phase

+ Rigorous technique

 Time efficient

 Consider range of values for risk factors

Monte Carlo
simulation

- Cost intensive

+ Considers several probability values in
calculating the estimate

- Time and cost intensive

 Dependent on expertise of analyst

Fault Tree analysis

 Assumes all risk factors are identified

+ Identifies most of the risk factors

 Easy to perform

- Auxiliary technique to FTA

 Cannot estimate risk by itself

Risk Analysis

Event Tree
Analysis

 Event trees can get large and complicated

Chapter 4. Synchronization of Methods and Activities

 197

Activity Name Methods Pros / Cons

+ Cost effective, time efficient

- Calculations can get complicated

COCOMO II (cost
estimate)

 Schedule estimate is not accurate

+ Focuses attention on critical aspects

 Enables management to use resources more
wisely

 Shows the dependencies of the various tasks

- Time and cost intensive

PERT (schedule
estimate)

 beta distribution formula for the time
estimate may not hold true

+ Schedule the activities based on the costs

 Identifies critical activities

 Shows the dependencies of the various tasks

- Time and cost intensive

Cost / schedule
estimation

CPM (schedule
estimation)

 Schedule estimate is not as reliable as that
of PERT

+ Produces a good price estimate

- Cannot determine if a feature is desirable

 Assumes market information already exists

Comparative Price
Analysis (CPA)

 Time consuming and expensive

+ Determines if a feature is desirable or not

- Auxiliary technique to CPA

Value Analysis

 Assumes market information already exists

+ Large user coverage

 Cost effective

 Time efficient

- Results may be misleading

Price Analysis

Questionnaires
(market
information)

 Success dependent on the questions

Chapter 4. Synchronization of Methods and Activities

 198

Activity Name Methods Pros / Cons

+ Provides information about product
alternatives

 Often used with Value analysis method

- Difficult to obtain information

Study of similar
companies /
products (market
information)

 Time consuming

+ Covers a large number of users

 Users misunderstandings can be clarified

 Cost effective

- Time consuming

Oral Survey
(market
information)

 Responses could be influenced

+ Cost effective, simple

- Weighing of points is not clear

 Can be misleading if not done with a
unbiased mind

PMI

 Needs to determine cost feasibility through
other methods

+ Rigorous technique

 Evaluates all consequences of a decision

- Time and cost intensive

 Dependent on the expertise of the analyst(s)

Decision Analysis

 Needs to determine cost feasibility through
other methods

+ Generates good estimates

- Cost and time intensive

Feasibility
Analysis

Internal Rate of
Return (or) Net
Present Value (cost
feasibility) Calculations can get complex

+ Elicits news ideas, cost effective, simple

 Promotes creativity, team spirit

- Needs good management

Conflict
Resolution

Brainstorming
(elicits arguments
and options)

 Should be followed by idea reduction

Chapter 4. Synchronization of Methods and Activities

 199

Activity Name Methods Pros / Cons

+ Fosters co-operation

 Effective with closed participants

- Requires more time than brainstorming

 Dependent on the expertise of the moderator

Go-Around (elicits
arguments and
options)

 Needs management

+ Focuses on concerns

 Fosters co-operation

 Can be conducted in a shorter time frame
than positional bargaining

Interest Based
Bargaining
(finalizes
agreements)

- Requires both parties to trust each other

Organization and Compilation Phase

+ Simple, Fosters team spirit

 Can be conducted in a short time frame

- Difficult to manage for large amount of data

Organization
and
Compilation

Affinity analysis
(4-6 peers)

 Fairly expensive

Confirmational analysis Phase

Quality
Adherence

Same as the ‘Verifying quality attributes’ activity

Activity Name Methods Pros / Cons

+ Easy to comprehend and use

 Time efficient

 Easily manageable structure

Traceability Tree
(dependency
creation)

- Certain links may be overlooked

+ Easy to comprehend and use

 Ensures links are not overlooked

- Difficult to manage

Traceability
Analysis

Traceability Matrix
(dependency
creation)

 Time consuming

Chapter 4. Synchronization of Methods and Activities

 200

Activity Name Methods Pros / Cons

+ Detects maximum errors

- Time consuming

 Inspections (4-6
peers)
[Traceability
verification] Cost intensive

Customer
Validation
Meeting

Same as the ‘Stakeholder validation’ activity

+ Encourages co-operation

 Cost effective

- May suppress participant convictions

Requirements
Reformulation

Guided discussion

 Needs management

4.6 Summary

This chapter addressed the issue of mapping methods to the activities in the x-RGM.

Sections 4.1 to 4.4 describe in detail the techniques that achieve the objectives of the

various activities. In order to facilitate the task of selecting methods for the activities, we

have listed a set of techniques for each activity based on certain criteria, which are widely

used in the industry. This list includes the popular as well as several other techniques and

is NOT a comprehensive list. The intention behind creating this list is to provide the

requirements engineer with some reference for selecting methods since the current RE

literature fails to provide the necessary guidance.

Chapter 5. Summary and Future Work

 201

Chapter 5

Summary and Future Work

5. Introduction

This research describes a solution to the problem in the field of requirements engineering

that is concerned with the mapping of methods to activities in the requirements

generation process. Chapter 1 motivates the need for this research, defines the problem

and highlights the research issues. In Chapter 2, we discussed the relevant background,

which reveals the absence of a well defined requirements process model. Furthermore,

the literature illustrates the unsynchronized and inadequate attempts at mapping methods

to the right level of activities in the requirements engineering process. Chapter 3

presented the x-RGM as the solution for a structured and well-defined requirements

engineering model. Finally, in Chapter 4, we describe various methods for achieving the

objectives of the activities in the requirements generation model, and prescribe a list of

methods for the entire requirements engineering process on the basis of some common

selection criteria. This chapter summarizes the research work conducted and presents the

future opportunities of work.

Chapter 5. Summary and Future Work

 202

5.1 Summary

This research is motivated by the problems faced by the requirements engineer in

implementing the requirements engineering process. The main problem is the absence of

a well-defined and comprehensive requirements process model. Adding to that problem

list is the lack of coordination between methods and activities in the requirements model.

As a consequence of these obstacles, the requirements engineer is often hindered in the

effective application of the requirements generation process to the real world projects.

The solution of the problems listed above needs to consider several issues such as23:

• Incomplete requirements engineering model

• Inadequate level of activity abstraction

• Implicit activity objectives implicit

• Methods mapped primarily to high level activities

• Lack of reasoned guidance in selecting methods to achieve activity objectives

The solution was deployed in two phases. In the first phase, the focus was on developing

a well-defined process model (addresses first three issues), and in the second phase, the

emphasis was on synchronizing methods to activities (addresses last two issues).

The Requirements Generation Model (RGM) serves as the foundation for our research

and has been decomposed to a more appropriate activity level based on the concept of

“Separation of concerns” [ICSE 2001, OOPSLA 99, Hursh 95], which stresses on

identifying and satisfying a small set of concerns for the purpose of organizing and

decomposing different processes. In designing the proposed model (expanded

Requirements Generation Model [x-RGM]), we evaluated several existing requirements

engineering processes and approaches. The best features of these models are incorporated

in the x-RGM. The x-RGM is composed of four main phases:

• Requirements capturing: elicits requirements and analyzes them from the local

standpoint

• Global analysis: analyzes the complete set of requirements and resolves any

requirement conflicts

23 See Section 1.4.1 for detailed description of the issues

Chapter 5. Summary and Future Work

 203

• Organization and Compilation: structures the requirements as a part of the SRS

• Confirmational analysis: implements traceability and performs the final

verification and validation on the complete set of requirements

Each of these phases is decomposed into a detailed set of activities; the objectives of

these activities are also identified and explicitly stated.

In order to map methods to activities, we conducted a literature review on the methods

used in various disciplines for the purpose of generating requirements. These methods

have been mapped to the activities defined by the x-RGM based on their objectives.

Furthermore, in order to simplify the task of choosing methods for the activities, we

prescribed a smaller set of methods for each activity on the basis of commonly used

selection criteria such as time, cost, and so forth.

The x-RGM was conceived as the expansion of the requirements phase in the

conventional waterfall model. The intent was to concentrate on identifying activities and

objectives for the requirements engineering phase while attempting to minimize the

impact on the other phases. Even though the x-RGM in its current form is not designed to

accommodate other development paradigms such as OOA, XP, etc. we do conjecture that

it can be adapted for them. We also note that the list of methods included in this research

is not intended to be comprehensive; the intention is to provide the requirements engineer

with some basic reference to and an approach for selecting methods.

5.2 Contributions

The contributions of this research to the field of requirements engineering and computer

science in general are:

• The expanded Requirements Generation Model (x-RGM): As seen from the

literature review, the current requirements engineering models either provide a high

level of abstraction or focus on only portions of the entire requirements engineering

process. Hence, it was necessary to develop a model having the right level of

decomposition in order to map methods to the activities. For the decomposition of the

requirements engineering process, we chose the RGM as the basis. This model

(RGM), in its basic form, includes three activities and attempts to decompose only the

Chapter 5. Summary and Future Work

 204

capturing phase of the requirements generation process. However, the proposed x-

RGM, which builds on top of the RGM, consists of sixteen activities and addresses

the entire requirements engineering process. The decomposition of the requirements

generation process into activities of the x-RGM is illustrated below:

Phase name # of activities Activity name

Requirements

Capturing

6 • Customer/requirements engineer

indoctrination

• Requirements elicitation meeting

• Rationalization and justification

• Prioritization

• Verifying quality attributes

• Stakeholder validation

Global Analysis 5 • Risk analysis

• Cost/schedule estimation

• Price analysis

• Feasibility analysis

• Conflict resolution

Organization and

Compilation

1 • Organization and compilation

Confirmational

Analysis

4 • Quality adherence

• Traceability analysis

• Customer validation meeting

• Requirements reformulation

Table 5.1 Activities identified in the x-RGM

Chapter 5. Summary and Future Work

 205

• Identification of activity objectives: For each of the sixteen activities identified in

the x-RGM, the objectives are determined and explicitly stated, unlike in the other

models where the objectives are often implied. The identification of objectives is

imperative because methods are mapped to the requirements engineering process

activities based on the achievement of their objectives. Thus, the x-RGM is better

defined and more comprehensive than the other requirement generation models not

only because of a refined level of abstraction, but also due to the explicit specification

of objectives.

• Synchronization of methods and activities: A drawback of the current requirements

engineering literature is that it focuses on identifying methods for the high level

activities in the requirements generation process, but the techniques for the sub-

activities are often ignored. As a consequence, the requirements engineer lacks

guidance in choosing methods for the various requirement engineering activities. This

research addresses this void in requirements engineering by identifying methods from

various disciplines, and suggests their application for achieving the defined objectives

of the x-RGM activities. In this thesis, for each activity in the x-RGM, we identify the

principal techniques which are most accepted in the industry. Table 5.2 depicts the

number of techniques identified for the various activities in the x-RGM.

 Activity Name Number of Methods

identified

Customer/requirements engineer indoctrination 2

Requirements elicitation meeting 9

Rationalization and justification 4

Prioritization 5

Verifying quality attributes 3

Stakeholder validation 6

Risk analysis 6

Chapter 5. Summary and Future Work

 206

 Activity Name Number of Methods identified

Cost/schedule estimation 8

Price analysis 7

Feasibility analysis 6

Conflict resolution 5

Organization and compilation 2

Quality adherence 3

Traceability analysis 4

Customer validation meeting 6

Requirements reformulation 1

Table 5.2 Number of methods identified for activities in the x-RGM

• Selection of methods to optimize common criteria: In the industry, often

techniques for various activities are chosen based on certain selection criteria.

However, the current requirements engineering literature fails to incorporate such

criteria into the process of identifying techniques for performing activities of the

requirements generation process. In this research, we attempt to overcome this

shortcoming by identifying four commonly used criteria for the selection of methods

– cost, time, personnel and completeness. For each of these criteria, we identify a set

of methods for the entire requirements generation process, such that the chosen

criterion is optimized and at the same time the objectives of the activities are achieved.

Thus, this list of techniques provides the necessary guidance to the requirements

engineer in the selection of methods for the various activities in the requirements

generation process (x-RGM). The following table shows the number of methods

selected for the x-RGM based on the four selection criteria.

Chapter 5. Summary and Future Work

 207

Selection Criteria Number of methods (Total : 77 methods)

Time 32

Cost 37

Personnel 49

Completeness 44

Table 5.3 Number of methods identified based on selection criteria

5.3 Future Work

This research presents a well-defined requirements generation model (x-RGM) and

describes the synchronization of methods to activities in this model. The research work

conducted for this thesis can be extended in several ways, and are discussed below.

Empirical evaluation of the expanded Requirements Generation Model (x-RGM) in a real

world setting.

Although we conjecture that the adherence of the x-RGM results in a more complete and

correct set of requirements, a detailed empirical evaluation will provide a deeper insight

into the implementation aspect of the model. In addition, the empirical study will

highlight the troublesome aspects of the model and will provide suggestions for further

improvement. Such a study can provide results which could be used to prove the

effectiveness of the x-RGM. In conducting the study, it is necessary to select a project of

the right size and complexity so that the results are valid and can be generalized.

Development of a management tool for the x-RGM and the prescribed techniques.

The requirements generation process is an elaborate procedure consisting of several

activities and method application. To help simplify this task, it is desirable to have a tool

which provides guidance to the requirements engineer in the selection of activities and

methods. It is imperative that this tool is tuned for efficiency by employing it in some real

world projects, and guided by user feedback. Furthermore, development of a management

tool requires addressing the issues of synchronization among the various tools and

usability of the tool developed.

Chapter 5. Summary and Future Work

 208

Adapting the model to other software development paradigms

The x-RGM has been developed assuming that all the requirements are generated upfront

before the commencement of the design phase. Hence, this model is more suitable in an

environment which follows the waterfall development paradigm. A possible extension to

this model is to adapt it to suit other development paradigms, such as the evolutionary

and spiral approaches. This would require considering the requirements engineering

process not as an isolated phase, but as one which overlaps with the rest of the software

development phases – design, coding, and testing.

Determining the content and format of information generated by the activities

The current requirements engineering literature focuses on specifying the content and

format of the software requirements specification (SRS) and neglects the presentation of

the intermediate requirement forms generated during the requirements engineering

process. The identification of the content and format of the intermediate documents and

its synchronization with the x-RGM can result in a more comprehensive and complete

requirements generation model. The major issue that this research needs to address is the

identification of the different representations of the intermediate requirements so that

there is minimal / no loss of information as the requirements evolve during the

requirements generation process.

References

 209

References

[Albrecht 83] A. J. Albrecht, and J. E. Gaffney, "Software function, source lines of

codes, and development effort prediction: a software science

validation", IEEE Trans Software Eng. SE-9, 1983, pp.639-648.

[Alcazar 2000] Garcia Alcazar, E.; Monzon, A.; A process framework for

requirements analysis and specification, Requirements Engineering,

2000. Proceedings. 4th International Conference on , 19-23 June

2000 Page(s): 27 -35

[Angus 53] Campbell, Angus, A., ∧ Katona, Georgia. (1953). The Sample

Survey: A Technique for Social Science Research. In Newcomb,

Theodore M. (Ed). Research Methods in the Behavioral Sciences.

The Dryden Press: New York. pp 14-55.

[Armstrong 2001] Eric Armstrong, A Simple Collaboration System (Proposal),

http://www.treelight.com/software/collaboration/ProjectConcept.htm

l, 2001.

[Arthur 99] Arthur, J.D. and Markus K. Groener, 1999, An Operational Model

Supporting the Generation of Requirements that Capture Customer

Intent, Proceedings of the Pacific Northwest Software Quality

Conference, Portland OR, October 1999, pp. 286-302.

[ASA 97] American Statistical Association, What is a Survey?, ASA Series,

1997.

[Baird 89] Baird, B. (1989), Managerial Decisions Under Uncertainty, Baird,

B., John Wiley & Sons, 1989.

[Baker 2004] Samuel L. Baker, Critical Path Method,

http://hspm.sph.sc.edu/Courses/J716/CPM/CPM.html, 2004.

[Baker 97] Samuel L. Baker, Internal Rate of Return,

http://hadm.sph.sc.edu/COURSES/ECON/irr/irr.html, 1997.

References

 210

[Basili 75] V.R. Basili, A.Turner, Iterative Enhancement- a Practical Technique

for Software Development, IEEE Transactions on Software

Engineering, SE-1(4), Dec 1975

[Beck 99] Kent Beck, Extreme Programming Explained: Embrace Change,

Addison-Wesley, 1999.

[Bedworth 87] Bedworth, David D. and James E. Bailey. Integrated Production

Control Systems. New York: John Wiley & Sons, 1987.

[Berntsen 2003] Fredrik Berntsen, Introducing technique choice support into an

existing requirement acquisition process, Masters thesis, Lund

Institue of Technology, May 2003.

[Boehm 81] B. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[Boehm 88] Barry Boehm, A Spiral Model of Software Development and

Enhancement, IEEE Computer, pp 61-72, May 1988.

[Boehm 89] Boehm, B.W. (1989) Tutorial: Software Risk Management, IEEE

Computer Society Press.

[Boehm et al, 94] Boehm, B.W., Bose, P., Horowitz, E., Lee, M.J. “Software

Requirements As Negotiated Win Conditions”, Proceedings of

ICRE, April 1994, pp.74-83.

[Boehm 98]. Barry Boehm, Using the Win-Win Spiral Model: A Case Study.

IEEE Computer, Vol 31, No. 7, July 1998, pp 33-44.

[Boehm 99] Barry Boehm, Chris Abts, Software Development Cost Estimation

Approaches,- A Survey, University of Southern California, 1999.

[Bono 92] Edward de Bono, Serious Creativity, HarperBusiness, New York,

US, 1992.

[Bourque 95] Bourque, Linda B. & Fiedler, Eve P. (1995).How to Conduct Self-

Administered and Mail Surveys. Sage Publications: Thousand Oaks.

References

 211

[Bracker 2003] Kevin Bracker, http://www.pittstate.edu/econ/ch9326.html,

Department of Economics, Pittsburh State University, 2003

[Brassard 88] Brassard, Michael, ed. 1988. The Memory Jogger: A Pocket Guide

of Tools for Continuous Improvement. Methuen, MA: Goal/QPC.

[Bravo 93] E. Bravo, “The hazards of leaving out the users,” in Participatory

Design: Principles and Practices, D. Schuler and A. Namioka, Eds.

Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc.

Publishers, 1993, pp. 3-11.

[Brooks 87] Brooks F.P., Jr., 1987, No silver bullet: essence and accidents of

software engineering, Computer, v.20 n.4, p.10-19, April 1987.

[Brooks 95] F. P. Brooks. The Mythical Man-Month. Addison-Wesley, 20th

anniversary edition, 1995.

[Boehm et al., 1994] Boehm, B.W., Bose, P., Horowitz, E., Lee, M.J. “Software

Requirements As Negotiated Win Conditions”, Proceedings of

ICRE, April 1994, pp.74-83.

[Bubenko 95] [Bubenko 95] Janis A. Bubenko, Challenges in Requirements

Engineering, IEEE Computer, 1995

[Burns 2003] James R. Burns, Chapter 8:Project and Process Management,

http://burns.ba.ttu.edu/Isqs4350/Chapter%208.pdf, 2003

[Carmel 93] Carmel E., R.D. Whitaker, and J.F. George, 1993, PD and Joint

Application Design: A Transatlantic Comparison, Communications

of the ACM, Vol. 36, No. 4, June 1993.

[Carter 2001] Carter, R.A.; Anton, A.I.; Dagnino, A.; Williams, L., 2001,

Evolving beyond requirements creep: a risk-based evolutionary

prototyping model, Requirements Engineering, 2001. Proceedings,

Fifth IEEE International Symposium on, Vol., Iss., 2001, pg. 94-

101.

References

 212

[Charette 86] R.N. Charette. Software Engineering Environments, Concepts and

Technology, Mc Graw Hill, 1986.

[Cheng 2000] Yue-Lung Cheng, Uncertainties in Fault Tree Analysis, Tamkang

Journal of Science and Engineering, April 10, 2000.

[Christel 92] Michael G. Christel, Kyo C.Kang, Issues in Requirements

Elicitation, Technical Report, SEI -92-TR-12, September 1992.

[Chulani 98] Clark, B., Chulani, S. and Boehm, B. (1998), “Calibrating the

COCOMO II Post Architecture Model,” Clark, B., Chulani, S. and

Boehm, B., International Conference on Software Engineering, Apr.

1998.

[Chvalovsky 83] V. Chvalovsky, Decision Tables, Software Practice and Experience,

pp.423-429, 1983

[Clemen 96] R.T. Clemen, Making Hard Decision: An Introduction to Decision

Analysis, 2nd Edition, Belfont, California, Duxbury Press, 1996.

[Clifton 2001] Marc Clifton, Jdunlap, What is Extreme Programming?,

http://www.codeproject.com/gen/design/XP.asp

[CMS 87] CM Solutions, Joint Application Design (JAD) Session,

http://cm-solutions.com/cms/tools/application_development/

joint_application_design-jad.htm, 1987

[CMSD 2003] �
��������
�������������"���
���������
�#�"������
�$�����

%����������#�http://www.science.doe.gov/SC-80/sc-

81/PDF/pract6.pdf#�&''(!�

[Cockburn 2002] Alistair Cockburn, Writing Effective Use Cases, Addison Wesley,

2002.

[Cohen 2002] Steven Cohen, 2002, Focusing On Interests Rather Than Positions --

Conflict Resolution Key, http://www.mediate.com/articles/tnsc.cfm.

References

 213

[Collofello 88] James Collofello, The Software Technical Review Process, SEI

Curriculum Module SEI-CM-3-1.5, Software Engineering Institute,

June 1988.

[Conklin 88] Jeff Conklin, Michael Begeman, glBIS: A Hypertext Tool for

Exploratory

Policy Discussion, ACM Transactions on Office Information

Systems, Vol. 6, No. 4, October 1988, Pages 303-331.

[Converse 86] Converse, J. M., & Presser, S. (1986). Survey questions:

Handcrafting the standardized questionnaire. Newbury Park, CA:

Sage.

[CSU 97] Colorado State University, Oral Surveys,

http://writing.colostate.edu/references/research/survey/pop3b.cfm,

1997.

[Davis 79] Alan Davis, T.G. Rauscher, Formal Techniques and Automatic

Processing to Ensure Correctness in Requirements Specifications, In

IEEE Specificaitons of Reliable Software Conference, Washington

D.C, PP. 15-35. 1979

[Davis 90] Alan Davis, Software Requirements: Analysis and Specification,

Prentice Hall, New Jersey, 1990.

[Davis 93] Alan Davis, Software Requirements: Objects, Functions, & States,

Prentice-Hall, Upper Saddle River, New Jersey. 1993

[Davis et al. 93] Alan Davis et al, Identifying and measuring quality in a software

requirements specification, Proceedings of the 1st International

Software Metrics Symposium, pp 141-152, 1993.

[Davis 99] Davis A., R. Fairley, E. Yourdon, 1999, Software Product Planning,

Omni-Vista White Paper #99-002, http://hpsearch.uni-trier.de/hp/a-

tree/d/Davis:Al.html, October 1999

References

 214

[Davis 2003] Alan Davis, Elicitation Technique Selection: How Do Experts Do

IT?, Proceedings of the 11th IEEE International Requirements

Engineering Conference, IEEE Computer, 2003.

[Davis 2003a] Alan Davis, “The Art of Requirements Triage", IEEE Computer,

March 2003, pp. 42-48.

[deNeufville 90] Richard deNeufville, Applied Systems Analysis: Engineering

Planning and Technology Management. McGraw Hill, 1990.

[Dillman 78] Dillman, D.A. (1978). Mail and telephone surveys: The total design

method. New York: John Wiley & Sons.

[DoD 99] Department of Defense, Course on Facilitation Skills,

http://www.au.af.mil/au/awc/awcgate/facilitation/4122.htm#basics,

1999.

[DoD 2001] Department of Defense, Executive Summary,

http://www.acq.osd.mil/dpap/Docs/incentivesguide-0201.pdf, 2001.

[DoE 2002] US Department of Energy, Requirements Traceability Matrix

Template, http://cio.doe.gov/ITReform/sqse/download/reqtrc.doc,

September 2002.

[Dorfman 97] Richard Thayer, Merlin Dorfman, Software Requirements

Engineering, Second edition, IEEE Computer Society, 1997

[DSU 2003] Dakota State University, Capital Budgeting,

http://www.students.dsu.edu/walshc/Business%20Finance%20310/,

2003

[Dumas 93] Dumas, JS, and Redish, Janice, A Practical Guide to Usability

Testing, Ablex, Norwood, NJ, ISBN 0-89391-991-8, 1993.

[Easterbook 91] Easterbrook, Steve (1991) Elicitation of Requirements from Multiple

Perspectives PhD Thesis,Department of Computing, Imperial

College of Science, Technology and Medicine, University of

London, London SW7 2BZ.

References

 215

[Easterbook 96] Easterbrook, S. and Nuseibeh, B. (1996) Using Viewpoints for

Inconsistency Management BCSEEE Software Engineering Journal

January 1996, 31-43.

[Elliot 98] James Elliot, Risk Analysis, The Validation Consultant, publication

of Booth Scientific, Inc, October 1998.

[EPA 2003] New South Wales Department of Environment and Conservation,

Characteristics, strengths & weaknesses - Print material,

http://www.epa.nsw.gov.au/community/edproject/section+4.17.htm,

2003.

[EPA 2003a] New South Wales Department of Environment and Conservation,

Characteristics, strengths & weaknesses - Talks, presentations &

seminars,

http://www.epa.nsw.gov.au/community/edproject/section4.20.htm,

November 2003.

[Fagan 76] M. E. Fagan, "Design and Code Inspection to Reduce Errors In

Program Development," IBM Systems Journal, vol. 15, 1976.

[FAST 2004] The Federal Aviation Administration Acquisition System Toolset,

http://fast.faa.gov/pricing/98-30-C5.htm, 2004.

[Fenton 97] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and

Practical Approach, PWS Publishing Company, 1997.

[Fisher 81] Fisher and Ury outline the basics of this argument in Chapter 1 of

Getting to Yes. Roger Fisher and William Ury, Getting to Yes:

Negotiating Agreement Without Giving In. (New York: Penguin

Books, 1981), 5

[Floyd 89] Floyd, C., Mehl, W.-M., Reisin, F.-M., Schmidt, G., & Wolf, G.

(1989). Out of Scandinavia: Alternative Approaches to Software

Design and System Development. Human-Computer Interaction,

4(4), 253-350

References

 216

[Frame 2002] Davidson Frame, The New Project Management : Tools for an Age

of Rapid Change, Complexity, and Other Business Realities, Jossey

Bass Business and Management Series, 2002

[Freedman 82] Freedman, Weinberg, Handbook of Walkthroughs, Inspections and

Technical Reviews, Boston, Little Brown and Company, 1982.

[Gause 89] Gause, Donald C., and Gerald M. Weinberg. Exploring

Requirements:

Quality Before Design. New York Dorset House Publishing, 1989.

[Gilb 93] Tom. Gilb and Dorothy Graham, Software Inspection, Addison-

Wesley,1993.

[Glastonbury 91] Glastonbury, B & MacKean, J (1991) Survey Methods. Chapter 19

in Allan & Skinner.

[Goguen 93] Joseph Goguen, Charlotte Linde, Techniques for Requirements

Elicitation, IEEE Computer Society, pp.152-164, 1993.

[Goldman 2000] Lawrence Goldman, Risk Analysis and Monte Carlo Simulation,

Decisioneering Inc., www.decisioneering.com, Denver, CO

[Gomaa 81] H. Gomaa, D.B.H. Scott, Prototyping as a TOOL in the

Specification of User Requirements, In Fifth International

Conference on Software Engineering, pp 333-341, 1981

[Gotel 95] Gotel, Orlena. Contribution Structures for Requirements

Traceability. London, England: Imperial College, Department of

Computing, 1995.

[Greenspan 94] S. J. Greenspan, J. Mylopoulos, and A. Borgida. On formal

requirements modeling languages: RML revisited. In Proceedings of

IEEE International Conference on Software Engineering (ICSE16),

pages 135{147, 1994.

References

 217

[Groner 2002] Markus K. Groner, Capturing Requirements Meeting Customer

Intent:A Structured Methodological Approach, PhD dissertation ,

Virginia Tech, http://scholar.lib.vt.edu/theses/available/etd-5232002-

234024/unrestricted/Markus_K._Groener_Dissertation.pdf, 2002

[Halstead 77] H. Halstead, Elements of software science, Elsevier, New York,

1977.

[Hammond 95] D. P. Hammond, Interest-based Bargaining . American Federation of

State, County and Municipal Employees (AFSCME). Collective

Bargaining Reporter. Available at:

http://www.afscme.org/wrkplace/cbr495_1.htm, 1995.

[Harel 88] D. Harel, STATEMATE: a Working Environment for the

Development of Complex Reactive Systems, In 10th IEEE

Conference on Software Engineering, Washington D.C, IEEE

Computer Society, 1988

[Hart 82] Hart, J. ‘‘The Effectiveness of Design and Code Walkthroughs.’’

Proceedings of COMPSAC ’82.IEEE Computer Society’s Sixth

International Computer Software and Applications Conference.

Silver Spring, MD: IEEE Computer Society Press, Nov.1982, 515-

522.

[Heimdahl 95] M. P. E. Heimdahl and N. Leveson. Completeness and consistency

analysis of state based requirements. In Proceedings of the 17th

International Conference on Software Engineering (ICSE'95), pages

3{14, Seattle, Washington, 1995

[Heitmeyer 96] C. L. Heitmeyer and D. Mandrioli, editors. Formal methods for

Real-Time Computing. Wiley, 1996.

[Heller 2002] Roger Heller, An Introduction to Function Point Analysis,

http://www.qpmg.com/fp-intro.htm, 2002.

References

 218

[Herlea 99] Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards, N.J.E., 1999,

A Formal Knowledge Level Process Model of Requirements

Engineering, In Proceedings of the 12th International Conference on

Industrial and Engineering Applications of AI and Expert Systems,

IEA/AIE'99.

[HExp 2001] Human Expression, Requirement Gathering,

http://www.humanxpression.com, 2001.

[Hofmann 2001] Hofmann, Hubert F., and Franz Lehner. "Requirements Engineering

as a Success Factor in Software Projects." IEEE Software July/Aug.

2001: 58-66

[Holt 97] J. Holt, Current Proactice in Software Engineering: A Survey,

Computing and Control Engineering, pp 167-172, 1997.

[Holtzblatt 93] K. Holtzblatt, H. Beyer, Making cCustomer-Centered Design Work

for Teams, Communications of the ACM 10: 93-103, 1993

[Horrian 2003] Hossein Horrian, Shafquat Mahmud, Srinivasan Karthikeyan,

Requirements Engineering in Agile methods, Dept. of Computer

Science, University of Calgary, Canada, 2003.

[Howard 88] R.A. Howard, Decision Analysis: Practice and Promise,

Management Science 34:6: 679- 695, 1988.

[Hulett 95] Hulett, David T. (1995). “Project schedule risk assessment”, Project

Management Quarterly, 26 (1), March, 21-31.

[Hursh 95] Walter Hursh and Christina Lopes, “Separation of Concerns”

(Technical Report), College of Computer Science, Northeaster

University, 1995.

[ICSE 2001] Workshop on Advanced Separation of Concerns in Software

Engineering at ICSE 2001 (W17) ,

http://www.research.ibm.com/hyperspace/workshops/icse2001, 2001

References

 219

[IEEE 84] IEEE, IEEE Guide for Software Requirements Specification, Std

830-1984, New York, IEEE Computer Society Press, 1984.

[IEEE 90] IEEE Standard 610.12-90. IEEE Standard Glossary of Software

Engineering Terminology, IEEE, New York, NY, 1990.

[IEEE 93] IEEE Recommended Practice for Software Requirements

Specifications, IEEE Computer Society, 1993.

[IEEE 98] [IEEE 98] “IEEE Guide for Developing System Requirements

Specifications” IEEE Computer Scociety

[IEEE 98a] IEEE, IEEE Recommended Practice for Software Requirements S

pecification, IEEE Std 830-1998, IEEE Computer Society, 1998

[IEEE 99] IEEE, IEEE Standards Software Engineering Collection. New York,

NY: IEEE, 1999.

[IPL 96] IPL Information Processing Ltd., Designing unit test cases, 1996.

[Jacobson 92] I. Jacobson, Object-Oriented Software Engineering, Addison-

Wesley / ACM Press, 1992

[Jacobson 99] Rumbaugh, James, Ivar Jacobson, and Grady Booch. 1999. The

Unified Modeling Language Reference Manual. Reading, MA:

Addison-Wesley.

[Jaafari 84] Jaafari, Ali. (1984). “Criticism of CPM for Project Planning

Analysis”, Journal of Construction Engineering and Management,

110 (2), June, 222-233.

[Jalote 99] Pankaj Jalote, An Integrated Approach to Software Engineering,

Narosa Publications, 1999.

[Jirotka 94] M. Jirotka and J. A. Goguen. Introduction. In M. Jirotka and J. A.

Goguen, editors, Requirements Engineering Social and Technical

Issues, pages 1-13. Academic Press, Great Britain, 1994.

References

 220

[Jones 97] C. Jones, Applied Software Measurement, Assuring Productivity and

Quality, McGraw-Hill, 1997.

[Karlssson 96] J. Karlsson, P. Carlshamre, A Usability Oriented Approach to

Requirements Engineering, Proceedings of ICRE 96, IEEE

Computer Society Press, pp. 145-152, 1996.

[Kean 97] Liz Kean, Requirements Tracing – An Overview, Carnegie Mellon

SEI, http://www.sei.cmu.edu/str/descriptions/reqtracing_body.html,

Jan 1997

[Kingston 96] John Kingston and Terri Lydiard, Multi-Perspective Models of the

Air Campaign Planning process, AIAI, University of Edinburgh,

1996

[Kirwan 92] Kirwan and Ainsworth (Eds), A Guide to Task Analysis, Taylor and

Francis, London, 1992.

[Kotonya 98] Kononya G. & Sommerville I., (1998). Requirements Engineering –

Processes and Techniques. John Wiley & Sons. Chichester. 282pp.

[Krasner 85] H. Krasner. Requirements dynamics in large software projects, a

perspective on new directions in the software engineering process. In

Proceedings of IFIP, pages 211{216, New York, 1985. Elsevier}

[Kunz 70] Werner Kunz and Horst W. J. Rittel, Issues as Elements of

Information systems, Working papre 131, University of California,

Berkeley, July 1970

[Lauesen 2002] Lauesen S., 2002, Software Requirements: Styles and Techniques,

Addison Wesley Publishing Co.

[Lax 91] David A. Lax and James K. Sebenius, "Interests: The Measure of

Negotiation." In Negotiation Theory and Practice, eds. J. William

Breslin and Jeffrey Z. Rubin, (Cambridge: The Program on

Negotiation at Harvard Law School, 1991), 165.

References

 221

[Leffingwell 2000] Leffingwell D, D. Widrig, 2000, Managing Software Requirements:

A Unified Approach, Addison Wesley Publishing Co. , 2000.

[Leif 95] Leif Bennett, Round-Robin Review Training Plan,

http://alumnus.caltech.edu/~leif/OO/ReviewTraining.html, 1995.

[Lenart 98] Lenart, M. and Ana Pasztor (1998). “A Participatory Design

Requirement Engineering System,”

www.cs.fiu.edu/~pasztora/design/padre/aid98.ps

[Lerch 95] F. J. Lerch, D. J. Ballou, and D. E. Harter. Using simulation-based

experiments for software requirements engineering. Annals of

Software Engineering, special issue on Software Requirements

Engineering, 3:345{366, 1997.

[Letelier 2003] Patricio Letelier, Requirements Traceability, Universidad Politécnica

de Valencia, www.dsic.upv.es/~letelier/pub, 2003.

[Leung 2002] Leung, H. and Z. Fan (2002). Software Cost Estimation. Handbook

of Software Engineering and Knowledge Engineering. S. K. Chang.

2002

[Lewis 2003] R. Lewis, E. Thomas, Brainstorming,

http://www.dos.uci.edu/publications/guides/b3.html, 2003.

[Liete 91] J. C. S. P. Leite and P. A. Freeman. Requirements validation through

viewpoints resolution. IEEE Transactions on Software Engineering,

17(12):1253{1269, 1991.

[Lindgaard 94] Lindgaard, G., Usability Testing and System Evaluation: A Guide

for Designing Useful Computer Systems, 1994, Chapman and Hall,

London, U.K. ISBN 0-412-46100-5

[Loucopoulos 92] P. Loucopoulos. Conceptual Modelling, Databases and CASE: An

Integrated View of Information System Development. Wiley, 1992.

References

 222

[Luqi 93] Luqi. How to use prototyping for requirements engineering. In

Proceedings of the IEEE International Symposium on Requirements

Engineering (RE93), page 229, 1993.

[MAHR 2003] Minnesota Advocates for Human Rights, Tips on Guided

Discussion,

http://www.stopvaw.org/Tips_on_Guided_Discussion.html,2003.

[Maiden 96] N.A.M. Maiden & G. Rugg, ACRE: selecting methods for

requirements acquisition, Software Engineering Journal, 1996.

[Matsumoto 77] Y. Matsumoto, A Method For Software Requirements Definitions in

Process Control, In IEEE COMPSCA 1977, Washington D.C, IEEE

Computer Society, pp. 128-132, 1977

[McDermid 93] McDermid, P. Rook, Software Development Process Models, In

Software Engineer’s Reference Book, CRC , 1993, PP 15/26 – 28.

[McGuire 2002] Ruth McGuire, Decision Making, Pharmaceutical Journal, Vol. 269,

November 2002.

[McMenamin 84] McMenamin, J. Palmer, Essential System Analysis, Englewood

Cliffs, N.J. Prentice Hall, 1984

[Melo 2001] Walcelio Melo, Forrest Shull, Guilherme Travossos, Software

Review Guidelines, Technical Report ES- 556/01, August 2001.

[Merlo 2002] Nancy Merlo, Schett, 2002, COCOMO (Constructive Cost Model),

Seminar on Software Cost Estimation WS 2002 / 2003, 2002.

[MIL 77] Military Standard, Procedures for Performing a Failure Mode,

Effects and Criticality Analysis, MIL-STD-1629A, 12 June 1977.

[MIL 80] Military Standard, Procedures for Performing a Failure Mode,

Effects and Criticality Analysis, MIL-STD-1629A, Novemebr 1980.

[Mindtools 95] Mindtools, PMI- Weighing the Pros and Cons of a Decision,

http://www.mindtools.com/pages/article/newTED_05.htm, 1995.

References

 223

[Morgan 88] David L. Morgan, Focus Groups as Qualitative Research, Sage,

1988.

[Moser 71] Claus Moser and Graham Kalton_ Survey Methods in Social

Investigation, Gower, 1971.

[Moores 96] Moores TT and Champion REM. ‘A Methodology for Measuring the

Risk Associated with a Software Requirements Specification’,

Australian Journal of Information Systems (1996).

[NCCL 96] The National Computing Center Limited, Internal Quality Audits:

What They Are and How To Carry Them Out?, 31 July, 1996.

[NetMBA 2002] NetMBA, PERT, www.netmba.com/operations/project/pert/, 2002.

[Ngatagize 86] P.K Ngatagize, J.B. Kaneene, S.B. Harsh, Decision Analysis in

Animal Health Programs: Merits and Limitations, Preventive

Veterinary medicine 4: 187 – 197, 1986.

[Nord 2003] R. L. Nord, D. Soni, Experience with Global Analysis: A Practical

Method for Analyzing Factors that Influence Software Architectures,

STRAW'03 : Second International SofTware Requirements to

Architectures Workshop located at ICSE'03, 1, Portland, OR, USA,

pp. 34-40, 2003

[NYS 2003] NYS Governor's Office of Employee Relations, 2003

http://www.goer.state.ny.us/Train/onlinelearning/FTMS/300s8.html,

[NYS 2003a] NYS Governor's Office of Employee Relations, I-Time Tools and

Techniques,

http://www.goer.state.ny.us/train/onlinelearning/FTMS/300s3.html,

2003.

[NYS 2003b] NYS Governor's Office of Employee Relations, Go-Around Tools

and Techniques,

www.goer.state.ny.us/Train/onlinelearning/FTMS/300s4.html,

References

 224

[Oishi 95] Oishi, Frey, James H., Sabine Mertens. (1995). How To Conduct

Interviews By Telephone and In Person. Sage Publications:

Thousand Oaks.

[OMB 2000] White House Office of Management and Budget (OMB), Circular

Number A-94, Guidelines and Discount Rates for Benefit-Cost

Analysis of Federal Programs, 29 October 1992,

http://www.whitehouse.gov/OMB/circulars/a094/a094.html (30

October 2000)

[OOPSLA 99] First Workshop on Multi-Dimensional Separation of Concerns in

Object-oriented Systems, http://www.cs.ubc.ca/%7Emurphy/multid-

workshop-oopsla99.

[Osborn 53] Osborn, A. F. Applied Imagination. New York: Charles Scribner’s

Sons, 1953.

[PAHO 2003] Pan American Health Organization, Convincing Through Effective

Digital Presentations, http://intranet.paho.org/DPI/pptguide2.pdf, 03.

[Palmer 96] J. D. Palmer. Traceability. In M. Dorfman and R. H. Thayer, editors,

Software Engineering, pages 266{276. IEEE Computer Society

Press, 1996.

[Palmer 2000] Michael Palmer, "Problem-Solving Negotiation: What's In It for You

and Your Clients." In 26 Oct. Vermont B. Journal 1, 2000

[Patton 90] Patton, M.Q. (1990). Qualitative Evaluation and Research Methods,

2nd Ed. Newbury Park, CA: Sage.

[Pfeiffer 97] Dirk Pfeiffer, Decision Analysis and Risk Analysis, From R.

Ruppanner, Risk Analysis and Animal Health – A Course Manual,

Dubendorf, Switzerland, pp. 867- 877, 1997.

[Pohl 96] K. Pohl. Process-centred requirements engineering. Wiley, 1996.

[Potts 94] C. Potts, K. Takahashi, and A. I. Anton. Inquiry-based requirements

analysis. IEEE Software, 11(2):21-32, 1994.

References

 225

[Pressman 2001] R. S. Pressman, Software Engineering: A Practitioner’s Approach,

5th ed. New York, NY: McGraw-Hill, 2001.

[Putnam 78] Putman(1978) : A general empirical solution to the macro software

sizing and estimating problem. IEEE Trans. On Softw. Eng.,

Volume 4, No 4, pp 345-61, April 1978.

[Raafat 89] H.M.N. Raafat, Risk Assessment and Machinery Safety, Journal of

Occupational Accidents, pp. 37-50, 1989.

[Rauterberg 2003] M. Rauterberg, Task Analysis, 2003,

http://www.ipo.tue.nl/homepages/mrauterb/lecturenotes/UFTtask-

analysis.pdf,

[Richards 2000] Debbie Richards, A Process Model for Requirements Elicitation, In

Proceeding of the 11th Australasian Conference on Information

Systems, December 6-8, Brisbane.

[Robertson 99] S. Robertson and J. Robertson. Mastering the Requirements Process.

Addison-Wesley, 1999.

[Rockstrom 82] Rockstrom, R. Saracco, SDL-CCITT Specification and Description

Language, IEEE Transactions on Communications 30, 1982

[Rosson 2002] Mary Beth Rosson, John M, Carrol, Usability Engineering –

Scenario Based Development of Human-Computer Interaction,

Morgan Kaufman Publishers, 2002.

[Royce 70] W. W. Royce, "Managing the Development of Large Software

Systems: Concepts and Techniques," presented at WESCON, 1970.

[Royce 98] W. Royce, Software project management: a unified framework,

Addison Wesley, 1998

References

 226

[Rzepka 89]

Rzepka, William E. A Requirements Engineering Testbed: Concept,

Status and First Results. In Bruce D. Shriver (editor), Proceedings

of the Twenty-Second Annual Hawaii International Conference on

System Sciences, 339-347. IEEE Computer Society, 1989.

[Saaty 80] T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, Inc.

(1980).

[Sawyer 97] I. Sommerville and P. Sawyer. Viewpoints: principles, problems and

a practical approach to requirements engineering. Annals of

Software Engineering, special issue on software requirements

engineering, 3:101{130, 1997.

[Schach 96] S. R. Schach. Classical and Object-Oriented Software Engineering.

McGraw-Hill, third edition, 1996

[Sebenius 86] J. K. Sebenius, Lax, D. A., The Manager as Negotiator, (New York:

Free Press, 1986.

[SEI 96] SEI Software Risk Taxonomy, Technical Report CMU/SEI-96-TR-

012, June 1996.

[Siddiqi 97] J. Siddiqi, I. C. Morrey, C. R. Roast, and M. B. Ozcan. Towards

quality requirements via animated formal speci_cations. Annals of

Software Engineering, special issue on Software Requirements

Engineering, 3:131{155, 1997.

[Sidky 2003] Ahmed Sidky, RGML: A Specification Language that Supports the

Characterization of Requirements Generation Processes, Master

thesis, Virginia Tech, 2003,

http://scholar.lib.vt.edu/theses/available/etd-07292003-112122/

[Softstar 2003] Softstar Systems, Overview of COCOMO,

http://www.softstarsystems.com/overview.htm, December 2003.

References

 227

[Sommerville 97] Sommerville, Ian, and, Pete Sawyer, 1997, Requirements

Engineering: A Good Practice Guide. Chichester, England: John

Wiley & Sons.

[Sommerville 97a] I. Sommerville and P. Sawyer. Viewpoints: principles, problems and

a practical approach to requirements engineering. Annals of

Software Engineering, special issue on software requirements

engineering, 3:101-130, 1997.

[Sommerville 2001] Sommerville, Ian. Software Engineering. 6th ed. Harlow, England:

Addison-Wesley, 2001

[Song 2002] Chen Song, Problem Analysis and Needs Generation Process,

Technical report, Virginia Tech, 2002

[Spangler 2003] Brad Spangler, Positional Bargaining,

http://www.beyondintractability.org/m/positional_bargaining.jsp,

2003.

[SPS 94] Analysis of Automated Requirements Management Capabilities.

Melbourne, FL: Software Productivity Solutions, 1994.

[Stamatis 97] Stamatis, D.H. TQM Engineering Handbook. New York: Marcel

Decker, Inc. , 1997

[Standish 95] The CHAOS report, Standish Group, 1995,

http://www.standishgroup.com/sample_research/chaos_1994_1.php.

[Stocks 99] J. Tim Stocks, Document Studies,

http://www.msu.edu/course/sw/832/units/06qua/1doc04.htm, 1999.

[St-Pierre 97] D. St-Pierre, M Maya, A. Abran, J. Desharnais and P. Bourque, Full

Function Points: Counting Practice Manual, Technical Report 1997-

04, University of Quebec at Montreal, 1997.

[Strauss 78] Strauss, A. (1978) Negotiation: Varieties, Contexts, Processes and

Social Order Jossey-Bass Publishers, San Francisco, CA.

References

 228

[STSC 98] Software Technology Support Center. Requirements Management

Tools [online]. http://www.stsc.hill.af.mil/RED/LIST.HTML (1998).

[Sud 2003] Rajat Sud, A Synergistic Approach to Software Requirements

Generation: The Synergistic Requirements Generation Model

(SRGM), and An Interactive Tool for Modeling SRGM (itSRGM),

Master’s Thesis, Virginia Tech, 2003

http://scholar.lib.vt.edu/theses/available/etd-05182003-111744/

[Susan 94] Susan H. Strauss and Robert G. Ebenau, Software Inspection

Process, McGraw Hill, 1994.

[Sutcliffe 2002] Alistair Sutcliffe, User-Centered Requirements Engineering- Theory

and Practice, Springer-Verlag London Limited, 2002.

[Sutcliffe 2003] Alistair Sutcliffe, Scenario Based Requirements Engineering, RE

2003 Mini Tutorial, University of Manchester Institute of Science &

Technology (UMIST), Manchester, UK

[Teichroew 1982] Teichroew, D., Hersey III, E.A., “PSL/PSA: a computer-aided

technique for structured documentation and analysis of information

processing systems”, in Advanced System Development/ Feasibility

Techniques, Wiley, New York, pp 315-329 (1982).

[Templeton 94] Templeton, Jane F., The Focus Group : A Strategic Guide to

Organizing, Conducting and Analyzing the Focus Group Interview,

1994, Probus Pub Co; ISBN: 1557385300

[Thayer 76] Bell T. E. , T. A. Thayer, 1976, Software requirements: Are they

really a problem?, Proceedings of the 2nd international conference

on Software engineering, p.61-68, October 13-15, 1976, San

Francisco, California, United States.

[Thayer 97] Richard Thayer, Merlin Dorfman, Software Requirements

Engineering, Second edition, IEEE Computer Society, 1997

References

 229

[Thomas 76] Thomas, K. (1976) Conflict and Conflict Management In Duneette

(ed) Handbook of Industrial and Organizational Psychology Rand

McNally College Publishing Co.

[TWCC 2002] Texas Workers’ Compensation Commission, Fault Tree Analysis,

http://www.twcc.state.tx.us/information/videoresources/stp_fault_tre

e.pdf, 2002

[USAID 2002] USaid, Primer and Checklist for Conducting Cost and Price Analysis

for Interagency Agreements,

http://www.usaid.gov/policy/ads/300/306maa.pdf, October 2002.

[UTK 2003] University of Tennessee, Tips on preparing and giving oral

presentations, 2003,

http://eeb.bio.utk.edu/weltzin/GenEcol03/presentation_tips.htm.

[USMC 98] United States Marine Corps, Discussion Leading Techniques,

http://www.mcu.usmc.mil/mcu/reading/core/Chap01.PDF, 1998.

[Weibull 92] Reliasoft Corporation, FMEA and FMECA,

http://www.weibull.com/basics/fmea.htm, 1992.

[Weidenhaupt 98] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer. Scenarios in

system development: Current practice. IEEE Software, 15(2), 1998.

[Weigers 99] Karl Weigers, First Things First: Prioritizing Requirements,

Software Development, September 1999

[Weigers 2001] Weigers K.E., 2001, Software Requirements, Microsoft Press, 2001.

[Weissberg 86] Weissberg, H.F., Krosnick , J.A., & Bowen, B.D. (1989). An

introduction to survey research and data analysis. Glenview, IL.

[Whitis 81] V.S. Whitis, W.N. Chiang, A State Machine Development for Call

Processing Software, In IEEE Electro 1981 Conference,

Washington D.C, IEEE Computer Society, 1981.

References

 230

[Wickwire 89] Wickwire, Jon M., Warner, Tony, and Berry, Mark R. (1999).

“Chapter 17—Construction Scheduling”, Construction Law

Handbook edited by Cushman, Robert F. and Myers, James J.,

Aspen Law & Business, Gaithersburg, NY.

[Williams 98] What Do You Mean You Can’t Tell Me If My Project Is in

Trouble?, First European Conference on Software Metrics (FESMA

98), Antwerp, Belgium, 1998

[Williamson 2001] Duncan Williamson, Capital Budgeting: The Key Numerical

techniques, http://www.duncanwil.co.uk/invapp.html, October 2001.

[Wixon 94] Wixon, Dennis, et. al., "Inspections and Design Reviews:

Framework, History, and Reflection," in Nielsen, Jakob, and Mack,

R. eds, Usability Inspection Methods, John Wiley and Sons, New

York, NY. ISBN 0-471-01877-5 , 1994.

[Wohlin 97] Claes Wohlin, Joachim Karlsson, Bjorn Regnell, An evaluation of

methods for prioritizing software requirements ,Information and

Software Technology, pp 939-947, 1997.

[Yeh et. al. 84] R. T. Yeh, P. Zave, A. P. Conn, and G. E. Cole. Software

requirements: New directions and perspectives. In C. R. Vick and C.

V. Ramamoorthy, editors, Handbook of Software Engineering, pages

519{543. Van Nostrand Reinhold, New York, 1984.

[Young 2001] Young, Ralph R. Effective Requirements Practices. Boston:

Addison- Wesley, 2001.

[Young 2002] Ralph R. Young, Recommended Requirement Gathering Practices,

Cross Talk – The Journal of Defense Software Engineering, 2002.

[Yourdon 99] Davis, A. E. Yourdon, Ann S. Zweig, Requirements Management

Made Easy, Omni-Vista White Paper #99-002,

References

 231

[Zahniser 90] Zahniser R.A., 1990, Building Software in Groups, American

Programmer, vol. 3, nos. 7-8, July-August, 1990.

[Zave 81] Pamela Zave, R.T. Yeh, Executable Requirements for Embedded

Systems, in Fifth International Conference on Software Engineering,

pp. 295-304, 1981

[Zowghi 99] Didar Zowghi, A Logic Based Framwork for the Management of

Changing Software Requirements, PhD dissertation, Macquarie

University, June 1999.

Appendix A: Organization Templates for Requirements

 232

Appendix A: Organization Templates for Requirements

A.1 Template for requirements list organized by mode

• Specific requirements

o External interface requirements

� User interfaces

� Hardware interfaces

� Software interfaces

� Communication interfaces

• Functional requirements

o Mode 1

� Functional requirement 1

� .

� .

� Functional requirement n

o Mode m

� Functional requirement 1

� .

� .

� Functional requirement n

• Performance requirements

• Design constraints

• Software system attributes

• Other requirements

Appendix A: Organization Templates for Requirements

 233

A.2 Template for requirements list organized by user class

• Specific requirements

o External interface requirements

� User interfaces

� Hardware interfaces

� Software interfaces

� Communication interfaces

• Functional requirements

o User class 1

� Functional requirement 1

� .

� .

� Functional requirement n

o User class m

� Functional requirement 1

� .

� .

� Functional requirement n

• Performance requirements

• Design constraints

• Software system attributes

• Other requirements

Appendix A: Organization Templates for Requirements

 234

A.3 Template for requirements list organized by stimulus

• Specific requirements

o External interface requirements

� User interfaces

� Hardware interfaces

� Software interfaces

� Communication interfaces

• Functional requirements

o Stimulus 1

� Functional requirement 1

� .

� .

� Functional requirement n

o Stimulus m

� Functional requirement 1

� .

� .

� Functional requirement n

• Performance requirements

• Design constraints

• Software system attributes

• Other requirements

Appendix A: Organization Templates for Requirements

 235

A.4 Template for requirements list organized by response

• Specific requirements

o External interface requirements

� User interfaces

� Hardware interfaces

� Software interfaces

� Communication interfaces

• Functional requirements

o Response 1

� Functional requirement 1

� .

� .

� Functional requirement n

o Response m

� Functional requirement 1

� .

� .

� Functional requirement n

• Performance requirements

• Design constraints

• Software system attributes

• Other requirements

Appendix A: Organization Templates for Requirements

 236

A.5 Template for requirements list organized by functional hierarchy

• Specific requirements

o External interface requirements

� User interfaces

� Hardware interfaces

� Software interfaces

� Communication interfaces

• Functional requirements

o Functionality 1

� Functional requirement 1

� .

� .

� Functional requirement n

o Functionality m

� Functional requirement 1

� .

� .

� Functional requirement n

• Performance requirements

• Design constraints

• Software system attributes

• Other requirements

Appendix B: The Expanded Requirements Generation Model (x-RGM)

 237

Appendix B: The Expanded Requirements Generation Model (x-RGM)

Appendix B: The Expanded Requirements Generation Model (x-RGM)

 238

Appendix B: The Expanded Requirements Generation Model (x-RGM)

 239

Appendix B: The Expanded Requirements Generation Model (x-RGM)

 240

Appendix C: Description of Activities in x-RGM

 241

Appendix C: Description of Activities in x-RGM
�

Activity Name Customer / requirements engineer indoctrination

Objective Familiarizing the user to the RE process
Educating the requirements engineer about the customer’s domain
Emphasis on the importance of the role of the participant

Action Points • A brief introduction about RE, the importance of
requirements, and what represent a requirement

• An overview of the Requirements Generation Model

• The importance of the role of participants in the RE process

• The preparation involved when participants are requested to
attend elicitation meetings

• Introduction to the problem, user needs and problem domain

Pre-condition Needs generation phase is completed

Doer Requirements Engineer

Participants Customer (other stakeholders are optional)

Resource/Input
docs

Requirements engineering model and process principles, needs and
domain information

Effect/Output
docs

None

Activity Name Requirements elicitation meeting

Objective Identify and capture requirements from stakeholders

Action Points • Identify primary stakeholders

• Capture stakeholders requirements

• Record the meeting proceedings

• Identify system constraints

Pre-condition Needs generation phase is completed

Doer Requirements Engineer

Participant Customer, user, developer

Input docs Document, Market Survey document

Effect/Output
docs

Unstructured list of requirements

Appendix C: Description of Activities in x-RGM

 242

Activity Name Rationalization & Justification

Objective Find rationale, justify, refine and decompose requirements

Action Points • Identify classification of requirements

• addressing the question “why” underlying the requirements

• Identify requirements which are high level or unspecific

• Justify the requirements

• Refine and decompose the high level requirements

Pre-condition Elicitation activity completed

Doer Requirements Engineer

Participant User, customer, developer

Resource/Input
docs

Unstructured requirements, Domain Info, Organizational standards
and regulations

Effect/Output
docs

Non-prioritized requirement list

Activity Name Prioritization

Objective Rank requirements based on requirement attributes

Action Points • Identify requirement attributes (risk factors, value to
product, user urgency …..)

• Estimate attribute values

• Rank requirements based on stakeholder priorities.

Pre-condition Rationalization and justification completed

Doer Requirements Engineer

Participant User, customer, developer

Resource/Input
docs

Non-prioritized requirement list

Effect/Output
docs

Prioritized requirement list

Appendix C: Description of Activities in x-RGM

 243

Activity Name Verifying quality attributes

Objective Check quality attributes of local set of requirements

Action Points • Determine quality attributes to be examined

• Arrange for QA experts

• Verify and establish the adherence of quality attributes

Pre-condition Prioritization completed

Doer QA experts

Participants Requirements engineer

Resource/Input
docs

Prioritized requirement list

Effect/Output
docs

Quality assessed requirements list

Activity Name Stakeholder validation

Objective Check if the individual requirements reflect the right product

Action Points • Determine whether requirements capture stakeholders needs
and intent

• Record proceedings

Pre-condition Verifying quality attributes completed and quality control
satisfactory

Doer Requirements Engineer

Participants Customer, user, developer

Resource/Input
docs

Quality assessed requirements list

Effect/Output
docs

Software requirements list

Appendix C: Description of Activities in x-RGM

 244

Activity Name Risk analysis

Objective Determine the risk for requirements from the global perspective

Action Points • Arrange for risk analysts

• Assess risks for requirements from global outlook

• Determine requirements which are controversial (high risk)

Pre-condition Requirements capturing phase completed

Doer Risk analyst

Participants Requirements engineer (optional)

Resource/Input
docs

Software requirements list, Organizational factors, Technological
factors

Effect/Output
docs

Risk assessment document

Activity Name Cost and schedule estimation

Objective Determine cost and time estimate for requirements

Action Points • Perform cost analysis on individual
functionality/components

• Estimate time schedule for individual functionality
/components

• Determine if total cost and schedule meet customer’s needs

Pre-condition Requirements capturing phase completed

Doer Requirements Engineer

Participant Developers

Resource/Input
docs

Software requirements list, Organizational factors, Technological
factors

Effect/Output
docs

Cost and schedule document

Appendix C: Description of Activities in x-RGM

 245

Activity Name Price analysis

Objective Examining and evaluating proposed price and demand (balance of
functionality and desirability)

Action Points • Assess market demand

• Compare prices of similar products

• Determine if price is reasonable

Pre-condition Requirements capturing phase completed

Doer Price analyst

Participants Requirements Engineer, developer

Resource/Input
docs

Software requirements list, Organizational factors, Technological
factors, cost and schedule document (optional), market demand
info.

Effect/Output
docs

price analysis document

Activity Name Feasibility analysis

Objective Determine if product is feasible (Business/technology/cost)

Action Points • Assess market demand

• Determine if the product is profitable enough

• Determine if risks are accounted for

• Decide whether to continue with the software cycle

Pre-condition Requirements capturing phase completed

Doer Requirements Engineer

Participants Developer, Manager

Resource/Input
docs

Software requirements list, Organizational factors, Technological
factors, market demand info., risk assessment document, price
analysis document, cost and schedule document,

Effect/Output
docs

feasibility analysis document (go/no-go decision), conflicting
requirements list

Appendix C: Description of Activities in x-RGM

 246

Activity Name Conflict resolution

Objective Negotiate requirement conflicts

Action Points • Identify stakeholder win conditions

• Identify issues

• Identify options

• Finalize agreements

Pre-condition Feasibility analysis completed

Doer Requirements Engineer

Participants customer, developer, user, manager

Resource/Input
docs

Conflicting requirements l ist

Effect/Output
docs

Conflict free requirements document/updated requirements list

Activity Name Organization and Compilation

Objective Structure requirements for better comprehension

Action Points • Identify organization mode of requirements

• Grouping of requirements according to the identified
categorization

• Document the requirements

Pre-condition Analysis Phase completed

Doer Requirements Engineer

Participants -

Resource/Input
docs

Conflict free requirements document

Effect/Output
docs

Structured requirements list

Appendix C: Description of Activities in x-RGM

 247

Activity Name Quality adherence

Objective Quality control for requirements from global perspective

Action Points • Verify that quality control performed in local analysis
phase

• Determine quality attributes to be tested

• Verify quality adherence of requirements

Pre-condition Specification phase complete

Doer QA experts

Participants Requirements Engineer

Resource/Input
docs

Structured requirements list

Effect/Output
docs

Quality assessed requirements specification

Activity Name Traceability analysis

Objective Linking requirements and verifying the matrix

Action Points • Map the requirements to needs

• Determine the dependency of requirements (resulting in a
traceable diagram)

• Verify the Traceability diagram

Pre-condition Quality adherence activity completed

Doer Requirements Engineer

Participants -

Resource/Input
docs

Software requirements list

Effect/Output
docs

Traceability document/matrix, conflict free requirements list

Appendix C: Description of Activities in x-RGM

 248

Activity Name Customer validation meeting

Objective Check if the requirements list captures customers needs right

Action Points • Determine whether requirements capture customer intent

• Determine requirements to be changed, if necessary

Pre-condition Specification phase complete

Doer RE engineer

Participants Customer

Resource/Input
docs

Quality assessed requirements specification

Effect/Output
docs

validated requirements specification / list of modifications to
requirements

Activity Name Reformulation

Objective Overcoming customer disagreement with requirements

Action Points • Identify options

• Finalize reformulation of requirements

Pre-condition user validation complete and customer specifies certain
modifications to the requirements

Doer RE engineer

Participants Customer, QA experts

Resource/Input
docs

Customer disagreement with requirements specification

Effect/Output
docs

modified requirements specification

Appendix D: Methods for Activities in the x-RGM

 249

Appendix D: Methods for Activities in the x-RGM

Appendix D: Methods for Activities in the x-RGM

 250

Appendix D: Methods for Activities in the x-RGM

 251

Appendix D: Methods for Activities in the x-RGM

 252

Appendix D: Methods for Activities in the x-RGM

 253

Appendix D: Methods for Activities in the x-RGM

 254

Appendix D: Methods for Activities in the x-RGM

 255

Appendix D: Methods for Activities in the x-RGM

 256

