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Appendix B

The Chi-Square Distribution

B.1. The Gamma Function

To define the chi-square distribution one has to first introduce the Gamma

function, which can be denoted as [21]:

∫
∞ −− >=Γ

0

1 0,    )( pdxexp xp    (B.1)

If we integrate by parts [25], making dvdxe x =−  and ux p =−1 we will obtain
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By this way, we can demonstrate that the Gamma function obeys an interesting

recurrence relation. If p is a positive integer, then applying equation (B.2) repetitively we

obtain [21]
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But,
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And thus we obtain
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Another important relation for the Gamma function is [21,26]:
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B.2. Derivation of the Chi-Square Distribution

A direct relation exists between a chi-square-distributed random variable and a

gaussian random variable. The chi-square random variable is in a certain form a

transformation of the gaussian random variable. If we have X as a gaussian random

variable and we take the relation Y=X2 then Y has a chi-square distribution with one

degree of freedom [21].

If we define the random variable Y as
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Then the pdf of Y in terms of the pdf of X can be expressed as [31]
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Using the results above we can now derive the pdf of a chi-square random

variable with one degree of freedom. We will take X to be gaussian-distributed with zero

mean and variance 2σ . As was mentioned previously we have Y=X2 which implies that

a=1 and b=0 in (B.7). Using (B.8) we obtain as the pdf of Y the following expression
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The characteristic function of Y can be expressed as [31]
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If we define now our random variable Y as
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with the niX i ,...,2,1  , = , being statistically independent and identically distributed

gaussian random variables with zero mean and variance 2σ . Thus we obtain the

characteristic function of Y as [31]
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Taking the inverse transform of (B.12) we get the pdf of Y as
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This pdf is called a chi-square pdf with n degrees of freedom. Figures B.1 to B.4 illustrate

this pdf, for purpose of illustration we assumed 12 =σ . An important point to notice is

that when n=2, we obtain an exponential distribution.
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B.3. Moment Generating Function (MGF)

Let X be a continuous random variable with probability density function (pdf) f.

We will define the Moment Generating Function (MGF) as [32]
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By comparing equations (B.10) and (B.14) it can be seen that the Moment

Generating Function and the Characteristic Function are directly related. The

Characteristic Function is obtained when the s parameter in the MGF is substituted by jω .

The Moment Generating Function has the following properties [21,32]:
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Thus we obtain:
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For the chi-square distribution with n degrees of freedom, the MGF is given

by[21]:
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The mean and variance of the chi-square distribution, which can be extracted

from the MGF, are thus:
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Fig B.1 Chi-square pdf for 1 degree of freedom



Appendix B: The Chi-Square Distribution 98

Fig B.2 Chi-square pdf for 2 degrees of freedom
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Fig B.3 Chi-square pdf for 4 degrees of freedom
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Fig B.4 Chi-square pdf for 8 degrees of freedom


