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Conclusion

Polarization Mode Dispersion induces polarization dependent propagation.
Consequently, it generates a multiple imaging of the light pulse carrying the information.
Its first order appears as a dual path-fading channel of Maxwellian statistics. It results in
harmful impairments that prevent the upgrade and installation of high bit-rate systems.
The random process PMD exhibits a strong frequency dependence, so that its
amelioration requires channel by channel, non-linear, adaptive mitigation. Electronic
mitigation appears as a very attractive solution to overcome the limit set by the PMD.
The cost efficient integrability and the global signal processing capabilities of such

technigues make them even more interesting.

Consequently, we considered the implementation of these solutions at the receiver
in the electrical domain. We verified that these linear and non-linear equalization
techniques greatly reduce the power penalty due to PMD. Equalization’s performance
depends highly on the type of systems considered. For the two main types of systems:
thermal noise limited systems and systems exhibiting ASE (systems using optical
amplifiers), we demonstrated and quantified the induced improvement (measured as
power penalty reduction). The most sophisticated technique that we considered
(NLC+FDE) handles any kind of first order PMD within a 4 dB margin in the thermal
noise limit. This extended to an 11 dB margin in the presence of ASE. Lower power
penalty bounds should be expected, as the complexity of the linear equalizer increases.
Our implementation was fairly simple. However, it is not likely, that for an optically

amplified system, as we considered, the worst penalty can be kept below 7 dB. This
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comes from the limitation set by the signal dependence of the noise. This is worsened by
the asymmetry of the noise statistics, which leads to a sub-optimal behavior of the NLC.
Moreover, the noise enhancement related to linear equalization becomes pattern

dependent.

In fact, these DSP techniques do a better job at reducing very high penalty.
Therefore, they do not really fit into the restriction of a 1 dB penalty, which represents
the SONET requirements. Consequently, for a power and ISI limited link, it may be
required to associate to electronic solutions optical compensation in order to reach
acceptable performance. On the other hand, for links having large power margin or
exhibiting reasonable PMD, electronic techniques appear as an easy, inexpensive and

convenient solution.

We derived in this work the bounds to NLC performance in the presence of ASE.
Therefore, we extended the usual results of the thermal noise limit to the particular case
of signal dependent noise. We also made clear that optical systems, because of their noise
specificities can not be studied or designed as other links. Notions such as eye opening,

SNR and ISI need to be carefully defined and adapted to this case.

We have provided in this work PMD dependent power penalty map for known
systems. Given the link’s statistics and characteristics, one can determine, following our

structure, which mitigation techniques allow upgrade.

To conclude, | would like to thank Alan Gnauck for his help in setting up and

running experiments and also for his constant and bright advice; Roger Stolen and Corey
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Paye for the numerous and stimulating discussions. For their hints and explanations, |
would like to highlight the contributions of Jack Winters, Ira Jacobs, Sheryl Woodward,

Mark Shtaif, Henning Bulow and Fred Buchali.
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Acronyms:

ASE: Amplified Stimulated Emission
BER: Bit Error Rate

DFE: Decision Feedback Equalizer
EDFA: Erbium Doped Amplifier
DGD: Differential Group Delay
FDE: Feed forwarD Equalizer

IC: Integrated Circuit

ISI: InterSymbol Interference
LHCP/RHCP: Left Hand Circular Polarization / Right Hand Circular Polarization
NLC: Non-Linear Canceller(ation)
PMD: Polarization Mode Dispersion
PRBS: Pseudo Random Bit stream
PSP: Principal State of Polarization
RIN: Relative Intensity Noise

SNR: Signal to Noise Ratio

SOP: State Of Polarization

TF: Transversal Filter
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