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ABSTRACT

Software Defined Radio (SDR) is a relatively new approach to develop wireless communi-

cation systems. SDR presents a framework for developing flexible, reconfigurable devices

intended to alleviate some of the issues arising from the evolution of wireless technology.

The Software Communications Architecture (SCA), developed by the Joint Tactical Radio

System program of the US Department of Defense, is an open architecture for implementing

SDR, relying on commercial technology, standard interfaces, and well-known design patterns.

Although the SCA is intended to provide easier, faster development of flexible applications

that are upgradeable and maintainable, the acceptance of the architecture has been limited

in part by traditional radio engineers’ lack of understanding modern software engineering

techniques. Because of the steep learning curve, some developers face frustration and serious

delays when first introduced to the SCA. This work presents a comprehensive tutorial which

introduces radio engineers to the SCA and the techniques used in it.

Another concern for accepting the SCA are the performance, size, cost, and power con-

suption difficulties faced in early implementations of the architecture. Traditionally, SCA

implementations have been developed for platforms based on General Purpose Processors.

This approach, while believed to be the easiest to implement, does not make the best out

of available processor technology. In order to provide a more efficient implementation of ra-

dios based on the SCA, we present the design and development of an SCA Core Framework

version 2.2 for a homogeneous TI C64 DSP platform. This framework is implemented by

leveraging the existing implementation of the Open-Source SCA Implementation::Embedded

(OSSIE) by porting it to the C64 platform. Two sample waveforms are developed and de-

ployed to demonstrate the functionality of the framework. Preliminary performance and

memory footprint profiling results are provided.
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Chapter 1

Introduction

1.1 Motivation

Software Defined Radio (SDR) is a relatively new approach to develop wireless communi-

cation systems. SDR presents a framework for developing flexible, reconfigurable devices

intended to alleviate some of the issues arising from the evolution of wireless technology.

The main benefit of SDRs over programmable digital radios (e.g. current cell phones) is the

ability of SDRs to be reconfigured to satisfy user needs. Note, performing typical communi-

cation tasks, such as demodulation, decoding, filtering, or equalization, using digital signal

processing does not necessarily qualify the device as a Software Defined Radio.

The wireless industry has recognized and accepted the advantages of SDR. Due to its en-

hanced flexibility and quick development, a software-oriented implementation is the logical

option when developing wireless technology, provided that design and operational constraints

can be met. Communications engineers have been following this approach for a long time,

implementing in software every possible component in their designs (e.g. modern cell phones

and base stations).

The flexibility of a software-based approach to implement wireless systems has a big impact

1
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in the system architecture and the development process itself. Developers are faced with new

tradeoffs that need to be addressed in order to achieve the maximum performance in the

most efficient way (e.g. component reuse vs memory footprint, scalability vs performance).

However, addressing these tradeoffs requires the evaluation of characteristics that are hard

to quantify within the context of traditional wireless systems. In the SDR arena, it is not

only about performance, power, cost and size. Issues like code reuse, technology insertion,

platform scalability and flexibility have to be considered as well. Because of these issues

there is no general consensus on the best implementation approach for SDR, despite the

great interest in the technology,

There are innumerable different ways to implement SDR. Ideally, developers want to fol-

low an optimized development approach that allows enhanced reconfigurability, flexibility,

and easy maintenance, while increasing reuse of intellectual property and reducing time to

market. Following a component-based development approach to implement SDR holds the

promise of delivering such advantages. Recently, a component-based architecture has gener-

ated great interest in the wireless community. The Software Communications Architecture

(SCA)[1], developed by the Joint Tactical Radio System program of the US Department

of Defense, is an open architecture that relies on commercial technology, standard inter-

faces, and well-known design patterns to provide an operational environment to implement,

manage and operate SDR. Its main advantages are platform independence and enhanced

Intellectual Property (IP) reuse. These characteristics ultimately translate into easier, faster

development of flexible applications that are upgradeable and maintainable.

However, providing multiple benefits alone is not guaranty of acceptance. As with most open

standards, the success of the SCA depends on the establishment of a positive self-reinforcing

trend not only in the military but also in the commercial sector. This trend starts with a

large number of users adopting the architecture, leading to investment in tool development

which translates into faster and easier development. These improvements motivate more

users to addopt the architecture, and the self reinforcing trend is established.
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Unfortunatelly, there is a gap between the development tactics of traditional radio engineers

and the modern software engineering techniques required in SDR development. Cost efficient

development of SDR requires a robust architecture like the SCA along with a set of software

engineering skills that traditional radio developers usually lack. Because of this gap, some

developers face frustration and serious delays when first introduced to the SCA. This frus-

tration has led some communication engineers to believe that Software Defined Radio makes

the implementation of wireless technology more complicated. It is necessary an educational

document which introduces radio engineers to the concepts and techniques used in the SCA,

and similar architectures, to catalize the development of SDR technology.

Besides the steep learning curve, communications enginners have performance concerns about

the SCA. These concerns (e.g. increased overhead, latency, and memory footprint) further

limit the widespread use of the SCA, preventing the establishment of a self-reinforced positive

trend. Early implementations of the SCA have struggled to meet performance, cost, and

schedule requirements. Arguably, some of the inefficiencies in the SCA have their origin

in the assumption of a General Purpose Processor (GPP)-based platform to perform all

signal processing. Even though it is assumed that GPPs are the easiest devices to program

providing the highest reconfigurability and flexibility, they don’t score so well in the cost,

size, and power efficiency arenas. In order to overcome this limitation, it is necessary to

make better use of specialized hardware optimized for signal processing.

Digital Signal ProcessorS (DSP) are a special kind of microprocessors designed specifically

for digital signal processing and are widely used in real-time applications. Thanks to the

evolution of software development tools, it is possible to implement an SCA framework

using only DSPs. By implementing the SCA on such platform, the flexibility and reusability

delivered by the SCA are complemented with the cost and power efficiency that characterize

DSPs. This implementation will provide insight into the compatibility of DSPs with the SCA

and highlight possible modifications to the architecture to better accomodate for specialized

hardware. This approach will deliver efficient implementatations of the SCA improving its

chances to be accepted by the commercial sector; or launching the development of a close
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relative that better match commercial needs. Either way, it will catalize the establishment

of a positive self-reinforcing trend in the implementation of SDR.

1.2 Contributions

Contributions of this thesis:

• A comprehensive tutorial that introduces new SDR engineers to the SCA

• An open-source, reference implementation of the SCA version 2.2 for the C64 Platform

• A sample SDR application waveform

• A simplified, two-step parsing strategy that simplifies the reading of SCA Domain

Profile files

• Performance and memory footprint preliminary profiling results for the framework and

application

1.3 Thesis Organization

This thesis presents a general overview of Software Defined Radios in Chapter 2. An intro-

duction to the Software Communications Architecture (SCA) is given in Chapter 3. This

chapter is presented as a tutorial intended for communications engineers who are new to the

concept of software radios and the software engineering techniques used in modern software

development.

Chapter 4 describes the porting of the Open-Source SCA Implementation::Embedded (OSSIE)

framework to the C64 platform. A detailed explanation of the tradeoffs and design decisions

faced during development are explained. The tools used and the platforms are also men-

tioned.
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Chapter 5 presents preliminary profiling and benchmarking results. These results, were

obtained from a non-optimized version of the framework and provide the reader with a

reference to evaluate the advantages of this approach. Based on these results, developers can

decide if this approach can alleviate some of the particular needs of their own developments.

Chapter 6 presents the conclusions and future work.



Chapter 2

Background

2.1 Software Defined Radios

Software Defined Radio (SDR) is a relatively new approach to develop wireless communica-

tion systems. SDR presents a framework to develop flexible, reconfigurable devices intended

to alleviate some of the issues arising from the wireless industry’s evolution. The term SDR

was coined by Joe Mitola in 1991. Because there is no official definition of SDR, the term

is interpreted different ways. However, a good working definition used within the context of

this thesis is:

“A radio that has its physical layer behavior primarily defined in software; ac-

cepts fully programmable traffic and control information; supports a broad range

of frequencies, air interfaces, and application software; and changes its initial

configuration to satisfy user requirements.”[18]

The main idea behind SDR is to push signal processing as close to the antenna as possi-

ble. By doing this, most radio functionality can be perfomed by processing signals digitally,

allowing the reuse of the hardware platform. This allows a greater radio reconfigurability

6
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Figure 2.1: Model of a Software Defined Radio

over conventional radios, like cellular telephones, whose functionality is limited by hardware

or fixed in software. A pictoric representation of a Software Defined Radio is shown in Fig-

ure 2.1. Performing typical communication tasks, such as demodulation, decoding, filtering,

or equalization, using digital signal processing does not necessarily qualify the device as a

Software Defined Radio.

SDR presents multiple advantages for user and service providers, viz:

• Reduced content of expensive custom silicon

• Reduced parts inventory

• Ability to ride declining prices in computing components

• Use of cheaper RF components (compensating with DSP)

• Better reuse of intellectual property

• Lower development cost

• Faster time to market

• Better support for users with special needs

In a way SDR are future-proof devices, which can be upgraded at will. The wireless in-

dustry has recognized and accepted the advantages of SDR. Due to its enhanced flexibility
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and quick development, a software-oriented implementation is the logical option when de-

veloping wireless technology, provided that design and operational constraints can be met.

Communications engineers have been following this approach for a long time, implementing

in software every possible component in their designs (e.g. modern cell phones and base

stations).

SDR is a multidisciplinary field that requires developers to understand many areas of engi-

neering. A deeper explanation of each of all these areas is beyond the scope of this work.

The interested reader should refere to [18] for a detailed explanation of SDR and their im-

plementation beyond the architecture scope.

2.2 Related Work

From the many different ways existent to implement an SDR, there are a few approaches and

architectures that are worth explaining to better understand the scope of this thesis. First,

this work deals primarily with the Software Communications Architecture (SCA), a well

known SDR standard developed by the US Department of Defense. The SCA architecture

and charactersitics are explained in detail in the next chapter. Following, there is brief

introduction to different alternatives to implement SDR other than the SCA.

2.2.1 NASA’s Space Telecommunications Radio System

The National Aeronautic and Space Administration (NASA) is developing an open archi-

tecture description for software defined radios (SDR). The Space Transceiver Radio System

(STRS) SDR architecture provides architecture level specifications for hardware and software

development to abstract the software waveforms from hardware platforms. The architecture

strives to support existing (e.g. legacy) communications needs and capabilities while provid-

ing a path to more capable, advanced network connectivity that promotes scalable, modular,
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reconfigurable, and upgradeable functionality and features.

The STRS architecture consists of both a software architecture and hardware architecture

specification. The architecture defines the functionality and the component interfaces re-

quired to build a software defined radio. In addition, the architecture details the process

for developing STRS compliant waveform applications and operating environment software.

Support activities include a waveform library, testing and certification tools for the wave-

forms and infrastructure, and a testing methodology. The architecture specification describes

roles for the mission users and developers to utilize and maintain the architecture. Typical

missions or mission characteristics are divided among mission classes to describe implemen-

tations and provide an acquisition strategy across the class for cost savings.

The STRS has similar goals to those of the SCA. STRS defines a modular architecture

to implement software defined radios. This architecture focuses on component reuse and

portability. A STRS waveform is similar to a SCA waveform in its definition and that is

implemented as “a re-useable, portable, executable software application that is indepen-

dent of the [radio] system operating system, middleware, and hardware.” Therefore both

specifications have many similarities. But they are different. For example, one of the ma-

jor goals of the STRS software architecture is to enable software portability and waveform

abstraction. However STRS strives to minimize required resources (e.g. power, mass) for

the constrained space case. Similar to the SCA Abstraction is provided by identifying the

interfaces (e.g. application programming interfaces) between software layers which provides

application software development flexibility and portability. Similar to the SCA , the STRS

architecture specification defines a minimum POSIX application environment profile (AEP)

for the allowed operating system (OS) services. However, this layer can either consist of

a compliant POSIX RTOS, or by a POSIX AEP Abstraction in conjunction with a non-

compliant RTOS. In addition to this POSIX subset, the infrastructure provides APIs that

are more infrastructure specific, and not provided by POSIX.

There are three key differences, however between current STRS definition and the SCA. The
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STRS architecture has a smaller footprint since it does not support the dynamic assembly of

waveform components. That is, the allocation of the components is defined when the wave-

form is built, not when the waveform is deployed. Space mission scenarios require rigorous

testing of the software with identical hardware on the ground in a static configuration before

they are deployed, for validation. This does not preclude uploading new waveforms, but

they are developed and compiled on the ground for the exact target platform. The current

SCA requires considerable memory footprint to enable this dynamic configuration, which is

a premium for radiation hardened electronics. In the second difference, the STRS waveform

application uses the services in the form of specifically defined Application Programmer In-

terfaces (APIs) provided by the architecture. This approach will provide portability for the

waveform, since the services have been standardized by the architecture. The standard ser-

vices are designed to reduce the time to port waveforms from one platform to another since

the same set of interfaces and services are provided by each platform. The last difference

is the assumtion of a GPP-centric underlying platform assumption made in the SCA. This

is an important aspect for the STRS architecture, since it is expected that due to the fre-

quencies (¿2 GHz) and anticipated growth in data rates, signal processing will be performed

in specialized devices (FPGAs, DSPs, and ASICs). Rules addressing this abstraction to the

specialized hardware are part of the architecture specification.

STRS will continue to work with the SCA community to leverage each others approach.

APIs and services developed under early Clusters of the SCA are beginning to emerge and

will be reviewed for applicability to STRS. For a complete description of NASA’s STRS refer

to [13].

2.2.2 GNU Radio

GNU Radio is an project from the open source community that provides a free framework

for building and deploying software radios. Waveforms are built using a combination of

Python code and C++ processing blocks. Python code provides high level organization,
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management, user interfaces and other non performance-critical functions.

From the Python point of view, GNU Radio provides a data flow abstraction. The funda-

mental concepts are signal processing blocks and the connections between them. Each block

has a set of input ports and output ports. Each port has an associated data type. From

the high level point-of-view, infinite streams of data flow through the ports. At the C++

level, streams are dealt with in convenient sized pieces, represented as contiguous arrays of

the underlying type

GNU Radio provides some example applications to receive FM broadcasts and a complete

implementation of an ATSC digital HDTV transmitter and receiver as well as a library of

signal processing blocks. The programmer builds a radio by creating a graph (as in graph

theory) where the vertices are signal processing blocks and the edges represent the data flow

between them. The signal processing blocks are implemented in C++. Conceptually, blocks

process infinite streams of data flowing from their input ports to their output ports. Blocks’

attributes include the number of input and output ports they have as well as the type of

data that flows through each. The most frequently used types are short, float and complex.

One of the most important contributions from the GNU Radio community is the Universal

Software Radio Peripheral, a low cost ADC board that connects to a PC through USB. The

USRP consists of a small motherboard containing up to four 12-bit 64M sample/sec ADCs,

four 14-bit, 128M sample/sec DACs, a million gate-field programmable gate array (FPGA)

and a programmable USB 2.0 controller. Each USRP supports four daughterboards, two

for receive and two for transmit. RF front ends are implemented on the daughterboards.

A variety of daughterboards is available to handle different frequency bands. For amateur

radio use, low-power daughterboards are available that receive and transmit in the 440 MHz

band and the 1.24 GHz band. A receive-only daughterboard based on a cable modem tuner

is available that covers the range from 50 MHz to 800 MHz. Daughterboards are designed

to be easy to prototype by hand in order to facilitate experimentation.

For more information on GNU Radio and the USRP refer to [3].



Chapter 3

Introduction to the SCA

The Software Communications Architecture (SCA) is an open architecture developed and

mandated by the Joint Tactical Radio System (JTRS) program of the US Department of

Defense (DoD). This program was created to provide the US military with a family of digital,

programmable, multiband, multimode, modular radios that would alleviate the communi-

cation interoperability problems existing among all different branches of the military. In

1999, JTRS contracted the Modular Software-defined Radio Consortium (MSRC), formed

by Raytheon, BAE, ITT, and Rockwell-Collins, to develop and validate the SCA.

The SCA provides the architecture necessary to achieve the JTRS goals of interoperability

and flexibility. The SCA governs the structure and operation of SDR developed under its

guidelines, and ensures that hardware and software elements operate in harmony within

the JTRS[19]. The SCA relies on commercial off-the-shelf (COTS) components, standard

interfaces, and well-known design patterns to provide an operational environment to manage

and operate SDR applications. The SCA provides platform independence and enhances IP

reuse. These characteristics translate into easier, faster development of flexible, maintainable,

upgradeable applications.

The goals of the SCA are:

12
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• An open system architecture (enables third party participation in developing compo-

nents, frameworks, and tools)

• Cost effective utilization of COTS technology

• Waveform1 portability

• Software reuse

• Interoperability - with legacy communications systems and across all JTR sets

• Technology insertion

• Hardware abstraction

To achieve its goals, the SCA abstracts the application from the platform (hardware, op-

erating system, and transport mechanism) to enable portability, improve component reuse,

and enhance insertion of COTS components. This platform independence is delivered by

following an object-oriented approach and by specifying an operational environment, which

includes an operating system, middleware, and a core framework. This Core Framework

(CF) defines a set of standard interfaces that control the deployment, configuration, and

operation of waveforms and their components. Finally, the SCA specifies a standardized

way of describing components and applications. The SCA makes an effort to include COTS

components into the specification. This reduces costs and obsolescence risks.

However, flexibility and platform independence come with a price. Increased overhead, la-

tency, and memory footprint are direct consequences of following the SCA. Some of these

inefficiencies have their origin in the assumption of a modular, reconfigurable platform con-

taining at lest one General Purpose Processor (GPP). This assumption poses stringent re-

quirements to support dynamic resource allocation, steering the architecture to depend on

1Unlike the traditional definition by radio engineers, a waveform in the SCA context is the set of transfor-

mations applied to information that is transmitted over the air and the corresponding set of transformations

to convert received signals back to their information content. [19]
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CORBA middleware to enable distributed processing. This CORBA dependency for inter-

component communications raises performance concerns among the SDR community [14],

[16], [17]. These concerns are based on the assumption that CORBA overhead will over-

whelm processing elements and impose a throughput limitation much lower than that of a

static, non-CORBA system.

It is important to note that the SCA is not the only, and not necessarily the best architecture.

An SDR can be implemented by following a totally different approach and still provide the

advantages listed in Section 2.1. The SCA was developed having the particular goals and

priorities of the US DoD. Other entities may not find the SCA a perfect fit for their needs.

For example, some commercial companies may find lower development cost and Intellectual

Property reuse more important than frequency agility or waveform portability. However,

there are valuable elements in the SCA that are worth understanding and applying if SDR

designers are to benefit from the important work that has been done by the SCA community.

Thanks to the standardization of the SCA, third parties have been able to develop tools

that greatly simplify the implementation of the SCA (e.g. MPRG’s OWD[8], Zeligsoft’s

Component Enabler [12], and PrismTech’s Spectra [10]). These tools abstract developers

from most of the architecture’s specifics and let them focus on developing application wave-

forms. In order to help developers understand what happens behind the tools, the following

sections describe in more detail the specifics of the SCA. The rest of the chapter explains

the Software Communications Architecture and the software engineering techniques used in

modern software development to communications engineers. This chapter explains how to

develop SDR following the SCA and serves as an introductory reference for new engineers.

It is intended to reduce the lerning curve for new software radio engineers. A basic knowl-

edge of Object-Oriented programming is assumed. Using this tutorial, developers can be

introduced to the SCA in a friendly way, minimizing the confusion and uncertainty that the

SCA specifications often causes to beginners.
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3.1 SCA Specifications

The SCA specification consists four major areas:

• Software Architecture Definition.

Arguably the most important part of the SCA, defines the structure of SCA imple-

mentations by following a component based approach. We will focus on this area and

explain further in the following sections.

• Hardware Architecture Definition.

Enhances hardware abstraction by representing hardware components in an object

oriented approach

• Security Architecture Definition.

Defines security requirements, boundaries, and functions for the JTRS. This section is

of vital importance for military systems although not required by all other applications

• Application Program Interfaces.

A standard set of predefined interfaces required for component reuse. These interfaces

are defined for complete applications first. They will eventually evolve to encompass

individual components.

Even though all parts of the SCA play an important role in the specification, this thesis

focuses on the Software Architecture Definition. The following is a more detailed description

of the Software Architecture.

3.2 The Software Architecture

The software architecture is based on open infrastructure software for managing and inter-

connecting application resources in a distributed computing environment. It exploits well
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known software design patterns [15] and relies on COTS technology. The SCA software

structure, shown in Figure 3.2 [19], divides the system in two layers:

1. Operational Environment

• OS

• Middleware

• Core Framework

• Services

2. Applications

The services included in the SCA operating environment are: the Event Service, Naming

Service, and Log Service. These services support framework and application operations by

enabling communication and location of components and providing the means for storage of

records during system operation. The remaining parts of the SCA software architecture are

described in more detail next.

3.3 The SCA Operating Environment

As its name indicates, the SCA Operating Environment (OE) provides the elements necessary

to run applications. The SCA goals of enhanced component reuse and technology insertion

are achieved by the abstraction from the underlying platform provided by the OE. From

the application’s perspective the OE is always the same, no matter how different the actual

physical and logical platforms are. This unified OE is achieved by abstracting hardware

components, device drivers, and transport mechanisms. The underlying platform can be

composed of one or multiple processors, of different architectures and characteristics, and

distributed across different boards, computers, or networks. All this being transparent to

applications. The OE also provides common mechanisms to manage and control applications



Carlos R. Aguayo Gonzalez Chapter 3. Introduction to the SCA 17

Figure 3.1: SCA Software Structure

and their components. This way, application components also have a layer of abstraction for

their particular implementation, presenting always a known interface to other components

and management elements. Using this approach, a component can be implemented using

specialized hardware or software; which can be written in different programming languages

(e.g. C, C++, or java); or can be optimized to run on one particular platform or another; and

that makes no difference in the way components are deployed, connected, and managed when

creating a particular application. The OE is divided into layers which provide increasing

abstraction levels and are described in the following subsections.

3.3.1 Real-Time Operating System

The Real-Time Operating System provides the first layer of abstraction from the hardware.

The RTOS provides multithreaded support for applications and the CF. In order to enhance

portability of applications, the architecture requires a Portable Operating System Interface

(POSIX) standard compliant RTOS. In keeping with the requirement to be scalable to
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platforms that are resource limited, the SCA defines an Application Environment Profile

(AEP), which is a subset of POSIX containing only those elements required to support

SCA functionality. While CF components are allowed to use the complete set of interfaces

provided by the RTOS, applications are only allowed to use the services defined in the SCA

AEP. This restriction is necessary for portability purposes. A notional relationship of the OE

and Applications to the AEP is shown in Figure 3.2 [19]. The RTOS provides the following

services:

• Process management

• Process creation

• Inter-process communication

• Timing services

• Input/output management

• Scheduling management (for real time OS)

• File Systems

3.3.2 Object Request Broker

The Common Object Request Broker Architecture (CORBA) is the backbone of the soft-

ware architecture. The SCA indicates the use of minimum-CORBA, as standardized by

the Object Management Group (OMG) [1], to provide transparent exchange of information

across different components. This middleware provides a layer of abstraction between the

application and the specifics of the RTOS and lower layers. It provides a flexible flow of

information across the software bus.
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Figure 3.2: Notional Relationship of OE and Applications to SCA AEP
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CORBA provides a component-oriented system with the ability to distribute applications

seamlessly. In a given appliation, different components can be deployed on different proces-

sors, platforms, boards, computers or networks and yet appear as if they were local to

the application. Even though CORBA is not the only available middleware (Microsoft’s

DCOM [6] and Sun’s Java/RMI are other examples) its simplicity, openness, and platform

independence made it the preferred option. Because CORBA is only a specification, it can

be implemented for any platform and operating system, including Linux, Windows, and any

other real-time OS, allowing clients to perform requests on remote servers as a simple local

call, independently of the actual location of the server. The logical bus delivered by the ORB

enables the platform independence and flexibility of deployment necessary for achieving the

envisioned waveform portability.

There have been concerns about the performance overhead cost of a CORBA implemen-

tation that would overwhelm the whole system. While this is a valid concern, there is a

great variety of highly optimized CORBA implementations which reduce the performance

penalty (e.g. omniORB [7] and PrismTech’s e*ORB [10]). Most of CORBA delays are due

to transport mechanisms [9]. The standard transport protocol distributed with CORBA im-

plementations is the Internet Inter-ORB Protocol (IIOP) which relies on TCP/IP, causing

long and non-deterministic transport delays. In order to avoid this dependency on IIOP, the

OMG developed the Extensible Transport Famework (ETF) which allows custom, optimized

transport implementations to be plugged into the ORB.

CORBA is a core part of the SCA. Even when development tools can isolate developers from

the details of CORBA, it is important for SCA SDR engineers to have a good understanding

of it. An in-depth description of CORBA is beyond the scope of this thesis; however, we

will describe in one paragraph how CORBA works from the SCA perspective. First, any

CORBA component is born by defining its interfaces in IDL. These IDL interfaces are passed

through the specific IDL compiler of the ORB implementation (omniIDL for omniORB or

idlcpp for e*ORB). This compiler will create the mappings of the interfaces to the specific

platform where they will be deployed (e.g. C, C++, java, etc). The compiler creates two
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Figure 3.3: Communication Between CORBA Components

different sets of bindings: one skeleton for servants; and one stub, for clients. In the C++

case, the skeleton contains a set of pure virtual functions that implement the interfaces

defined in IDL. These virtual functions have to be overwritten by the actual functional code

when implementing the servants. The stubs contain definitions of the same functions but are

intended to be included by the clients when requesting a service. At runtime, the components

are registered with the ORB. A client needs a CORBA object reference to interact with a

server, usually getting it using the naming service. Once the client has a reference to the

server the requests can be made using the local stub as if both were collocated. Once the

request has been sent, the ORB takes control. It finds the servant, delivers the messages, and

return the results, all of these actions performed transparently for the client. This process

is shown in Figure 3.3.

3.4 The SCA Core Framework

Before explaining the details of the SCA Core Framework (CF), it is necessary to introduce

the concept itself. A framework is a set of cooperating classes that make up a reusable design

for a specific class of software [15]. A framework defines the architecture and other subtle
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issues in a way that is optimized for a certain domain, allowing developers to focus on the

important aspects of the applications. The SCA CF is the heart of the software architecture.

The CF is integrated by a set of open interfaces and services which provide application

designers with a common way of managing application waveforms and its components. It

has its foundation on well known Software Design Patterns and consists of:

• Base Application Interfaces

• Framework Control Interfaces

• Framework Services Interfaces

• Domain Profile

As mentioned before, the SCA CF interfaces are defined in the CORBA Interface Description

Language (IDL). The CF IDL relationships are shown in Figure 3.4 [19]. These IDL interfaces

define the methods and attributes required to describe a component. Interfaces described in

IDL are programming language independent and can be compiled in a variety of languages,

including Java and C++.

3.4.1 Base Application Interfaces

Base Application Interfaces are implemented by all application components. It includes

the Resource interface, shown in Figure 3.5, which provides a common interface for the

control and configuration of software components. Every component in an SCA waveform is

considered a Resource. When creating an SCA component, a developer must implement every

method in the Resource interface in addition to the particular component’s functionality.

This interface enables component processing control (i.e. start and stop behavior). It inherits

from the following base interfaces:

• LifeCycle used to initialize or release the Resource
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Figure 3.4: SCA CF IDL Relationships
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Figure 3.5: Resource Interface UML Model

• TestableObject used to test Resource (i.e. BIT)

• PropertySet provides operations to configure and query Resource properties.

• PortSupplier provides an operation to get a port object reference

A UML model of the Resource interface is presented in Figure 3.5 [19]. Besides Resource,

the Base Application Interfaces include Port and ResourceFactory. The Port interface is

used to connect Resource components. The ResourceFactory is an optional interface, which

is modeled after the Factory design pattern [15] and is used to create and tear down Resource

components.

We are going to explain the concept of “port” and the Port interface because of its opera-

tion can be somewhat confusing, especially for developers not familiar with component-based

software. A “port” is a logical element that allows a component to request or provide infor-

mation. Every time a component exchanges data or control information with a component

other that the CF, it does it through a port. Ports are classified into UsesPort and Pro-

videsPort. From the client-server point of view, the client “uses” the port and the server
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“provides” it. “Ports” can implement one or more IDL interfaces, however, a “uses” port

must have a pointer to the right stub when connecting to a “provides” port.

The Port interface, as can be seen in Figure 3.4 (top left), does not inherit from another

interface and no interfaces inherit from it. This interface provides components with the

connect and disconnect functionality necessary to assemble waveforms. Because only the

component using the port needs to keep a pointer to the provider, only the user component

needs to implement the Port interface.

3.4.2 Framework Control Interfaces

The Framework Control Interfaces provide management and control behavior to the CF.

Thanks to these interfaces, it is possible to deploy, configure, and manage all different com-

ponents in the system in a consistent way. This set of interfaces can be further divided in

two: Device-related Interfaces and Domain Management Interfaces.

The Device-related interfaces allow the interaction with physical hardware devices by provid-

ing a layer of abstraction for the rest of the framework. This abstraction allows non-CORBA-

enabled elements to interact with other components in the application and allows the frame-

work to control them. These interfaces are of particular interest to hardware engineers and

sofware engineers traditionally in charge of developing the enabling drivers. Device-related

interfaces, shown in Figure 3.6, include: Device, LoadableDevice, ExecutableDevice, Aggre-

gateDevice, and DeviceManager

The Device interface provides the framework with a logical representation for simple hard-

ware devices. The Device interface is a special kind of resource that acts as a proxy with

the ability to interact with a particular piece of hardware. Typically, there is one Device per

hardware device. This interface also provides state management and defines the capacity

model of the physical device. An ASIC or a dedicated piece of hardware is a typical example

of physical hardware represented by the Device interface.
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The LoadableDevice interface extends the functionality of Device. It adds software loading

and unloading capabilities to modify the runtime behavior of the physical element. FPGAs

are typical examples of hardware components that are represented with this interface.

ExecutableDevice interface expands the previous interface by adding execute and terminate

behavior. Typical examples for this interface are General Purpose Processors (GPP), but any

processor with multithreaded capabilities can be represented by it. Depending on the under-

lying OS, the execution capabilities can be applied to instantiate a new program (process)

or a new function (thread). The ExecutableDevice interface is intended to launch Resource

components. In a way, it has the same functionality as a ResourceFactory. The difference

between ResourceFactory and ExecutableDevice is that an ExecutableDevice can be launched

remotely by a DeviceManager and be instantiated dynamically, allowing runtime reconfigu-

ration of the physical platform (e.g. adding new processing boards to a deployed system).

AggregateDevice is sort of a grouping interface. It is used to represent composite devices,

which can be made of multiple logical devices but present a single interface to the rest of

the domain.

The last of the device-related interfaces is DeviceManager. This interface is used to manage

a set of logical devices and services. Usually, this interface is used to represent a CORBA-

enabled board. When instantiated, DeviceManager creates a file system for the board it

represents and launches all the logical devices under its control as specified in the Domain

Profile. DeviceManager also obtains the location of DomainManager and registers itself in

the domain. An explanation of the information contained in the Domain Profile will be given

later in this work. Figure 3.6 shows the UML models for the family of Device Interfaces.

So far, all the interfaces in the CF are dependent on the particular waveform being im-

plemented or the specific platform used. We will call them application-dependent. The

remaining interfaces are implemented by framework providers and have identical behavior,

independently of the application and platform they are supporting. Domain-Management

Interfaces allow a centralized entity to have control over the whole radio domain. There are
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Figure 3.6: Device Interface Family UML Model

three main interfaces in this category: Application, ApplicationFactory, and DomainMan-

ager.

The Application interface is modeled after the “Container” pattern [15]. As the name of the

pattern implies, this interface provides a container for resources that make up a waveform.

It allows the CF to interface with the waveform in a general way, without knowing the

particular application that was instantiated. In other words, a waveform will be treated

the same way no matter if it implements WCDMA or 802.11g. This interface allows the

interaction with the waveform for control, configuration, status, and tear-down. When the

application is terminated, this interface will return the allocated capacities to host devices.

The ApplicationFactory interface, which is modeled after the “factory” design pattern [15],

is used to create an instance of a specific type of application in the domain. The Applica-

tionFactory provides a general procedure to instantiate waveforms, but obtains the details of

which particular application from outside the framework implementation. These details are

provided by the user by means of the Domain Profile. ApplicationFactory reads the Domain

Profile, explained in Section 3.4.4, to obtain a list of the components that comprise the appli-

cation, their location and their respective connections. With this knowledge, the application

factory allocates capacities in the required Devices, launches the required components, es-
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Figure 3.7: Application Factory Behavior Instantiation/Deployment

tablishes the respective connections, and performs the initial configuration and initialization.

The implementation of ApplicationFactory should find the best match to allocate component

based on the property model. However, the developer can force a deployment layout by pro-

viding a DeviceAssignment sequence. This sequence is a list of component-host device pairs.

When ApplicationFactory is establishing the connections between all different components,

it calls getPort from the PortProvider interface to get a reference to both the “uses” and the

“provides” ports. It then calls connectPort in the usesport with the provider as a parameter.

The uses port narrows this reference to the expected interface and stores it. After creating

an application ApplicationFactory returns an instance of the Application interface to allow

the interaction with the newly created waveform. Figure 3.7 provides a graphical description

of the simplified operation of ApplicationFactory.

The DomainManager interface controls and maintains the overall state of the radio. It

creates a FileManager that will enclose the FileSystem(s) of every DeviceManager under its

domain, as explained in the next subsection. At instantiation, DomainManager also sets up

the naming context for the radio in the CORBA naming service. DomainManager provides
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registration interfaces for DeviceManagers, Devices, Applications and Services. It manages

the access to registered device managers and installed applications. It also provides the

interfaces for user interaction and user interfaces.

3.4.3 Framework Services Interfaces

The last set of interfaces in the CF are Framework Services Interfaces which support both

core and non-core applications. This set of interfaces includes three interfaces that are used

by clients for all file access:

• File This interface provides access to files within the radio. It provides access to basic

file operations, e.g. read, write, close, etc.

• FileSystem This interface provides remote access to physical file systems. It allows

creation, deletion, copying, etc. of files. Typically a FileSystem is limited to one piece

of hardware or a single OS.

• FileManager This interface allows the management of multiple distributed FileSys-

tems. It can be seen as a root file system which mounts and unmounts other file

systems. In fact, it looks like a FileSystem to the client.

3.4.4 Domain Profile

All different elements of the SCA Software Architecture –hardware devices, software com-

ponents, and waveforms– are described by a set of files that are collectively referred to

as the Domain Profile. These files describe the interfaces, functional capabilities, proper-

ties, inter-dependencies, interconnections, and logical location of each and every component

within the domain. These descriptions are provided in eXtensible Markup Language (XML)

files. A visual description of the relationships among Domain Profile descriptors is shown in

Figure 3.8 [19].
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Listed below are the eight different kinds of XML files in the Domain Profile.

• Software Package Descriptor (SPD) describes component (CORBA and non-

CORBA) implementations

• Property File (PRF) describes properties for a component.

• Software Component Descriptor (SCD) describes a CORBA component charac-

teristics

• Software Assembly Descriptor (SAD) describes an application’s deployment char-

acteristics

• Device Configuration Descriptor (DCD) describes configuration characteristics

for a DeviceManager

• DomainManager Configuration Descriptor (DMD) describes configuration char-

acteristics for a DomainManager.

• Device Package Descriptor (DPD) identifies a class of hardware device and its

characteristics

• Profile Descriptor describes a type of file (SAD, SPD, DCD, DMD) along with the

file name.

All different files in the Domain Profile have important functions. However, some descriptors

of special importance for understanding the SCA Software Architecture are described below.

Application waveforms are described by the SAD file. It includes a list of the component

instances and their implementation, their logical location requirements as well as the con-

nections between them. The SAD file references an SPD file for each of the components

in the waveform. The SPD file describes one or more implementations of the components.

The interfaces provided and used by each component are described in the SCD file, and a

reference to this file is included in the SPD. The particular properties of each component
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Figure 3.8: XML Domain Profile Relationships

are described in the PRF file. A property is the representation of any physical or logical

characteristic. Platform characteristics are described by the DPD and DCD, both are also

known as the Device Profile. A hardware component is described by a pair of DPD and

SPD. The DPD describes the hardware device while the SPD does the same for the logi-

cal part. The DPD also references a PRF file which describes the properties of the device

being deployed such as serial number, processor type, and allocation capacities. The DCD

contains a list of the devices initially deployed at startup by the DeviceManager and the

required information to locate the DomainManager. All these descriptors together are used

by developers to represent hardware platforms and application waveforms, their logical and

physical characteristics as well as their deployment layout.
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3.5 SCA Waveforms

SCA waveforms are reusable, portable, modular, distributed applications dedicated to per-

form radio signal processing. SCA waveforms are made from one or more Resource compo-

nents. Waveforms are described by a SAD file and deployed by the CF ApplicationFactory.

The waveform components send and receive data and control information through the

CORBA logical bus. The portability of SCA waveforms is enabled by the abstraction of

the underlying platform provided by the Operating Environment. The application developer

does not need to know the underlying platform or final deployment configuration at devel-

opment time. Those details are sorted out at runtime by the CF with information obtained

from the domain profile.

Each application component should perform exactly operation, although the optimum gran-

ularity is still a research topic and the tradeoff between reusability and overhead should

be considered. Each component is described by an IDL interface and must implement the

resource interface besides the particular interfaces for additional data or control information.

For data exchange usually the interface will be push packet(), as presented in the SCA API

building blocks [19]. A component can have as many ports as needed, and can be connected

to as many other components as necessary. The only requirement is to support the Resource

interface so the CF can manage it.

Proper development of SCA waveforms involves building a waveform analysis model (develop

UML models and simulations), building waveform language interfaces (develop IDL interfaces

and create stubs and skeletons), building waveform component implementations (implement

the actual signal processing components), and integrating waveform components (create the

XML Domain profile). While it is not necessary to follow all these steps strictly, doing

it ensures a smooth path, easier integration, proper waveform documentation, and enables

the application of automatic testing strategies. Fortunately there are tools that can help

developers in every single stage of the development. Some of the tools are distributed for
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Figure 3.9: Domain Manager Boot Up Sequence

free while others require a fee. Regardless, developing an SCA application manually is

difficult and requires time and thorough understanding of the SCA CF.

3.6 SCA Operational Sequence

There are a few steps that are worth explaining to have a better feeling for the overall

operation for when it is time to run an SCA system. In the first step, a host node (e.g.

a PC) instantiates an implementation of DomainManager. This instance can be launched

manually by the user (start a program) or automatically. Depending on the system, this

node may have a user interface, or not. Before the DomainManager is started, an instance of

the CORBA Naming Service must be launched. At instantiation, DomainManager creates a

FileManager, restores applications that were previously installed, creates a naming context

(similar to a directory), and registers itself with it. After these steps, all that is left for the

DomainManager to do is to wait for a DeviceManager to register into the domain or a user

to install a waveform. A graphical representation of this procedure can be seen in Figure

3.9.

In some platforms that contain more than one processing board, or computer, it is neces-

sary to integrate all different elements into the domain. Processing boards can be added

dymanically to the platform. To make the new board’s resources available to the rest of the

domain, an instance of DeviceManager has to be launched. During instantiation, DeviceM-

anager creates a FileSystem and launches all Devices under its supervision. DeviceManager

requires at least a reference to the DomainManager which can be provided in the form of a

stringified IOR or as a binding name for the naming service. Once DeviceManager gets a
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Figure 3.10: Device Manager Boot Up Sequence

Figure 3.11: Application Create Sequence

CORBA reference of the DomainManager, it registers itself with the domain and makes all

of its devices, and services, available to the rest of the system. A graphical representation of

this sequence of events can be seen in Figure 3.10.

Once the domain has been established, the system is ready to deploy waveforms. The steps

perfomed when creating a waveform are shown in Figure 3.11. First, the DomainManager

instantiates an ApplicationFactory for each SAD file in the domain. The user decides which

application is going to be deployed and requests the specific ApplicationFactory to create

it. The user can also force a particular deployment layout by providing a device assignment

sequence. ApplicationFactory then parses the SAD file to obtain a list of the components

to deploy and their logical location. If the components are assigned to a given Device, then

they are loaded and launched there, if necessary. If they are not listed in the DeviceAssign-

ment sequence, then ApplicationFactory must find a good match based on the configured

capacities of the devices in the system and the allocation requirements of the components.

ApplicationFactory can also request a ResourceFactory to create the required components.

Once all the components have been instantiated, ApplicationFactory proceeds to establish all

the connections, as explained in Section 3.4.2. After the connections have been established,

ApplicationFactory creates an instance of Application and returns its reference to the user.
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3.7 The Open-Source SCA Implementation::Embedded

OSSIE

The Open Source SCA Implementation::Embedded (OSSIE) Project [8] is an initiative by

the Mobile and Portable Radio Research Group (MPRG) at Virginia Tech to provide an

open-source implementation of the SCA. This implementation was developed following the

directives of simplicity and easy expandability. OSSIE is written in C++ and uses omniORB

and the Xerces XML parser, both of which are openly available. OSSIE is developed for

Linux and specifically supports the Fedora distribution. Cygwin or VMWare can be used to

run OSSIE on Windows. The first version of OSSIE was released in July of 2004 and has

been in constant improvement since then.

Although OSSIE is not a “certified” implementation of the SCA for the time being, it

provides an excellent framework for experimental and prototype development due to its

simplicity, shallow learning curve, and free distribution. It only implements the minimum

required elements of the SCA Software Architecture to operate. It also makes some basic

assumptions (e.g. only one implementation per component, a DeviceAssignmentSequence

is provided when deploying a waveform) that simplify the development, making it suitable

for efficient, flexible implementations. An OSSIE release includes source files to build two

libraries: one containing the required XML parsers (ossieparser), and other one containing

an implementation of the SCA CF (ossiecf). Besides these libraries, a sample application

can be obtained which demonstrates the basic usage of OSSIE. Source code for both libraries

and the sample application is released under the LGPL and GPL.

The ossiecf part of the distribution contains implementations of most of the interfaces de-

scribed in the Core Framework. Some of these implementations are application independent

and can be included in any new systems directly. While others are implementation dependent

and need to be rewritten to match the exact requirements for the application. For example,

the implementations of DomainManager and ApplicationFactory can be used directly out
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of the box. Implementations of the Resource interface, and its parent interfaces (LifeCycle,

PortSupplier, PropertySet, etc) are application dependent and are implemented as dummy

interfaces. OSSIE also provides implementation of other application dependent interfaces

that can be used out of the box in most cases. The implementation of ExecutableDevice

was developed for a General Purpose Processor in a PC. The decision of providing empty

implementations of application dependent interfaces was taken to give developers a skeleton

containing the right syntax and structure, facilitating their work.

Other examples of available SCA frameworks are: SCARI from Communication Research

Center Canada [2], dmTK from Harris Corporation [4].

3.8 The Hardware Abtraction Layer – Connectivity

As mentioned before, the SCA is somewhat GPP centric. It assumes that the underlying

platform contains at least one GPP to perform signal processing. However, increasing data

rates and the relatively limited processing efficiency of GPPs, impose serious constrains

for SCA implementations. This the reason why traditional radio developers have relied on

specialized hardware (e.g. DSPs and FPGAs) to implement radio systems for decades. The

SCA community identified these issues and developed a specification to include specialized

HW into the framework, the Hardware Abstraction Layer –Connectivity (HAL-C). These

specification describes a set of APIs that would enable specialized hardware to bypass the

ORB logical bus when connected to another component. In other words, this specification

will allow non-CORBA components executing in DSPs, FPGAs, and ASICs to avoid the use

of CORBA while still maintaining portability.

HAL-C specifies a hardware platform-independent means for communication between soft-

ware components running on specialized hardware. This is achieved by specifying a com-

munications API, minimizing the effect of the actual hardware platforms communication

mechanisms on the software design. The ultimate goal of this API is to reduce the need
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of significan component rewrite during portings. For processing elements that support a

C runtime (e.g. DSPs), the HAL-C API consists of 4 functions that implement retrieving

Endpoint handles, sending data to Endpoints, receiving data at endpoints, and registering

callbacks. For processing elements such as FPGAs, the API consists of a data bus, as well

as associated clock and control signals. The HAL-C APIs are considered part of the SCA

operating environment.

The HAL-C specification is relatively new and needs further refinment. Mixed reviews have

been received while the actual functionality of the specification has been questioned. By the

time of this writing, the SCA version 3.0 has been labeled as “unsupported” in the JTRS

website. In this thesis we follow a different approach to integrate specialized hardware into

the SCA. Given the advances in ORB implementations and the improvements in developing

tools, we integrate DSPs into the SCA as another CORBA-enabled processing element.

This approach enables all the advantages of a full blown implementation of the SCA with

the benefits of an optimized platform for signal processing. The implementation of this

approach is described in detail in the following Chapter.



Chapter 4

Implementing the SCA Core

Framework on a C64 Platform

4.1 OSSIE-TI System Architecture

In this project we designed and developed an SCA implementation for a homogeneous TI

DSP platform. No General Purpose Processors are involved in signal processing. We lever-

aged our existing implementation of OSSIE, an open-source implementation of the SCA core

framework [8], by porting it to the C64 platform. The whole system was developed following

the SCA 2.2.1 specifications and implemented in C++. Minor deviations from the specs were

required which did not affect the functionality or portability of the framework or applications.

Our development environment was TI’s Code Composer Studio running in a Windows ma-

chine. Most of the development was done using the Device Accurate simulator of the C6000.

The final target platform is a Signal Master Quad from Lyrtech. Communications with the

physical hardware was established using a USB JTAG emulator.

38
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Figure 4.1: Software Structure

4.2 Software Architecture

The general software architecture can be seen in Figure 4.1. There, three different com-

ponents of the SCA Operational Environment (OE), the Core Framework (CF), ORB, and

operating system, are shown. We excluded the services (Log, Event, and Naming Services)

from the initial implementation. The purpose of the SCA OE is to abstract the application

from the underlying platform facilitating application development and enhancing portability.

In this project we focused in only including openly available software to reduce development

time. This decision makes it easier for other entities to use our framework. In this project

we used OSSIE as the CF, e*ORB from PrismTech as ORB, and DSP/BIOS as RTOS.

DSP/BIOS is a scalable real-time multitasking operating system designed specifically for
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the TMS320 family of DSPs [11]. It is developed and maintained by Texas Instruments.

DSP/BIOS is built in modules which allows developers to redude the footprint to a mini-

mum by only integrating the modules that are strictly necessary for operation. It supports

preemptive multithreaded operation thanks to a real time scheduler. It also provides mem-

ory management modules for low overhead dynamic memory allocation. The C6000 family

of processors does not include a memory management unit.

The ORB used in this project is PrismTech’s e*ORB SDR C++ version for DSP. This was

a custom port of their commercially available C version. However, Prismtech has released

this version available to the general public [10]. e*ORB is a very optimized, modular im-

plementation of minimum-CORBA as standardized by the OMG. This particular version is

optimized for the C6000 platform. e*ORB also supports the Extensible Transport Layer

(ETF) which allows to plug in optimized custom transports.

The application components are for this framework are developed the same way of traditional

SCA components. Only minor modifications, explained later in the thesis, are required to

adapt them to the real-time scheduler. Another aspect is that different is the access calls

to OS services, which have to compain with DSP/BIOS standards and are no necessarily

POSIX compliant, as required by the SCA.

4.3 Platform

The target platform for this project is the SignalMaster Quad C6416 from Lyrtech [5].

This high performance board contains 4 TI C6416 DSPs and 2 Xilinx Virtex II FPGAs.

The system runs at 720 MHz and has 128Mbytes of SDRAM memory per DSP. A block

diagram of the SignalMaster board is shown in Figure 4.2 [5]. The board has two clusters.

Each cluster contains 1 FPGA and 2 DSPs. The high speed bus between both FPGAs is

implemented using LVDS. The communication between two DSPs within the same cluster

can be implemented using shared memory or a proprietary protocol developed by Lyrtech
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Figure 4.2: SignalMaster Quad C6416 Block Diagram

called FastBus. In this project, only DSPs were used for signal processing and framework

functionality. FPGA operation was limited to inter-DSP communications only.

4.4 Real Time Implementation

4.5 Porting of OSSIE to the C64 Platform

The main task of this project is porting the existing version of OSSIE to the C64 platform.

The original OSSIE runs on an x86 platform, which has a Memory Management Unit (MMU),

over Linux and uses omniORB as middleware. To be able to run the framework on the C64

platform it is necessary to port it to a MMUless system, with DSP/BIOS, and e*ORB.
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As with any other software development project, support tools play a very important role

for its success. The better the tools, the easier it is to perform a port. The original OSSIE

used gcc 3.4 as a compiler. Ideally, no modification should be required in order to comply

with another compiler. However, given the incredible speed at which technology evolves

nowadays, some tools are released before all the expected features are completed. This was

the case for early Code Generation Tools for Code Composer Studio (CCS). In version 5.1.0

there are some features that are not supported, complicating the porting task. It is very

important to note that most of those issues are resolved in later versions, demonstrating

how these great advances in technology better support the idea of software radio and the

adequate reuse of software components and frameworks. One of the issues missing from CCS

is the lack of support of the Standard Template Library (STL) which provides template

classes such as Vector, widely used in OSSIE Linux. Another one is the lack of support for

C++ exceptions, used for error handling and the limited support for templates. Template

parameters are not supported in version 5.1.0 of CCS CGTools. These missing characteristics

forced vast changes in the original OSSIE source code. Because our version of CCS did not

support exception handling, we had to use a different scheme for handling exceptions using

CORBA Environment variables and a set of macros developed by PrismTech and distributed

as part of e*ORB.

From the development perspective, one of the bigger differences between the C6000 and the

x86 families is the lack of a Memory Management Unit (MMU) in the C64. The MMU is

responsible for handling memory access requests. It takes care of virtual memory manage-

ment, paging, memory protection, and bus arbitration. It is in charge of taking pieces of

disperse physical memory and present them to the requesting process as a contiguous block.

In porting OSSIE to the MMUless C64 platform all memory management is responsibility

of the developer and certain OS calls, such as fork(), are not supported.

One of the most important areas in the development of this project is task scheduling in

DSP/BIOS. It is necessary to port all the framework’s system calls to DSP/BIOS, which is

a preemptive, multithreaded real time operating system. This is different from a traditional
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fair-share OS because the active task with the highest priority will be scheduled for execution,

no matter how many other tasks are waiting or for how long. This characteristic allows

deterministic execution, crucial in real-time systems. The DSP/BIOS scheduler allows the

developer to start and stop tasks, as well as to modify its properties. The difference between

DSP/BIOS and a traditional fare-share OS is that in DSP/BIOS the developer is responsible

for the scheduling and close attention must be put in priority assignment since some tasks

may starve.

In an SCA system, only one domain manager is needed while there can be an arbitrary

number of devices, device managers, file systems and applications. For this project, we

decided to separate the computing nodes based on the interfaces they were hosting. The “host

node” hosts an instance of the domain manager, while a “remote node” hosts an instance

of Device Manager and other Devices. This deployment strategy can be seen in Figure 4.3.

There are other possible strategies, for example having a node host both DomainManager

and DeviceManager, while the rest of the nodes in the platforms only host Devices. However,

we decided in this approach to stress out our implementation and see the performance of a

system that would mimic the implementation in a GPP or a PC.

4.6 XML Parsing Strategy and implementation

The SCA specification requires the reading of the Domain Profile at runtime, described in

XML files, to obtain deployment and configuration information. All software components and

waveforms are described in the Domain Profile in XML files. For example, the Application

Factory interface of the CF must read a SAD file in order to know what components are

included in a given waveform and how they are connected. The whole task of decoding an

XML file is a little complicated for a DSP and there are not so many tools available to perform

this task, as there are for the PC world. In order to facilitate the development, reduce

the memory requirements, and speed execution, we developed a two-step parsing scheme
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Figure 4.3: Processing Node Deployment Scheme

designed to facilitate the DSP operation in reading the Domain Profile. In this scheme,

an offline translation of the XML files into a simplified format which is read at runtime

by the framework. The simplified format only takes the most important information from

the profile files and stores it in simple text file with extension .c64 that follows the format

described in Appendix A. The information kept includes all the data that is required for

successful deployment and configuration of waveforms and components: UUIDs, descriptors

locators, connections, identifiers, etc. The information discarded represents information not

indispensable for waveform deployment and operation: descriptions, headers, authors, etc.

We also eliminated the tags from XML by organizing the translated files by location of the

information. Even though the discarder information is important, and therefore must be

provided when developing an SCA component, the main framework functionality does not

requires it for proper operation. This approach allows us to take components and waveforms

developed by third parties and deploy them using our framework on a C64 platform. A

graphical representation of this approach is shown in Figure 4.4. One can argue that this

approach is not SCA compliant. However, having this two-step parsing does not affect
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Figure 4.4: Simplified Parsing Strategy

the design cycle of traditional SCA waveforms and only adds one extra step at installation

time. The savings in time and complexity, along with the uncompromised portability of the

resulting waveforms justify this decision.

We implemented the XML translator in C++ as a stand-alone program. It uses the Xerces

parser and the parser library from the original OSSIE project. The XML to C64 translator

would parse an SCA compliant xml file and gather the required information using the OSSIE

parsers. This required information would be stored in a text file following a preestablished

format. The filenames, except for the extension, and directory structure are preserved. This

simplified C64 files are then parsed at real time by the framework using a simple library also

developed by us.

By following this approach, we comply with the SCA by describing our components and

waveforms in xml, but we simplify the work of the DSP at runtime. All that is required is

running a simple program with the SAD or DCD files as input, and the translator will find

and translate every single xml file involved.
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4.7 File System

Our hardware platform does not have long-term storage capability. Therefore, only a partial

file system is implemented. In this project, we borrow the host’s computer’s hard drive and

file system to be used by the framework. This was accomplished by using the CCS I/O

utilities and the JTAG interface.

To implement the filesystem we relied on IO functions of TI run-time support library. How-

ever, the access allowed by this library is limited. The limitations are found primarily in

directory manipulation. Therefore, functionality such as mkdir, rmdir, mount, and unmount

was not implemented. Only the functionality specified in Table 4.1 is implemented.

Table 4.1: Partial FileSystem Functionality

Interface Operation

read()

File write()

close()

setFilePointer()

remove()

FileSystem exists()

create()

open()

FileManager

4.8 Software Component Deployment

The SCA specifies two equivalent mechanisms to launch software components. One is using

a ResourceFactory and the other one using an ExecutableDevice. In this project we used the
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resourcefactory interface to deploy components in the host node and an ExecutableDevice

for remote nodes. The ExecutableDevice interface typically represents processors with a

multithreaded operating system capable of launching software components. The executable

device has access to the OS directives to start the component. ResourceFactory performs

the exact same functionality, and is used a local tool to deploy components without the need

of including a DeviceManager. To implement these interfaces in DSP/BIOS, we use the task

scheduler. Every time a new component is requested, a new task is created and scheduled.

The resource factory and executable devices are in charge of managing the new task’s priority.

Because of the lack of a memory management unit and long-term storage capability, it is

necessary to have all the tasks that will be scheduled loaded in program memory before the

operation. When all the tasks are loaded, a simple DSP/BIOS directive can include the

tasks into the scheduler. This approach however, trades off memory footprint and dynamic

deployments. It may be possible to have a dynamic loading of program memory, although

we are not aware of it.

4.9 Sample Application

In order to demonstrate the framework functionality, a sample application was developed.

This application is intended for demonstration purposes and nothing else. No extensive

signal processing is performed. The main goal in developing this sample application is to

verify the operation of the framework and to corroborate the feasibility of deploying SCA

compliant waveforms onto the C64 platform.

The sample application included three simple components as shown in Figure 4.5. In this

waveform, a random stream of 1s and -1s is generated by the Modulator component. The

stream is passed to the Channel component which adds Gaussian noise to both the In-

Phase and Quadrature components of the stream. The Demodulator acts as a sink and

only displays the constellation diagram of the signal. A second waveform was developed,
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Figure 4.5: Sample BPSK Application Waveform

Figure 4.6: Sample QPSK Application Waveform

shown in Figure 4.6, in which the Channel and Demodulator components were retained. The

difference came in the Modulator component, which this time was a QPSK modulator. In

the new QPSK modulator, two random streams of 1s and -1s are generated representing the

I & Q channels. These waveforms were successfully deployed on single chip configuration

using the ResourceFactory interface to launch the components. The framework capabilities

were demonstrated by switching back and forth between both waveforms. It is important to

keep in mind that from the framework perspective, there is no difference between deploying

these simple waveforms and deploying more sophisticated ones.



Chapter 5

Results

5.1 Application Deployment

In this section we present the results of deploying applications in our C64 framework. We

are able to successfully deploy both applications described before. We use Code Composer

Studio (CCS) to control the execution, display information and error messages, and input

selection values. At startup, the DomainManager, ApplicationFactory, and ResourceFactory

are instantiated. Immediatelly after all these instantiations, the framework displays a simple

menu and queries the user for the application to install. A snapshot of this stage during a

demonstration is shown in Figure 5.1.

After the selection is made, the requested waveform is deployed. The graphical display ca-

pabilities of CCS are used to visualize the operation of the waveform. A time vs. amplitud

graph is used to display the streams of 1s and -1s generated by the Modulator component,

while a constellation diagram is used to show the signal received at the Demodulator com-

ponent. A snapshot of the operation of the BPSK waveform is shown in Figure 5.2, while

Figure 5.3 shows the QPSK operation. The source code for the framework and applications

is openly available at [8].

49
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Figure 5.1: Demonstration Inital State and Waveform Selection
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Figure 5.2: BPSK Waveform Operation Snapshot
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Figure 5.3: QPSK Waveform Operation Snapshot
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5.2 Profile and Benchmarking

This section presents profiling results of the OSSIE TI CF implementation. Profiling was

performed on the framework and application using two different metrics: memory footprint

and cycle count. The first one is an important metric to represent the extra memory space

necessary to suport the SCA framework. This is a very sensitive are for SDR manufacturers

given that less memory requirements represents cheaper components, smaller buses, smaller

devices, etc. The latter, represents the amount of overhead imposed by the framework in

terms of processing power. This is another important metric because it determines the max-

imum data rate supported by a given implementation. No need to mention how important

this is to radio developers. These results were obtained from a single-chip implementation.

That is all framework and waveform components were collocated within the same processor.

This results do not include the effects of a transport layer. These results were obtained

from a basic implementation, NO OPTIMIZATIONS WERE PERFORMED in either the

framework or the waveform components. All performance tests were carried out using the

C6416 Device Cycle Accurate Simulator and the Code Composer Studio profiler.

It is very important to emphasize that these results represent initial measurements and are

subject to further investigation, validation and more importantly optimization. They only

portray a snapshot in the beginning of an open-source software development.

5.2.1 Memory Footprint

Memory allocation results are obtained from the .MAP file generated by CCS Code Gen-

eration Tools. This file contains a maping of all sections allocated in memory. It includes

program memory and data memory. All dynamic memory allocation requests are served

from a memory pool or heap, which is also included in the MAP file. All profiling results are

presented in 8-bit bytes. It is important to note that each DSP on the SignalMaster Quad

board has 128M of external memory (ERAM) besides the 2K Bytes of on-chip memory
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(ISRAM).

The total memory used by the system is shown in Table 5.2.1. The total memory used by

this system represent little more than 1% of the total memory available for each DSP in the

platform. It is important to note that these results correspond to the single-chip implemen-

tation of both, BPSK and QPSK, sample waveforms. The footprint is directly related to

the application’s functionality and the number of components. Table 5.2.1 shows footprint

breakdown by major ocmponents. CF, parsers, and e*ORB are libraries that are linked

with the final application. The .ERAM$heap field represents the total heap available to

serve dynamic memory allocation requests from the application. The footprint contribution

from other libraries (e.g. Generic Runtime Library, Math Library, etc) is considered un-

der the “Other” category. Figure 5.4 shows a graphical representation of the total memory

allocation.

Core Framework Footprint

The memory footprint requirements for the Core Framework are presented in Table 5.3.

It can be seen that almost 70% of the total memory allocated for the CF comes from the

C++ mapping of the SCA CF IDL interfaces. It is important to note that the cf.idl file

contains all the interfaces defined in the SCA CF, including some that are not used in single-

processor operation (e.g. Device, DeviceManager). A graphical representation of the CF

Table 5.1: Total Memory Allocation

Memory Type Bytes

ISRAM 78096

ERAM 1383145

TOTAL Memory Usage 1461241

TOTAL Memory Available 120000000
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Table 5.2: Major Components Contribution

Memory Type Bytes

CF 556555

Parsers 31511

ORB 212412

Application 385624

Sub-Total 1186102

.ERAM$heap 131072

Other 144067

TOTAL Memory 1461241

Figure 5.4: Memory Footprint Summary
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footprint is shown in Figure 5.5. A know footprint optimization path for the C++ bindings

of IDL interfaces is adding more control to the IDL compiler to enable more selective code

generation (e.g. for specific interfaces generate stub only, or skeletons only, or nothing. This

approach opens the door for potential large improvements depending on how much of the

IDL interfaces are being used. This is a well understood approach although it was not

implemented for this project. Another important qualifier for these results is the absence of

Device-related interfaces. No DeviceManager or Device interfaces were implemented. The

methods in DomainManager relative to Device and service registration and unregistration

are not implemented in this version as well.

The memory footprint occupied by the parsers is shown in Figure 5.6 and Table 5.4.

The different values in subsequent tables represent different sections in the memory map

created by the compiler. A section is a block of code or data that ultimately occupies

contiguous space in the memory map. The compiler creates two basic kinds of sections:

• Initialized sections

.cinit Tables for explicitly initialized global and static variables

.const Global and static const variables that are explicitly initialized and that are

string literals

.pinit Table of constructors to be called at startup

.switch Tables for implementing switch statements.

.text Executable code and constants

• Uninitialized sections

.bss Global and static variables

.stack Stack

.sysmem Memory for malloc functions
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Table 5.3: Core Framework Memory Footprint Breakdown

CF .text .const .far .pinit .cinit .switch total/comp

cf.obj 218880 46386 1444 4 1532 0 268246

cf s.obj 79808 29656 8 4 0 344 109820

Application impl.obj 41440 9574 8 4 0 0 51026

DomainManager impl.obj 27232 3591 8 4 0 0 30835

ApplicationFactory impl.obj 27008 1723 8 4 0 0 28743

Resource impl.obj 20640 5668 8 4 0 0 26320

FileSystem impl.obj 9952 1699 8 4 0 0 11663

FileManager impl.obj 8384 2470 72 4 76 0 11006

File impl.obj 7008 1324 8 4 0 0 8344

PropertySet impl.obj 3456 860 8 4 0 0 4328

LifeCycle impl.obj 1376 724 8 4 0 0 2112

TestableObject impl.obj 1344 700 8 4 0 0 2056

PortSupplier impl.obj 1344 700 8 4 0 0 2056

TOTAL 556555

Figure 5.5: Core Framework Memory Footprint
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Table 5.4: Parsers Memory Footprint by class

Parser .text .const .far .pinit total/comp

PRFSimpleProperty.obj 7040 293 8 4 7345

SADParser.obj 3776 34 0 0 3810

SPDParser.obj 2944 12 8 4 2968

SPDImplementation.obj 2272 45 8 4 2329

Connection.obj 1856 0 0 0 1856

SCDParser.obj 1824 91 0 0 1915

DMDParser.obj 1664 5 0 0 1669

ComponentPlacement.obj 1440 16 0 0 1456

SADComponentPlacement.obj 1408 16 0 0 1424

ComponentAssemblyParser.obj 1376 16 0 0 1392

SADComponentInstantiation.obj 1344 19 0 0 1363

ComponentInstantiation.obj 1056 16 0 0 1072

FindBy.obj 864 0 0 0 864

ProvidesPort.obj 800 0 0 0 800

UsesPort.obj 800 0 0 0 800

Port.obj 448 0 0 0 448

TOTAL 31511
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Application

Table 5.2.1 presents the memory footprint breakdown for the sample waveforms developed.

These results include both BPSK and QPSK components. All the main components in the

application have a very similar footprint as expected. The functionality of these components

is extremely simple and more complex waveforms will require more memory. For the sample

waveforms, most of the memory requirements come from implementing the CF’s Base Ap-

plication Interfaces. Figure 5.7 provides a graphical representation of the memory used by

the sample applications.

e*ORB Footprint

In this section we summarized the memory requirements from e*ORB. These results, shown

in Table 5.2.1, represent a preliminary release of the ORB. Further development and opti-

mization has been performed on e*ORB and these results may not accurately represent the

memory footprint of later releases. No transport layer is included in the results and only the

libraries required for single-processor operation are included. Figure 5.8 presents the results

graphically.

5.2.2 Performance Profile

Cycle requirements were collected for the most significant sections of the OSSIE TI CF

Implementation. In terms of the Core Framework, the sections profiled were Domain initial-

ization and waveform creation. The first one includes Domain Manager Instantiation and

the creation of ApplicationFactory and ResourceFactory. The results of this section are not

application dependent. The latter represents the execution of ApplicationFactory-¿create().

It includes descriptor parsing, task scheduling and initialization, and component connection.

This result depends on the specifics of the intended waveform.
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Figure 5.6: Parser Memory Footprint

Table 5.5: BPSK/QPSK Sample Application Memory Footprint by class

Component .text .const .cinit .far .pinit .switch Total/comp

ModulateData.obj 38624 10240 20 436 4 0 49324

Channel.obj 38592 10164 20 32 4 0 48812

QPSKModulateData.obj 38400 10245 0 16 4 0 48665

AssemblyController i.obj 37920 9954 20 32 4 0 47930

DecodeData.obj 36096 10004 20 436 4 0 46560

ResourceFactory impl.obj 10656 1180 0 32 4 0 11872

C64Demo.obj 39136 20567 140 108 4 0 59955

C64Demo s.obj 22528 16256 0 16 4 336 39140

PortTypes.obj 23264 528 0 72 4 0 23868

PortTypes s.obj 96 0 0 8 4 0 108

TestApplicationFactory.obj 8576 706 20 84 4 0 9390

TOTAL 385624
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Figure 5.7: BPSK/QPSK Demo Application Memory Footprint

Table 5.6: e*ORB Memory Footprint by Library

.text .const .cinit .far .pinit total/lib

e mpoa.lib 87648 1261 124 220 52 89305

e orb.lib 112256 3727 1298 914 80 118275

ec os.lib 3104 96 44 16 0 3260

es etf.lib 1536 0 28 8 0 1572

TOTAL 212412

Figure 5.8: e*ORB Memory Footprint



Carlos R. Aguayo Gonzalez Chapter 5. Results 62

5.3 e*ORB Profiling

The performance of the ORB has a great impact on the overall performance of the system.

This is because all inter-component communications are established using CORBA messages.

Two specific test scenarios were used to generate these results:

Invocation: roundtrip cycle count for a simple method invocation with no arguments.

Marshaling: roundtrip cycle count for a simple method invocation with basic arguments.

Three different argument types were evaluated:

1. Single Data Type

2. Array

3. Sequence1

All method implementations were empty. A CORBA::Environment variable must be passed

as an argument on each and every request due to the lack of exception support. This has to

be done even for interfaces with no arguments defined in their IDL definitions. Client and

Server where launched as different tasks with priorities 2 and 1, respectively.

The e*ORB profiling result for different primitive data types are summarized in Table 5.3.

There are a couple of interesting points in these results. First, there is a big difference

1Both, arrays and sequences with a length of 1024 elements

Table 5.7: CF Tasks Performance Profile

Task Total Cycles Roundtrip Time (sec)

Server Initialization 2365664 3.286E-03

Create Application 10997946 1.527E-02
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between the marshalling of arrays and sequences. Even though they are both the same

length, the array marshalling took approximately 9 times longer to execute. There should

be little difference in performance when marshalling arrays and sequences. This has been

identified by PrismTech as an issue and corrective measures were taken.

The second point is that the very first time a client makes a request to a server, the execution

is longer than subsequent requests. For instance, the first request to invocationBenchmark

for a float takes 4216 cycle while the second takes 4063. This extra delay is due to the binding

of new connections, which is a one-off overhead. Subsequent calls are deterministic. There

are possible optimizations for this delay and PrismTech is performing further investigation

to remove any initial invocation problems if they exist. All results in the Table 5.3, except

the first row, are from deterministic (after the initial) requests. A graphical representation

of the profile is shown in Figure 5.9. After observing the results summarized in this table, it

results evident the need for block processing in an SCA system. It takes 4208 clock cycles

to make a roundtrip marshalling call with a single float, while it takes 6908 clock cycles to

send a sequence with 1024 floats. It only takes 6.74 clock cycles per float element in the

sequence.

5.3.1 Impact on Data Rate Performance

The framework overhead incurred during instantiation and waveform deployment can be

arranged to happen off-line, therefore not affecting the system throughput. The only aspect

of the SCA that impacts the system throughput is the dependency on CORBA for intercom-

ponent commnications. The maximum system data rate depends on many factors: algorithm

processing delays, framework delays, analog to digital conversion rate, etc. In order to isolate

the impact of the framework, we use the results shown in Table 5.9 to estimate an upper

bound for the system data rate. This table shows the number of clock cycles that takes

to send a CORBA message with different parameters to an empty interface in a colocated

server. That is, there are no processing or transport delays.
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Table 5.8: e*ORB C++ for DSPs Marshalling Profile (CPU Clock Cycles)

float char short double long octet boolean UShort Ulong

First inv. 4190 4175 4159 4201 4202 4183 4182 4163 4197

Invocation 4116 4060 4059 4046 4086 4027 4119 4105 4103

Basic Marsh. 4208 4127 4142 4124 4180 4097 4185 4163 4197

Array Marsh. 36445 36143 36223 36644 36334 36136 36146 36177 36280

Seq. Marsh. 6908 5732 6072 8342 6805 5838 5768 6171 6848
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The maximum achievable data rate is given by 1/(Tfr +Tm +Ttr) where Tfr is the delay due

to interface adapters, Tm is the delay due to middleware processing, and Ttr is the delay due

to transport mechanisms. In our system, we are only considering Tm because no interface

adapters are required and no transport mechanisms have been developed at this time.

Tm is given by:

Tm =
Dt · Ss

Np · n
(5.1)

Where Dt is the measured transfer delay as shown in Table 5.9. Ss is the number of samples

per symbol. Np is the packet size and n is the number of bits per symbol. To estimate

the maximum data rate allowed by the framework, we assume Ss = 8 and n = 1. The

clock speed in our system is 720e6. Substituting these values into Equation 5.1 for a single

float type transfer, that according to Table 5.9 takes 4142 cycles, the maximum data rate

achievable is 21,728 bits per second. However, if we consider sending a sequence of 1024

floats, the transfer takes 6072 clock cycles allowing a maximum data rate of 15,177,865 bits

per second. This result highlights the need of block processing when dealing with an SCA

system where SDR developers have to tradeoff latency and performance.
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Figure 5.9: e*ORB C++ for DSPs Marshalling Profile (CPU Clock Cycles)



Chapter 6

Conclusions

Software Defined Radio (SDR) is set to have a major impact on the future of the wireless

industry. From the promise of total waveform portability that captivates the military, to the

ease of adding new standards that attracts the commercial sector; SDR will certainly change

the way we use wireless technology.

The Software Communications Architecture (SCA) provides a robust, well defined infrastruc-

ture to implement SDR. However, its effective utilization requires a set of abilities and skills

that traditional radio engineers need to acquire. The mixture of radio engineering and soft-

ware engineering concepts makes fully understanding the SCA a challenging task. This thesis

provides an educational tutorial that faciliates the introduction to the SCA. In this tutor-

ial, we explain the benefits, drawbacks, and rationale behind some architectural decisitions

made in the SCA. By having a better understanding, it is expected that the user base of the

SCA grows, translating into more and faster improvements to the architecture. Commercial

acceptance is crucial for SCA survival as a self-sufficient standard.

One of the main concerns of applying the SCA is the heavy infrastructure that is required

to support it. Early implementations of the SCA have struggled to achieve performance,

cost, and schedule requirements. Some of these problems can arguably be attibuted to the
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dependency on GPPs to perform all signal processing. In oder to overcome these problems,

we propose to use a more efficient platform. In this thesis, we describe the implementation of

an SCA Core Framework on a TI C64 DSP platform. In this implementation GPPs are only

used to access the host computer’s file system. This approach uses a DSP implementation

of e*ORB to integrate CORBA into the DSP. The funcitonality of the framework is demon-

strated by deploying two different sample waveforms using the same platfrom. Although

both sample applications are simple, from the framework perspective there is no difference

in deploying more complex ones. With this implementation, we demonstrated that DSPs can

be integrated into the SCA without the need of a speciallized hardware abstraction layer.

Profiling results are presented to address performance concerns. The total memory footprint

of our minimum CF implementation is about 1.5 MB, which represents about 1% of the 128

MB available per DSP in our platform. Performance benchmarks showed that, although

using CORBA for intercomponent communcations introduces delays and overhead, the over

all effect can be reduced by sending packets of data instead of single elements.

This project has received mixed reactions when presented in other forums. Most of the

comments come from traditional radio engineers, who do not see the benefits of following

an SCA approach, or from traditional software engineers, who do not see the benefits of

using a specialized platform. These comments highlight the gap between radio and software

engineers. We have to close this gap to obtain all the benefits of SDRs in a cost efficient

way.

6.1 Future Work

Some aspects have to be further studied in order to have a better understanding for the

compatibility with DSP with the SCA and the modifications required to architecture to

better accomodate specialized platforms. It is necessary to develop a transport layer and

integrate it to the ORB. It also necessary to develop a more demanding waveform to stress
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out the framework and see highlight the main benefits of using a DSP platform. Following

is a list with the areas that present research and development opportunities:

• Develop an ETF transport layer for interDSP communications and integrate it into

the ORB.

• Implement an ETF transport layer for interBoard communications which allow the

ORB to operate accross heterogeneous transports

• Develop a more demanding waveform to highlight the benefits of using a DSP platform

• Develop cost effient testing techniques that faciliate the reuse of waveforms

• Provide support for specialized platforms into development tools such as MPRG’s

Waveform Developer to further facilitate the development process of efficient SDR

• Develop metrics and analytical frameworks, which address issues like flexibility and

software reused, that enable formal SDR architectures analysis

• Modify the SCA to define domain-specific frameworks optimized for Wireless Infrastruc-

ture and Cognitive Radio
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Appendix A

C64 Domain Profile Description

This appendix describes the format and content of the Domain Profile files (extension *.c64)

for the TI C64 DSP platform. The following files replace the XML domain profiles described

in the SCA v2.2. These files are used for configuration and deployment of SCA components.

The new format was created to accelerate the porting of the OSSIE framework to the C64

platform. The main objective is to have a lighter alternative to read profiles files without

having to implement a complete XML parsing scheme. In order to stay as close as possible

to SCA compliance, the new profile files are auto-generated from original SCA XML Profiles.

This way, component development is performed following the SCA guidelines, hence enabling

reusability, while facilitating deployment and configuration tasks for the framework on the

C64 platform.

Properties Descriptor (PRF)

Filename.PRF.xml - Filename.PRF.c64

The Properties Descriptor file details component and device attribute set-

tings. For purposes of the C64 custom implementation, Property Descriptor

files will only support simple elements.
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File Content:

N //Total # of Properties

ID 1

Kind 1

Type 1

Value 1

ID 2

Kind 2

Type 2

Value 2

. . .

ID N

Kind N

Type N

Value N

Field Description

N

This field contains the total number of properties described in this file

ID x

Specifies a unique identifier within descriptor
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Kind x

The kind element’s kindtype attribute is used to specify the kind of prop-

erty.

Type x

The Type element is used to specify the value’s data type

Value x

The value element is used to provide a value setting to the properties

element.

Device Configuration Descriptor (DCD)

Filename DCD.xml - Filename DCD.c64

The intent of the DCD is to provide the means of describing the components

that are initially started on the CF DeviceManager node, how to obtain the

CF DomainManager object reference, connections of services to components

(CF Devices, CF DeviceManager), and the characteristics (file system names,

etc.) for a CF DeviceManager.

File Content

ID

Name

DomainManager

Number of Components

Filename Comp 1
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Filename Comp 2

. . .

Filename Comp N

Field Description

ID

The ID attribute is a unique identifier within the domain for the device

configuration. This id attribute is a UUID value.

Name

The name attribute is the user-friendly name for the CF DeviceMan-

ager’s label attribute.

DomainManager

The domainmanager element indicates how to obtain the CF Domain-

Manager object reference.

Number of Components

This element contains the total number of components that are started

up by the devicemanager

Filename Comp x

This element is used to reference a Software Package Descriptor which

describes deployment information for components that are started up on the

device.
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Software Assembly Controller (SAD)

Filename SAD.xml - Filename SAD.c64

The intent of the software assembly is to provide the means of describing the

assembled functional application and the interconnection characteristics of

the SCA components within that application. The component assembly pro-

vides four basic types of application information for Domain Management.

The first is partitioning information that indicates special requirements for

collocation of components, the second is the assembly controller for the soft-

ware assembly, the third is connection information for the various components

that make up the application assembly, and the fourth is the visible ports for

the application assembly.

File Content

ID

Name

AssemblyController

NumberOf Components

ID 1

SPD FileName 1

UsageName 1

NS/ResourceFactory

NSName 1/ResFactID 1
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. . .

ID N

SPD FileName N

UsageName N

NS/ResourceFactory

NSName N/ResFactID N

Number of Connections

ConnID 1

UsesID 1

UsesNS Name 1

FindBy/ProvidesPort?

ProvsNS Name 1

ProvsID 1*

Field Description

ID

The ID attribute is a DCE UUID which uniquely identifies the assembly.

Name

The name attribute is the user-friendly name for the CF Application-

Factory name attribute.

AssemblyController
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The assemblycontroller element indicates the component that is the main

CF Resource controller for the assembly

NumberOf Components

This field indicates the total number of SCA components which comprise

the assembly

ID X

The ID attribute is a DCE UUID that uniquely identifies the component.

It is the component name for the instantiation not the application name.

SPD FileName X

The componentfile element contains a reference to a SPD local file de-

scribing the component

UsageName X

The usagename element contains an applicable name for the component.

NS/ResourceFactory

This Field indicates the way to obtain the CORBA object reference for

the component instance. There are two possible kinds: ResourceFactory,

which indicates that the component has to be launched by a resource fac-

tory; or NS, which indicates that the component shall be located using the

naming service.

NSName X/ResFactID X

The contents of this field depend on the previous field. For NS; The

NSName is a partial name that is used by the CF ApplicationFactory to

form the complete context name. In the event of ResourceFactory, the Res-
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FactID X field refers to a particular CF ResourceFactory componentinstan-

tiation element found in the SAD

Number of Connections

This field indicates the total number of connections required by the ap-

plication

ConnID X

This field contains a user-friendly name to identify the connection

UsesID X

This field identifies the component port that is using the provided inter-

face from the providesport element.

UsesNS Name X

The namingservice element specifies a naming service name to search for

the desired component interface.

FindBy/ProvidesPort?

This field announces if the provides element of the connection is to be

found on the naming service or described by a ProvidesPort element

ProvsNS Name X

The NS Name element specifies a naming service name to search for the

desired component interface. ProvsID X* This field identifies the com-

ponent port that is providing the interface for the usesport element. (This

field is only included in the event that the provide end of the connection is

described by a ProvidesPort)
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Software Package Descriptor (SPD)

Filename SPD.xml -¿ Filename SPD.c64

The Software Package Descriptor is used at deployment time to load an SCA

compliant component and its various implementations.

File Content

ID

Name

PropertyFile

Descriptor

CodeType

FileName

EntryPoint

Field Description

ID

The ID field uniquely identifies the package and is a DCE UUID.

Name

The name attribute is a user-friendly label for the softpkg element.

PropertyFile

The propertyfile element is used to indicate the local filename of the

Property Descriptor file associated with the Software Package
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Descriptor

The descriptor element points to the local filename of the SCD file used

to document the interface information for the component being delivered to

the system.

CodeType

The codetype element will indicate the type of file being delivered to

the system. The valid values for the type attribute are: “Executable”, “Ker-

nelModule”, “SharedLibrary”, and “Driver”.

FileName

This field indicates the local filename of the code that is described by the

softpkg element, for a specific implementation of the software component.

EntryPoint

The entrypoint element provides the means for providing the name of

the entry point of the component being delivered.

Software Component Descriptor (SCD) Filename SCD.xml - File-

name SCD.c64 The Software Component Descriptor describes the ports and

interfaces of SCA components such as CF Resource, CF Device and CF Re-

sourceFactory.

File Content

componentType
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Field Description

componentType

The componenttype describes properties of the component. The com-

ponent types include resource, device, resourcefactory, domainmanager, log,

filesystem, filemanager, devicemanager, namingservice and eventservice.

Device Package Descriptor (DPD)

Not implemented

DomainManager Configuration Descriptor (DMD)

Filename DMD.xml -¿ Filename DMD.c64

File Content

ID

Name

SWPackage

Field Description

ID

The domainmanagerconfiguration element id attribute is a DCE UUID
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that uniquely identifies the DomainManager.

Name

The name field is the user-friendly name for the CF DomainManager

SWPackage

This element refers to the SPD for the CF DomainManager. This SPD

can be used to describe the CF DomainManager implementation and to spec-

ify the usesports for the services (Log(s), etc) used by the CF DomainManager
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