LYOCELL FIBER-REINFORCED CELLULOSE ESTER COMPOSITES – MANUFACTURING CONSIDERATIONS AND PROPERTIES

by

Indrajit Ghosh

Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Chemical Engineering

APPROVED :

Wolfgang G. Glasser, Chairman
Richey M. Davis
Charles E. Frazier

September 8, 1999
Blacksburg, VA, U.S.A.
LYOCELL FIBER-REINFORCED CELLULOSE ESTER COMPOSITES – MANUFACTURING CONSIDERATIONS AND PROPERTIES

Indrajit Ghosh
Prof. Wolfgang G. Glasser (Chairman)

ABSTRACT

Biodegradable thermoplastic composites were prepared using high modulus lyocell fibers and cellulose acetate butyrate (CAB). Two reinforcement fiber types: fabric and continuous fiber tow were used. Fabric had advantages of uniform alignment and easier processing, but lacked the use as a unidirectional reinforcement and a continuous method of matrix application. Three different matrix application methods were screened for both fiber types. Matrix application by suspension of particles in water was not feasible because of particle sizes > 15 µm. The other disadvantages were high moisture absorption during matrix application and void formation during consolidation. Melt processing technique using alternating sandwich structure of fabrics and CAB films produced composites with impressive appearance, low void contents and low moisture absorption. However, SEM results revealed interfacial failure and extensive fiber pull out. Relatively larger fiber and matrix regions were present on the scale of 10⁻³ m. Solution prepregging technique using methyl ethyl ketone (MEK) as a solvent for CAB and continuous fibers as reinforcement produced composites with uniform matrix distribution, high tensile strengths and high modulus, and even wetting of fibers by CAB. A maximum tensile modulus of 21.5 GPa and a maximum strength of 251.7 MPa were achieved for a continuous fiber reinforced composites at a volume fraction of 66.5% compared to 0.8 GPa and 76 MPa for the matrix, respectively. Void contents and water absorption were relatively high compared to comparable carbon fiber composites.
ACKNOWLEDGEMENTS

I acknowledge my foremost indebtedness to Prof. Wolfgang G. Glasser for his invaluable guidance and support during my three years of graduate studies at Virginia Tech. He has been my constant source of knowledge, inspiration, motivation and help to nurture my dreams and prepare myself for the future.

I would also like to extend my gratitude to my committee members, Dr. Charles E. Frazier and Dr. Richey M. Davis, for their invaluable comments and suggestions, and serving as committee members for both M.S. degrees. I acknowledge the help from Mark Flynn with the prepregging equipment, Dr. Slade Gardner and Norman Broyles (Dr. Davis’ group) for the technical know-how, and David Godshall (Dr. Wilkes’ Group) for the much needed last minute DSC scans.

I am thankful to Eastman Chemical Company (Kingsport TN, U.S.A.) and Acordis, The Netherlands, for the financial support and supply of materials for the research. I also like to acknowledge the assistance provided by Carlile Price with the scanning electron microscope, Robert Simonds with the mechanical testing and Danny Reed with the molding hot press.

I express many thanks to all the members in our group (Raj, Jody, Jason, Ulli, Hiro, Kevin, Bob, Razaina and Mazlan) for their technical, scientific and administrative help and providing such a pleasant working atmosphere. In particular, I would like to thank Dr. Rajesh K. Jain for his help at each step of my research work.

I wish to thank my parents, my brother, and sister-in-law for all their motivation and inspiration all through my life. Last, but not at all the least, acknowledgement is due to all my friends in Blacksburg (Varun, Arjun, Prateek, Susan, Tinelle, Elaine, Mark, Shibu, Vivek, Rajiv and ….), and my roommates (Dhruv, Kohinoor, Sendil, Mauro, Satyajit and Wambua) for making my stay at Blacksburg so enjoyable for these last three years.
TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
GLOSSARY	vi
LIST OF TABLES	vii
LIST OF FIGURES	viii

CHAPTER I. INTRODUCTION

1.1 Introduction 2
1.2 Thermoplastic Composites and Processing 4
1.3 Composite Properties and Calculations 5
 Rule –of-Mixtures Equations
 i. Critical Volume Fraction 7
 ii. Tensile Strength 8
 iii. Ultimate Tensile Strength 8
 iv. Moduli of Elasticity 9
1.4 Cellulose Based Reinforcements in Composites 9
 1.4.1. Discontinuous Fiber Reinforced Composites 10
 1.4.2. Continuous Fiber Reinforced Composites 13
1.5. Compatibility Issues in Biobased Composites 14
1.6. Property Comparison of Fibers and Matrices 17
1.7. Property Comparison of Composites 18
1.8. Application of Biodegradable Composites 18
1.9. Objectives 19

CHAPTER II. EXPERIMENTAL

2.1. Materials 22
2.2. Methods 23
 2.2.1. Composite Prepregging 23
 i. Powder Suspension Process 23
 ii. Melt Process 26
 iii. Solution Process 26
 2.2.2. Composite Consolidation 27
 i. For Fabric Reinforced Composites 27
 ii. For Continuous Fiber Reinforced Composites 27
 2.2.3. Composite Characterization 29
 i. C-Scan 29
Cover & Contents

ii. Fiber Content Analysis
 a. Soxhlet Extraction Method 30
 b. Aminolysis Method 31
 c. Fiber Volume Fraction Determination 32

iii. Theoretical Density Determination of Composites 32

iv. Void Content Determination 33

v. Mechanical Tests 34

vi. Scanning Electron Microscopy 35

vii. Determination of Water Absorption 35

viii. Differential Scanning Calorimetry 36

Appendix 1: Conversion of Fiber Density from Textile Units 37
Illustrations 38

CHAPTER III. RESULTS AND DISCUSSION 41

3.1. Selection of Fiber Type for Reinforcement 43
3.2. SEM Results 44
3.3. Fiber Volume Fraction Results 45
3.4. Void Content Results 46
3.5. Water Absorption Results 49
3.6. Mechanical Properties 50
3.7. Comparison of Matrix Application Techniques 52
 3.7.1. Particle Size Distribution of CAB Matrix 52
 3.7.2. Powder Prepregging Technique 53
 3.7.3. Melt Processing Technique Using Sandwich Architectures 54
 3.7.4. Solution Prepregging Technique 55
3.8. Consolidation Time-Temperature-Pressure Variations 56
3.9. DSC Results 57
Illustrations 58

CHAPTER IV. CONCLUSIONS AND FUTURE WORK 79

CHAPTER V. REFERENCES 83

VITA 90
GLOSSARY

σ Tensile Stress (MPa)
ρ_m Density of matrix (gm/cm³)
ρ_f Density of fiber (gm/cm³).
E Modulus of Elasticity (GPa)
M_d Measured composite density (gm/cm³)
T_c Crystallization Temperature (°C)
T_d Theoretical density of composite (voidless basis) (gm/cm³)
T_g Glass Transition Temperature (°C)
T_m Melting Temperature (°C)
X_c Degree of Crystallinity (%)
V Void Content of Composite, volume %,
V_f Volume Fraction of Fiber in Composite (%)
V_m Volume Fraction of Matrix in Composite (%)
LIST OF TABLES

CHAPTER I INTRODUCTION
Table 1.1 Comparison of tensile properties for natural fiber reinforced LDPE composites. 13
Table 1.2 Property Comparison of Fibers and Matrices 17
Table 1.3 Property Comparison of Composites 18

CHAPTER II EXPERIMENTAL
Table 2.1 Specifications of the Fabric Reinforced Composite Panels. 38
Table 2.2 Specifications of the Continuous Fiber Reinforced Composite Panels using Two Coats of CAB Matrix.. 39
Table 2.3 Specifications of the Continuous Fiber Reinforced Composite Panels using One Coat of CAB Matrix. 40

CHAPTER III RESULTS AND DISCUSSION
Table 3.1 Options considered for manufacture of cellulose reinforced composites. 42
Table 3.2 Fiber Volume Fraction Calculations. 58
Table 3.3a Properties of Composite Panels – Void Determination in Water 59
Table 3.3b Properties of Composite Panels - Void Determination in Isopropanol (IP) 60
Table 3.4 Mechanical Properties of the composite panels 61
LIST OF FIGURES

CHAPTER I

Fig. 1.1	Illustration of four stages of deformation of fibers, matrix and composite.	7
Fig. 1.2	Model for prediction of the ultimate tensile strength of unidirectional fiber reinforced composites.	8
Fig. 1.3	Illustration of application of wood fiber/plastic composites in automobiles	19

CHAPTER II

Fig. 2.1a	Schematic illustration of the prepregging machine used for matrix application on continuous lyocell fibers.	24
Fig. 2.1b	Picture depicting the fiber tow passing through the solution bath and spreading of the tow.	25
Fig. 2.1c	Picture depicting the fiber tow being wound up on the take-up drum after passing through the drying tower.	25
Fig. 2.2	A representative diagram for the consolidation time-temperature-pressure cycle for Panels C1 to D4.	28
Fig. 2.3	C-Scan image of composite panel B4.	30

CHAPTER III

Fig 3.1	SEM images of fabric reinforced composite panel B1	62
Fig 3.2	SEM images of fabric reinforced composite panel B5 produced by melt processing	62
Fig 3.3	SEM images of tensile fractured, fabric-reinforced composite panel B3 produced by melt processing	63
Fig 3.4	SEM image of fabric reinforced composite panel B1 after fracture produced by solution method and consolidation without vacuum.	63
Fig 3.5	SEM image of the microtome-cut non-fractured cross section (transverse cross-section) of a continuous fiber composite panel produced by solution method revealing fiber bundles.	64
Fig 3.6	SEM image of a continuous fiber composite panel produced by solution method	64
Fig 3.7	SEM image of a continuous fiber composite panel produced by the solution method and consolidated under vacuum	65
Fig 3.8	SEM image of a continuous fiber composite panel produced by the solution method.	65
Fig 3.9	SEM image of a continuous fiber composite panel (non-fractured longitudinal cross-section) revealing the unidirectional alignment of fiber bundles; the excellent wetting of fiber surfaces by matrix; and absence of obvious voids.	66
Fig 3.10	SEM image of a continuous fiber composite panel (non-fractured...	66
longitudinal cross-section) showing apparent smooth and uniform matrix coating on the fiber surfaces.

Fig 3.11 SEM image of a fractured continuous fiber composite panel produced by solution coating and vacuum consolidation revealing matrix coverage of fiber bundles (transverse cross-section).

Fig 3.12 A magnified SEM image of the panel shown in Fig. 3.11.

Fig 3.13 SEM image revealing intimate bonding between matrix and fiber (transverse cross-section).

Fig 3.14 Relationship between water absorption and void content of the continuous fiber reinforced composites.

Fig 3.15 Stress-strain curves of (a) a typical composite (Panel B3), (b) CAB 381-20.

Fig 3.16 Modulus vs. fiber content (on a voidless basis) of selected composite panels (B series).

Fig 3.17 Maximum Tensile Stress vs. Fiber Content of the composite panels of the B series.

Fig 3.18 Strain at break vs. Fiber Content of the composite panels of the B-series.

Fig 3.19 Modulus vs. Fiber Content of the composite panels of the D series.

Fig 3.20 Maximum Tensile Stress vs. Fiber Content of the composite panels of the D-series.

Fig 3.21 Strain at break vs. Fiber Content of the composite panels of the D-series.

Fig 3.22 Particle size distribution of (a) un-sonicated and (b) sonicated CAB 381-20.

Fig 3.23 DSC scans from first heat of fiber, matrix and composite.

ix