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Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines

Leonardo Antonio Errasquin

Abstract

A neural network prediction method has been developed to compute self-noise of airfoils
typically used in wind turbines. The neural networks were trained using experimental data
corresponding to tests of several different airfoils over a range of flow conditions. The
experimental data corresponds to the NACA 0012, Delft DU96, Sandia S831, S822 and S834,
Fx63-137, SG6043 and SD-2030 airfoils. The chord of these airfoils range from 0.025 to 0.91 m

and they were tested at Reynolds numbers of up to 3.8 million and angle of attack up to 15°
depending on the airfoil. Using experimental data corresponding to different airfoils provides to
the neural network the capacity to take into account the geometry of the airfoils in the
predictions. The input parameters to the network are the flow speed, chord length, effective angle
of attack and parameters describing the geometrical shape of the airfoil. In addition, boundary
layer displacement thickness was used for some models. The parameters used for taking into
account the airfoil’s geometry are based on a conformal mapping method or a polynomial
approximation. The output of the neural network is given by sound pressure level in 1/3™ octave

bands for nine frequencies ranging from 630 to 4000 Hz.

The present work constitutes an application of neural networks to aeroacoustics. The
main objective was to assess the potential of using neural networks to model airfoil noise.
Therefore, this work is focused in the modeling of the problem, and no mathematical analyses
about neural networks are intended. To this end, several models were investigated both in terms
of the configuration and training approach. The performance of the networks was evaluated for a
range of flow conditions. The neural network technique was first investigated for the NACA
0012 airfoil only. For this case, the geometry of the airfoil was not incorporated as input into the
model. The neural network approach was then extended to account for airfoils of any geometry

by including data from all airfoils in the training.
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The results show that the neural networks are capable of predicting the airfoils self-noise
reasonably well for most of the flow conditions. The broadband noise due to the turbulent
boundary layer interacting with the trailing edge is estimated very well. The tonal vortex
shedding noise due to laminar boundary layer-trailing edge interaction is not predicted as well,
most likely due to the limited data available for this noise source. In summary, the research here
demonstrated the potential of the neural network as a tool to predict noise from typical wind

turbine airfoils.

il
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1. Introduction

During the last two decades, the technology of large wind turbine generators has seen
considerable development. This technological development in combination with the increase in
the cost of other sources of energy has made wind energy generation one of the world’s fastest
growing energy sectors as attested by the statistics shown in Figures 1.1 and 1.2 (Wind power
targets for Europe: 75,000 MW by 2010, 2003). The growth of wind energy projects has been

very significant and it will be even higher in the coming years (Onat and Canbazoglu, 2007).
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Figure 1.1: Evolution of the cumulative wind power installed capacity in the European union and in the
world during the period 1990-2002. Magnitudes given in MWatts. (‘Wind power targets for Europe:
75,000 MW by 2010°, 2003).
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Figure 1.2: Growth in the wind power capacity in the United States during the period 1981- 2005.
Magnitudes given in MWatts. (‘United States market sets new horizons’, 2000).

The wind power targets set by the industry and by the European commission during the
last decade have all been exceeded. The European Wind Energy Association has set new targets
for the European Union (EU) to have installed 75 GW for 2010 and 180 for 2020 as shown in
Figures 1.3 and 1.4 (Wind power targets for Europe: 75,000 MW by 2010, 2003). These targets
are 25% higher than the ones decided in 2000 and about 50% higher than the targets established
in 1997 (Figure 1.2). Furthermore, it is forecasted a higher installed capacity than the target for
2010 (van den Berg, 2004.). This growth implies the potential investment of 49 billon Euros for
the 2010 target and savings of 109 million ton of green house gases per year (Wind power targets

for Europe: 75,000 MW by 2010, 2003).

With regard to the United States, a significant growth is also forecasted. By 2010, the
cumulative installed capacity is expected to reach 28 GW. This means a significant increase
considering the 12 GW of installed capacity in 2006 (United States market sets new horizons,
20006).
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Figure 1.3: Targets of installed capacity in the Figure 1.4: Targets of installed capacity in the
European Union established for 2010 by European Union established for 2020 by European
European Wind Energy Association. Magnitudes Wind Energy Association. Magnitudes given in
given in MWatts. (‘Wind power targets for MWatts. (‘Wind power targets for Europe: 75,000
Europe: 75,000 MW by 2010°, 2003). MW by 2010°, 2003).

Unfortunately, wind generation projects resulted in adverse community reactions. These
reactions where usually associated with the visual impact (Johansson and Laike, 2007), noise
emission (van den Berg, 2004; Wind power brings prosperity, anger, 2008), and birds
population’s mortality (Drewitt and Langston, 2006). Noise emission is considered the most
important problem in wind farms located in populated areas (van den Berg, 2004). Consequently,
the growth of wind energy installed power, especially in regions with a high population density
such as Europe, can be hindered by the noise emissions. In some cases, complaints have been
documented from residences located more than two kilometers away from a wind generator
(Shepherd and Hubbard, 1991). Furthermore, the low frequency component of the noise emitted
can excite resonances associated with walls and windows in buildings increasing the annoyance
of the acoustic phenomena (Shepherd and Hubbard, 1991). This is an important problem
considering that installing wind farms at a large distance from populated areas greatly reduces

the generation potential of a region.

The noise emitted by wind generators is basically produced in the mechanical
components inside the nacelle and through the interaction of the blades with the flow, i.e.
aerodynamic sources. During the last few years, the mechanical noise produced inside the
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nacelle has been successfully controlled. Therefore, the aerodynamic noise sources are the main
problem for large wind turbines. Thus, the prediction and reduction of noise due to aerodynamic

phenomena is of main importance.

1.1 Literature review

Noise generation in wind turbines has been widely studied within the last decades and the
bibliography available about the subject is extensive. According to the bibliography, the
aerodynamic noise mechanisms present during the operation of a wind generator can be divided

in two groups: Low frequency noise and Broadband noise (Voutsinas, 1995).

The generation of low frequency noise (harmonic impulsive aerodynamic noise) by wind
turbines is analogous to noise generated by propellers, compressors, and rotors, except the blades
are much larger and rotate at much lower speed. The rotating blades encounter localized flow
deficiencies due to either atmospheric inflow gradients or the wake of the tower (Blade-Tower
Interaction). Acoustic pulses arise from rapidly changing aerodynamic loads on the blades as
they traverse the regions of disturbed flow. The periodic repetition of these pulses produces the
characteristic harmonic noise (Shepherd and Hubbard, 1991). All the studies performed in recent
years demonstrated that if the fluctuating pressures can be predicted from an aerodynamic model,
then the acoustic field can be accurately simulated. Thus, the problem of low frequency noise
prediction involves an accurate estimation of the fluctuating aerodynamic pressures on the blades

(Voutsinas, 1995).

The broadband noise is caused by self-induced noise and turbulent inflow noise. The term
self induced noise describes the noise due to the motion of the rotor blade through the air
independent of other interactions and ignoring the local accelerations due to the rotary motion.
Thus, the noise radiation process for any blade section becomes identical to that of an airfoil in a
uniform flow. In this case, the main mechanisms that produce noise are direct radiation by the
attached boundary layer on the blade, scattering of the turbulence in the boundary layer with the

trailing edge, noise from separated flow on the blade (separation stall noise and tip noise), and
4
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radiation due to trailing edge instabilities in quasi-discrete frequencies. This last source consists
of laminar boundary layer vortex shedding noise and trailing edge bluntness noise (Voutsinas,

1995).

In the past, the prediction of noise emitted by wind turbines was limited to relating noise
measured experimentally to the corresponding wind speed or output power of the wind
generator. This rough method was provably the first tool available for predicting noise in wind

turbines, and it is still used in some engineering standards (Lowson and Bullmore, 1996).

In 1981, Brooks and Hodgson conducted an extensive research about trailing edge noise
supported with experimental measurements. The tests were performed in an open jet wind tunnel
with anechoic treatment. The experiments explored the effect of the shape of the trailing edge by
the addition of supplements, allowing the comparison of results for a sharp trailing edge to
several different blunt edges. A noise prediction method was developed based on measurements
of surface pressure. These predictions were successfully compared with the noise measurements
corresponding to the tests from which the pressure measurements were obtained. Moreover, the
half baffled dipole type directivity model (Meecham et al., 1981.) was successfully contrasted to

experimental results, proving its validity.

The aforementioned noise mechanisms are very difficult to predict theoretically.
However, Brooks et al. (1989) developed a semi-empirical method based on wind tunnel
measurements of NACA 0012 airfoils that has been applied and compared to experimental
measurements with good agreement (Voutsinas, 1995). The semi-empirical method has been
incorporated into a code for predicting the noise emitted by a wind generator. To this end, a
three-dimensional inviscid analysis of the flow interacting with the wind turbine was preformed
comprising the velocity distributions along the span of the blades as well as the equivalent two-
dimensional angles of attack. The blades were discretized along the span, and with the
aerodynamic data of each discretized section, the semi-empirical formulas were applied to
calculate the noise produced. Then, all the contributions of the sections were summed assuming

they were uncorrelated.
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During the last two decades, the semi-empirical method developed by Brooks et al.
(1989) has been used in most of the attempts to predict the noise emitted by wind turbines
(Voutsinas, 1995; Fuglsang and Madsen, 1996; Moriarty and Migliore, 2003; Leloudas et al.,
2007; Herr, 2005; 2007a and 2007b). In general, the predictions compared reasonably well with
experimental results (Voutsinas, 1995). Furthermore, some authors consider it as the best tool
available to predict self induced noise (Leloudas et al., 2007). In 2007, Herr compared the semi-
empirical predictions with experiments made with an airfoil of geometry similar to a NACA
0012 of 40 cm chord (Herr, 2005; 2007a and 2007b). The predictions showed good agreement
with experiments in terms of the spectral shape and difference in the levels of only 3 dB. The

predictions were implemented using the code NAFNoise developed by Moriarty (2005).

Though these semi-empirical formulas have proven to be an acceptable method to be
applied to wind turbines, in some cases it has been reported to give inaccurate results. In the
work of Leloudas et al. (2007), a systematic problem was found associated with the prediction of
blunt trailing edge noise for frequencies above 3 kHz. In the work of Moriarty and Migliore
(2003), the predictions were compared to wind tunnel test data of 20 cm chord airfoils (NACA
0012 and S822). The results for the NACA 0012 were reported not to be very accurate for
relatively low Reynolds numbers. In the case of the S822 airfoil, poor agreement between
predictions and experimental data was reported in general. One possible reason for this
discrepancy was assumed to be that in the prediction code the boundary layer thickness was
empirically modeled from NACA 0012 data. Therefore it was incorrectly predicted for the S822
airfoil. In fact, Fuglsang and Madsen (1996) argued that the method of Brooks et al. (1989)
should be limited to airfoils similar to the NACA 0012.

Recently, a new turbulent boundary layer trailing-edge noise model was presented by
Moriarty et al. (2004 and 2005). This model is more complex than the semi-empirical method
developed by Brooks et al. (1989). The model uses boundary layer parameters to estimate the
trailing edge noise on both sides of a given airfoil. These parameters are calculated by a
boundary layer prediction routine, XFOIL (A brief description of XFOIL is presented in
Appendix B). The predictions were contrasted with experiments and with predictions using the

method developed by Brooks et al. (1989). It was reported that the new prediction method
6
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provided the same accuracy than Brooks et al. (1989) and in some cases it was slightly better.

(Moriarty et al., 2005).

In the work performed by Herr (2005, 2007a and 2007b), some scaling laws used for
predicting trailing edge noise were analyzed. He concluded that the test data provided some
evidence that the boundary-layer displacement thickness used by Brooks et al. (1989) does not
represent the most relevant scaling parameter for noise spectra prediction. Noise levels were
shown to scale with Strouthal number based on a constant reference length. On the other hand, in
the work of Brooks et al. (1989), the Strouthal number scaling is based on variable boundary

layer parameters.

The semi-empirical formulas developed by Brooks et al. (1989) for predicting laminar

boundary layer vortex shedding bounds the range in which the vortex shedding is present. For
0” angle of attack, it was assumed that vortex shedding occurs up to chord Reynolds numbers of

6x10°. Nevertheless, Devenport et al. (2008a and 2008b) and Paterson (1973) clearly proved that
vortex shedding occurs at Reynolds numbers higher than the upper bounds assumed by Brooks et
al. (1989). Consequently, Brooks et al (1989) fail in predicting laminar boundary layer vortex
shedding at high Reynolds numbers.

Prediction of noise is important during the design process of a wind turbine to asses if
noise regulations are met. As an example of noise legislation, the Wisconsin’s draft model
ordinance limits the wind energy facility sound levels to a maximum sound pressure level of 50
dBA at noise sensitive receptors (e.g. residences), and it sets the limit for tonal sounds at 45
dBA. This ordinance even sets a definition for tonal sound (Barnes and Gomez, 2007).
Furthermore, new studies are being performed that could lead to more stringent noise regulations
An example of these studies is the assessment of the impact of tonal noise in the perception by

human beings performed by Mckenzie (1996).

In the work presented by Brooks et al. (1989), the formulas were developed using
experimental data obtained from wind tunnel tests of NACA 0012 airfoils of up to 0.3 m of

chord and moderate Reynolds numbers (from 5x10* to 2x10°). But, in modern large wind
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turbines other airfoils are used. Furthermore, chords of more than 2 m are common leading to

Reynolds numbers considerably larger than 2x10°. Therefore, when attempting to predict
broadband noise in modern wind generators, the semi empirical formulas are used outside the

range of the data used to develop them. As a result, a lower accuracy could be expected.

Finally, it is important to consider that modern large wind turbine blades are composed
by a region in which the airfoil’s shapes have large blunt trailing edges. This region is located in
the transition between the circular sections of the root and the typical aerodynamic sections of
the rest of the blade. Figure 1.5 shows a picture of this transition region. It is expected that the
noise contribution of these sections would not be important due to the relatively low flow speeds
in this region close to the hub. Nevertheless, the method developed by Brooks et al (1989) would

not be the proper tool if an analysis taking in account the contribution from the transition region
of the blade was desired.

Property of LMS

Figure 1.5: Root region of a modern large wind turbine’s blade. It can be observed the region in which
the airfoil’s shapes used have large blunt trailing edges. This region is located in the transition between
the circular sections of the root and the typical aerodynamic sections of the rest of the blade. (Used with
permission of Jack Mowry, Editor, Sound & Vibrations Magazine, March 2008 and LMS international)
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Therefore, the semi-empirical formulas need to be improved in order to be more accurate
for high Reynolds numbers and airfoils other than the NACA 0012. Moreover, a laminar
boundary layer vortex shedding predicting method capable to be applicable for relatively large
chord Reynolds numbers is required. These improvements would give more accurate results

when trying to predict the broadband noise emitted by large wind turbines.

After the publication of the work of Brooks et al. (1989), several wind tunnel
aeroacoustic experiments were performed. These experiments provide a more complete source of
information to be used in improving the predictions. In 2004, Oerlemans reported tests of 6
different airfoils of potential use in wind turbines (Oerlemans, 2004). In 2007, Herr reported
experiments for a 40 cm chord airfoil of geometric shape close to the NACA 0012 airfoil for
several flow conditions (Herr, 2007a and 2007b). Finally, Devenport et al. (2008a and 2008b)
conducted an extensive set of experiments for several airfoils of 0.9 m chord at high Reynolds

numbers (Devenport, 2008a and 2008b).

1.2  Thesis Objectives

Currently, the semi-empirical approach developed by Brooks et al. (1989) is the
“engineering” state of the art approach to predict wind turbine noise. However, the method needs

to be improved for the analysis of modern large wind turbines.

In this thesis, it was intended to develop a new method to predict the self noise of airfoils
typically used in wind turbines. The tool was expected to be able to predict the noise emitted by
airfoils of any geometrical shape for different chord length and flow conditions. Furthermore, the
method should be capable of being applied to different airfoil’s geometries. To this end, a neural
network predictive tool based on experimental data was developed. This method constitutes a

new approach in the prediction of self noise in airfoils.

The neural network tool was trained using experimental measurements of airfoil self

noise. The airfoils considered were the NACA 0012, Delft DU96, DU97-W300, Sandia S831,

9
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S822 and S834, Fx63-137, SG6043 and SD 2030. Except for the NACAO0012, these airfoils are
commonly used in the wind energy industry. The reason for considering these airfoils was the
availability of aeroacoustic experimental data. To take into account the influence of the geometry
of the airfoils in the neural network training, two different parameterization approaches were
assessed. The first method is based in a conformal mapping technique and the second is based in

polynomial approximation of the surface of the airfoils.

Finally, the modeling accuracy of the implemented self-noise prediction method was

assessed by comparing predictions and experimental data for the complete database.

1.3  Thesis organization

This thesis is organized in six chapters and four appendices. Chapter 1 is an introduction
to the problem studied and a comprehensive literature review on wind generator’s airfoil noise
mechanisms and prediction. In addition, the objectives of this study are presented. Chapter 2
describes the self noise mechanisms responsible for sound emission in wind turbine blades.
Then, the semi-empirical method developed by Books et al. (1989) is described and analyzed in
depth. Chapter 3 presents the experimental results used in this work. Chapter 4 presents the
implementation of a neural networks method. Chapter 5 presents the main conclusions of the
present work. Chapter 6 discusses recommendations for future work. Appendix A presents the
nomenclature associated with the geometrical shape of an airfoil and definitions of aerodynamic
concepts applied in the present thesis. Appendix B presents a brief description of the software
XFOIL and predictions made with it. Appendix C presents figures showing the results of
applying a conformal mapping method to approximate the airfoils shape. Appendix D presents
figures showing comparisons between predictions obtained with the neural network tool
developed and the corresponding experimental data. In addition, it presents comparisons between

predictions obtained with Brooks et al. (1989) method and the corresponding experimental data.

10
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2 Areview of the prediction tool of Brooks et al. (1989)

As indicated in the previous chapter, self-noise modeling is still in the early stages, and a
successful theoretically based prediction tool is still years away. Therefore, the semi-empirical
approach developed by Brooks et al. (1989) is essentially the main tool currently used for
predictions. This prediction tool is reviewed here because it provides useful insight on the self-
noise mechanisms and scaling characteristics. Brooks et al. (1989) performed aero-dynamical
and acoustic measurements for a set of NACA 0012 airfoils of different chord for different flow
speeds and angles of attack. These tests are described in chapter 3. The set of measurements
resulted in a group of spectral scaling formulas for the calculation of the noise generated by an
airfoil. In addition, in order to have a complete understanding of the noise generated by airfoils,
it is important to study the radiation directivity characteristics. This is very important for the
understanding of the noise directivity of wind generators. Therefore, this chapter also analyzes

the radiation directivity of airfoils.

2.1 Airfoil Self-Noise Mechanisms

Airfoil self-noise consists of five mechanisms that are briefly described in the next sub-

sections.

2.1.1 Turbulent boundary layer- trailing edge noise (TBL-TE)

Airfoils develop a boundary layer over their surface and a transition from laminar to
turbulent occurs at certain chord-wise position. When a turbulent boundary layer is developed
over the surface, the eddies that compose it are inefficient sound sources. However, if there is a
sharp edge in the vicinity, they will become more efficient sources as they scattered on the
trailing edge. Thus, the trailing edge of an airfoil intensifies the noise level of the turbulences

convecting along the airfoil. The aforementioned process is schematically depicted in Figure 2.1

11



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines Leonardo Errasquin

Trailing edge noise is perceived by people as a swishing sound. It is of broadband nature
having the peak frequency typically in the range of 500 to 1500 Hz depending on the airfoil. The
TBL-TE noise will dominate in the high frequency region if the flow is attached over the rotor
blade. The factors that most influence trailing edge noise are the convection speed of the eddies
and the structure of the boundary layer turbulence close to the edge. The exact shape of the
trailing-edge is thought to be of importance only for relatively high frequencies (Wagner et al.,

1996).

Boundary layer

& e
=
& @/(‘J@@g oo
N
Turbulent eddies passing the \
trailing edge Sound waves

emitted

Figure 2.1: Turbulent-boundary-layer—trailing-edge noise.

2.1.2 Separated / stalled flow noise (S/SF)

This noise mechanism depends mainly on the angle of attack. As the angle of attack
increases, stall conditions occur at a certain point causing a substantial level of unsteady flow

around the airfoil. This phenomenon is represented in Figure 2.2.

In the work of Wagner et al. (1996), it is indicated that mildly separated flow causes
sound radiation from the trailing edge, whereas deep stall causes radiation from the whole airfoil.
Stalled flow noise is of broadband nature and is the only mayor contributing noise mechanism

beyond limiting angles of attack.
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Figure 2.2: Separated / stalled flow noise.
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2.1.3 Laminar boundary layer — vortex shedding noise (LBL-VS)

When an airfoil operates at relatively low Reynolds numbers, the laminar flow regions
extend to the trailing edge. A resonant interaction of the trailing edge noise with the unstable
laminar-turbulent transition can then occur. An upstream traveling acoustic wave couples with
the instabilities resulting in tonal noise. The aforementioned instabilities can lead to separation
bubbles generating noise. High levels of noise can occur if the instabilities are triggered by the
acoustic field and vice versa (Wagner et al., 1996). This interaction is schematically represented

in Figure 2.3. The LBL-VS noise is of tonal nature.

13



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines Leonardo Errasquin

Instabilities in the boundary layer

Boundary layer

e

\\—;// ™~ Sound waves

Figure 2.3: Laminar-boundary-layer—vortex-shedding noise.

2.1.4 Trailing edge bluntness — vortex shedding noise (TEB-VS)

This noise mechanism is based on the noise emission by von Karman type vortex
shedding from the trailing edge. The shedding of vortices from the trailing edge depends on the
bluntness, shape of the edge, and Reynolds number. The alternating vortices produces pressure
fluctuations in the trailing edge zone as depicted in Figure 2.4. According to Wagner et al.
(1996), a spike is present in the total noise spectra if the trailing edge thickness of the airfoil is
higher than certain cut off value. This cut off value is specific for each airfoil and flow condition.
The frequency of the spike originated depends on the flow conditions and the trailing edge
thickness to displacement thickness ratio, b/ 5" . The smaller the trailing edge thickness to

displacement thickness ratio the higher is the shedding frequency. Therefore, if the trailing edge
is sharp enough, the spike will be displaced to high frequency region in which noise is not

audible for humans.
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Figure 2.4: Trailing-edge-bluntness—vortex-shedding noise.

2.1.5 Tip vortex noise

At the tip of a blade, a vortex is generated due to the difference in pressure between the
pressure and suction side. Brooks et al. (1989) suggested that this vortex interacts with the tip
surface generating noise is analogous to the TBL-TE noise mechanism. This interaction is

schematically represented in Figure 2.5.

Tip vortex noise is of broadband nature and it is assumed to be mostly influenced by the

convective velocity of the vortex and its strength (Wagner et al., 1996).
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Figure 2.5: Tip vortex formation noise.

2.2  Directivity

An important aspect in the understanding of the noise emitted by wind turbines is the
radiation directivity characteristics of trailing edge noise. This noise is usually modeled as a
dipole source located at the trailing edge (Yildiz and Mawardi, 1960; Meecham W., Bui and
Miller, 1981). If the acoustic wavelengths produced are much shorter than the chord length of the
airfoil, then the trailing edge noise emission behaves as a baffled dipole. On the other hand, if the
acoustic wavelengths are comparable to the airfoil's chord, then the noise emitted follows a pure
dipole directivity behavior (Brooks et al., 1989). Nevertheless, these dipole-type directivities are

influenced by the convective effect of the medium in which the airfoil is moving.

Equations describing the baffled-dipole and pure-dipole directivities were presented in
the work of Brooks et al. (1989). These functions take in account the attenuation or amplification
produced by the convective effect depending on the direction of propagation considered. The
directivity function for the baffled-dipole directivity is
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2sin’ ((92’) sin® @,

' (1+M cos Qr)[lJr(M—MC cos 6. )]2 (2.3)

where M =U / ¢, is the Mach number, U is the free stream velocity, M, is the convection Mach

number. The convection Mach number is based on the convection velocity of the turbulence
present in the boundary layer with respect to the surface of the airfoil. In the work of Brooks et
al. (1989), the convection Mach number was assumed to be equal to 0.8 . The angles 6 and

@, defines the position of the observer as showed in Figure 2.6. Equation (2.3) is considered

valid for high frequency noise when the wavelength is larger than the airfoil chord.

The plate moves at
velocity U , e.g. free
stream velocity.

AN

(Stationary observer)

Figure 2.6: Local coordinate system for a flat plate in rectilinear motion. Angles indicating the position
of the retarded source (Retarded coordinates).

When the airfoils chord and the wavelength are comparable, the noise directivity has a

pure dipole behavior. The directivity function for this low frequency case is

s 2 s 2
_ sin” 6 sin” ¢,

1

(1+M cos®, )4 (2.2)
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Figure 2.7 and 2.8 illustrate these directivity functions. Figures 2.9 and 2.10 illustrate the

x-y and x-z cut view corresponding to figures 2.7 and 2.8, respectively.

Airfoil

—
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o
e |
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— #4'4 )i e y
e 7

Figure 2.7: Representation of the directivity function for the case of high frequency noise ( l_)f ).

Airfoil y
X
“,"':",55
LA T T
] 24
L e
s = =
i = o
i i Z
M :'-.. o
e

S

T
e sss
o I

Figure 2.8: Representation of the directivity for the case of low frequency noise ( 51 ).
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a) b)

s

Figure 2.9: Representation of the directivity for the case of high frequency noise ( ﬁf ). a) x-z cut view.

b) z-y cut view.

a) b)

i

Figure 2.10: Representation of the directivity for the case of low frequency noise ( 51 ).a) x-z cut view. b)

z-y cut view.
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2.3  Semi-empirical Predictions

As it was indicated previously, Brooks et al. (1989) developed semi-empirical formulas
based on experiments performed with NACA 0012 airfoils. All five noise mechanisms were
considered and formulas for each mechanism developed. The present section provides a
description of the aforementioned work. It is important to mention that the predictions are in the

form of 1/3" octave bands in all cases.

The scaling method of Brooks et al. (1989) is based on the scattering from the trailing
edge of a flat plate investigated by Ffowcs Williams and Hall (1970) and treated in a more
general way by Blake (1986). They proposed the following law for the acoustic intensity of

sound due to turbulent flow in the vicinity of a scattering flat plate

IocpcM S—igz (2.3)
r

.
where

¢ : Normalized turbulence intensity.
7. . Distance to the observer

P, : Density of the air.

The parameters sand [/ describe the dimensions of the turbulent region in the plane

perpendicular to the flow direction as depicted in Figure 2.11.
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Turbulent stream of
height / and withs |

Figure 2.11: Geometry used for the modeling of the interaction of turbulence with an edge.

Equation (2.3) corresponds to the cases in which the predominant noise is emitted by
eddies located close to the trailing edge. But in some cases, the turbulent boundary layer is wide
enough for the noise produced by eddies located far away from the trailing edge to be important.
For this case, the following relation was developed (Blake, 1986; Ffowcs Williams and Hall,
1970)

IocpcM® S—iaz (2.4)

r

It is important to consider that, in general, the boundary layer thickness & or the

boundary layer displacement thickness & are used as a measure of / (Wagner et al., 1996).

Furthermore, when this theory is applied to airfoils, sis replaced by the span length L of the
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airfoil. When the length of the turbulent boundary layer, measured in the convection direction, is

1 . .
larger than —?M ~&, the effects modeled by equation (2.4) become important.
T

2.3.1 Turbulent boundary layer- trailing edge noise and separated / stalled flow noise

Turbulent boundary layer and S/SF noise were both assumed to be caused by turbulent
effects. Therefore, the development of semi-empirical formulas describing these noise sources
was based in the experimental results for tripped airfoils. Since separating the contributions of
each noise mechanism is difficult, Brooks et al. (1989) approach was to model these noise

mechanisms as a single one.

Brooks et al. (1989) proposed to separate the data to be normalized in two groups. The
first normalization was applied to the cases corresponding to 0”angle of attack and the second

normalization was applied to the cases of angle of attack other than(0’. Based on these

normalizations, the following formula for modeling TBL-TE and S/SF noise was used

LZBL—TE /SISE _10 logm {IOL;MO +105%710 L0500 }
’ (2.5)
where L and L? are the noise contributions of the pressure and suction sides of the normalized

data corresponding to 0° angle of attack, respectively. The contribution based on the normalized

data corresponding to angles of attack other than 0° is given by the third term L7 .

This equation is valid for angles of attack up to «, , a cut off angle of attack for witch the

transition from attached to stalled flow is supposed to occur. The value of this angle will be

defined later in the present section. At angles above «,, separation occur and therefore S/SF

noise becomes dominant. Therefore, the terms corresponding to the 0° degree of angle of attack

in equation (2.5) become negligible.
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Based on equation (2.3), the experimental data for 0° angle of attack was normalized in

amplitude as follows

S ML
caled easured 0
Lt = [ —1010g]0( 2 ]

r

(2.6)

where the boundary layer displacement thickness is noted as &, , e.g. same for pressure and
suction sides due to symmetry. In addition, the frequency was normalized using the Strouthal

number, St, based on the displacement thickness 5: . That is

St=2% 2.7)

where f is the frequency.

The normalized noise spectra were found to coalesce to approximately the same spectral
shape. This result is illustrated in the example presented in Figure 2.12 corresponding to a 30 cm
chord airfoil at various flow speeds. It can also be noticed in Figure 2.12 that the scaled spectra
present a maximum (indicated with markers) almost at the same Strouthal number for all cases.

This value was denoted as Peak Strouthal Number, S¢,.
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Figure 2.12: Noise level Lff”led normalized with respect to the Strouthal number. Peaks indicated with

markers. The data corresponds to a 30 cm chord airfoil at 0° angle of attack and different flow speeds.
(Extracted from Brooks et al., 1989.)

It was also found that the Peak Strouthal number St didn’t collapse with the chord
Reynolds number, R.. However, St, was found to have a dependency on the Mach number.

This dependency is depicted in Figure 2.13 where peak Strouthal numbers are indicated for the
corresponding chord Reynolds numbers. The horizontal lines indicate the Mach numbers for the
0° angle of attack cases. The cases for the other angle of attack are showed for the sake of
completeness. A relationship between S, and the Mach number was obtained as

_ -0.6
St, =0.02M 2.8)
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Figure 2.13: Peak Strouthal number, St , vs. Reynolds number, R for different values of M . The

numbers aligned with data are chord sizes in inches. (Extracted from Brooks et al., 1989.)

Finally, the spectral level at the Peak Strouthal number was plotted as a function of the
chord Reynolds number as shown in Figure 2.14. This figure shows a dependency of the peak

level on the Reynolds number. This dependence was approximated by parts as shown by the

solid lines denoted as the function K, (R, ). The results for angles of attack other than 0°are

again presented for the sake of completeness.
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Figure 2.14: Peak scaled L , in 1/3rd octaves (function K, ) scaled with respect to the Chord Reynolds
number for 0° angle of attack. (Extracted from Brooks et al., 1989.)

Finally, the noise corresponding to 0” angle of attack that was scaled in equation (2.6) is

subsequently scaled with respect to the ratio of the Strouthal number to the peak Strouthal

number, %t . From the previous scaling, all the cases coalesce to a spectral shape that
1

dependent only on the chord Reynolds number. This spectral shape is represented by the function

G, . A representation of this function is shown in Figure 2.15. This function was defined for the

maximum and minimum Reynolds numbers. Shapes for a specific Reynolds number should be

and G

A max

interpolated. Numerical expressions for G, are presented in page 60 of Brooks et al.

min

(1989).
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A max

for large R,

Function
G, (dB) -10F

G

A min

for small R,

St
St,

Figure 2.15: Shape function G ,as a function of the scaled peak Strouthal number. (Extracted from
Brooks et al., 1989.)

The result of the previous normalizations is that the noise spectra for 0° angle of attack

can be separated into three terms as expressed in the following equations

5 M°LD St
L, =10log [f—zh]+GA[ S}+(K1(RC)—3)

’ St (2.9)
and
5" M°LD, St
1, =10log (”r—z’} G, (S—p]+(Kl (R.)-3)+AK, (Rég, a)
r ! ) (2.10)
for the suction and pressure sides, respectively, and with the Strouthal numbers given as
* 6*
stzf5S,Stp=f .
v v (2.11 and 2.12)
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In equations (2.9) and (2.10), the first term was generalized to be applied for angles of

attack other than 0°by replacing &, for &, and §p* , €.g. the displacement thickness of the

pressure and suction sides, respectively. The function Di represents the directivity as presented

in Section 2.2. The term expressed by the function G, defining the spectral shape of this noise
and the function K, indicating its levels. The subtraction of 3 dB is an adjustment of the noise

level due to breaking the noise into pressure and suction side components from a single side
component. According to the work of Brooks and Hodgson (1981), each side of an airfoil with
well developed boundary layers produces noise independently, e.g. uncorrelated. In addition, the

term AK, is an empirical level adjustment for the pressure-side contribution for non zero angles

of attack. It is a function of the angle of attack and the Reynolds number based on the

displacement thickness.

With regard to the experimental data corresponding to angles of attack other than 07, it

was also normalized in amplitude based on equation (2.3) as follows

2
”

, : ‘ML
Licaled — L];[easured _ 10 logm (55 J

(2.13)

where the boundary layer displacement thickness corresponding to the suction side is noted as

.. In addition, the frequency was normalized using the Strouthal number, S,, based on the

displacement thickness &, . That is

(2.14)

The normalized noise spectra were again found to coalesce to approximately the same
spectral shape. This result is illustrated in the example presented in Figure 2.16 corresponding to
a 30 cm chord airfoil at various angles of attack. It can also be noticed in Figure 2.16 that the

scaled spectra present a maximum (indicated with markers) almost at the same Strouthal Number
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for all cases. This value was denoted as Peak Strouthal number, St,, e.g. for angles of attack

other than 0°.

150__ LILIE| T LA R T LB R T L
C R B
N o} 0° 0°
Scaled 140 E O--=--- 5.4° 1.56° 4
- o a—-— 10.8° 3.0° .
120~ '}
110F . -
100¢L1|| 1 Lol 1 N 1| I 1 |:
005 .01 A 1 5
st=12
U

Figure 2.16: Scaled Lp normalized with respect to the Strouthal number. The data corresponds to a 30

cm chord airfoil submerged in a flow with a free stream velocity of 71 m/s and different angles of attack.
(Extracted from Brooks et al., 1989.)

When St,is represented versus the angle of attack, a dependency on the Mach number

was once again observed. This dependency is depicted in Figure 2.17 where peak Strouthal
numbers are indicated for the corresponding angles of attack. The horizontal lines approximate
the trend follower by the peak Strouthal numbers corresponding to the same Mach number. The

peak Strouthal number S?, was then expressed in terms of the Mach number, angle of attack, and

St, as follows

1 (@ <1.33°)
St, = St,410%004@ 133" (1 33° ¢ o <12.5°)
4.72 (a>12.5° (2.15)
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Figure 2.17: Peak Strouthal number, St, , versus angle of attack « for different values of M (Mach
number). (Extracted from Brooks et al., 1989.)

Finally, the spectral level at the Peak Strouthal number was plotted as a function of the
angle of attack as shown in Figure 2.18. In this figure, the dependency the spectral level was

normalized with respect to the previously calculated K, in order to eliminate the dependency on

the Reynolds number. In Figure 2.18, it can be observed that the scaled spectral level at the Peak
Strouthal number presents a dependency on the Mach number. This dependency was accounted

for using the function K,(K,,M ,a ). The use of the function K, summarizes the dependency of
K, on the Reynolds number. This is depicted in Figure 2.18 where the curves approximating
K,-K, for different Mach numbers are showed. This dependency was represented by the

equation given in page 62 of Brooks et al. (1989).

30



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines Leonardo Errasquin

20 1 T T T I T 1 T 1 I T L T 1 1 T T T T i T T T T

U, m/s M

Peak A O 317 .083

scaled 10 0O 396 .116 —

. - .

L in AO 163

- 209

1/3" _

octaves V- '

(dB) /& K,-K,

Figure 2.18: Peak scaled L i 1/3rd octaves (function K, ) scaled with respect to the angle of attack and
expressed as a function of K,. (Extracted from Brooks et al., 1989.)

As done before, the noise corresponding to angles of attack other than 0° that was scaled

in equation (2.13) is subsequently scaled with respect to the ratio % S - The result of the
2

previous scalings, all the cases collapse to a spectral shape that is a function of the chord based
Reynolds number. This shape is represented by the function G, as shown in Figure 2.19. Two

functions are shown corresponding to the two limits for Reynolds numbers. Shapes for a specific

and G are

min B max

Reynolds number should be interpolated. Numerical expressions for G,

presented in page 61 of Brooks et al. (1989).
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Figure 2.19: Shape function G as a function of the scaled peak Strouthal number. (Extracted from
Brooks et al., 1989.)

The end results of the previous normalizations is that the noise spectra for angles of

attack other than 0° can be expressed as

"M°LD
L, =10log [m—”]+GB[§§SJ+K2(a,RC,M) fora<a,
2

& (2.16)
* 5 I~
L, =10log (&M—ZLQ}FG'A(SQJJFKZ(O(,RC,M) fora>a,
", St 2.17)

The terms expressed by the functions G,and G,'define the spectral shape and the
function K, defines the levels. The function G', is the same function as G, but for a Reynolds
number tree times the actual value. Finally, the angle «, previously introduced was empirically

defined as the value for which K, is a maximum or « exceeds 12.5%, whichever occur first.
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2.3.2 Laminar boundary layer — vortex shedding noise

In contrast to TBL-TE noise, there are no scaling laws to describe LBL-VS noise. The
reason is the erratic behavior of the multiple tones in the noise spectra and the complexity of the
mechanism. The scaling used is based in two key results extracted from literature. The first is
that the noise spectra seems to scale on the Strouthal number based on the laminar boundary

layer thickness, o . The second result is that the noise levels tend to coalesce to a function of R.

when they are scaled in a similar way to the used for TBL-TE noise.

For the prediction of LBL-VS, it is taken advantage of using 1/3™ octave bands. The use
these broad bands overlap the tonal frequency spacing smoothing the tones and giving as a result
a single peak in the spectra. As this noise mechanism is produced by the presence of a laminar

boundary layer, the data used in the normalization corresponded to no-tripped cases.

Based on equation (2.3), the experimental data for no-tripped cases was normalized in

amplitude as follows

2
T,

SM°L
Lf}caled — L]Zeasured _1010g]0 ( P J

(2.18)
where the boundary layer thickness at the pressure side is used and it is noted as &, . In this case

0, was used instead of & *p because it was found empirically that it conduces to better results. In

addition, the frequency was normalized using the Strouthal number, Sz, based on the

displacement thickness o, . That is

, (2.19)

The normalized noise spectra were found to coalesce to approximately the same spectral
shape. This result is illustrated in the example presented in Figures 2.20 and 2.21 corresponding

to a 10 cm. In Figure 2.20, the angle of attack is zero and the results are presented for several
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flow speeds. In Figure 2.21, the flow speed is kept constant and the angle of attack is varied. It
can also be noticed in these figures that the scaled spectra present a maximum (indicated with
markers) almost at the same Strouthal number for all cases. This value was denoted as Peak

Strouthal Number, St'

peak *
160 T T 1T TTTF T ‘6 T T 177 Tl T T 1
- A |
150 ;A ) U, m/s
Scaled - !! 7\ O 71.3
MoE s/ = g----- 55.5
L, (dB) . PR A—-— 306
130f ‘ O—— 317
120@
110E1r411 e [ R R L 1 1
.005 .01 A 1 5
' o
St'= /o,
U

Figure 2.20: Noise level L‘;mlw normalized with respect to St'. The data corresponds to a 10 cm chord

airfoil at 0° angle of attack. Airfoil no-tripped. (Extracted from Brooks et al., 1989.)
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Figure 2.21: Noise level Lff“led normalized with respect to St' . The data corresponds to a 10 cm chord

airfoil submerged in a flow with a free stream velocity of 71 m/s and different angles of attack. Airfoil no-
tripped. (Extracted from Brooks et al., 1989.)

Using the normalized data as in Figures 2.20 and 2.21, the peak Strouthal number levels
for the spectra were found to be a function of the angle of attack and on the flow speed. In
consequence, one function representing the dependency on the Reynolds number and other
representing the dependency on the angle of attack were used for describing its variation law. To

this end, an auxiliary function St' was used. This function represents the dependency of

St .. on the Reynolds number for cases with 0° angle of attack. The function St', is shown in

Figure 2.22.
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Figure 2.22: Peak Strouthal number St',, . versus R.. The function that represents the St'

peak

versus R, dependency for 0° angle of attack is scalled St',. (Extracted from Brooks et al., 1989.)

Once St', was obtained, St',,was normalized with respect to St', and this

normalization plotted as a function of « . This process was applied for each chord length tested

and the results are presented in Figure 2.23.
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Figure 2.23: Normalized peak Strouthal number versus angle of attack (& ) for each airfoil tested.
(Extracted from Brooks et al., 1989.)

It was found that for all cases the a dependence could be approximated by

St

peak — 10—0.04(1

st (2.20)

Then, the peak scaled levels (St ' ek ) were plotted versus the angle of attack as presented

in Figure 2.24. As a result of the aforementioned normalization, it was noticed in the curves
presented in Figure 2.24 that the shape of the function representing the normalized peak

Strouthal number was governed by R.. Additionally, « governs the levels of this function.

These two dependencies were expressed separately by the use of the functions G, and G, . The
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function G, specifies the curve’s shape, while G, is the angle dependence for the levels

represented by G,. The expressions forG, and G, can be found in page 70 of Brooks et al.

(1989).
]
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Figure 2.24: Normalized peak Strouthal number versus R .. (Extracted from Brooks et al., 1989.)

Based on the shape of the scaled L, i.e. the scaled L, presented in Figures 2.20 and

2.21, the shape of the normalized spectra were expressed by the function G that is presented in

Figure 2.25.
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Figure 2.25: Shape function G for LBL-VS noise mechanism. (Extracted from Brooks et al., 1989.)

Finally, the noise spectra for LBL-TE can be separated into four terms as expressed by

S M°LD '
LLBL"VS=1010g AR N e S—t +G Re +G (a)
' o\ st ) P\ R, )"
r peak C)o (221)

The first term in equation (2.21) is based on equation (2.3). The term expressed by the

function G, defines the spectral shape of this noise and the functions G, and G, indicate its

levels as a function of the Reynolds number and angle of attack, respectively.

2.3.3 Trailing edge bluntness — vortex shedding noise

This noise mechanism is based on the experiments performed by Brooks and Hodgson
(1981). In these experiments, noise spectra were measured for an airfoil with different trailing
edge blunt sizes as shown in Figure 2.26. These different trailing edge blunts were obtained by
the successive attachment of extensions to a NACA 0012 airfoil model. Furthermore, flat plates

were used as attachments in some cases. These experiments were similar to the experiments
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performed by Brooks et al. (1989) in terms of hardware setup. The main difference was that the

airfoil tested was larger (0.6 m chord) than the airfoils tested by Brooks et al. (1989).

h=25mm

Ih=1.9 mm
_|h=1.1mm h=0{(sharp traling

*>t edge)
| f

Trailing-edge extensions

60.96-cm-chord
NACA 0012 airfoil

Figure 2.26: Trailing edge extensions witch were alternatively attached during the experiments
performed. (Extracted from Brooks et al., 1989.)

Based on equation (2.3), the experimental data was normalized in amplitude as follows

2
r

”

, ‘ M L
Liculed — L];Ieasured _ 1010g10 (b ]

(2.22)

where b denotes the trailing edge thickness. A 5.5 power law of M is used instead of 5 as in the
noise mechanisms previously exposed because it was found to lead to better scaling results. The
results of these scalings are presented in Figure 2.27. It can be noticed in Figure 2.27 that the
levels corresponding to the trailing edge of the NACA 0012 are considerably different to the
cases in which a flat plate extension was used. This is believed to be caused by the difference in
the angle of the terminations. For the trailing edge of the NACA 0012, the angle ¥ is 14° while
for the flat plate the angle is 0°. The angle V¥ is the angle between the tangents to the pressure
and suction curves that defines the geometry of the airfoil at the trailing edge. It is schematically

described in Figure A1 of Appendix A.
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Figure 2.27: Scaled BTE noise based in equation (2.3). (Extracted from Brooks et al., 1989.)

In addition to the previous scaling, the frequency was normalized using the Strouthal

number, S, based on the trailing edge thickness b . That is

gt

v, (2.23)

Then, the peak Strouthal number, S¢",,, , and the corresponding Peak scaled levels were

plotted as a function of b/ 5;@ as shown in Figures 2.27 and 2.28, respectively. The average

displacement thickness, J__, is defined as

avg
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*

S +0
avg - 4
2 (2.24)

In Figure 2.28, it is possible to note that when the aforementioned normalization is

applied, the peak Strouthal number, Sz",,, , presents a clear dependency on the angle . This

dependency also appeared for the peak Strouthal levels, and it was represented with lines in

Figure 2.29 and denoted as G,.. The function G, was presented as a function bounded by limits

given by ¥ =0° and ¥ =14°. Levels for a specific ¥ should be interpolated.
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Figure 2.28: Peak Strouthal number versus thickness ratio —— determined from Figure 2.27. (Extracted

avg

from Brooks et al., 1989.)
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Figure 2.29: Scaled Peak levels corresponding to St",,, versus thickness ratio

— determined from
avg

Figure 2.27. (Extracted from Brooks et al., 1989.)

Finally, the scaled levels presented in Figure 2.27 we normalized with respect to the ratio

St

) G as presented in Figure 2.30. The results of this scaling were modeled using function
peak

G, . This shape function is bounded between ¥ =0 and W =14’ and varies as a function of

; and Sit . Numerical expressions for G, and G, are presented in pages 78 and 80 of
avg peak

Brooks et al. (1989).
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Figure 2.30: Spectral shape functions G,. . (Extracted from Brooks et al., 1989.)

Therefore, the TEB-VS noise spectra was separated into three terms as expressed by

bM*LD b b St"
L™ =101 — " 4G | —.¥Y |+GC WP,
’ ng[ r’ J F[ae j G[a‘ St j

r av ave peak

(2.25)

The first term in equation (2.25) is based on equation (2.3). The term expressed by the

function G, describe the 1/3" octave spectral shape of the normalized BTE noise in terms of

b St" . L : : b
5 Y and S , and the function G, indicates its levels as a function of —and V.
t n
ave peak ave
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2.3.4 Tip vortex noise

This noise mechanism was modeled by scaling experimental results obtained for different
blade tips. In order to isolate the noise emitted by a blade’s tip from the noise emitted along the
chord of the blade during the experiments, it was proposed to compare results corresponding to a
tip (3-D model) with the results corresponding to a 2-D model like the ones considered in all the
previous scaling. This comparison is presented in Figure 2.31. The noise spectra corresponding
to a 15 cm chord 3-D airfoil is represented with triangular markers. In addition, the noise spectra
corresponding to a 2-D airfoil is presented using square markers. These noise spectra were
conveniently corrected to represent the same span length. The circular markers represent the
difference in noise levels between the two aforementioned spectra. It was assumed that this is the

noise contribution of the tip.

QG T T T v TT] T T T T TTT i
Pradictions:
80 — — 2D o Tp —
——3D a  Total with tip
70 | o Total without tip |
L, (B) T
o &
60 — a =] o —
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Figure 2.31: Noise spectra of a 2-D and a 3-D airfoil. Acoustic corrections were applied with regard to
chord length and span length in order for the spectra to be comparable. (Extracted from Brooks et al.,
1989.)

The noise attributed to the tip that was calculated previously, was normalized once again

based on equation (2.3) as follows
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2
”

2 3 2
L.;culed — L]\[;[easured _IOIOgIO EM Mmaxq Dh j
(2.26)

where ¢ is the extension of the tip vortex that is defined as

g=C0.008¢,,
(2.27)

with ¢, being the angle of attack of the blade at the tip section. The definition of this parameter

holds if the blade considered is untwisted and encounters uniform flow over the span. Otherwise,
a more complex consideration, which is exposed in Brooks et al. (1989), is necessary. The

maximum Mach number, M __  is defined as

X

=% ~1+0.036¢,
M v
(2.28)

Then, the normalized data was subjected to a further normalization by the use of the

Strouthal number St" that is defined as follows

SZ,V": fq
Unax (2.29)

with U__ being the maximum velocity within or about the separated flow region at the trailing

max

edge that is defined as

(2.30)

The consequence of the previous normalizations is that the noise spectra was separated

into two terms by

M’M,.,q’D,
2

Tj m 2
Lp”zlologm[ J—30.5(logSt +0.3)" +126

r

2.31)
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The first term in equation (2.32) is based on equation (2.3). The second term gives the

frequency dependence. This term, is a parabolic fit about a peak Strouthal number of 0.5.

2.4 Normalization of Boundary layer parameters at the trailing edge

The semi-empirical formulas developed by Brooks et al. (1989) requires knowledge of
the boundary layer displacement thickness, J°, and boundary layer thickness, &, corresponding
to the airfoil. This boundary layer parameters needs to be predicted. Different methods can be
applied for performing these predictions. One of the most widely used methods is computerized
flow dynamics (CFD) simulations or using XFOIL. Nevertheless, a simpler method was
developed by Brooks et al. (1989) based on the extensive boundary layer measurements of the
NACA 0012 airfoils. It was found that when boundary layer thickness and displacement
thickness data were normalized with respect to the chord, dependence on the Reynolds number
and angle of attack become clear. The normalization was carried out separately for the tripped

and no-tripped cases.

The boundary layer parameters were first normalized with respect to the chord length for the
0 angle of attack and plotted as a function of the chord Reynolds number as shown in Figure

2.32. The subscript “o” indicating that the parameter corresponds to 0° angle of attack. It can be
noticed that the data collapsed relatively well in particular at high Reynolds numbers and for

tripped cases.

The boundary layer parameters for the various angles of attack («) are then normalized

with respect to the value at 0° angle of attack and plotted as a function of the angle of attack.
The subscripts s and p are indicating that the parameter corresponds to the suction and pressure
side, respectively. To illustrate this, curves resulting from this normalization of tripped cases are
presented in Figure 2.33. It can be seen that for the pressure side, the data can be approximated
by a single curve. For the suction side, a function’s approximation is possible if it is done by

parts. A similar situation occurs for no-tripped cases.
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The curves in Figures 2.32 and 2.33 can be used to estimate the boundary layer

parameters for the NACA 0012 airfoil of different chord, angle of attack, and Reynolds numbers.

Boundary layar Airfoil chord,

Tripped Untripped cm
3048
' i’ : 15.24
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Figure 2.32: Boundary layer thicknesses at the trailing edge for 2-D airfoil models at an angle of attack

of 0° versus chord Reynolds number. Solid lines are for no-tripped Boundary layer and broken lines are
for the tripped cases. (Brooks et al., 1989.)
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Figure 2.33: Tripped Boundary layer thicknesses at the trailing edge for 2-D airfoil models versus angle
of attack. Solid lines are for pressure side and broken lines are for suction side. (Brooks et al., 1989.)
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3.  Experimental data

As discussed earlier, the main aim of the present thesis is to develop a tool for the
prediction of wind turbine noise using neural networks. Experimental data is required for the
training of the neural network. To this end, three experimental data sets are used. They are the
NASA data of NACA 0012 airfoils (Brooks and Hodgson, 1981; Brooks et al., 1989), the test of
large chord wind turbine airfoils at Virginia Tech (Devenport et al., 2008a and 2008b), and the
data obtained from test of small wind turbine airfoils at Netherlands National Aerospace
Laboratory (Oerlemans, 2004). In this chapter, the experimental data used to develop the

network is described. Corrections applied to the data to make them consistent are also presented.

3.1 Experimental data obtained by NASA

In 1989 Brooks et al. performed experiments of six NACA 0012 airfoils of chord length
ranging from 0.025 m to 0.3 m with a span of 0.45 m. The experiments were performed in an
acoustic open jet wind tunnel. Acoustic measurements were made for different effective angles

of attack ranging from 0°to 22°and chord Reynolds numbers up to 1.5x10°. All tests were

performed for conditions of clean and tripped leading edge. The tripping of the leading edge had
the objective of forcing the development of a turbulent flow regime. The tripping of the
boundary layer was achieved by a random distribution of grit in strips from the leading edge to
20% chord. This tripping is considered heavy because of its extension along the chord. Noise
spectra in 1/3" octave frequency bands were published together with the semi-empirical
prediction code. The frequency range of the experimental data presented varies according to the

cases. In all cases, these frequencies were contained within a range from 0.2 to 20 kHz.

The experiments were carried out at the low-turbulence potential core of a free jet located
in an anechoic chamber. The jet section was of 0.3 x 0.45 m of section. Airfoil NACA 0012
models of constant transversal section and 0.025, 0.05, 0.1, 0.15, 0.23 and 0.3 m of chord were

tested. The trailing edge bluntness of the models was constructed with a thickness of less than
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0.05 mm which allows considering them as sharp trailing edges. Figure 3.1 depicts the NACA
0012 airfoil’s shape.

K NACA 0012

Figure 3.1: NACA 0012 airfoil profile.

For each model, data were collected at various effective angles of attack ranging from 0°
to 22° depending on the airfoil and various flow speeds ranging from 32 to 71 m/s for nominal
chord Reynolds numbers of 0.055 to 1.5 million. Table 3.1 shows a summary of the cases tested.
The data was collected with eight microphones distributed around the model. Then, the data was
processed using correlation functions in order to eliminate the background noise and isolate the

trailing edge noise component. The results are presented as the sound pressure level (L) in 1/31

octave frequency bands corresponding to an observer’s distance of 1.23 m normal to the plane

that contains the chord and span lines when the airfoil is at 0° of angle of attack.

Aerodynamic flow measurements were performed consisting of hot-wire measurements.
The boundary layer thickness was measured in the proximity of the trailing edge. For most cases,
this measurement was made at 1.3 mm downstream from the trailing edge. Experiments are
reported to have an accuracy of 5% for turbulent cases and 10% for laminar or transitional cases.
The boundary layer thickness, &, displacement thickness, & , and momentum thickness, &,

were calculated from the measured mean velocity profiles.
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Table 3.1: Ranges of flow speeds and effective angles of attack considered in the tests performed
by Brooks et al. (1989).

No-tripped Tripped
Airfoil Chord Flow speed  Effective angle  Flow speed  Effective angle
of attack of attack

(m/s) (deg) (m/s) (deg)
NACA 0012 0.025 32to 71 Oto 12 32to 71 0to 22
NACA 0012 0.05 32to 71 Oto 19 32to 71 0to 20
NACA 0012 0.1 32to 71 Oto 15 32to 71 Oto 16
NACA 0012 0.15 32to 71 Oto 12 32to 71 0to 13
NACA 0012 0.23 32t0 71 0to7 32t0 71 0to7
NACA 0012 0.3 32t0 71 Oto4 32t0 71 Oto4

The data collected by Brooks et al. (1989) is only available in the corresponding
publication as figures showing noise spectra for each airfoil for each condition. Therefore, it is
only possible to extract the data by copying the noise levels manually from the figures. This
procedure would be time consuming. Thus, the experimental results were replaced by predictions
using the semi-empirical tool for the corresponding airfoils and test conditions. Specifically, the
predictions were made with the software NAFNoise (Moriarty, 2005) that implements the
method developed by Brooks et al. (1989) based on the aforementioned experimental results. In
the work of Brooks et al. (1989), the experimental data are presented together with predictions
for the corresponding cases. Observation of these results shows that predictions obtained with
Brooks et al. (1989) method lead to errors of less than 5 dB with respect to the experimental data

in most cases and up to about 20 dB in a few cases.
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3.2 Experimental data obtained at Virginia Tech (VT)

Funded by the National Renewable Energy Laboratories (NREL) and Sandia
Laboratories, from June to December of 2007, the Advanced Turbulent Flow Research Group
and the Vibrations and Acoustics Laboratories of VT conducted aerodynamic and aeroacoustic
measurements of a series of large chord wind turbine airfoils. The results of the tests are

presented in two reports (Devenport et al., 2008a and 2008b) and summarized in this work.

The experiments were carried out at the VT Stability Wind Tunnel in its anechoic
configuration. The objectives of the tests were to study the aerodynamic and acoustic
performance of various wind turbine airfoil models at high Reynolds numbers. For each model,
data were collected at various effective angles of attack ranging from zero lift to stall condition,
and various flow speeds ranging from 28 to 66 m/s for nominal chord Reynolds numbers of 1.5
to 3.8 million. Some of tests were performed tripping the leading edge. Table 3.2 shows a

summary of the cases tested.

Table 3.2: Ranges of flow speeds and effective angles of attack tested by VT.

No-tripped Tripped
Flow speed Effective angle  Flow speed  Effective angle
of attack of attack
(m/s) (deg) (m/s) (deg)
NACA 0012 15 to 66 -8t05 10 to 66 -14 to 12
NACA 0012 (0.2 m chord) 41 to 55 0to7 40 to 52 0to5
S831 29 to 60 -7t0 8 30 to 56 -2t05
DU96 26 to 59 1to12 29 to 58 3to 10
DU97-W300 28 to 56 4t012 28 to 56 4to 8
DU97-W900 Flat-back 28 to 58 4t012 28 to 57 10
DU97-W900 Splitter plate 28 to 57 4to0 10 28 to 57 4to 10
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The airfoils tested were NACA 0012, Sandia S831 (developed by NREL), Delft DU97
(W300, W900, W900 with splitter plate), and Delft DU96 (Devenport et al., 2008a and 2008b).
For the sake of completeness, all section shapes are shown in Figure 3.2 together with a picture
of the splitter plate attached to a DU97 airfoil. Nevertheless, some of the airfoil’s test results are
not used in the present work because of reasons that are explained in chapter 5. The cases

excluded correspond to the DU97-W900 and DU97-W900 with splitter plate airfoils.

The models were designed to span the complete vertical height of the test section as
shown in Figure 3.3. In Figure 3.3a it is presented a view the model mounted between end plates
and located inside the wind tunnel seen from the trailing edge side. Figure 3.3b presents a view
of the leading edge side of the corresponding model. They have a 1.8 m span and 0.914 m chord.
Models were instrumented with approximately 80 pressure taps of 0.5 mm internal diameter

located near the mid-span.

As it was previously mentioned, for certain measurements the airfoils were tripped to
ensure a stable and span-wise uniform transition location and a fully turbulent boundary layer at
the trailing edge. Two different types of trip were used. The first tripping methods consisted of
serrated trip tape (Glasfaser-Flugzeug-Service GmbH 3D Turbulator Tape). It was applied along
the entire span at the 5% chord location measured from the leading edge on the airfoil suction
side and at the 10% chord location on the pressure side. The tape has a thickness of 0.5 mm and
i1s 12 mm in overall width. The second consisted of a random distribution of number 60 silicon
carbide grit particles applied in a 100 mm-wide span-wise band centered on the leading edge.
The grit size and pattern are designed to simulate soiling of the airfoil leading edge by insects.

When applied, the soiled trip covered only the middle half-span of the airfoil models.
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a) NACA 0012

b)

10

Figure 3.2: Airfoils profiles for a) NACA 0012, b) Sandia $831, ¢) DUY6, d) DU97-W300. e) DU97-W900. f)
Splitter plate attachment used with the DU97-W900.

Since the aeroacoustic configuration of the VT Stability Wind Tunnel is relatively new,
noise measurements of a small 0.2 m chord NACA 0012 airfoil were also carried out to provide
benchmark data. Results from this small size airfoil were compared to data obtained by Brooks et
al. (1989) for a NACA 0012 model of almost the same chord with relatable agreement. For
tripped case the difference was above 6 dB. With regard to no-tripped case, the results presented

a similar pattern, but differed significantly in terms of levels.

The aerodynamic flow measurements of the airfoils consisted of static pressure
distributions on the airfoil surfaces; wake profile measurements downstream of the airfoil mid-
span, and single hot-wire measurements in the vicinity of the trailing edge. The data obtained by
the hot-wire anemometry measurements were used by the authors of the experiments to calculate
the boundary layer displacement thickness. In Appendix C, this experimentally measured
boundary layer parameter is used to control the accuracy of CFD predictions performed with the
program XFOIL (Drela, 2001). Hot-wire profiles were measured in the vicinity of the trailing

edge of the DU96, S831 and DU97-W300 airfoils.
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Noise measurements were carried out with 63-element microphone phased arrays located
at 3 m from the model as shown in Figure 3.4. The data from the microphones in the arrays was
processed to compute the average noise spectra, the acoustic maps, and the integrated noise
spectra over a volume enclosing the trailing edge. The average spectra was computed to provide
an estimate of the noise results at low frequency (<500 Hz) where the array resolution is very
poor and noise maps are not computed. The acoustic maps were computed over a plane along the
center of the test section as illustrated in Figure 3.5 in the 500 to 5000 Hz range. An example of
trailing edge noise is depicted in Figure 3.5. In the figure, a noise map is presented in its location
in the wind tunnel. The red region in the noise map represents the noise emitted by the trailing
edge. In this work, the levels were integrated 10 dB down from the peak value to avoid adding
the effects of the side-lobes from other sources. The integrated spectra were computed over a
volume enclosing the trailing edge of the airfoil as shown in Figure 3.4. It has a square cross
section and it is aligned with the airfoil trailing edge (green box in Figure 3.4). The parts of the
trailing edge next to the junction with the tunnel were excluded to avoid noise due to end effects
as well as other spurious noise sources seen on the test section floor and ceiling. Therefore, the
integrated spectra represent the trailing edge noise radiated by the center 2/3 of the airfoil as
measured at the array position. The noise data were computed for all the configurations in 1/12™

and 1/3™ octave bands in the 500 to 5000 Hz range.
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Figure 3.3: Wind turbine airfoil models tested in the VT Wind Tunnel seen from the trailing edge (a) and
from the leading edge (b). (Extracted from Devenport et al., 2008b.)

Array Y\hx

I

Model

Integration volume

Figure 3.4: Measuring beamforming volume enclosing the central 2/3of span of the trailing edge of a
model for the computation of the integrated spectra. (Extracted from Devenport et al., 2008b.)

57



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines Leonardo Errasquin

Trailing Edge Noise

Microphone Phased Array

Test Section

Flow

Figure 3.5: Schema of an Airfoil inside the wind tunnel and a typical acoustic map. (Extracted from
Devenport et al., 2008b.)

3.3 Experimental data obtained at NLR

Promoted by the National Renewable Energy Laboratories, aeroacoustic tests of seven
airfoils were performed at the National Aerospace Laboratory of The Netherlands (Oerlemans,
2004; Migliore and Oerlemans, 2004). The experiments were conduced in an open jet anechoic
wind tunnel for several flow speed and angle of attack. Seven airfoils were tested and they are
shown in Figure 3.6 except for the SH 3055 airfoil. They were NACA 0012, Sandia S822 and
S834 (developed by NREL), FX63-137, SG 6043, SH 3055, and SD 2030. The NACA 0012
airfoil was tested for benchmarking purposes while the rest are candidate airfoils for wind
turbines. They had a span of 0.51 m and 0.23 m chord. The trailing edges were built respecting
tolerances that assure a blunt thickness lower than 0.375 mm. In the cases that the airfoils were
tripped, the trips were located at 2% and 5% chord on the suction and pressure sides of the
airfoils, respectively. The stream-wise peak-to-peak length of the zigzag tape used was 11 mm.

The standard trip thickness was 0.25 mm, but for some cases trips of up to 0.5 mm were used.

In the present thesis, the data corresponding to the airfoil SH 3055 was not used because

the geometry was not found in the open literature.
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a) d)
NACA 0012 FX63-137
b) e)
SG6043
S822
c) f)
S834 SD2030

Figure 3.6: Airfoils tested: a) NACA 0012. b) S822. c) S834. d) FX63-137. e) SG6043 f) SD2030.

The objectives of the tests were to study the acoustic performance of various wind turbine
airfoil models. For each model, data were collected at various effective angles of attack ranging
from 0° to 9° depending on the airfoil, and various flow speeds ranging from 7 to 64 m/s,
corresponding to Reynolds numbers from 0.2 to 1.0 million. Table 3.3 shows a summary of the
cases tested. Furthermore, in some cases a turbulent flow was induced by the use of a grid placed
upstream of the model to investigate the mechanism of leading edge turbulence noise. The noise
measurements consisted of far-field acoustic data using a 48-element microphone phased array
system. The array was placed outside the tunnel’s flow at a distance of 0.6 m from the model’s
rotating axis at the suction side of the airfoils. The integrated noise spectra were performed for a

volume enclosing the central 0.1 m of span. The results were reported as sound power level (L)

in 1/3" octave bands (Migliore and Oerlemans, 2004). The measurements were made in the
frequency range from 80 to 20000 Hz. Nevertheless, the facility used was considered anechoic
only above 500 Hz. Furthermore, the microphone array used was designed for maximum side-
lobe suppression at frequencies between 1 and 20 kHz. Therefore the data is valid between 500

and 20000 Hz, with a higher accuracy above 1000 Hz.
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Table 3.3: Ranges of flow speeds and effective angles of attack tested by NLR.

No-tripped Tripped
Flow speed  Effective angle Flow speed Effective angle
of attack of attack
(m/s) (deg) (m/s) (deg)
NACA 0012 32t0 71 0to7 32t0 71 0to7
S822 13 to 63 Oto8 12 to 63 O0to8
S834 13 to 48 O0to8 13 to 48 Oto8
FX63-137 13 to 48 O0to8 13 to 48 O0to8
SG 6043 7 to 32 0to8 7to 32 Oto8
SH 3055 32 to 64 O0to8 32 to 64 O0to8
SD 2030 12 to 32 0to8 12 to 32 Oto8

3.4 Summary of Experimental Data

To gain a better understanding of the data used in the training of the neural network, the
range of test parameters for all three tests is summarized here. Figure 3.7 shows the range of
chord Reynolds numbers versus the range of angle of attacks covered for each airfoil tested for
tripped cases. Each polygon represents a Reynolds number versus angle of attack enveloped
corresponding to each airfoil tested. It can be observed that the VT data cover the largest range in
particular towards the higher Reynolds numbers. The figure also reveals some gaps in the data
such as in the 1 to 1.5 million Reynolds number and angles of attack above 5°. A similar result is

shown for the tripped cases in Figure 3.8.
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Figure 3.7: Summary of the Reynolds number versus angle of attack range for the tests presented
in the present chapter. Tripped cases.
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Figure 3.8: Summary of the Reynolds number versus angle of attack range for the tests presented
in the present chapter. No-tripped cases.

3.5 Corrections applied to the experimental data

The experimental data must be first adjusted to account for the different measurement
methods, locations, and processing. To this end, the data were corrected for an observer’s
position at 3 m from the trailing edge in direction perpendicular to the plane containing the chord
and span lines of the airfoil. This position corresponds to r.=3m, 6 =190° and ¢, =90’
following the coordinates system presented in Figure 2.7. The source’s span length was set at
1.23 m. These are the conditions corresponding to the VT tests for 0°effective angle of attack.
For the NASA data, the reference airfoil span length and observer’s location are obtained by
using the correct input to the semi-empirical code. Therefore, no corrections are necessary. On

the other hand, some corrections were applied to the VT and NLR data.
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3.5.1 Interference correction for angle of attack

It is important to clarify that in the present thesis the effective angle of attack is used to
characterize each test. When a wind tunnel test is performed, the aerodynamic behavior of the
airfoils is different than at free flight. This is due to the interference caused by the walls of a hard
walled wind tunnel, the turning of the jet in an open jet tunnel, or the Kevlar cloth of the VT
hybrid configuration. Therefore, this interference effect is accounted for by adjusting the
geometry angle of the airfoil (geometric angle of attack, e.g. actual physical angle of the airfoil
in the tunnel) until it best matches the expected pressure distribution in free flight for a certain
angle of attack, known as effective angle of attack. Therefore, interference correction is the ratio
of the effective to geometric angle of attack, e.g. correction to be applied to the angle of attack
measured at a wind tunnel test for the data to represent free flight conditions. These corrections
have already been applied by the authors of each test. For the NASA tests, the interference
correction was of 37%. This means that the effective angle of attack is 0.37 times the geometric
angle of attack used during the tests. For the VT tests the correction factor was 77% and for the

NLR test it was 44%.

3.5.2 Corrections to VT’s data

The data obtained at the VT’s wind tunnel were affected by the losses through the Kevlar
cloth and the shear layer (Remilleux et al., 2006; Devenport et al., 2008a; Burdisso and
Errasquin, 2009). The acoustic losses through the Kevlar cloth and the boundary layer were first
determined experimentally by Remilleux et al. (2006) and later improved by Burdisso and

Errasquin (2009). The improved corrections can be calculated as follows

corrected measured
Ly =1 A T A (3.1)

Kevlar

where
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Y /
A (dB)=0.0196) —— | —0.0391] —— 32
Kevlar( ) [1000) [1000) ( )
and
A
A, (dB)= 0.00154471(1 _ o Vo) 057)5‘3-28’” (3.3)

In these expressions, L’;e““”ed is the noise measured experimentally, f is the band center

frequency, and M is the free stream flow Mach number. In Figure 3.9 the corrections are

presented as functions of frequency. The positive values in the curves indicate the magnitude of

the losses in decibels.

Correction (dB)

0 2000 4000 6000 8000 10000 12000
Frequency (Hz)

Figure 3.9: Attenuation of sound passing through the acoustic Kevlar window as a function of frequency
in 1/3 octave bands. The summation of the effects of the Kevlar’s wall and the boundary layer are
considered. (Extracted from Burdisso and Errasquin, 2009)

In addition, correction for the position of the observer as a function of the geometric

angle of attacks is required as illustrated in Figure 3.10. The microphone array center is at the
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distance 7 from the center of rotation of the model (1/4 chord from leading edge). As the

geometric angle of attack is changed the actual distance and angle of the observer to the trailing

edge also changes.

For this correction, the noise propagation is modeled as spherical waves emitted from the
center span. The actual directivity of the noise emitted by an airfoil is that of a dipole or a baffle
dipole depending on the case. Nevertheless, these directivity functions are much like spherical
waves at the observer’s direction considered in this work, e.g. normal to the airfoil. Considering

the spherical spreading law, and calling . to the distance from the source (trailing edge) to the
observer and r,' to the distance form source to the microphone array center, then the correction

is given as follows

Li)’" =L +20log 3 (3.4)
r

r

where Li;’” corresponds to the noise level at the observer distance of 3 meters and L7 is the

measured level at the 7, distance. This distance is easily computed using the cosine rule as follows

AR e

It should be noted that this correction is not very important with a maximum adjustment of 0.3

dB for a geometric angle of attack of 15°.
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Figure 3.10: Schematic view of the VT wind tunnel configuration depicting the array position with
respect to the center and trailing edge of the model. During the tests, the array was located either on the
pressure of suction side depending on the test.

3.5.3 Corrections to NLR’s data

The experimental measurements obtained at NLR were expressed in sound power level

(L, ) assuming a monopole behavior of the source (Spherical waves). Therefore, at a distance of
1
0.282 m ((47r)_2j the sound pressure level has the same value as the sound power level. Thus,

the sound pressure level at the observer’s position of 3 m is computed as

3 3
L = 192" _20log| —>— | = L, —20l0g| —— 311
v = g(o.zszj 4 g(o.zszj 6.1

In addition, a correction for length of the source in the span direction is necessary. This
correction takes into account that for the NLR tests the map integration was made over the center
0.1 m of the airfoil’s span while for the VT tests the span length considered was 1.23 m. This
correction is simply
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L =1 +10log,, (1.23/0.1) (3.15)
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4 Neural Networks Prediction Method

The objective of this chapter is to investigate the potential of using neural networks as a
computational tool to predict self noise for airfoils of any geometrical shape, chord length, flow
speed, and angle of attack. The neural networks are trained using experimental data obtained at
VT (Devenport et al., 2008a and 2008b), NLR (Oerlemans, 2004 and Migliore and Oerlemans,
2004), and NASA (Brooks et al., 1989). The neural networks types and configurations are
chosen according to the experience of the author and following advises found in literature. This
work is an application of neural networks and, thus, the theory of this technique is presented only

to the extent that is needed for the proper understanding of the method.

Since the neural network implementation is a new approach, it is intended to develop this
tool in a step by step approach. This means that the first step is to develop a simple model
applicable only to the NACA 0012 airfoils. Then, this model is then extended to include any
airfoil shape. The airfoil shape is considered by incorporating parameters describing the
geometry into the training data. Two different approaches are used here. They are based on a
conformal mapping and polynomial approximations of the surfaces of the airfoil, respectively.
Several different neural networks models are studied in order to identify the ones that are more

appropriate.

4.1 Neural Network Review

Artificial neural networks can be considered as simplified models of the networks of
neurons of animals and human beings. From the engineering point of view, artificial neural
networks offer an alternative form for solving highly non linear problems (Gurney, 1997). Over
the last years, the method of Neural Networks has been increasingly applied to all kind of
engineering problems (Rai, 2002). Following Sundararajan et al. (1999) a typical neuron is

shown in Figure 4.1. A scalar input s, is transferred through a connection that multiplies the

input by a scalar w (weight). The weighted input s;w receives the addition of a scalar bias s, .
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Then, a transfer function f,, chosen according to the problem to be solved, is applied to the
product of the previous steps giving an output s, . The transfer function can be either linear or

nonlinear. The process can be expressed mathematically as

s, = fr (ws,. +sb) (4.1)

A\ 4

Ir

v

hX
1
Figure 4.1: Schematic representation of an artificial neuron.

In a neural network, several neurons are interconnected in order to mimic more complex
behavior than the one that the neurons could reach individually. The functioning of the network
depends on the connections between elements. Figure 4.2 shows a schematic representation of a
typical neural network. The network must be trained by adjusting the bias and the connections
(weights) between elements. A neural network is adjusted so that given a specific input the
network produces a specific output. Then, the output is compared to an expected result or target.
This process is repeated, adjusting the weights, until the difference between output and target
reaches a desire error tolerance. Typically, several pairs of input/target data are needed to reach
an expected behavior. Usually the whole set of input/target data is presented to the network
repeatedly in order to improve the training. Each process of presenting the set of input/target data

is called epoch. Figure 4.3 shows a flow diagram representing the training process.

It can be observed in Figure 4.2 that the network can be composed of several layers.
Frequently, all the neurons in the same layer have the same transfer function. Thus, the transfer

functions are specified by layer. The layer that receives the input data is called Input layer. In the
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same way, the layer that outputs the results is called Output layer. The layers between them are
commonly called hidden layers. The simplest neural network will be composed of an input and
an output layer. The hidden layers usually improve the capacity of the network to solve complex
problems. Though input parameters feed into the input layer, it is important to clarify that the
number of input parameters is not related to the number of neurons in the input layer. In fact, it is
possible to have several input parameters and a single neuron in the input layer. On the other
hand, the number of neurons in the output layer has to match the number of output parameters
that are expected. The number of neurons in the hidden layers does not follow any special rule
and it is chosen based in the experience of the user. The same situation occurs with the election
of the number of hidden layers (Kasnakogluand and Onder Efe, 2008; Sundararajan et al., 1999;
Gurney, 1997).
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Figure 4.2: General schematic representation of a neural network.
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Figure 4.3: Schematic representation of a neural network training.

Each set of input and output parameter corresponding to a set of target parameters is
grouped as an input, output, and target vector, respectively. In this work, it is adopted the
convention of calling input matrix to the set of input vectors and target matrix to the set of target

vectors. The conjunction of the two matrixes is the called training matrix.

4.2  Prior Applications of Neural Networks in Aerodynamic and

Aeroacoustics

Artificial neural networks have been widely used in aerodynamics. Recent applications in
aerodynamics include flow control, estimation of aerodynamic coefficients, compact functional
representations of aerodynamic data for rapid interpolation, grid generation, aerodynamic design,

and the interpolation of wind tunnel data (Rai, 2002).

One of the first applications of neural networks to aerodynamics is the work of Chong et
al. (1992). In this work, a multilayer neural network was applied to airfoil design. The network
was trained using aerodynamic parameters such as drag and lift coefficients as inputs while the
output was the airfoil geometry. The aerodynamic parameters were calculated using XFOIL
(Drela and Youngren, 2001). The geometry was represented by conformal mapping. The results
of this work showed that choosing the optimal neural network configuration is, to some extent, a

random process. Furthermore, it was showed that the network had a much better behavior
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making predictions inside the limits of the training data than outside these limits. This is that the

network was better interpolating than extrapolating (Chong et al., 1992).

In 1993, Meade successfully applied neural networks to the approximation of pressure
coefficients based on experimental data corresponding to NACA 0012 airfoils of different chord
length. Nevertheless, several uncertainties about how to manipulate the neural networks were
reported as a factor that would limit the acceptability of the method. The technique of weighted
residual learning was used. The main advantage of this method would be the possibility of
incorporating some theoretical models to the networks. The possibility of representing the
integral and derivative of the output function was presented as another advantage of the method

(Maede, 1993).

Huang et al. (1994) used a neural network to address the problem of predicting the
aerodynamic parameters given the airfoil’s geometry. In this case, parameters that indirectly
describe the geometry of the airfoil are used as input for the neural networks. The outputs are lift
coefficient, drag coefficient, and pitching moment. It was found that it is uncertain which and
how many input parameters are necessary in order to properly define the problem and guarantee

uniqueness (Huang et al., 1994).

Other application of neural networks was the geometrical design of airfoils by Di Stefano
and Di Angelo (2003). The input of the network is given by angle of attack, lift, drag, and so
forth. The output is represented by the coordinates set of control points of a Bézier curve. In this
work, it is stated that a multi-layer feed-forward neural network with an arbitrary large number
of units in the hidden layers can approximated any real continuous function. It has been verified
that the implemented neural network had little capability to reproduce the geometries expected
when it is operating in the extremes or outside the range of the parameters used for the training
process. Nevertheless, in the case of input parameters located away from the extremes of the

range, the results were reported to be satisfactory.

A different problem was studied by Kasnakoglu and Onder Efe (2008). In this work,

different intelligent methods, including neural networks among them, are contrasted for the
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problem of predicting pressure at a specific location in a 3-element airfoil. A 3-element airfoil is
an arrangement of 3 airfoils interacting between each other like the ones found in the wings of
commercial airplanes. Based on the pressure measured in some locations, it is attempted to
predict the pressure in a different location. The results reported show that a Multilayer
Perceptron network provides better results than a Radial Basis Function Neural Network

(Kasnakoglu and Onder Efe, 2008).

Different methods have been used to take into account the shape of airfoils in neural
network simulations. Chong et al. (1992) used a conformal mapping method. The main reason
for using this method is that it only requires the use of five parameters to define the geometry.
The conformal mapping is described in depth by Jones (1990). This mapping is dependent on
two parameters defining the thickness of the airfoil, two parameters defining the camber, and a
single parameter defining the trailing edge thickness. In the work presented by Rai and Madavan
(1998), two methods for parameterization of airfoils geometry are presented that use up to 13
parameters to describe the geometry. Other method of airfoil representation that has been found
in literature is the use of Bezier curve representation. This method is used in the previously
described work of Stefano and Di Angelo (2003) and in the work of Hacioglu (2007). Finally,
there is a method based in the use of PARSEC airfoils that was used in the work of Khurana et
al. (2008).

With regard to the characteristics of the neural networks used in aerodynamics, according
to all the literature reviewed, in most cases the chosen neural network was a feed forward
network using a back-propagation algorithm (i.e. Rai, 2002 and Meade, 1993). Moreover, the
present literature review shows that a neural network method in aerodynamics would not be

advisable for extrapolating results.

In 2008, Khurana et al. presented an airfoil’s optimization method that included a neural
networks module implemented in Matlab. In this work, a thumb-of-rule assumption is that the
number of neurons in the hidden layer equals five times the number of input neurons. This rule is

reported to have been successful.
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It is important to notice that in most of the works reviewed, the data set used for training

was obtained by simulations rather than experiments.

To the author best knowledge, no prior work was found in the open literature for the

implementation of neural networks to noise prediction from airfoils.

4.3  Neural Networks Implementation

The objective of this section is to describe the general structure of the neutral networks
and the approach used here to train them. The accuracy of the networks is assessed by
developing several simple metrics as presented here. The data excluded from the training is also

described.

4.3.1 General description of the models

The neural network implementation was performed using the Neural Networks tool box
in Matlab. Although several different models have been developed, all of them have the same
structure as illustrated in Figure 4.4. The general characteristics of the neural networks models

are the following:

i. The neural network implemented is only able of predicting TBL-TE and LBL-VS
noise because the training data corresponding to the presence of only these noise

mechanisms.

ii. The input to the networks is given by aerodynamic parameters, i.e. effective angle of
attack, Reynolds number based on the chord length, displacement thickness, and the

airfoil geometry.

iii. The output is given by sound pressure level in 1/3™ octave band in the same range of
frequency than the available training data, e.g. 630 to 4000 Hz. Working in this range
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Vii.

is acceptable considering that according to Lowson and Bullmore (1996), broadband
noise between 500 and 1000 Hz would be the dominant noise for a typical wind

generator. Therefore, most parts of the dominant frequency range would be covered.

The predictions are valid for an observer located at 3 m from the trailing edge in
direction perpendicular to the plate containing the chord and span lines of the airfoil.
This is . =3m, 8, =190° and ¢ =90° following the coordinates system presented
in Figure 2.7. The reason for considering the predictions valid at both sides of the
airfoil is that the directivity function of airfoils can be considered symmetric with
respect to the chord as presented in section 2.2. This is the reason for using training
data that correspond to locations of the observer at the suction or pressure side

indistinctly.

In all models, two neural networks are used. One is trained with data corresponding to

tripped cases and the other is trained with data corresponding to the no-tripped cases.
Hidden layers are present only in some models.

The experimental noise spectra were not normalized before being presented to the

networks.

Leonardo Errasquin
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Figure 4.4: Schematic representation of the general neural network model applied in the present work

4.3.2 Training the Networks

An important problem when developing a neural network is to asses the capacity of the
network to predict the phenomenon of interest. In contrast to other numerical models, it is
important to consider that the neural networks do not include any theoretical modeling of
physical phenomena. The neural networks are mathematical entities trained to reproduce a trend
given by a data set. Consequently, it is uncertain how the neural network will respond in its
predictions, especially if the input data is not close to the training data used. In general, a group
of data is excluded from the training set to be used to contrast the predictions obtained with the
trained network. This process is very convenient when sufficient training data is available. If the
quantity of training data is limited, excluding some data from the training set can potentially lead

to an inadequate training.

The experimental data to be used in the training of the neural networks for noise

predictions were described in Chapter 3. Since these data are not very extensive, it was decided
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not to exclude a subset for the purpose of assessing the accuracy of the networks. Therefore, two
different approaches were used for the training and assessing the accuracy of the networks.

These approaches are:

a) Conventional Training of the Neural Network (CTNN)

The training of the neural network will be carried out by using the complete data set. This
procedure will be referred as CTNN. This is the typical method for training and commonly found
in the literature reviewed. This method is the most adequate when the objective is just to reach
the training targets with the highest precision. This approach will be used to create the network
for airfoil noise predictions. However, the method does not provide any means to assess the
capacity of the network to predict the response to input data other than the one included in the

training set.

b) Alternative Training for Assessing Network Accuracy (ATANA)

To assess the accuracy of the network, it is trained again using all the data except for one
test vector. This network training is referred as ATANA. The vector excluded from the training
is known as control vector. In order to test the network for different conditions, multiple control
vectors are considered. In this way, the capacity of the network to predict new inputs is tested for
all the cases available. Each network created by this approach is expected to be similar to the
network created by the CTNN approach since the training matrix differs in a single vector. In
consequence, it is expected that the networks developed by the ATANA approach will provide

some information about how well the network created by the CTNN approach will behave.

As mentioned earlier, the network created by the CTNN approach will be ultimately used
for airfoil self noise predictions. Here, all the m vectors available for training are used as control
vector. Thus, there will be m neural networks trained with m -/ data points to asses the accuracy

of the network using all m data points (CTNN network).
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4.3.3 Metrics to Assess Neural Network Accuracy

One of the most important steps in the development of the neural networks tool is to
assess the accuracy of each model. This is necessary in order to determine if the changes
implemented improve the network behavior. The assessment of the networks performance can be
carried out by visually inspecting the network output to the experimental data used as control
vectors. However, this process is time consuming due to the large number of vectors, e.g. more
than 500. Therefore, it is proposed to asses the accuracy of the predictions by using simple

metrics as described here.

Average Level Difference

This metric is based on computing the difference in the average spectra level as follows
T _TE_TP
AL,=L,-L, (4.2)

where superscript £ and P indicates the experimental and predicted results, respectively, and the

line over the levels indicate that they are averages.

Using the illustrative spectra in Figure 4.5, the average spectra level is computed as

_ 1< Lp%)

L, =10log,, ;ZIO (4.3)
i=1

where L, is the sound pressure level in the i ™ band and the summation goes over the 1/3 octave

bands from f, =630 to f, =4000 Hz and n is the number of bands in the frequency range. The

physical interpretation of this metric is shown in Figure 4.5.
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Figure 4.5: Schematic representation of the physical meaning of the average level difference metric
correspond to the jth test of a set of m tests with frequencies ranging from f, to f, . Predicted and

experimental noise spectra indicated with continuous red and blue lines respectively. Predicted and

experimental average level difference (Lp ) represented in red and blue dashed lines respectively.

This average spectra difference is computed for all m control vectors. To assess the

overall performance of the network, the average of the absolute value of the m calculated AL pls

computed as follows

> (AZ,, ),-

(ALy) = (4.4)

avg m

where the subscript j indicates that the summation is performed for the AL, corresponding to

each of the m tests. Though not strictly correct mathematically, this overall value provides a

simple number that represent the expected difference in decibels between the predicted and
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experimental data in an average sense over frequency range and aerodynamic envelope of the

data set.

Maximum Level Difference

This metric is based on computing the maximum difference between the predicted and
experimental spectra in disregard of what frequency band this maximum difference takes place

on. That is

AL . = max‘Li[ —L};[‘ _ 4.5)

p Max

The maximum level difference of the spectra ALP ma 18 graphically depicted in Figure 4.6. It is

clear that this metric is always equal or larger than the average one presented previously.
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Figure 4.6: Schematic representation of the physical meaning of the maximum level difference metric
correspond to the jth test of a set of m tests with frequencies ranging from f, to f, . Predicted and

experimental noise spectra indicated with continuous red and blue lines respectively.

As before, an overall average is computed as

m
2 ALy
Jj=1

(AL, 1y )avg = (4.6)

R-square correlation

The use of R-squared correlation has become common in the field of neural networks and
it is also implemented in this problem. The metric is obtained by computing the linear regression
between each element of the network output and the corresponding target for the training set.

Then, the difference between response and target is calculated and expressed in root-mean-
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square (rms) terms. Therefore, if the output of the network is composed of » 1/3™ octave band

levels, then n R-squared correlation values are calculated.

\/g(Lij_Lij)z
)i - \/E

where norm is the Euclidean norm, and I denotes each of the n frequencies bands. The levels

(7,0 for i=1---,n 4.7

—E —P
Lyi and Lpi are vectors containing the levels for the 7 " band frequency and for all the m data

vectors available. Therefore, 7

rms

is a vector of length »n containing the R-squared correlation

obtained for each frequency. Then, on order to transform this in a single value, a subsequent rms

calculation is applied.

R, =— =
RMS Jn N (4.8)

It is important to note that this metric was used in the training of the networks, i.e. used
by the Matlab routines.

4.3.4 Dataexcluded

As indicated in the previous chapter, some of the experimental data was not used in the
training of the networks. In this section, the experimental data that was not included are

described. They are:

One of the parameters that are intended to be used for the neural networks implementation
is the boundary layer displacement thickness. Here, the boundary layer parameters were
predicted using the code XFOIL (Drela and Youngren, 2001). In Appendix B, a brief
description of XFOIL is presented, and the validity of the predictions is assessed by

comparing them with experimental data available in literature. For some airfoils at high
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angles of attack, XFOIL failed to converge. Therefore, for the neural networks
implementations only the tests cases for which the displacement thickness could be

predicted are included in the training matrix.

The acoustic data corresponding to the SH3055 airfoil could not be used because the

geometry coordinates were not found in the open literature.

The acoustic data corresponding to the DU97-W300, DU97-W900 and the DU97-W900
with splitter plate were also excluded because these airfoils do not have sharp trailing

edges. The vortex shedding due to blunt trailing edges is not considered in this initial study.

Some results for the NACA 0012 airfoil for the same conditions were available from
NASA and NLR tests. Thus, only the NLR data was used for the aforementioned test
condition. The NLR data was chosen because it provided a richer database in terms of

angles of attack and flow speeds.

The data used in the development of the neural networks is shown in Figures 4.7 and 4.8

corresponding to tripped and no-tripped cases. Each polygon represents a Reynolds number

versus angle of attack range for witch the corresponding airfoil was tested. Each test is depicted

with a different color.
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Figure 4.7: Summary of the Reynolds number versus angle of attack range of the tests results
used for training the networks. Tripped cases.
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Figure 4.8: Summary of the Reynolds number versus angle of attack range of the tests results used
for training the networks. No-tripped cases.

4.4  Airfoil Self Noise Neural Networks

The present section describes the implementation of two neural networks models of
increasing complexity. The first model is trained with experimental data obtained for NACA
0012 airfoils. The second model incorporates training data corresponding to several different
airfoils. In order to take in account the shape of the airfoils, this model includes parameters

describing the geometry of the airfoils.
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441 Neural Network for NACA0012 Airfoil

Several neural network configurations were developed using only NACA 012 airfoil data.
The main aim of these initial studies is to investigate the performance of the network excluding

the effect of the airfoil shape.

The first models implemented are simple configurations used to get familiarized with the
neural networks. The training matrix used consists of the experimental data obtained at the VT
wind tunnel for the 0.91 m chord airfoil and the data obtained by NASA for airfoils of chord
ranging from 0.025 m to 0.3 m. As the present model is a first assessment of the neural networks
capacity, the data corresponding to a NACA 0012 airfoil tested at NLR (Oerlemans, 2004) is not
included for simplicity in the calculations. Furthermore, the chord of the NACA 0012 airfoil
tested at NLR 1is the same than for one of the airfoils tested at NASA.

Due to the symmetry of the NACA 0012 airfoil, it is expected to have the same acoustic
behavior for negative and positive angles of attack. Therefore, data for negative angles was used

by simply taking the absolute value of the angle of attack.

Table 4.1 summarizes the main characteristics of the neural network models. The input
parameters consisted of flow speed, chord length, effective angle of attack, and in some cases the
boundary layer displacement thickness at the trailing edge at the suction side and/or pressure

side.
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Table 4.1: Description of the neural network model I developed. The same model is used for the
tripped and the no-tripped networks.

Model |

Input Flow speed
Chord
Effective angle of attack
Boundary layer displacement thickness at the trailing edge at the suction side

Boundary layer displacement thickness at the trailing edge at the pressure side

Output L, in 1/3" octave bands for 9 frequencies ranging from 630 to 4000 Hz
Number of layers 2to4
Training data 0.9 m chord NACA 0012 tested by VT

0.025 to 0.3 m chord NACA 0012 airfoil tested by NASA

To seek the optimal configuration of the network, eight models (denoted as I-a thought I-
h) were developed. The differences among the models are based on training settings or input data
used. The eight models are presented in Table 4.2. For Models I-a thought I-g, the networks
consist of two layers with 20 neurons in the input layer and 9 neurons in the output layer. The
number of input neurons was empirically chosen. The 9 output neurons correspond to the 9
frequencies for which the acoustic data is considered. In the last model (I-4), two hidden layers

are incorporated.

For all models, the training algorithm used was trainl/m and the transfer functions for the
input-output layer were tansig-purelin. These configurations were found to be the most effective
among several tried. For I-4 model, tansig-logsig transfer functions were used in the hidden

layers. It can be seen in Figure 4.9 that the transfer functions fansig and logsig are nonlinear
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functions while purelin is linear. The number of epochs used for the training process was varied
between 25 and 500 depending on the case. It is important to note that for Model I-%, no training
epochs number was set. In this case, a target error was used for stopping the training process.
The reason for this difference is that when hidden layers are used, the training for each epoch is
very slow. Therefore, it is necessary to set an error target in order not to go over an excessive

number of training epochs.

a) b) ©)
y 4 y 4 y A

1
____________________ 1 e -T--- 1 ___________?—'
Ki . / -

-1
___________________ S [ S [P R

y=tansig(x) y=purelin(x) y=logsig(x)

Figure 4.9: Transfer functions used in the neural networks implemented. a) Tansig transfer function. b)
Purelin transfer function. c) Logsig transfer function.

In all models, flow speed, chord length, and effective angle of attack are used in the input
matrix. In addition, for Models I-e to I-4, boundary layer displacement thicknesses for the
suction and/or pressure side are used as shown in Table 4.2. The reason for adding the boundary
layer parameters to some cases is that the noise spectra seem to scale well with the boundary
layer displacement. The boundary layer displacement thickness corresponding to the pressure
and suction sides of the airfoil required as inputs were predicted using XFOIL (Drela and

Youngren, 2001).

The metrics presented in Section 4.3.2 are also presented in Table 4.2, e.g. equations 4.3,

4.5, and 4.7. Note that the metrics were computed for the ATANA networks and the CTNN
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network. However, it is important to clarify that the results for the ATANA approach are

considered more important to assess the network accuracy.

The results in Table 4.2 show that when the boundary layer displacement thickness is not
used for training the networks (cases I-a to I-d), increasing the number of epochs above 50 does
not improve the accuracy of the networks. Moreover, using more than 100 epochs could over
train the neural networks leading to less accurate predictions. Another case of over-training can
be observed by comparing the metrics of case I-f'and I-g. In this cases, increasing the number of
epochs from 50 to 500 lead to a high reduction in the prediction accuracy, i.e. 0.95 to 0.57 in the

R-square correlation for the tripped case.

The assessment of the influence of using hidden layers can be performed by comparing
cases I-e and I-A. For both these cases, the pressure side boundary layer displacement thickness
is used. Comparison of the aforementioned cases shows no significant improvement of the
predicting capacity by incorporating hidden layers. In fact, adding the hidden layers degraded the
metrics, i.e. from 0.98, 1.4 dB, and 3.7 dB to 0.95, 1.8 dB, and 4.3 dB for the R-square, average

level difference, and maximum level difference for tripped cases, respectively.

Comparison of the metrics between tripped and no-tripped cases shows a higher level of
accuracy in the predictions for tripped cases. For model I-a, the metrics for tripped cases are

0.98, 1.5 dB, and 4.2 dB, and for no-tripped cases 0.91, 3.5 dB, and 7.7 dB, respectively.

In the overall evaluation of the metrics, Model I-e provides the most accurate network for
both the tripped and no-tripped cases. However, all the other models seem to perform reasonably
well with results only slightly poorer than the model I-e. This observation suggests that the actual

network configuration to be used for noise predictions is not very sensitive.
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The results in Table 4.2 present the average metric for all m control vectors. Figures 4.10
through 4.13 present the average and maximum level difference metrics for the individual
control vectors using Model I-e. In these figures, the control vector case is defined as a circle in a

plot of the angle of attack (« ) versus chord Reynolds number (R, ). A color scheme is used to

plot the magnitude of the calculated metric. The color scheme ranges from 0 to 10 dB for the
figures representing the average level difference metrics and from 0 to 20 for the maximum level
difference metrics. Nevertheless, there were few cases for which the levels of the metrics were
outside this range, e.g. the case indicated as d in Figure 4.10 for which the average difference
level metric is 25 dB. The cases that are indicated with letters in these figures will be analyzed in
detail later in the section. For the sake of completeness, Appendix E presents results similar to

Figures 10 through 13 but with a color-bar that shows a larger range.

Figures 4.10 and 4.11 present the results of the average and maximum difference level
metrics for the no-tripped case, respectively. Figures 4.12 and 4.13 present similar results but for
tripped cases. Inspection of these figures shows that the lower levels of accuracy tend to occur
almost exclusively at the boundaries of the training set. This result is not unexpected since it has

been reported the limitation of the neural networks to extrapolate.
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Figure 4.10: Average Level difference metric for each control vector using Model I-e for no-tripped case.

Training using the ATANA approach.
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Figure 4.11: Maximum Level difference metric for each control vector using Model I-e for no-tripped

case. Training using the ATANA approach.
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Figure 4.12: Average Level difference metric for each control vector using Model I-e for tripped case.
Training using the ATANA approach.
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Figure 4.13: Maximum Level difference metric for each control vector using Model I-e for tripped case.
Training using the ATANA approach.

To gain more in depth understanding of the accuracy of the network, comparison between
experimental and predicted spectra for the control vectors are presented in Figures 4.14 and 4.15.
In all cases, predictions were obtained with Model I-e. Figure 4.14a presents the case for

a =4°and R, =1.6 million in the no-tripped configuration. This case is indicated in Figures 4.10

and 4.11 with the letter a. It can be noticed that the predictions are within 7 dB for all frequency
bands. In this case, the calculated average level difference is 4 dB and the maximum level
difference is 8 dB. Figure 4.14b shows a case in which the experimental data presents vortex

shedding noise. The case presented corresponds to 8° of angle of attack and R, =3.0 million and

it is indicated in Figures 4.10 and 4.11 with the letter b. It can be seen that in this case the
prediction obtained with the neural network fails in approximating the vortex shedding peaks
present in the experimental measurements. In this case, the calculated average level difference is
7 dB and the maximum level difference is 14 dB. Figure 4.14c presents the case for o =4° and

R =3.1 million in the no-tripped configuration. This case is indicated in Figures 4.10 and 4.11

with the letter c¢. The predictions for this case are within 3 dB for all frequency bands (Average
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and maximum level difference are 2 and 4 dB, respectively). Figure 4.14d shows a case that is
located at the boundary of the data set. The case presented corresponds to 16°of angle of attack

and R, =0.4 million (letter d in Figures 4.10 and 4.11). It can be observed that the network

completely fails in predicting outside the range of the training data.

a) Run68 Test: SANDIA U=29 Effective AoA=4 Chord= 0.914 No-tripped b) Run76 Test: SANDIA U=54 Effective AoA=8 Chord= 0.914 No-tripped
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Figure 4.14: Comparison of experimental results and predictions using Model I-e and ATANA training
approach for no-tripped case: Control vectors a) a =4°and R, =1.6 million, b) a =8° and
R, =3 million. c) a =4°and R, =3.1million, and d) o =16°and R, = 0.4 million.

¢ Experimental Prediction

The results in Figure 4.15 present similar sample spectra for the tripped condition. The

cases shown are indicated with the letters a, b, ¢, and d in Figures 4.12 and 4.13. The results
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reveal the same trends as for the tripped cases. The network predicts very well all cases while

failing to capture the vortex shedding mechanism is the few cases it takes place.
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Figure 4.15: Comparison of experimental results and predictions using Model I-e and ATANA training
approach for tripped case: Control vectors a) a =2°and R, =1.2million and b) o = 8° and

R =24 million. c) @ =0°and R, =3.4million and d) a =0°and R, =0.05 million.

¢ Experimental

Prediction

Figures 4.16 through 4.19 present the average and maximum level difference metrics for
the final network, e.g. CTNN training approach for Model I-e. These results are presented using
the same format as in Figures 4.10 through 4.13. Figures 4.16 and 4.17 present the results for the
no-tripped case while Figures 4.18 and 4.19 are for tripped cases. As expected, the results are
about the same in Figures 4.10 through 4.13. This demonstrates that the network trained using all
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the data (CTNN) and the ones used to assess the accuracy of the networks (ATANA) are similar.

Sample spectra are presented in Figure 4.20 corresponding to the cases indicated with the letters

a through d.
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Figure 4.16: Average Level difference metric for each test case vector using Model I-e for no-tripped
case. Training using the CTNN approach.
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Figure 4.17: Maximum Level difference metric for each test case vector using Model I-e for no-tripped
case. Training using the CTNN approach.
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Figure 4.18: Average Level difference metric for each test case vector using Model I-e for tripped case.
Training using the CTNN approach.
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Figure 4.19: Maximum Level difference metric for each test case vector using Model I-e for tripped case.
Training using the CTNN approach.
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Figure 4.20: Comparison of experimental results and predictions using Model I-e and CTNN training

4.4.2

approach: Control vectors a) No-tripped case, a =4°and R. = 3.1million, b) No-tripped case,
a =8%and R, = 2.4 million, c) Tripped case, o =8° and R, =3.1million and d) Tripped case,

a =8%and R, =0.18million.

¢ Experimental

Prediction

Implementation including airfoils other than NACAQ0012

This case constitutes a generalization of the previous models for different airfoil’s

geometry. The data used for training the network correspond to the NACA 0012, Sandia S831,
S822 and S834, Delft DU96, FX63-137, SG 6043, and SD 2030 airfoils.
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As nonsymmetrical airfoils are included in the training set of the present model, data
corresponding to positive and negative angles of attack are considered. Therefore, the data
corresponding to NACA 0012 airfoils for VT and NLR tests was doubled by using the original
data set plus a data set similar to the original but with the sign of the angle of attack changed.
This process was not applied to the data corresponding to NASA because it was desired to keep

the size of the data reasonable for the computation time point of view.

The airfoil geometry is taken in account by parameters obtained through a Karman-

Trefftz conformal mapping or by polynomial approximation of the pressure and suction surfaces.

The Karman-Trefftz conformal mapping is a technique typically used in aerodynamics
for mapping a circle (contained in the ¢ -plane) into an airfoil with a specific trailing edge angle
(z-plane) and vice versa as it is depicted in Figure 4.21. This procedure allows simplifying the
aerodynamic calculations by performing them in the { domain where the boundary conditions
are simple. Then, the results can be mapped into the physical domain (z-plane). The Karman-

Trefftz transformation is given by

z—nD :(é’—D)"
z+nD  ({+D)"

(4.9)

where
Y=n(2-n), (4.10)
and Y is the trailing edge angle (Angle ¥ in Figure A.1 of Appendix A).

The shape of the airfoil can be controlled through the position of the circle, ¢, the
parameter D, and the angle Y. The real part of J, controls the thickness of the airfoil, the

imaginary part controls the camber, and D controls the chord of the airfoil. The trailing edge

angle is controlled by ¥ as it was previously stated.
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The approach used in the present work is finding values for the conformal mapping
parameters to approximate the airfoil’s shape. The explicit expression necessary for the
transformation can be obtained by a series expansion of equation (4.9) (Karamcheti, 1980). In

the present work, the first two terms of the series were used as follows

= 4. 4.11)

¢ -Plane z -Plane

\ 27 —Y
-

U

<= nD

A

Figure 4.21: Schematic description of the Karman-Trefftz conformal mapping.

It is important to clarify that the Karman-Trefftz conformal mapping has limitations in
terms of the geometries that it can produce. Some geometrical characteristics can not be
controlled. Therefore, the Karman-Trefftz conformal mapping conduces to geometries that are
only an approximation to the actual airfoil shapes. Figure 4.22 shows an example of the FX63-
137 airfoil and the conformal mapping approximation. In Appendix C, comparison of the airfoil

geometry with the approximate geometry obtained is presented for all airfoils.
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K-T mapping
----- Real geometry
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Figure 4.22: Example of the shape of an FX63-137 airfoil originated through Karman-Trefftz conformal
mapping compared with the desired geometry.

The second approach to define the airfoil geometry consisted of using polynomials for
the pressure and suction surfaces of the airfoils. For simplicity, the same order, u, were assumed

for the pressure and suction side polynomials. That is,
pp:ap0+ap1x+ap2x2+...+apux“ (4.12)
and

p,=a,+a,x+ aszx2 +..4a,x" (4.13)

for the pressure and suction sides, respectively. Therefore, 2(u + 1) parameters are used to define

the airfoil geometry. In the present work, polynomials of order 6 are used. The error in
approximating the airfoils used is of less that 2% of the chord in the regions near the leading and
trailing edges. The error reduced to less than 0.05% on the rest of the airfoil. Better accuracy was
obtaining using the polynomials as compared to the conformal mapping approach. Figures of the
airfoil shape and the polynomial approximation are not presented since they are virtually

identical.

Table 4.3 summarizes the main characteristics of the neural network model that
incorporates the airfoil geometry. Several sub-models were investigated to asses the effect of
using hidden layers and incorporating the displacement thickness. The nine sub-models are

presented in Table 4.4.
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Table 4.3: Description of the neural network model developed based on the data of Brooks et al.
(1989), VT and NLR. The same model is used for the tripped and the no-tripped networks.

Model 11
Input Flow speed
Chord length
Effective angle of attack
Boundary layer displacement thickness in the trailing edge at the suction side
Boundary layer displacement thickness in the trailing edge at the pressure side
P, =0, +a,x+a,x’ +. .+a,x" or D 7
p.=a,+a,x+a,x +..+a,x" Re(&)) Im(¢))
Output L, in 1/3" octave bands for 9 frequencies ranging from 630 to 8000 Hz

Number of layers

2t03

Training data

NACA 0012, Sandia S831 and Delft DU96 tested at VT

NACA 0012, Sandia S822 and S834, FX63-137, SG 6043, and SD 2030 tested at
NLR.

NACA 0012 airfoil tested by Brooks et al. (1989) (Except 0.33 m chord airfoil)

For Models II-a thought II-f'and 1I-i, the networks consist of two layers with 20 neurons

in the input layer and 9 neurons in the output layer. The number of input neurons was empirically

chosen. The 9 output neurons correspond to the 9 frequencies for which the acoustic data was

considered as in Model I. In Models II-g and II-4, a hidden layer was incorporated. For all

models, the training algorithm used was train/m and the transfer functions for the input-output

layer were tansig-purelin. For 1I-g and II-4 models, tansig transfer function was used in the

hidden layer. In all models, flow speed, chord length, and effective angle of attack were used in
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the input matrix. In addition, for Models II-c¢ and II-d boundary layer displacement thickness at
the trailing edge on the pressure side was used. For Models Il-e to II-4, boundary layer
displacement thickness at the trailing edge on both the pressure and suction sides was used. The
boundary layer displacement thickness corresponding to the pressure and suction sides of the
airfoil required as inputs were predicted using XFOIL (Drela and Youngren, 2001). The number
of epochs used for the training process was 20. This number of epochs was previously found to
lead to good results with acceptable computing time. It is important to note that for Models g and
h, the limit for the iterations was set to 20 epochs or until a target error was reached, whatever

occurred first.

The average metrics used to asses the network accuracy are presented in Table 4.4. The
results presented show no significant differences in the accuracy of the different models. The
average and maximum level difference metrics for tripped cases are almost the same for all the
models. With regard to no-tripped cases, it can be observed that the inclusion of a hidden layer
improves the accuracy of the predictions, i.e. the average and maximum level difference metrics
for Models 1I-6 and II-2 go from 4.7 and 9.6 dB to 2.9 and 7.3 dB, respectively. Another
interesting observation is that the results are again very similar for the conformal mapping and
polynomial approximation geometry parameterizations. In all cases, the difference in the metrics

between these two methods is less than 0.4 dB.

In the overall evaluation of the metrics, Model II-4 provides the most accurate network
for both the tripped and no-tripped cases. However, all the other models seem to perform
reasonably well with results only slightly poorer than the model II-4. This observation suggests

that the actual network configuration to be used for noise predictions is not very sensitive.
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The results in Table 4.4 present the average metric for all m control vectors. Figures 4.23

through 4.30 present the average level difference metric for all the airfoils using Model II-4 for

no-tripped cases. The color scheme ranges from 0 to 10 dB in order to be consistent with the

levels used for representing the results for Model I-e. Nevertheless, there are some cases for

which the levels of the metrics were higher. For the sake of completeness, Appendix E presents

the same results with the full scale range.

Figure 4.23 shows the results for the NACA 0012 airfoil. Comparing this figure to the

Figure 4.10, it can be observed that Model-II (for all airfoils) performed similarly to Model-I

(exclusively for the NACAO0012 airfoil). This results proofs of the robustness of the network. The

results in Figures 4.24 through 4.30 show similar trends as previously observed. The network

predicts well the self-noise in the absence of vortex shedding.
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Figure 4.23: Average level difference metric for each control vector using Model 1I-h for no-tripped case

for the NACA 0012 airfoil. Training using the ATANA approach.
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Figure 4.24: Average level difference metric for each control vector using Model II-h for no-tripped case
for the S822airfoil. Training using the ATANA approach.
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Figure 4.25: Average level difference metric for each control vector using Model 1I-h for no-tripped case
for the S831 airfoil. Training using the ATANA approach.
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Figure 4.26: Average level difference metric for each control vector using Model II-h for no-tripped case

for the §834 airfoil. Training using the ATANA approach.
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Figure 4.27: Average level difference metric for each control vector using Model 1I-h for no-tripped case

for the DU96 airfoil. Training using the ATANA approach.
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Figure 4.28: Average level difference metric for each control vector using Model II-h for no-tripped case
for the Fx63-137 airfoil. Training using the ATANA approach.
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Figure 4.29: Average level difference metric for each control vector using Model II-h for no-tripped case
for the SG 6043 airfoil. Training using the ATANA approach.
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Figure 4.30: Average level difference metric for each control vector using Model II-h for no-tripped case
for the SD2030 airfoil. Training using the ATANA approach.

To gain more in depth understanding of the accuracy of the network, comparison between
experimental and predicted spectra for the control vectors are presented in Figures 4.31 and 4.32.
In all cases, predictions were obtained with Model II-4, and the results presented correspond to
no-tripped configurations. As before, letters a through d in Figures 4.23 through 4.30 indicate the

control vector presented.
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4.4.3 Comparing the neural networks prediction accuracy with the method of Brooks et
al. (1989)

It was stated in Chapter 1 that the method of Brooks et al. (1989) is the most used tool for
predicting airfoils self noise. Therefore, in this section the prediction accuracy of the neural
networks tool developed here is compared with the prediction accuracy of the method of Brooks
et al. (1989). To this end, the same metrics presented in Section 4.4.2 are computed using Brooks
et al. approach. The results are compared in Table 4.5. The metrics were computed for all the
cases except the ones corresponding to the tests performed by Brooks et al. (1989). The reason
was that in the present thesis the data corresponding to the tests performed by Brooks et al.
(1989) was simulated using the semi-empirical method of Brooks et al. (1989). Therefore,
experimental data and predictions obtained by the method of Brooks et al. (1989) are the same

for the NASA data.

The results of the comparison show that the neural networks tool predicts the cases
considered with a higher level of accuracy in an average sense. The reason for this is likely
because the neural networks were developed using a richer experimental database than the one
used by Brooks et al. (1989). Another potential reason could be that the neural network is more
capable of modeling the non-linear physics of the trailing edge noise than the normalization

performed by Brooks et al. (1989).
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Table 4.5: Comparison of the accuracy of the predictions obtained with the developed neural
networks and the predictions obtained using the method of Brooks et al. (1989).

Neural Networks (Training Brooks et al. (1989)
excluding a control vector
(ATANA))
tripped/no-tripped tripped/no-tripped
R-Square 0.943/0.838 0.904/0.720
(AL ) 1.9/2.9 2.6/7.6
P ] average
4.3/6.8 8.2/14.6
(ALM‘IX )average
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5 Conclusions

A new method was developed to predict self noise of airfoils typically used in wind
turbines. The developed tool is based on neural networks trained with experimental data. This
experimental data corresponds to tests of several different airfoils and flow conditions. The
resulting tool is capable of taking in to account the geometric characteristics of the airfoil. The
input parameters received by the network are the flow speed, chord length, effective angle of
attack, and parameters describing the geometrical shape of the airfoil. In addition, boundary layer
displacement thickness is used for some models. The parameters used for taking in account the
airfoil’s geometry are based on a conformal mapping method or a polynomial approximation.
The output of the neural network is given by sound pressure level in 1/3™ octave bands for nine

frequencies ranging from 630 to 4000 Hz.

No information about the trailing edge thickness was incorporated into the training data.
Therefore, the neural networks tool is not capable of predicting TBE-VS noise. Furthermore, as
no training data corresponding to stall condition was used, the neural network does not take in
account this noise mechanism. The neural network does not predict tip noise either because no

experimental data for this source was available.

Two models were developed; the first one was based on training data corresponding to
NACA 0012 airfoils only. The second model incorporated experimental data corresponding to
the NACA 0012, Delft DU96, Sandia S831, S822 and S834, Fx63-137, SG6043 and SD-2030
airfoils. The airfoil chords ranged from 0.025 to 0.91 m. For both models, the effects of different
input data and training configurations were assessed. It was found that both conformal mapping
and polynomial approximation for parameterization of the airfoils shape lead to similar levels of
accuracy. Furthermore, it was found that the neural network models are not sensitive to the use
of boundary layer parameters as input. This constitutes an advantage with respect to other

prediction tools that require boundary layer information.

In some cases the neural network fails in predicting tonal vortex shedding noise produced

by laminar boundary layer-trailing edge interaction. Moreover, it was found that the neural
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network developed in the present work is not capable of making predictions outside of the
domain defined by the training set. Furthermore, in contrast with the semi-empirical method
presented in Chapter 2, the networks application developed in this thesis present the advantage of
allowing flexibility for the incorporation of new experimental data into the training set. The
neural networks can be successively improved by adding the new experimental data to the

training matrix and retraining the networks.

Finally, the predicting accuracy of the neural networks tool developed in this thesis was
compared with the semi-empirical method developed by Brooks et al. (1989). It was found that
the neural networks tool produced more accurate predictions in an average sense for the cases

that were considered.

The overall conclusion of the present work is that the developed neural network is
capable of predicting self-noise accounting for the shape of airfoils. This demonstrates the

potential of the neural network method as a tool for predicting wind turbine noise.
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6 Future work

In this section, a set of research recommendations are made for future work.

As it was mentioned before, incorporating new training experimental data to the neural
networks is a very simple process. It was mentioned that the neural networks could possibly fail
in approximating tonal vortex shedding noise due to lack of enough data. Therefore, it could be
convenient to incorporate more experimental data corresponding to test configurations for which

this vortex shedding occurs, e.g. no-trip.

In addition, it is advised to normalize the experimental data to be used for training the
networks. The objective is to present to the networks a more homogeneous data set. For example,
the noise data could be normalized using the 5™ power law of the free stream velocity and the
chord based Strouthal number. Another possible improvement would be to separate the tonal
noise from the broadband noise. Then, separated neural network for predicting the broadband
and tonal noise components could be developed. Moreover, as some neural networks are
commonly used for yes-no decision making, it is advised to implement a decision making model

to predict whether vortex shedding occur or not.

It is also recommended to create new neural networks models to predict blunt vortex
shedding and tip noise. For the prediction of blunt vortex shedding noise, it would be necessary
to use acoustic measurements corresponding to several trailing edge geometries. In the case of
tip noise, the neural networks should be based on experimental measurements of noise emitted

by blade’s tips.

Upon further development of the neural network methods, it is recommended to use this
predictive tool to estimate the noise from real wind generators and assess it fidelity. The ultimate

goal is to develop a tool to accurately predict wind turbine noise emissions.

Finally, it is recommended to work on the development of a neural network application
for designing quiet airfoils. It is proposed to implement an iterative or inverse method based on

neural networks to minimize the sound emission. In the case of an iterative design tool, the
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network would be trained using aerodynamic parameters such as drag and lift and geometrical
parameters. The output would be the noise spectra. Once the network is trained, an iterative
process would search for an optimal geometry, with aerodynamic performance constrains, i.e.
drag and lift. In the case of an inverse process, the nets would be trained using aerodynamic
parameters and noise spectra as input parameters. The output parameters would be given by the
geometry. Once the net is trained, aerodynamic and acoustic targets would be inputted to the
network in order to obtain a geometry satisfying these targets. Considering the limitations of the
neural networks exposed in previous sections, the first method appears to be more realistic for a

practical implementation.
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Appendix A: Airfoil Geometry, Abbreviations and Symbols

A.1 Parameters defining the geometry of an airfoil

Figure A1 depicts the main geometrical components of an airfoil and the corresponding

nomenclature.

Camber line

Chord line

U: free stream velocity
C: Chord length
t: Thickness

cmb: Camber

R
o : angle of attack

2 : angle between camber line and chord line \/ T

b: Trailing edge bluntness thickness

Y : Angle of the trailing edge

Figure Al: Schematic view of the geometry of an airfoil.
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A.2 Abbreviations

TBL-TE: Turbulent boundary layer trailing edge

S/SF: Separated / Stalled flow

LBL-VS: Laminar boundary layer — vortex shedding

TEB-VS: Trailing edge bluntness — vortex shedding

SPL.: Sound pressure level

ATANA: Alternative Training for Assessing Network Accuracy
CTNN: Conventional Training of the Neural Network

VT: Virginia Tech

A.3 Symbols

c,: Speed of sound

T: Time that a wave front takes to travel from the source to the receiver
v Distance to the observer

0.: Local coordinate for a flat plate in rectilinear motion

Q. Local coordinate for a flat plate in rectilinear motion

M : Mach number

]

L

High frequency directivity function

Low frequency directivity function
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P :

Acoustic intensity
Free stream velocity

Normalized turbulence intensity

Density of the air
Span length
Parameters describing the dimensions of the turbulent region as depicted in Figure 2.6

Boundary layer thickness. It is the distance from the airfoil surface where the mean

velocity reaches the 99% of the potential flow stream velocity

Boundary layer displacement thickness. It is the distance by which a surface would have
to be moved parallel to itself towards a reference plane in an ideal fluid stream to give the
same mass flow as occurs between the surface and the reference plane in a real fluid. In
other words, it is the distance a streamline just outside the boundary layer is displaced

away from the wall compared to the inviscid solution.

Boundary layer thickness for 0° of angle of attack

Boundary layer displacement thickness for 0° of angle of attack

Boundary layer thickness at the suction side

Boundary layer displacement thickness at the suction side

Boundary layer thickness at the pressure side

Boundary layer displacement thickness pressure side

Average displacement thickness
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Chord Reynolds number
Chord
Effective angle of attack

Angle of attack of the blade at the tip section

Angle of attack for witch the directivity effect is considered to change from high

frequency to low frequency for S/SF noise

TBL-TE / S/SF . oy ..
L, : Turbulent-boundary-layer—trailing-edge --- Separated / Stalled-flow noise in

sound pressure level.

LﬁB *~5 . Laminar — Boundary — Layer — Vortex — Shedding Noise in sound pressure level

BTE
L.
L

p

Tip .
v

L

Blunt trailing edge noise in sound pressure level

Separated / Stalled-flow noise in sound pressure level

Tip noise in sound pressure level

Turbulent-boundary-layer—trailing-edge noise produced by the pressure side in sound

pressure level

Turbulent-boundary-layer—trailing-edge noise produced by the suction side in sound

pressure level

L;"‘”“’ : Scaled noise in sound pressure level in 1/3" octaves bands

orrec .. . d
L‘p"”“’ed : Corrected noise in sound pressure level in 1/3" octaves bands
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L’;“’S“r@d : Measured noise in sound pressure level in 1/3™ octaves bands
L7:  Noise level perceived at a observer’s distance 7,

» . Sound power level

Li,’” :  Noise in sound pressure level at an observer’s distance of 3 m

L*: Noise in sound pressure level emitted by an airfoil of 1.23 m span

L‘;l : Noise in sound pressure level emitted by an airfoil of 0.1 m span
L,;:  Sound pressure level for each frequency expressed in dB
E : .
L,:  Experimental sound pressure level for each frequency expressed in dB
L’; . Predicted sound pressure level for each frequency expressed in dB

AL : Metric measuring difference between the measured and the predicted spectra in an

average sensc

ALP v - Maximum sound pressure level difference of the spectra

G, G

Amin

G

A max

K, AK,: Functions used for scaling TBL-TE noise

G

G',G, G, »max K, @ Functions used for scaling S/SF noise

G. G, G, :Functions used for scaling LBL-VS noise
G, G, : Function used for scaling BTE noise

f: Frequency
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St : Strouthal number

St,:  Strouthal number based in the boundary layer displacement thickness measured at the

pressure side

St :  Strouthal number based in the boundary layer displacement thickness measured at the

suction side

St,: Peak Strouthal Number used in the scaling of TBLTE noise

St,:  Peak Strouthal Number used for scaling S/SF noise

St' . Strouthal Number used for scaling LBL-V'S noise

St Peak Strouthal Number used for scaling LBL-VS noise

peak :
St":  Strouthal Number used for scaling BTE noise

St" .. Peak Strouthal Number used for scaling BTE noise

peak *
St™:  Strouthal number used for scaling tip noise
St',:  Strouthal Number for case of 0° of angle of attack used for scaling LBL-VS noise

R_.: Reynolds number based on the displacement thickness

b: Trailing edge’s bluntness thickness

Y Trailing edge angle

q: Extension of the tip vortex for tip noise

U._..: Maximum velocity within or about the separated flow region at the trailing edge
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M_ : Maximum Mach number within or about the separated flow region at the trailing edge

max

A : Attenuation due to the Kevlar’s wall

Keblar *

A, : Attenuation due to the boundary layer

S :  Unitary surface

S Neural network scalar input

S, Neural network scalar bias

s, Neural network output

fr+  Neural network transfer function
w: Neural network weight

i: Neural network j” input vector

Ql

Neural network j” output vector

m: Number of experimental data vectors available

p>. . Squared pressure in RMS

I Subscript that indicates the frequency considered
n: Number of frequencies of the spectra analyzed
Tays - R-square correlation for a frequency

s - R-square correlation for a all the frequencies
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z, &: Variables used in conformal mapping
D, ¢, : Parameters used for conformal mapping

p,» P,: Polynomials used for approximating the shape of airfoils
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Appendix B: XFOIL and Boundary Layer Predictions

XFOIL is a panel method’s based program for the design and analysis of subsonic
isolated airfoils. It was first developed in 1986 by Mark Drela of MIT and has been constantly
improved since then. The program has an interactive interface that allows performing several
types of design and analysis. It is possible to perform viscous or inviscid analysis of an existing
airfoil, airfoil design and redesign, drag polar calculation. Furthermore, it is possible to write,
read and plot airfoil’s geometry, pressure distribution and boundary layer parameters (Drela and

Youngren, 2001).

In the present thesis, XFOIL is used to predict the boundary layer properties in the
trailing edge region of the airfoils considered. The airfoil’s geometry is taken in account by the
use of an input file containing the coordinates, except for the NACAOO012 that can be generated
internally by the program. As the program has an interactive interface that makes slow to operate

it, a Matlab code was developed to run XFOIL automatically.

One of the parameters that are intended to be used for the neural networks
implementation is the boundary layer displacement thickness. For some airfoil shapes in certain
conditions, convergence in the simulations performed with X-Foil can not be reached. In
consequence, for the neural networks implementations that include the displacement thickness,

some test results are excluded.

It is important to assess the accuracy of the predictions obtained with XFOIL. To this
end, the hot wire measurement performed by Brooks et al (1990) for the NACA 0012 and the
measurements performed by Devenport et al. (2008, 1 and 2) for the DU-96 and S831 airfoils are

compared with predictions.

In the case of the NACA 0012, Brooks et al. developed empirical curves based on the
measurements that they performed. These curves are compared with XFOIL predictions in
Figure B1 and B2. Inspection of these figures shows that the predictions obtained with XFOIL
are acceptable. It can be noticed that for the no-tripped cases, the predictions do not follow the

trend of the empirical curve for low Reynolds numbers. The predictions are considered
133



Leonardo Errasquin

Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines
acceptable anyways because they are in the same order of magnitude. Moreover, in practice,

such a lows Reynolds numbers are not present in large wind turbines.
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Figure Bl: Displacement thickness measured at the trailing edge of NACA 0012 airfoils normalized

for the test conditions applied in the experiments of Brooks et al. (1990) and Devenport et al. (2008, 1

with respect to the chord length versus Reynolds number. The curves were obtained by Brooks et al. by
curve-fitting experimental measurements. The results indicated with markers were obtained with XFOIL
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Figure B2: Momentum thickness measured at the trailing edge of NACA 0012 airfoils normalized with
respect to the chord length versus Reynolds number. The curves were obtained by Brooks et al. by
curve-fitting experimental measurements. The results indicated with markers were obtained with XFOIL
for the test conditions applied in the experiments of Brooks et al. (1990) and Devenport et al. (2008, 1
and 2).

In the case of the DU-96 and S831 airfoils, predicted and experimental results are
presented in Tables B1 and B2. It can be noticed that the predictions are in good agreement with

the measured displacement thickness.
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Table B.1: Boundary layer parameters for a DU-96 airfoil. Comparison between experimental
measurements (Devenport et al., 2008, 2) and predictions made with XFOIL. Chord = 0.914 m

Effective & * (m) & * (m)
angle of attack R Trip Side

(deg) Experimental Calculated with X-Foil
3.1 1600000 No Pressure 0.002 0.002254
3.1 1600000 No Suction 0.0084 0.009256
3.1 1580000 No Pressure 0.0023 0.002262
3.1 1570000 No Suction 0.0062 0.009313
7 1560000 No Pressure 0.0015 0.001558
7 1560000 No Suction 0.0118 0.013668
7 3140000 No Pressure 0.0019 0.001305
7 3140000 No Suction 0.0088 0.014315
7 3130000 Yes Pressure 0.0033 0.00252
7 3130000 Yes Suction 0.0197 0.022079
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Table B2: Boundary layer parameters for a S831airfoil. Comparison between experimental
measurements (Devenport et al., 2008, 2) and predictions made with XFOIL. Chord = 0.914 m

Effective & * (m) & * (m)
angle of attack R Trip Side
(deg) Experimental Calculated with X-Foil
-2 1550000 No Pressure 0.0021 0.00573
-2 1550000 No Suction 0.0079 0.010322
-2 1590000 No Pressure 0.0014 0.005706
-2 1630000 No Suction 0.0105 0.010239
-2 3130000 No Pressure 0.0032 0.005064
) 3130000 No Suction 0.0134 0.009136
5 1570000 No Pressure 0.001 0.001282
5 3180000 No Pressure 0.0015 0.001006
5 3180000 No Suction 0.0309 0.04974
5 1620000 Yes Pressure 0.0011 0.001833
5 1620000 Yes Suction Separated flow 0.057439
5 3160000 Yes Pressure 0.0023 0.001637
5 3160000 Yes Suction Separated flow 0.05187
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Appendix C: Karman-Trefftz Conformal Mapp Airfoils

In this section, results for the Karman-Trefftz conformal mapping approximation of the
airfoil shapes are presented. Figures C1 through C8 shows the airfoil geometry, the

approximated geometry using the conformal mapping, and the circle in the ¢ domain.
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Figure C1: NACA 0012 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal
mapping. Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the
Karman-Trefftz conformal mapping. *: Origin of the circle.

Figure C2: S822 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal mapping.
Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the Karman-Trefftz
conformal mapping. *: Origin of the circle.

139



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines Leonardo Errasquin

Figure C3: §831 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal mapping.
Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the Karman-Treffiz
conformal mapping. *: Origin of the circle.

Figure C4: S834 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal mapping.
Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the Karman-Treffiz
conformal mapping. *: Origin of the circle.
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Figure C5: DUY6 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal
mapping. Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the

Karman-Trefftz conformal mapping. *: Origin of the circle.

Figure C6: FX63-137 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal
mapping. Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the

Karman-Trefftz conformal mapping. *: Origin of the circle.
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Figure C7: SG6043 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal
mapping. Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the
Karman-Trefftz conformal mapping. *: Origin of the circle.

Figure C8: SD2030 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal
mapping. Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the
Karman-Trefftz conformal mapping. *: Origin of the circle.
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Appendix D: NAFNoise

NAFNoise is a program developed by researchers at NREL to predict airfoil self noise
(Moriarty and Migliore, 2003; Moriarty et al., 2004 and 2005, Moriarty, 2005). This software
predicts the noise of any airfoil accounting for five noise mechanisms: TBL-TE noise, S/SF

noise, LBL-VS noise, TEB-VS noise, and turbulent inflow noise.

Several different prediction models are available in the program. The first four
aforementioned noise sources can be predicted using the semi empirical method developed by
Brooks et al. (1989). Moreover, it is possible to choose the use of the method of Brooks et al.
(1989), but with the boundary layer parameters being calculated by XFOIL (Appendix C shows a
description of this program) instead of semi-empirical formulas (Moriarty et al., 2004). A newly
developed method that relates the noise emitted with the pressure field over the whole airfoil’s

surface can also be used (Moriarty et al., 2005).

The prediction of turbulent inflow noise is made using a semi-empirical method based on
the work of Amiet (1975). This method is improved using two modifications: the introduction of
a turbulent inflow noise correction developed by Guidati (Moriarty et al., 2004 and 2005) and a
simplified version of the same Guidati’s method that is less computationally intensive. The
method of Guidati provides a correction to Amiet’s method for turbulent inflow noise to account

for airfoil shape (Moriarty, 2005, Moriarty et al., 2004 and 2005).

The program utilizes an input file in ASCII format where it can be specified the
combinations of models to use, the geometric characteristics of the airfoil (including the shape of
the airfoil provided as a set of points), the characteristics of the flow, etc. The output of the
program is an ASCII file that provides the predicted noise levels as sound pressure level in 1/3™
octave bands. The noise levels are printed separately for each noise mechanism, and a total noise

level is printed too.

In the present thesis, the noise predictions made with NAFNoise are performed using the

semi-empirical method of Brooks et al (1989), and no inflow noise predictions are made.
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Appendix E: Accuracy of Predictions

In this appendix, results are presented for the average and maximum level difference
metrics for the individual control vectors using Models I-e and II-4. In these figures, the control
vector case is defined as a circle in a plot of the angle of attack & versus the chord Reynolds
number R, . A color scheme is used to plot the level difference. For each airfoil considered in the
aforementioned model, four figures are presented corresponding to average level difference
metrics for tripped cases, maximum level difference metrics for no-tripped cases, average level

difference metrics for no-tripped cases, and maximum level difference metrics for no-tripped

cascs.
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Figure E1: Average Level difference metric for each control vector using Model I-e for no-tripped case.
Training using the ATANA approach.
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Figure E2: Maximum Level difference metric for each control vector using Model I-e for no-tripped
case. Training using the ATANA approach.
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Figure E3: Average Level difference metric for each control vector using Model I-e for tripped case.
Training using the ATANA approach.
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Figure E4: Maximum Level difference metric for each control vector using Model I-e for tripped case.
Training using the ATANA approach.
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E.2 Model Il-A
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Figure E5: Average level difference metric for each control vector using Model 1I-h for no-tripped case
for the NACA 0012 airfoil. Training using the ATANA approach.
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Figure E6: Maximum level difference metric for each control vector using Model II-h for no-tripped
case for the NACA 0012 airfoil. Training using the ATANA approach.
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Figure E7: Average level difference metric for each control vector using Model 1I-h for tripped case for
the NACA 0012 airfoil. Training using the ATANA approach.

NACA 0012 - Maximum Difference Lewel - Tripped

15 20
ode 18
°
10*) 'Y ) 16
°
e °
wdl®c® ° EoH14
s, wilelels o L,
> 0..00 [ X X} °
2 0. & o L
\; 88 3°8° °
0] YN enousse® o® © o0 ° ° e o L g
88 880 °
0 o o 6
88 Qo g° ®
S 33 2°%° ° 4
e o o N o 2
210 | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5
RC xlO6

Leonardo Errasquin

Figure E8: Maximum level difference metric for each control vector using Model II-h for tripped case
for the NACA 0012 airfoil. Training using the ATANA approach.
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Figure E9: Average level difference metric for each control vector using Model 1I-h for no-tripped case
for the 8822 airfoil. Training using the ATANA approach.
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Figure E10: Maximum level difference metric for each control vector using Model 1I-h for no-tripped

case for the S822 airfoil. Training using the ATANA approach.
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Figure E11: Average level difference metric for each control vector using Model II-h for tripped case
for the 8822 airfoil. Training using the ATANA approach.

S822 - Maximum Difference Lewel - Tripped

8 o ——— @& 20
7 18
16
6l °
L 114
5t
_ L 12
o ° ° °
9]
T 47 L 110
N
3L F 18
6
2+
4
1F
2
0 °' *——eo —e : ® ‘
0 2 4 6 8 10
R x 10°

Figure E12: Maximum level difference metric for each control vector using Model II-h for tripped case
for the 8822 airfoil. Training using the ATANA approach.

150



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines Leonardo Errasquin
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Figure E13: Average level difference metric for each control vector using Model II-h for no-tripped
case for the S831 airfoil. Training using the ATANA approach.
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Figure E14: Maximum level difference metric for each control vector using Model 1I-h for no-tripped
case for the S831 airfoil. Training using the ATANA approach.
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S831 - Average Difference Level - Tripped
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Figure E15: Average level difference metric for each control vector using Model II-h for tripped case
for the 8831 airfoil. Training using the ATANA approach.
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Figure E16: Maximum level difference metric for each control vector using Model II-h for tripped case
for the 8831 airfoil. Training using the ATANA approach.
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Figure E17: Average level difference metric for each control vector using Model II-h for no-tripped

case for the S834 airfoil. Training using the ATANA approach.
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Figure E18: Maximum level difference metric for each control vector using Model 1I-h for no-tripped

case for the S834 airfoil. Training using the ATANA approach.
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Figure E19: Average level difference metric for each control vector using Model II-h for tripped case
for the 8834 airfoil. Training using the ATANA approach.
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Figure E20: Maximum level difference metric for each control vector using Model II-h for tripped case
for the 8834 airfoil. Training using the ATANA approach.
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Figure E21: Average level difference metric for each control vector using Model II-h for no-tripped
case for the DUY6 airfoil. Training using the ATANA approach.
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Figure E22: Maximum level difference metric for each control vector using Model II-h for no-tripped
case for the DUY6 airfoil. Training using the ATANA approach.
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Figure E23: Average level difference metric for each control vector using Model II-h for tripped case
for the DU96 airfoil. Training using the ATANA approach.
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Figure E24: Maximum level difference metric for each control vector using Model II-h for tripped case
for the DUY6 airfoil. Training using the ATANA approach.
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Figure E25: Average level difference metric for each control vector using Model II-h for no-tripped

case for the Fx63-137 airfoil. Training using the ATANA approach.
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Figure E26: Maximum level difference metric for each control vector using Model 1I-h for no-tripped

case for the Fx63-137 airfoil. Training using the ATANA approach.
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Figure E27: Average level difference metric for each control vector using Model II-h for tripped case
for the Fx63-137 airfoil. Training using the ATANA approach.
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Figure E28: Maximum level difference metric for each control vector using Model II-h for tripped case
for the Fx63-137 airfoil. Training using the ATANA approach.
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sg6043 - Average Difference Lewel - No-tripped

8 ® —® \ ® 10
7 9
8
6F
Foa7
5t
— F 16
(o)) ° ° ° ®
[<5]
4 L 15
3
3 F 4
3
2+t
2
1t
1
0 ® L ¢ ' @ —
0 1 2 3 4 5
RC x 10°

Figure E29: Average level difference metric for each control vector using Model II-h for no-tripped
case for the sg6043 airfoil. Training using the ATANA approach.
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Figure E30: Maximum level difference metric for each control vector using Model II-h for no-tripped
case for the sg6043 airfoil. Training using the ATANA approach.
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Figure E31: Average level difference metric for each control vector using Model II-h for tripped case
for the sg6043 airfoil. Training using the ATANA approach.
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Figure E32: Maximum level difference metric for each control vector using Model II-h for tripped case
for the sg6043 airfoil. Training using the ATANA approach.
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Figure E33: Average level difference metric for each control vector using Model II-h for no-tripped

case for the SD2030 airfoil. Training using the ATANA approach.
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Figure E34: Maximum level difference metric for each control vector using Model 1I-h for no-tripped

case for the SD2030 airfoil. Training using the ATANA approach.
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Figure E35: Average level difference metric for each control vector using Model II-h for tripped case

for the SD2030 airfoil. Training using the ATANA approach.
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Figure E36: Maximum level difference metric for each control vector using Model II-h for tripped case

for the SD2030 airfoil. Training using the ATANA approach.
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Appendix F: Comparison of Experimental Data and Predictions

This appendix presents a comparison between experimental data and predictions. The
figures presented correspond to representative subsets of the results obtained with Models I-e

and II-A.
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Figure F1: Example of spectral comparison of experimental results and prediction using Model I-e and

the ATANA approach.
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Model I-e using the CTNN approach
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