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Abstract 

A neural network prediction method has been developed to compute self-noise of airfoils 

typically used in wind turbines. The neural networks were trained using experimental data 

corresponding to tests of several different airfoils over a range of flow conditions. The 

experimental data corresponds to the NACA 0012, Delft DU96, Sandia S831, S822 and S834, 

Fx63-137, SG6043 and SD-2030 airfoils. The chord of these airfoils range from 0.025 to 0.91 m 

and they were tested at Reynolds numbers of up to 3.8 million and angle of attack up to 15o  

depending on the airfoil. Using experimental data corresponding to different airfoils provides to 

the neural network the capacity to take into account the geometry of the airfoils in the 

predictions. The input parameters to the network are the flow speed, chord length, effective angle 

of attack and parameters describing the geometrical shape of the airfoil. In addition, boundary 

layer displacement thickness was used for some models. The parameters used for taking into 

account the airfoil’s geometry are based on a conformal mapping method or a polynomial 

approximation. The output of the neural network is given by sound pressure level in 1/3rd octave 

bands for nine frequencies ranging from 630 to 4000 Hz. 

The present work constitutes an application of neural networks to aeroacoustics. The 

main objective was to assess the potential of using neural networks to model airfoil noise. 

Therefore, this work is focused in the modeling of the problem, and no mathematical analyses 

about neural networks are intended. To this end, several models were investigated both in terms 

of the configuration and training approach. The performance of the networks was evaluated for a 

range of flow conditions. The neural network technique was first investigated for the NACA 

0012 airfoil only. For this case, the geometry of the airfoil was not incorporated as input into the 

model. The neural network approach was then extended to account for airfoils of any geometry 

by including data from all airfoils in the training. 
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The results show that the neural networks are capable of predicting the airfoils self-noise 

reasonably well for most of the flow conditions. The broadband noise due to the turbulent 

boundary layer interacting with the trailing edge is estimated very well. The tonal vortex 

shedding noise due to laminar boundary layer-trailing edge interaction is not predicted as well, 

most likely due to the limited data available for this noise source. In summary, the research here 

demonstrated the potential of the neural network as a tool to predict noise from typical wind 

turbine airfoils. 
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1. Introduction 

During the last two decades, the technology of large wind turbine generators has seen 

considerable development. This technological development in combination with the increase in 

the cost of other sources of energy has made wind energy generation one of the world’s fastest 

growing energy sectors as attested by the statistics shown in Figures 1.1 and 1.2 (Wind power 

targets for Europe: 75,000 MW by 2010, 2003). The growth of wind energy projects has been 

very significant and it will be even higher in the coming years (Onat and Canbazoglu, 2007). 
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Figure 1.1: Evolution of the cumulative wind power installed capacity in the European union and in the 
world during the period 1990-2002. Magnitudes given in MWatts. (‘Wind power targets for Europe: 

75,000 MW by 2010’, 2003). 
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Figure 1.2: Growth in the wind power capacity in the United States during the period 1981- 2005. 
Magnitudes given in MWatts. (‘United States market sets new horizons’, 2006). 

The wind power targets set by the industry and by the European commission during the 

last decade have all been exceeded. The European Wind Energy Association has set new targets 

for the European Union (EU) to have installed 75 GW for 2010 and 180 for 2020 as shown in 

Figures 1.3 and 1.4 (Wind power targets for Europe: 75,000 MW by 2010, 2003). These targets 

are 25% higher than the ones decided in 2000 and about 50% higher than the targets established 

in 1997 (Figure 1.2). Furthermore, it is forecasted a higher installed capacity than the target for 

2010 (van den Berg, 2004.). This growth implies the potential investment of 49 billon Euros for 

the 2010 target and savings of 109 million ton of green house gases per year (Wind power targets 

for Europe: 75,000 MW by 2010, 2003). 

With regard to the United States, a significant growth is also forecasted. By 2010, the 

cumulative installed capacity is expected to reach 28 GW. This means a significant increase 

considering the 12 GW of installed capacity in 2006 (United States market sets new horizons, 

2006). 
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Figure 1.3: Targets of installed capacity in the 

European Union established for 2010 by 
European Wind Energy Association. Magnitudes 

given in MWatts. (‘Wind power targets for 
Europe: 75,000 MW by 2010’, 2003). 

Figure 1.4: Targets of installed capacity in the 
European Union established for 2020 by European 

Wind Energy Association. Magnitudes given in 
MWatts. (‘Wind power targets for Europe: 75,000 

MW by 2010’, 2003). 

Unfortunately, wind generation projects resulted in adverse community reactions. These 

reactions where usually associated with the visual impact (Johansson and Laike, 2007), noise 

emission (van den Berg, 2004; Wind power brings prosperity, anger, 2008), and birds 

population’s mortality (Drewitt and Langston, 2006). Noise emission is considered the most 

important problem in wind farms located in populated areas (van den Berg, 2004). Consequently, 

the growth of wind energy installed power, especially in regions with a high population density 

such as Europe, can be hindered by the noise emissions. In some cases, complaints have been 

documented from residences located more than two kilometers away from a wind generator 

(Shepherd and Hubbard, 1991). Furthermore, the low frequency component of the noise emitted 

can excite resonances associated with walls and windows in buildings increasing the annoyance 

of the acoustic phenomena (Shepherd and Hubbard, 1991). This is an important problem 

considering that installing wind farms at a large distance from populated areas greatly reduces 

the generation potential of a region. 

The noise emitted by wind generators is basically produced in the mechanical 

components inside the nacelle and through the interaction of the blades with the flow, i.e. 

aerodynamic sources. During the last few years, the mechanical noise produced inside the 
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nacelle has been successfully controlled. Therefore, the aerodynamic noise sources are the main 

problem for large wind turbines. Thus, the prediction and reduction of noise due to aerodynamic 

phenomena is of main importance. 

 

1.1 Literature review  

Noise generation in wind turbines has been widely studied within the last decades and the 

bibliography available about the subject is extensive. According to the bibliography, the 

aerodynamic noise mechanisms present during the operation of a wind generator can be divided 

in two groups: Low frequency noise and Broadband noise (Voutsinas, 1995). 

The generation of low frequency noise (harmonic impulsive aerodynamic noise) by wind 

turbines is analogous to noise generated by propellers, compressors, and rotors, except the blades 

are much larger and rotate at much lower speed. The rotating blades encounter localized flow 

deficiencies due to either atmospheric inflow gradients or the wake of the tower (Blade-Tower 

Interaction). Acoustic pulses arise from rapidly changing aerodynamic loads on the blades as 

they traverse the regions of disturbed flow. The periodic repetition of these pulses produces the 

characteristic harmonic noise (Shepherd and Hubbard, 1991). All the studies performed in recent 

years demonstrated that if the fluctuating pressures can be predicted from an aerodynamic model, 

then the acoustic field can be accurately simulated. Thus, the problem of low frequency noise 

prediction involves an accurate estimation of the fluctuating aerodynamic pressures on the blades 

(Voutsinas, 1995). 

The broadband noise is caused by self-induced noise and turbulent inflow noise. The term 

self induced noise describes the noise due to the motion of the rotor blade through the air 

independent of other interactions and ignoring the local accelerations due to the rotary motion. 

Thus, the noise radiation process for any blade section becomes identical to that of an airfoil in a 

uniform flow. In this case, the main mechanisms that produce noise are direct radiation by the 

attached boundary layer on the blade, scattering of the turbulence in the boundary layer with the 

trailing edge, noise from separated flow on the blade (separation stall noise and tip noise), and 
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radiation due to trailing edge instabilities in quasi-discrete frequencies. This last source consists 

of laminar boundary layer vortex shedding noise and trailing edge bluntness noise (Voutsinas, 

1995). 

In the past, the prediction of noise emitted by wind turbines was limited to relating noise 

measured experimentally to the corresponding wind speed or output power of the wind 

generator. This rough method was provably the first tool available for predicting noise in wind 

turbines, and it is still used in some engineering standards (Lowson and Bullmore, 1996). 

In 1981, Brooks and Hodgson conducted an extensive research about trailing edge noise 

supported with experimental measurements. The tests were performed in an open jet wind tunnel 

with anechoic treatment. The experiments explored the effect of the shape of the trailing edge by 

the addition of supplements, allowing the comparison of results for a sharp trailing edge to 

several different blunt edges. A noise prediction method was developed based on measurements 

of surface pressure. These predictions were successfully compared with the noise measurements 

corresponding to the tests from which the pressure measurements were obtained. Moreover, the 

half baffled dipole type directivity model (Meecham et al., 1981.) was successfully contrasted to 

experimental results, proving its validity. 

The aforementioned noise mechanisms are very difficult to predict theoretically. 

However, Brooks et al. (1989) developed a semi-empirical method based on wind tunnel 

measurements of NACA 0012 airfoils that has been applied and compared to experimental 

measurements with good agreement (Voutsinas, 1995). The semi-empirical method has been 

incorporated into a code for predicting the noise emitted by a wind generator. To this end, a 

three-dimensional inviscid analysis of the flow interacting with the wind turbine was preformed 

comprising the velocity distributions along the span of the blades as well as the equivalent two-

dimensional angles of attack. The blades were discretized along the span, and with the 

aerodynamic data of each discretized section, the semi-empirical formulas were applied to 

calculate the noise produced. Then, all the contributions of the sections were summed assuming 

they were uncorrelated. 
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During the last two decades, the semi-empirical method developed by Brooks et al. 

(1989) has been used in most of the attempts to predict the noise emitted by wind turbines 

(Voutsinas, 1995; Fuglsang and Madsen, 1996; Moriarty and Migliore, 2003; Leloudas et al., 

2007; Herr, 2005; 2007a and 2007b). In general, the predictions compared reasonably well with 

experimental results (Voutsinas, 1995). Furthermore, some authors consider it as the best tool 

available to predict self induced noise (Leloudas et al., 2007). In 2007, Herr compared the semi-

empirical predictions with experiments made with an airfoil of geometry similar to a NACA 

0012 of 40 cm chord (Herr, 2005; 2007a and 2007b). The predictions showed good agreement 

with experiments in terms of the spectral shape and difference in the levels of only 3 dB. The 

predictions were implemented using the code NAFNoise developed by Moriarty (2005). 

Though these semi-empirical formulas have proven to be an acceptable method to be 

applied to wind turbines, in some cases it has been reported to give inaccurate results. In the 

work of Leloudas et al. (2007), a systematic problem was found associated with the prediction of 

blunt trailing edge noise for frequencies above 3 kHz. In the work of Moriarty and Migliore 

(2003), the predictions were compared to wind tunnel test data of 20 cm chord airfoils (NACA 

0012 and S822). The results for the NACA 0012 were reported not to be very accurate for 

relatively low Reynolds numbers. In the case of the S822 airfoil, poor agreement between 

predictions and experimental data was reported in general. One possible reason for this 

discrepancy was assumed to be that in the prediction code the boundary layer thickness was 

empirically modeled from NACA 0012 data. Therefore it was incorrectly predicted for the S822 

airfoil. In fact, Fuglsang and Madsen (1996) argued that the method of Brooks et al. (1989) 

should be limited to airfoils similar to the NACA 0012.  

Recently, a new turbulent boundary layer trailing-edge noise model was presented by 

Moriarty et al. (2004 and 2005). This model is more complex than the semi-empirical method 

developed by Brooks et al. (1989). The model uses boundary layer parameters to estimate the 

trailing edge noise on both sides of a given airfoil. These parameters are calculated by a 

boundary layer prediction routine, XFOIL (A brief description of XFOIL is presented in 

Appendix B). The predictions were contrasted with experiments and with predictions using the 

method developed by Brooks et al. (1989). It was reported that the new prediction method 
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provided the same accuracy than Brooks et al. (1989) and in some cases it was slightly better. 

(Moriarty et al., 2005). 

In the work performed by Herr (2005, 2007a and 2007b), some scaling laws used for 

predicting trailing edge noise were analyzed. He concluded that the test data provided some 

evidence that the boundary-layer displacement thickness used by Brooks et al. (1989) does not 

represent the most relevant scaling parameter for noise spectra prediction. Noise levels were 

shown to scale with Strouthal number based on a constant reference length. On the other hand, in 

the work of Brooks et al. (1989), the Strouthal number scaling is based on variable boundary 

layer parameters.  

The semi-empirical formulas developed by Brooks et al. (1989) for predicting laminar 

boundary layer vortex shedding bounds the range in which the vortex shedding is present. For 

0o angle of attack, it was assumed that vortex shedding occurs up to chord Reynolds numbers of 
56 10x . Nevertheless, Devenport et al. (2008a and 2008b) and Paterson (1973) clearly proved that 

vortex shedding occurs at Reynolds numbers higher than the upper bounds assumed by Brooks et 

al. (1989). Consequently, Brooks et al (1989) fail in predicting laminar boundary layer vortex 

shedding at high Reynolds numbers.  

Prediction of noise is important during the design process of a wind turbine to asses if 

noise regulations are met. As an example of noise legislation, the Wisconsin’s draft model 

ordinance limits the wind energy facility sound levels to a maximum sound pressure level of 50 

dBA at noise sensitive receptors (e.g. residences), and it sets the limit for tonal sounds at 45 

dBA. This ordinance even sets a definition for tonal sound (Barnes and Gomez, 2007). 

Furthermore, new studies are being performed that could lead to more stringent noise regulations 

An example of these studies is the assessment of the impact of tonal noise in the perception by 

human beings performed by Mckenzie (1996). 

In the work presented by Brooks et al. (1989), the formulas were developed using 

experimental data obtained from wind tunnel tests of NACA 0012 airfoils of up to 0.3 m of 

chord and moderate Reynolds numbers (from 45 10x  to 62 10x ). But, in modern large wind 
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turbines other airfoils are used. Furthermore, chords of more than 2 m are common leading to 

Reynolds numbers considerably larger than 62 10x . Therefore, when attempting to predict 

broadband noise in modern wind generators, the semi empirical formulas are used outside the 

range of the data used to develop them. As a result, a lower accuracy could be expected. 

Finally, it is important to consider that modern large wind turbine blades are composed 

by a region in which the airfoil’s shapes have large blunt trailing edges. This region is located in 

the transition between the circular sections of the root and the typical aerodynamic sections of 

the rest of the blade. Figure 1.5 shows a picture of this transition region. It is expected that the 

noise contribution of these sections would not be important due to the relatively low flow speeds 

in this region close to the hub. Nevertheless, the method developed by Brooks et al (1989) would 

not be the proper tool if an analysis taking in account the contribution from the transition region 

of the blade was desired. 
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Figure 1.5: Root region of a modern large wind turbine’s blade. It can be observed the region in which 
the airfoil’s shapes used have large blunt trailing edges. This region is located in the transition between 
the circular sections of the root and the typical aerodynamic sections of the rest of the blade. (Used with 
permission of Jack Mowry, Editor, Sound & Vibrations Magazine, March 2008 and LMS international)  



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

9 

 
 

Therefore, the semi-empirical formulas need to be improved in order to be more accurate 

for high Reynolds numbers and airfoils other than the NACA 0012. Moreover, a laminar 

boundary layer vortex shedding predicting method capable to be applicable for relatively large 

chord Reynolds numbers is required. These improvements would give more accurate results 

when trying to predict the broadband noise emitted by large wind turbines.  

After the publication of the work of Brooks et al. (1989), several wind tunnel 

aeroacoustic experiments were performed. These experiments provide a more complete source of 

information to be used in improving the predictions. In 2004, Oerlemans reported tests of 6 

different airfoils of potential use in wind turbines (Oerlemans, 2004). In 2007, Herr reported 

experiments for a 40 cm chord airfoil of geometric shape close to the NACA 0012 airfoil for 

several flow conditions (Herr, 2007a and 2007b). Finally, Devenport et al. (2008a and 2008b) 

conducted an extensive set of experiments for several airfoils of 0.9 m chord at high Reynolds 

numbers (Devenport, 2008a and 2008b). 

 

1.2 Thesis Objectives 

Currently, the semi-empirical approach developed by Brooks et al. (1989) is the 

“engineering” state of the art approach to predict wind turbine noise. However, the method needs 

to be improved for the analysis of modern large wind turbines.  

In this thesis, it was intended to develop a new method to predict the self noise of airfoils 

typically used in wind turbines. The tool was expected to be able to predict the noise emitted by 

airfoils of any geometrical shape for different chord length and flow conditions. Furthermore, the 

method should be capable of being applied to different airfoil’s geometries. To this end, a neural 

network predictive tool based on experimental data was developed. This method constitutes a 

new approach in the prediction of self noise in airfoils. 

The neural network tool was trained using experimental measurements of airfoil self 

noise. The airfoils considered were the NACA 0012, Delft DU96, DU97-W300, Sandia S831, 
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S822 and S834, Fx63-137, SG6043 and SD 2030. Except for the NACA0012, these airfoils are 

commonly used in the wind energy industry. The reason for considering these airfoils was the 

availability of aeroacoustic experimental data. To take into account the influence of the geometry 

of the airfoils in the neural network training, two different parameterization approaches were 

assessed. The first method is based in a conformal mapping technique and the second is based in 

polynomial approximation of the surface of the airfoils. 

Finally, the modeling accuracy of the implemented self-noise prediction method was 

assessed by comparing predictions and experimental data for the complete database. 

 

1.3  Thesis organization 

This thesis is organized in six chapters and four appendices. Chapter 1 is an introduction 

to the problem studied and a comprehensive literature review on wind generator’s airfoil noise 

mechanisms and prediction. In addition, the objectives of this study are presented. Chapter 2 

describes the self noise mechanisms responsible for sound emission in wind turbine blades. 

Then, the semi-empirical method developed by Books et al. (1989) is described and analyzed in 

depth. Chapter 3 presents the experimental results used in this work. Chapter 4 presents the 

implementation of a neural networks method. Chapter 5 presents the main conclusions of the 

present work. Chapter 6 discusses recommendations for future work. Appendix A presents the 

nomenclature associated with the geometrical shape of an airfoil and definitions of aerodynamic 

concepts applied in the present thesis. Appendix B presents a brief description of the software 

XFOIL and predictions made with it. Appendix C presents figures showing the results of 

applying a conformal mapping method to approximate the airfoils shape. Appendix D presents 

figures showing comparisons between predictions obtained with the neural network tool 

developed and the corresponding experimental data. In addition, it presents comparisons between 

predictions obtained with Brooks et al. (1989) method and the corresponding experimental data. 
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2 A review of the prediction tool of Brooks et al. (1989) 

As indicated in the previous chapter, self-noise modeling is still in the early stages, and a 

successful theoretically based prediction tool is still years away. Therefore, the semi-empirical 

approach developed by Brooks et al. (1989) is essentially the main tool currently used for 

predictions. This prediction tool is reviewed here because it provides useful insight on the self-

noise mechanisms and scaling characteristics. Brooks et al. (1989) performed aero-dynamical 

and acoustic measurements for a set of NACA 0012 airfoils of different chord for different flow 

speeds and angles of attack. These tests are described in chapter 3. The set of measurements 

resulted in a group of spectral scaling formulas for the calculation of the noise generated by an 

airfoil. In addition, in order to have a complete understanding of the noise generated by airfoils, 

it is important to study the radiation directivity characteristics. This is very important for the 

understanding of the noise directivity of wind generators. Therefore, this chapter also analyzes 

the radiation directivity of airfoils. 

 

2.1 Airfoil Self-Noise Mechanisms 

Airfoil self-noise consists of five mechanisms that are briefly described in the next sub-

sections. 

 

2.1.1 Turbulent boundary layer- trailing edge noise (TBL-TE) 

Airfoils develop a boundary layer over their surface and a transition from laminar to 

turbulent occurs at certain chord-wise position. When a turbulent boundary layer is developed 

over the surface, the eddies that compose it are inefficient sound sources. However, if there is a 

sharp edge in the vicinity, they will become more efficient sources as they scattered on the 

trailing edge. Thus, the trailing edge of an airfoil intensifies the noise level of the turbulences 

convecting along the airfoil. The aforementioned process is schematically depicted in Figure 2.1 
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Trailing edge noise is perceived by people as a swishing sound. It is of broadband nature 

having the peak frequency typically in the range of 500 to 1500 Hz depending on the airfoil. The 

TBL-TE noise will dominate in the high frequency region if the flow is attached over the rotor 

blade. The factors that most influence trailing edge noise are the convection speed of the eddies 

and the structure of the boundary layer turbulence close to the edge. The exact shape of the 

trailing-edge is thought to be of importance only for relatively high frequencies (Wagner et al., 

1996). 

 
Figure 2.1: Turbulent-boundary-layer—trailing-edge noise. 

 

2.1.2 Separated / stalled flow noise (S/SF) 

This noise mechanism depends mainly on the angle of attack. As the angle of attack 

increases, stall conditions occur at a certain point causing a substantial level of unsteady flow 

around the airfoil. This phenomenon is represented in Figure 2.2. 

In the work of Wagner et al. (1996), it is indicated that mildly separated flow causes 

sound radiation from the trailing edge, whereas deep stall causes radiation from the whole airfoil. 

Stalled flow noise is of broadband nature and is the only mayor contributing noise mechanism 

beyond limiting angles of attack. 

Boundary layer 

Turbulent eddies passing the 
trailing edge Sound waves 

emitted 
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Figure 2.2: Separated / stalled flow  noise. 

 

2.1.3 Laminar boundary layer – vortex shedding noise (LBL-VS)  

When an airfoil operates at relatively low Reynolds numbers, the laminar flow regions 

extend to the trailing edge. A resonant interaction of the trailing edge noise with the unstable 

laminar-turbulent transition can then occur. An upstream traveling acoustic wave couples with 

the instabilities resulting in tonal noise. The aforementioned instabilities can lead to separation 

bubbles generating noise. High levels of noise can occur if the instabilities are triggered by the 

acoustic field and vice versa (Wagner et al., 1996). This interaction is schematically represented 

in Figure 2.3. The LBL-VS noise is of tonal nature. 

Turbulent eddies in the 
separated flow 

Sound waves emitted 
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Figure 2.3: Laminar-boundary-layer—vortex-shedding noise. 

 

2.1.4 Trailing edge bluntness – vortex shedding noise (TEB-VS) 

This noise mechanism is based on the noise emission by von Karman type vortex 

shedding from the trailing edge. The shedding of vortices from the trailing edge depends on the 

bluntness, shape of the edge, and Reynolds number. The alternating vortices produces pressure 

fluctuations in the trailing edge zone as depicted in Figure 2.4. According to Wagner et al. 

(1996), a spike is present in the total noise spectra if the trailing edge thickness of the airfoil is 

higher than certain cut off value. This cut off value is specific for each airfoil and flow condition. 

The frequency of the spike originated depends on the flow conditions and the trailing edge 

thickness to displacement thickness ratio, *b δ . The smaller the trailing edge thickness to 

displacement thickness ratio the higher is the shedding frequency. Therefore, if the trailing edge 

is sharp enough, the spike will be displaced to high frequency region in which noise is not 

audible for humans. 

Boundary layer 

Instabilities in the boundary layer 

Sound waves 
emitted 
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Figure 2.4: Trailing-edge-bluntness—vortex-shedding noise. 

 

2.1.5 Tip vortex noise 

At the tip of a blade, a vortex is generated due to the difference in pressure between the 

pressure and suction side. Brooks et al. (1989) suggested that this vortex interacts with the tip 

surface generating noise is analogous to the TBL-TE noise mechanism. This interaction is 

schematically represented in Figure 2.5. 

Tip vortex noise is of broadband nature and it is assumed to be mostly influenced by the 

convective velocity of the vortex and its strength (Wagner et al., 1996). 

Vortex shedding from 
the trailing edge 

Boundary layer 

Sound waves 
emitted 
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Figure 2.5: Tip vortex formation noise. 

 

2.2 Directivity  

An important aspect in the understanding of the noise emitted by wind turbines is the 

radiation directivity characteristics of trailing edge noise. This noise is usually modeled as a 

dipole source located at the trailing edge (Yildiz and Mawardi, 1960; Meecham W., Bui and 

Miller, 1981). If the acoustic wavelengths produced are much shorter than the chord length of the 

airfoil, then the trailing edge noise emission behaves as a baffled dipole. On the other hand, if the 

acoustic wavelengths are comparable to the airfoil's chord, then the noise emitted follows a pure 

dipole directivity behavior (Brooks et al., 1989). Nevertheless, these dipole-type directivities are 

influenced by the convective effect of the medium in which the airfoil is moving. 

Equations describing the baffled-dipole and pure-dipole directivities were presented in 

the work of Brooks et al. (1989). These functions take in account the attenuation or amplification 

produced by the convective effect depending on the direction of propagation considered. The 

directivity function for the baffled-dipole directivity is 

Sound waves 
emitted 

Tip vortex 

Blade tip 
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where oM U c=  is the Mach number, U is the free stream velocity, cM  is the convection Mach 

number. The convection Mach number is based on the convection velocity of the turbulence 

present in the boundary layer with respect to the surface of the airfoil. In the work of Brooks et 

al. (1989), the convection Mach number was assumed to be equal to 0.8M . The angles rθ and 

rϕ defines the position of the observer as showed in Figure 2.6. Equation (2.3) is considered 

valid for high frequency noise when the wavelength is larger than the airfoil chord. 

Figure 2.6: Local coordinate system for a flat plate in rectilinear motion. Angles indicating the position 
of the retarded source (Retarded coordinates). 

When the airfoils chord and the wavelength are comparable, the noise directivity has a 

pure dipole behavior. The directivity function for this low frequency case is 
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Figure 2.7 and 2.8 illustrate these directivity functions. Figures 2.9 and 2.10 illustrate the 

x-y and x-z cut view corresponding to figures 2.7 and 2.8, respectively. 

 

Figure 2.7: Representation of the directivity function for the case of high frequency noise ( fD ). 

 

                                        

Figure 2.8: Representation of the directivity for the case of low frequency noise ( lD ). 
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Figure 2.9: Representation of the directivity for the case of high frequency noise ( fD ). a) x-z cut view. 
b) z-y cut view.  

 

 

           

Figure 2.10: Representation of the directivity for the case of low frequency noise ( lD ).a) x-z cut view. b) 
z-y cut view. 
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2.3  Semi-empirical Predictions 

As it was indicated previously, Brooks et al. (1989) developed semi-empirical formulas 

based on experiments performed with NACA 0012 airfoils. All five noise mechanisms were 

considered and formulas for each mechanism developed. The present section provides a 

description of the aforementioned work. It is important to mention that the predictions are in the 

form of 1/3rd octave bands in all cases. 

The scaling method of Brooks et al. (1989) is based on the scattering from the trailing 

edge of a flat plate investigated by Ffowcs Williams and Hall (1970) and treated in a more 

general way by Blake (1986). They proposed the following law for the acoustic intensity of 

sound due to turbulent flow in the vicinity of a scattering flat plate  

3 5 2
2o o

r

slI c M
r

ρ ε∝      (2.3) 

where 

ε : Normalized turbulence intensity. 

rr : Distance to the observer 

oρ : Density of the air. 

The parameters s and l  describe the dimensions of the turbulent region in the plane 

perpendicular to the flow direction as depicted in Figure 2.11. 
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Figure 2.11: Geometry used for the modeling of the interaction of turbulence with an edge. 

 

Equation (2.3) corresponds to the cases in which the predominant noise is emitted by 

eddies located close to the trailing edge. But in some cases, the turbulent boundary layer is wide 

enough for the noise produced by eddies located far away from the trailing edge to be important. 

For this case, the following relation was developed (Blake, 1986; Ffowcs Williams and Hall, 

1970) 

3 8 2
2o o

r

slI c M
r

ρ α∝       (2.4) 

It is important to consider that, in general, the boundary layer thickness δ  or the 

boundary layer displacement thickness *δ  are used as a measure of l  (Wagner et al., 1996). 

Furthermore, when this theory is applied to airfoils, s is replaced by the span length L  of the 

Edge 

U 
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l 

Turbulent stream of 
height l and with s 
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airfoil. When the length of the turbulent boundary layer, measured in the convection direction, is 

larger than 3
4

16 M δ
π

− , the effects modeled by equation (2.4) become important. 

 

2.3.1 Turbulent boundary layer- trailing edge noise and separated / stalled flow noise 

Turbulent boundary layer and S/SF noise were both assumed to be caused by turbulent 

effects. Therefore, the development of semi-empirical formulas describing these noise sources 

was based in the experimental results for tripped airfoils. Since separating the contributions of 

each noise mechanism is difficult, Brooks et al. (1989) approach was to model these noise 

mechanisms as a single one. 

Brooks et al. (1989) proposed to separate the data to be normalized in two groups. The 

first normalization was applied to the cases corresponding to 0o angle of attack and the second 

normalization was applied to the cases of angle of attack other than 0o . Based on these 

normalizations, the following formula for modeling TBL-TE and S/SF noise was used  

{ }10

/10 /10 /10/ / 10 log 10 10 10
s p
p p pL L LTBL TE S SF

pL
α− = + +

,   (2.5) 

where s
pL  and p

pL  are the noise contributions of the pressure and suction sides of the normalized 

data corresponding to 0o angle of attack, respectively. The contribution based on the normalized 

data corresponding to angles of attack other than 0o  is given by the third term pLα . 

This equation is valid for angles of attack up to oα , a cut off angle of attack for witch the 

transition from attached to stalled flow is supposed to occur. The value of this angle will be 

defined later in the present section. At angles above oα , separation occur and therefore S/SF 

noise becomes dominant. Therefore, the terms corresponding to the 0o degree of angle of attack 

in equation (2.5) become negligible.  
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Based on equation (2.3), the experimental data for 0o  angle of attack was normalized in 

amplitude as follows 

10

* 5

210 logScaled Measured o
p p

r

M LL L
r

δ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠ .    (2.6) 

where the boundary layer displacement thickness is noted as *
oδ , e.g. same for pressure and 

suction sides due to symmetry. In addition, the frequency was normalized using the Strouthal 

number, St , based on the displacement thickness *
oδ . That is  

*
ofSt

U
δ

= ,     (2.7) 

where f  is the frequency.  

The normalized noise spectra were found to coalesce to approximately the same spectral 

shape. This result is illustrated in the example presented in Figure 2.12 corresponding to a 30 cm 

chord airfoil at various flow speeds. It can also be noticed in Figure 2.12 that the scaled spectra 

present a maximum (indicated with markers) almost at the same Strouthal number for all cases. 

This value was denoted as Peak Strouthal Number, 1St . 
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Figure 2.12: Noise level Scaled
pL  normalized with respect to the Strouthal number. Peaks indicated with 

markers. The data corresponds to a 30 cm chord airfoil at 0o angle of attack and different flow speeds. 
(Extracted from Brooks et al., 1989.) 

It was also found that the Peak Strouthal number 1St  didn’t collapse with the chord 

Reynolds number, CR . However, 1St  was found to have a dependency on the Mach number. 

This dependency is depicted in Figure 2.13 where peak Strouthal numbers are indicated for the 

corresponding chord Reynolds numbers. The horizontal lines indicate the Mach numbers for the 

0o angle of attack cases. The cases for the other angle of attack are showed for the sake of 

completeness. A relationship between 1St  and the Mach number was obtained as  

0.6
1 0.02St M −=      (2.8) 

             
*

ofSt
U
δ

=  

 

Scaled 

pL (dB) 



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

25 

 
 

 

Figure 2.13: Peak Strouthal number, 1St , vs. Reynolds number, cR  for different values of M . The 
numbers aligned with data are chord sizes in inches. (Extracted from Brooks et al., 1989.)  

Finally, the spectral level at the Peak Strouthal number was plotted as a function of the 

chord Reynolds number as shown in Figure 2.14. This figure shows a dependency of the peak 

level on the Reynolds number. This dependence was approximated by parts as shown by the 

solid lines denoted as the function ( )1 cK R . The results for angles of attack other than 0o are 

again presented for the sake of completeness. 

              CR  

            

 

1St  
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Figure 2.14: Peak scaled pL  in 1/3rd octaves (function 1K ) scaled with respect to the Chord Reynolds 

number for 0o angle of attack. (Extracted from Brooks et al., 1989.) 

Finally, the noise corresponding to 0o angle of attack that was scaled in equation (2.6) is 

subsequently scaled with respect to the ratio of the Strouthal number to the peak Strouthal 

number, 
1

St
St . From the previous scaling, all the cases coalesce to a spectral shape that 

dependent only on the chord Reynolds number. This spectral shape is represented by the function 

AG . A representation of this function is shown in Figure 2.15. This function was defined for the 

maximum and minimum Reynolds numbers. Shapes for a specific Reynolds number should be 

interpolated. Numerical expressions for minAG and maxAG are presented in page 60 of Brooks et al. 

(1989). 
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Figure 2.15: Shape function AG as a function of the scaled peak Strouthal number. (Extracted from 
Brooks et al., 1989.) 

The result of the previous normalizations is that the noise spectra for 0o  angle of attack 

can be separated into three terms as expressed in the following equations 

( )( )
10

* 5

12
1

10 log 3s s h s
p A C

r

M L D StL G K R
r St

δ⎛ ⎞ ⎛ ⎞
= + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠    (2.9) 

and 

( )( ) ( )*
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1 12
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10 log 3 ,
p

p h pp
p A C

r

M L D St
L G K R K R

r St δ

δ
α

⎛ ⎞ ⎛ ⎞
= + + − + Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ .  (2.10) 

for the suction and pressure sides, respectively, and with the Strouthal numbers given as 

*
s

s
fSt
U
δ

= , 
*

p
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In equations (2.9) and (2.10), the first term was generalized to be applied for angles of 

attack other than 0o by replacing *
oδ  for *

sδ  and *
pδ  , e.g. the displacement thickness of the 

pressure and suction sides, respectively. The function hD  represents the directivity as presented 

in Section 2.2. The term expressed by the function AG defining the spectral shape of this noise 

and the function 1K indicating its levels. The subtraction of 3 dB is an adjustment of the noise 

level due to breaking the noise into pressure and suction side components from a single side 

component. According to the work of Brooks and Hodgson (1981), each side of an airfoil with 

well developed boundary layers produces noise independently, e.g. uncorrelated. In addition, the 

term 1KΔ  is an empirical level adjustment for the pressure-side contribution for non zero angles 

of attack. It is a function of the angle of attack and the Reynolds number based on the 

displacement thickness. 

With regard to the experimental data corresponding to angles of attack other than 0o , it 

was also normalized in amplitude based on equation (2.3) as follows 

10

* 5

210 logScaled Measured s
p p

r

M LL L
r

δ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠ .    (2.13) 

where the boundary layer displacement thickness corresponding to the suction side is noted as 
*
sδ . In addition, the frequency was normalized using the Strouthal number, tS , based on the 

displacement thickness *
sδ . That is  

*
sfSt

U
δ

=      (2.14) 

The normalized noise spectra were again found to coalesce to approximately the same 

spectral shape. This result is illustrated in the example presented in Figure 2.16 corresponding to 

a 30 cm chord airfoil at various angles of attack. It can also be noticed in Figure 2.16 that the 

scaled spectra present a maximum (indicated with markers) almost at the same Strouthal Number 
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for all cases. This value was denoted as Peak Strouthal number, 2St , e.g. for angles of attack 

other than 0o . 

 

Figure 2.16: Scaled pL  normalized with respect to the Strouthal number. The data corresponds to a 30 
cm chord airfoil submerged in a flow with a free stream velocity of 71 m/s and different angles of attack. 

(Extracted from Brooks et al., 1989.) 

When 2St is represented versus the angle of attack, a dependency on the Mach number 

was once again observed. This dependency is depicted in Figure 2.17 where peak Strouthal 

numbers are indicated for the corresponding angles of attack. The horizontal lines approximate 

the trend follower by the peak Strouthal numbers corresponding to the same Mach number. The 

peak Strouthal number 2St  was then expressed in terms of the Mach number, angle of attack, and  

1St  as follows 
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Figure 2.17: Peak Strouthal number, 2St , versus angle of attack α for different values of M (Mach 
number). (Extracted from Brooks et al., 1989.) 

Finally, the spectral level at the Peak Strouthal number was plotted as a function of the 

angle of attack as shown in Figure 2.18. In this figure, the dependency the spectral level was 

normalized with respect to the previously calculated 1K  in order to eliminate the dependency on 

the Reynolds number. In Figure 2.18, it can be observed that the scaled spectral level at the Peak 

Strouthal number presents a dependency on the Mach number. This dependency was accounted 

for using the function 2K ( 1K , M ,α ). The use of the function 1K  summarizes the dependency of 

2K  on the Reynolds number. This is depicted in Figure 2.18 where the curves approximating 

2K - 1K  for different Mach numbers are showed. This dependency was represented by the 

equation given in page 62 of Brooks et al. (1989).  
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Figure 2.18: Peak scaled pL  in 1/3rd octaves (function 2K ) scaled with respect to the angle of attack and 

expressed as a function of 1K . (Extracted from Brooks et al., 1989.) 

As done before, the noise corresponding to angles of attack other than 0o that was scaled 

in equation (2.13) is subsequently scaled with respect to the ratio 
2

St
St . The result of the 

previous scalings, all the cases collapse to a spectral shape that is a function of the chord based 

Reynolds number. This shape is represented by the function BG  as shown in Figure 2.19. Two 

functions are shown corresponding to the two limits for Reynolds numbers. Shapes for a specific 

Reynolds number should be interpolated. Numerical expressions for minBG and maxBG are 

presented in page 61 of Brooks et al. (1989). 
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Figure 2.19: Shape function BG as a function of the scaled peak Strouthal number. (Extracted from 
Brooks et al., 1989.) 

The end results of the previous normalizations is that the noise spectra for angles of 

attack other than 0o  can be expressed as  
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The terms expressed by the functions BG and 'AG define the spectral shape and the 

function 2K  defines the levels. The function 'AG  is the same function as AG  but for a Reynolds 

number tree times the actual value. Finally, the angle oα  previously introduced was empirically 

defined as the value for which 2K  is a maximum or α exceeds 12.5o , whichever occur first. 
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2.3.2 Laminar boundary layer – vortex shedding noise 

In contrast to TBL-TE noise, there are no scaling laws to describe LBL-VS noise. The 

reason is the erratic behavior of the multiple tones in the noise spectra and the complexity of the 

mechanism. The scaling used is based in two key results extracted from literature. The first is 

that the noise spectra seems to scale on the Strouthal number based on the laminar boundary 

layer thickness, δ . The second result is that the noise levels tend to coalesce to a function of CR  

when they are scaled in a similar way to the used for TBL-TE noise. 

For the prediction of LBL-VS, it is taken advantage of using 1/3rd octave bands. The use 

these broad bands overlap the tonal frequency spacing smoothing the tones and giving as a result 

a single peak in the spectra. As this noise mechanism is produced by the presence of a laminar 

boundary layer, the data used in the normalization corresponded to no-tripped cases. 

Based on equation (2.3), the experimental data for no-tripped cases was normalized in 

amplitude as follows 

10

5

210 log pScaled Measured
p p

r

M L
L L

r
δ⎛ ⎞

= − ⎜ ⎟⎜ ⎟
⎝ ⎠ .    (2.18) 

where the boundary layer thickness at the pressure side is used and it is noted as pδ . In this case 

pδ  was used instead of *
pδ  because it was found empirically that it conduces to better results. In 

addition, the frequency was normalized using the Strouthal number, St , based on the 

displacement thickness pδ . That is  

' pf
St

U
δ

=
,       (2.19) 

The normalized noise spectra were found to coalesce to approximately the same spectral 

shape. This result is illustrated in the example presented in Figures 2.20 and 2.21 corresponding 

to a 10 cm. In Figure 2.20, the angle of attack is zero and the results are presented for several 
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flow speeds. In Figure 2.21, the flow speed is kept constant and the angle of attack is varied. It 

can also be noticed in these figures that the scaled spectra present a maximum (indicated with 

markers) almost at the same Strouthal number for all cases. This value was denoted as Peak 

Strouthal Number, 'peakSt . 

 

Figure 2.20: Noise level Scaled
pL  normalized with respect to 'St . The data corresponds to a 10 cm chord 

airfoil at 0o angle of attack. Airfoil no-tripped. (Extracted from Brooks et al., 1989.) 
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Figure 2.21: Noise level Scaled
pL normalized with respect to 'St . The data corresponds to a 10 cm chord 

airfoil submerged in a flow with a free stream velocity of 71 m/s and different angles of attack. Airfoil no-
tripped. (Extracted from Brooks et al., 1989.) 

Using the normalized data as in Figures 2.20 and 2.21, the peak Strouthal number levels 

for the spectra were found to be a function of the angle of attack and on the flow speed. In 

consequence, one function representing the dependency on the Reynolds number and other 

representing the dependency on the angle of attack were used for describing its variation law. To 

this end, an auxiliary function 'oSt was used. This function represents the dependency of 

'peakSt on the Reynolds number for cases with 0o  angle of attack. The function 'oSt  is shown in 

Figure 2.22. 
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Figure 2.22: Peak Strouthal number 'peakSt  versus CR . The function that represents the 'peakSt  

versus CR  dependency for 0o  angle of attack is scalled 0'St . (Extracted from Brooks et al., 1989.) 

Once 'oSt  was obtained, 'peakSt was normalized with respect to 'oSt  and this 

normalization plotted as a function of α . This process was applied for each chord length tested 

and the results are presented in Figure 2.23.  

0'St  
 

 

'peakSt
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Figure 2.23: Normalized peak Strouthal number versus angle of attack (α ) for each airfoil tested. 

(Extracted from Brooks et al., 1989.) 

It was found that for all cases the α dependence could be approximated by 

0.04'
10

'
peak

o

St
St

α−=
    (2.20) 

Then, the peak scaled levels ( )'peakSt were plotted versus the angle of attack as presented 

in Figure 2.24. As a result of the aforementioned normalization, it was noticed in the curves 

presented in Figure 2.24 that the shape of the function representing the normalized peak 

Strouthal number was governed by CR . Additionally, α  governs the levels of this function. 

These two dependencies were expressed separately by the use of the functions DG  and EG . The 
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function DG  specifies the curve’s shape, while EG  is the angle dependence for the levels 

represented by DG . The expressions for DG  and EG  can be found in page 70 of Brooks et al. 

(1989). 

 

Figure 2.24: Normalized peak Strouthal number versus CR . (Extracted from Brooks et al., 1989.) 

Based on the shape of the scaled pL , i.e. the scaled pL  presented in Figures 2.20 and 

2.21, the shape of the normalized spectra were expressed by the function CG  that is presented in 

Figure 2.25. 
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Figure 2.25: Shape function CG for LBL-VS noise mechanism. (Extracted from Brooks et al., 1989.) 

Finally, the noise spectra for LBL-TE can be separated into four terms as expressed by  
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The first term in equation (2.21) is based on equation (2.3). The term expressed by the 

function CG  defines the spectral shape of this noise and the functions DG  and EG  indicate its 

levels as a function of the Reynolds number and angle of attack, respectively. 

 

2.3.3 Trailing edge bluntness – vortex shedding noise 

This noise mechanism is based on the experiments performed by Brooks and Hodgson 

(1981). In these experiments, noise spectra were measured for an airfoil with different trailing 

edge blunt sizes as shown in Figure 2.26. These different trailing edge blunts were obtained by 

the successive attachment of extensions to a NACA 0012 airfoil model. Furthermore, flat plates 

were used as attachments in some cases. These experiments were similar to the experiments 
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performed by Brooks et al. (1989) in terms of hardware setup. The main difference was that the 

airfoil tested was larger (0.6 m chord) than the airfoils tested by Brooks et al. (1989). 

 
Figure 2.26: Trailing edge extensions witch were alternatively attached during the experiments 

performed. (Extracted from Brooks et al., 1989.) 

Based on equation (2.3), the experimental data was normalized in amplitude as follows 

10

5.5

210 logScaled Measured
p p

r

bM LL L
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⎛ ⎞
= − ⎜ ⎟

⎝ ⎠ .    (2.22) 

where b  denotes the trailing edge thickness. A 5.5 power law of M is used instead of 5 as in the 

noise mechanisms previously exposed because it was found to lead to better scaling results. The 

results of these scalings are presented in Figure 2.27. It can be noticed in Figure 2.27 that the 

levels corresponding to the trailing edge of the NACA 0012 are considerably different to the 

cases in which a flat plate extension was used. This is believed to be caused by the difference in 

the angle of the terminations. For the trailing edge of the NACA 0012, the angle Ψ  is 14o  while 

for the flat plate the angle is 0o . The angle Ψ  is the angle between the tangents to the pressure 

and suction curves that defines the geometry of the airfoil at the trailing edge. It is schematically 

described in Figure A1 of Appendix A. 
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Figure 2.27: Scaled BTE noise based in equation (2.3). (Extracted from Brooks et al., 1989.) 

In addition to the previous scaling, the frequency was normalized using the Strouthal 

number, St , based on the trailing edge thickness b . That is  

'' f bSt
U

=
.       (2.23) 

Then, the peak Strouthal number, ''peakSt , and the corresponding Peak scaled levels were 

plotted as a function of *
avgb δ  as shown in Figures 2.27 and 2.28, respectively. The average 

displacement thickness, *
avgδ , is defined as 

Frequency (kHz) 
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In Figure 2.28, it is possible to note that when the aforementioned normalization is 

applied, the peak Strouthal number, ''peakSt , presents a clear dependency on the angle Ψ . This 

dependency also appeared for the peak Strouthal levels, and it was represented with lines in 

Figure 2.29 and denoted as FG . The function FG  was presented as a function bounded by limits 

given by 0oΨ =  and 14oΨ = . Levels for a specific Ψ  should be interpolated.  

 

 

Figure 2.28: Peak Strouthal number versus thickness ratio *
avg

b
δ

 determined from Figure 2.27. (Extracted 

from Brooks et al., 1989.) 
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Figure 2.29: Scaled Peak levels corresponding to ''peakSt versus thickness ratio *
avg

b
δ

 determined from 

Figure 2.27. (Extracted from Brooks et al., 1989.) 

Finally, the scaled levels presented in Figure 2.27 we normalized with respect to the ratio 

''
''peak

St
St  as presented in Figure 2.30. The results of this scaling were modeled using function 

GG . This shape function is bounded between  0oΨ =  and 14oΨ = and varies as a function of 

*
avg

b
δ

 and ''
''peak

St
St

. Numerical expressions for FG  and GG  are presented in pages 78 and 80 of 

Brooks et al. (1989). 
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Figure 2.30: Spectral shape functions FG . (Extracted from Brooks et al., 1989.) 

Therefore, the TEB-VS noise spectra was separated into three terms as expressed by  
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The first term in equation (2.25) is based on equation (2.3). The term expressed by the 

function GG  describe the 1/3rd octave spectral shape of the normalized BTE noise in terms of 
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2.3.4 Tip vortex noise 

This noise mechanism was modeled by scaling experimental results obtained for different 

blade tips. In order to isolate the noise emitted by a blade’s tip from the noise emitted along the 

chord of the blade during the experiments, it was proposed to compare results corresponding to a 

tip (3-D model) with the results corresponding to a 2-D model like the ones considered in all the 

previous scaling. This comparison is presented in Figure 2.31. The noise spectra corresponding 

to a 15 cm chord 3-D airfoil is represented with triangular markers. In addition, the noise spectra 

corresponding to a 2-D airfoil is presented using square markers. These noise spectra were 

conveniently corrected to represent the same span length. The circular markers represent the 

difference in noise levels between the two aforementioned spectra. It was assumed that this is the 

noise contribution of the tip. 

 
Figure 2.31: Noise spectra of a 2-D and a 3-D airfoil. Acoustic corrections were applied with regard to 
chord length and span length in order for the spectra to be comparable. (Extracted from Brooks et al., 

1989.) 

The noise attributed to the tip that was calculated previously, was normalized once again 

based on equation (2.3) as follows 

Frequency (kHz)
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where q  is the extension of the tip vortex that is defined as 

0.008 tipq C α=
     (2.27)

 

with tipα  being the angle of attack of the blade at the tip section. The definition of this parameter 

holds if the blade considered is untwisted and encounters uniform flow over the span. Otherwise, 

a more complex consideration, which is exposed in Brooks et al. (1989), is necessary. The 

maximum Mach number, maxM  is defined as 

max 1 0.036 tip
M

M
α≈ +

.     (2.28)
 

Then, the normalized data was subjected to a further normalization by the use of the 

Strouthal number '''St  that is defined as follows 

max

''' f qSt
U

=
.      (2.29) 

with maxU being the maximum velocity within or about the separated flow region at the trailing 

edge that is defined as 

max max oU M c=
 .     (2.30)

 

The consequence of the previous normalizations is that the noise spectra was separated 

into two terms by 
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The first term in equation (2.32) is based on equation (2.3). The second term gives the 

frequency dependence. This term, is a parabolic fit about a peak Strouthal number of 0.5. 

 

2.4 Normalization of Boundary layer parameters at the trailing edge 

The semi-empirical formulas developed by Brooks et al. (1989) requires knowledge of 

the boundary layer displacement thickness, *δ , and boundary layer thickness, δ , corresponding 

to the airfoil. This boundary layer parameters needs to be predicted. Different methods can be 

applied for performing these predictions. One of the most widely used methods is computerized 

flow dynamics (CFD) simulations or using XFOIL. Nevertheless, a simpler method was 

developed by Brooks et al. (1989) based on the extensive boundary layer measurements of the 

NACA 0012 airfoils. It was found that when boundary layer thickness and displacement 

thickness data were normalized with respect to the chord, dependence on the Reynolds number 

and angle of attack become clear. The normalization was carried out separately for the tripped 

and no-tripped cases. 

The boundary layer parameters were first normalized with respect to the chord length for the 

0o  angle of attack and plotted as a function of the chord Reynolds number as shown in Figure 

2.32. The subscript “o” indicating that the parameter corresponds to 00  angle of attack. It can be 

noticed that the data collapsed relatively well in particular at high Reynolds numbers and for 

tripped cases. 

The boundary layer parameters for the various angles of attack ( )α  are then normalized 

with respect to the value at 0o  angle of attack and plotted as a function of the angle of attack. 

The subscripts s  and p  are indicating that the parameter corresponds to the suction and pressure 

side, respectively. To illustrate this, curves resulting from this normalization of tripped cases are 

presented in Figure 2.33. It can be seen that for the pressure side, the data can be approximated 

by a single curve. For the suction side, a function’s approximation is possible if it is done by 

parts. A similar situation occurs for no-tripped cases. 
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The curves in Figures 2.32 and 2.33 can be used to estimate the boundary layer 

parameters for the NACA 0012 airfoil of different chord, angle of attack, and Reynolds numbers.  

 

CR  

Figure 2.32: Boundary layer thicknesses at the trailing edge for 2-D airfoil models at an angle of attack 
of 0o versus chord Reynolds number. Solid lines are for no-tripped Boundary layer and broken lines are 

for the tripped cases. (Brooks et al., 1989.) 
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α  (deg) 

Figure 2.33: Tripped Boundary layer thicknesses at the trailing edge for 2-D airfoil models versus angle 
of attack. Solid lines are for pressure side and broken lines are for suction side. (Brooks et al., 1989.) 
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3. Experimental data 

As discussed earlier, the main aim of the present thesis is to develop a tool for the 

prediction of wind turbine noise using neural networks. Experimental data is required for the 

training of the neural network. To this end, three experimental data sets are used. They are the 

NASA data of NACA 0012 airfoils (Brooks and Hodgson, 1981; Brooks et al., 1989), the test of 

large chord wind turbine airfoils at Virginia Tech (Devenport et al., 2008a and 2008b), and the 

data obtained from test of small wind turbine airfoils at Netherlands National Aerospace 

Laboratory (Oerlemans, 2004). In this chapter, the experimental data used to develop the 

network is described. Corrections applied to the data to make them consistent are also presented. 

 

3.1 Experimental data obtained by NASA 

In 1989 Brooks et al. performed experiments of six NACA 0012 airfoils of chord length 

ranging from 0.025 m to 0.3 m with a span of 0.45 m. The experiments were performed in an 

acoustic open jet wind tunnel. Acoustic measurements were made for different effective angles 

of attack ranging from 0o to 22o and chord Reynolds numbers up to 61.5 10× . All tests were 

performed for conditions of clean and tripped leading edge. The tripping of the leading edge had 

the objective of forcing the development of a turbulent flow regime. The tripping of the 

boundary layer was achieved by a random distribution of grit in strips from the leading edge to 

20% chord. This tripping is considered heavy because of its extension along the chord. Noise 

spectra in 1/3rd octave frequency bands were published together with the semi-empirical 

prediction code. The frequency range of the experimental data presented varies according to the 

cases. In all cases, these frequencies were contained within a range from 0.2 to 20 kHz. 

The experiments were carried out at the low-turbulence potential core of a free jet located 

in an anechoic chamber. The jet section was of 0.3 x 0.45 m of section. Airfoil NACA 0012 

models of constant transversal section and 0.025, 0.05, 0.1, 0.15, 0.23 and 0.3 m of chord were 

tested. The trailing edge bluntness of the models was constructed with a thickness of less than 
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0.05 mm which allows considering them as sharp trailing edges. Figure 3.1 depicts the NACA 

0012 airfoil’s shape. 

 

Figure 3.1: NACA 0012 airfoil profile.  

For each model, data were collected at various effective angles of attack ranging from 0o  

to 22o depending on the airfoil and various flow speeds ranging from 32 to 71 m/s for nominal 

chord Reynolds numbers of 0.055 to 1.5 million. Table 3.1 shows a summary of the cases tested. 

The data was collected with eight microphones distributed around the model. Then, the data was 

processed using correlation functions in order to eliminate the background noise and isolate the 

trailing edge noise component. The results are presented as the sound pressure level ( pL ) in 1/3rd 

octave frequency bands corresponding to an observer’s distance of 1.23 m normal to the plane 

that contains the chord and span lines when the airfoil is at 0o of angle of attack.  

Aerodynamic flow measurements were performed consisting of hot-wire measurements. 

The boundary layer thickness was measured in the proximity of the trailing edge. For most cases, 

this measurement was made at 1.3 mm downstream from the trailing edge. Experiments are 

reported to have an accuracy of 5% for turbulent cases and 10% for laminar or transitional cases. 

The boundary layer thickness, δ , displacement thickness, *δ , and momentum thickness, θ , 

were calculated from the measured mean velocity profiles. 

NACA 0012
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Table 3.1: Ranges of flow speeds and effective angles of attack considered in the tests performed 
by Brooks et al. (1989). 

  No-tripped Tripped 

Airfoil Chord Flow speed Effective angle 
of attack 

Flow speed Effective angle 
of attack 

  (m/s) (deg) (m/s) (deg) 

NACA 0012 0.025 32 to 71 0 to 12 32 to 71 0 to 22 

NACA 0012 0.05 32 to 71 0 to 19 32 to 71 0 to 20 

NACA 0012 0.1 32 to 71 0 to 15 32 to 71 0 to 16 

NACA 0012 0.15 32 to 71 0 to 12 32 to 71 0 to 13 

NACA 0012 0.23 32 to 71 0 to 7 32 to 71 0 to 7 

NACA 0012 0.3 32 to 71 0 to 4 32 to 71 0 to 4 

 

The data collected by Brooks et al. (1989) is only available in the corresponding 

publication as figures showing noise spectra for each airfoil for each condition. Therefore, it is 

only possible to extract the data by copying the noise levels manually from the figures. This 

procedure would be time consuming. Thus, the experimental results were replaced by predictions 

using the semi-empirical tool for the corresponding airfoils and test conditions. Specifically, the 

predictions were made with the software NAFNoise (Moriarty, 2005) that implements the 

method developed by Brooks et al. (1989) based on the aforementioned experimental results. In 

the work of Brooks et al. (1989), the experimental data are presented together with predictions 

for the corresponding cases. Observation of these results shows that predictions obtained with 

Brooks et al. (1989) method lead to errors of less than 5 dB with respect to the experimental data 

in most cases and up to about 20 dB in a few cases.  
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3.2 Experimental data obtained at Virginia Tech (VT) 

Funded by the National Renewable Energy Laboratories (NREL) and Sandia 

Laboratories, from June to December of 2007, the Advanced Turbulent Flow Research Group 

and the Vibrations and Acoustics Laboratories of VT conducted aerodynamic and aeroacoustic 

measurements of a series of large chord wind turbine airfoils. The results of the tests are 

presented in two reports (Devenport et al., 2008a and 2008b) and summarized in this work. 

The experiments were carried out at the VT Stability Wind Tunnel in its anechoic 

configuration. The objectives of the tests were to study the aerodynamic and acoustic 

performance of various wind turbine airfoil models at high Reynolds numbers. For each model, 

data were collected at various effective angles of attack ranging from zero lift to stall condition, 

and various flow speeds ranging from 28 to 66 m/s for nominal chord Reynolds numbers of 1.5 

to 3.8 million. Some of tests were performed tripping the leading edge. Table 3.2 shows a 

summary of the cases tested. 

Table 3.2: Ranges of flow speeds and effective angles of attack tested by VT. 

 No-tripped Tripped 

 Flow speed Effective angle 
of attack 

Flow speed Effective angle 
of attack 

 (m/s) (deg) (m/s) (deg) 

NACA 0012 15 to 66 -8 to 5 10 to 66 -14 to 12  

NACA 0012 (0.2 m chord) 41 to 55  0 to 7 40 to 52  0 to 5 

S831 29 to 60 -7 to 8 30 to 56 -2 to 5 

DU96 26 to 59    1 to 12 29 to 58    3 to 10 

DU97-W300 28 to 56    4 to 12 28 to 56  4 to 8 

DU97-W900 Flat-back 28 to 58   4 to 12 28 to 57  10 

DU97-W900 Splitter plate 28 to 57   4 to 10 28 to 57     4 to 10 
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The airfoils tested were NACA 0012, Sandia S831 (developed by NREL), Delft DU97 

(W300, W900, W900 with splitter plate), and Delft DU96 (Devenport et al., 2008a and 2008b). 

For the sake of completeness, all section shapes are shown in Figure 3.2 together with a picture 

of the splitter plate attached to a DU97 airfoil. Nevertheless, some of the airfoil’s test results are 

not used in the present work because of reasons that are explained in chapter 5. The cases 

excluded correspond to the DU97-W900 and DU97-W900 with splitter plate airfoils. 

The models were designed to span the complete vertical height of the test section as 

shown in Figure 3.3. In Figure 3.3a it is presented a view the model mounted between end plates 

and located inside the wind tunnel seen from the trailing edge side. Figure 3.3b presents a view 

of the leading edge side of the corresponding model. They have a 1.8 m span and 0.914 m chord. 

Models were instrumented with approximately 80 pressure taps of 0.5 mm internal diameter 

located near the mid-span.  

As it was previously mentioned, for certain measurements the airfoils were tripped to 

ensure a stable and span-wise uniform transition location and a fully turbulent boundary layer at 

the trailing edge. Two different types of trip were used. The first tripping methods consisted of 

serrated trip tape (Glasfaser-Flugzeug-Service GmbH 3D Turbulator Tape). It was applied along 

the entire span at the 5% chord location measured from the leading edge on the airfoil suction 

side and at the 10% chord location on the pressure side. The tape has a thickness of 0.5 mm and 

is 12 mm in overall width. The second consisted of a random distribution of number 60 silicon 

carbide grit particles applied in a 100 mm-wide span-wise band centered on the leading edge. 

The grit size and pattern are designed to simulate soiling of the airfoil leading edge by insects. 

When applied, the soiled trip covered only the middle half-span of the airfoil models.  
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Figure 3.2: Airfoils profiles for a) NACA 0012, b) Sandia S831, c) DU96, d) DU97-W300. e) DU97-W900. f) 

Splitter plate attachment used with the DU97-W900. 

Since the aeroacoustic configuration of the VT Stability Wind Tunnel is relatively new, 

noise measurements of a small 0.2 m chord NACA 0012 airfoil were also carried out to provide 

benchmark data. Results from this small size airfoil were compared to data obtained by Brooks et 

al. (1989) for a NACA 0012 model of almost the same chord with relatable agreement. For 

tripped case the difference was above 6 dB. With regard to no-tripped case, the results presented 

a similar pattern, but differed significantly in terms of levels. 

The aerodynamic flow measurements of the airfoils consisted of static pressure 

distributions on the airfoil surfaces; wake profile measurements downstream of the airfoil mid-

span, and single hot-wire measurements in the vicinity of the trailing edge. The data obtained by 

the hot-wire anemometry measurements were used by the authors of the experiments to calculate 

the boundary layer displacement thickness. In Appendix C, this experimentally measured 

boundary layer parameter is used to control the accuracy of CFD predictions performed with the 

program XFOIL (Drela, 2001). Hot-wire profiles were measured in the vicinity of the trailing 

edge of the DU96, S831 and DU97-W300 airfoils. 
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DU97-W300

DU97-W900 
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Noise measurements were carried out with 63-element microphone phased arrays located 

at 3 m from the model as shown in Figure 3.4. The data from the microphones in the arrays was 

processed to compute the average noise spectra, the acoustic maps, and the integrated noise 

spectra over a volume enclosing the trailing edge. The average spectra was computed to provide 

an estimate of the noise results at low frequency (<500 Hz) where the array resolution is very 

poor and noise maps are not computed. The acoustic maps were computed over a plane along the 

center of the test section as illustrated in Figure 3.5 in the 500 to 5000 Hz range. An example of 

trailing edge noise is depicted in Figure 3.5. In the figure, a noise map is presented in its location 

in the wind tunnel. The red region in the noise map represents the noise emitted by the trailing 

edge. In this work, the levels were integrated 10 dB down from the peak value to avoid adding 

the effects of the side-lobes from other sources. The integrated spectra were computed over a 

volume enclosing the trailing edge of the airfoil as shown in Figure 3.4. It has a square cross 

section and it is aligned with the airfoil trailing edge (green box in Figure 3.4). The parts of the 

trailing edge next to the junction with the tunnel were excluded to avoid noise due to end effects 

as well as other spurious noise sources seen on the test section floor and ceiling. Therefore, the 

integrated spectra represent the trailing edge noise radiated by the center 2/3 of the airfoil as 

measured at the array position. The noise data were computed for all the configurations in 1/12th 

and 1/3rd octave bands in the 500 to 5000 Hz range.  
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Figure 3.3: Wind turbine airfoil models tested in the VT Wind Tunnel seen from the trailing edge (a) and 
from the leading edge (b). (Extracted from Devenport et al., 2008b.) 

 

 
Figure 3.4: Measuring beamforming volume enclosing the central 2/3of span of the trailing edge of a 

model for the computation of the integrated spectra. (Extracted from Devenport et al., 2008b.) 
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Figure 3.5:  Schema of an Airfoil inside the wind tunnel and a typical acoustic map. (Extracted from 
Devenport et al., 2008b.) 

 

3.3 Experimental data obtained at NLR 

Promoted by the National Renewable Energy Laboratories, aeroacoustic tests of seven 

airfoils were performed at the National Aerospace Laboratory of The Netherlands (Oerlemans, 

2004; Migliore and Oerlemans, 2004). The experiments were conduced in an open jet anechoic 

wind tunnel for several flow speed and angle of attack. Seven airfoils were tested and they are 

shown in Figure 3.6 except for the SH 3055 airfoil. They were NACA 0012, Sandia S822 and 

S834 (developed by NREL), FX63-137, SG 6043, SH 3055, and SD 2030. The NACA 0012 

airfoil was tested for benchmarking purposes while the rest are candidate airfoils for wind 

turbines. They had a span of 0.51 m and 0.23 m chord. The trailing edges were built respecting 

tolerances that assure a blunt thickness lower than 0.375 mm. In the cases that the airfoils were 

tripped, the trips were located at 2% and 5% chord on the suction and pressure sides of the 

airfoils, respectively. The stream-wise peak-to-peak length of the zigzag tape used was 11 mm. 

The standard trip thickness was 0.25 mm, but for some cases trips of up to 0.5 mm were used. 

 In the present thesis, the data corresponding to the airfoil SH 3055 was not used because 

the geometry was not found in the open literature. 
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Figure 3.6: Airfoils tested: a) NACA 0012. b) S822. c) S834. d) FX63-137. e) SG6043 f) SD2030. 

The objectives of the tests were to study the acoustic performance of various wind turbine 

airfoil models. For each model, data were collected at various effective angles of attack ranging 

from 0° to 9° depending on the airfoil, and various flow speeds ranging from 7 to 64 m/s, 

corresponding to Reynolds numbers from 0.2 to 1.0 million. Table 3.3 shows a summary of the 

cases tested. Furthermore, in some cases a turbulent flow was induced by the use of a grid placed 

upstream of the model to investigate the mechanism of leading edge turbulence noise. The noise 

measurements consisted of far-field acoustic data using a 48-element microphone phased array 

system. The array was placed outside the tunnel’s flow at a distance of 0.6 m from the model’s 

rotating axis at the suction side of the airfoils. The integrated noise spectra were performed for a 

volume enclosing the central 0.1 m of span. The results were reported as sound power level ( wL ) 

in 1/3rd octave bands (Migliore and Oerlemans, 2004). The measurements were made in the 

frequency range from 80 to 20000 Hz. Nevertheless, the facility used was considered anechoic 

only above 500 Hz. Furthermore, the microphone array used was designed for maximum side-

lobe suppression at frequencies between 1 and 20 kHz. Therefore the data is valid between 500 

and 20000 Hz, with a higher accuracy above 1000 Hz. 

 

 

S834 

FX63-137

SG6043

NACA 0012 

S822 

a) 

b) e) 

d) 

f) SD2030
c) 



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

60 

 
 

Table 3.3: Ranges of flow speeds and effective angles of attack tested by NLR. 

 No-tripped Tripped 

 Flow speed Effective angle 
of attack 

Flow speed Effective angle 
of attack 

 (m/s) (deg) (m/s) (deg) 

NACA 0012 32 to 71 0 to 7 32 to 71 0 to 7 

S822 13 to 63 0 to 8 12 to 63 0 to 8 

S834 13 to 48 0 to 8 13 to 48 0 to 8 

FX63-137 13 to 48 0 to 8 13 to 48 0 to 8 

SG 6043   7 to 32 0 to 8   7 to 32 0 to 8 

SH 3055 32 to 64 0 to 8 32 to 64 0 to 8 

SD 2030 12 to 32 0 to 8 12 to 32 0 to 8 

 

3.4 Summary of Experimental Data 

To gain a better understanding of the data used in the training of the neural network, the 

range of test parameters for all three tests is summarized here. Figure 3.7 shows the range of 

chord Reynolds numbers versus the range of angle of attacks covered for each airfoil tested for 

tripped cases. Each polygon represents a Reynolds number versus angle of attack enveloped 

corresponding to each airfoil tested. It can be observed that the VT data cover the largest range in 

particular towards the higher Reynolds numbers. The figure also reveals some gaps in the data 

such as in the 1 to 1.5 million Reynolds number and angles of attack above 5°. A similar result is 

shown for the tripped cases in Figure 3.8. 
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Figure 3.7: Summary of the Reynolds number versus angle of attack range for the tests presented 
in the present chapter. Tripped cases. 
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Figure 3.8: Summary of the Reynolds number versus angle of attack range for the tests presented 
in the present chapter. No-tripped cases. 

 

3.5 Corrections applied to the experimental data 

The experimental data must be first adjusted to account for the different measurement 

methods, locations, and processing. To this end, the data were corrected for an observer’s 

position at 3 m from the trailing edge in direction perpendicular to the plane containing the chord 

and span lines of the airfoil. This position corresponds to 3rr m= , 90o
rθ = ±  and 90o

rϕ =  

following the coordinates system presented in Figure 2.7. The source’s span length was set at 

1.23 m. These are the conditions corresponding to the VT tests for 0o effective angle of attack. 

For the NASA data, the reference airfoil span length and observer’s location are obtained by 

using the correct input to the semi-empirical code. Therefore, no corrections are necessary. On 

the other hand, some corrections were applied to the VT and NLR data. 

NACA 0012 
S831 

DU96, DU97-300, DU97-300 and 
DU97-300 splitter plate 

S822, S834, FX63-137, SG 
6043, SH3055 and SD 2030
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3.5.1 Interference correction for angle of attack 

It is important to clarify that in the present thesis the effective angle of attack is used to 

characterize each test. When a wind tunnel test is performed, the aerodynamic behavior of the 

airfoils is different than at free flight. This is due to the interference caused by the walls of a hard 

walled wind tunnel, the turning of the jet in an open jet tunnel, or the Kevlar cloth of the VT 

hybrid configuration. Therefore, this interference effect is accounted for by adjusting the 

geometry angle of the airfoil (geometric angle of attack, e.g. actual physical angle of the airfoil 

in the tunnel) until it best matches the expected pressure distribution in free flight for a certain 

angle of attack, known as effective angle of attack. Therefore, interference correction is the ratio 

of the effective to geometric angle of attack, e.g. correction to be applied to the angle of attack 

measured at a wind tunnel test for the data to represent free flight conditions. These corrections 

have already been applied by the authors of each test. For the NASA tests, the interference 

correction was of 37%. This means that the effective angle of attack is 0.37 times the geometric 

angle of attack used during the tests.  For the VT tests the correction factor was 77% and for the 

NLR test it was 44%. 

 

3.5.2 Corrections to VT’s data 

The data obtained at the VT’s wind tunnel were affected by the losses through the Kevlar 

cloth and the shear layer (Remilleux et al., 2006; Devenport et al., 2008a; Burdisso and 

Errasquin, 2009). The acoustic losses through the Kevlar cloth and the boundary layer were first 

determined experimentally by Remilleux et al. (2006) and later improved by Burdisso and 

Errasquin (2009). The improved corrections can be calculated as follows 

corrected measured
p p Kevlar BLL L= + Δ + Δ    (3.1) 

where 
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( ) 0.0196 0.0391
1000 1000Kevlar

f fdB ⎛ ⎞ ⎛ ⎞Δ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (3.2)
 

and 

( )1.0571000 43.28( ) 0.00154471 1
f

M
BL dB e e

−⎛ ⎞
Δ = −⎜ ⎟

⎝ ⎠ .
   (3.3) 

In these expressions, measured
pL is the noise measured experimentally, f  is the band center 

frequency, and M  is the free stream flow Mach number. In Figure 3.9 the corrections are 

presented as functions of frequency. The positive values in the curves indicate the magnitude of 

the losses in decibels. 

 
Figure 3.9: Attenuation of sound passing through the acoustic Kevlar window as a function of frequency 

in 1/3 octave bands. The summation of the effects of the Kevlar’s wall and the boundary layer are 
considered. (Extracted from Burdisso and Errasquin, 2009) 

In addition, correction for the position of the observer as a function of the geometric 

angle of attacks is required as illustrated in Figure 3.10. The microphone array center is at the 



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

65 

 
 

distance 1r  from the center of rotation of the model (1/4 chord from leading edge). As the 

geometric angle of attack is changed the actual distance and angle of the observer to the trailing 

edge also changes.  

For this correction, the noise propagation is modeled as spherical waves emitted from the 

center span. The actual directivity of the noise emitted by an airfoil is that of a dipole or a baffle 

dipole depending on the case. Nevertheless, these directivity functions are much like spherical 

waves at the observer’s direction considered in this work, e.g. normal to the airfoil. Considering 

the spherical spreading law, and calling rr to the distance from the source (trailing edge) to the 

observer and 'er  to the distance form source to the microphone array center, then the correction 

is given as follows 

3 320logerm
p p

r

L L
r

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
     (3.4) 

where 3m
pL corresponds to the noise level at the observer distance of 3 meters and rr

pL  is the 

measured level at the rr  distance. This distance is easily computed using the cosine rule as follows 

2
2 3 33 2 3 cos

4 4 2rr C C π α⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
    (3.4) 

It should be noted that this correction is not very important with a maximum adjustment of 0.3 

dB for a geometric angle of attack of 15°.  
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Figure 3.10: Schematic view of the VT wind tunnel configuration depicting the array position with 
respect to the center and trailing edge of the model. During the tests, the array was located either on the 

pressure of suction side depending on the test.  

 

3.5.3 Corrections to NLR’s data  

The experimental measurements obtained at NLR were expressed in sound power level 

( wL ) assuming a monopole behavior of the source (Spherical waves). Therefore, at a distance of 

0.282 m ( )
1
24π −⎛ ⎞

⎜ ⎟
⎝ ⎠

 the sound pressure level has the same value as the sound power level. Thus, 

the sound pressure level at the observer’s position of 3 m is computed as   

3 0.282 3 320log 20log
0.282 0.282

m m
p p WL L L⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
   (3.11) 

In addition, a correction for length of the source in the span direction is necessary. This 

correction takes into account that for the NLR tests the map integration was made over the center 

0.1 m of the airfoil’s span while for the VT tests the span length considered was 1.23 m. This 

correction is simply  

0.93 m 0.93 m
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( )1.23 0.1
1010 log 1.23 0.1p pL L= +     (3.15) 
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4 Neural Networks Prediction Method 

The objective of this chapter is to investigate the potential of using neural networks as a 

computational tool to predict self noise for airfoils of any geometrical shape, chord length, flow 

speed, and angle of attack. The neural networks are trained using experimental data obtained at 

VT (Devenport et al., 2008a and 2008b), NLR (Oerlemans, 2004 and Migliore and Oerlemans, 

2004), and NASA (Brooks et al., 1989). The neural networks types and configurations are 

chosen according to the experience of the author and following advises found in literature. This 

work is an application of neural networks and, thus, the theory of this technique is presented only 

to the extent that is needed for the proper understanding of the method.  

Since the neural network implementation is a new approach, it is intended to develop this 

tool in a step by step approach. This means that the first step is to develop a simple model 

applicable only to the NACA 0012 airfoils. Then, this model is then extended to include any 

airfoil shape. The airfoil shape is considered by incorporating parameters describing the 

geometry into the training data. Two different approaches are used here. They are based on a 

conformal mapping and polynomial approximations of the surfaces of the airfoil, respectively. 

Several different neural networks models are studied in order to identify the ones that are more 

appropriate. 

 

4.1 Neural Network Review 

Artificial neural networks can be considered as simplified models of the networks of 

neurons of animals and human beings. From the engineering point of view, artificial neural 

networks offer an alternative form for solving highly non linear problems (Gurney, 1997). Over 

the last years, the method of Neural Networks has been increasingly applied to all kind of 

engineering problems (Rai, 2002). Following Sundararajan et al. (1999) a typical neuron is 

shown in Figure 4.1. A scalar input is  is transferred through a connection that multiplies the 

input by a scalar w  (weight). The weighted input is w  receives the addition of a scalar bias bs . 
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Then, a transfer function Tf , chosen according to the problem to be solved, is applied to the 

product of the previous steps giving an output os . The transfer function can be either linear or 

nonlinear. The process can be expressed mathematically as 

( )o T i bs f ws s= +      (4.1) 

 

 

 

 

 

Figure 4.1: Schematic representation of an artificial neuron.  

In a neural network, several neurons are interconnected in order to mimic more complex 

behavior than the one that the neurons could reach individually. The functioning of the network 

depends on the connections between elements. Figure 4.2 shows a schematic representation of a 

typical neural network. The network must be trained by adjusting the bias and the connections 

(weights) between elements. A neural network is adjusted so that given a specific input the 

network produces a specific output. Then, the output is compared to an expected result or target. 

This process is repeated, adjusting the weights, until the difference between output and target 

reaches a desire error tolerance. Typically, several pairs of input/target data are needed to reach 

an expected behavior. Usually the whole set of input/target data is presented to the network 

repeatedly in order to improve the training. Each process of presenting the set of input/target data 

is called epoch. Figure 4.3 shows a flow diagram representing the training process.  

It can be observed in Figure 4.2 that the network can be composed of several layers. 

Frequently, all the neurons in the same layer have the same transfer function. Thus, the transfer 

functions are specified by layer. The layer that receives the input data is called Input layer. In the 

Σ   Tf  is  

bs  

w  

os  

1 
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same way, the layer that outputs the results is called Output layer. The layers between them are 

commonly called hidden layers. The simplest neural network will be composed of an input and 

an output layer. The hidden layers usually improve the capacity of the network to solve complex 

problems. Though input parameters feed into the input layer, it is important to clarify that the 

number of input parameters is not related to the number of neurons in the input layer. In fact, it is 

possible to have several input parameters and a single neuron in the input layer. On the other 

hand, the number of neurons in the output layer has to match the number of output parameters 

that are expected. The number of neurons in the hidden layers does not follow any special rule 

and it is chosen based in the experience of the user. The same situation occurs with the election 

of the number of hidden layers (Kasnakogluand and Onder Efe, 2008; Sundararajan et al., 1999; 

Gurney, 1997). 

Figure 4.2: General schematic representation of a neural network. 
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Figure 4.3: Schematic representation of a neural network training.  

Each set of input and output parameter corresponding to a set of target parameters is 

grouped as an input, output, and target vector, respectively. In this work, it is adopted the 

convention of calling input matrix to the set of input vectors and target matrix to the set of target 

vectors. The conjunction of the two matrixes is the called training matrix.  

 

4.2 Prior Applications of Neural Networks in Aerodynamic and 

Aeroacoustics 

Artificial neural networks have been widely used in aerodynamics. Recent applications in 

aerodynamics include flow control, estimation of aerodynamic coefficients, compact functional 

representations of aerodynamic data for rapid interpolation, grid generation, aerodynamic design, 

and the interpolation of wind tunnel data (Rai, 2002). 

One of the first applications of neural networks to aerodynamics is the work of Chong et 

al. (1992). In this work, a multilayer neural network was applied to airfoil design. The network 

was trained using aerodynamic parameters such as drag and lift coefficients as inputs while the 

output was the airfoil geometry. The aerodynamic parameters were calculated using XFOIL 

(Drela and Youngren, 2001). The geometry was represented by conformal mapping. The results 

of this work showed that choosing the optimal neural network configuration is, to some extent, a 

random process. Furthermore, it was showed that the network had a much better behavior 
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making predictions inside the limits of the training data than outside these limits. This is that the 

network was better interpolating than extrapolating (Chong et al., 1992). 

In 1993, Meade successfully applied neural networks to the approximation of pressure 

coefficients based on experimental data corresponding to NACA 0012 airfoils of different chord 

length. Nevertheless, several uncertainties about how to manipulate the neural networks were 

reported as a factor that would limit the acceptability of the method. The technique of weighted 

residual learning was used. The main advantage of this method would be the possibility of 

incorporating some theoretical models to the networks. The possibility of representing the 

integral and derivative of the output function was presented as another advantage of the method 

(Maede, 1993).  

Huang et al. (1994) used a neural network to address the problem of predicting the 

aerodynamic parameters given the airfoil’s geometry. In this case, parameters that indirectly 

describe the geometry of the airfoil are used as input for the neural networks. The outputs are lift 

coefficient, drag coefficient, and pitching moment. It was found that it is uncertain which and 

how many input parameters are necessary in order to properly define the problem and guarantee 

uniqueness (Huang et al., 1994). 

Other application of neural networks was the geometrical design of airfoils by Di Stefano 

and Di Angelo (2003). The input of the network is given by angle of attack, lift, drag, and so 

forth. The output is represented by the coordinates set of control points of a Bèzier curve. In this 

work, it is stated that a multi-layer feed-forward neural network with an arbitrary large number 

of units in the hidden layers can approximated any real continuous function. It has been verified 

that the implemented neural network had little capability to reproduce the geometries expected 

when it is operating in the extremes or outside the range of the parameters used for the training 

process. Nevertheless, in the case of input parameters located away from the extremes of the 

range, the results were reported to be satisfactory. 

A different problem was studied by Kasnakoglu and Onder Efe (2008). In this work, 

different intelligent methods, including neural networks among them, are contrasted for the 
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problem of predicting pressure at a specific location in a 3-element airfoil. A 3-element airfoil is 

an arrangement of 3 airfoils interacting between each other like the ones found in the wings of 

commercial airplanes. Based on the pressure measured in some locations, it is attempted to 

predict the pressure in a different location. The results reported show that a Multilayer 

Perceptron network provides better results than a Radial Basis Function Neural Network 

(Kasnakoglu and Onder Efe, 2008). 

Different methods have been used to take into account the shape of airfoils in neural 

network simulations. Chong et al. (1992) used a conformal mapping method. The main reason 

for using this method is that it only requires the use of five parameters to define the geometry. 

The conformal mapping is described in depth by Jones (1990). This mapping is dependent on 

two parameters defining the thickness of the airfoil, two parameters defining the camber, and a 

single parameter defining the trailing edge thickness. In the work presented by Rai and Madavan 

(1998), two methods for parameterization of airfoils geometry are presented that use up to 13 

parameters to describe the geometry. Other method of airfoil representation that has been found 

in literature is the use of Bezier curve representation. This method is used in the previously 

described work of Stefano and Di Angelo (2003) and in the work of Hacioglu (2007). Finally, 

there is a method based in the use of PARSEC airfoils that was used in the work of Khurana et 

al. (2008). 

With regard to the characteristics of the neural networks used in aerodynamics, according 

to all the literature reviewed, in most cases the chosen neural network was a feed forward 

network using a back-propagation algorithm (i.e. Rai, 2002 and Meade, 1993). Moreover, the 

present literature review shows that a neural network method in aerodynamics would not be 

advisable for extrapolating results.  

In 2008, Khurana et al. presented an airfoil’s optimization method that included a neural 

networks module implemented in Matlab. In this work, a thumb-of-rule assumption is that the 

number of neurons in the hidden layer equals five times the number of input neurons. This rule is 

reported to have been successful. 
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It is important to notice that in most of the works reviewed, the data set used for training 

was obtained by simulations rather than experiments.  

To the author best knowledge, no prior work was found in the open literature for the 

implementation of neural networks to noise prediction from airfoils.  

 

4.3 Neural Networks Implementation 

The objective of this section is to describe the general structure of the neutral networks 

and the approach used here to train them. The accuracy of the networks is assessed by 

developing several simple metrics as presented here. The data excluded from the training is also 

described. 

 

4.3.1 General description of the models 

The neural network implementation was performed using the Neural Networks tool box 

in Matlab. Although several different models have been developed, all of them have the same 

structure as illustrated in Figure 4.4. The general characteristics of the neural networks models 

are the following: 

i. The neural network implemented is only able of predicting TBL-TE and LBL-VS 

noise because the training data corresponding to the presence of only these noise 

mechanisms. 

ii. The input to the networks is given by aerodynamic parameters, i.e. effective angle of 

attack, Reynolds number based on the chord length, displacement thickness, and the 

airfoil geometry. 

iii. The output is given by sound pressure level in 1/3rd octave band in the same range of 

frequency than the available training data, e.g. 630 to 4000 Hz. Working in this range 
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is acceptable considering that according to Lowson and Bullmore (1996), broadband 

noise between 500 and 1000 Hz would be the dominant noise for a typical wind 

generator. Therefore, most parts of the dominant frequency range would be covered.  

iv. The predictions are valid for an observer located at 3 m from the trailing edge in 

direction perpendicular to the plate containing the chord and span lines of the airfoil. 

This is 3rr m= , 90o
rθ = ±  and 90o

rϕ =  following the coordinates system presented 

in Figure 2.7. The reason for considering the predictions valid at both sides of the 

airfoil is that the directivity function of airfoils can be considered symmetric with 

respect to the chord as presented in section 2.2. This is the reason for using training 

data that correspond to locations of the observer at the suction or pressure side 

indistinctly. 

v. In all models, two neural networks are used. One is trained with data corresponding to 

tripped cases and the other is trained with data corresponding to the no-tripped cases.  

vi. Hidden layers are present only in some models. 

vii. The experimental noise spectra were not normalized before being presented to the 

networks. 
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Figure 4.4: Schematic representation of the general neural network model applied in the present work 

 

4.3.2 Training the Networks 

An important problem when developing a neural network is to asses the capacity of the 

network to predict the phenomenon of interest. In contrast to other numerical models, it is 

important to consider that the neural networks do not include any theoretical modeling of 

physical phenomena. The neural networks are mathematical entities trained to reproduce a trend 

given by a data set. Consequently, it is uncertain how the neural network will respond in its 

predictions, especially if the input data is not close to the training data used. In general, a group 

of data is excluded from the training set to be used to contrast the predictions obtained with the 

trained network. This process is very convenient when sufficient training data is available. If the 

quantity of training data is limited, excluding some data from the training set can potentially lead 

to an inadequate training. 

The experimental data to be used in the training of the neural networks for noise 

predictions were described in Chapter 3. Since these data are not very extensive, it was decided 
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not to exclude a subset for the purpose of assessing the accuracy of the networks. Therefore, two 

different approaches were used for the training and assessing the accuracy of the networks. 

These approaches are: 

 

a) Conventional Training of the Neural Network (CTNN) 

The training of the neural network will be carried out by using the complete data set. This 

procedure will be referred as CTNN. This is the typical method for training and commonly found 

in the literature reviewed. This method is the most adequate when the objective is just to reach 

the training targets with the highest precision. This approach will be used to create the network 

for airfoil noise predictions. However, the method does not provide any means to assess the 

capacity of the network to predict the response to input data other than the one included in the 

training set. 

 

b) Alternative Training for Assessing Network Accuracy (ATANA) 

To assess the accuracy of the network, it is trained again using all the data except for one 

test vector. This network training is referred as ATANA. The vector excluded from the training 

is known as control vector. In order to test the network for different conditions, multiple control 

vectors are considered. In this way, the capacity of the network to predict new inputs is tested for 

all the cases available. Each network created by this approach is expected to be similar to the 

network created by the CTNN approach since the training matrix differs in a single vector. In 

consequence, it is expected that the networks developed by the ATANA approach will provide 

some information about how well the network created by the CTNN approach will behave.  

As mentioned earlier, the network created by the CTNN approach will be ultimately used 

for airfoil self noise predictions. Here, all the m  vectors available for training are used as control 

vector. Thus, there will be m neural networks trained with m -1 data points to asses the accuracy 

of the network using all m  data points (CTNN network). 
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4.3.3 Metrics to Assess Neural Network Accuracy 

One of the most important steps in the development of the neural networks tool is to 

assess the accuracy of each model. This is necessary in order to determine if the changes 

implemented improve the network behavior. The assessment of the networks performance can be 

carried out by visually inspecting the network output to the experimental data used as control 

vectors. However, this process is time consuming due to the large number of vectors, e.g. more 

than 500.  Therefore, it is proposed to asses the accuracy of the predictions by using simple 

metrics as described here. 

 

Average Level Difference  

This metric is based on computing the difference in the average spectra level as follows  

E P
p p pL L LΔ = −      (4.2) 

where superscript E and P indicates the experimental and predicted results, respectively, and the 

line over the levels indicate that they are averages.   

Using the illustrative spectra in Figure 4.5, the average spectra level is computed as  

10
10

1

110 log 10
p in L

p
i

L
n =

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑     (4.3) 

where p iL  is the sound pressure level in the i th band and the summation goes over the 1/3 octave 

bands from 1 630f =  to 4000nf =  Hz and n   is the number of bands in the frequency range. The 

physical interpretation of this metric is shown in Figure 4.5. 
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Figure 4.5: Schematic representation of the physical meaning of the average level difference metric 
correspond to the thj  test of a set of m tests with frequencies ranging from 1f  to nf . Predicted and 
experimental noise spectra indicated with continuous red and blue lines respectively. Predicted and 

experimental average level difference ( )pL  represented in red and blue dashed lines respectively. 

This average spectra difference is computed for all m control vectors. To assess the 

overall performance of the network, the average of the absolute value of the m calculated pLΔ is 

computed as follows 

( )
( )

1

m

p
jj

p
avg

L
L

m
=

Δ
Δ =

∑
     (4.4) 

where the subscript j  indicates that the summation is performed for the pLΔ corresponding to 

each of the m  tests. Though not strictly correct mathematically, this overall value provides a 

simple number that represent the expected difference in decibels between the predicted and 
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if  .   .   . 

1
P
pL  

1
E
pL  

P
p nL  

P
p iL  

E
p iL  

thj  test 

Frequency 

Sound 
pressure 
level  

E
p nL  

pLΔ  



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

80 

 
 

experimental data in an average sense over frequency range and aerodynamic envelope of the 

data set. 

 

Maximum Level Difference 

This metric is based on computing the maximum difference between the predicted and 

experimental spectra in disregard of what frequency band this maximum difference takes place 

on. That is 

max E P
p Max p i p iL L LΔ = − .     (4.5) 

The maximum level difference of the spectra p MaxLΔ is graphically depicted in Figure 4.6. It is 

clear that this metric is always equal or larger than the average one presented previously. 
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Figure 4.6: Schematic representation of the physical meaning of the maximum level difference metric 
correspond to the thj  test of a set of m tests with frequencies ranging from 1f  to nf . Predicted and 

experimental noise spectra indicated with continuous red and blue lines respectively. 

As before, an overall average is computed as 

( )
max

1
max

m

p
j

p avg

L
L

m
=

Δ
Δ =

∑
     (4.6) 

 

R-square correlation 

The use of R-squared correlation has become common in the field of neural networks and 

it is also implemented in this problem. The metric is obtained by computing the linear regression 

between each element of the network output and the corresponding target for the training set. 

Then, the difference between response and target is calculated and expressed in root-mean-
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square (rms) terms. Therefore, if the output of the network is composed of n  1/3th octave band 

levels, then n  R-squared correlation values are calculated.  

( )
( )2

1     for    1, ,

m
E P
p ij p ij

j
rms i

L L
r i n

m
=

−
= =

∑
   (4.7) 

where norm is the Euclidean norm, and i  denotes each of the n  frequencies bands. The levels 
E
p iL  and 

P
p iL  are vectors containing the levels for the thi  band frequency and for all the m  data 

vectors available. Therefore, rmsr  is a vector of length n  containing the R-squared correlation 

obtained for each frequency. Then, on order to transform this in a single value, a subsequent rms 

calculation is applied. 

( ) ( )22

1 11

n mn
E P
p ij p ijrms i

i ji
RMS

L Lr
R

n nm
= ==

−
= =

∑∑∑
    (4.8) 

It is important to note that this metric was used in the training of the networks, i.e. used 
by the Matlab routines. 

 

4.3.4 Data excluded 

As indicated in the previous chapter, some of the experimental data was not used in the 

training of the networks. In this section, the experimental data that was not included are 

described. They are: 

i. One of the parameters that are intended to be used for the neural networks implementation 

is the boundary layer displacement thickness. Here, the boundary layer parameters were 

predicted using the code XFOIL (Drela and Youngren, 2001). In Appendix B, a brief 

description of XFOIL is presented, and the validity of the predictions is assessed by 

comparing them with experimental data available in literature. For some airfoils at high 
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angles of attack, XFOIL failed to converge. Therefore, for the neural networks 

implementations only the tests cases for which the displacement thickness could be 

predicted are included in the training matrix. 

ii. The acoustic data corresponding to the SH3055 airfoil could not be used because the 

geometry coordinates were not found in the open literature. 

iii. The acoustic data corresponding to the DU97-W300, DU97-W900 and the DU97-W900 

with splitter plate were also excluded because these airfoils do not have sharp trailing 

edges. The vortex shedding due to blunt trailing edges is not considered in this initial study. 

iv. Some results for the NACA 0012 airfoil for the same conditions were available from 

NASA and NLR tests. Thus, only the NLR data was used for the aforementioned test 

condition. The NLR data was chosen because it provided a richer database in terms of 

angles of attack and flow speeds. 

The data used in the development of the neural networks is shown in Figures 4.7 and 4.8 

corresponding to tripped and no-tripped cases. Each polygon represents a Reynolds number 

versus angle of attack range for witch the corresponding airfoil was tested. Each test is depicted 

with a different color.  
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Figure 4.7: Summary of the Reynolds number versus angle of attack range of the tests results 
used for training the networks. Tripped cases. 
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Figure 4.8: Summary of the Reynolds number versus angle of attack range of the tests results used 
for training the networks. No-tripped cases. 

 

4.4 Airfoil Self Noise Neural Networks 

The present section describes the implementation of two neural networks models of 

increasing complexity. The first model is trained with experimental data obtained for NACA 

0012 airfoils. The second model incorporates training data corresponding to several different 

airfoils. In order to take in account the shape of the airfoils, this model includes parameters 

describing the geometry of the airfoils. 
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4.4.1 Neural Network for NACA0012 Airfoil  

Several neural network configurations were developed using only NACA 012 airfoil data. 

The main aim of these initial studies is to investigate the performance of the network excluding 

the effect of the airfoil shape. 

The first models implemented are simple configurations used to get familiarized with the 

neural networks. The training matrix used consists of the experimental data obtained at the VT 

wind tunnel for the 0.91 m chord airfoil and the data obtained by NASA for airfoils of chord 

ranging from 0.025 m to 0.3 m. As the present model is a first assessment of the neural networks 

capacity, the data corresponding to a NACA 0012 airfoil tested at NLR (Oerlemans, 2004) is not 

included for simplicity in the calculations. Furthermore, the chord of the NACA 0012 airfoil 

tested at NLR is the same than for one of the airfoils tested at NASA. 

Due to the symmetry of the NACA 0012 airfoil, it is expected to have the same acoustic 

behavior for negative and positive angles of attack. Therefore, data for negative angles was used 

by simply taking the absolute value of the angle of attack.  

Table 4.1 summarizes the main characteristics of the neural network models. The input 

parameters consisted of flow speed, chord length, effective angle of attack, and in some cases the 

boundary layer displacement thickness at the trailing edge at the suction side and/or pressure 

side. 
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Table 4.1: Description of the neural network model I developed. The same model is used for the 
tripped and the no-tripped networks. 

Model I 

Input Flow speed 

Chord 

Effective angle of attack 

Boundary layer displacement thickness at the trailing edge at the suction side 

Boundary layer displacement thickness at the trailing edge at the pressure side 

Output  
pL  in 1/3rd octave bands for 9 frequencies ranging from 630 to 4000 Hz 

Number of layers 2 to 4 

Training data 0.9 m chord NACA 0012 tested by VT 

0.025 to 0.3 m chord NACA 0012 airfoil tested by NASA 

To seek the optimal configuration of the network, eight models (denoted as I-a thought I-

h) were developed. The differences among the models are based on training settings or input data 

used. The eight models are presented in Table 4.2. For Models I-a thought I-g, the networks 

consist of two layers with 20 neurons in the input layer and 9 neurons in the output layer. The 

number of input neurons was empirically chosen. The 9 output neurons correspond to the 9 

frequencies for which the acoustic data is considered. In the last model (I-h), two hidden layers 

are incorporated.  

For all models, the training algorithm used was trainlm and the transfer functions for the 

input-output layer were tansig-purelin. These configurations were found to be the most effective 

among several tried. For I-h model, tansig-logsig transfer functions were used in the hidden 

layers. It can be seen in Figure 4.9 that the transfer functions tansig and logsig are nonlinear 



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

88 

 
 

functions while purelin is linear. The number of epochs used for the training process was varied 

between 25 and 500 depending on the case. It is important to note that for Model I-h, no training 

epochs number was set. In this case, a target error was used for stopping the training process. 

The reason for this difference is that when hidden layers are used, the training for each epoch is 

very slow. Therefore, it is necessary to set an error target in order not to go over an excessive 

number of training epochs. 

 
Figure 4.9: Transfer functions used in the neural networks implemented. a) Tansig transfer function. b) 

Purelin transfer function. c) Logsig transfer function. 

In all models, flow speed, chord length, and effective angle of attack are used in the input 

matrix. In addition, for Models I-e to I-h, boundary layer displacement thicknesses for the 

suction and/or pressure side are used as shown in Table 4.2. The reason for adding the boundary 

layer parameters to some cases is that the noise spectra seem to scale well with the boundary 

layer displacement. The boundary layer displacement thickness corresponding to the pressure 

and suction sides of the airfoil required as inputs were predicted using XFOIL (Drela and 

Youngren, 2001).  

The metrics presented in Section 4.3.2 are also presented in Table 4.2, e.g. equations 4.3, 

4.5, and 4.7. Note that the metrics were computed for the ATANA networks and the CTNN 
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network. However, it is important to clarify that the results for the ATANA approach are 

considered more important to assess the network accuracy.  

The results in Table 4.2 show that when the boundary layer displacement thickness is not 

used for training the networks (cases I-a to I-d), increasing the number of epochs above 50 does 

not improve the accuracy of the networks. Moreover, using more than 100 epochs could over 

train the neural networks leading to less accurate predictions. Another case of over-training can 

be observed by comparing the metrics of case I-f and I-g. In this cases, increasing the number of 

epochs from 50 to 500 lead to a high reduction in the prediction accuracy, i.e. 0.95 to 0.57 in the 

R-square correlation for the tripped case. 

The assessment of the influence of using hidden layers can be performed by comparing 

cases I-e and I-h. For both these cases, the pressure side boundary layer displacement thickness 

is used. Comparison of the aforementioned cases shows no significant improvement of the 

predicting capacity by incorporating hidden layers. In fact, adding the hidden layers degraded the 

metrics, i.e. from 0.98, 1.4 dB, and 3.7 dB to 0.95, 1.8 dB, and 4.3 dB for the R-square, average 

level difference, and maximum level difference for tripped cases, respectively. 

Comparison of the metrics between tripped and no-tripped cases shows a higher level of 

accuracy in the predictions for tripped cases. For model I-a, the metrics for tripped cases are 

0.98, 1.5 dB, and 4.2 dB, and for no-tripped cases 0.91, 3.5 dB, and 7.7 dB, respectively.  

In the overall evaluation of the metrics, Model I-e provides the most accurate network for 

both the tripped and no-tripped cases. However, all the other models seem to perform reasonably 

well with results only slightly poorer than the model I-e. This observation suggests that the actual 

network configuration to be used for noise predictions is not very sensitive. 
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The results in Table 4.2 present the average metric for all m control vectors. Figures 4.10 

through 4.13 present the average and maximum level difference metrics for the individual 

control vectors using Model I-e. In these figures, the control vector case is defined as a circle in a 

plot of the angle of attack (α ) versus chord Reynolds number ( cR ). A color scheme is used to 

plot the magnitude of the calculated metric. The color scheme ranges from 0 to 10 dB for the 

figures representing the average level difference metrics and from 0 to 20 for the maximum level 

difference metrics. Nevertheless, there were few cases for which the levels of the metrics were 

outside this range, e.g. the case indicated as d in Figure 4.10 for which the average difference 

level metric is 25 dB. The cases that are indicated with letters in these figures will be analyzed in 

detail later in the section. For the sake of completeness, Appendix E presents results similar to 

Figures 10 through 13 but with a color-bar that shows a larger range. 

Figures 4.10 and 4.11 present the results of the average and maximum difference level 

metrics for the no-tripped case, respectively. Figures 4.12 and 4.13 present similar results but for 

tripped cases. Inspection of these figures shows that the lower levels of accuracy tend to occur 

almost exclusively at the boundaries of the training set. This result is not unexpected since it has 

been reported the limitation of the neural networks to extrapolate. 
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Figure 4.10: Average Level difference metric for each control vector using Model I-e for no-tripped case. 

Training using the ATANA approach. 
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Figure 4.11: Maximum Level difference metric for each control vector using Model I-e for no-tripped 
case. Training using the ATANA approach. 
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Figure 4.12: Average Level difference metric for each control vector using Model I-e for tripped case. 

Training using the ATANA approach. 
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Figure 4.13: Maximum Level difference metric for each control vector using Model I-e for tripped case. 
Training using the ATANA approach. 

To gain more in depth understanding of the accuracy of the network, comparison between 

experimental and predicted spectra for the control vectors are presented in Figures 4.14 and 4.15. 

In all cases, predictions were obtained with Model I-e. Figure 4.14a presents the case for 

4α = °and 1.6cR =  million in the no-tripped configuration. This case is indicated in Figures 4.10 

and 4.11 with the letter a. It can be noticed that the predictions are within 7 dB for all frequency 

bands. In this case, the calculated average level difference is 4 dB and the maximum level 

difference is 8 dB. Figure 4.14b shows a case in which the experimental data presents vortex 

shedding noise. The case presented corresponds to 8o of angle of attack and 3.0cR =  million and 

it is indicated in Figures 4.10 and 4.11 with the letter b. It can be seen that in this case the 

prediction obtained with the neural network fails in approximating the vortex shedding peaks 

present in the experimental measurements. In this case, the calculated average level difference is 

7 dB and the maximum level difference is 14 dB. Figure 4.14c presents the case for 4α = °  and 

3.1cR =  million in the no-tripped configuration. This case is indicated in Figures 4.10 and 4.11 

with the letter c. The predictions for this case are within 3 dB for all frequency bands (Average 

(dB) 

(d) 

(b) 

(a) 

(c) 
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and maximum level difference are 2 and 4 dB, respectively). Figure 4.14d shows a case that is 

located at the boundary of the data set. The case presented corresponds to 16o of angle of attack 

and 0.4cR =  million (letter d in Figures 4.10 and 4.11). It can be observed that the network 

completely fails in predicting outside the range of the training data. 
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Figure 4.14: Comparison of experimental results and predictions using Model I-e and ATANA training 

approach for no-tripped case: Control vectors a) 4α = °and 1.6cR = million, b) 8α = ° and 
3cR = million. c) 4α = °and 3.1cR = million, and d) 16α = ° and 0.4cR = million.                   

♦ Experimental ─── Prediction 

The results in Figure 4.15 present similar sample spectra for the tripped condition. The 

cases shown are indicated with the letters a, b, c, and d in Figures 4.12 and 4.13. The results 

a) b) 

d) c) 
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reveal the same trends as for the tripped cases. The network predicts very well all cases while 

failing to capture the vortex shedding mechanism is the few cases it takes place. 
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Figure 4.15: Comparison of experimental results and predictions using Model I-e and ATANA training 
approach for tripped case: Control vectors a) 2α = °and 1.2cR = million and b) 8α = ° and 

2.4cR = million. c) 0α = °and 3.4cR = million and d) 0α = °and 0.05cR = million.                 
♦ Experimental ─── Prediction 

Figures 4.16 through 4.19 present the average and maximum level difference metrics for 

the final network, e.g. CTNN training approach for Model I-e. These results are presented using 

the same format as in Figures 4.10 through 4.13. Figures 4.16 and 4.17 present the results for the 

no-tripped case while Figures 4.18 and 4.19 are for tripped cases. As expected, the results are 

about the same in Figures 4.10 through 4.13. This demonstrates that the network trained using all 

b) a) 

d) c) 
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the data (CTNN) and the ones used to assess the accuracy of the networks (ATANA) are similar. 

Sample spectra are presented in Figure 4.20 corresponding to the cases indicated with the letters 

a through d. 
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Figure 4.16: Average Level difference metric for each test case vector using Model I-e for no-tripped 
case. Training using the CTNN approach. 

 

 

 

(dB) 

(b) 

(a) 



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

98 

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

2

4

6

8

10

12

14

16

R
C

α
  (

de
g)

 

 

2

4

6

8

10

12

14

16

18

20

Figure 4.17: Maximum Level difference metric for each test case vector using Model I-e for no-tripped 
case. Training using the CTNN approach. 
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Figure 4.18: Average Level difference metric for each test case vector using Model I-e for tripped case. 
Training using the CTNN approach. 
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Figure 4.19: Maximum Level difference metric for each test case vector using Model I-e for tripped case. 
Training using the CTNN approach. 
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Figure 4.20: Comparison of experimental results and predictions using Model I-e and CTNN training 
approach: Control vectors a) No-tripped case, 4α = °and 3.1cR = million, b) No-tripped case, 

8α = ° and 2.4cR = million, c) Tripped case, 8α = ° and 3.1cR = million and d) Tripped case, 
8α = ° and 0.18cR = million.                                                              

♦ Experimental ─── Prediction 

 

4.4.2 Implementation including airfoils other than NACA0012 

This case constitutes a generalization of the previous models for different airfoil’s 

geometry. The data used for training the network correspond to the NACA 0012, Sandia S831, 

S822 and S834, Delft DU96, FX63-137, SG 6043, and SD 2030 airfoils.  

c) d) 

a) b) 
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As nonsymmetrical airfoils are included in the training set of the present model, data 

corresponding to positive and negative angles of attack are considered. Therefore, the data 

corresponding to NACA 0012 airfoils for VT and NLR tests was doubled by using the original 

data set plus a data set similar to the original but with the sign of the angle of attack changed. 

This process was not applied to the data corresponding to NASA because it was desired to keep 

the size of the data reasonable for the computation time point of view.  

The airfoil geometry is taken in account by parameters obtained through a Karman-

Trefftz conformal mapping or by polynomial approximation of the pressure and suction surfaces. 

The Karman-Trefftz conformal mapping is a technique typically used in aerodynamics 

for mapping a circle (contained in the ζ -plane) into an airfoil with a specific trailing edge angle 

(z-plane) and vice versa as it is depicted in Figure 4.21. This procedure allows simplifying the 

aerodynamic calculations by performing them in the ζ  domain where the boundary conditions 

are simple. Then, the results can be mapped into the physical domain (z-plane). The Karman-

Trefftz transformation is given by  

( )
( )

n

n

Dz nD
z nD D

ζ

ζ

−−
=

+ +
,     (4.9) 

where  

(2 )nπΨ = − ,      (4.10) 

and Ψ is the trailing edge angle (Angle Ψ in Figure A.1 of Appendix A). 

The shape of the airfoil can be controlled through the position of the circle, 1ζ , the 

parameter D , and the angle Ψ . The real part of 1ζ  controls the thickness of the airfoil, the 

imaginary part controls the camber, and D  controls the chord of the airfoil. The trailing edge 

angle is controlled by Ψ  as it was previously stated. 
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The approach used in the present work is finding values for the conformal mapping 

parameters to approximate the airfoil’s shape. The explicit expression necessary for the 

transformation can be obtained by a series expansion of equation (4.9) (Karamcheti, 1980). In 

the present work, the first two terms of the series were used as follows 

2 21 ...
3

n Dz ζ
ζ

−
= + +       (4.11) 

 

 

 

                                                                                            

 

 

 

Figure 4.21: Schematic description of the Karman-Trefftz conformal mapping. 

It is important to clarify that the Karman-Trefftz conformal mapping has limitations in 

terms of the geometries that it can produce. Some geometrical characteristics can not be 

controlled. Therefore, the Karman-Trefftz conformal mapping conduces to geometries that are 

only an approximation to the actual airfoil shapes. Figure 4.22 shows an example of the FX63-

137 airfoil and the conformal mapping approximation. In Appendix C, comparison of the airfoil 

geometry with the approximate geometry obtained is presented for all airfoils.  

* 

ζ -Plane z -Plane 

( )1f zζ −=  

( )z f ζ=  

2π −Ψ  

D  nD  

1ζ  
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K-T mapping
Real geometry

 

Figure 4.22: Example of the shape of an FX63-137 airfoil originated through Karman-Trefftz conformal 
mapping compared with the desired geometry. 

The second approach to define the airfoil geometry consisted of using polynomials for 

the pressure and suction surfaces of the airfoils. For simplicity, the same order, u, were assumed 

for the pressure and suction side polynomials. That is,  

2
0 1 2 ... u

p p p p pup a a x a x a x= + + + +     (4.12) 

and 

2
0 1 2 ... u

s s s s sup a a x a x a x= + + + +     (4.13) 

for the pressure and suction sides, respectively. Therefore, ( )2 1u + parameters are used to define 

the airfoil geometry. In the present work, polynomials of order 6 are used. The error in 

approximating the airfoils used is of less that 2% of the chord in the regions near the leading and 

trailing edges. The error reduced to less than 0.05% on the rest of the airfoil. Better accuracy was 

obtaining using the polynomials as compared to the conformal mapping approach. Figures of the 

airfoil shape and the polynomial approximation are not presented since they are virtually 

identical. 

Table 4.3 summarizes the main characteristics of the neural network model that 

incorporates the airfoil geometry. Several sub-models were investigated to asses the effect of 

using hidden layers and incorporating the displacement thickness. The nine sub-models are 

presented in Table 4.4.  
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Table 4.3: Description of the neural network model developed based on the data of Brooks et al. 
(1989), VT and NLR. The same model is used for the tripped and the no-tripped networks. 

Model II 

Flow speed 

Chord length 

Effective angle of attack 

Boundary layer displacement thickness in the trailing edge at the suction side 

Boundary layer displacement thickness in the trailing edge at the pressure side 

Input 

2
0 1 2 ... u

p p p p pup a a x a x a x= + + + +

2
0 1 2 ... u

s s s s sup a a x a x a x= + + + +  

or D    τ   

( )1Re ζ  ( )1Im ζ  

Output  
pL  in 1/3rd octave bands for 9 frequencies ranging from 630 to 8000 Hz 

Number of layers 2 to 3 

Training data NACA 0012, Sandia S831 and Delft DU96 tested at VT 

NACA 0012, Sandia S822 and S834, FX63-137, SG 6043, and SD 2030 tested at 
NLR. 

NACA 0012 airfoil tested by Brooks et al. (1989) (Except 0.33 m chord airfoil) 

For Models II-a thought II-f and II-i, the networks consist of two layers with 20 neurons 

in the input layer and 9 neurons in the output layer. The number of input neurons was empirically 

chosen. The 9 output neurons correspond to the 9 frequencies for which the acoustic data was 

considered as in Model I. In Models II-g and II-h, a hidden layer was incorporated. For all 

models, the training algorithm used was trainlm and the transfer functions for the input-output 

layer were tansig-purelin. For II-g and II-h models, tansig transfer function was used in the 

hidden layer. In all models, flow speed, chord length, and effective angle of attack were used in 
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the input matrix. In addition, for Models II-c and II-d boundary layer displacement thickness at 

the trailing edge on the pressure side was used. For Models II-e to II-h, boundary layer 

displacement thickness at the trailing edge on both the pressure and suction sides was used. The 

boundary layer displacement thickness corresponding to the pressure and suction sides of the 

airfoil required as inputs were predicted using XFOIL (Drela and Youngren, 2001). The number 

of epochs used for the training process was 20. This number of epochs was previously found to 

lead to good results with acceptable computing time. It is important to note that for Models g and 

h, the limit for the iterations was set to 20 epochs or until a target error was reached, whatever 

occurred first.  

The average metrics used to asses the network accuracy are presented in Table 4.4. The 

results presented show no significant differences in the accuracy of the different models. The 

average and maximum level difference metrics for tripped cases are almost the same for all the 

models. With regard to no-tripped cases, it can be observed that the inclusion of a hidden layer 

improves the accuracy of the predictions, i.e. the average and maximum level difference metrics 

for Models II-b and II-h go from 4.7 and 9.6 dB to 2.9 and 7.3 dB, respectively. Another 

interesting observation is that the results are again very similar for the conformal mapping and 

polynomial approximation geometry parameterizations. In all cases, the difference in the metrics 

between these two methods is less than 0.4 dB.  

In the overall evaluation of the metrics, Model II-h provides the most accurate network 

for both the tripped and no-tripped cases. However, all the other models seem to perform 

reasonably well with results only slightly poorer than the model II-h. This observation suggests 

that the actual network configuration to be used for noise predictions is not very sensitive. 
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The results in Table 4.4 present the average metric for all m control vectors. Figures 4.23 

through 4.30 present the average level difference metric for all the airfoils using Model II-h for 

no-tripped cases. The color scheme ranges from 0 to 10 dB in order to be consistent with the 

levels used for representing the results for Model I-e. Nevertheless, there are some cases for 

which the levels of the metrics were higher. For the sake of completeness, Appendix E presents 

the same results with the full scale range.  

Figure 4.23 shows the results for the NACA 0012 airfoil. Comparing this figure to the 

Figure 4.10, it can be observed that Model-II (for all airfoils) performed similarly to Model-I 

(exclusively for the NACA0012 airfoil). This results proofs of the robustness of the network. The 

results in Figures 4.24 through 4.30 show similar trends as previously observed. The network 

predicts well the self-noise in the absence of vortex shedding. 
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Figure 4.23: Average level difference metric for each control vector using Model II-h for no-tripped case 

for the NACA 0012 airfoil. Training using the ATANA approach. 
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Figure 4.24: Average level difference metric for each control vector using Model II-h for no-tripped case 
for the S822airfoil. Training using the ATANA approach. 
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Figure 4.25: Average level difference metric for each control vector using Model II-h for no-tripped case 
for the S831 airfoil. Training using the ATANA approach. 
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Figure 4.26: Average level difference metric for each control vector using Model II-h for no-tripped case 

for the S834 airfoil. Training using the ATANA approach. 
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Figure 4.27: Average level difference metric for each control vector using Model II-h for no-tripped case 
for the DU96 airfoil. Training using the ATANA approach. 
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Figure 4.28: Average level difference metric for each control vector using Model II-h for no-tripped case 
for the Fx63-137 airfoil. Training using the ATANA approach. 
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Figure 4.29: Average level difference metric for each control vector using Model II-h for no-tripped case 
for the SG 6043 airfoil. Training using the ATANA approach. 
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Figure 4.30: Average level difference metric for each control vector using Model II-h for no-tripped case 
for the SD2030 airfoil. Training using the ATANA approach. 

To gain more in depth understanding of the accuracy of the network, comparison between 

experimental and predicted spectra for the control vectors are presented in Figures 4.31 and 4.32. 

In all cases, predictions were obtained with Model II-h, and the results presented correspond to 

no-tripped configurations. As before, letters a through d in Figures 4.23 through 4.30 indicate the 

control vector presented. 
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Figure 4.31: Spectral comparison of experimental results and prediction using Model II-e for no-tripped 
case: Control vectors a) NACA 0012, 8α = − ° and S822, 1.6cR = million, b) 8α = ° and 
0.18cR = million, c) S831, 5α = ° and 1.5cR = million and d) S834, 4α = °and 0.45cR = million.       

♦ Experimental ─── Prediction 
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Figure 4.32: Spectral comparison of experimental results and prediction using Model II-e for no-tripped 

case: Control vectors a) DU-96, 12α = ° and 3.1cR = million, b) Fx63-137, 0α = °and 
0.18cR = million, c) sg6043, 0α = °and 3.1cR = million and d) SD2030, 4α = °and 3.1cR = million. 

♦ Experimental ─── Prediction 

For the reader interested in additional results, Appendices E and F present comparison 

between experimental data and predictions for representative subsets of the results obtained with 

Models I-e and II-h.  
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4.4.3 Comparing the neural networks prediction accuracy with the method of Brooks et 

al. (1989) 

It was stated in Chapter 1 that the method of Brooks et al. (1989) is the most used tool for 

predicting airfoils self noise. Therefore, in this section the prediction accuracy of the neural 

networks tool developed here is compared with the prediction accuracy of the method of Brooks 

et al. (1989). To this end, the same metrics presented in Section 4.4.2 are computed using Brooks 

et al. approach. The results are compared in Table 4.5. The metrics were computed for all the 

cases except the ones corresponding to the tests performed by Brooks et al. (1989). The reason 

was that in the present thesis the data corresponding to the tests performed by Brooks et al. 

(1989) was simulated using the semi-empirical method of Brooks et al. (1989). Therefore, 

experimental data and predictions obtained by the method of Brooks et al. (1989) are the same 

for the NASA data. 

The results of the comparison show that the neural networks tool predicts the cases 

considered with a higher level of accuracy in an average sense. The reason for this is likely 

because the neural networks were developed using a richer experimental database than the one 

used by Brooks et al. (1989). Another potential reason could be that the neural network is more 

capable of modeling the non-linear physics of the trailing edge noise than the normalization 

performed by Brooks et al. (1989). 
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Table 4.5: Comparison of the accuracy of the predictions obtained with the developed neural 
networks and the predictions obtained using the method of Brooks et al. (1989). 

 
Neural Networks (Training 
excluding a control vector 
(ATANA)) 

Brooks et al. (1989) 

 tripped/no-tripped tripped/no-tripped 

R-Square 0.943/0.838 0.904/0.720 

( )p average
LΔ  1.9/ 2.9 2.6/7.6 

( )Max average
LΔ 4.3/6.8 8.2/14.6 
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5 Conclusions 

A new method was developed to predict self noise of airfoils typically used in wind 

turbines. The developed tool is based on neural networks trained with experimental data. This 

experimental data corresponds to tests of several different airfoils and flow conditions. The 

resulting tool is capable of taking in to account the geometric characteristics of the airfoil. The 

input parameters received by the network are the flow speed, chord length, effective angle of 

attack, and parameters describing the geometrical shape of the airfoil. In addition, boundary layer 

displacement thickness is used for some models. The parameters used for taking in account the 

airfoil’s geometry are based on a conformal mapping method or a polynomial approximation. 

The output of the neural network is given by sound pressure level in 1/3rd octave bands for nine 

frequencies ranging from 630 to 4000 Hz. 

No information about the trailing edge thickness was incorporated into the training data. 

Therefore, the neural networks tool is not capable of predicting TBE-VS noise. Furthermore, as 

no training data corresponding to stall condition was used, the neural network does not take in 

account this noise mechanism. The neural network does not predict tip noise either because no 

experimental data for this source was available. 

Two models were developed; the first one was based on training data corresponding to 

NACA 0012 airfoils only. The second model incorporated experimental data corresponding to 

the NACA 0012, Delft DU96, Sandia S831, S822 and S834, Fx63-137, SG6043 and SD-2030 

airfoils. The airfoil chords ranged from 0.025 to 0.91 m. For both models, the effects of different 

input data and training configurations were assessed. It was found that both conformal mapping 

and polynomial approximation for parameterization of the airfoils shape lead to similar levels of 

accuracy. Furthermore, it was found that the neural network models are not sensitive to the use 

of boundary layer parameters as input. This constitutes an advantage with respect to other 

prediction tools that require boundary layer information.  

In some cases the neural network fails in predicting tonal vortex shedding noise produced 

by laminar boundary layer-trailing edge interaction. Moreover, it was found that the neural 
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network developed in the present work is not capable of making predictions outside of the 

domain defined by the training set. Furthermore, in contrast with the semi-empirical method 

presented in Chapter 2, the networks application developed in this thesis present the advantage of 

allowing flexibility for the incorporation of new experimental data into the training set. The 

neural networks can be successively improved by adding the new experimental data to the 

training matrix and retraining the networks. 

Finally, the predicting accuracy of the neural networks tool developed in this thesis was 

compared with the semi-empirical method developed by Brooks et al. (1989). It was found that 

the neural networks tool produced more accurate predictions in an average sense for the cases 

that were considered. 

The overall conclusion of the present work is that the developed neural network is 

capable of predicting self-noise accounting for the shape of airfoils. This demonstrates the 

potential of the neural network method as a tool for predicting wind turbine noise. 
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6 Future work 

In this section, a set of research recommendations are made for future work. 

As it was mentioned before, incorporating new training experimental data to the neural 

networks is a very simple process. It was mentioned that the neural networks could possibly fail 

in approximating tonal vortex shedding noise due to lack of enough data. Therefore, it could be 

convenient to incorporate more experimental data corresponding to test configurations for which 

this vortex shedding occurs, e.g. no-trip. 

In addition, it is advised to normalize the experimental data to be used for training the 

networks. The objective is to present to the networks a more homogeneous data set. For example, 

the noise data could be normalized using the 5th power law of the free stream velocity and the 

chord based Strouthal number. Another possible improvement would be to separate the tonal 

noise from the broadband noise. Then, separated neural network for predicting the broadband 

and tonal noise components could be developed. Moreover, as some neural networks are 

commonly used for yes-no decision making, it is advised to implement a decision making model 

to predict whether vortex shedding occur or not. 

It is also recommended to create new neural networks models to predict blunt vortex 

shedding and tip noise. For the prediction of blunt vortex shedding noise, it would be necessary 

to use acoustic measurements corresponding to several trailing edge geometries. In the case of 

tip noise, the neural networks should be based on experimental measurements of noise emitted 

by blade’s tips. 

Upon further development of the neural network methods, it is recommended to use this 

predictive tool to estimate the noise from real wind generators and assess it fidelity. The ultimate 

goal is to develop a tool to accurately predict wind turbine noise emissions. 

Finally, it is recommended to work on the development of a neural network application 

for designing quiet airfoils. It is proposed to implement an iterative or inverse method based on 

neural networks to minimize the sound emission. In the case of an iterative design tool, the 
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network would be trained using aerodynamic parameters such as drag and lift and geometrical 

parameters. The output would be the noise spectra. Once the network is trained, an iterative 

process would search for an optimal geometry, with aerodynamic performance constrains, i.e. 

drag and lift. In the case of an inverse process, the nets would be trained using aerodynamic 

parameters and noise spectra as input parameters. The output parameters would be given by the 

geometry. Once the net is trained, aerodynamic and acoustic targets would be inputted to the 

network in order to obtain a geometry satisfying these targets. Considering the limitations of the 

neural networks exposed in previous sections, the first method appears to be more realistic for a 

practical implementation. 
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Appendix A: Airfoil Geometry, Abbreviations and Symbols 

 

A.1 Parameters defining the geometry of an airfoil 

Figure A1 depicts the main geometrical components of an airfoil and the corresponding 

nomenclature. 

U: free stream velocity 

C: Chord length 

t: Thickness 

cmb: Camber 

α : angle of attack 

2β : angle between camber line and chord line 

b: Trailing edge bluntness thickness 

Ψ : Angle of the trailing edge 

Figure A1: Schematic view of the geometry of an airfoil. 

b 
Ψ  

C
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A.2 Abbreviations 

TBL-TE: Turbulent boundary layer trailing edge 

S/SF:  Separated / Stalled flow 

LBL-VS: Laminar boundary layer – vortex shedding 

TEB-VS: Trailing edge bluntness – vortex shedding 

SPL:  Sound pressure level  

ATANA: Alternative Training for Assessing Network Accuracy 

CTNN: Conventional Training of the Neural Network 

VT:  Virginia Tech 

 

A.3 Symbols 

oc :  Speed of sound 

τ :  Time that a wave front takes to travel from the source to the receiver 

rr :  Distance to the observer 

rθ :  Local coordinate for a flat plate in rectilinear motion 

rϕ :  Local coordinate for a flat plate in rectilinear motion 

M :  Mach number 

hD :  High frequency directivity function 

lD :  Low frequency directivity function 
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I :  Acoustic intensity 

U :  Free stream velocity 

ε :  Normalized turbulence intensity 

oρ :  Density of the air 

L :  Span length   

s , l :  Parameters describing the dimensions of the turbulent region as depicted in Figure 2.6 

δ :  Boundary layer thickness. It is the distance from the airfoil surface where the mean 

velocity reaches the 99% of the potential flow stream velocity 

*δ :  Boundary layer displacement thickness. It is the distance by which a surface would have 

to be moved parallel to itself towards a reference plane in an ideal fluid stream to give the 

same mass flow as occurs between the surface and the reference plane in a real fluid. In 

other words, it is the distance a streamline just outside the boundary layer is displaced 

away from the wall compared to the inviscid solution. 

oδ :  Boundary layer thickness for 0o of angle of attack 

*
oδ :  Boundary layer displacement thickness for 0o of angle of attack 

sδ :  Boundary layer thickness at the suction side 

*
sδ :  Boundary layer displacement thickness at the suction side 

pδ :  Boundary layer thickness at the pressure side 

*
pδ :  Boundary layer displacement thickness pressure side 

*
avgδ :  Average displacement thickness 
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CR :  Chord Reynolds number 

C :  Chord 

α :  Effective angle of attack 

tipα :  Angle of attack of the blade at the tip section 

oα :  Angle of attack for witch the directivity effect is considered to change from high 

frequency to low frequency for S/SF noise 

/ /TBL TE S SF
pL − : Turbulent-boundary-layer—trailing-edge --- Separated / Stalled-flow noise in 

sound pressure level. 

LBL VS
pL − : Laminar – Boundary – Layer – Vortex – Shedding Noise in sound pressure level 

BTE
pL : Blunt trailing edge noise in sound pressure level 

pLα :  Separated / Stalled-flow noise in sound pressure level 

Tip
pL :  Tip noise in sound pressure level 

p
pL :  Turbulent-boundary-layer—trailing-edge noise produced by the pressure side in sound 

pressure level 

s
pL :  Turbulent-boundary-layer—trailing-edge noise produced by the suction side in sound 

pressure level 

scaled
pL : Scaled noise in sound pressure level in 1/3rd octaves bands 

corrected
pL : Corrected noise in sound pressure level in 1/3rd octaves bands 
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measured
pL : Measured noise in sound pressure level in 1/3rd octaves bands 

rr
pL : Noise level perceived at a observer’s distance rr  

WL : Sound power level 

3m
pL :  Noise in sound pressure level at an observer’s distance of 3 m 

 
1.23
pL : Noise in sound pressure level emitted by an airfoil of 1.23 m span 

 
0.1
pL :  Noise in sound pressure level emitted by an airfoil of 0.1 m span 

p iL :  Sound pressure level for each frequency expressed in dB 

E
pL :  Experimental sound pressure level for each frequency expressed in dB  

P
pL :  Predicted sound pressure level for each frequency expressed in dB 

pLΔ :  Metric measuring difference between the measured and the predicted spectra in an 

average sense 

p MaxLΔ : Maximum sound pressure level difference of the spectra 

AG  minAG  maxAG 1K  1KΔ : Functions used for scaling TBL-TE noise 

'AG BG  minBG  maxBG  2K : Functions used for scaling S/SF noise 

CG  DG  EG : Functions used for scaling LBL-VS noise 

FG  GG : Function used for scaling BTE noise 

f :  Frequency 
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St :  Strouthal number 

pSt :  Strouthal number based in the boundary layer displacement thickness measured at the 

pressure side 

sSt :  Strouthal number based in the boundary layer displacement thickness measured at the 

suction side 

1St :  Peak Strouthal Number used in the scaling of TBLTE noise 

2St :  Peak Strouthal Number used for scaling S/SF noise 

'pSt :  Strouthal Number used for scaling LBL-VS noise 

'peakSt :  Peak Strouthal Number used for scaling LBL-VS noise 

''St :  Strouthal Number used for scaling BTE noise 

''peakSt : Peak Strouthal Number used for scaling BTE noise 

'''St :  Strouthal number used for scaling tip noise 

0'St :  Strouthal Number for case of 0o of angle of attack used for scaling LBL-VS noise 

*
p

R
δ

:  Reynolds number based on the displacement thickness 

b :  Trailing edge’s bluntness thickness 

Ψ :  Trailing edge angle  

q :  Extension of the tip vortex for tip noise 

maxU :  Maximum velocity within or about the separated flow region at the trailing edge 
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maxM :  Maximum Mach number within or about the separated flow region at the trailing edge 

KeblarΔ :  Attenuation due to the Kevlar’s wall 

BLΔ :  Attenuation due to the boundary layer 

oS :  Unitary surface 

is :  Neural network scalar input 

bs :  Neural network scalar bias 

os :  Neural network output 

Tf :  Neural network transfer function 

w :  Neural network weight 

ji :  Neural network thj  input vector 

jo :  Neural network thj  output vector 

m :  Number of experimental data vectors available 

2
rmsp :  Squared pressure in RMS 

i :  Subscript that indicates the frequency considered 

n :  Number of frequencies of the spectra analyzed 

RMSr :  R-square correlation for a frequency 

RMSR :  R-square correlation for a all the frequencies 
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z , ξ : Variables used in conformal mapping 

D , 1ζ : Parameters used for conformal mapping 

pp , sp : Polynomials used for approximating the shape of airfoils 
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Appendix B: XFOIL and Boundary Layer Predictions 

XFOIL is a panel method’s based program for the design and analysis of subsonic 

isolated airfoils. It was first developed in 1986 by Mark Drela of MIT and has been constantly 

improved since then. The program has an interactive interface that allows performing several 

types of design and analysis. It is possible to perform viscous or inviscid analysis of an existing 

airfoil, airfoil design and redesign, drag polar calculation. Furthermore, it is possible to write, 

read and plot airfoil’s geometry, pressure distribution and boundary layer parameters (Drela and 

Youngren, 2001).  

In the present thesis, XFOIL is used to predict the boundary layer properties in the 

trailing edge region of the airfoils considered. The airfoil’s geometry is taken in account by the 

use of an input file containing the coordinates, except for the NACA0012 that can be generated 

internally by the program. As the program has an interactive interface that makes slow to operate 

it, a Matlab code was developed to run XFOIL automatically.  

One of the parameters that are intended to be used for the neural networks 

implementation is the boundary layer displacement thickness. For some airfoil shapes in certain 

conditions, convergence in the simulations performed with X-Foil can not be reached. In 

consequence, for the neural networks implementations that include the displacement thickness, 

some test results are excluded.  

It is important to assess the accuracy of the predictions obtained with XFOIL. To this 

end, the hot wire measurement performed by Brooks et al (1990) for the NACA 0012 and the 

measurements performed by Devenport et al. (2008, 1 and 2) for the DU-96 and S831 airfoils are 

compared with predictions. 

In the case of the NACA 0012, Brooks et al. developed empirical curves based on the 

measurements that they performed. These curves are compared with XFOIL predictions in 

Figure B1 and B2. Inspection of these figures shows that the predictions obtained with XFOIL 

are acceptable. It can be noticed that for the no-tripped cases, the predictions do not follow the 

trend of the empirical curve for low Reynolds numbers. The predictions are considered 



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

134 

 
 

acceptable anyways because they are in the same order of magnitude. Moreover, in practice, 

such a lows Reynolds numbers are not present in large wind turbines. 

10
4

10
5

10
6

10
7

10
-3

10
-2

10
-1

Rc

δ* /c

Figure 6 BPM

 

 
BPM predicted - no tripp
BPM predicted - tripped
VT - no tripp
VT - tripped
BPM experimental - no tripp
BPM experimental - tripped

 

Figure B1: Displacement thickness measured at the trailing edge of NACA 0012 airfoils normalized 
with respect to the chord length versus Reynolds number. The curves were obtained by Brooks et al. by 

curve-fitting experimental measurements. The results indicated with markers were obtained with XFOIL 
for the test conditions applied in the experiments of Brooks et al. (1990) and Devenport et al. (2008, 1 

and 2). 
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Figure B2: Momentum thickness measured at the trailing edge of NACA 0012 airfoils normalized with 
respect to the chord length versus Reynolds number. The curves were obtained by Brooks et al. by 

curve-fitting experimental measurements. The results indicated with markers were obtained with XFOIL 
for the test conditions applied in the experiments of Brooks et al. (1990) and Devenport et al. (2008, 1 

and 2). 

In the case of the DU-96 and S831 airfoils, predicted and experimental results are 

presented in Tables B1 and B2. It can be noticed that the predictions are in good agreement with 

the measured displacement thickness. 
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Table B.1: Boundary layer parameters for a DU-96 airfoil. Comparison between experimental 
measurements (Devenport et al., 2008, 2) and predictions made with XFOIL. Chord = 0.914 m 

Effective 
angle of attack 
(deg)  

CR  Trip  Side  
δ * (m) 

Experimental  

δ * (m)  

Calculated with X-Foil 

 3.1    1600000   No   Pressure   0.002 0.002254 

 3.1    1600000   No   Suction   0.0084 0.009256 

 3.1    1580000   No   Pressure   0.0023 0.002262 

 3.1    1570000   No   Suction   0.0062 0.009313 

 7    1560000   No   Pressure   0.0015 0.001558 

 7    1560000   No   Suction   0.0118 0.013668 

 7    3140000   No   Pressure   0.0019 0.001305 

 7    3140000   No   Suction   0.0088 0.014315 

 7    3130000   Yes   Pressure   0.0033 0.00252 

 7    3130000   Yes   Suction   0.0197 0.022079 
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Table B2: Boundary layer parameters for a S831airfoil. Comparison between experimental 
measurements (Devenport et al., 2008, 2) and predictions made with XFOIL. Chord = 0.914 m 

Effective 
angle of attack 
(deg)  

CR  Trip  Side  
δ * (m) 

Experimental  

δ * (m)  

Calculated with X-Foil 

 -2    1550000   No   Pressure   0.0021 0.00573 

 -2    1550000   No   Suction   0.0079 0.010322 

 -2    1590000   No   Pressure   0.0014 0.005706 

 -2    1630000   No   Suction   0.0105 0.010239 

 -2    3130000   No   Pressure   0.0032 0.005064 

 -2    3130000   No   Suction   0.0134 0.009136 

 5    1570000   No   Pressure   0.001 0.001282 

 5    3180000   No   Pressure   0.0015 0.001006 

 5    3180000   No   Suction   0.0309 0.04974 

 5    1620000   Yes   Pressure   0.0011 0.001833 

 5    1620000   Yes   Suction   Separated flow 0.057439 

 5    3160000   Yes   Pressure   0.0023 0.001637 

 5    3160000   Yes   Suction    Separated flow 0.05187 
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Appendix C: Karman-Trefftz Conformal Mapp Airfoils 

In this section, results for the Karman-Trefftz conformal mapping approximation of the 

airfoil shapes are presented. Figures C1 through C8 shows the airfoil geometry, the 

approximated geometry using the conformal mapping, and the circle in the ζ  domain. 



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

139 

 
 

 

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

 
Figure C1: NACA 0012 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal 

mapping. Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the 
Karman-Trefftz conformal mapping. *: Origin of the circle. 
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Figure C2: S822 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal mapping. 
Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the Karman-Trefftz 

conformal mapping. *: Origin of the circle. 
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Figure C3: S831 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal mapping. 
Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the Karman-Trefftz 

conformal mapping. *: Origin of the circle. 
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Figure C4: S834 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal mapping. 
Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the Karman-Trefftz 

conformal mapping. *: Origin of the circle. 
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Figure C5: DU96 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal 
mapping. Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the 

Karman-Trefftz conformal mapping. *: Origin of the circle. 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

x

y

 

Figure C6: FX63-137 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal 
mapping. Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the 

Karman-Trefftz conformal mapping. *: Origin of the circle. 
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Figure C7: SG6043 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal 
mapping. Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the 

Karman-Trefftz conformal mapping. *: Origin of the circle. 
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Figure C8: SD2030 airfoil. Green: Airfoil’s shape achieved through a Karman-Trefftz conformal 
mapping. Blue: Original shape of the airfoil. Red: Circle used for obtaining the airfoil through the 

Karman-Trefftz conformal mapping. *: Origin of the circle. 
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Appendix D: NAFNoise 

NAFNoise is a program developed by researchers at NREL to predict airfoil self noise 

(Moriarty and Migliore, 2003; Moriarty et al., 2004 and 2005, Moriarty, 2005). This software 

predicts the noise of any airfoil accounting for five noise mechanisms: TBL-TE noise, S/SF 

noise, LBL-VS noise, TEB-VS noise, and turbulent inflow noise.  

Several different prediction models are available in the program. The first four 

aforementioned noise sources can be predicted using the semi empirical method developed by 

Brooks et al. (1989). Moreover, it is possible to choose the use of the method of Brooks et al. 

(1989), but with the boundary layer parameters being calculated by XFOIL (Appendix C shows a 

description of this program) instead of semi-empirical formulas (Moriarty et al., 2004). A newly 

developed method that relates the noise emitted with the pressure field over the whole airfoil’s 

surface can also be used (Moriarty et al., 2005). 

The prediction of turbulent inflow noise is made using a semi-empirical method based on 

the work of Amiet (1975). This method is improved using two modifications: the introduction of 

a turbulent inflow noise correction developed by Guidati (Moriarty et al., 2004 and 2005) and a 

simplified version of the same Guidati’s method that is less computationally intensive. The 

method of Guidati provides a correction to Amiet’s method for turbulent inflow noise to account 

for airfoil shape (Moriarty, 2005, Moriarty et al., 2004 and 2005).  

The program utilizes an input file in ASCII format where it can be specified the 

combinations of models to use, the geometric characteristics of the airfoil (including the shape of 

the airfoil provided as a set of points), the characteristics of the flow, etc. The output of the 

program is an ASCII file that provides the predicted noise levels as sound pressure level in 1/3rd 

octave bands. The noise levels are printed separately for each noise mechanism, and a total noise 

level is printed too. 

In the present thesis, the noise predictions made with NAFNoise are performed using the 

semi-empirical method of Brooks et al (1989), and no inflow noise predictions are made.  
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Appendix E: Accuracy of Predictions 

In this appendix, results are presented for the average and maximum level difference 

metrics for the individual control vectors using Models I-e and II-h. In these figures, the control 

vector case is defined as a circle in a plot of the angle of attack α  versus the chord Reynolds 

number cR . A color scheme is used to plot the level difference. For each airfoil considered in the 

aforementioned model, four figures are presented corresponding to average level difference 

metrics for tripped cases, maximum level difference metrics for no-tripped cases, average level 

difference metrics for no-tripped cases, and maximum level difference metrics for no-tripped 

cases. 
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E.1 Model I-e 
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Figure E1: Average Level difference metric for each control vector using Model I-e for no-tripped case. 

Training using the ATANA approach. 
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Figure E2: Maximum Level difference metric for each control vector using Model I-e for no-tripped 

case. Training using the ATANA approach. 
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Figure E3: Average Level difference metric for each control vector using Model I-e for tripped case. 

Training using the ATANA approach. 
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Figure E4: Maximum Level difference metric for each control vector using Model I-e for tripped case. 

Training using the ATANA approach. 
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E.2 Model II-h 
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Figure E5: Average level difference metric for each control vector using Model II-h for no-tripped case 

for the NACA 0012 airfoil. Training using the ATANA approach. 
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Figure E6: Maximum level difference metric for each control vector using Model II-h for no-tripped 

case for the NACA 0012 airfoil. Training using the ATANA approach. 
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Figure E7: Average level difference metric for each control vector using Model II-h for tripped case for 

the NACA 0012 airfoil. Training using the ATANA approach. 
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Figure E8: Maximum level difference metric for each control vector using Model II-h for tripped case 

for the NACA 0012 airfoil. Training using the ATANA approach. 
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Figure E9: Average level difference metric for each control vector using Model II-h for no-tripped case 

for the S822 airfoil. Training using the ATANA approach. 
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Figure E10: Maximum level difference metric for each control vector using Model II-h for no-tripped 

case for the S822 airfoil. Training using the ATANA approach. 
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Figure E11: Average level difference metric for each control vector using Model II-h for tripped case 

for the S822 airfoil. Training using the ATANA approach. 
 

0 2 4 6 8 10

x 105

0

1

2

3

4

5

6

7

8

R
C

α
  (

de
g)

S822 - Maximum  Difference Level - Tripped

 

 

2

4

6

8

10

12

14

16

18

20

 
Figure E12: Maximum level difference metric for each control vector using Model II-h for tripped case 

for the S822 airfoil. Training using the ATANA approach. 
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Figure E13: Average level difference metric for each control vector using Model II-h for no-tripped 

case for the S831 airfoil. Training using the ATANA approach. 
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Figure E14: Maximum level difference metric for each control vector using Model II-h for no-tripped 

case for the S831 airfoil. Training using the ATANA approach. 
 



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

152 

 
 

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

x 106

-2

-1

0

1

2

3

4

5

R
C

α
  (

de
g)

S831 - Average  Difference Level - Tripped

 

 

1

2

3

4

5

6

7

8

9

10

 
Figure E15: Average level difference metric for each control vector using Model II-h for tripped case 

for the S831 airfoil. Training using the ATANA approach. 
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Figure E16: Maximum level difference metric for each control vector using Model II-h for tripped case 

for the S831 airfoil. Training using the ATANA approach. 
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Figure E17: Average level difference metric for each control vector using Model II-h for no-tripped 

case for the S834 airfoil. Training using the ATANA approach. 
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Figure E18: Maximum level difference metric for each control vector using Model II-h for no-tripped 

case for the S834 airfoil. Training using the ATANA approach. 
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Figure E19: Average level difference metric for each control vector using Model II-h for tripped case 

for the S834 airfoil. Training using the ATANA approach. 
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Figure E20: Maximum level difference metric for each control vector using Model II-h for tripped case 

for the S834 airfoil. Training using the ATANA approach. 
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Figure E21: Average level difference metric for each control vector using Model II-h for no-tripped 

case for the DU96 airfoil. Training using the ATANA approach. 
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Figure E22: Maximum level difference metric for each control vector using Model II-h for no-tripped 

case for the DU96 airfoil. Training using the ATANA approach. 
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Figure E23: Average level difference metric for each control vector using Model II-h for tripped case 

for the DU96 airfoil. Training using the ATANA approach. 
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Figure E24: Maximum level difference metric for each control vector using Model II-h for tripped case 

for the DU96 airfoil. Training using the ATANA approach. 
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Figure E25: Average level difference metric for each control vector using Model II-h for no-tripped 

case for the Fx63-137 airfoil. Training using the ATANA approach. 
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Figure E26: Maximum level difference metric for each control vector using Model II-h for no-tripped 

case for the Fx63-137 airfoil. Training using the ATANA approach. 
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Figure E27: Average level difference metric for each control vector using Model II-h for tripped case 

for the Fx63-137 airfoil. Training using the ATANA approach. 
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Figure E28: Maximum level difference metric for each control vector using Model II-h for tripped case 

for the Fx63-137 airfoil. Training using the ATANA approach. 
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Figure E29: Average level difference metric for each control vector using Model II-h for no-tripped 

case for the sg6043 airfoil. Training using the ATANA approach. 
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Figure E30: Maximum level difference metric for each control vector using Model II-h for no-tripped 

case for the sg6043 airfoil. Training using the ATANA approach. 
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Figure E31: Average level difference metric for each control vector using Model II-h for tripped case 

for the sg6043 airfoil. Training using the ATANA approach. 
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Figure E32: Maximum level difference metric for each control vector using Model II-h for tripped case 

for the sg6043 airfoil. Training using the ATANA approach. 
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Figure E33: Average level difference metric for each control vector using Model II-h for no-tripped 

case for the SD2030 airfoil. Training using the ATANA approach. 
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Figure E34: Maximum level difference metric for each control vector using Model II-h for no-tripped 

case for the SD2030 airfoil. Training using the ATANA approach. 
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Figure E35: Average level difference metric for each control vector using Model II-h for tripped case 

for the SD2030 airfoil. Training using the ATANA approach. 
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Figure E36: Maximum level difference metric for each control vector using Model II-h for tripped case 

for the SD2030 airfoil. Training using the ATANA approach. 
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Appendix F: Comparison of Experimental Data and Predictions 

This appendix presents a comparison between experimental data and predictions. The 

figures presented correspond to representative subsets of the results obtained with Models I-e 

and II-h. 
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F.1 Model I-e using the ATANA approach 
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Figure F1: Example of spectral comparison of experimental results and prediction using Model I-e and 
the ATANA approach. 
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Figure F2: Example of spectral comparison of experimental results and prediction using Model I-e and 
the ATANA approach. 

 



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

165 

 
 

630 800 1K 1.25K 1.6K 2K 2.5K 3.15K 4K
0

10

20

30

40

50

60

70

80
Run61  Test: NREL   U=28   Effective AoA=8  Chord= 0.914  No-tripped

L p (d
B

)

 Frequency (Hz)
 

Figure F3: Example of spectral comparison of experimental results and prediction using Model I-e and 
the ATANA approach. 
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Figure F4: Example of spectral comparison of experimental results and prediction using Model I-e and 
the ATANA approach. 
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Figure F5: Example of spectral comparison of experimental results and prediction using Model I-e and 
the ATANA approach. 
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Figure F6: Example of spectral comparison of experimental results and prediction using Model I-e and 
the ATANA approach. 
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Figure F7: Example of spectral comparison of experimental results and prediction using Model I-e and 
the ATANA approach. 
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Figure F8: Example of spectral comparison of experimental results and prediction using Model I-e and 
the ATANA approach. 
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Figure F9: Example of spectral comparison of experimental results and prediction using Model I-e and 
the ATANA approach. 
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Figure F10: Example of spectral comparison of experimental results and prediction using Model I-e 
and the ATANA approach. 
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F.2 Model I-e using the CTNN approach 
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Figure F11: Example of spectral comparison of experimental results and prediction using Model I-e 
and the CTNN approach. 
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Figure F12: Example of spectral comparison of experimental results and prediction using Model I-e 
and the CTNN approach. 
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Figure F13: Example of spectral comparison of experimental results and prediction using Model I-e 
and the CTNN approach. 
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Figure F14: Example of spectral comparison of experimental results and prediction using Model I-e 
and the CTNN approach. 
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Figure F15: Example of spectral comparison of experimental results and prediction using Model I-e 
and the CTNN approach. 
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Figure F16: Example of spectral comparison of experimental results and prediction using Model I-e 
and the CTNN approach. 
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Figure F17: Example of spectral comparison of experimental results and prediction using Model I-e 
and the CTNN approach. 
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Figure F18: Example of spectral comparison of experimental results and prediction using Model I-e 
and the CTNN approach. 

 



Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines                                                        Leonardo Errasquin 

173 

 
 

630 800 1K 1.25K 1.6K 2K 2.5K 3.15K 4K
0

10

20

30

40

50

60

70

80
Run49  Test: NREL   U=16   Effective AoA=2  Chord= 0.914  Tripped

L p (d
B

)

 Frequency (Hz)
 

Figure F19: Example of spectral comparison of experimental results and prediction using Model I-e 
and the CTNN approach. 
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Figure F20: Example of spectral comparison of experimental results and prediction using Model I-e 
and the CTNN approach. 
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F.3 Model II-h using the ATANA approach 
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Figure F21: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F22: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F23: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F24: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F25: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 

 

630 800 1K 1.25K 1.6K 2K 2.5K 3.15K 4K
0

10

20

30

40

50

60

70

80

90

100

110
Fx63-137  Test: NRL  Run: 1794  U=32  Effective AoA=8o  Chord= 0.229  No-tripped

L p (d
B

)

 Frequency (Hz)
 

Figure F26: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F27: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F28: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F29: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F30: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F31: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F32: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F33: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 

 

630 800 1K 1.25K 1.6K 2K 2.5K 3.15K 4K
0

10

20

30

40

50

60

70

80

90

100

110
Fx63-137  Test: NRL  Run: 1133  U=48  Effective AoA=0o  Chord= 0.229  Tripped

L p (d
B

)

 Frequency (Hz)
 

Figure F34: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F35: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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Figure F36: Example of spectral comparison of experimental results and prediction using Model II-h 
and the ATANA approach. 
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F.4 Model II-h using the CTNN approach 
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Figure F37: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F38: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F39: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F40: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F41: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F42: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F43: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F44: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F45: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F46: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F47: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F48: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F49: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F50: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F51: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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Figure F52: Example of spectral comparison of experimental results and prediction using Model II-h 
and the CTNN approach. 
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