Error Visualization in Comparison of B-Spline Surfaces

by

Aashish Jain

Dr. Arvid Myklebust, Chairman

Mechanical Engineering

(ABSTRACT)

Geometric trimming of surfaces results in a new mathematical description of the matching surface. This matching surface is required to closely resemble the remaining portion of the original surface. Typically, the approximation error in such cases is measured with a view to minimize it. The data associated with the error between two matching surfaces is large and needs to be filtered into meaningful information. This research looks at suitable norms for achieving this data reduction or abstraction with a view to provide quantitative feedback about the approximation error. Also, the differences between geometric shapes are easily discerned by the human eye but are difficult to characterize or describe. Error visualization tools have been developed to provide effective visual inputs that the designer can interpret into meaningful information.
Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Arvid Myklebust for guiding, and shaping my efforts. His range of diverse interests will always be source of wonder and inspiration. I would like to thank Dr. Jan Helge Bøhn and Dr. Michael P. Deisenroth for taking the time to be on my graduate committee. Special thanks to Dr. Bøhn for his help in rescuing me (and Karthik) from the mire of pointer problems in C.

This thesis has become a reality only due to the excellent and timely help provided by Darrell Early with software licenses and other such recurring hurdles. Thanks are also due to Ben Poe and Jamie Archual for frequent and prompt help with the computing facilities in MECA.

Thanks to Karthik Bindiganavle for his invaluable help and support and for his endless supply of hope and stoic steadfastness.

Thanks to my parents and family for their love and support. I owe everything to their dedication, hard work, and unstinted faith in me.

Note: Matlab™, IDEAS™, and CATIA™, are registered trademarks of MathWorks Inc, SDRC Inc., Dassault Systeme Inc. respectively.
Table of Contents

Abstract.. i
Acknowledgements.. ii
Table of Contents... iii
List of tables... v
List of figures.. vi
1.0 Introduction... 1
2.0 Research Objectives and Thesis Organization... 5
 2.1 Problem Definition... 5
 2.2 Research Objectives.. 7
 2.3 Proposed Method... 9
 2.4 Thesis Organization.. 22
3.0 Literature Review... 23
4.0 Non-uniform B-splines... 26
 4.1 Introduction to Parametric Curves... 26
 4.2 B-spline curves.. 27
 4.3 B-spline Surfaces... 30
 4.4 Mathematical Formulation for Error.. 32
5.0 Curve and Surface Theory.. 44
 5.1 Parametric Representation of Curves... 44
 5.2 Curvature and Torsion... 46
5.3 Parametric Representation of Surfaces ... 49
5.4 Surface Normals ... 50

6.0 Frequency Determination ... 54
6.1 Fourier Analysis .. 54
6.2 Frequency Spectrum ... 56

7.0 Results ... 61

8.0 Conclusions and Recommendations ... 122
8.1 Overview .. 122
8.2 Closure ... 123
8.3 Recommendations .. 124

9.0 References ... 126

Appendix A. Source Code .. 130
Appendix B. Data For One Test Case .. 154
List of Tables

2.1 Correlation between ordinate intercept value and maximum error value15
7.1 Comparison of error magnitude to bounding box dimensions.....................64
7.2 Correlation between ordinate intercept and maximum error for one defect......65
7.3 Correlation between ordinate intercept and maximum error for two defects.....65
7.4 Correlation between ordinate intercept and maximum error for three defects.....66
7.5 Comparison of correlation from angle error and from position error.............99
7.6 Comparison of correlation from angle error and from position error.............99
List of Figures

1.1 Wireframe of an aircraft showing the trimming curve……………………………4
2.1 Description of a surface in cartesian space and in the parametric plane……….10
2.2 Error surface description in parametric plane..12
2.3 Parametric plot of error surface..16
2.4 Error data and linear least squares fit in u direction...................................17
2.5 Error data and linear least squares fit in v direction...................................18
2.6 Plot showing fit parameters and data values..19
2.7 Plot of ordinate intercept value in u direction..20
2.8 Plot of ordinate intercept value in v direction..21
4.1 Parametric curve shown with boundary conditions.................................27
4.2 B-spline curve along with knot sequence and control polygon....................28
4.3 B-spline surface along with the control net and control points..................31
4.4 Error plot in parametric plane..39
4.5 Linear fit and error values along u direction..40
4.6 Linear fit and error values along v direction..41
4.7 Ordinate intercept plot in u parametric direction.....................................42
4.8 Ordinate intercept plot in u parametric direction.....................................43
5.1 Parametric curve with tangent at a point and normal plane through it...........45
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Relationship between normal plane and osculating plane</td>
<td>45</td>
</tr>
<tr>
<td>5.3</td>
<td>Curved surface in cartesian space with tangents in both directions</td>
<td>46</td>
</tr>
<tr>
<td>5.4</td>
<td>Relationship between principal, tangent, and binormal vector</td>
<td>48</td>
</tr>
<tr>
<td>5.5</td>
<td>Tangent vectors in both parametric directions</td>
<td>51</td>
</tr>
<tr>
<td>5.6</td>
<td>Ordinate intercept plot in u direction</td>
<td>52</td>
</tr>
<tr>
<td>5.7</td>
<td>Ordinate intercept plot in u direction</td>
<td>53</td>
</tr>
<tr>
<td>6.1</td>
<td>Frequency spectrum for different functions</td>
<td>57</td>
</tr>
<tr>
<td>6.2</td>
<td>Exaggerated example of error surface</td>
<td>58</td>
</tr>
<tr>
<td>6.3</td>
<td>Sum of first six fourier coefficients in v parametric direction</td>
<td>59</td>
</tr>
<tr>
<td>6.4</td>
<td>Sum of first six fourier coefficients in u parametric direction</td>
<td>60</td>
</tr>
<tr>
<td>7.1</td>
<td>3-D model of a Porsche 930 rendered in color</td>
<td>67</td>
</tr>
<tr>
<td>7.2</td>
<td>Wire frame model of a Porsche 930</td>
<td>68</td>
</tr>
<tr>
<td>7.3</td>
<td>Part of the fender of Porsche 930 used in this research</td>
<td>69</td>
</tr>
<tr>
<td>7.4</td>
<td>Case (i) - Error surface in parametric plane</td>
<td>70</td>
</tr>
<tr>
<td>7.5</td>
<td>Case (i) - Area of the surface with significant position error</td>
<td>71</td>
</tr>
<tr>
<td>7.6</td>
<td>Case (i) - Error data and corresponding linear fit along u parametric</td>
<td>72</td>
</tr>
<tr>
<td>7.7</td>
<td>Case (i) - Error data and corresponding linear fit along v parametric</td>
<td>73</td>
</tr>
<tr>
<td>7.8</td>
<td>Case (i) - Ordinate plot in u parametric direction</td>
<td>74</td>
</tr>
<tr>
<td>7.9</td>
<td>Case (i) - Ordinate plot in v parametric direction</td>
<td>75</td>
</tr>
<tr>
<td>7.10</td>
<td>Case (ii) - Error surface in parametric plane</td>
<td>76</td>
</tr>
<tr>
<td>7.11</td>
<td>Case (ii) - Area of the surface with significant position error</td>
<td>77</td>
</tr>
<tr>
<td>7.12</td>
<td>Case (ii) - Ordinate plot in u parametric direction</td>
<td>78</td>
</tr>
</tbody>
</table>
Case (ii) - Ordinate plot in v parametric direction

Case (iii) - Error surface in parametric plane

Case (iii) - Area of the surface with significant position error

Case (iii) - Ordinate plot in u parametric direction

Case (iii) - Ordinate plot in v parametric direction

Case (i) - Sum of first six fourier coefficients in u direction

Case (i) - Sum of first six fourier coefficients in v direction

Case (ii) - Sum of first six fourier coefficients in u direction

Case (ii) - Sum of first six fourier coefficients in v direction

Case (iii) - Sum of first six fourier coefficients in u direction

Case (iii) - Sum of first six fourier coefficients in v direction

Case (i) - First fourier coefficient in u direction

Case (i) - First fourier coefficient in v direction

Case (ii) - First fourier coefficients in u direction

Case (ii) - First fourier coefficients in v direction

Case (iii) - First fourier coefficients in u direction

Case (iii) - First fourier coefficients in v direction

Case (iv) - Error surface for comparison to plot of angle between normals

Case (iv) - Plot of angle between surface normals

Case (iv) - Ordinate plot for the angle between surface normals in u direction

Case (iv) - Ordinate plot for the angle between surface normals in v direction

Case (v) - Error surface for comparison to plot of angle between normals
7.35 Case (v) - Plot of angle between surface normals.................................106
7.36 Case (v) - Ordinate plot for angle between surface normals in u direction.......107
7.37 Case (v) - Ordinate plot for angle between surface normals in v direction......108
7.38 Case (vi) - Error surface in radius of curvature one discrepancy..............110
7.39 Case (vi) - Surface showing difference in radii of curvature in the u, v plane...111
7.40 Case (vi) - Ordinate plot in u direction for radii of curvature plot.............112
7.41 Case (vi) - Ordinate plot in v direction for radii of curvature plot.............113
7.42 Case (vi) - Ordinate plot in u direction for error surface........................114
7.43 Case (vi) - Ordinate plot in v direction for error surface........................115
7.44 Case (vii) - Error surface in u, v for radius of curvature: two discrepancies...116
7.45 Case (vii) - Surface showing difference in radii of curvature in the u, v plane...117
7.46 Case (vii) - Ordinate plot in u direction for radii of curvature plot............118
7.47 Case (vii) - Ordinate plot in v direction for radii of curvature plot............119
7.48 Case (vii) - Ordinate plot in u direction for error surface.......................120
7.49 Case (vii) - Ordinate plot in v direction for error surface.......................121