Symbol Timing and Coarse Classification of Phase Modulated
Signals on a Standalone SDR Platform

Gladstone Marballie
Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science

In
Electrical Engineering

Dr. Charles W. Bostian
Dr. Tim Pratt
Dr. Cameron Patterson

October 6, 2010
Blacksburg, Virginia

Keywords: Cognitive Radio, SDR, Symbol Timing, Signal Classification, FPGA, DSP

Copyright 2010, Gladstone Marballie

Symbol Timing and Coarse Classification of Phase Modulated
Signals on a Standalone SDR Platform

Gladstone Marballie

ABSTRACT

The Universal Classifier Synchronizer (UCS) is a Cognitive Radio system/sensor that can
detect, classify, and extract the relevant parameters from a received signal to establish
physical layer communications using the received signal’s profile. The current
implementation is able to identify signals including AM, FM, MPSK, QAM, MFSK, and
OFDM. The system is constructed to run on a Universal Software Radio Peripheral
(USRP) with the GNU Radio software toolkit and also runs on an Anritsu™ signal
analyzer. In both prototypes, the UCS system runs on a host computer’s General Purpose
Processor (GPP) and is constructed in Matlab™. The aim is to then create a portable and
standalone version of the UCS system as an intermediate step towards building a future
commercial implementation. This application and particular implementation aims to run
on a Lyrtech SFF SDR platform and uses its FPGA and DSP modules for
implementation. This platform is one of the more advanced SDR platforms available, and
the aim is to develop parts of the UCS system to run on this platform. The aim is to
eventually develop the complete UCS cognitive radio system on the Lyrtech SFF SDR
platform that can act as a standalone portable cognitive radio system. The modules
created and implanted/implemented on the SDR hardware are the Bandwidth Estimation,
and Symbol Timing & Coarse Classification modules. This is the system decision path
towards classification, synchronization, and demodulation of digital phase modulated
signals (QAM and MPSK signal types) and also analog signals. The Digital Receiver
Module (DRM) is implemented on the FPGA and takes care of all the digital down
conversions, mixing, decimation, and low pass filtering. The FPGA is connected to the
DSP module via a bus subsystem where the DSP receives real-time base-band complex
1Q samples for further signal processing. The main UCS algorithm runs on the platform’s
DSP and is compiled from executable embedded C-code. Therefore, this system can then
be implemented on virtually any setup that has an RF front end, digital receiver module,
and processing module that will execute floating and fixed point C-code with minor
changes.

Acknowledgments

I would like to thank Dr. Charles Bostian for his motivation and encouragement to take
on the journey of graduate school. I would also like thank him for providing the
opportunity to become a part of CWT where I have learned Software Defined and
Cognitive Radio. I want to thank him for his continued support over the years.

I would also like to thank Dr. Tim Pratt and Dr. Cameron Patterson for being a part of my
committee.

I would like to thank all the committee members for providing great classroom
instruction over the years. I could not have asked for better instructors and more
interesting lectures. I give credit to Dr. Bostian for his enthralling classroom lectures on
AC Circuits and Radio Engineering. I give credit to Dr. Patterson for his thorough
instruction on Microcontrollers and FPGAs. I give credit to Dr. Pratt for his many
remarkable lectures on Communication Systems Design, Satellite Communications, and
Radar Systems.

I would like to thank all my fellow graduate students during my time at CWT for making
graduate school a memorable experience. I enjoyed the opportunity to interact with
everyone and learn about the different cultural backgrounds. I would also like to thank
Ms. Judy Hood for taking very good care of all the CWT students over the years. Her
support has made all things at CWT run smoothly over the years.

Finally, I would like to thank my family and friends for their love and support over the
years.

i1

Grant Information

This project is supported by Awards 2005-1J-CX-K017 and 2009-SQ-B9-K011 awarded
by the National Institute of Justice, Office of Justice Programs, US Department of Justice.
The opinions, findings, and conclusions or recommendations expressed are those of the
author and do not necessarily reflect the views of the Department of Justice.

This material is based upon work supported by the National Science Foundation under
Grant No. CNS-0519959. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation (NSF).

v

Table of Contents

ACKNOWICAGIMENLS ..cceeeurrirsrressnrcssnncssnncssanncssssssssssesssssessssesssssesssssssssssosssssssssssossssssssnssss iii
Grant INfOrmationeeeeieeiniinninnniennenneinnenneenneneeseniisessesessssssessssseesses iv
LSt Of FIUIES.ccicuuiiinnriiisnrinisniicsnicnsnncsssncssanicsssssssssssssssssssssssssssnssssssosssssssssssssssssssssssses vii
LiSt Of ACIONYINS cucueieruricrvuricssnnicssnncsssnnessssncsssnsssssssssssssssssssssssesssssesssssssssssssssssossnsssssssssses ix
Chapter 1: INtroduCtioncooceieivricssnicssnnissssncssssncsssncssssscsssssssssssssssssssssssssssssssssssssnsess 1
1.1 Motivation and ODJECIVESc.eerieriieriiiiiieiieeie ettt ettt e sreeiaeseaeebeeseneenseens 1
1.2 THESTIS OULIINE.eeueiiieiieieeieesieeie ettt ettt s 2
Chapter 2: System Description and Current Literature........cccecveereccccereccscsnnrecssssnsseces 4
2.1 SYSEEM OVEIVIEW ...evviiiiiieeiiieeiiieeeiteeeieeesteeesaeeessaeeessaeeesseesssseesssseessseeesssessssseesnssens 4
2.2 Review of Current LIterature.ooueeueeiieiiiiiieiieeie e 6
Chapter 3: Digital Signal Bandwidth EStimationccoceiicnivserccsssnnncssssnnrscsssnsseces 8
3.1 INEFOAUCTION .ttt ettt et e et e sateebeesateebeens 8
3.2 Histogram of PSD TeChniqUe.........ccceeeviiieiiieeiie et 8

3.3 Module Implementationc..ececuieeiiiieeiieeeiie et esreeeseeeeere e et e e sreeesereeeenneeens 9
3.31 Simple Histogram of the PSDccoooiiiiiiiiieeeeeeeeeeeee e 9
3.32 Noise Isolation of the Histogram Distributioncccceeeveevciieniieinciie e, 9

3.4 CONCIUSION ...ttt ettt ettt et ettt esat e e bt e s st e et e e sateenbeesaeas 11
Chapter 4: Symbol Timing......cccccevierivnricsissnnrecssssnnecsssssnnscsses 12
4.1 Introduction and Overview of Symbol Timing.........ccccceevieriiinieniieieeieeee e 12
4.2 Vector Re-SamPIiNg.........ccceeouiiiiiiiiieiieeiieie ettt ettt 14
421 OVEIVIEW ..ottt ettt ettt ettt et sbe ettt s bt et ea e sbe et et setenbeentesaeenees 14
4.22 Combined Interpolation and Decimation for Re-samplingccccceeeveennenn. 20
4.23 Finite Impulse Response Filter Design...........ccceevvieiiieiiieiieniieiiesiceieeeeein 20
4.24 Re-sampling Filter Design in C.......ccccuieiiiiiiieiiiiiieeiiecie et 24
4.25 ConvOIUHION 1N € ..ouiiiiiiieieiiesieeeetese ettt 29
4.26 Symbol Timing Use of Re-Sampling...........ccceceeeiieiiieniieiieiieeiiecie e 30
4.27 Re-sample Example and Plots for Symbol Timing.........ccccceceeververieneeiiennenne. 32

4.3 Symbol Rate Estimation and Coarse Classification...........ccccecveeveiieercieeeniveeenveeenne 35

4.4 Reshaping and Variance Among Samplesc..eevveeeriieeiiieeiieeeieecee e 36
4.5 Symbol Timing ConcClUSIONceevuiiieiiiieiiieeeiie et 40
Chapter 5: FPGA Digital Receiver and SDR Platform..........cooceeiccscvnnrccsisnneccssnnnees 41
5.1 SDR Platform OVEIVIEWccoueeiiiiiiiiiiieiieiie ettt sttt e 41
5.2 Digital Receiver Overview and FPGA Implementationccccceeeverieneeniennenne. 42
5.3 CONCIUSION.....cuiiiiiiieiieeit ettt sttt sttt st sb et e 50
Chapter 6: Conclusion and Future WorkK..........iiiiciviiissnicssnnicssnncsssnncssnnesssnnesnns 51
6.1 Summary and CONCIUSIONcc.eiiiiiiiieiiieiiecie ettt ae e ebee e 51
6.2 FULUIE WOTK ..ottt 51
REfEIEICES c.ccueeeiureeniiiriiinntinstininentenntecsteisaessseesssecsssssssesssessssessssssssssssassssesssssssassssassnss 54
Appendix A: Source Code Listing for Bandwidth Estimationccceveeveeennennnneee 56
Appendix B: Source Code Listing for Symbol Timing Estimationccceceeevuernnnee 65

vi

List of Figures

Figure 1.1: Overview of Thesis and Implementationcccceecveevciiiicieeeciie e 3
Figure 2.1: Complete System Diagram..........cccceeevvieeriieeiiieeiee et 4
Figure 3.1: PSD of @ QPSK Signal.......cccoooiiiiiiiiiiiecieeieceeee et 8
Figure 3.2: Histogram of PSD for DQPSKccccooiiiiiiiiiieeiieeeee e 9
Figure 3.3: Histogram Distribution and Noise Isolation Plotcc.coceviiiiniiniinnnnene. 10
Figure 4.1: Illustration of Symbol Timing and Samples per Symbol.............cccceerivenenne. 13
Figure 4.2: Plot of example Samples Vector............cucuevievcieiiieiiiiiieeieeiieeeeeee e, 15
Figure 4.3: Alternate Plot of Samples Vector as a Stem...........ccceecvvevierieeniienieeiieeene, 16
Figure 4.4: Plot of Up-sampled Samples Vector as a Linear Plot............c.ccceevverennnnnnn. 16
Figure 4.5: Up-sampled Samples Vector as a Stem Plot...........ccccoovviiiiiiiiiniiniiiie, 17
Figure 4.6: Plot of example Samples Vector Up-sampled and Filtered (Interpolated).....17
Figure 4.7: Alternate view of Interpolated Samples Vector as a Stem Plot 18
Figure 4.8: Interpolated Samples Vector Decimated by a Factor of 9..........cccevveiennenne. 19
Figure 4.9: Alternate View of Decimated Vector as a Stem.........c.ccceeveeecieeniieeciieeennenns 19
Figure 4.10: FIR Low-Pass Filter for Re-samplingccccceccvveviiieniiiieciiecie e 20
Figure 4.11: Plot of ideal Sinc Pulse.........cc.oooviiiiiiiiiiiicceeeeeeeee e 21
Figure 4.12: Example Truncated Right Shifted Sinc Pulsecccoeevieeiiiiiiiiiiees 22
Figure 4.13: Plot of a Blackman Windowcccceeiiiiiiiiiniiiicieeceeeeeee e 22
Figure 4.14: Windowed-Sinc FIR filter via Blackman Windowcccceeviiiniiiinnenns 24
Figure 4.15: Snapshot of C — code Initializations of FIR vectors..........c.ccceevvveirciiiinnennns 25
Figure 4.16: Code snapshot of Truncated and shifted Filter Kernel and Blackman
WiINAOW CalCulationcoiiuiiiiiiiii ettt et 26
Figure 4.17: Code Composer Studio C-Simulated Plot of Filter Kernel and

BlackMan Window from data MEMmMOTYcc.ccecuiiieiiiieiiieeciee et evee e e 26
Figure 4.18: Windowed Filter Kernel Plot with 501 Taps in Code Composer Studio27

Figure 4.19: C-Code snapshot showing the Normalization of Filter Kernel for Unity Gain

vil

Figure 4.20: Normalized Filter Kernel with Unity Gain..........ccccoeceeverieniineniienceieneenne, 28

Figure 4.21: Convolution of Filter with Ups-sampled Datac.cccveveiieriiiniiiniennne 29
Figure 4.22: Code Snapshot of C-Code Implementation of Convolution Sum................. 30
Figure 4.23: Resampling Code Snapshot...........ccccueeviieiiiiiiiniieiiecie e 32

Figure 4.24: Plot of Real of IQ samples and Re-sampled Real 1Q samples in Matlab
STMULATION ...ttt sttt sttt et sbe et satesaeeae 33

Figure 4.25: Plots of Real Parts of Constellation and Re-sampled Constellation with delay

.. 34
Figure 4.26: Real of Re-sampled 1Q with Delay Compensationcocceveveeneeniennnenne. 35
Figure 4.27: Reshaped Absolute Value of Constellation............cccoocveevieniieniienieenieenee 37
Figure 4.28: Row by Row Variance from Reshaped Constellation............c.ccccevuereennnnn. 37
Figure 4.29: Reshaped Data in Original Format Row-Majorcccccecevienenienceniennenne. 37
Figure 5.1: Lyterch SFF SDR Platformcccoooiiiiiiiiiiiiiiieie e 42
Figure 5.2: Super-het Receiver Block Diagram.............cccccvveviiiiniiiencieecieecee e 43
Figure 5.3: Digital Receiver Block Diagramcccccveeeeiieeiiieiiiiecieecee e 44
Figure 5.3: Digital Receiver Block Diagramcccccveeviiieeiiieniiiecieeceeeeee e 44
Figure 5.4: Isolated Digital Receiver BIOCKScc.oovviieeiiiieiiecieeceeceee e 45
Figure 5.5: FPGA Digital Receiver Implementationccccveevevieerciieeeiiieesiiieeeiee e 46
Figure 5.6: Digital Local Oscillator Configuration...........cccceeeuveereieeecieeniieeniieesiee e 47
Figure 5.7: Encapsulated DRM with view of Digital Filter

.. 48
Figure 5.8: : FIR Filter Configuration..........c.ccceeriieiiieniieiiienieeieeeee e 48
Figure 5.9: Encapsulated Digital Reciever Module and Synthesis Configuration 49
Figure 5.10: FPGA Device UtINZationcccceeviieiiieniieiieiieeicecee et 50

viil

List of Acronyms

ADC
AM
BW
CCC
CWT
CR
DAC
DBPSK
DDC
DDS
DRM
DSA
DSP
FFT
FPGA
FM
GPP

IF
OFDM
OSA
OTA
MDBK
ML
PLL
PSD
QAM
QPSK
16QAM
RF
SDR
SFF
SNR
SIGINT
SUPER-HET
ucs
VHDL
VHSIC

Analog to Digital Converter

Amplitude Modulation

Bandwidth

Common Control Channel

Center for Wireless Telecommunications
Cognitive Radio

Digital to Analog Converter

Differential Binary Phase Shift Keying
Digital Down Converter

Direct Digital Synthesizer

Digital Receiver Module

Dynamic Spectrum Access

Digital Signal Processor (or Processing)
Fast Fourier Transform

Field Programmable Gate Array
Frequency Modulation

General Purpose Processor

Intermediate Frequency

Orthogonal Frequency Division Multiplexing
Opportunistic Spectrum Access

Over The Air

Model Based Design Kit

Maximum Likelihood

Phase Lock Loop

Power Spectral Density

Quadrature Amplitude Modulation
Quadrature Phase Shift Keying

16 Quadrature Amplitude Modulation
Radio Frequency

Software Defined Radio

Small Form Factor

Signal to Noise Ratio

Signal Intelligence

Super Heterodyne

Universal Classification Synchronization
VHSIC Hardware Description Language
Very-High-Speed Integrated Circuit

X

Chapter 1: Introduction

1.1 Motivation and Objectives

Software Defined Radio (SDR) has become one of the more popular areas of research in
communication systems and electrical engineering. Although in its infancy, this new concept is
seeing its application to many areas such as military and commercial. The concept behind SDR is
implementing radio components in software on a processor, components which were typically
implemented in physical hardware. Cognitive Radio (CR) technology is a phenomenon that is
built on top of the evolution of SDR and is essentially an intelligent SDR. A CR is a radio that is
aware of its surroundings and can adapt based on predefined objectives. In this paper, we
introduce the development and implementation of a CR sensor designed for the use in embedded
applications. Presented here however is not a full CR system itself, but the modules described
play a major role in a much bigger CR system and can help make decisions on the operating
conditions of the communicating environment. Universal Classifier Synchronizer (UCS) is a CR
sensor that can detect, classify, and extract all of the parameters from a received signal to
establish physical layer communications using the received signal’s profile. At the heart of the
UCS system lies the symbol timer, which is used to determine the symbol rate and bit rate that is
used in the communicating signal and is the major topic of this paper. A CR system with a “UCS
engine” on board has the power to detect, receive, classify, demodulate and reconfigure itself to
communicate, without any prior knowledge of the communicating environment [Chen, 2008].

In today’s world, the wireless spectrum is shared by innumerable applications ranging from
cellular telephone networks to television transmission, and from consumer radios to military
communication systems, to name a few. Under these circumstances there is a constant “spectrum
war” between various users and policy makers regarding spectrum allocation. Use of CR and
dynamic spectrum sensing, wherein no user or application is permanently assigned a particular
frequency band, seems to be a very good solution for more efficient use of available wireless
spectrum. Dynamic Spectrum Access (DSA) technology is developing to provide intelligent
schemes that use spectrum during times when other users or primary users are not operating.
Whether centralized or distributed, spectrum sharing techniques in DSA require the use of a
Common Control Channel (CCC) to accommodate spectrum sharing. The CCC will facilitate
functionalities such as handshaking between CR nodes, communicating with a central entity or
sharing spectrum information across the network. However, due to the fact that DSA CR nodes
share spectrum opportunistically, a fixed CCC is not possible in most networks. Therefore, a
DSA CR with a UCS engine has the ability to operate free of a CCC as it senses and
interoperates with received signals without predefined information from the transmitter. It also
provides better spectrum sensing, as it is aware of other signals communicating in nearby
channels and has increased perception of the interference caused by these signals. This enables
the DSA CR it to make better decisions on channels used to communicate and can switch if
needed.

1.2 Thesis Outline

In this thesis, Bandwidth Estimation and Symbol Timing modules are created and implemented
for the use on portable embedded Cognitive and Software Defined Radio hardware. The overall
idea behind this work is to create portable parts of the Virginia Tech Universal Signal Classifier
(UCS) that is already implemented on computers running Matlab™ code for use on embedded
Cognitive SDRs. This work also aims to prove that the new concept of embedded Cognitive SDR
can be used across many different RF platforms and boards for various applications. This
application and particular implementation aims to run on a Lyrtech SFF SDR platform and uses
its FPGA and DSP modules for implementation. This platform is one of the more advanced SDR
platforms available and the aim is develop parts of the UCS system to run on this platform. The
Digital Receiver Module (DRM) is implemented on the FPGA and takes care of all the digital
down conversions, mixing, decimation, and low pass filtering. The FPGA is connected to the
DSP module via a bus subsystem where the DSP receives real-time base-band Complex 1Q
samples for further signal processing. The main Signal Detection and Classification Algorithm
runs on the platform’s DSP and is compiled from executable embedded C-code. Therefore, this
system can then be implemented on virtually any setup that has a RF front end, digital receiver
module, and processing module that will execute floating and fixed point C-code. The
deliverable of this thesis is portable C-code implementations of various parts of this UCS system
that performs its functionality when mapped to different SDR hardware, in this case specifically
a Lyrtech SFF SDR platform’s DSP. Despite being one of the more modern standalone SDR
platforms, the Lyrtech SFF SDR platform is also known across the SDR community to be
difficult to work with. Therefore, implementing parts of a CR system as is described on this
platform is also an important contribution and milestone in SDR community.
The important parts of this research and my major contributions are implementations of:

1) Bandwidth Estimation of radio signals using the histogram method of power spectral

density,
2) Symbol Timing module for Coarse Classification of potential digital phase modulated
signals, and
3) FPGA Digital Receiver Module created for the Lyrtech SFF SDR Platform.

Chapter 3 introduces the Bandwidth Estimation technique used in the system as it exists in
Matlab™ and outlines the major functionalities and concepts behind this module. This chapter
also discusses the C-code implementation in detail along with the final testing results in
simulation from captured samples. Chapter 4 introduces the Symbol Timing concept as it exists
in Matlab™ and outlines the functionalities. This chapter also provides the C-code translation
and implementation of this module and detailed work of each submodule that is used in the
implementation. The final section of this chapter verifies the module, including testing results of
captured samples for simulation. Chapter 5 first provides a brief introduction to the hardware
platform used for implementation, the Lyrtech SFF SDR platform. This chapter also describes
the creation of the DRM implemented on the FPGA. Chapter 6 provides the concluding remarks
of the report and talks about the future work that will be needed to complete the next phase of the
system. The documented source codes are provided as an appendix.

The figure 1.1 below provides an overview of this thesis and implementation.

(N
Original UCS
Prototype
0} USRP
Mc jare Signal Reception ¢
on GPP of CPU Compute
\. y,
4 N\ 7~
/—
Bandwidth
Estimation Module FPGA
% Digital Receiver
Module
% Symbol Timing and
—< Coarse
Classification
UCS Modules C-code Module FPGA Digital Reciever Module
executable creation. Computer creation and simulation
simulation and test of code
running on a DSP Other and Future
Modules of UCS
L J
r
Stand Alone SDR Platform(Lyrtech SFF SDR)
- N
-)
Implant the UCS Implant FPGA
C-executable Digital Receiver
modules on DSP Bit Stream on
of SDR Platform FPGA of SDR
Platform
.
(System Performance Testing with Real Time Signals)

Figure 1.1: Overview of Thesis and Implementation

3

Chapter 2: System Description and Current
Literature

2.1 System Overview

As introduced previously, the Universal Classifier Synchronizer (UCS) is a Cognitive Radio
system/sensor that can detect, classify, and extract the relevant parameters from a received signal
to establish physical layer communications using the received signal’s profile. The overall
system is composed of different parts and can be identified by the block diagram presented in the
figure below.The current implementation is able to identify signals including AM, FM, MPSK,
QAM, MFSK, and OFDM. The system is constructed to run on Universal Software Radio
Peripheral (USRP) with the GNU Radio software toolkit and also runs on an Anritsu™ signal
analyzer. In this chapter, an overview of the system block diagram is introduced. Also, current
literature of similar systems and technology is also discussed to see where this system fits into
the grand scheme of cognitive radio classifiers and synchronizers. Also, note that the Bandwidth
Estimation and the Symbol Timing & Coarse Classification phases are discussed in full detail in
later chapters. They are also the focus of this report and the sections of the larger UCS system
developed, implemented, and tested for embedded SDR hardware, Lyrtech SFF SDR platform.

Incoming Spectrum Symbol Timing Carrier Sync.| | Demodulated
Signals | | Sensing for OFDM for OFDM Digital Signal
Wideband and Symbol Timing MPSK Carri ;
arrier Fine
niarawnc Sieaitiet QAM Sync Classification
Categorization Classification e
MPSK or QAM
PSK or QAM AM
Na';‘."”b“"d AM Bandwidth Analog Digital
ignal g 7
s EM Estimation FM | Demod. Demod.
Categorization
FSK
Demodulated Demodulated
Standard Analog Digital Signal
FSK Signal Signal
Demodulation

Figure 2.1: Complete System Diagram [Chen, 2008]

The UCS system should ideally be implemented using wide band radio systems that can
communicate on different frequency bands. The system can also be implemented on narrow band
systems suited for finding signals in a particular band of interest. Therefore, the UCS system is
configured to a frequency span to find signals on frequencies of interest, or in a dynamic
spectrum scenario, span the region of opportunistic spectrum allocation. The system first
performs Spectrum Sensing on all received signals to find signal energy using a Power Spectral
Density (PSD) technique. The presence of signal energy provides the location in the frequency

4

domain of the received signal. Spectrum sensing also provides the system with spectrum
occupation of signals in the band of interest. In a dynamic spectrum environment, the system can
therefore choose unoccupied frequency space to communicate and avoid interference.

The detection of signal energy by the spectrum sensing process starts the cognitive decision
process of the UCS system. Wideband suite categorization is first performed. If the signal is
wideband for example OFDM, then it is block-based which means that demodulation is
performed block by block. If the signal is narrowband, then narrowband analog-digital
categorization is performed next. If the signal is determined to be analog, then the suite is
sample-based which means it must be demodulated sample by sample, such as FM and AM. If
the signal is digital like MPSK or QAM, then it is symbol-based which means that symbol
timing and synchronization has to be performed before demodulation. If a signal is identified to
belong to one of the three categories described (block-, sample-, or symbol-based), the
corresponding decision path to demodulation is taken to estimate the necessary parameters for
correct demodulation. The entire structure of UCS prototype can be understood as four branches
and three phases. The four branches include multi-carrier digital signal, narrowband digital
signal, analog signal, and standard FSK signal based on the different feature extraction scheme
for different types of signals. The three phases are briefly concluded as Phase 1: classification,
Phase 2: synchronization, and Phase 3: demodulation [Chen, 2008].

The focus of this thesis and system implementation is part of an ongoing process to implement
parts of the above mentioned UCS system on the standalone SDR hardware. The aim is to
eventually develop the complete UCS CR system on the Lyrtech SFF SDR platform that can act
as a standalone portable CR system. The modules created and implanted/implemented on the
SDR hardware are the Bandwidth Estimation and Symbol Timing & Coarse Classification
modules. This is the system decision paths towards classification, synchronization, and
demodulation of digital phase modulated signals (QAM and MPSK signal types) and also analog
signals. Let’s assume that an incoming signal is captured by the system and that Spectrum
Sensing is first performed to identify the presence of signal energy. Let us also assume that this
unknown signal type is either an analog or digital phase modulated signal. Wideband and
Narrowband Categorization is then performed which identifies the signal to be narrowband. The
system then moves to the next block where Narrowband Categorization is performed to identify
the signal to either an analog or digital signal. Regardless of the pre-classification of a signal into
analog or digital, Bandwidth Estimation is performed using a technique that involves taking the
histogram of the PSD and is discussed in further detail in the next chapter. If the signal is pre-
classified as an analog signal, after estimating the bandwidth, the correct analog demodulator can
be loaded by the system to complete the demodulation process. The path towards analog signal
classification and demodulation is identified in orange in the above system block diagram. If the
signal is determined to be a digital signal, the system then also moves to the Bandwidth
Estimation block before taking a different route, from that of analog signals, to Symbol Timing &
Coarse Classification. The Symbol Timing & Coarse Classification phase is the most important
part of the UCS system. Using a fair variance algorithm, the symbol rate of the signal is
estimated through a resampling and sample-based variance elimination process based on
variance calculations of digital complex 1Q samples. A coarse classification of the digital signal
is also performed to distinguish it between MPSK or QAM signal schemes. Coarse classification
is achieved by analyzing the envelope order of the digital signal. MPSK signals have a single

constant envelope, whereas QAM signals’ envelopes are centralized around a few different
envelope values. The system can therefore classify the digital signal to one of 3 sets: MPSK,
16QAM, and 64QAM.

The Carrier Synchronization and Fine Classification phases are next. Carrier Synchronization is
performed by implementing a Phase Lock Loop (PLL) to achieve frequency and phase
synchronizations after signal parameters like modulation type are known. Fine Classification is
achieved by removing phase and frequency information from the transmitted signal through the
use of the PLL implemented in the Carrier Synchronization stage. With MPSK signals, the
amplitude of the transmitted signal is a constant and thus produces a circular constellation plot.
Therefore, the phase difference between information bearing elements of the signal achieves fine
classification, as the modulation order can now be determined based on the phase information
removed from the transmitted signal. With QAM signals, the amplitude of signal varies with the
phase, which means that the constellation is uniformly distributed between squares. Fine
classification is obtained based on this distribution as the order of the QAM signal is determined
by the constellation distribution information that is removed from the transmitted signal. The
path of a digital phase modulated signal through the system can be identified by the green blocks
in the above system block diagram. After achieving fine classification and the exact type of
QAM or PSK signal type is determined, the UCS CR system can load the correct digital
demodulator profile to receive the signal to perform demodulation. For a complete explanation of
the decision through all four system paths and how the associated blocks affect the decision
process, see the original UCS publication [Chen 2008].

2.2 Review of Current literature

Signal classification became an attractive research topic in the 1980s as a part of Signals
Intelligence or SIGINT, which saw electronic signal interception as early as the Boer War. The
Boers captured British radios in order to intercept and interpret the British transmitted signals to
provide an edge in the war. In World War II, the United States Marine Corps in their
communication units used Native American Navajo speakers, referred to as ‘code talkers’, to
speak their coded language. This was a means to prevent the interpretation of possible
intercepted radio communications during the war. In the United States and many other countries
worldwide, the topic of Signal Interpretation has become of great interest as a part of tactical and
military operations. In order to intercept and interpret another’s signal, the signal has to be first
detected and classified correctly. In today’s world, the advancement in communications systems
has provided many advanced communications systems with a vast array of signal schemes and
profiles. Therefore, the task of detecting and classifying over the air signals with little or no prior
knowledge of the communicating scheme has proven to be a very difficult and complex task. As
a result of the increasing interest in software defined and cognitive radio, signal classification is
gaining more attention and is also becoming more practical to solve. Cognitive Radios along
with the use of wideband radio hardware have made the task more feasible. With the use of
wideband radio hardware, a cognitive radio can be configured to detect signals along many
frequency bands. Having detected and captured the signals, further signals analysis and
processing can be done in software to compare the signals to the many different profiles
available today to match it as closely as possible to the right profile. Therefore a cognitive radio

can perform a case by case analysis as it analyses a signal in order to classify it correctly to the
right profile.

The methodologies and technologies in the area of signal classification can be roughly divided
into three categories: (a) maximum likelihood (ML)-based, (b) feature-extraction based and (c)
cyclostationary feature-based [Le, 2007]. Method (a) is classified by comparing the likelihood of
candidate signal and modulation types. Polydoros and Kim (1990) is a classic article that
discusses the optimal classification rules. Beidas and Weber (1998) is about asynchronous
classification for MFSK. Method (b) directly extracts phase or amplitude features from the target
signal to differentiate modulations. Zero crossing and wavelet technology are quite frequently
involved in this area [Hsue and Soliman, 1990; Jahankhani et al., 2006; Prochazka et al., 2008].
Some publications combine (a) and (b) to get better performance. For example, in Yucek and
Arslan (2007), both ML and extracted features are used for OFDM signal detecting and
classification in cognitive radio. Method (c) is attractive for DSA applications because of its
ability to detect and classify signals at low SNRs [Kim et al., 2007]. The methods mentioned
above have excellent performance in certain scenarios. The scenario conditions include channel
types, signal types, and equipment. The objective behind UCS is to design a universal signal
classification and synchronization system that can analyze a signal’s physical layer features with
minimal prior information and application limits and can demodulate the signal using the
acquired information [Chen, 2008].

Apart from the proof of concept prototypes that are implemented in GNU Radio with USRP and
the implementation on the Anritsu™ signal analyzer, some work has been done towards the
implementation of the UCS system on embedded SDR hardware. The Spectrum Sensing and
Wideband/Narrowband categorization blocks were implemented on the embedded SDR platform
by another graduate student in our research Lab [Nair, 2009]. These implementations of parts of
the UCS system work in conjunction with the modules of this thesis to enable the complete
classification of analog and digital phase modulated signals. As discussed earlier, the Spectrum
Sensing module first identifies signal energy and starts the decision process. The Wideband and
Narrowband blocks pre-classify the signal along with identifying them as analog and digital
signals. If the signal is deemed to be analog, the AM-FM detector, which is part of the
Narrowband Categorization block, identifies the correct demodulator profile. The Bandwidth
Estimation block implementation of this thesis can then be called prior to demodulation. This is
identified by the blocks in orange in the UCS system block diagram above. If the signal is
deemed to be digital, then the Bandwidth Estimation and Symbol Timing & Coarse Classification
blocks of this thesis are called to find the symbol rate of the signal along with the modulation
type. Although not implemented in this thesis, the Carrier Synchronization and Fine
Classification blocks would then have to be called to synchronize and demodulate the digital
phase modulated signal. Therefore the work done by Nair [Nair, 2009], and the implementations
of this thesis complement each other. Both of these implementations seem to be the only instance
of signal classifier implemented on embedded SDR hardware up to date. Most of the published
work seen to date with signal classifiers and cognitive software defined radio is performed with
generic SDR hardware such as the USRP running on host computers.

Chapter 3: Digital Signal Bandwidth Estimation

3.1 Introduction

This chapter describes the module used in analog and digital signal bandwidth estimation. If the
classification of a received signal is coarsely categorized by the Analog/Digital classifier to be
that of an analog or digital signal, as outlined in the system description, an estimate of the signals
bandwidth must be estimated before further processing. The bandwidth estimate is directly used
in the calculation of the Symbol Timing of potential digital phase modulated signals.

3.2 Histogram of PSD Technique

The signal bandwidth of captured signals is estimated by analyzing the Power Spectral Density
(PSD) of the received signal.

DQPSK - PSD
107}]
A 10%¢ .
&) .
10-2: WM WWW |
10 J.M . | | M
1. 1.25 1.3 1.35 1.4
Frequency (Hz) x 10’

Figure 3.1: PSD of a QPSK signal [Chen, 2008]

The figure 3.1 above shows the PSD of a QPSK signal, other digital signals produce a similar
PSD shape as that of the QPSK. The red line through the signal is a fairly accurate estimate of
the location of the upper and lower frequency bounds for the bandwidth of the signal. There is a
clear distinction in the PSD of the signal where the main lobe of the signal rises above the noise.
This creates a profile with clear distribution of noise and distribution of the signal. The figure
below is a histogram plot of the PSD of the above QPSK signal. “On the left side, there is a
Gaussian like distribution; this is the histogram for noise. The abscissa of local maximum PSD
indicates the mean of noise power and its reciprocal equals to the current SNR since the received
signal is normalized. On the right side, the relatively centralized distribution is the signal. The
red straight-line, where the locally minimal histogram number is, indicates the threshold for
bandwidth estimation” [Chen, 2008].

800+

600}

4001

200¢

Hist Number

200}

£ 5 4 3 2
log

-

(PSD)
Figure 3.2: Histogram of PSD for DQPSK [Chen, 2008]

3.3 Module Implementation in C

3.3.1 Simple Histogram of the PSD

The PSD of the received digital signal is first calculated and passed as input to the Bandwidth
Estimation module. The log;, of the PSD is then calculated and stored in its own vector. The
maximum of the log,, of the PSD is then calculated by searching through the array for the
element with the largest magnitude and the index that corresponds to the max. This value is
stored in the variable MAX LOG PSD. The minimum of the log,, of the PSD is also searched
and stored as a variable called MIN LOG PSD. The histogram distribution based on the log;
can then be calculated. The width of the divisions in the histogram, also called bins, is calculated

as
Bin_Width= (MAX LOG _PSD — MIN LOG PSD)/Number Bins

The number of bins can be specified based on the number of distributions breakdowns that one
may want for the creation of the Histogram. The Number Bins is set to 40 for this application
and can be increased if desired for a more detailed distribution. A vector of the bin locations is
then created from the MIN LOG PSD location onward by adding the Bin_Width in a for loop
structure for the total number of bins used. The bin locations or bins therefore represent the X-
axis and the range of equally distributed PSD values. The Y—axis therefore represents the
histogram number and is a count of the number of hits within all the PSD ranges of the bins. The
next step is to loop through the array of PSD values and total the histogram counts for the
respective bins. A vector called H Array stores the counts from left to right and corresponds to
the 40 respective bins that are created for the distribution. For each successive bin location, any
PSD value that is less than and equal to the right end of the bin location is added as a histogram
count, upper bound inclusive, lower bound exclusive.

3.3.2 Noise Isolation of the Histogram Distribution

After calculating the histogram distribution of the PSD of the received digital signal, the noise
distribution is separated from the signal distribution. An upper bound for the PSD has to be set in
the program with a PSD value that is slightly above the noise floor. This can be set visually by
inspecting a plot of the PSD or inspecting a plot of the histogram and picking a value that falls
within the left edge of the distribution of the signal. The histogram count vector and the bin
vector can then be downsized to contain only the noise for all values that fall below the upper
bound set within the program. Looking at the downsized histogram count vector, the maximum
count corresponds to the maximum distribution of noise. Starting from the index of the
maximum noise, the minimum value for the downsized histogram count vector corresponds to
the threshold for bandwidth estimation. It is marked by the red line through figure 3.3 shown
below. The difference in frequency of the locations within the PSD of the received signal that
coincides with the threshold for bandwidth estimation on both sides of the main lobe calculates
the bandwidth estimate.

800

(o)]
(=]
o

Hist Number
S5
2

B
(=]
Q

=200+

3 4 3 41 0 1 2z 3
. ch"Sb} B!

Local
Maxima

Minima after Maxima. also the
<7 threshold for bandwidth

estimation

Figure 3.3: Histogram Distribution and Noise Isolation Plot

10

3.4 Conclusion

This brief chapter discussed the Bandwidth Estimation module and its implementation of the
code structure in C-code for compilation on the DSP. It is described that the bandwidth of both
analog and digital signals is estimated by first taking the power spectral density of the received
signal. A histogram distribution is then computed from the log;, of the power spectral density.
This distribution produces two distinct distributions for noise power and signal power, where the
noise can then be isolated to find the threshold for noise. This is a very simple but effective
technique for bandwidth estimation on digital systems such as cognitive radio receivers. The
code listing can be found in appendix A and corresponds to the description given above.

11

Chapter 4: Symbol Timing

In this section, the Symbol Timing & Coarse Classification module along with its
implementation is discussed in further detail. Symbol Timing is the key component of the UCS
system as it is the major component in classifying digital signals of the MPSK and QAM digital
phase modulated signal types. Symbol rate estimation is done through the use of resampling the
digital signal at different symbol rates and applying a Fair Variance technique to find the best
estimate for symbol timing. Resampling is a major topic of discussion in Symbol Timing, as it is
an important tool used in the symbol rate estimation technique by testing different sampling rates
on the received signals. The design and implementation of resampling, including the FIR filter
design, is also discussed in detail in this chapter.

4.1 Introduction and Overview of Symbol Timing

Symbol Timing is the key technology in the system, as without the proper timing of symbols, the
classification and synchronization of the received signal is incorrect. In this section we discuss
how a potential searching space of possible symbol rate estimates are created, and how each
candidate of the searching space is eliminated to achieve the closest symbol rate estimate from
the space of created potential candidates.

Bandwidth estimation is an anterior module, and must be calculated prior to symbol rate
estimation. The accuracy of bandwidth estimation will determine the range of the searching
space for potential symbol rate estimates. Let’s define the estimated bandwidth, which is the
output of the Bandwidth Estimation module, as bw_est (Hz), the sampling rate as sampling r
(Hz), the real bandwidth as hw, and real symbol rate as symbol_r. The stimated symbol rate is:

Symbol r_est = bw_est/(1+roll_off)

where roll off is the parameter of the roll off using a root raised cosine filter at the transmitter.
The number of samples per symbol is expressed as:

sps = sampling r/symbol r_est

The value of est_bw is not accurate enough to be used to calculate symbol r directly. Therefore,
we need to analyze the accuracy of the symbol rate estimate to set a candidate space S for fine
symbol rate estimation and symbol timing. Space S is determined by two factors; the maximum
bandwidth estimation error and the tolerated error of the symbol rate for symbol timing. If 2/ is
equal to the value of the maximum element in the candidate S spaces minus the number of the
minimum element, and ¢ equals the difference between the two adjacent elements, then the
smaller the maximum symbol rate estimation error, the smaller 1 is; the larger the tolerated error,
the larger o is, which means the fewer the number of elements in space S. The following is how
we derive the candidate space S. S is defined as:

12

S=[symbol r est-|1/ 6| 6, symbol_r_est- |1/ 5| 6+ 0,...,symbol_r_est, ...symbol r_est- 0+|1-d| 9,
symbol_r_est-+|1- 9| J].

Define the symbol r_err as the maximum bias error between symbol r_est and symbol_r, i.e
Symbol r_err =|symbol r_est-symbol r|max

Thus [=symbol_r_err, which guarantees that symbol r €S.
Suppose the maximum error of symbol rate that is tolerant for the following synchronization is
err_tolerant, then oJ=2err tolerant such that

Min(S,-symbol r) < err_tolerant.
The candidate space S is thus defined. The next step explains how the acceptable symbol rate is
calculated. The figure 4.1 below shows a snapshot of samples for a DBPSK signal at quasi-
baseband, which was collected by the Anritsu Signature™ signal analyzer in the over-the-air
experiment. The number of samples per symbol is 8. Blue points indicate the sampling points.
Red points indicate the correct symbol timing. Black points indicate the incorrect symbol timing.
As one can see, only the symbol rate and the symbol timing moment are correct, the chosen
samples have very small variance, while the other set has relatively large variance. Two
parameters from this for symbol timing must be determined: number of samples per symbol and
timing position within a symbol.

Sy timing with comect sanmdes per sy ool

L L
8 n.*'? L ."!‘l

1.4p 9 I'.' ol

i

’

Figure 4.1: Illustration of Symbol Timing and Samples per Symbol [Chen, 2008]

T

20 =730 2ZFAQ

Samples V is defined as the vector for the samples of the complex down converted signal
collected within a certain period of data. (e.g. 20 ms; the length of capture time depends on the
sampling rate). Each element of space S is a candidate for the correct symbol timing. Vector SPS
is defined as:

SPS. = [%] *S./ sampling r.

13

After resampling, the sampling rate of the Samples V is changed from sampling r to
resampling_r,=resampling_factor , *sampling r where the processing symbol rate is S .

SS is defined as the space for the candidate symbol set. The number of elements in SS'is

201/ 5)+1 .
> SPS, , where SPS, =[Sz r],

i=1
Each element of SS is a vector, the ith element of SS'is called SS. defined as

SS ={Samples V , |(m mod SPS,) =j}, i =1,2,...SPS,
(> SPS;)+i

k=1

SS is the candidate space for global optimal symbol timing. Each element of SS is a potentially
correct sampled symbol set. The purpose is to find the real, optimum one. Distinguishing
between QAM and MPSK is accomplished by analyzing their envelopes. The desired envelope
of MPSK symbols is a single constant value, and the desired envelope of QAM is a set of

constant values. In other words, if we cluster samples envelope in each SS'; , and the clustered

result is centralized around one constant value, then it is MPSK. If not, then according to the
number of centralized values, the samples can be classified as 16 QAM (3 values), 64 QAM (9
values), etc. The number of the centralized values is called the envelope order. For example,
when the signal received is modulated by MPSK, because only one element among sum__ sps
elements represents the correctly sampled symbol, other elements’ envelope order may be
greater than 1 because of the incorrect sampling. Each elements’ envelope order is calculated,
and saved in vector Envelope order. Based on the clustering result, the variance of the symbol is
calculated. In SS; samples are assigned to Envelope order; group. The variance of each group is

calculated and then the total variance is calculated. The variance is saved in vector Var SS .
Sampling at the right position will guarantee the highest SINR (Signal Interference Noise Ratio).

Therefore S, ., 1s considered as the best symbol timing, where Var_SS .. = min(Var_SS

). Symbol rate is determined at the same time. SS and symbol_rate will be input in the

min_ var min_ var

next module, Carrier Synchronization. Its envelope order Envelope order is used for

min_ var

classifying the signal into one of the sets: MPSK, 16QAM, 64 QAM. [Wang 3-4]
4.2 Vector Resampling
4.2.1 Overview

In the above description of Symbol Timing, Samples V is described as the vector of complex
down converted signal samples collected within a certain period of data. The sampling rate of
Samples V is changed by resampling. Resampling or sampling rate change is a two step process
that is achieved by interpolation of the original vector of samples by an interpolation factor /, and
then by decimating the resulting vector by a decimating factor D. The original vector of samples
is therefore increased in size by interpolation factor 7, and then decreased in size by decimation
factor D to achieve the resulting vector of samples that is a product of //D times the original size.

14

Interpolation

Interpolation is achieved by up-sampling the samples vector by the interpolation factor 7, then
Finite Impulse Response (FIR) filtering the output by a FIR filter. Up-sampling by zero insertion
is performed on the samples vector where /-1 zeros are inputted between each successive sample
of the original samples vector prior to FIR filtering. Let’s look at a very simple vector and
example as follows:

Samples Vector ={1,2,3,4,5,6,7,8,9}

Samples Vector above contains 9 elements and the interpolation factor / =5. Therefore, 4 zeros
are inserted per original sample to increase the size of the vector of samples and accomplish up-
sampling. The resulting vector:

Up-sampled _Samples Vector
={1,0,0,0,0,2,0,0,0,0,3,0,0,0,0,4,0,0,0,0,5,0,0,0,0,6,0,0,0,0,7,0,0,0,0,8,0,0,0,0,9,0,0,0,0}

which has 45 elements. The up-sampled samples vector would then be FIR filtered to smooth the
data and accommodate the included zeros. The figures 4.2 and 4.3 below show linear and stem
plots of the samples vector with the original 8 samples.

Sample Amplitude
()]
L

1 L L L L L L L

Sample Number

Figure 4.2: Plot of example Samples Vector

15

wn
T
1

Sampe Amgditude
oY
1

1 2 3 4 5 g 7 2 g
Sample Mumber

Figure 4.3: Alternate Plot of Samples Vector as a Stem

The resulting plots of up-sampling the original data by zero insertion is shown in the figures 4.4
and 4.5 below. The resulting inserted zeros are obvious in the resulting linear and stem plots.

g Upsampled Yector Ling Plot
T T T T T

Sampe Amplitude

2L
| /\ |
D\

5 10 1

5 20 25 30 35 40 45
Sample Humber

Figure 4.4: Plot of Up-sampled Samples Vector as a Linear Plot

16

upsarnpled Yeckor
T T

Sampe Ampitide
o “n
T T
1 1

X3
T
|

ra
T
|

& &
] 5 10 15 20 25 30 35 40 45
Sarnple Nurmber

C, A
T
—s
L
L
L
L
L
L
1

Figure 4.5 : Up-sampled Samples Vector as Stem plot

FIR filtering therefore has to be performed on the up-sampled vector to smooth the data to
produce a set of samples that are equivalent to the orignal vector, but with an increase in the
number of samples. The resulting vector below shows the up-sampled and filtered vector which
resembles the original plot before the size increase, after the application of the FIR filter.

10 - - - . - - - -

ol A

Sarmgle Amglilics

0 . !'; ‘:II:I 1 IS E‘IJ.'! 2-5 3IIZ| 3I5 -IIﬂ 45
Sarmpke Humbser
Figure 4.6: Plot of example Samples Vector Up-sampled and Filtered (Interpolated)

17

10 T T T T T T T T

Sampe Amplitude
i
&
&
1

(g5
T
1

—_
T

il '

0 5 10 15 20 25 30 35 40 45
Sample Numbser

P
Figure 4.7: Alternate view of Interpolated Samples Vector as a Stem Plot

It is therefore clear that after zero insertion of the original samples to increase the number of
samples, FIR filtering has to be done to smooth out the samples. This accomplishes the
interpolation and hence makes vector of interpolated samples a mere bigger image of the original
set of samples.

Decimation

Decimation performs the inverse of interpolation and decreases the size of the samples vector by
a decimation factor D. The samples are first FIR low-pass filtered and then down-sampled by a
factor D, where every Dth sample is kept from the original vector after filtering. If the
interpolated samples vector from the example above is decimated by a factor of D=9, filtered and
down-sampled, the resulting size will be a decimated vector of samples with 5 elements.
Therefore, the samples are again filtered and every 9th sample starting from the 1% sample is
kept. The figures 4.8 and 4.9 below show the resulting plot of the decimated samples vector
plotted as amplitude of samples vs. sample number [Mathworks Resampling, Signals Processing
Tool Box].

18

Sample Amplitide
(=]
1

2 1 1 L 1 1 1 1
1 15 2 2.5 3 a5 4 4.5 5

Sample Number

Figure 4.8: Interpolated Samples Vector Decimated by a Factor of 9

10 T T T T T T T

Samples Ampiuce
1
Il

D L L L L
1 1.5 2 25 3 3.3 4 4.5 3

Sampls Number

Figure 4.9: Alternate View of Decimated Vector as a Stem

This above example summarizes the concept of sample rate change by resampling data through
the combined process of Interpolation followed by Decimation. A vector of 9 samples, which
plots a straight line with positive slope, was increased and decreased in size by interpolation and
decimation respectively while maintaining the envelope of the original set of samples.

19

4.2.2 Combined Interpolation and Decimation Filters for Resampling

Interpolation and decimation both use FIR low-pass filters for their implementation. In
interpolation, the filter is implemented directly after up-sampling, and in decimation directly
before the down-sampling process. Resampling is the combination in series of interpolation and
then decimation respectively. This means that FIR low-pass filtering is performed twice in direct
succession during resampling. The FIR low-pass filters can be combined into one filter for the
application of resampling. This is very straight forward since both filters are in line with each
other, which means that the filter with the lowest cut-off frequency can be used for the
application of resampling in this system. The figure 4.10 below outlines this concept.

Interpolator Decimator
I- Interpolation Factor If I>D, hR(k) =hu(k)
D-Decimation Factor IF D>I, hR(k) =hd(k)

Resampling Filter
. hR(k)

>

Figure 4.10: Combined FIR Low-Pass Filter for Resampling

The interpolation and decimation factors define the cut-off frequencies in the Interpolator and the
Decimator. The cut-off frequency is inversely proportional to the / and D factors. Therefore, if
the /> D, then the resampling FIR low-pass filter, 4R (k), used will be interpolation filter Au(k).
Also, if D>I, then hR(k) used will be hd(k), the decimation filter. Since FIR low-pass filtering is
applied in direct succession in interpolation and decimation, the filters can be combined into one
process by using the filter with the lowest effective cutoff frequency.

4.2.3 Finite Impulse Response Filter Design

In this section, we describe how the FIR filter that is used for resampling is designed. A
windowed-sinc FIR filter is used for each successive resampling in the Symbol Timing module.
Windowed —sinc filters are very stable and easy to implement and program. They are normally
used to separate one frequency band from another, and perform well in the frequency domain at
the expense of poor performance in the time domain. The performance of windowed-sinc filters
can be significantly improved when implemented with FFT-convolution vs. standard

20

convolution. Fast Fourier Transform (FFT) convolution, however significantly increases
programming complexity for the implementation of these filters [Smith 287].

The design of a windowed-sinc filter starts with the kernel of an ideal sinc pulse. A sinc pulse
has the general form of sin(x)/x and can be given by:

sin(2mf. 1)
W] = ————
im
The frequency response of an ideal sinc pulse would produce a perfect low-pass filter. However,
sinc functions extend to both positive and negative infinity as shown in the example figure 4.11
below of an un-normalized sinc function.

1.0

0.8

0.6

0.4

0.2

Ta-T b 3] el wd el [1o 00 &] o ud ol Ju o b y] ol
et i e Wt

il 1 | = p oy 1 B FE pu i m 1 1 | L.l L L 1 i

-6T -4 -21m 0 2n 4 6T
Figure 4.11: Plot of ideal Sinc Pulse [Wikipedia: sinc]

The sinc function is therefore then truncated to have M+ points, where M is an even number to
have symmetry around the main lobe. All points after the M+1 are simply excluded or ignored.
The truncated sinc pulse is then shifted to the right so the filter kernel only includes positive
indexes as shown in the example figure 4.12 below.

21

Truncated and Shifted Sinc

Sample Amplitude

-0.4

L L L L L
0 200 400 600 800 1000 1200
Sample Number

Figure 4.12: Example Truncated Right Shifted Sinc Pulse

The abrupt discontinuity at the end of the truncated shifted sinc will cause excessive ripples in
the pass-band and poor attenuation in the stop-band. Therefore, a window of choice has to be
multiplied by the truncated sinc pulse to reduce the abruptness of the truncated ends and improve
the frequency response. A window is simply a smoothly tapered curve. In this application, a
Blackman window is chosen and used for its simplicity. The equation of a Blackman window is:

wli] = 0.42 - 0.5 cos(2mi/M) + 0.08 cos(4mi/ M)

The example Matlab™ plot of a 1024-sample Blackman window is shown in the figure 4.13
below.

BlackMan Window
1 .

0.9+ B

0.8+ B

0.7+ B

0.6 B

0.5F B

0.4+ B

Sample Amplitude

0.3F B

0.2+ B

0.1+ B

0

1 1 1 1
0 200 400 600 800 1000 1200
Sample Number

Figure 4.13: Plot of a Blackman Window

22

The result of windowing the sinc pulse is shown in the figures below with smoothing to produce
smooth transitioning windowed-sinc FIR filter kernel. The two important parameters that are
needed for the design of this resampling filter are the cut-off frequency F'c and the number of
points for the filter M. Once these two parameters are determined, the windowed-sinc FIR filter
via Blackman window is defined by the following equation:

sin(2mf. (i - M/2)) Vi -
hli] = K 3 - [UAE - UECDE[“ﬂ‘] —[LUHmm[4ﬁ*]]
- M2 M M

K is chosen such that the sum of all samples is equal to one. This is achieved by ignoring K
during the calculation of the kernel then normalizing the result to one post calculation [Smith
290]. The cutoff frequency is chosen by determining the bigger of the interpolation and
decimation factors I and D as explained in the earlier section.

If(1>D), ID MAX =I

Else 1if(D>I), ID MAX=D;

Fc =1/ID MAX
The filter length should ideally be relatively large compared to the / or D factors. Therefore M is
set to be:

M= 2*ID _MAX*10+1 <(1024+1)

M is limited to a filter size of up to 1024+1 for this application as bigger filter size
implementations become exponentially more computationally intensive.

23

The figure 4.14 below outlines the steps described above in designing the kernel used for the
windowed-sinc FIR filter.

Right Shifted Blackman Window
Truncated Sinc Pulse

X

FaA f\} .'ﬁluf' A

Wilckawe] S Femel
= T T T T T

0aF]

06]

Sanpk Amplkk

o a0 o0 500 & 1000 1200
ZAmpE Mamker

Figure 4.14 Windowed-Sinc FIR filter via Blackman Window

With the final filter kernel in place, the data can then be filtered in time domain by convolution
or in the frequency domain using FFT convolution. The filtering used for resampling in this
system is performed by convolution due to the lesser complexity of the two techniques. The
resampling FIR filter is redesigned for each successive resampling of the received samples.

4.2.4 Resampling Filter Design in C
The Resample FIR function is used in calculating the vector that holds the windowed-sinc FIR

filter. The filtering of up-sampled data is also performed in this function. The resulting data is
then passed out to be down-sampled.

24

The code snapshot below shows the initializations of the vectors Filter Kernel,

BlackMan Window , and Windowed _Filter. Filter Kernel holds the truncated filter kernel soon
to be windowed. The vector, BlackMan_Window, represents the Blackman window used in
windowing, and Windowed Filter holds the resulting windowed-sinc FIR filter used in filtering.
All three vectors are of the size FIR Size which is set by the user as a preprocessor macro. For
this example, FIR Size is limited to 1024 and shows a 501 tap filter calculation.

P L

void Resample_FIR(genericComplexType_t *Up Vector, genericComplexType_t
long Interpolation_Factor, leng Decimation_Factor, lom

genericType_t ID_max =

long 1.0 =0:

genericlype_t FC =INT2GENERIC(D): This i e
int M = 0; 15 the Ja e Eher

imE 1.3: Ffearators Ffor

int length = #*Up_Length:

errorCodeEnum_t res = NO_MWATH _ERROE:

const genericType_t PI= DOUBLE2GENERIC |
genericTypa_t Filter_FKernel [FIR _Size]):
genericlype_t BlackMan_Window[FIR_Size];
genericType_t Windewed_Filter[FIR_Size]:
genericType_t SUM:
genericlype_t Scale_Factor;
genericType_t Max_H:
ganericiypa_t one:

Filter Kemel and
VWindow Declarations

genericlype_t conv_inputl[Vector Size_Besample]: FAesa are var
genericType_t conv_inputl|[Vector Size_Resample]:

Figure 4.15: Snapshot of C — code Initializations of FIR vectors

A for loop is used to calculate the points of the filter kernel according to the equation given in
the above section:
sin(2mf . (i -M/2))

hli] = K [U.41 - 0.5cos
i-M/2

- .
27| L .08 cos| 2T

The filter kernel and Blackman window are calculated and saved into their own vectors and K is
ignored. Since the calculation of the kernel may include divide by zero, a special case is included
to take care of the divide by zero case. The resulting calculations of Filter Kernel and
BlackMan Window are then multiplied by each other to produce Windowed_Filter as shown in
the code snapshot below (figure 4.16). Windowed Filter holds the resulting filter after
windowing used in the resampling process.

25

For(i=0:idziee) IHre pare of code follows setiod [o

LE{(L = [Hs2))==0) —ee

Filter_Fernel [1] = DOUBLEXGEMERIC (mim(PI=Fl)): Averd & devidide fo- sdro

Forloop
for

L

Filter Ferael[:] = DOIBLEXIENERIC [ais(PI=FC=(L-H

Lo B

Hlapklie) = f&F Sihegcor £l B3 VW) o Segco i depy ey JoN Jaa on
BlackMan Windew [i] =DOUBLEMGEHERIC({4 SOecom(| 2P jH) + Secom[{dsFIeg M) <1000
P o THE (GENERATIW Filr che Filrer ZERNEL sod THE Flackaan STV
For(i=0;idh;iss] @ ackien MO rhe SO pulse to (re Windowing
Filta o - keamsl

Ewandomed_Fylfer(1]):

res= GesericPoant_Mult| SFilver Fermel[i], L8lackMas Window(:i].

T Ampw WEES

Figure 4.16: Code snapshot of Truncated and shifted Filter Kernel and Blackman Window
Calculation

The figure 4.17 below shows the simulation plots of the Filter Kernel and BlackMan Window
vectors after the calculation in the for-loops and stored in data memory.

T 7
Bt A
A
2 06 { A
Py, { |
| |
& | |
= oas] f 1
o] II')
1
WK - | \ -
= S)] £ ™ -
DR . -~ . FxX | / ~— o ;
oS = 5 . = A y | y e 4 R e
oy hS o
2 e
ELbs
2 ka4
T
P

AARE-
[¥o w0 mo 3 i 7 h I 3 3) i FEO)
B) P _eret o [T ="

T e ~

A0,

L 3
T r ™

= h ®a s wa) e i i F

4100
Ha We He 3)) 1 £ £
tos A e S

AR, S e e

Figure 4.17: Code Composer Studio C-Simulated Plot of Filter Kernel and BlackMan_Window
from data memory

26

The figure 4.19 below shows the example simulated Windowed Filter filter kernel after
truncation and windowing. The filter kernel is supposed to have unity gain at DC, and so the
center point of the filter should have a maximum of 1, and sum of all the samples equal to one.
Therefore, all samples in the Windowed_ Filter vector have to be normalized, and hence where
the K constant comes into play for the equation:

sin(2mf . (i - M2 Vi ;
hli] = K e - [[3_41 - [J.Scns[“;*] + [J_[Jz«;cns(4;*]]

i- M2

0125

01114
003564
008114
006644
00516
003654
002214

0007374

-0.007374
-0.02214

-0.038H

-0.05164

-0.0884

-0.08114

-0.0858]

01114

-0.125]
a 250 a0.0 750 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 499
Lin Auto Scale

(250, 0.125333) Windowed Filter Time

Figure 4.18: Windowed Filter Kernel Plot with 501 Taps in Code Composer Studio

The sum of all the values in the vector, Windowed_Filter, are calculated using a for-loop
structure and stored in the variable SUM. The entire vector, Windowed Filter , is then divided by
the sum, SUM. The maximum value of the resulting vector is then divided into 1 to calculate the
scale factor, Scale Factor. The resulting Scale Factor is then used to multiply the vector
Windowed Filter and completes the normalization of the filter kernel. The code snapshot below
(figure 4.19) outlines the discussed process.

27

5251 For(i=0:a<M;i++)
52b6:

5281 res = BenericPoin {E51M, EWt ndowed _Filter[i].E5UM) ; Calculationof
5291 |

530: and of the for Joop SUM
531

5321 for(i=0;1<M;i4+)

Bad: {

S534: ® iy ndowed Frlter + 1 = # R adowes Kl ter <1 oSN

535z res = GenericPoint DiviswWindowed Filter [1].550M, EWiodowsd Filtep[i]):
5362

5371:

538:

539: THIS MAF ar MAY bot e
5401 Hox_H= DOUBLEXGEMERIC]) :
S541: For(i=0;1 € M; 144)

5421

543: if (Windowed_Filter[i]»Max_H) Max of Divide
544: i
5451 Max_H =“Windowed_Filter[i]: kemel by
5463 /

P SUM
S548:

5491 Xeale Factor = Floorfl-Zoale Factar):

550+ one =DOFBLEAGEMERIC(1) :

E51: res = OepericPeint_Divifone. SHax M. EScale_Factor):
552:

5531 For{i=0:1¢ M:a+e)

554
ERE: w Y poewad FrlEar #
5861
557 res = GenericPoint Molt((&Wiadewed Fileer(i]).S8cale_Factor, (EWindowed Floeoeragrrs
5591

S60:

Figure 4.19: C-Code snapshot showing the Normalization of Filter Kernel for Unity Gain

Divide kemel
by SUM

Scale
Besulting
Eemel by

g e rerael +1));

The resulting normalized filter kernel vector, Windowed_Filter, with unity gain is plotted below
in figure 4.20. The resulting filter kernel is then used to filter the up-sampled data by convolving
the filter kernel with the filter.

.00

0889
0778
0667
0556
0444
0333
02224
04114

o

VARV,

-0.2224

-0.333

04444

-0.556

-0667

-0.7784

-0.883

-1.001
o 250 s00 750 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

(250, 1) Windowed_Filter Time: Lin [Auto Scale

Figure 4.20: Normalized Filter Kernel with Unity Gain

The real and imaginary parts of the down-converted complex data (inphase and quadrature) are
filtered independently. The resulting data is then stored into the vector Up Vector Filtered for
down-sampling in the next phase.

28

557 rea = OemericPoint Melt(|SWindewsd_Filter[i]), S50sle_Factor, |SWindowsd Filter[s])):

&0
Lo Convaolution of
SRR impulse response of
e filter with Real and
5781 Imagnary parts of
575
s20:
Salr
L] S&2;

Figure 4.21: Convolution of Filter with Ups-sampled Data.

The figure 4.21 above shows a code snapshot of the real and imaginary parts of the data being
filtered via convolution.

4.2.5 Convolution in C

Convolution is the mathematical means of combining two signals to form a third signal, and is
the technique used to perform the filtering for resampling. Convolution takes an input signal and
the impulse response of a filter kernel, to produce an output signal which is filtered in the time
domain. If x/n/ is a N-point signal running from 0 to N-1, and &/n] is a M-point signal running
from 0 to M-1, the convolution of the two signals is y/n] = x/n] *h[n], where the resulting
length is N+M-1 point signal running from 0 to N+M-2 [Smith 120]. The mathematical
description of convolutions is described by the convolution sum:

M=l
yli] = ¥ hljlxli-]

The convolution sum describes how each point in the output signal is calculated independently of
all the other points in the output. The index i describes which point in the output is being
calculated. The index j runs through each sample in the impulse response //j/ and multiplies it
by the right sample in the input sample x/i-j/. All the corresponding products are added up to
produce the output sample being calculated. All points of the output are calculated via a multiply
and accumulate defined by the convolution sum. The corresponding C-code implementation is
shown in the figure 4.22 below.

29

P2 void ConvigeanericType_t *inputeamples]l. genericType_t sfilt.iot input_siZe. ial taps. genericType_t sresult)

275 int 1.}

276

277 int GuEpHT_S1Ze:

278; errorCodeEnum_t roes = HO_MHATH _FRROR;

il For {1 = 0 1 € output_si] : Frrsd o
207 result[i] =Si1gnal_Processing Constant_Valuw_0:
208 for {j = 0:] £ taps; j+&)

290 r -3} ({i-j)z=inp _.-:. }

291: ek b = Ignore padded samples
2031 R B L outside the input data
2041 alae

Pl H @#lemant = inputsamplesl[i : -
Pt (et)] Grab the right

207 : GenericPoint_Mult{ifilt[;],. felement . Ltemp):
FiLiH DeanricPoint diGrerp, LEesule(i]. GouMTi: .

Egg: !'\lu.:":li-ll E“ = -_,ﬁ i " :-I " ot element ofthe mput
w03 zamples

304 T _ _ Multiply the filter by
ol of ird® oF oL Foar Surie olw the right input Sample

Accumulate result
after multiply

Figure 4.22: Code Snapshot of C-Code Implementation of Convolution Sum.

The convolution function, Conv, takes the input samples vector, the filter kernel vector, and the
sizes of both the data and the filter to calculate a resulting vector that is convolution of the filter
with the data (filtered data). The x/i-j] part of the convolution sum iterates through samples
outside of the input data, and thus samples are ignored in the calculation of the convolution sum.
The dual for loop structure traverses through each element of the output by iterating through the
corresponding elements in the data and the filter performing the multiply and accumulate.
Convolution can also be calculated based on what is called the input side algorithm. The input
side algorithm is based on the fundamental concept in signals and systems of decomposing the
input samples into impulses and running each impulse through the system (impulse response).
The output of all inputs is then synthesized into the combined output of the convolution
(combined shifted impulse response). Both implementations yield the same result and offer the
same speed of calculation. The implementations of both can be found in the code listing of
Appendix B.

4.2.6 Symbol Timing Use of Resampling

The three step process of resampling that is discussed previously is implemented in C-code in a
similar fashion to the description. Up-sampling by zero insertion is performed on the received
signal samples vector and then stored. The interpolation and decimation factors for the resample
are used to build FIR low-pass filter and the filtering implemented by convolution of the up-
sampled data with the filter. The resulting vector is then down-sampled to complete the process.

Recall from the original system description of Symbol Timing, the resampling rate is a function

of the resampling factor and the original sampling rate of the captured data:
resampling r, =resampling factor ; *sampling r

30

The resampling factor is defined by the estimated bandwidth used and the step size for all other
bandwidths to try as a part of creating the searching space. Also, recall from the earlier system
description that the bandwidth estimation given by the anterior module is not accurate enough to
be used symbol timing directly. Therefore, a range of possible bandwidths are used and are
stored in a vector called try _bw.

try bw=[est bw-range*1000:step sr:est bw+range*1000]

The try_bw vector simply holds a set of possible bandwidth values above and beyond the
estimated bandwidth. The range and step sr are system parameters that are set by the user before
using the system to determine the increments to search. In this application, the range is set to 1
and the step sr is set to 100. For example, if the estimated bandwidth is determined to be 27000
Hz, then try _bw/[] will hold potential bandwidth values from 26000 to 28000(Hz) in increments

of 100Hz(step sr). The resampling factor, is therefore try bw[i]/ est bw.
resampling factor ,=try_bw/[i]/est_bw
resampling v, =(try_bw[i]/est bw)*sampling r

The sampling rate divided by the estimated bandwidth is the estimated samples per second
which has to be rounded to the nearest integer. Therefore, the resampling rate is:

resampling r, = try _bw¥est sps

The interpolation and decimation factors / and D have to be calculated from the resampling
factor for each successive resampling. To create integer values for / and D, the resampling factor
has to be rationalized. The interpolation factor / is set to the current resampling rate of the
system, and the decimation factor set to original sampling rate. This creates large values for both
I and D that can be rationalized down to smaller integer values.

For example if the try_bw/[j] =26200, and the original sampling rate of the system is 1.6Mhz ,
resampling factor =26200/27000 = 0.97. The interpolation factor is therefore:

1=26200 * (1600000/27000) = 1545800 and

D= 1600000
The interpolation and decimation factors / and D when rationalized are / =713 and D=738.
Therefore, depending on the size of the received samples vector being resampled, there has to be
a vector big enough to hold the up-sampled data. For instance, using a samples vector of 1024
samples, the up-sampled vector would need to hold 773 *1024=730112 elements prior to
filtering depending on the size of the filter used. A bigger vector would also then be needed to
hold the data after filtering, prior to down-sampling, by convolution. Recall from the earlier
explanation of convolution that the output size will be the sum of the input data plus the number
of taps used in the filter minus one (N+M-1). Filtering data of that size requires a great deal of
time and storing data of that length requires a great deal of space. The interpolation and
decimation factors in this system are kept below 1000 for this reason.

31

Tvoid Hesample(genericlomplexlype_t *constellation_points, genericlomplexlype_t *constellation_points_resampled,
long Interpolation_Factor, long Decimation_Factor,int size,int = Down_Length)

1

genericComplexType_t Up_Vector [Vector_Size Resample]; < this Is Vector fan
genericComplexType_t Up_Vector_Filtered[Vector_Size_Resample]; - declaration

int num_taps; =

int delay: bigenough

int Left_Half; to hold up-

a0k Nz sampled

long Up_Length: dat

long Up_Length_Filtered: ald

Fer bufer

‘setor Size Ressmple): -« Init the bu

m= Interpolation_Factor;

n = Decimation_Factor: Rationalize
the,

RAT(&m, &n); - Ffind the Grestest camwmon dIvider of the 72 Intewola_tion
Interpolation_Factor = (Interpolation_Factors/ m): - Ratromaiize ? E.I'Ld. .
Decimation_Factor = (Decimation_Factor/ m); Decimation
.) - factors
if (Interpolation_Factor>1000)
1

Interpolation_Factor = (Interpolation_Factors 100);

Decimation_Factor = (Decimation_Factors 100);

Up_Sample(constellation_points, Interpolation_Factor, Up_Vector, &lp_Length, sizejs——— Up-sample

Resample FIR(Up_Vector, Up_Vector_Filtered, Interpolation_Factor, Decimation_Factor, &Up_Length, &Snum_taps):

Left_Half = num_taps~Z:

nz = floor{Decimation_Factor-(Left_Half ¥ Decimation_Factor));--& - be deld
Left_Half = Left_Half +nz; Filter
delay = floor(ceil(Left_Half)- Decimation_Factor):
Delay
g af autput seguence
y Frlier:
Up_Length_Filtered =(num_taps +Up_Length)-1; Down-
: :) sample
Down_Sample (Up_Vector_Filtered, Decimation_Factor., constellation_points_resampled, &lp_I h_Fil

Figure 4.23: Resampling Code Snapshot

The figure 4.23 above provides a snapshot of the Resample function that performs the
resampling for Symbol Timing for this implementation. The vectors Up_Vector and

Up Vector Filtered are declared at the beginning of the function to hold the up-sampled data
before and after filtering, and prior to down-sampling. The vector constellation points is the
input to the function, and the vector constellation points resampled holds the resampled data
after resampling. The Resample function performs resampling in a similar fashion to the earlier
explanation of resampling theory. The interpolation and decimation factors are first rationalized
by the RAT function. The input data is then up-sampled by the Up _Sample function, and the
Resample FIR function then performs the filtering of the up-sampled data. The up-sampled data
is then down-sampled by the Down_Sample function to complete resampling. The FIR filtering
during resampling creates a delay in the output signal. The output is therefore delayed so that the
down-sampling by D hits the center tap of the filter. Therefore, the delay associated with the
filter is calculated and passed to the down-sampling function Down Sample. The delay is simply
an estimate of the total amount of output points that are delayed in the output of the signal. After
down-sampling the interpolated data, the delay is then compensated by shifting the down-
sampled data by delay points to the left [Matlab Toolbox resample].

4.2.7 Resample Example and Plots for Symbol Timing

A set of 128 samples captured in a over the air experiment by an Anritsu Signal Analyzer™ is
passed into Matlab™ to be resampled with an interpolation factor / =24, and decimation factor
D=25. The resulting Matlab™ plot below (figure 4.24) shows the result of the resampled data.

32

The same samples are passed into a Code Composer Studio™ TMS470 ARM simulator, and the
results are also plotted below using the code implementation described earlier. These examples
validate the resampling process implemented in C, simulated for running on the ARM simulator.
With /=24 and D=235, the resampling factor is 0.96, which results in the resampled vector with
123 samples. The resulting plot for the Matlab™ simulation below shows the results for the real
part of the I-Q samples as a linear plot. The red line is a linear plot of the original 128 points
while the blue is a 123 point linear plot after the resampling.

Real Part of 128 [0 samples

1 T T T T T T

origninal data
resampled data H
¥ 123 .
¥ 0.2311
= el |
=
£
=
{ —
o
o
=
= _
[0y
-1 I 1 I 1 I 1
a 20 400 G0 a0 100 120 140

Sample Number

Figure 4.24: Plot of Real Part of IQ samples and Resampled Real 1Q samples in Matlab™
Simulation

The Matlab™ plot shows the result of the real part of the constellation after resampling using
Matlab™ tools running on the Anritsu™ signal analyzer. The plot verifies the concept of
resampling and shows that the overall shape, magnitude, and phase of the signal are maintained
after the sample rate change. The figure 4.25 below shows the resulting plots in the C-code
simulator for the resampling on the same 128 point data performed using the C-code
implementation for resampling.

33

ey uem
0
il 0.747-
o m:;
jects
P | dsapit (Debug) 0,654
T |23 Dependent Projects
P (L] Documents 0561
{1 D5PyBIOS Config
(22 Generated Files B
4 Incude
bandwidth_sstir @Ei
. dsa_signal_proc o
V3 error_codes h
Fixed_point_mat .
P Floating_point_n
generic_point_n | | gog3a.
generic_point_s
= Iyrtech_init b
=] Projspec_Math.
Symbol_Timing.t -0.0834-
¥] el
il ucs_phased h
&1 | [Libraries -DA87
o 44 Source.
bandwidth_sstir -0.280
dsa_main.c
dsa_signal_proc| | 0374
Fixed_point_mat
Floating_point_n| | 0467
generic_point_rv
generic_point_s. B3]
Symbol_Timing.c -
ucs_phasel ¢
Ink. arm3. cmd T
< > -0.841
_M— o 640 128 192 2586 320 38.4 448 512 576 B4.0 704 B8 832 896 960 102 109 115 122 127
(0, 0.658356) constallation_paints Time Lin Auta Seals
[T imbinems -l
4(3’ = 0878
o | fies i
jecks.
| Fdsapit (Debug) ner
T [(2 Dependent Proj W
| |[E3 Documents
¥
(20 pSPIBIOS Confic 0.465-
(0 Generated Filss
23 Include 0.362
bandwidth_e
P dsa_signal_t =
srror_codes
fized_point_ 0455
S fioating_pair 00517
enetic_poir
eneic_poir 00517
= Iyrtech_init.t
o ProfSpec_Me -0455
Syrmbol_Tiil
iz} uts phased, =
&1 | Lbraries
-0.362
O 4 souree
bandwidth_e 0465
dsa_main.c
dsa_signal_t -0.566-
fized_point_
Floating_poir -0672
eneic_poir
QEnEric_poir e
< > -0.878.
’W o 610 122 18.3 244 305 366 427 488 54.8 B1.0 BT 732 793 854 s 976 104 1o 16 122
(20, -0.0670894) constellation_points_resampled Time. Lin [Auto Scale

Figure 4.25: Plots of Real Parts of Constellation and Resampled Constellation with delay

The figure 4.25 above show the same data passed to the ARM TMS470 Simulator to perform the
same Resampling of the data. The plot at the top of the figure shows the original data and the
one below shows the result after resampling. The figure below shows the result after
compensating for the delay caused by the filter.

34

0878

el

0775

0672

0.568:

FF=

0485

mwZ § 3
B

0362

[y

0.258;

0155

0.0517

00517

0455

mmmmm 023

0362

EAaFOoE Wew
e

0485

-0.588:

0672

0775

< > 0878,

1) File View [, Bookmarke 0 610 122 183 244 305 £ 427 485 549 B1.0 7.1 732 793 854 a5 G 104 10 e 121

{111, 0,240034) constellation_points_resampled Tirme Lin [Adto Scale

[<Generating> Bl TValue TTwoe =l Flgure
4.26: Real of Resampled 1Q with Delay Compensation

The above results show successful simulation and implementation of resampling of the signal
samples for the UCS system in C-code. The filtering of the real and imaginary parts of the data
for using the simulation, however, takes a substantial amount of time. The Matlab™ simulation
resamples the data in a few seconds while the Code Composer Studio™ simulation takes on the
order of 30 to 45 minutes. The Matlab™ tools perform its filtering using FFT-convolution
whereas this C implementation is performed using standard convolution in the time domain
which is easier to implement but at the expense of speed. FFT-convolution is one aspect for
future implementation in this system. Also, the Matlab implementation is meant to run efficiently
on the PC, whereas the CCS simulation is simulating actual hardware while populating and
parsing the results for viewing which accounts for more time to simulate. Therefore, increased
speed is anticipated when the code runs on the actual hardware and while also not parsing results
for viewing.

4.3 Symbol Rate Estimation and Coarse Classification

The Symbol Timing functionality of the system is composed of different sub-modules or
functions that perform various tasks as a part for the combined functionality to perform Symbol
Timing. The Symbol Rate Searching module is one such module and performs the task of
determining the symbol rate of a received digital signal as it makes use of other functions to
carry out its functionality. This Symbol Rate Searching function is the major work horse of the
Symbol Timer in the system and is defined as a function in the code called
Symbol Rate Searching(...) with various input parameters. The Symbol Rate Searching module
takes estimated bandwidth, the constellation points of the received signal, and sampling rate of
the current system to calculate several parameters including the estimated symbol rate, estimated
samples per second, and the maximum and minimum variance of all the maximum and minimum
variances taken from each subsequent resampling of the signal constellation samples. This
function, along with all the functions used for the symbol timer, is a direct Matlab™ to C-code
translation of the original version of the system with the creation of some tools such as the
resampling, FIR filter design, convolution, and the reshaping of the constellation points.

35

Recall from the previous section that a range of possible bandwidths are used and are stored in a
vector called try_bw/] as the potential searching space for symbol rate estimate. Continuing from
the previous section, the resampling factor is calculated from a candidate bandwidth value
currently being traversed in the vector try_bw/j] ,where j iterates through all the potential
bandwidth values as the system goes through creating an array of variance values for its
elimination process. Therefore, the current resampling rate is:

resampling r, = try _bw[j] *est sps

where the estimated samples per second, est_sps is the current sampling rate of the system
divided by the estimated bandwidth provided from the Bandwidth Estimation module. The
interpolation factor / is therefore set to be resampling r; and the decimation factor, D, is
sampling rate of the system/hardware. The constellation of the complex down-converted
received signal is therefore resampled as explained in the previous section from the rationalized
interpolation and decimation factors that are derived above. The determination of interpolation
and decimation factors and resampling of the original captured constellation is iterated for all
elements in searching space, try_bw/j].

4.4 Reshaping and Variance among Samples

With resampling of the constellation complete, the vector of resampled constellation points is
reshaped to perform the “row by row” variance calculation of the reshaped, resampled
constellation. This is a part of the Fair Variance algorithm that is used to eliminate members of
the candidate space, try bw/].

Prior to reshaping, the resampled constellation is convolved with a vector of ones to first smooth
the data, then the absolute value of the resulting vector is taken to create a vector of magnitudes
from the constellation samples. Reshaping the constellation vector involves translating the 1-
dimensional vector of absolute signal samples into a 2-dimensionial array of samples, then
traversing this array and calculating the variance of each row and saving the resulting values into
another array. Consider, for example, that the resulting vector of absolute signal samples to be
reshaped after resampling and smoothing consists of 128 elements, and the contents of this
vector are as follows:

Abs Const ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...,128}
Let’s also assume that estimated samples per second, est sps, is 16 for this example which also

represents the number of rows that have to be represented in this 2-dimensional reshaped array.
The resulting vector would therefore be a 16 by 8 array of values.

36

1
1 17 33 49 B5 81 g7 113
2 2 18 34 50 BB a2 55 114
3 3 19 35 51 67 A3 99 115
4 4 20 L5 52 B a4 100 116
5 5 21 37 53 B9 85 101 117
3 B 22 ElE 54 70 a6 102 116
7 7 23 39 56 71 a7 103 119
8 8 24 40 56 72 a8 104 120
3 9 25 41 57 73 a9 105 121
10 10 25 42 58 74 a0 106 122
11 11 27 43 59 75 91 107 123
12 12 28 44 B0 7B 92 108 124
13 13 29 45 B1 77 a3 109 125
14 14 30 45 B2 78 94 110 126
15 15 3 47 B3 79 95 111 127
16 16 32 48 B4 A0 9 112 128

Figure 4.27: Reshaped Absolute Value of Constellation

The above figure 4.27 shows the resulting reshaped values now represented by the 2-dimensional
array. Taking the variance row by row would result in 1-dimensional array of variances with 16
rows. The result for this simple hypothetical example is shown in the figure 4.28 below.

1 1536
2 1536
3 1536
4 1536
5 1536
6 1536
7 1536
3 1536
9 1536
10 1536
11 1536
12 1536
12 1536
14 1536
15 1536
16 1536

Figure 4.28: Row by Row Variance from Reshaped Constellation

However, the reshaping shown in the above example is how Matlab™ and the original symbol
searching function perform the vector reshaping. Matlab™ uses the column-major order of
storing multidimensional arrays in linear memory. However, in C, the language for this
implementation, multidimensional arrays are stored in linear memory using the row-major order.
Column-major means that an array is represented in linear memory where the elements of each
column are stored sequentially, where as in row-major order, the elements of each row are saved

37

sequentially. If we look at the hypothetical samples above, column-major would mean that the
data is represented as follows:

{(1,17,33,49,65,81,97,113) (2,18,34,50,66,82,98,114),....,(16,32,48,64,80,96,112,128) }

where each row is in parentheses. This means that every element in memory goes from column
to column before moving to the next row. Alternately, row-major representation would be the
original order in which the data is, where each element in the array is in the same row before
going to next column. Therefore, if the data is to be reshaped as is in C, the resulting
representation is shown in the figure 4.29 below.

1 2 3 4 5 & 7 [}
1 1 2 3 4 5 6 7 g
z 9 10 11 12 13 14 15 16
3 17 18 19 20 2 22 23 2
4 25 2B 27 25 29 30 31 32
5 33 34 35 35 37 33 Gic] 40
£ 41 42 43 44 45 46 47 45
7 49 50 81 52 53 a4 55 ata]
& a7 55 55 60 61 62 B3 64
9 G5 ata] 67 65 65 70 71 72
10 73 74 7a 7B 77 70 78 il
11 g1 g2 g3 g4 g5 g6 87 g5
12 83 90 1 a2 93 94 95 95
13 a7 95 95 100 101 102 103 104
14 105 106 107 108 109 110 111 12
15 113 114 15 116 117 118 119 120
18 121 122 123 124 125 126 127 128

Figure 4.29: Reshaped Data in Original Format Row-Major.

The row by row variance of this data is 6, not 1536 as it should be. Therefore, an offset has to be
applied when reading data row by row of the original row-major organized data, so it will
processed as column-major to yield the same results of the original system implementation. The
data could also be transposed as an alternate solution [Wikipedia row-major]. The column-major
offset for reading data stored in row-major order is :

col* num_rows + row

where row and col represents the row and column starting from zero, of the corresponding
element that we want to access. The value num_rows represents the total number of rows. Let’s
look at an example of reading the first row of the vector of absolute constellation points that is

stored in linear format in column-major order. The first row is:

A ={(1,17,33,49,65,81,97,113}

38

The element of the row 1 column 2 is 17. This element would be read as 4/0]/1] where each row
and column starting from zero is represented in brackets. Using the offset Abs Const[1*16+0]
= Abs Const[16] = element 17 which corresponds to 17 in the original row-major sequence.

Accessing the element of row 1 column 6 corresponds to 81 and is A/0]/5].
Abs_Const[5*16+0] = Abs_Const[80] = element 81 which corresponds to 81.

Using the above methodology, each row of the reshaped vector of absolute constellation samples
can then be accessed in correct order and variance among absolute signal samples calculated
correctly.

Let’s continue with our discussion of symbol rate estimation with a 128 sample of absolute
constellation samples reshaped to 16 rows and 8 columns, and let’s also assume that the
searching space for try_bw has 12 elements. A row by row variance calculation will therefore
yield 16 variance values after resampling and reshaping the original data set. These 16 variance
calculations will therefore be stored in a vector called Var_all that saves the variance values for
each iteration through ¢y _bw/]. Therefore, Var all in this hypothetical example would be a 12
by 16 array of variance values for all 12 iterations. The minimum variance value of all the
elements is then identified and saved as min_var_all. Recall from the earlier description of the
symbol timing module that sampling at the right position will guarantee the highest Signal
Interference Noise Ratio (SINR) and hence the lowest variance amongst all samples. Therefore,
the corresponding row within Var_all, the population of all variance calculations, is the row that
possesses min_var _all and identifies the index of the element within the searching space for the
best symbol rate estimate.

The symbol rate is therefore estimated and all other members of try_bw/], the searching space,
are eliminated. Having estimated the symbol rate, coarse classification is achieved by clustering
the received samples. The clustering of received symbols allows the system to look at the
envelope of the system, where MPSK signals have a constant envelope with a single cluster
while MQAM signals have clusters around more than one value. Carrier Synchronization and
Fine Classification is the next step of this system as the class of digital signal is determined and
symbol rate estimated.

Miscellaneous

Also, since this system is a translation from one programming language to another, many
functions and tools, apart from the overall discussion, were translated or either recreated in C for
implementation of this system on the SDR hardware. The code listing at the end of this report in
the appendices provides full listing of all the source code created and used for the
implementation of this project. A user interface was also adapted in Visual C++ that runs on the
host computer to display the output of the system calculations. This interface, although not
shown in detail, constantly reads data memory locations for changes in memory for values such
as, bandwidth estimate, symbol rate estimate, and coarse classification of MPSK or MQAM.

39

4.5 Symbol Timing Conclusion

In this section, the Symbol Timing & Coarse Classification module along with its
implementation is discussed. Symbol Timing is the key component of this UCS system and
implementation. Without it, classifying MPSK and QAM signals cannot be achieved. The
symbol rate, and effectively the bit rate of a digital signal transmission are important in receiving
the signal. Estimating the symbol rate correctly is therefore important as this signal classifier
attempts to figure out a received signal profile without prior knowledge of the transmission
scheme. It is discussed in this chapter that symbol rate estimation is done through resampling the
digital signal samples at different symbol rates, and applying fair variance elimination after each
successive resample to find closest estimated symbol rate. Resampling is the most important and
computationally intensive process in symbol rate estimation. The combined three step process of
resampling is also discussed in full detail with simulation results. Finally, the reshaping and row
by row variance calculations of the resampled signal are also discussed. The symbol rate that
produces the lowest variance among all samples is chosen as the best estimate of symbol rate, as
sampling at the right time produces the highest SINR and lowest variance among the samples.

40

Chapter 5: FPGA Digital Receiver and SDR Platform

This chapter describes the FPGA Digital Receiver module implementation and its design on the
SDR Platform. First, this chapter introduces the SDR platform that is used for this particular
implementation of the previously described Signal Classifier. The basics and overview of digital
receivers are then presented, followed by the implementation of a digital receiver module on the
radio platform’s FPGA.

5.1 SDR Platform Overview

Software defined Radio (SDR) platforms support multiple air interfaces and protocols through
the use of wideband antennas, Analog to Digital Converters (ADCs), and Digital to Analog
Converters (DACs). This gives them the ability to function in many frequency bands and digitize
captured RF signals to be processed by software on a processor. Generic SDR platforms function
accordingly and are generally connected to host computers where the digitized input is passed to
the host computer’s General Purpose Processor (GPP) that performs the radio functionality in
software. As processor technology advances, along with the advancement of Digital Signal
Processors (DSPs), Field Programmable Gate Arrays (FPGAs), and other dedicated hardware,
software defined radios will continue to be implemented on a variety of different hardware
architectures that suits their applications.

The figure 5.1 below shows the next generation of standalone SDR technology with an example
of a Lyrtech SFF SDR Platform. This SDR platform is similar to the technology of widely used
SDR platforms but takes it a step further to include an advanced FPGA and DSP/ARM onboard
processors for single board software defined radio functionality, without the need of host
computers. With this architecture, RF signals are dual stage superheterodyned down to a low
intermediate frequency by dedicated radio hardware. This low-IF signal is then passed down to
the FPGA module which is programmed as a digital receiver subsystem. The FPGA thus
performs the task of digital down conversion where the signals are converted to baseband signals
and are mixed into complex I and Q (in-phase and quadrature) signals. The complex baseband |
and Q signals are then passed to the DM6446 digital signal processor for processing. The UCS
signal classifier’s modules, the topic of this discussion, are run on the DSP in C-code
executables. There, results of the Signal Classification are outputted through the platform’s
ethernet port to a host computer that has a user interface for parsing the results. The host
computer in this implementation does not perform any signal processing or system functions of
the described system, it exists only as a simple means to display results. With the inclusion of an
onboard LCD, a host computer’s interface can be eliminated all together. Also note that generic
SDR platforms, such as the Universal Software Radio Peripheral (USRP), have a similar
architecture up to the FPGA, with the exception of a DSP for onboard processing. After the
FPGA digital down-conversion, baseband signals are passed to the host computer for processing.
The figure 5.1 below shows a high level diagram of the Lyrtech SFF SDR.

41

RF Module

Data Conversion Module

R
ETie—,
-

RF Data Digital
Module Conversion Processing
Module Module

Figure 5.1: Lyrtech SFF SDR Platform

5.2 Digital Receiver Overview and FPGA implementation

The superheterodyne radio receiver has been around for many decades and is the fundamental
principle on which today’s modern radio receivers are built. The figure 5.2 below shows the
block diagram overview of a FM/AM superhet radio receiver that is typical for listening to FM
or AM broadcasts.

42

Antenna
Super Heterodyne

; SPEAKER

Mixer

Imag_e Bandpass FM /AM
RFAMP || Rejection Filter IF AMP DEMODULA | Audio AMP
Bandpass TOR
Filter

Analog Local Oscillator

Figure 5.2: Superhet Receiver Block Diagram

The analog signal, for example FM or AM broadcasts from your local favorite radio station, is
first received at the antenna. The signal is optionally amplified by an RF or low noise amplifier
before it is passed to the image rejection band-pass filter. After filtering out unwanted
frequencies, the amplified RF signal is passed into a mixer for subsequent mixing of the RF
signal. The mixer is also fed by an analog local oscillator which generates signals at different
frequencies that in this case would be controlled by turning the knob of the FM/AM radio. The
mixer mixes or translates the RF signal to an Intermediate Frequency (IF). The output signal
after mixing is the IF signal which is also filtered and amplified. Filtering in the IF stage tunes to
the particular frequency of interest and allows only the frequency of the radio station of interest
to be passed and amplified. After the IF stage, the signal is then demodulated to recover the
audio from the transmitted signal. The audio is subsequently amplified and played on the
speakers for listening by the user. If the received signal is called F_sig, the signal of the local
oscillator called F' /o, and the IF signal called F' if, the signals are related by the equation

F lo =F sig—F if

The mixer performs the analog multiplication of the ' sig and F' lo and generates a signal at the
difference in frequency. This means that the local oscillator is tuned to a frequency that will
generate a difference in frequency from the frequency of the received signal and generate the
desired intermediate frequency. For example, if you wanted to receive an FM radio station at
100.7 MHz and the IF of the receiver is 10.7 MHz, turning the knob of the radio tunes the local
oscillator to: 100.7 - 10.7 = 90 MHz [Hosking]. Therefore, the signal is down converted to a
lower frequency than the transmitted frequency and is called an intermediate frequency as it not
converted down to DC or baseband (0 hz). Superhet receivers have evolved into more advanced
implementation of the underlying concept as there are multi stage multi IF superhet receivers and
advanced designs. The Lyrtech SDR, for example, uses a dual stage superhet where RF signal
goes through 2 stages of mixing before being down converted to IF frequency of 30 MHz.

43

A digital receiver takes the concept of a superhet receiver and adds to it. The figure 5.3 below
shows the block diagram of a Digital Receiver Module.

SPEAKER
Antenna

; Digital

l Implementation

DsP | D/AConv

Digital Mixer Demod
Super- ﬂ—,
REAMP |] heterodyne N AD @ Digital L
Translator Conv PESI:FiI?:
®‘ DSP Signal

Classification LED or Host
Algorithms or Fos|

9 CPU Interface

ital Reci

Digital Local Oscillator

Figure 5.3: Digital Receiver Block Diagram

The digital receiver is built on top of a superheterodyne as further digital processing is applied to
the output of the final IF stage of the superhet. First the signal is digitized by an ADC and then is
passed on to the digital mixer for mixing. Digital mixing is similar to analog mixing as the
frequency of the signal is down converted to a lower frequency, however, in this case to
baseband (0 Hz). Digital mixers are commonly referred to as Digital Down Converters (DDC’s).
The digital mixing is performed using two separate mixers. Along with the digital IF inputs,
inputs from the digital local oscillator are also passed in simultaneously to both mixers. The
digital complex down converted baseband signal is then digitally filtered. After filtering, the
signal is passed to a DSP for demodulation and play out or further signal processing such as
signal classification or other cognitive radio functions, as is described in the implemented system
of this report.

The figure 5.4 below shows an isolated view of the digital receiver block. The important parts of
the digital receiver are the Local Oscillator, Mixer, and Digital Low-pass Filter. The Local
Oscillator is implemented as a direct digital frequency synthesizer (DDS). The oscillator
generates digital samples of two sine waves precisely offset by 90 degrees in phase, creating sine
and cosine signals. Using an 80 MHz clock source, the frequency range is from 0 Hz to 40 MHz
with very good resolution below 1 Hz. The digital mixers are composed of two digital
multipliers. The digital input samples from the ADC are therefore mathematically multiplied by
the digital sine and cosine samples from the local oscillator.

44

Digital
Implementation

Digital Mixer
Conv Digital Low I
t Pass Filter |

Digital Reciever

SIN COS

Digital Local Oscillator

Figure 5.4: Isolated Digital Receiver Blocks

“The sine and cosine inputs from the local oscillator create I and Q (in-phase and quadrature)
outputs that are important for maintaining phase information contained in the input signal. From
a signal standpoint, the mixing produces a single-sideband complex translation of the real input.
Unlike analog mixers which also generate many unwanted mixer products, the digital mixer is
nearly ideal and produces only two outputs: the sum and difference frequency signals”
[Hosking]. Therefore, if we look at the difference product of the mixer, the wideband signal is
translated from the higher frequency down to baseband by the relationship:

F lo=F sig

This is similar to the analog mixing discussed earlier with the superheterodyne receiver, except
that the signal is mixed down to baseband instead of an intermediate frequency. Therefore, by
tuning the local oscillator to the frequency of the signal of interest, the RF signal can be
translated down to baseband such that the center of signal is at 0 Hz. The baseband signal is now
ready for filtering. The digital low-pass filter passes all signals from 0 Hz to a predefined cut-off
frequency and therefore rejects all signals above the cutoff frequency. The digital filter processes
both I and Q signals. The filter effectively selects a narrow slice of the RF input signal and
translates it to OHz. Another important aspect of the digital filter is the sample rate change
afforded by the filter. The digital low-pass filter is also called a decimating low pass filter as the
output samples of the filter are decimated by a factor D. Since the filter band limits the incoming
signal by reducing bandwidth of the incoming signal from the ADC to the bandwidth of the
filter, the sampling rate of the input signal is also reduced. For example, if the bandwidth of the

45

wideband signal is 30 MHz and the bandwidth of the low-pass filter used is 3 MHz, the signal is
decimated by a factor D of 30. Therefore, the decimation factor determines the ratio of the input
and output sampling rates and also the ratio between input and output bandwidths.

As outlined earlier, the digital receiver is implemented on the FPGA module of the SDR
platform. After passing through a dual stage superheterodyne receiver, the received RF signal is
converted to an intermediate frequency signal. This IF signal is then digitized by the ADC and
passed to the FPGA to be downconverted to baseband by the digital receiver. The figure 5.5
below shows the model based design of the FPGA digital receiver that is implemented on the
FPGA of the SDR platform.

F0ATanl |

D588 \)of i JBERS - WAES

_/- \
@ flin / X \ S
T / \ Lour
o # \ :
R | \\ Digital MUHIip“EI'S

’ |
| i .
|

A
@ \ \ !
t1_0bS_PINC dita sin winfeet b /
' ! /
]
s e .,! . Rerteped /
1 i /

\
54 Wi ! ﬁ]{ / -
\ ' % 7 a0
‘\ f} ,\""_-__ — <
¢~ Pl = g
s // N
/ N
/ N
\
\
[!
DDS Local Oscillator | \I
|
| do——D |
\ Low F_0 oot |
\ |
/
. v ’
Reirtepti ~ \ “,/
\ - .
ot e 4

Figure 5.5: FPGA Digital Receiver Implementation

Instead of creating each module component of the DRM individually, components from the
Xilinx design library were used. The Xilinx library has implementations of components that are
tested and available for use in system designs such as this one. Using the Model Based Design
Kit (MBDK) along with Matlab™/Simulink, and Xilinx ISE software suites, the digital receiver
module is modeled using components of the Xilinx library. The created model is then compiled
and built in a VHDL FPGA bit-stream that can be loaded on the FPGA of the module. As seen in
the picture above, two multipliers are used for mixing, and a DDS block is used for the digital
local oscillator implementation. The digital low-pass filter is showed in later screen shots. The

46

figure 5.6 below shows the configurations used for the digital local oscillator. It also shows the
interface used with working with the Model Based Design Kit. The DDS is configured to output
sine and cosine simultaneously. The sampling rate of the system is also explicitly configured to
run at 80 MHz (FPGA and ADC clock speed). Note the use of an additional subtractor block that
is used on the frequency input of the local oscillator. As explained previously, the frequency of
the digital local oscillator is set to the centre frequency of interest in the incoming signal in order
to convert the signal to baseband. However, in this implementation, 6 kHz is subtracted from the
oscillator frequency to translate the signal down to 6 kHz instead of 0 Hz. This is called a low-IF
(low intermediate frequency), consistent with designs that have been observed on this SDR
platform.

€005 v5_0 1 (Xilinx Direct Digital Synthe.... [= |[B)[X)

Basic | Advanced Implementation

R¥_IF_In

Output Function

Furnction:

() Sine) Cozine () Sine and cosine
iRy ' 2
RX_DDS_PINC Sip widata sinH | [] Negative sine
0265 b
& KHz AddSub . A ol | [] Megative cozsine
Channels |1 %)

en
DDS w5 04
Output Frequencies
Type:
() Fixed (5 Programmable

Output frequency array [MHz| .[D.D]

Fhase Offset
Type:
() Fixed (O Programmable (8 Mone

Phaze offzet angle array [« 2pi Fadians] [DD]] D

: = t
Optional Ports il

Provide channel port
[] Provide synchronous reset part
[] Provide enable part
Explicit 5 ample Period
Sample period source:
(@) Explicit) Inferred from inputs
Explicit period 1.-"8098

[0k] l Cancel I [Help] [Apply

Figure 5.6: Digital Local Oscillator Configuration

The figure 5.7 below shows an encapsulated view of the digital receiver module, which also
includes a view of the digital low-pass filters used on both the I and Q streams. The block
labeled “demodulator” encapsulates the view from the previous figure that shows the digital
mixers and digital local oscillator. The frequency response of the FIR low pass filter used for
decimation is also shown the figure 5.7 below.

47

ou

FIR CompilenB_1 1

FIR Campiter v2_1

DEESR | 2LLX TEHNDML 0 BORE| R

[Current Fiter i S Magnituce Response (dB)

Lowpass Equiripple: Guantized
=3 Equiripple: Reference

Structure: Direct-Form FIR R LR ARNE S e S TR T

Stavle: Vs g
Source: Designed (quantized) %
=

l Store Fiter ..] : r-equerw‘i (MHz)

[Fir Manager .]

I Pasnnnos Toma Sy — [—— 1

Figure 5.7: Encapsulated DRM with view of Digital Filter

The sampling rate of the ADC and local oscillator is 80 MHz with a 40 MHz bandwidth. The
sampling rate directly after mixing in the digital receiver module is down-sampled by a factor of
2 to reduce the sampling rate the 40 MHz. Identical digital lowpass filters are implemented on
the I and Q signal streams with a decimation factor D of 20, which reduces the sample rate to 2
MHz and 1MHz bandwidth. The filter is designed using the Matlab™ FDA tool, and the
coefficients of the FIR filter is loaded into the FPGA filter blocks. The figure 5.8 below shows
the configurations of the FIR filter including the decimation factor.

FDATadl

FDAToold

€ FIR Compiler v3_1 1, (Xilinx FIR Compil... [=][B]]

7
out

Stucture ~

oK

Heb | [dosly

Figure 5.8: FIR Filter Configuration

48

The figure 5.9 below shows the encapsulated view of the digital reciever module and how it
connects from the ADC to the DSP via the video prcoessing bus. The ADC digitizes the IF input
signal and passes it to the Digitial Reciever Module implementation labled “RX”. The IF input
is digitally downconverted to complex baseband I and Q outputs which are time division
multiplexed along the video processing bus to the DSP for further signal processing.

=
Izl ' FPGA Digitial Reclever Module Design
FPGA B! (Redlime Birdware imoisientation]
PiA Config -

N e

g

@

il [blg

fooa corfiy SFF SDR DF FPGA Boad Configunsion fmask) firk}
DFHd& ¥ Thsﬁsmquswwmu;ammmumw hS REE®
ute e tock n FPBALTK modsh.

Pt

Board rviton ReesonB -

s Clock typs Finak Tame Hasdvears lemerdafion -
Clock sousce LRIl Sync Bur 1 chock -
[] Spmetrorio Ao Codec vith FPGEA Systen Clock.

Ciock Souce Vakuo [NHz)

[

Clock Divider Ve
i

} System Generator: April_fpga_FDAFPGA [c]i=f]

m_ Wl System Janrator
[

1| compeston

e eonre o]

Part

Target deoctory
T

Syrtesi ok i e discroten g =l
st v v |

FPGA clock pariod () Clock i looaon
118

Uustiplear

B |
i

=5 VPEs
[Provade chock enable clear pin

Sk system pevod (s62): 1008

Block kon disgier: Darma -

[[[(e

Figure 5.9: Encapsulated Digital Reciever Module and Synthesis Configuration

The configuration box in the above figure outlines the parameters for the FPGA clock speed
selection, VDHL implementation, and compiled code using Xilinx tools. The FPGA
implementation of the digital reciever module uses 20% of the total FPGA real estate as is
outlined by the number of slices used in the figure 5.10 below.

49

= Compilation finizhed succe==fully.

e e e E R —_— = =

De=wice Lkilization Summary::

rHumber of BUFRGs = ouk ofF 3= p=d S
FrRumber ofF BIFRSCTRLS 2 ouk of 3= (==
Frumber of Lo oaDws = ouk of S S
FMumber ofF DSP4Ss 17 ouk oF 1392 =Tt
rumber of ILCSICs FF oout of 445 17
Frumber ofF External IOEB=s 285 ouk oF 445 [=3c lao8
rMumber of LOCed IDEs ZE5 ouk of ZES 100950
FrMumber ofF External IOEM= 12 ouk oF 165 T
rumber oF LOoCesd IOERsS 1=Z ok of 12 100%
MHumber ofF External IOBSs 12 ouk oF 165 T
rMumber ofF LoCed IOESs 1= ouk ofF 1= 100
Fumber oF SLOeEIcC s 125 ouk of 445 et = o
MHumber ofF RAarMELSs = ouk aF 1392 19
Frumber ofF Slices S1Z26 ouk ofF 15380 Z09%%
rumber oF SLICER=S E5Z2 out ofF F&asS0 =T
waerall eFFaorke lewel C-all: Skandard
FPlacer eFFork lewel (-plia: High
Placer cosk table enkrs (-E2: 1
Foouker eFFark lewel {-rll: Sktandard

Figure 5.10: FPGA Device Utilization
5.3 Conclusion

In this chapter, an overview of the SDR platform used for implementing the described system is
first introduced. The Lyrtech SFF SDR platform is presented to show the architecture of the
FPGA and DSP subsystem that is used for processing in one of the more advanced SDR
platforms available today. The focus of this chapter was to describe the role of the FPGA in the
building of a digital receiver module for use of receiving and transferring the received signals to
the DSP module for further signals processing. The theory of superheterodyne receivers is first
introduced, followed by the theory behind digital receivers. Superheterodyning theory is very
important as it is basis by which all analog radio frequency hardware receives RF signals and
mixes them down to a much lower intermediate frequency. Digital receivers build on top of the
concept of superheterodynes, as they take the concept a step further by first digitizing the IF
signal before performing digital mixing techniques to further digitally down-convert the received
signal to baseband. The implementation of the digital receiver is on the SDR’s FPGA discussed
along with settings used with each module. This concludes the chapter on the FPGA digital
receiver.

50

Chapter 6: Conclusion and Future Work

6.1 Summary and Conclusion

Cognitive radio technology is a phenomenon that is built on top of the evolution of software
defined radio and is essentially an intelligent software defined radio. Cognitive radios are
therefore software defined radio implementations that are aware of their surroundings and can
adapt based on predefined objectives. This is the fundamental concept of the UCS system
implementation discussed in this report. The recent popularity and developments in SDR have
enabled us to develop a cognitive software defined radio implementation that has a predefined
objective of detecting, classifying, synchronizing, and demodulating over the air signals. In this
report, we have discussed how parts of the overall UCS system prototype are implemented on a
standalone embedded SDR platform, the Lyrtech SFF SDR.

Firstly, we have discussed how the bandwidth of both analog and digital signals is estimated by
first taking the power spectral density of the received signal. A histogram distribution is then
computed from the log,, of the power spectral density. This distribution produces two distinct
distributions for noise power and signal power, where the noise can then be isolated to find the
threshold for noise.

Secondly, we have discussed symbol timing which is the key component of this UCS system and
implementation, as without it, classifying MPSK and QAM signal cannot be achieved. The
symbol rate, and effectively the bit rate of a digital signal transmission are important in receiving
the signal. Symbol rate estimation is done through resampling the digital signal samples at
different symbol rates, and applying fair variance elimination after each successive resample to
find closest estimated symbol rate. Resampling is the most important and computationally
intensive process in symbol rate estimation. The combined three step process of resampling is
also discussed.

Finally, the description of the the role of the FPGA in the building of a digital receiver module is
also discussed. The theory of superheterodyne receivers is first introduced, followed by the
theory behind digital receivers. Superheterodyning theory is very important as it is the basis by
which all analog radio frequency hardware receives RF signals and mixes them down to a much
lower intermediate frequency. Digital receivers build on top of the concept of superheterodynes,
as they take the concept a step further by first digitizing the IF signal before performing digital
mixing techniques to further digitally down convert the received signal to baseband. Although
not apart of the overall UCS system, this FPGA implementation of creating a digital reciever
module was essential and precursive work to implementing the UCS system on the Lyrtech SFF
SDR.

6.2 Future Work
In this system implementation, C-code executables are created from the original system

implementation to run on the Lyrtech SFF SDR. Also, the digital receiver module
implementation on the FPGA is created using an array of tools to create a board-specific VHDL

51

FPGA bitstream. The digital receiver module has been simulated and tested on the SDR platform
and works according to the requirements. This module is specific to this system and may be
replicated or ignored for different system implementations. In order to create a more generic
implementation of this system, the FPGA module is limited to implemenatation of the digital
receiver module to isolate the cognitive parts of the UCS system to the DSP. Therefore, this
allows the system to be transplanted on any implemenatation that has digital receiver module and
processor that will run C—executables. The FPGA implementation of this system can be utilized
for a more custom system implementation on the Lyrtech SFF SDR platform. For example, the
fast parallel processing of the FPGA could be utilized to implement the spectrum sensing part of
the UCS system onboard the FPGA. This would allow the system to find signals faster and
possibly process simultaneous frequency bands through the use of FPGA FFT cores. This could
be future implementations of this system implementation suited to the Lyrtech SFF SDR
platform.

The C-code implementations for this system are created using generic C libraries without
compiler and vendor-specific dependencies to allow the system to run across different platforms
with little to no change. Some of the code is created to replicate the original system functions.
Essentially, these replications are direct code translations from one programming language to
another, while some are newly created. The code has been modeled in Matlab™ and simulated in
Code Composer Studio™ (CCS) for functionality. A simulator was created in CCS to model the
execution in software as it would run on the SDR platform. The functionality of system in CCS
simulation has been verified to that of the original system prototype when compared with signals
samples captured from over the air transmission. However, the C-code running on the Lyrtech
SFF SDR platform has not been debugged and fully verified. This roadblock is due to the lack of
debugging resources available with debugging the code on the system’s DSP. The SDR platform
was not provided with an appropriate in-circuit debugger or JTAG module for real time
debugging and access to data and program memories. This resource would provide the same
capabilities as does CCS which allows us to set breakpoints during code execution to check on
different data variables to make sure that system processes them as intended. It would also allow
us to load predefined signal samples that were captured and verify that the code running on the
DSP processes them according to the original system. This ability to debug would also provide
the ability to calibrate the system accordingly. For example, the Spectrum Sensing and
Bandwidth Estimation modules require the correct thresholds to function correctly. The
Spectrum Sensing module that was implemented previously by Nair [Nair, 2009] uses PSD with
a threshold to detect signals above the noise. Due to the lack of debugging resources, the
threshold was set by a trial and error process which took many hours of trials just to set one
parameter to demo this functionality of the system. The Bandwidth Estimation module of this
report, as discussed earlier, also requires a threshold to be set on the histogram distribution in
order to correctly isolate the noise and signal parts of the distribution for correct bandwidth
estimate. For this reason even though the simulated Bandwidth Estimation module runs on the
SDR platform and outputs a bandwith estimate, it is not the correct estimate. This is also the case
for the Symbol Timing module when it also runs on the SDR platform. Therefore a small amount
of work still has to be done in the future to debug and verify the system while running on the
SDR platform’s DSP along with setting the correct thresholds. Since the code has been simulated
and verified already in the CCS simulator, real time debugging on the actual hardware is a matter
of stepping through the code execution process to verify all the modules.

52

Apart from verification and testing of the modules that have already been created in C, the
remaining blocks of the system have to be created as apart of the onging process to implement
the entire system. As discussed, these modules would first have to be simulated in CCS and then
verified and tested on the SDR hardware. Also note that the addition of an FFT filtering tool
should also be created and tested for the use of this system. Recall from the earlier description of
symbol timing that the filtering is performed in time domain via convolution. The addition of an
FFT filter would add complexity but would increase the speed of the filtering and hence decrease
the time during subsequent reseampling. This filter would also allow the system to perform more
accurately without the expense of speed, as more narrow stepsizes could be used in symbol rate
estimation.

53

References

[1] Q. Chen, Y. Wang, and C. Bostian, “Universal Classifier Synchronizer Demodulator," in
Performance, Computing and Communications Conference, 2008. IPCCC 2008. I[EEE
International Performance, Computing and Communications, Dec. 2008, pp. 366-371.

[2] Rodger H. Hosking, “Digital Receiver Handbook: Basics of Software Radio sixth edition,
Theory of Operation Applications Products Links”, Pentek Inc 2006.

[3] Mathworks. Available at:
www.mathworks.com/access/helpdesk/toolbox/singal/decimate.html

[4] Steven W. Smith, Ph.D, “The Scientist and Engineers Guide to Digital Signal Processing,”
Available at: http://www.dspguide.com/

[5] John G. Proakis, Dimitris G. Manolakis, “Digital Signal Processing, Principles, Algorithms
and Applications,” Prentis Hall 2007.

[6] Row-major. Available at: http://en.wikipedia.org/wiki/Row-major_order

[7] Joseph Mitola III, “Cognitive Radio for Flexible Mobile Multimedia Communications,”
Mobile Multimedia Communications, 1999.

[8] Thomas W. Rondeau, “Application of Artificial Intelligence to Wireless Communications,”
Ph.D. Dissertation, in Dept. of Electrical & Computer Engineering. 2007, Virginia
Polytechnic Institute and State University: Blacksburg, VA.

[9] James O’Daniel Neel, “Analysis and Design of Cognitive Radio Networks and Distributed
Radio Resource Management Algorithms”, Virginia Polytechnic Institute and State
University, 2006.

[10] Simon Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications,” /EEE
Journal on Selected Areas in Communications, Vol 23, No. 2, Feb 2005, pp. 201-220.

[11] Charles W. Bostian, “Cognitive Radio Research”, May 2009. Available at:
http://wireless.vt.edu/coreareas/Cognitive%20Radios_Networks/Presentations/Cognitive%20
Radio%?20Research_Bostian.pdf

[12] M. McHenry et al., “XG Dynamic Spectrum Sharing Field Test Results,” Proc. IEEE
DySPAN, Apr. 2007, pp. 676-684.

[13] Qing Zhao and Brian M. Sadler, “A Survey of Dynamic Spectrum Access,” IEEE Signal
Processing Magazine, Vol4, May 2007, pp. 1347-1349.

[14] Bin Le, Thomas W. Rondeau and Charles W. Bostian, “Cognitive Radio Realities”,
WirelessCommunications and Mobile Computing, Vol 7, November 2007, pp. 1037-1048.

54

[15] Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty, “Next
generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” May

2006
Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.3454&rep=rep1 &type=pdf

[16] Partha Pratim Bhattacharya, “A Novel Opportunistic Spectrum Access for Applications in
Cognitive Radio”, Department of Electronics and Communication Engineering, Narula
Institute of Technology, Agarpara, Kolkata — 700 109, West Bengal, India.

[17] Sujit Nair, “Coarse Radio Signal Classifier on a Hybrid FPGA/DSP/GPP Platform,”
Masters of Science Thesis, Dept of Electrical Engineering, Virginia Tech, December 2009.

[18] SIGINT. Available at: http://en.wikipedia.org/wiki/SIGINT

[19] Lyrtech, Small Form Factor SDR Evaluation Module/Development Platform User's Guide,
Lyrtech, October 2007.

[20] Lyrtech, SFF SDR Development Platform Model-Based Design Guide, Lyrtech, April 2007.

[21] Code talker. Available at: http://en.wikipedia.org/wiki/Code talker

55

Appendix A

Source Code Listing for Bandwidth Estimation

H:\MS\Backups\UCS_C_code_april8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM
#include "bandwidth_estimation.h"

#include <math.h>

[T

/I Define The BinLength for Histogram

/I of the PSD// >30

#define Bin_Length 40

/1
#define Sampling_Rate 1600000 /Sammpling Rate is 2M for current applications for the
anritsy data 1.6 M

#define FFT_Points 1024 //****** Be sure to check this part gut*****#**xxx**

#define FFT_Resolution 512 //FFT Resolution is The total number of usuable points. The
first half of the points

1l

[

T

T

/I Set the Threshold for Max Noise Noise THis will need to be set for the device being used.
#define Noise_Upper 4

#define Noise_Lower 0

T T

/[This Function with Take the PSD and Calculate the Log10 of the PSD

/[Takes in an Array PSD and outputs the value to another Array, Log_Of PSD;

/Ivoid Log_10_PSD(genericType_t *PSD, genericType_t *Log_Of PSD, int FFT_POINTS)
/Ivoid Log_10_PSD(void)

void Log_10_PSD(genericType_t *PSD, genericType_t *Log_Of_PSD, int size)

{

int i;

errorCodeEnum_tres = NO_MATH_ERROR;

for(i=0;i<size;i++)

{

res = GenericPoint_Log10(PSD+i, Log_Of PSD+i) | res ;

/IPSD++;

/lLog_Of PSD++;

/Ires = GenericPoint_Log10(genericType_t const *p_Base, genericType_t *result);

Y/

/I end of for loop

}

/I END of FUNCTION

l-::\MS\Backups\UCS_C_code_apriI8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM
/IFind the Max LOG_PSD_POINT and MAX_INDEX

void MAX_L (genericType_t *Log_Of PSD,

genericType_t *MAX_LOG_PSD,

int *MAX_INDEX_LOG_PSD,

int size)

{

56

int i;// Loop counters to traverse the array pointer
*MAX_LOG_PSD = INT2GENERIC(0);
*MAX_INDEX_LOG_PSD =0;

for (i= 0;i< size;i++)

{
if (*Log_Of PSD > *MAX_LOG _PSD)

{
*MAX_LOG_PSD = *Log_Of_PSD;
*MAX_INDEX_LOG_PSD =1i;

}

Log_Of _PSD++; // go the next address or element in LoG PSD
} // End of For Loop

Y/END of FUNCTION

/[Find the Min LOG_PSD_POINT

void MIN_L (genericType_t *Log_Of PSD,

genericType_t *MAX_LOG_PSD,

int *MAX_INDEX_LOG_PSD,

genericType _t *MIN_LOG_PSD,

int size)

int i;// Loop counters to traverse the array pointer

int min_index =0;

*MIN_LOG_PSD =*MAX_LOG_PSD; // Set it to the MAX then compare it downwards
for (i= 0;i< size;i++)

{
if (*MIN_LOG_PSD > *Log_Of_PSD)

{

*MIN_LOG _PSD =*Log_Of PSD;
min_index = i;

2-

H:\MS\Backups\UCS_C_code_april8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM

}

Log_Of PSD++;// go the next address or element in LoG PSD
¥/ End of For Loop

Y/END of FUNCTION

/[Create Histogram vector.

/[Create values for BIN ARRAY and H_Array

void Histogram_PSD(genericType_t *Log_Of PSD,
genericType_t *MAX_LOG_PSD,

genericType_t *MIN_LOG_PSD,

genericType_t *Bin_Array,

genericType_t *H_Array,

int size)

{

genericType_t bin_width; /How wide the spread for the Histogram will be
genericType_t bin_center_constant;

genericType_t bin_center_actual;

genericType_t bin_left;

genericType_t bin_right;

genericType_t bin_location = *MIN_LOG_PSD;
genericType_t bin_location_1 =*MIN_LOG_PSD;
genericType_t *start_address;
errorCodeEnum_tres = NO_MATH_ERROR;
genericType_t Temp_1;

genericType_t Temp_2;

genericType_t Temp_3;

57

genericType_t Temp_4;

genericType_t Temp_5;

genericType_t Temp_6;

genericType_t Temp_7;

genericType_t Temp_8;

genericType_t *Bins; // A pointer variable to store the the

number of bins

genericType_t *Bin_Right_Array[Bin_Length]; / an array the size of the Number of Bins
H3:\MS\Backups\UCS_C_code_apriI8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM

int i,j; // Loop counter

int two = 2;

int one =1;

genericType_t generic_one;

start_address= Log_Of PSD;// Copy the starting address of the PSD ARRAY
*Bins = INT2GENERIC(0);

res= GenericPoint_ConvertFromInt(Bin_Length, Bins); // convert the number of Bins from the
distribution to generic

/I point # for the use in generic point

math

/I bin_width =(maxF-MinF)/Bin_Length

res1 =GenericPoint_Sub(MAX_LOG_PSD, MIN_LOG_PSD, &Temp_1);
res2= GenericPoint_Div(&Temp_1, Bins,&Temp_2);

bin_width = Temp_2; // temp 2 stores the value of the bin width

res3= GenericPoint_ConvertFromInt(two, &Temp_3);

res4= GenericPoint_Div(&Temp_2, &Temp_3, &bin_center_constant);
/Ibin_center = bin_width*.5;

/I Create a generic point value of 1 for the integer one for the use in incrementing
/[in generic point math.

res9= GenericPoint_ConvertFromint(one, &generic_one);
T T T

/I Create Bin VEctor

[T T T T

for (i= 0;i< Bin_Length;i++)

{

/I bin_location = bin_location + bin_width;
res5=GenericPoint_Add(&bin_location, &bin_width, &bin_location_1);

/IBcc =bce-(bin_width*.5); % This vector has all the values for the bin centers
res6=GenericPoint_Sub(&bin_location_1, &bin_center_constant , &bin_center_actual);
*Bin_Array= bin_center_actual;

bin_location = bin_location_1;

Bin_Array++;

I-?:\MS\Backups\UCS_C_code_apriI8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM

/IBIN ARRAY Stores the Bin Centers for the histogram Distribution

}

[T T T T

/I Create H VEctor (Distribution Vector)

[T T T T

/I To Create the H-Vector, count up the distribution for each PSD point that falls within
/I ranges of the Bins

bin_left =*MIN_LOG_PSD; //initialize bin left and right

res7 =GenericPoint_Add(&bin_left, &bin_width, &bin_right);// check this condition and the
relation to the for loops

/I bin_right = bin_left + bin_width;

for (i= 0;i< Bin_Length;i++)

{

58

for (j=0;j<size;j++) /// size in this case and almost all cases should be the precision
of fft points used

{

//if(j==0)

1K

/ Log_Of _PSD = start_address; // restart the address of the PSD to the
starting adress

I}

if((Log_Of_PSDIj]>bin_left)&&(Log_Of_PSD[jl<=bin_right)) //upper bound
inclusive lower exclusive

{

Temp_5 = INT2GENERIC(0);

res8 =GenericPoint_Add(H_Array+i, &generic_one, &Temp_5); //If you find
something in the range

/[*"H_Array=Temp_5;

H_Array[i] =Temp_5;

Y/ end of if

else if(i==0)// special case for the first freq(min freq is counted since the
count is lower exclusive

{
if(Log_Of_PSD[j]==*MIN_LOG_PSD)

{

Temp_7 =INT2GENERIC(0);

res11 =GenericPoint_Add(H_Array+i, &generic_one, &Temp_7);
/[*"H_Array=Temp_7;

H_Array[i] =Temp_7;

Y/end if

¥/ end of if

-5-

H:\MS\Backups\UCS_C_code_april8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM

else if(i==(Bin_Length-1))// Special Case of the Max Fregency Upper bound

{
if(Log_Of_PSD[j]== *MAX_LOG_PSD) // Check this case because it might count
the last distribution twice

{

Temp_8 =INT2GENERIC(0);

res12 =GenericPoint_Add(H_Array+i, &generic_one, &Temp_8);
/[*"H_Array=Temp_8;

H_Array[i] =Temp_8;

}

Y/end of if

/lLog_Of _PSD ++;

}/ end of outer for loop

bin_left = bin_right;

Temp_6 =INT2GENERIC(0);

res10 =GenericPoint_Add(&bin_right, &bin_width, & Temp_6);

/I bin_right = bin_right +

bin_right = Temp_6;

/[H_Array ++;

Y/ end of outer for loop

¥/ End of the Function
T T T T

/[Take The Histogram distribution of the Log of the Psd and Seperate the Noise portion
/IThe noiseportion can be seperated with the Noise upper and Lower Bounds
/IAfter the seperation of the noise, Find the max noise and then search for

[/l the minimum noise point moving forward.

59

/[This point is the threshold for noise.

void Noise_Vectors(genericType_t *Bin_Array, genericType_t *H_Array,
genericType_t *H_Noise,genericType_t *B_Noise,

genericType_t *Thresh,int size,int digital)

{

errorCodeEnum_t res = NO_MATH_ERROR;

genericType_t Noise_Up; //Upper noise floor

genericType_t Noise_Low; //Lower noise floor

genericType_t max_noise_histogram;

genericType_t min_noise_histogram;

genericType_t min_noise_PSD;

genericType_t max_noise_PSD;

int i=0;

-6-

H:\MS\Backups\UCS_C_code_april8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM
int int_max_noise_index=0;

int int_min_noise_index=0;

intj =0;

int noise_size =0;

/lgenericType_t *start_Bin_Address;

/lgenericType_t *start_H_Noise_Address;

/lgenericType_t *start B_Noise_Address;

/Istart_Bin_Address =Bin_Array;

/Istart_H_Noise_Address = H_Noise; /// store the starting address of the Array
/Istart_B_Noise Address = B_Noise;

max_noise_histogram =INT2GENERIC(0);

min_noise_histogram =INT2GENERIC(0);
min_noise_PSD=INT2GENERIC(0);
max_noise_PSD=INT2GENERIC(0);

/l these variables are to hold the noise and floor thresholds

/Inoise upper and noise lower are specified at the top of this file as integers
res = GenericPoint_ConvertFromint(Noise_Upper, &Noise_Up)|res;
res = GenericPoint_ConvertFromInt(Noise_Lower, &Noise_Low)|res;
=05

for (i= 0;i< Bin_Length;i++)

{

if ((Bin_Array[i] < Noise_Up) & (Bin_Array[i] >Noise_Low)) //Search for PSD Values
Within the Noise Bounds

{

/[*"H_Noise = *H_Array;

/[*"B_Noise = *Bin_Array;

H_Noise[j] = H_Array[i];

B_Noise[j] = Bin_Array[i];

j**;

noise_size++;

/[H_Noise++;// Distrubution or Hits

/IB_Noise++;//PSD Range

Y/ end of If coniditon

/[H_Array++ ;

/[Bin_Array++;

H7:\MS\Backups\UCS_C_code_apriI8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM
}/ end of the for loop // At the end of this loop you should have PSD
range for noise and Hits Distrubiton

/I Taken from full Histogram of PSD Bin and H arrays
max_noise_histogram= INT2GENERIC(0);

/[H_Noise = start H Noise_Address;

60

int_max_noise_index =0;
for(i =0; i<noise_size; i++)

if(H_Noise[i] > max_noise_histogram)

max_noise_histogram = H_Noise[i]; /Find the Max_Histogram_Point or Max
Distrubution

int_max_noise_index=i; // Find the corresponding Index from the Start

address

}

/[H_Noise++;

}

/I Convert the max Histogram point to the acutal PSD point of the MAX Noise Distribution
/IBin_Array = start_Bin_Address;

max_noise_PSD = *(B_Noise+ (int_max_noise_index));

TN Now that we have found distribution for max noise, now we need to search
i from Max_Noise downwards for the Min_Noise Distribution
M

/ILets use only the method for digital signals for the initital trial

/l'If it is not accurate for ANolog signals add the analog signal estimation method
1

/lif(digital==1)

1K

min_noise_histogram= max_noise_histogram;

/lint_min_noise_index = int_max_noise_index-1; // search from the Max
Distrubion of Noise Index Onwards.

for(i = (int_max_noise_index); i <noise_size; i++)// continue traversing the array
from

{ // max noise distribution to min

noise distribution

if(H_Noise[i] < min_noise_histogram)

min_noise_histogram = H_Noise[i]; /Find the Min_Histogram_Distribution
of the Noise

int_min_noise_index=i;

-8-

H:\MS\Backups\UCS_C_code_april8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM

}

/[H_Noise++;

}

/[Bin_Array = start_Bin_Address;

min_noise_PSD = B_Noise[int_min_noise_index];

/IRemember min noise index is maxnoise index plus the counts
*Thresh = min_noise_PSD;

II}1 end of If digital

/lelsell If it is a Analog signal

1*{

Thresh = *(B_Noise + int_max_noise_index+1);

*/

I}

} ///l END of FUNCTION

/IThis FUNCTIOn takes the Threshold for noise found in the previous
/[Function and Uses that Estimate bandwidth given the LOG of the PSD
void Bandwidth_Estimation(genericType_t *Log_Of PSD,
genericType_t *Thresh,

genericType_t *band,int size)

61

{

int near_bw_threshold_left =0; // this variable tells whether you are close to the
bw_threshhold or not

/I % If you are close to the bw_threshold, stop

/[traversing. If you are far away keep

[[traversing

int near_bw_threshold_right =0;

genericType_t lo=INT2GENERIC(0);

genericType_t hb=INT2GENERIC(0);// //lower side and upper side
bandwidth points

genericType_t temp;

genericType_t roll_off;

genericType_t bw;

float roll_off2;

errorCodeEnum_t res;

Hg:\MS\Backups\UCS_C_code_apriI8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM
/lgenericType_t *PSD_Start_Address = Log_Of PSD;

int i,j; / Counters

*pand =INT2GENERIC(0);

i=2; // Check THIS OUT FOR MATLAB VS C code

while (near_bw_threshold_left ==0)

{
if((Log_Of_PSDIi]<*Thresh) && (Log_Of_PSDIi-1]>*Thresh)) // IF i am near the threhhold
break out of the loop

near_bw_threshold_left =1;

}
if((Log_Of PSDIi]<*Thresh) && (Log_Of PSDIi+1]>*Thresh)) //IF | am near the
threshhold break out of the loop

{

near_bw_threshold_left =1;

}

else

i =i+1; // IF lam nowhere near the threhhold keep traversing
Y/

/l Log_Of PSD ++; /// Traverse through the PSD Points

¥/ End of the WHile Loop

/ Log_Of PSD = PSD_Start Address + size; // go the end of the PSD Array
j= size-2; //(total number of PSD or LogPSD points)

while (near_bw_threshold_right ==0)

i{f((Log_Of PSDIj]<*Thresh) && (Log_Of PSDIj-1]>*Thresh))
ﬁear_bw_threshold_right =1;
i}f((Log_Of_PSDIj]<*Thresh) && (Log_Of PSD[j+1]>*Thresh))
ﬁear_bw_threshold_right =1;

}

else

{
=1

-10-
H:\MS\Backups\UCS_C_code_april8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM

62

Y/ end of the while loop
T T T T T T T
TTHHTTTHHTTTHTINONGENERIC_POINT MATH Herel/l1HHHHHHTHTHTT
if(abs(i-j)>(FFT_Points/2))

{
lo=j*(Sampling_Rate/FFT_Points)-Sampling_Rate;
hb=i*(Sampling_Rate/FFT_Points);

}

else

{

lo=i*(Sampling_Rate/FFT_Points);
hb=j*(Sampling_Rate/FFT_Points);

}

temp = hb-lo;

/[*band = temp;

/Iroll_off=0.35;

[ll/bandwidth =bw/(1+roll_off);

roll_off = DOUBLE2GENERIC(1.35);

roll_off2 = 1.35;

bw = temp; /=LONG2GENERIC((*Bandwidth));
/Ires = GenericPoint_Div(&bw, &roll_off, &bw_res);
/Ires = GenericPoint_Int(&bw_res, &bw_roll_off);
/*Bandwidth = bw_roll_off;

temp =fabs(ceil(bw/roll_off2)); //*Bandwidth =

abs(ceil(bw/roll_off2));///---=--==========--- Non_GENERIC_POINT MATH----------
*band = temp;

/*Bandwidth =2*abs((ceil(bw/roll_off2)));///-----=-======-=--- Non_GENERIC_POINT
MATH----------

/lcf=(lo+hb)/2;

Y/END OF FUNCTION

/IThis FUNCTION is MAIN Function INSIDE THE Bandwidth Estimation Routine,

/I THis should make a call to all the functions needed to calculate the estimated

/[bandwidth

/I THe only input should be the an Array of PSD points.

/I FROM that the routine should Figure out a the estimated Bandwidth.

/I Should return an int*

void band_est_main(genericType_t *PSD_Points, genericType_t*Bandwidth, int size)

{

l-::;IMS\Backups\UCS_C_code_apriI8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM
/[PSD_POINTS is THE INPIUT

/lgenericType_t *PSD;

/lgenericType_t *Log_Of PSD;

genericType_t PSD[FFT_Points];

genericType_t Log_Of PSD[FFT_Points];

genericType_t MAX_LOG_PSD;

int MAX_INDEX_LOG_PSD;

genericType_t MIN_LOG_PSD;

genericType_t Bin_Array[Bin_Length]; // Actual PSD Points to work with the counts
genericType_t H_Array[Bin_Length]; // counts for the distribution
genericType_t H_Noise[Bin_Length];

genericType_t B_Noise[Bin_Length];

genericType_t Thresh; // Threshhold for noise//

/lgenericType_t roll_off;

/lgenericType_t bw;

/lgenericType_t bw_res;

63

/lint bw_roll_off;

[[float roll_off2;

/lerrorCodeEnum_tres;

int i=0;

/[Just for now,

int digital =1; // assume that the bandwidth of all digital signals
/IPSD= (genericType_t*)malloc(size*sizeof(genericType_t));
/ILog_Of_PSD = (genericType_t*)malloc(size*sizeof(genericType_t));
/initializations the PSD Points.

MAX_LOG_PSD =INT2GENERIC(0);
MAX_INDEX_LOG_PSD=0;

MIN_LOG_PSD = INT2GENERIC(0);

Thresh =INT2GENERIC(0);

for(i=0;i<size;i++)

{
PSD[i] = INT2GENERIC(0);
Log_Of PSDIi] = INT2GENERIC(0); // Initialize the Log of the PSD to All zeros

-12-
H:\MS\Backups\UCS_C_code_april8\bandwidth_estimation.c Monday, July 26, 2010 6:35 PM
for(i=0;i<size;i++)

{
PSD[i] = PSD_Points[i]; / The address of one is assigned to the address of the other
}

for(i =0;i<Bin_Length;i++) //initialize the values back to zero;

{

H_Array[i] = INT2GENERIC(0);

Bin_Array[i] = INT2GENERIC(0);

H_Noise[i] = INT2GENERIC(0);

B_Noiseli] = INT2GENERIC(0);

Y/

Log 10 _PSD(PSD, Log_Of PSD, size);// Calculate the Log of the PSD

MAX_L (Log_Of PSD,&MAX_LOG_PSD, &MAX_INDEX_LOG_PSD,size);

MIN_L (Log_Of PSD, &MAX_LOG_PSD, &MAX_INDEX_ LOG_PSD, &MIN_LOG_PSD, size);
Histogram_PSD(Log_Of PSD, &MAX_LOG_PSD, &MIN_LOG_PSD, Bin_Array, H_Array, size);
Noise_Vectors(Bin_Array,H_Array, H_Noise, B_Noise, &Thresh, size, digital);
Bandwidth_Estimation(Log_Of PSD,&Thresh,Bandwidth, size);

free(PSD);

free(Log_Of PSD);

¥/ End of the Function
13-

64

Appendix B

Source Code Listing for Symbol Timing Estimation
H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM

#include "Symbol_Timing.h"

#include "lyrtech_init.h"

////*********Variable Array SiZGS for the use**

/[#define Sampling_Rate 2000000 //Sammpling Rate is 2M for current applications

#define NUM_SAMP 128

#define Sampling_Rate 1600000 // Sampling rate for ANRITSU DATA is 1.6M#

#ifndef step_sr

#define step_sr 100 //change the step sr for searching range

#endif // range is normally 1; Step_sr normally 100

#ifndef Range

#define Range 1 //change the step sr for searching range

#endif // range is normally

#define Vector_Size_Resample _const 2048 // This is the size of the The Resampled Contesllation
/I So far | have seen Interpolation Factors on the orders of 250;-->250000+ points for data on
samples of 1024

#define Vector_Size Resample 60000 // This is the size of the vector to hold Upsampled and
Filterd Data

/[(Conv_Size = Vector_Size_Resample + FIR_Size);

#define Conv_Size 62000 //This has to be the size of FIR_Size and Vector_Size Resample
#define Limiter_Len 2000 //*** CHANGE THIS to MAX value for the size for a limiter function
I
#define FIR_Size 512 // This is the size of the Filter used for Resampling(MAX filter size)
#define num_fft_conv 1024 // This is the fft size to use for filtering. Affects speed

/I the fft size should be less the the FIR_SIZE

M
[f-===m--- SymbolSearching Variables that might need to be bigger for to support full func--

/I In Case of a Crash, or depending on Program Memory Restrictions

/I Experiment with these lengths and Rebuild

#define inte_size 200

#define elg_len 2048

#define re_elg _len 2048

#define elg1_len 256

#define conv_cons_len 256

#define var_all_len 2048 // This is usually 21*36

#define try_bw_len 200 // Ususally 21

#define max_min_len 200 // About 21 in matlab verison

#define two_d_array_len 400 // This goes back to storing and accessing elements as a 2d array
#define g_len 100 // This is the size of the array for the QAM searching section

#define second_var_len 200 // *** Check the appropriate size of this not sure what it is
H1:\MS\Backups\UCS_C_code_apriIB\SymboI_Timing.c Monday, July 26, 2010 6:32 PM

supposed to be as of now

static const genericType_t Signal_Processing_Constant_Value_1 = INT2GENERIC (1);

static const genericType_t Signal_Processing_Constant_Value_0 = INT2GENERIC (0);

[f-===-—- END of DEFINE Statements for SYmbol Timing Variables
/I THings to check

/I 1) Check out the generic convolution. size of output

112)

/* These are the Funtion Calls that need to be inititated in Main.
Possibly Copy and Paste the code below in Main(Appropriate Section) to get it to work:
/[Symboltiming Data type Definitions

65

genericComplexType_t *Complex_Samples_Data[NUM_SAMP]; // example Number of samples
passed to DSP from FPGA

/[Symboltimming Function Calls where appropriate
convertFromWANNSamplesToGenericSamples(wannlnputSamples, Complex_Samples_Data,
NUM_SAMP); //

convert the samples to complex I1+jQ format

/Il Complex_Samples_Data is of generic

*/

/IFIR routine taken from TEXAS INSTRUMENTS

TN Funtions for Symbol Timing//THTHTTTHTTTHITTTITHITIIII

/[This is the Function to rationlize given Interpolation and Decimatian factors

/[Basically reduce them to the Lowest Terms

/IWORKS

void RAT(long *m, long *n)

while(*m!=*n) // There is no decimal point so no need for Generic Point Math

if(*m > *n)

*m=*m - *n; //large - small , store the results in large variable

else

*n=*n - *m;

Y/ end the while Loop

/Il Remeber to divide | and D by M;

H2:\MS\Backups\UCS_C_code_apriIB\SymboI_Timing.c Monday, July 26, 2010 6:32 PM

¥/ End of the RAT function.

/I This function does UPSAMPLING by zero insertion.

/lInserts N-1 zeros inbetween each element of the array

/Isize is the length of the input sample.(The total number of input samples or IQponts)
/I In reality it does not insert the zeros but keeps track of how many zeros are inbetween each
element

/IWORKS

void Up_Sample(genericComplexType_t *constellation_points, long Interpolation_Factor,
genericComplexType_t *Up_Vector,long *Up_Length, int size)

{

int total_zeros = Interpolation_Factor -1;// insert N-1 zeros between input samples
int interp = Interpolation_Factor;

int input_length = size; // size of the incoming vecotr of constellation points. eg 1024
inti =0; // This is the for loop iterator;

int j=0;

int output_length=0; // THis is how big the output or UPvector is going to be

/[output_length = ceil(input_length * Interpolation_Factor); // This int arithmetic/ No
need for gneric type

output_length = ceil(input_length * (Interpolation_Factor));

*Up_Length = output_length; // The size out_put Vector will be output Length
/[start_addr = temp_vector;

for(i =0;i< output_length;i++)

{

Up_Vector[i].real = Signal_Processing_Constant_Value_0;

Up_Vectorli]l.imag = Signal_Processing_Constant_Value_0;

}

/ltemp_vector = start_addr;// Restart the pointer at the base address

1

=05

for (i= 0; i< output_length ;i=i+interp) // Go throuh and reinstert the acual
constellation points back into

66

{

/l Temp_vector.

Up_Vector[i].real = constellation_points[j].real;
Up_Vector[i].imag = constellation_points[j].imag;

j**;

¥/ The end of the foor loop

¥/ END of of UP_SAMPLE

/I The convolution using the inputside algorithm.
/IWORKS

void Convolution_Input_Side(genericType_t *input1, genericType_t *input2, int size1, int size2,
int output_size, genericType_t *output)
H?Z\MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
{

inti,j =0;

int total_size;

int iterator =0;

int al;

genericType_t Temp_result[Conv_Size];

genericType_t input_prod;

genericType_t intermediate;

genericType_t a; // These are the variables to perform the convolution math math.
genericType_t b;

genericType_tc;

errorCodeEnum_t res;

total_size =(size1+size2)-1;

for(i=0;i<total_size;i++)

{

Temp_result[i] =INT2GENERIC(0);

¥/ end of initialzation loop

for(i = 0; i< size1;i++)

{

for(j=0;j< size2;j++)

{

/[l Temp_result[i+j]=Temp_result[i+j] + (input1[i] * input2[j]);
iterator = i+j;

a = input1[i];

b = input2[j];

¢ = Temp_result[iterator];

res =GenericPoint_Mult(&a, &b,&input_prod);

res =GenericPoint_Add(&c, &input_prod, &intermediate);
Temp_result[iterator] = intermediate;

iterator =0;

¥/ inner loop

¥/ End of Outer loop

for(i=0;i<output_size;i++)

{
output[i]=INT2GENERIC(0);
}

for(i=0;i<output_size;i++)

output[i]J=Temp_result[i];

_4-

H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM

¥/ End of Function
/I Convolve a generic_Type with a generic_Complex_type

67

/[***Works

void Convolution_Input_Side_Complex(genericType_t *input1, genericComplexType_t *input2, int
size1, int size2,

int output_size, genericComplexType_t *output)

{

genericType_t conv_input[Vector_Size Resample];

genericType_t conv_output[Conv_Size];

int i,j;

for(i=0;i<size2;i++)

conv_input[i] = input2[i].real; // copy the contetns of the complex input

}

Convolution_Input_Side(input1, conv_input,size1, size2, output_size, conv_output);
for(i=0;i<output_size;i++)

output[i].real =conv_output[i];

}

for(i=0;i<size2;i++)

conv_input[i] = input2[i].imag; // copy the contetns of the complex input

}

Convolution_Input_Side(input1, conv_input,size1, size2, output_size, conv_output);
for(i=0;i<output_size;i++)

output[il.imag =conv_output][i];

}

¥/ End of the Convolution_Input_Side_Complex

/ITHIS IS THE GENERICPOINT CONVOLUTION --OUTPUTSIDE ALGORITHM

/I Input 3 is the filter

/I Input 1 is the data

void Conv(genericType_t *inputsamples1, genericType_t *filt,int input_size, int taps,
genericType_t *result)

{

H5:\MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
int ij;

int output_size;

errorCodeEnum_t res = NO_MATH_ERROR;

genericType_t temp;

genericType_t element;

genericType_t out;

output_size = input_size + taps - 1;

for (i = 0; i < output_size; i++) /// Go through each element of the output
{ result[i] =Signal_Processing_Constant_Value_0;
for (j = 0; j < taps; j++) //multiply and accumulate for each

output element
{// 0 to taps

i{f(((i=)<O)((i-)>=input_size))

/[Do Nothing Here
}

else

{

element = inputsamples1[i-j];

GenericPoint_ Mult(&filt[j], &element , &temp);
GenericPoint_Add(&temp, &result[i], &out);

68

result[i] = out; ;

}

}

}/ end of big for

¥/ end of the G Conv for Sujits Code

void Conv_Complex(genericComplexType_t *input_samples, genericType_t *filt,int input_size, int
taps, genericComplexType_t *result)

{

genericType_t conv_input[Vector _Size Resample]; // THe biggest size sample to convolve is
1024 for the costellation points

genericType_t conv_output[Conv_Size];

int output_length;

int i;

output_length = input_size+ taps - 1;

for(i=0;i<input_size;i++)

conv_input[i] =input_samples[i].real;

-6-
H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM
Conv(conv_input, filt,input_size,taps, conv_output);
for(i=0;i<output_length;i++)

result[i].real = conv_output[i];

}

for(i=0;i<input_size;i++)

conv_input[i] =input_samples[i].imag;

}

Conv(conv_input, filt,input_size,taps, conv_output);
for(i=0;i<output_length;i++)

result[i]l.imag = conv_output]i];

¥/ end of function

/[lll The overlap add method/////ll/

/Il FFT CONVOLUTION WITH THE OVERLAPP ADD METHOD

[Ill THis is for fast filtering of large amounts of data

[l with large filters

/Il THE FFT SIZE must be specified in the Macros above

void FFT_Filter(genericType_t *input_data, genericType_t *filter,
genericType_t *result,int input_size, int filter_size)

{

int output_length; // This is the size

int N_FFT; // N is the number of FFT points to use for the convolution
intL; // L is block length

int i,j; // iterators

genericComplexType_t filter_complex[FIR_Size]; //this variable is hold a complex version of
the filterdata

genericComplexType_t input_complex[Vector_Size Resample]; // the input sample may be very big
errorCodeEnum_t res;

DSASignalProcessingType_t dsaVariable;

genericComplexType_t twiddleFactors[num_fft _conv];
genericComplexType_t window[num_fft _conv];

genericComplexType_t B [num_fft_conv]; // this holds FFT of the FILTER

genericComplexType_t dst[num_fft_conv]; // variable to hold calculations
-7-

69

H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM
[[][[*Fxeemessetinitialize the input sample and the filter to be complex
for(i=0;i<filter_size;i++)

{

filter_complex[i].real =filter[i];

filter_complex[i].imag = Signal_Processing_Constant_Value_0; // the imaginary parts
have to be zero;

Y/ end of for loop

for(i=0;i<input_size;i++) /// make the input data complex also

{

input_complex][i].real =input_datali];

input_complex[i].imag = Signal_Processing_Constant_Value_0; // the imaginary parts
have to be zero;

}/ end of for loop

[T e T nnn|

/linitialize B to zero

for(i=0;i<N_FFT;i++)

{

B[i].real= Signal_Processing_Constant_Value_0;

B[i].imag= Signal_Processing_Constant_Value_0;

}

/1

N_FFT = num_fft_conv; //assign the lenght of the convolution to use in the filtering
/INow caltulate the FFT of the FILTER and Save it in B/

res = GenericPointComplex_InitFFTTwiddles(twiddleFactors, N_FFT);

/I res= GenericPointComplex_InitBlackmanWindow(window, filter_size);

/I res= GenericPointComplex_WindowData (filter_complex, window, dst, filter_size);
res = GenericPointComplex_ FFT (filter_complex, &twiddleFactors[0], B, N_FFT) | res;
/IB has the FFT of the Filter

T T LT T

Y/ end of main function

HTTHHHTTTTITIITEND OF FAST Convolution//HI T

/I This Function is the Second part of the Resampling routine

/' It should Recieve the Upsampled Vector data and Design the FIR

/I and Implement the FIR on the in Coming Data

/I Up_Vector has all the Upsampled data

/' Up_Vector Filterd has the data after Filtering

// *kkk THIS WORKS*********

H8:\MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM

void Resample_FIR(genericComplexType_t *Up_Vector, genericComplexType_t *Up_Vector_Filtered,
long Interpolation_Factor, long Decimation_Factor, long *Up_Length)

{

genericType_t ID_max = 0;

long 1,D =0;

genericType_t FC =INT2GENERIC(0); // This is the Cutoff Freqgency

int M = 0; // This is the length of the Filter Kernel

int i,j; / lterators for the loops

int length = *Up_Length;

errorCodeEnum_tres = NO_MATH_ERROR;

const genericType_t PI= DOUBLE2GENERIC(3.14159265);

genericType_t Filter_Kernel[FIR_Size]; // This is to store the generic point sinc
genericType_t BlackMan_Window[FIR_Size]; // a vector to use for Windowing
genericType_t Windowed_Filter[FIR_Size]; // A vector that holds the contents after
filtering

genericType_t SUM;

genericType_t Scale_Factor;//

*kkkk

70

genericType_t Max_H;

genericType_t one;

genericType_t conv_input1[Vector_Size Resample]; // These are variables to use in the
convoltution for filtering

genericType_t conv_input2[Vector_Size Resample];
genericType_t conv_output1[Vector_Size Resample];
genericType_t conv_output2[Vector_Size Resample];
| = Interpolation_Factor;

D = Decimation_Factor;

ID_max = 1;

if(ID_max > D)

{

ID_max =l;

}

else
ID_max =D; // Find the Maximum Between | and D

}

",

I

/IFC = 1/D; %Set the cutoff frequency (between 0 and 0.5)

/IFC = 1.0/ID_max;
res=GenericPoint_Div(&Signal_Processing_Constant_Value_1, & D_max, &FC);

[oottt ool thol oot R
Hg:\MS\Backups\UCS_C_code_april8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM

M = 2*ID_max*10; // 'Set filter length (Experiment With Different Filter Lengths)
/IM = FIR_Size; // You can Fix the filter Length for less calculations

/I And less smooth data. EXPERIMENT WITH THE RESULT

1

/1 ool i

if(M<=FIR_Size

{

/I Do nothing use the current M

}

else

{
M =FIR_Size;

}

o

i

for(i=0;i<M;i++) // THis part of code follows method 1 of Matlab code resample_script.m
for FIR, method 2 for blackman

{

if((i - (M/2))==0)

{

Filter_Kernel[i] = DOUBLE2GENERIC(sin(PI*FC)); // Avoid a devidide by zero

}

else

{

[ffilter_kernel(i) = sin(PI*FC * (i-M/2)) / (PI*"FC*(i-M/2));

/[*(Filter_Kernel+i) = DOUBLE2GENERIC(sin(PI*FC*(i-M/2)) / (PI*FC*(i-M/2))); //
Check this for

Filter_Kernel[i] = DOUBLE2GENERIC(sin(PI*FC*(i-M/2)) I ((i-M/2))); // Check this for

}
/Iblack1(i) = (42 - 50*cos((2*pi*i)/M) + 8*cos((4*pi*i)/M))/100;

71

BlackMan_Window [i] =DOUBLE2GENERIC((42 - 50*cos((2*PI*i)/M) + 8*cos((4*PI*i)/M))/100);
1l

¥/ END of THE GENERATION FOr the Filter KERNEL and THE Blackman WINDOW
for(i=0;i<M;i++)//BlackMan WINDOW the SINC pulse to Create a WINDOWED FILTER KERNEL
{

[ffilter_wind = filter_kernel.*black1;

res= GenericPoint_Mult(&Filter_Kernel[i], &BlackMan_Window[i], &Windowed_Filter[i]);

}/ Continue from here with Normalization ETC

/I Normalize the Filter to a Gain of 1 at DC

SUM = DOUBLE2GENERIC(0);

for(i=0;i<M;i++)

H1:?MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
/ISUM = SUM + *(windowed filter +i);

res = GenericPoint_Add(&SUM,&Windowed_Filter[i], & SUM);
¥/ end of the for loop

for(i=0;i<M;i++)

{
/I*(windowed._filter + i) = *(Windowed Filter +i)/SUM;
res = GenericPoint_Div(&Windowed_Filter [i],&SUM, &Windowed_Filter[i]);

}

/I THIS MAY or MAY bot be needed
Max_H= DOUBLE2GENERIC(0);
for(i=0;i < M; i++)

{
if(Windowed_Filter[i]>Max_H)
{

Max_H =Windowed_Filter[i];
}

}

/[Scale_Factor = floor(1/Scale_Factor);

one =DOUBLE2GENERIC(1);

res = GenericPoint_Div(&one, &Max_H, &Scale_Factor);

for(i=0;i< M;i++)

{

/I*(Windowed_Filter + i) = *(Windowed_Filter +i)*Scale_Factor;

res = GenericPoint_Mult((& Windowed_Filter[i]),&Scale_Factor,(&Windowed_Filter]i]));
/Ires = GenericPoint_Mult((Filter_Kernel +i),&Scale_Factor,(Filter_Kernel +i));
}

for(i=0;i<length;i++)

{

conv_input1[i] = Up_Vector]i].real;

conv_input2[i] = Up_Vectorli].imag;

}

/III//Next Up Convolve the input signal with the filter to perform the filtering
/[Convolution_Input_Side(conv_input1, Windowed_Filter,length, M,length, conv_output1);
/[Convolution_Input_Side(conv_input2, Windowed_Filter,length, M,length, conv_output2);
Conv(conv_input1, Windowed_Filter,length, M, conv_output1);

Conv(conv_input2, Windowed_Filter,length, M, conv_output2);

for(i=0;i<length;i++)

{

Up_Vector_Filtered[i].real=conv_output1[i];

Up_Vector_Filtered[i].imag=conv_output2[i];

11-

H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM

}
72

¥/ End of the filtering of Resample function

/[THis is the down_sample function, This is the 3rd part of the resampling routine
/I UP_Vector should contain the data elements after Filtering.

/I Decimation Factor holds the value to down sample by

/I Constellation Points Resampled has the values that

/I after the entire resampling process.

/I Function should keep every Nth element of the array

/I starting from the first element. N represent the integer value

/I the Decimation Factor

[IINV QRKS s

void Down_Sample(genericComplexType_t *Up_Vector_Filtered, long Decimation_Factor,
genericComplexType_t *Constellation_Points_Resampled, long *Up_Length,

int *Down_Length)

{

long length = *Up_Length; // This is the incoming size of the array

int i,j =0; // iterator for a for loop

*Down_Length = ceil(length/ Decimation_Factor);

for(i=0; i<*Down_Length; i++)

{

Constellation_Points_ Resampled[i].real = INT2GENERIC(0);
Constellation_Points_ Resampled[i].imag = INT2GENERIC(0);
}

=05

for(i=0; i<*Down_Length; i++)

Constellation_Points_Resampled[i].real =Up_Vector_Filtered[j].real ;
Constellation_Points_Resampled[i].imag =Up_Vector_Filtered[j].imag;

j=j*+ Decimation_Factor; // Pick every jth point and throwing away the rest.

}

Y/ This is the end of the function

/ITHIS WORKS. THIS CALLS THE FUNCTIONS ABOVE

void Resample(genericComplexType_t *constellation_points, genericComplexType_t *
constellation_points_resampled,

long Interpolation_Factor, long Decimation_Factor,int size,int * Down_Length)

{

genericComplexType_t Up_Vector[Vector_Size_Resample]; // this is the upsampled vector
zero insertion

genericComplexType_t Up_Vector_Filtered[Vector_Size Resample]; //Vector After Filtering
I-;I:\ZMS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM

long Up_Length;

long m;

long n;

m= Interpolation_Factor;

n = Decimation_Factor;

RAT(&m, &n); // Find the Greatest common divider of the 2 numbers

Interpolation_Factor = (Interpolation_Factor/ m); // Rationalize the numbers to

smaller numbers

Decimation_Factor = (Decimation_Factor/ m); //

Up_Sample(constellation_points, Interpolation_Factor, Up_Vector, &Up_Length, size);
Resample_FIR(Up_Vector, Up_Vector_Filtered, Interpolation_Factor, Decimation_Factor, &
Up_Length);

Down_Sample(Up_Vector_Filtered, Decimation_Factor, constellation_points_resampled, &
Up_Length,Down_Length);

}

/[Simple function to take the ABS() of a Generic_Complex_type

73

/I and Return an GenericType. Calculates the absolute value of each element(real and imaginary
parts)

//***WORKS****

void ABS_Complex(genericComplexType_t *input, genericType_t *output, int inputlength)
{

inti=0;

genericType_t input_squared_imag;

genericType_t input_squared_real;

genericType_t input_real;

genericType_t input_imag;

genericType_t sum_squared;

genericType_t abs_value;

errorCodeEnum_t res;

for(i=0;i<inputlength;i++)

input_real = (input[i].real);

input_imag = (input[i].imag);

/linput_real = ((input+i)->real);

/linput_imag = ((input+i)->imag);

/IGenericPoint_Exp2(genericType_t const *p_Base, genericType_t *result);

res= GenericPoint_Mult(&input_real,&input_real, &input_squared_real);
H1:€)MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM

res= GenericPoint_Mult(&input_imag,&input_imag, &input_squared_imag);

/I GenericPoint_Add(genericType_t const *a, genericType_t const *b, genericType _t
*result);

res= GenericPoint_Add(&input_squared_real,&input_squared_imag,&sum_squared);
/IGenericPoint_Sqrt(genericType_t const *p_Square, genericType_t *result);

res = GenericPoint_Sqgrt(&sum_squared, &abs_value);

output[i] = abs_value;

abs_value =INT2GENERIC(0);

sum_squared =INT2GENERIC(0);

Y/ end of the for loop

Y /1 -end of the function////111T11HHTTHHTTTTITTTTTTTITTHITHTTTTTITTTTTIT

/I this is the limiter function. takes abs value first then carries out the limiter
functionality.

/I COME BACK TO THIS FUNCTIONL.IT is Called Once at the very end of the symbol_Timer.
/1.

void Limiter_F(genericType_t *input, genericType_t *output, genericType_t level, int size)
{

genericType_t x[Limiter_Len];

genericType_t y1[Limiter_Len];

genericType_t sum_x;

genericType_ttemp_sum_x;

genericType_t temp_x_squared;

int i;

/lint temp_mean;

genericType_t mean;

genericType_t mean_squared;

genericType_t standard_mean;

genericType_t temp_mean;

/lgenericType_t *std_mean_mean; // variable for the standard_mean/mean

1

genericType_t R_th[2];

genericType tR;

genericType_t len;

74

genericType_t lim_var_squared;// this the major variable for the comparison in the lim
funchtin

genericType_t lim_var;

genericType_t lim_var_temp;

I-::?MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM

errorCodeEnum_t res;

/I ABS_Complex(input, x, size); // x should have the abs value of the complex

input

for(i=0;i<size;i++)

{
x[i] =input[i];
}

/Nlevel is the number of points in each row or column in QAM
[ly1=zeros(size(x));
for(i=0;i<size;i++)

{

y1[i] = INT2GENERIC(0);

}

/IR=[-1];

R =INT2GENERIC(-1);

sum_x= INT2GENERIC(0);

/l rms mean

for(i=0;i<size;i++)

{ //Calculate the mean

[Isum_x=x(i)"2+sum_x;//
res=GenericPoint_Mult(&x[i],&x[i], &temp_x_squared);
res=GenericPoint_Add(&temp_x_squared, &sum_x, &temp_sum_x);
sum_x = temp_sum_x;

¥/ End of For Loop

len = INT2GENERIC(size);
/Imean_x=(sum_x/length(x))*(1/2);

res =GenericPoint_Div(&sum_x, &len, &mean_squared);
res =GenericPoint_Sqrt(&mean_squared,&mean);//*/
[* for(i=0;i<size;i++)// try the regular mean

{

res=GenericPoint_Add(&x[i],&sum_x, &temp_sum_x);
sum_x = temp_sum_x;

Ml

len = INT2GENERIC(size);

res =GenericPoint_Div(&sum_x, &len, &mean_squared);
mean = mean_squared;*/
/[standard_mean=((4+80+72)/16)"(1/2);
standard_mean = DOUBLE2GENERIC();
/IR_th=[5.5,14];

R_th[0] =DOUBLE2GENERIC(5.5);

-15-

H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM
R_th[1] =DOUBLE2GENERIC(14.0);
for(i=0;i<size;i++)

[[*lim_var =(x(i)*standard_mean/mean_x)"2;

res =GenericPoint_Mult(&(x[i]), &standard_mean, &lim_var_temp);
res=GenericPoint_Div(&lim_var_temp, &mean, &lim_var);

res =GenericPoint_Mult(&lim_var,&lim_var, &lim_var_squared);

if ((lim_var_squared < R_th[0]) || (lim_var_squared==R_th[0]))

{

75

y1[i]= INT2GENERIC(1);
}
else if((lim_var_squared< R_th[1]) && (lim_var_squared>R_th[0]))

{
y1[il= INT2GENERIC(2);
}

else

{
y1[i1=INT2GENERIC(3);
}
}

for(i=0;i<size;i++)
{

output[i] = y1[il;

}

¥/ end of limiter

void ABS_Limiter_F(genericComplexType_t *input, genericType_t *output, genericType_t level, int
size)

{

genericType_t x[Limiter_Len];

genericType_t y1[Limiter_Len];

genericType_t sum_x;

genericType_t temp_sum_x;

genericType_t temp_x_squared;

int i;

/lint temp_mean;

genericType_t mean;

genericType_t mean_squared;

genericType_t standard_mean;

genericType_t temp_mean;

/lgenericType_t *std_mean_mean; // variable for the standard_mean/mean
1

genericType_t R_th[2];

-16-

H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM
genericType_t R;

genericType_t len;

genericType_t lim_var_squared;// this the major variable for the comparison in the lim
funchtin

genericType_t lim_var;

genericType_t lim_var_temp;

errorCodeEnum_t res;

ABS_Complex(input, x, size); // x should have the abs value of the complex
input

/Nlevel is the number of points in each row or column in QAM
/ly1=zeros(size(x));

for(i=0;i<size;i++)

{

y1[i] = INT2GENERIC(0);
}

/IR=[-1];

R = INT2GENERIC(-1);
sum_x= INT2GENERIC(0);
for(i=0;i<size;i++)

{ //Calculate the mean
[Isum_x=x(i)"2+sum_x;//

76

res=GenericPoint_Mult(&x[i],&x[i], &temp_x_squared);
res=GenericPoint_Add(&temp_x_squared, &sum_x, &temp_sum_x);
sum_x =temp_sum_x;

¥/ End of For Loop

len = INT2GENERIC(size);
/Imean_x=(sum_x/length(x))*(1/2);

res =GenericPoint_Div(&sum_x, &len, &mean_squared);
res =GenericPoint_Sqrt(&mean_squared,&mean);
/[standard_mean=((4+80+72)/16)"(1/2);

standard_mean = DOUBLE2GENERIC();
/IR_th=[5.5,14];

R_th[0] =DOUBLE2GENERIC(5.5);

R_th[1] =DOUBLE2GENERIC();

for(i=0;i<size;i++)

H1:\7MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
/[*lim_var =(x(i)*standard_mean/mean_x)"2;

res =GenericPoint_Mult(&(x[i]), &standard_mean, &lim_var_temp);
res=GenericPoint_Div(&lim_var_temp, &mean, &lim_var);

res =GenericPoint_Mult(&lim_var,&lim_var, &lim_var_squared);
if ((lim_var_squared < R_th[0]) || (lim_var_squared==R_th[0]))

{

y1[i]= INT2GENERIC(1);

}

else if((lim_var_squared< R_th[1]) && (lim_var_squared>R_th[0]))

{

y1[i]= INT2GENERIC(2);
}

else

{
y1[i]=INT2GENERIC(3);
}

}

for(i=0;i<size;i++)
{

output[i] = y1[i];

}

¥/ end of limiter

/[This function should take in and array of values and
/I Calculate the variance of it.

I****Works Quite Wonderfully

void Var(genericType_t *input_array, genericType_t *variance, int input_length)
{

genericType_t Sum1;

genericType_t Sum1_temp;

genericType_t Sum2,Sum2_temp;

genericType_t T_average;

genericType_t input;

genericType_t X;

genericType_t X_squared;

genericType_t length;

genericType_t length1;

errorCodeEnum_t res;

int i;

Sum1 = INT2GENERIC(0);

71

Sum1_temp = INT2GENERIC(0);
Sum2 = INT2GENERIC(0);
T_average = INT2GENERIC(0);

X_squared=INT2GENERIC(0);
H1:§MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
X =INT2GENERIC(0);

length = INT2GENERIC(input_length);

length1 = INT2GENERIC(input_length-1);
for(i=0;i<input_length;i++)

{

input = input_array[i]; // extract each input

/lsum1 = sum1 + F(i) // add each input to to sum
/IGenericPoint_Add(genericType_t const *a, genericType_t const *b, genericType _t
*result);

res = GenericPoint_Add(&Sum1, &input, &Sum1_temp);
Sum1= Sum1_temp;

Y/end of loop

/I tavg = sum1 /no;

/IGenericPoint_Div(genericType_t const *a, genericType_t const *b, genericType_t
*result);

res= GenericPoint_Div(&Sum1,&length, &T_average);
for(i=0;i<input_length;i++)

{

/lsum2 = sum2 + (F(i)-tavg)"2;

res =GenericPoint_Sub(&(input_arrayli]), &T_average, &X);
res =GenericPoint_Mult(&X,&X, &X_squared);

res = GenericPoint_Add(&Sum2, &X_squared, &Sum2_temp);
Sum2= Sum2_temp;

¥/ end of the loop

/lcvar = sum2 /(no-1)

res= GenericPoint_Div(&Sum2,&length1, variance);

Y/ END of the VAriance Function

/[Find the Max and MAX_INDEX

void MAX_F (genericType_t *LOG_Of PSD,

genericType_t *MAX_LOG_PSD,

int *MAX_INDEX_LOG_PSD,

int size)

int i;// Loop counters to traverse the array pointer
*MAX_LOG_PSD = INT2GENERIC(0);
*MAX_INDEX_LOG_PSD = INT2GENERIC(0);
for (i= 0;i< size;i++)

-19-
H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM
if (*(LOG_Of_PSD+i) > *MAX_LOG_PSD)

{

MAX_LOG_PSD =(LOG_Of_PSD+i);
*MAX_INDEX_LOG_PSD =i;

}

1

¥/ End of For Loop

Y/END of FUNCTION

/[Find the Min of a Vector

void MIN_F (genericType_t *Log_Of PSD,
genericType_t *MAX_LOG_PSD,

78

int *MAX_INDEX_LOG_PSD,
genericType_t *MIN_LOG_PSD,
int *MIN_INDEX,

int size)

int k;// Loop counters to traverse the array pointer
*MIN_LOG_PSD =*MAX_LOG_PSD; // Set it to the MAX then compare it downwards
for (k= 0;k< size;k++)

{
if (*“MIN_LOG_PSD > *(Log_Of PSD+k))

{
*MIN_LOG_PSD = *(Log_Of PSD+k);
*MIN_INDEX = k;

}

/I Log_Of PSD++;// go the next address or element in LoG PSD
¥/ End of For Loop

Y/END of FUNCTION

1

HZ:?MS\Backups\UCS_C_code_apriIB\SymboI_Timing.c Monday, July 26, 2010 6:32 PM

/I This is one of 2 modules that search for the symbol rate inside the main UCS Routine

/I Takes est_bw, and constellation points, and the sampling rate and range as the input to the
routine

/'t provides the valunes max_min., second_var, est_sr, and est_sps as outputs

/I Since this a void function the above variables must be declared as pointers for manipulataion
/I inside the routine and use outside of the routine.

void Symbol_Rate_Searching(genericType_t est _bw, genericComplexType_t *constellation_points,
long sampling_rate,

int range, genericType_t *max_min, genericType_t *second_var,

genericType_t *est_sr,

genericType_t *est_sps, genericType_t *tim, genericType t*

max_max_min,

genericType_t *max_second_var,int* Qam_Search)

{

/lgenericType_t sr = INT2GENERIC(sampling_rate);// Convert the sampling rate to generic type
/lint step_sr=100;

int new_size;

errorCodeEnum_tres = NO_MATH_ERROR;

long sampling_rate_new, resampling_rate;

genericType_ttry bw[try bw_len]; // a vector of all the possible bandiwidth estmates

/[This is +- in increments of 100 of the initial bandwidth

/I estimation

/Ithis seeems like 21 elements wide from original code

int i,j,b; //iterator variables

int x,y; //

int try_bw_length;

long bw_low; // THis is the lower bound of the range of bandwidth values

long est_sps2; // This is integer value of the est_sps to keep as an integer

int var_all_length;// interger value for the total number elements that needs to be in the

array

/lint var_all_iterator; // an interger value to iterate through a one dimeninal array as if

it was a 2 dimensional array

long up_factor,down_factor; / These are the | and D for Inter/decim to use in the vector
resampling

genericComplexType_t constellation_points_new[Vector_Size Resample_const];// this is values

79

for the constellation points after resampling

genericType_t inte[inte_size]; // This is a vector used in smoothing out.
genericType_t elg1[elg1_len]; // this has the abs(conv_cons)
genericType_t elg[elg_len];// abs(conv_cons)/est_sps
genericType_tre_elg[re_elg_len];
HZ:;IMS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM

1l
genericComplexType_t conv_cons[conv_cons_len]; // how long should this be.
int conv_cons_length;

/1
genericType_t variance;

genericType_t var_all[var_all_len]; // this all the row by row var calculations in the

entire run *GM

genericType_t var_all_aligned[var_all_len]; // this all the row by row var calculations in

the entire run *GM

genericType_t Row_Focus[two_d_array_len]; // This is holds a row from the "2D Array";
genericType_t Row_Focus_Qam[two_d_array_len]; / This is holds a row from the "2D Array";
genericType_t var_row[two_d_array_len]; // this is a row of variance calulations for each

run of the main loop

genericType_t var_row_gam[two_d_array_len]; // this is a row of variance calulations for
each run of the main loop

/lup to GM

genericType_t max_var; // this all the row by row var calculations in the entire run
genericType_t min_var;

int max_var_index;

int min_var_index;

genericType_t max_var_all; // this all the row by row var calculations in the entire run
genericType_t min_var_all;

genericType_t group_index[g_len]; // for use in the QAM section

genericType_t g1[g_len];

genericType_t g2[g_len];

genericType_t g3[g_len];// these variabkes are also for the Qam;

int g1_next;

int g2_next;

int g3_next;

genericType_t var_g1;

genericType_t var_g2;

genericType_t var_g3;

genericType_tvar_g1_prod;

genericType_t var_g2_prod;

genericType_t var_g3 prod;

genericType_t var_gam_temp; // temp variable for use in this

genericType_t var_g_prod_sum;

genericType_t var_gam;

H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM
genericType_t level;

int elg_length;

int col,row, num_rows,num_cols,index; // these variables are used for using the 1D array as a
/I 2D array;

int second_i;

int ggg;

int kkk;

int posi;

int tim_max;

int array_iterator=0;

80

int var_all_iterator=0;

int var_all_width;

genericType_t var_all_2d[100][100];

genericType_tre_elg_2d[100][100];

genericType_t Row_Focus2D[two_d_array_len];

genericType_t tim2,est_sr2;

T Code sequence for Symbol checked by

GM

/lest_sps=round(sampling_rate/est_bw)); //sps means samples per symbol. /This value
is set and is the value that is returned.-- Therefore this can be calculated in the main
symbol_timing_file

est_sps2 = sampling_ratelest_bw;

*est_sps = LONG2GENERIC((sampling_ratelest_bwy)); // If there is any problem with this
/I Convert back to Generic point Math and

retry

[lIres =GenericPoint_Div(&sr, &est_bw, est_sps);

/[% step_sr also seen in

the symbol_timing_m

/Itry_bw=est_bw-range*1000:step_sr:est_bw+range*1000; % create a

vectore try_bw from est_bw-(range*1000) ,

/[increments

of 100, to est_bw +(range)*1000

try_bw_length =(est_bw + range*1000)-(est_bw- range*1000);

try_bw_length = (try_bw_length/step_sr) + 1 ;

bw_low = (est_bw-(range*1000));

for(i=0;i<try_bw_length;i++)

HZ:?MS\Backups\UCS_C_code_april8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
try_bwl[i] = bw_low; // This pointer should have and array of bandwidths to search.
bw_low = bw_low+step_sr;

¥/ The end of the for loop

sampling_rate_new=sampling_rate; //% assign the

old sampling rate to the new one

var_all_length = try_bw_length * est_sps2; //
/Ivar_all=zeros(length(try_bw),est_sps); // %create y*

x array of zeros for max_min
/Imax_min=zeros(1,length(try_bw));

Il %create 1* x array of zeros for max_min

/INITIALIZE THE var_all and max_min to all zeros
for(i=0;i<var_all_length;i++)

{

var_all[i]= INT2GENERIC(0);

}/ end of the for loop
for(i=0;i<try_bw_length;i++)

{

max_min [i]= INT2GENERIC(0); /GM
Y/ end of the for loop
for(i=0;i<re_elg_len;i++)

{

re_elg[i]= INT2GENERIC(0);
Y/
for(i=0;i<two_d_array_len;i++)
{

var_row[i] = INT2GENERIC(0);
}

81

/I MAIN LOOP of the SYMBOL SEARCHING Begins
Here.//
/What goes in Here??? Lots of JIZZ

for(j=0;j<try_bw_length;j++)

{

/I resampling_rate=try_bw(j)*est_sps; //Resampling rate = each element in
try_bw* estimated sampling rate

/I Pick the first element in array of potential bandwithds

/Ires =GenericPoint_Multi(&(try_bw[j]),est_sps, &resampling_rate);
resampling_rate = try_bw][j]*est_sps2;

up_factor =resampling_rate/step_sr;

down_factor = sampling_rate_newl/step_sr;

H2:€MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
Resample(constellation_points, constellation_points_new, up_factor, down_factor, NUM_SAMP
, &new_size); /// PSD POINTS is Set Globaly to 1024

/linte=ones(1,est_sps); % Used to integrate incoming data for early late

gate Create 1 X est_sps elements of ones

for(i=0;i<est_sps2;i++)

{
inte[i] = INT2GENERIC(1); // initialize everything to a vector of all ones

/I conv_cons=conv(inte,constellation_points_new)

/lconv_cons_length = (est_sps2 + new_size)-1; // DOes not need to be generic tupe
conv_cons_length = (est_sps2 + new_size)-1;

/[This Length is based on the rule of COnvolution
Conv_Complex(constellation_points_new,inte,new_size,est_sps2,conv_cons); //GM
1l

/lelg1= abs(conv_cons);

/IABS_Complex(genericComplexType_t *input, genericType_t *output, int
inputlength);

ABS_Complex(conv_cons, elg1, conv_cons_length);
/lelg=abs(conv_cons)/est_sps;

for(i=0;i<conv_cons_length;i++)

{

/IGenericPoint_Div(genericType_t const *a, genericType_t const *b,
genericType_t *result);

res=GenericPoint_Div(&elg1[i], est_sps, &elg[i]);

}/ end of the for loop
/lelg_length=floor(length(elg)/est_sps)*est_sps;===>

elg_length = floor((conv_cons_length/est_sps2)*est_sps2);

//[UPTO GM

/1
/I re_elg=reshape(elg(1:elg_length),est_sps,[]);

/[Use a 1D array as a 2D Array. //****PAY ATTENTION TO THE 1D ARRAY
AS 2D ARRAY ****

/I MATLAB USES the COLUMN Major Method, //*****P

/I NOw remember we are keeping it in the orignal str8 order(row major)

/I But we will access it as a 2d in column major format e

/I We are saving str8 but accessing as 2d column major e

/IROW MAJOR
-25-
H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM

82

/lint A[2][3] ={ {1, 2, 3}, {4, 5, 6} }; ROW MAJOR
/I Saved in Linear Memory as

/1123456

/I offset = row*NUMCOLS + column

/IColumn MAJOR FORMAT

/[saved in memoryas 142536

/[offset = column*NUMROWS + row
for(i=0;i<elg_length;i++)

re_elg[i] = elg[i]; // re_elg is saving elg from 0 to elg length. save it as is

num_rows = est_sps2; // THis is for re_elg 80 in test
num_cols = (elg_length/num_rows);// this alsofor relg 14
/I size of a row is the Number of colums there is

/12D version of the Code
for(row=0;row<num_rows;row++)

for(col=0;col<num_cols;col++)
re_elg_2d[row][col] = elg[((col)*(num_rows) + (row))];

}
I

if(*Qam_Search == 0) // PSK or "REGULAR" Search

/I% Begin to reshape and Evaluate the Samples
[Ivar_all(j,:)=var(re_elg,0,2); % var calulates the variance
iserting the row by row, varianxce

/I for example this is 80 wide

for(row =0;row<num_rows;row++) // for example this loop wil run 80
times

{

for(col=0; col<num_cols ; col++) //since re_elg is ex 80
X14.--> end up with 80 variance values

{

array_iterator=((col)*(num_rows) + (row));
Row_Focus|col]=re_elg[array_iterator];

/I*(re_elg + ((col)*num_rows + (row)));

/[access each element row by row

Row_Focus2DJ[col]=re_elg_2d[row][col];
-26-
H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM

}

/I Now for each row of re_elg that you extract, calculate the
variance

Var(Row_Focus, &variance, num_cols);

var_row[row] =variance; // for example this should have 80
values

¥/ end of nested loop

/INext Assign the variance values caluted to the global var_all"2D"
array

/Inum rows for re_elg is num_cols for var all.

/l for example re_elg is 80 x 14. after calculating the variance

row by row

/I there will be 80 variance values.

/I now var all is 21*80 matrics where eace variace value is inserterd

83

/l'in a row of var all

for(i=0;i< num_rows; i++) // for example from 1 to 80; re_elg_rows
are the colums for Var_all

{

[larray_iterator =(i * (try_bw_length) +j); // num rows =
try_bw_len, num cols =num_rows

var_all[var_all_iterator]= var_row[i]; // so assign each var

value to var all

var_all_iterator++; //continue filling varall for all runs of

the main loop

var_all_2d[j][i]=var_row[i];

Y/

/I NOW Remember that above we are saving them in "2D ORder
/I Now looking back at the code we dont need var all
/Imax_min(j)=max(var_all(j,:))-min(var_all(j,:)); ex we are goin
from 21 by 80 to a 21 by1

MAX_F(var_row, &max_var, &max_var_index, num_rows);
MIN_F(var_row, &max_var, &max_var_index, &min_var, &min_var_index,
num_rows);

res =GenericPoint_Sub(&max_var, &min_var, &max_min[j]);

¥/ End of If Qam_Search

else if(*Qam_Search==1)

H2:\7MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
var_gam = INT2GENERIC(0);

level = INT2GENERIC(4);

/I rember re_elg will be say 80*14 matrix saved str8
var_g1_prod =0;

var_g2_prod =0; // initializations.

var_g3_prod =0;

var_g_prod_sum =0;

for(i=0;i<est_sps2;i++)//for exmaple run for 80 iterations

{

for(col=0; col <num_cols; col++) //since re_elf is ex 80 X14.--> end
up with 80 variance values

{

array_iterator =((col)*(num_rows) + (i));

Row_Focus_Qam [col]= re_elg[array_iterator];

/[access each element row by row

Row_Focus2D[col]=re_elg 2d[i][col]; // i is the row in this case
}

Limiter_F(Row_Focus_Qam, group_index, level, num_cols);
g1_next =0;

g2_next =0;

g3_next =0;

for(b=0;b<num_cols;b++) //for example for a 80by14 matrix 14 iterations
{

/[if group_index(b)==

/Ig1=[g1 re_elg(i,b)];

if(group_index[b]==(INT2GENERIC(1)))

{
g1[g1_next] = Row_Focus_Qam[b];
g1 _next++;

}
/lelseif group_index(b)==2;

84

/I g2=[g2 re_elg(i,b)];
else if(group_index[b] ==(INT2GENERIC(2)))

{

g2[g2_next] = Row_Focus_Qam[b];
g2_next++;

}

/lelse

/I g3=[g3 re_elg(i,b)];

/lend

else

{
g3[g3_next] = Row_Focus_Qam[b];

}

Y/ end of the for

H2:\8MS\Backups\UCS_C_code_april8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
/lif length(g1)~=0

/Ivar_g1=var(g1);

/lelse

/[var_g1=0;

/I end

if(g1_next>0)

{

/Ivoid Var(genericType_t *input_array, genericType_t *variance, int
input_length)

Var(g1, &var_g1, g1_next);

}

else

{
var_g1 = INT2GENERIC(0);

}

/lif length(g2)~=0
[Ivar_g2=var(g2);

/lelse

[/l var_g2=0;

/lend

if(g2_next>0)

{

/Ivoid Var(genericType_t *input_array, genericType_t *variance, int
input_length)

Var(g2, &var_g2, g2_next);
}

else
{
var_g2 = INT2GENERIC(0);

}

/lif length(g3)~=0

/[var_g3=var(g3);

/I else

/[var_g3=0;

/lend

if(g3_next>0)

{

/Ivoid Var(genericType_t *input_array, genericType_t *variance, int
input_length)

Var(g3, &var_g3, g3_next);

85

}

else

{
var_g3 = INT2GENERIC(0);
}

/Iremember from current example var all will be a 21* 80 matrix
HZ:?MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
1l
1
var_all(j,i)=(var_g1*(length(g1)-1)+var_g2*(length(g2)-1)+var_g3*(length(g3)-1))/(length(re_elg(1
)1

/I GenericPoint_Mult(genericType_t const *a, genericType_t

const *b, genericType_t *result);

/I GenericPoint_Add(genericType_t const *a, genericType_t

const *b, genericType_t *result);

/I GenericPoint_Sub(genericType_t const *a, genericType_t const

*b, genericType_t *result);

//GenericPoint_Div(genericType_t const *a, genericType_t const

*b, genericType_t *result);

var_gam_temp = INT2GENERIC((g1_next-1));

res =GenericPoint_Mult(&var_g1, &var_gam_temp, &var_g1_prod);

var_gam_temp = INT2GENERIC((g2_next-1));

res =GenericPoint_Mult(&var_g2, &var_gam_temp, &var_g2_prod); //

products of each var and the lengths

var_gam_temp = INT2GENERIC((g3_next-1));

res =GenericPoint_Mult(&var_g2,&var_gam_temp,&var_g2_prod);

res =GenericPoint_Add(&var_g1_prod,&var_g2 prod,&var_gam_temp);

res =GenericPoint_Add(&var_gam_temp, &var_g3 prod, &var_g _prod_sum);

var_gam_temp = INT2GENERIC(num_cols-1);

res= GenericPoint_Div(&var_g_prod_sum,&var_qgam_temp,&var_gam);

1l
var_row_gam([i] = var_gam;// This should have the

Y/ end of inner for loop

for(i=0;i< num_rows; i++) // for example from 1 to 80;

{

[larray_iterator= (i* (try_bw_length) +j);

var_all[var_all_iterator] = var_row[i]; // so assign each var

value to var all saved row major str8

var_all_iterator++;

var_all_2d[j][i]=var_row_gaml[i];

Y/

/I NOW Remember that above we are saving them in "2D ORder
H3:?MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM

/I Now looking back at the code we dont need var all
/Imax_min(j)=max(var_all(j,:))-min(var_all(j,:)); ex we are goin from 21

by 80 to a 21 by1

MAX_F(var_row, &max_var, &max_var_index, num_rows);

MIN_F(var_row, &max_var, &max_var_index, &min_var, &min_var_index, num_rows);
res =GenericPoint_Sub(&max_var, &min_var, &(max_min[j]));

/[% Begin to reshape and Evaluate the Samples
/Imax_min(j)=max(var_all(j,:))-min(var_all(j,:));

Y/ e *end of else if Qam

J e end of the for loop (Main Loop)
/Imin_var_all=min(min(var_all));

/Imax_var_all=max(max(var_all));

86

MAX_F(var_all, &max_var_all, &max_var_index, var_all_length);// search the entire
thing for the max val

MIN_F(var_all, &max_var_all, &max_var_index, &min_var_all, &min_var_index,
var_all_length);

*est_sr=INT2GENERIC(0);

second_i=0;

var_all_width=num_rows;

/I[second_var=zeros(1,length(try_bw)-1);

for(i=0;i<(try_bw_length-1);i++)

{

second_varl[i] = INT2GENERIC(0);
¥/ end of loop

for (kkk=0;kkk<try_bw_length;kkk++)

{
for (ggg=0; ggg<var_all_width; ggg++)
{

1l b o

/lindex = col *num_rows +row

/lindex = ggg*(try_bw_length) + kkk;

index =kkk*var_all_width+ ggg; // var_all is saved in row major str8
order.so use row_major offset

if(var_all[index]==min_var_all)

{
*est_sr=LONG2GENERIC(try_bw[kkk]);

posi=kkk;

*tim= INT2GENERIC(ggg);

-31-

H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM
}

if(var_all[index]==max_var_all)

{

tim_max=ggg;
}
if(var_all_2d[kkk][ggg]==min_var_all)

{
est_sr2=LONG2GENERIC(try_bw[kkK]);
tim2= INT2GENERIC(ggg);

}/ end of the second for
if(try_bw[kkk]==*est_sr)
{

/1% plot(var_all(kkk,:),'r");

}

else

{

second_var[second_i]=max_min[kkk];

second_i=second_i+1;

/I plot(var_all(kkk,:));

Y/ end of else

Y/ end for

MAX_F (max_min,max_max_min,&max_var_index, try_bw_length); // nax_var_index is not
important here

MAX_F (second_var,max_second_var, &max_var_index, try_bw_length-1);
¥/ End of the function

/I This is the Main Function of the Symbol Timing

/I All Initializations function calls etc should be made in this fucntion

87

void Symbol_Timing_F(genericComplexType_t *iq_data, int size,
genericType_t *Bandwidth,

genericType_t *symbol_rate,

genericComplexType_t *symbol_stream,

int *mod_order,

char *mod_type,

int *sr_right)

{

-32-

H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM
int Qam_Search; // This is a flag created for conciseness in the code.
/I Allows us to call the PSK Symbol searching routine but

/I with a special variation for the searching of Qam

Symbol rate;

/lint step_sr=100;

int round_index;

int range ;

inti;

int resampled_size;

long est_bw;

long sampling_rate = Sampling_Rate;

long decim,interp;

int result1,est_sps2;

int result2,est_sr2;

int matrix_iterator;

genericType_t second_var[second_var_len];

genericType_t est_sr;

genericType_t result;

genericType_t est_sps;

genericType_t tim;

genericType_t max_max_min;

genericType_t max_second_var;

int max_index_second_var;

int second_var_count;

genericType_t m_sec_var;

genericType_t m_sec_var2;

genericType_t decimation_rate;

genericType_t temp_var;

int c_length;

int n_rows_main;

int n_cols_main;

int row, col;// this is row and column iteratiors
errorCodeEnum_tres = NO_MATH_ERROR;

genericType_t max_min[max_min_len];

genericComplexType_t constellation_points1[NUM_SAMP];
genericComplexType_t constellation_points_new_main[Vector_Size Resample_const];
genericComplexType_t conv_cons_main[conv_cons_len];
genericType_t inte_main[inte_size];

int conv_cons_main_length;
H?Z?MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
genericComplexType_t sample_matrix[re_elg len]; // SAMPLE_MATRIX IS USED TO DO Reshaping
genericType_t limiter_symbol_stream[Limiter_Len];

int lim1;

int lim2;

int lim3;

genericType_t level;

88

int lim_len;

genericType_t c_temp;

int tim_main;

*sr_right =1; // Both these values were initialized to 1 in Matlab
range =Range;

for(i=0;i<size;i++)

{

constellation_points1[i]= iq_datali]; // the iq data

est_bw=ceil(*Bandwidth/)* ; // do we need generic point math here?
Qam_Search =0;// DURING THE FIRST RUN, DO NOT SEARCH FOR QAM ///ll/[***** CHange this
back to O

Symbol_Rate_Searching(est_bw, constellation_points1, sampling_rate, range, max_min,
second_var, &est_sr,&est_sps, &tim, &max_max_min,&max_second_var,&Qam_Search);
temp_var = DOUBLE2GENERIC(1.4);

/[1.4* max(second_var) => m_sec_var

res = GenericPoint_Mult(&max_second_var, &temp_var, &m_sec_var);

temp_var = DOUBLE2GENERIC(2.0);

res = GenericPoint_Mult(&max_second_var, &temp_var, &m_sec_var2);

/[2* max(second_var)

if((max_max_min > m_sec_var) && (max_max_min< m_sec_var2))

{

/[symbol_searching_gam //

Qam_Search =1;

Symbol_Rate_ Searching(est_bw, constellation_points1, sampling_rate, range, max_min,
second_var, &est_sr,&est_sps, &tim, &max_max_min,&max_second_var,&Qam_Search);
}

while((max_max_min< m_sec_var2) && (round_index<10))

-34-
H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM
Il

/lest_bw= round(bw/1000+2*range*((-1)*(round_index+1))*(floor((round_index+1)/2

)))*1000;

est_bw = ceil(*Bandwidth/ + 2*range*((-1)*(round_index +1)) *floor((
round_index+1)/2)) * ;

[[-mmmmmmmm e come back and fix this

round_index=round_index+1;

Qam_Search =0;

Symbol_Rate_ Searching(est_bw, constellation_points1, sampling_rate, range, max_min,
second_var, &est_sr,&est_sps, &tim, &max_max_min,&max_second_var,&Qam_Search);
temp_var = DOUBLE2GENERIC(1.4);

/[1.4* max(second_var)

res = GenericPoint_Mult(&max_second_var, &temp_var, &m_sec_var);

temp_var = DOUBLE2GENERIC(2.0);

res = GenericPoint_Mult(&max_second_var, &emp_var, &m_sec_var2);

if((max_max_min > m_sec_var) && (max_max_min)< m_sec_var2)

{

/lsymbol_searching_gam //

Qam_Search =1;

Symbol_Rate_ Searching(est_bw, constellation_points1, sampling_rate, range,

max_min, second_var, &est_sr,&est_sps, &tim, &max_max_min,&max_second_var,&Qam_Search);

}
}/ end of while loop
if (round_index==10)

&9

{

sr_right=0;

}

decimation_rate= est_sps;

res = GenericPoint_Int(&est_sps, &est_sps2); //result one should have est_sps as and int

res = GenericPoint_Int(&est_sr, &est_sr2);

/lest_sps *est_sr/step_sr

interp = (est_sps2* (est_sr2))/step_sr; /// THis is integer Math no need for Generic Math
H3:?MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM

decim = sampling_rate/step_sr;

1l

constellation_points_new=resample(constellation_points,est_sr*est _sps/step_sr,sampling_rate/step_
sr);

Resample(constellation_points1, constellation_points_new_main, interp, decim,NUM_SAMP, &
resampled_size);

/I size(constellation_points_new);

/I inte=ones(1,decimation_rate);

/linte=ones(1,est_sps); Create 1 X est_sps elements of ones

for(i=0;i<est_sps2;i++) // result1-> est_sps

inte_main[i] = INT2GENERIC(1); // initialize everything to a vector of all ones
}

/I lconv_cons=conv(inte,constellation_points_new)/decimation_rate;

/I c_length=floor(length(conv_cons)/decimation_rate)*decimation_rate;

/l
/I conv_cons=conv(inte,constellation_points_new)

/Iresult1 = est_spps

conv_cons_main_length = (est_sps2 + resampled_size)-1; // DOes not need to be

generic tupe

c_length = floor(conv_cons_main_length/(est_sps2))*(est_sps2);//GM

/[Convolution_Input_Side Complex(inte_main,constellation_points_new_main,result1,resampled_size,c
onv_cons_main_length,conv_cons_main);
Conv_Complex(constellation_points_new_main,inte_main,resampled_size,est_sps2,
conv_cons_main);

/1

/[May or may not be needed,;
for(i=0;i<conv_cons_main_length;i++)

{

c_temp = conv_cons_main[i].real;
res=GenericPoint_Div(&c_temp, &decimation_rate, &result);
/lconv_cons_main]i].real= c_temp/decimation_rate;
conv_cons_main[i].real =result;

c_temp = conv_cons_main[i].imag;
res=GenericPoint_Div(&c_temp, &decimation_rate, &result);
/lconv_cons_main[i].real= c_temp/decimation_rate;
H?;\GMS\Backups\UCS_C_code_april8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
conv_cons_main[i].imag =result;

}
111
/I sample_matrix=reshape(conv_cons(1:c_length),decimation_rate,[]);
for(i=0;i<(c_length);i++)

sample_matrix[i] =conv_cons_main[i]; // copy both real and imaginary parts of this

90

}

*symbol_rate= est_sr;

n_rows_main = est_sps2;// decimation rate = est_sps = result1;
n_cols_main = (c_length)/n_rows_main;

/I symbol_stream=sample_matrix(tim,:);

res = GenericPoint_Int(&tim, &tim_main);

row = tim_main;

for(col=0;col<n_cols_main;col++)

matrix_iterator =col * (n_rows_main) + row;

symbol_stream [col]= sample_matrix [matrix_iterator];

}

/Nimiter_symbol_stream=limiter_f(abs(symbol_stream),4);

/Ivoid ABS_Limiter_F(genericComplexType_t *input, genericType_t* output,
genericType_t level, int size)

lim_len = n_cols_main;

for(i=0;i<lim_len;i++)

{

limiter_symbol_stream [i] =INT2GENERIC(0); //initilize the limiter_symbol_stream

}

level=INT2GENERIC(4);

ABS_Limiter_F(symbol_stream, limiter_symbol_stream,level, n_cols_main);
lim1=0;

lim2=0;

lim3=0;

for (i=1; i<lim_len;i++)

{

if (limiter_symbol_stream[i]==INT2GENERIC(1))
{

lim1=lim1+1;

}

else if (limiter_symbol_stream[i]J== INT2GENERIC(2))
lim2=lim2+1;

}

else

{

-37-

H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM
lim3=lim3+1;

}

¥/ end of for

M[lim1 lim2 lim3];

if ((lim3 + lim1) >(lim2/2))
{
/*mod_type="QAM';
mod_type[0]="'Q";
mod_type[1]="'A’;
mod_type[2]= "M';
mod_type[3]="-;
*mod_order=16;
*symbol_rate= est_sr;
}

else

{
/I *mod_type='MPSK'//;

91

mod_type[0]= "M';
mod_type[1]='P';
mod_type[2]='S";
mod_type[3]= 'K';
*mod_order=4;
*symbol_rate= est_sr;

¥/ end of the main fucntion. */

/I All Initializations function calls etc should be made in this fucntion

/[This function should take in iq_data and and the Estimated Bandwidth and then perform Symbol
timing.

/I mod_order, symbol_stream, and symbol rate are the outputs of the function.
/I Thise outputs are have to be made available for further processing such
/I 'Universal Synchronization;

void Sym_Tim_Main(genericComplexType_t *iq_data, genericType_t *Bandwidth_est, int size,
int *mod_order, genericComplexType_t *symbol_stream, genericType t *
symbol_rate,

char *mod_type)

{

/lInitializations

int sr_right;

-38-

H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM

/[Test Variables/// Delete when done with////111111H1H1HH T

1l

1l

genericComplexType_t test_input[10];

genericComplexType_t *up;

genericComplexType_t *down;

genericType_t test_output[10];

genericComplexType_t test_output_complex[20];

genericType_t variance;

genericComplexType_t up_vector[Vector_Size Resample];
genericComplexType_t down_vector[Vector_Size Resample_const];
genericComplexType_t up_vector_filtered[Vector_Size Resample];
/I[short conv_output[Vector_Size Resample];

short conv_output[30];

/Ishort conv_input1[10] ={2,4,6,8,10,12,14,16,18,20};

genericType_t conv_input1[3] ={.0672,.0371,0};

/lgenericType_t conv_input2[10] ={1,3,5,7,9,11,13,15,17,19};

short conv_input2[6] ={1,3,5,7,9,11};

long up_length;

int down_length;

i nnniIEND OF CODE FOR DELETE

/[Code sequence

mod_type[0]="-;

mod_type[1]="-;

mod_type[2]="-;

mod_type[3]="-;

Symbol_Timing_F(iq_data, size, Bandwidth_est, symbol_rate, symbol_stream, mod_order, mod_type,
&sr_right);

T T T
H3:?MS\Backups\UCS_C_code_apriI8\SymboI_Timing.c Monday, July 26, 2010 6:32 PM
M

//Lets do some testing // Delete After use START OF DELETE
test_input[O].real = 2;

92

test_input[1].real = 4;

test_input[2].real = 6;

test_input[3].real = &;

test_input[4].real = 10;

test_input[5].real = 12;

test_input[6].real = 14;

test_input[7].real = 16;

test_input[8].real = 18;

test_input[9].real = 20;

test_input[0].imag = 1;

test_input[1].imag = 3;

test_input[2].imag = 5;

test_input[3].imag = 7;

test_input[4].imag = 9;

test_input[5].imag = 11;

test_input[6].imag = 13;

test_input[7].imag = 15;

test_input[8].imag = 17;

test_input[9].imag = 19;

/[FFT_Filter(conv_input1, conv_input1,conv_output,10, 10);
/[Conv(conv_input1, conv_input2,10,5, conv_output);

/[Up_Sample(test_input, 5,up_vector, &up_length,10);

/I Resample_FIR(up_vector, up_vector filtered,5,6, &up_length);
/[Down_Sample(up_vector_filtered, 6,down_vector, &up_length ,&down_length);
/[Convolution_Input_Side(conv_input1, conv_input2,10,5,14, conv_output);
/[Convolution_Input_Side Complex(conv_input1, test_input, 10, 10,19, test_output_complex);
/I Resample(test_input,down_vector,5, 6,10,&down_length);

/l'up 5, down 6, size 10

/IABS_Complex(test_input, test_output, 10);

/ILimiter_F(conv_input1, test_output, 4, 2);

/IVar(conv_input1, &variance, 10);

/I Symbol_Rate Searching(Bandwidth_est, iq_data, Sampling_Rate, 1, genericType_t *max_min,
genericType_t *second_var, genericType t *est_sr,

/I genericType_t *est_sps, genericType_t *tim, genericType_t

-40-

H:\MS\Backups\UCS_C_code_april8\Symbol_Timing.c Monday, July 26, 2010 6:32 PM
*max_max_min,

/I genericType_t *max_second_var,int* Qam_Search)
[HTHHHTTTIIEND OF THE TEST CODE TO BE DELETED
T T T T T T]
YIHIHTTTTITEND OF SYMBOL MAIN

93

