Cellulose Fiber-Reinforced Thermoplastic Composites: Processing and Product Characteristics

by

Razaina Mat Taib

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University In partial fulfillment of the requirements for the degree of

Master of Science

in

Wood Science and Forest Products

Approved:

Wolfgang G. Glasser
Ronald G. Kander
Charles E. Frazier

May 18, 1998
Blacksburg, Virginia

Keywords: Cellulose fiber, steam-explosion treatment, acetylation, fiber dispersion.

Copyright 1998, Razaina Mat Taib
Steam exploded fibers from Yellow Poplar \textit{(Liriodendron tulipifera)} wood were assessed in terms of (a) their impact on torque during melt processing of a thermoplastic cellulose ester (plasticized CAB); (b) their fiber incorporation and dispersion characteristics in a CAB-based composite by SEM and image analysis, respectively; and (c) their impact on the mechanical properties (under tension) of CAB-based composites having fiber contents of between 10 and 40\% by weight. The fibers included water-washed steam exploded fibers (WEF), alkali-extracted fibers (AEF), acetylated fibers (AAEF), all from Yellow poplar (log \(R_o = 4.23 \)), and oat fillers (COF) as control. The stepwise increase in cellulose content by extraction, and especially the (surface) modification by acetylation, contributed to increased torque during melt processing, and to improved interfacial adhesion as well as fiber dispersion. As compared to pure CAB, AAEF generated the highest increase in torque (+ 421\%) followed by AEF (+ 260\%) and WEF (+ 190\%) at 40\% fiber content by weight. AAEF was also found to enhance the tensile properties of the resulting composites. SEM studies of the tensile fracture surfaces indicated significant interfacial delamination and also pull-out of fibers when WEF, AEF, and COF were used to reinforce the CAB matrix. Composites with AAEF, by contrast, revealed fracture surfaces with reduced interfacial delamination and with significant fiber fracturing during failure. Image analysis was used to determine fiber dispersion within the resulting
composites quantitatively. Significant improvement in fiber dispersion was achieved when the matrix was reinforced with acetylated fibers (AAEF). Fiber addition to the matrix resulted in loss of strain at break (-80 to –93%) and slight or significant increases in modulus (+47 to +103%) depending on fiber type at 40% fiber content. Maximum stress declined for all fibers except AAEF at all fiber contents. AAEF-based composites revealed a decline in maximum stress when fiber content rose to 10%, and this reversed when fiber content increased beyond 10%. This increase in strength is consistent with the rule of mixtures that stipulates reinforcement of the matrix by fibers that are capable of transferring stresses across the fiber-matrix interface. All fibers suffered length decreases during melt processing.
Acknowledgements

All praise and thanks is due to GOD, the one, the only and the indivisible creator and sustainer of the world. To Him, we belong and to Him, we will return. I wish to thank Him for all that He has gifted us with, although, He can never be praised or thanked enough.

I would like to take this opportunity to thank my advisor, Prof. W. G. Glasser, for his continuing support and excellent mentorship. Dr. Ronald G. Kander and Dr. Charles E. Frazier for serving on my advising committee, Dr. Alfred C. Loos for his cooperation and Dr. Ramani Narayan of Michigan State University for supplying oat fillers.

I am also grateful to Dr. Rajesh K. Jain, Mrs. Jody Jervis, and Mr. Carlile Price for their assistance and guidance in the course of completing this research. Acknowledgment is also due to Julie Dvorkin for her tireless help with the Rheomix machine.

Finally, this work could not have been completed without the love and support of my family. I thank my loving husband, Shaharuddin Abd. Talib, for his patience and affection, my beloved mother and sisters, Sabariah Yop Sidi, Rashima Mat Taib and Rohaida Mat Taib for their endless support. Special thanks are also extended to my aunt, Noraini Yop Sidi and her husband Roslan Jamil for their help.
TABLE OF CONTENTS

Abstract ii
Acknowledgements iv
Table of Contents v
List of Figures vii
List of Tables xii

1. Introduction 1
 1.1 Statement of Problems and Opportunities 2
 1.2 Research Objectives 9

2. Literature Review 10
 2.1 Cellulose Fibers for Reinforcement 11
 2.1.1 Utilization of cellulose fibers: Opportunities and limitations 11
 2.1.2 Chemical modification of cellulose fibers 21
 2.2 Properties of Cellulose Fiber-Thermoplastic Composites 32
 2.2.1 Fiber dispersion 32
 2.2.2 Fiber-matrix adhesion 35
 2.2.3 Fiber aspect ratio 37
 2.2.4 Fiber orientation 41
 2.2.5 Fiber volume fraction 43
 2.3 Nondestructive Analysis of Fiber Dispersion 45

3. Experimental 51
 3.1 Materials Description 52
 3.1.1 Cellulose acetate butyrate (CAB) 52
 3.1.2 Cellulose fibers 54
 3.2 Sample Preparation 60
 3.2.1 Compounding 60
3.2.2 Compression molding 64
3.3 Process and Product Characterization 65
 3.3.1 Minimat tensile testing 65
 3.3.2 Scanning electron microscopy (SEM) 65
 3.3.3 Image analysis 66

4. Results and Discussion 67
 4.1 Preliminary Assessment of Processing Conditions (Pre-trials) 68
 4.2 Assessment of Fiber Types 73
 4.1.1 Mixing torque curve 74
 4.1.2 Mechanical properties 83
 4.1.3 Scanning electron microscopy 104
 4.1.4 Fiber dispersion 107

5. Conclusions 114

6. References 117

7. Vita 123
LIST OF FIGURES

Figure 2.1 Variation in the strength and stiffness of jute fibers with lignin content [21]. 14

Figure 2.2 Relationship between the strength of fibers and their cellulose content and microfibril angles [22]. 15

Figure 2.3 Fiber tensile stress and shear stress variation along the length of a fiber embedded in a continuous matrix and subjected to a tensile force in the direction of fiber orientation [Taken from Gatenholm, ref.40]. 39

Figure 2.4 Effect of fiber length on fiber tensile stress [Taken from Gatenholm, ref. 40]. 40

Figure 2.5 Schematic representation of the changes in fiber orientation occurring during flow. a) initial random distribution, b) rotation during shear flow, and c) alignment during elongational flow [Taken from Hull et al., ref. 2]. 42

Figure 2.6 Typical relationship between tensile strength and fiber Volume fraction for short fiber-reinforced composites. 44

Figure 2.7 Schematic illustration of the instrument used by Scott (1994) [10, 11]. 47

Figure 2.8 Images of good (A) and bad (B) fiber dispersion. C and D show variation of gray level from X to Y for image A and B, respectively. 50

Figure 3.1 Starting materials and products after steam explosion. 55
Figure 3.2 Steam explosion machine (batch gun) at the Pilot/Demonstration Laboratory of the Thomas M. Brooks Forest Products Center located at Virginia Tech.

Figure 3.3 Fractionation process of steam exploded fibers.

Figure 3.4 Mixing chamber.

Figure 3.5 Haake Rheomix 900.

Figure 4.1 Mixing torque curves for pure CAB processed at 187 and 204 °C for 10, 15, and 20 minutes at rotor speed of 60 rpm.

Figure 4.2 Mixing torque curves for pure CAB /AAEF processed at 187 and 204 °C for 10, 15, and 20 minutes at rotor speed of 60 rpm.

Figure 4.3 Mixing torque curves for CAB/WEF composites at different fiber content processed at 204 °C for 20 minutes.

Figure 4.4 Mixing torque curves for CAB/AEF composites at different fiber content processed at 204 °C for 20 minutes.

Figure 4.5 Mixing torque curves for CAB/AAEF composites at different fiber content processed at 204 °C for 20 minutes.

Figure 4.6 Mixing torque curves for CAB/COF composites at different fiber content processed at 204 °C for 20 minutes.
Figure 4.7 Change in torque (compared to pure CAB) vs. fiber content for cellulose fiber-CAB composites processed at 204 °C for 20 minutes.

Figure 4.8 Optical micrographs of cellulose fibers (before compounding). A: WEF, B: AEF, C: AAEF, and D: COF

Figure 4.9 Tensile stress-strain curves for CAB/WEF composites at fiber contents rising from 10 to 40% by weight.

Figure 4.10 Tensile stress-strain curves for CAB/AEF composites at fiber contents rising from 10 to 40% by weight.

Figure 4.11 Tensile stress-strain curves for CAB/AAEF composites at fiber contents rising from 10 to 40% by weight.

Figure 4.12 Tensile stress-strain curves for CAB/COF composites at fiber contents rising from 10 to 40% by weight.

Figure 4.13 Effect of fiber content on stress at break of CAB reinforced with various cellulose fibers.

Figure 4.14 Optical micrographs of cellulose-based composites showing voids. A: CAB/WEF, B: CAB/AEF, C: CAB/AAEF, and D: CAB/COF.

Figure 4.15 Optical micrographs of cellulose fibers separated from 40% CAB/WEF (A), CAB/AEF (B), CAB/AAEF (C), and CAB/COF (D) compounded composite materials by matrix removal by solvent (acetone).
Figure 4.16 Variation of stress with fiber fraction as predicted using the ‘Rules of Mixture’. 94

Figure 4.17 Comparison of composite tensile strength property at related to their fraction for model (‘Rule of Mixture’ at $\alpha_1 \alpha_2 = 0.5$) and experiment. 97

Figure 4.18 Ultimate tensile strength of benzoylated sisal fiber reinforced Polystyrene composites as a function of fiber orientation according to Thomas et al. [43]. 99

Figure 4.19 Effect of fiber content on elongation at break of CAB reinforced with various cellulose fibers. 100

Figure 4.20 Effect of fiber content on modulus of CAB reinforced with various cellulose fibers. 102

Figure 4.21 Scanning electron micrographs of tensile fracture surfaces of 20% cellulose fiber/CAB composites at magnification of 500 X. A: CAB/WEF, B: CAB/AEF, C: CAB/AAEF, and D: CAB/COF. 105

Figure 4.22 Scanning electron micrographs of tensile fracture surfaces of 20% cellulose fiber/CAB composites at 2000 magnification. A: CAB/WEF, B: CAB/AEF, CAB/AAEF, and D: CAB/COF. 106

Figure 4.23 Images of CAB/AAEF composites at various fiber content. A: 10% fiber content, B: 20% fiber content, C: 30% fiber content, and D: 40% fiber content. 108
Figure 4.24 Images of cellulose-based composites at 20% fiber content. A: CAB/WEF, B: CAB/AEF, C: CAB/AAEF, and D: CAB/COF. 111

Figure 4.25 ‘Standard deviation of gray levels’ (fiber dispersion) versus mixing torque for cellulose-based composites at 20% fiber content by weight. 113
LIST OF TABLES

Table 1.1 Potential benefits of composites over metals [3]. 3

Table 1.2 Summary of advantages and disadvantages of thermostes and thermoplastics as composite matrix resins [3]. 4

Table 1.3 Comparison of polypropylene (PP) composites [13]. 7

Table 1.4 Length of fibers after processing [12]. 8

Table 2.1 Mechanical properties of some cellulose fibers [22]. 17

Table 2.2 Annual fiber production/availability of some of the cellulose fibers (tons) [22]. 18

Table 2.3 Properties of fibers and conventional bulk materials [8]. 19

Table 2.4 Physical properties of jute fiber and glass fiber reinforced sheet before and after weathering for seven years [22]. 23

Table 2.5 Equilibrium moisture content (EMC) of various acetylated cellulose materials (65% RH, 27 °C) [37]. 25

Table 2.6 Tensile properties of HDPE-cellulose fiber composites [38]. 27

Table 2.7 Typical degradation reactions that occur when lignocellulosic materials are exposed to nature [35]. 29

Table 2.8 Cell wall polymers responsible for the properties of lignocellulosics in the order of importance [35]. 30
Table 2.9 Weight loss in chemically modified Southern Pine, 2 weeks’ after exposure to Recticulitermes flavipes [35]. 31

Table 3.1 Physical properties of TENITE Butyrate formula 285. 53

Table 3.2 Fiber characteristics. 59

Table 3.3 Sample identification and compounding conditions. 61

Table 4.1 Tensile properties of CAB/AAEF composites at 20% fiber Content by weight at different processing conditions. 72

Table 4.2 Torque difference compared to neat CAB for cellulose -based composites processed at 204 ° C for 20 minutes. 82

Table 4.3 Stress at break of cellulose-based composites. 90

Table 4.4 Assumed mechanical properties of AAEF and CAB. 96

Table 4.5 Elongation at break of cellulose-based composites. 101

Table 4.6 Effect of fiber content on modulus of cellulose -based composites. 103

Table 4.7 Mixing torque and ‘standard deviation of gray levels’ of cellulose-based composites having different fiber contents. 112