DEVELOPMENT OF A STANDARDIZED METHOD FOR ACTUATOR CHARACTERIZATION USING ACTIVE CONTROL OF IMPEDANCE

by

Jean-Marc F. Bras

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements of the degree of Master of Science in Mechanical Engineering

APPROVED:

Chris R. Fuller, Chairman

Marty Johnson

Harry H. Robertshaw

October, 1999

Blacksburg, Virginia
Presently, there is no standard testing procedure for piezoelectric actuators. It is then very difficult for a very specific given application to design the most efficient actuator in terms of blocked force, displacement, power consumption, weight, cost, etc. Piezoelectric actuator suppliers would like to have the possibility to fully characterize their actuators to be able to guide their customers on selection of the most suitable actuator based on their utilization. However, this is not an easy goal to reach since performance of a given actuator depends on the specific dynamic conditions under which it is applied. In order to characterize an actuator, it is therefore necessary to recreate similar conditions to those experienced in the real application. Because of the infinite variety of possible applications for piezoelectric actuators, physically recreating those conditions could take an enormous amount of time, means and money.

The aim of the research is then to develop the technology required in order to test an actuator under a various range of dynamic load conditions using a single automated test set-up. To do so, a second actuator will be used with a suitable sensing apparatus (impedance head) and an active control system. Using data from the sensing apparatus (force and velocity signals), the active control system will drive the second actuator to recreate any load condition the first actuator would be supposed to experience in a real application.
A test rig has then been conceived where the tested actuator is clamped on a rigid structure that has high impedance (supposed infinite for our concern) on one side, and a second actuator, also called control actuator, is fixed on the other side. The force output (F) and the velocity (V) of the test actuator can be monitored by the way of the impedance head. Finally, while driving the test actuator with a test signal, an adaptive controller, using the filtered-X LMS algorithm, can drive the control actuator so that the measured impedance (Z=\(F/V\)) matches the desired load impedance (\(Z_d\)), which characterizes the experimental load condition that is to be reproduced.

In principle this system can recreate any possible load condition. However we faced some limitations due to the sensitivity of the sensor device (lack of precision for small values of the force and the velocity for small and high impedance, respectively) but also from the test rig itself (due to resonance in the range of frequencies tested). The assumption of infinite impedance on the base of the actuator may become a limitation factor too in the case of high impedance. To get rid of this limiting high impedance condition, the solution proposed is to include a second control actuator so that impedance on both sides of the test actuator could be varied simultaneously.

To counteract these limitations, in order to have a really robust tool, the use of a two-port network model for the actuator is interesting since we will then be able to predict of the actuator behavior in the range where the test rig encounters its limitations. Derivation and validation of this two-port network model has therefore been done using the automated set-up inside the operating range of the actuator used.
Acknowledgments

I would like to thank my research advisor, Dr. Chris Fuller, for giving me the opportunity to be introduced to the field of active control. Working under his supervision has been a truly interesting experience. I also wish to thank Dr. Marty Johnson who has provided helpful guidance, suggestions and pieces of advice throughout this work.

I appreciate Mme N. Jaffrin and Dr. J. R. Mahan, coordinators of the exchange program between Virginia Tech and l’Université de Compiègne, for giving me the opportunity to study in Blacksburg. Dawn Williams also deserves many thanks for her patience in the many administrative tasks she has assisted me with.

Among the many friends in the Vibration and Acoustics Laboratories who have helped me during the course of this work, I wish to thank Jérome Couche, Pierre Cambou, Rick Wright, Satish Kartha and John d’Angelo for their time spent to make me feel comfortable in this new environment, but also for their helpful technical support. Steve Booth also deserves thanks for building the various pieces of my test rig when needed.

I am indebted to MSI (Material System Inc.) for funding this work.

My parents deserve most of my gratitude for their support in all ways over these last years. They always have encouraged me to pursue my studies overseas.

Finally, I have to thank Lily for this wonderful smile she gave me once and that has been my strongest motivation when came the time of writing … I’ll always love her for it.
Contents

Chapter 1

Introduction ... 1
 1.1 Motivation ... 1
 1.2 Active Control .. 3
 1.3 Thesis Objectives and Organization ... 7

Chapter 2

Theory .. 9
 2.1 Digital Filters .. 9
 2.1.1 FIR Filter .. 10
 2.2 Adaptive Systems ... 11
 2.2.1 Adaptive Filters ... 11
 2.2.2 Adaptive Algorithms ... 13
 2.2.2.1 MSE Surface ... 13
 2.2.2.2 Method of Steepest Descent ... 16
 2.2.2.3 LMS Algorithm .. 17
 2.2.2.4 Filtered-X LMS Algorithm .. 18
 2.3 The Feedforward Filtered-X LMS algorithm ... 20
 2.3.1 Adaptive Feedforward Control Using the Filtered-X LMS Algorithm....................... 22
Chapter 3

Methodology ... 24

3.1 Presentation .. 24
3.2 Control Theory to reproduce any Desired Impedance .. 26
3.3 Limitations of Control ... 30

Chapter 4

Simulations .. 32

4.1 Introduction .. 32
4.2 Simulation Using a Model of Actuator .. 33
 4.2.1 Model of a Stack Actuator ... 33
 4.2.2 Effect on Controllability .. 37
 4.2.3 Effect of Control Actuator Stiffness ... 39
4.3 Simulation Using Measured Data ... 41
 4.3.1 Experimental Rig ... 41
 4.3.2 Application of the Simulation ... 44
4.4 Conclusion .. 48

Chapter 5

Real Time Active Control .. 49

5.1 Introduction .. 49
5.2 Evolution of the Preexisting Software ... 50
5.3 Design of Impedance Filters ... 52
 5.3.1 Fourier Transform Analysis ... 53
 5.3.2 Implementation in the Labview Interface ... 57
5.4 Test Set-up .. 59
5.5 Test Measurements ... 66
5.6 Application of the Technique reproducing the Impedance of an Aluminum Plate ... 68
5.7 Limitations ... 74
5.8 Discussion .. 75

Chapter 6

Two-port Network Model .. 77
6.1 Introduction .. 77
6.2 Theory of the Two-port Network Model .. 78
6.3 Obtaining data for the Two-port Network Model 81
6.4 Application for the 1-3 Tube Array Actuator from MSI 83
6.5 Conclusion ... 91

Chapter 7

Conclusions and Future Work .. 92
7.1 Conclusions .. 92
7.2 Future work ... 95

References ... 97

Vita .. 100
List of Figures

Figure 1.1: Bounded configuration diagram for different voltages of the actuator model QP15W from ACX ... 4
Figure 1.2: Two different uses for an inertial actuator: static or dynamic structure 6
Figure 1.3: Force output of an inertial actuator used in two different cases 6
Figure 2.1: Block diagram of digital FIR filter ... 10
Figure 2.2: Block diagram of adaptive filter ... 11
Figure 2.3: Three-dimensional performance surface, I=2 case 15
Figure 2.4: Block diagram of feedforward control ... 21
Figure 2.5: Block diagram of adaptive feedforward control with filtered-X LMS algorithm ... 23
Figure 3.1: test set-up developed by Material System Incorporated 25
Figure 3.2: Theoretical test apparatus for adaptive control of impedance 26
Figure 3.3: Calculation of the error signal, $E(\omega)$.. 29
Figure 4.1: Model of stack actuator ... 33
Figure 4.2: Dynamic model of the test apparatus ... 35
Figure 4.3: Contribution to the error from the sample actuator and the control actuator over various impedance requirements 38
Figure 4.4: Contribution to the error from the sample actuator and the control actuator when $K_c=2*K_s$... 40
Figure 4.5: Contribution to the error from the sample actuator and the control actuator when $K_c=0.5*K_s$... 41
Figure 4.6: Experimental rig showing the two actuators connected in series via a force gauge ... 42
Figure 4.7: Main devices used on the test rig .. 43
Figure 4.8: Transfer functions of the displacement on the rig when the control actuator is driven with white noise ... 44
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>Principle of the control simulation using measured data</td>
<td>46</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparison between the force out of an inertial actuator and the one obtained with control simulation for the corresponding Z_d</td>
<td>47</td>
</tr>
<tr>
<td>5.1</td>
<td>Control chart implemented on the DSP board</td>
<td>52</td>
</tr>
<tr>
<td>5.2</td>
<td>FIR filter</td>
<td>53</td>
</tr>
<tr>
<td>5.3</td>
<td>Labview command panel for designing desired impedance filter</td>
<td>58</td>
</tr>
<tr>
<td>5.4</td>
<td>Impedance head type 8001 from Bruel & Kjaer</td>
<td>59</td>
</tr>
<tr>
<td>5.5</td>
<td>1_3 tube array piezoelectric actuator with aluminum plates glued on both sides</td>
<td>61</td>
</tr>
<tr>
<td>5.6</td>
<td>Force versus pre-load applied to an actuator under 3 different voltage drive conditions at 500Hz</td>
<td>62</td>
</tr>
<tr>
<td>5.7</td>
<td>Final test rig</td>
<td>63</td>
</tr>
<tr>
<td>5.8</td>
<td>Schematic of the control loop for the entire set up</td>
<td>64</td>
</tr>
<tr>
<td>5.9</td>
<td>Pictures of the control loop for the entire set up</td>
<td>65</td>
</tr>
<tr>
<td>5.10</td>
<td>Force and velocity signals for four different impedance filters</td>
<td>65</td>
</tr>
<tr>
<td>5.11</td>
<td>Magnitude of impedance set (Z_d) in the controller and of impedance actually reached during the control</td>
<td>68</td>
</tr>
<tr>
<td>5.12</td>
<td>Experimental test set-up to measure the impedance of an aluminum plate with free-free boundary conditions</td>
<td>69</td>
</tr>
<tr>
<td>5.13</td>
<td>Magnitude and phase of the impedance of a plate measured experimentally and reproduced with the controller</td>
<td>70</td>
</tr>
<tr>
<td>5.14</td>
<td>Force output of a plate measured experimentedly and reproduced with the controller</td>
<td>73</td>
</tr>
<tr>
<td>5.15</td>
<td>Velocity output of a plate measured experimentedly and reproduced with the controller</td>
<td>73</td>
</tr>
<tr>
<td>5.16</td>
<td>Test set-up for the double-sided controller</td>
<td>75</td>
</tr>
<tr>
<td>5.17</td>
<td>Plots of the current, displacement and force of the sample while it is controlled to see the impedance of a 500 g mass</td>
<td>76</td>
</tr>
<tr>
<td>6.1</td>
<td>Two-port network model of an actuator</td>
<td>78</td>
</tr>
<tr>
<td>6.2</td>
<td>Set-up to measure V(t), F(t) and u(t) when the sample actuator has no input current</td>
<td>82</td>
</tr>
</tbody>
</table>
Figure 6.3: Set-up to measure I(t), V(t) and F(t) when the sample actuator is blocked ..

... ... 83
Figure 6.4: Magnitude of different transfer function giving the internal parameters of
the 1_3 tube array actuator at 500Hz ... 84
Figure 6.5: Velocity of the 1_3 tube array actuator for different real impedances at
500Hz .. 86
Figure 6.6: Force for the 1_3 tube array actuator for different real impedances at
500Hz .. 86
Figure 6.7: Behavior of the force and velocity for small external impedance load.... 87
Figure 6.8: Velocity of the 1_3 tube array actuator for different pure imaginary
impedances at 500Hz .. 88
Figure 6.9: Force from the 1_3 tube array actuator for different pure imaginary
impedances at 500Hz .. 88
Figure 6.10: Power from the 1_3 tube array actuator for different real impedances at
500Hz .. 90
Figure 6.11: Power from the 1_3 tube array actuator for different pure imaginary
impedances at 500Hz .. 90
List of Tables

Table 5.1: Magnitude and phase of the impedance of a plate measured experimentally and reproduced with the controller for different frequencies 71