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THREE-DIMENSIONAL ANALYSISOF WAVE ATTENUATION BY
ANCHORED HEMICYLINDRICAL SHELL

FataD.E. Dewi

(ABSTRACT)

The performance of aflexible structure as a breakwater is investigated numerically.
The structure is a hemicylinder and is filled with water of uniform pressure. It is anchored

along the sides. Only flexural modes are present.

The structure is modeled as an elastic shell using the finite element program
ABAQUS. The fluid is assumed to be inviscid and incompressible. The fluid flow is
analyzed using a boundary integral method and the integral equation is solved numerically
by a panel method.

The vibration characteristics of the structure are analyzed both in the absence and
presence of water. The hydrodynamic coefficients, forces, and the dynamic response of the
structure in waves are obtained as a function of the wave number. Two different water
depths of 5 m and 6 m are considered. For each water depth, normal and oblique incident
waves are considered. The free surface elevation in front of and behind the structure is
evaluated for different wave frequencies and directions. The results indicate that the
flexible structure is effective in reducing the incident wave intensity over a wide range of

frequencies.
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CHAPTER 1 INTRODUCTION

11 MOTIVATION

In view of the increasing number of activities in the ocean environment, the role
of breskwaters has become more significant. Built to break the force of the waves,
breakwaters can stop beach eroson as well as damage to a harbor. Presently, most

existing breakwaters are fixed rigid structures such as the rubble-mound breakwater.

In this study we will investigate the use of inflatable, flexible structures as
breakwaters. The use of inflatable structures for breakwaters has a number of advantages.
First, they have relatively low cost and little weight compared to rigid structures. Their
cost does not increase substantially with depth, while the cost of a fixed structure
increases exponentially with depth. Second, they are relatively easy to instal, do not
corrode, require little maintenance, and can handle extreme temperatures. Third, they can
be filled with air, water, or a combination of air and water which can be done in a
relatively short time, so they can be efficient in assembly and disassembly. Fourth, they are
easily transportable because, when deflated, the inflatable structures can be compressed
into a small volume. Lastly, inflatable breakwaters can be anchored to the ocean floor and
inflated only in the event of a severe storm. This is an attractive alternative to a fixed
breskwater, since in calm weather the inflatable structures are deflated and will not

obstruct marine life or navigation.

Recent developments in materials science have contributed significantly to
opening an opportunity for the development of flexible, inflatable structures as
breskwaters. Problems of material degradation and failure have been largely overcome.
With the use of modern materials, inflatable structures might be extremely effective as

breakwaters, absorbing or reflecting much of the wave energy.



Fata D. Dewi Chapter 1. Introduction 2

In the present day of ocean exploration, inflatable breakwaters can also support a
number of operations at sea, such as oil and gas extraction, fish farming, ocean mining,
and recreation. These structures can aso be used to protect floating airports or portable
ports and to support temporary operations such as pollution control, salvage operations,
and construction and maintenance of offshore platforms. In addition, inflatable
breakwaters can alternatively act as sacrificial structures in the event of large storms,

reducing the size of waves incident on fixed breakwaters, shores, or offshore structures,

1.2 HISTORY

According to archaeological work, a sea-wall or breakwater was a common
feature in many Egyptian, Greek, and Roman ports. During the Roman Empire, numerous
breakwaters were constructed because of the scarcity of natural bays that could be formed
into harbors. The remains of these breakwaters have been found and they resemble the

present-day rubble mound breakwaters.

Contrary to the old concept of fixed breakwaters for coastal protection, the idea
of transportable breakwaters is more recent. The most famous use of this type of
breakwater was during the Normandy invasion of World War 11, where the Bombardon
floating breakwater and the Phoenix caisson were deployed to form artificial harbors.
These structures performed well and their failures were caused by unexpected waves 5 m

high which produced stresses eight times greater than those of the design loads.

Other innovative designs of transportable breakwaters include the scrap tire
floating breakwater (where tires are chained to form a breakwater that can reach 600 min
length), a single floating pontoon moored to the bottom, multiple pontoons, and floating

membrane, sheet, or blanket structures that can be filled with air, water, or a viscous
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liquid. The merits of these designs have been discussed by Jones (1971), Hales (1981) and
Jenkins and Leonard (1991).

Pirelli, an Itaian tire company, have proposed the use of rubber structures to
protect Venice, Italy, from periodic flooding due to high tides. These structures would be
attached to the bottom of the channels. In the event of a storm, they would be inflated
with water thus protecting the historic city (Scott, 1976). Unfortunately, these tidal
barriers have not yet been constructed because of economic considerations, and Venice

continues to be flooded during high tides.

1.3 INFLATABLE DAMS

The research effort on the potential use of inflatable structures as breakwaters
was inspired by research studies done on inflatable dams. These dams can be used in many
applications such as. diversion of water for irrigation, hydroelectricity, tidal control, or
flood control; raising the height of fixed dams to increase reservoir capacity; creating

recreational basins; preventing contamination; and increasing groundwater supply.

Typicaly, inflatable dams are cylindrical in shape and are used as low-rise dams,
not exceeding a 6 m height. The length to height ratios can vary, ranging from 0.5 to 229.
The dams can be filled and inflated with air, water or a combination of both. These dams
may be anchored to a specifically made reinforced-concrete foundation strip or an existing
base, e.g. the crest of a dam or a breakwater. Anchorage can be a single or a double strip
system.

The early dams were called Fabridams, manufactured by Firestone (Firestone
Tire and Rubber Company, 1964; Firestone Coated Fabrics Company, 1968). A few

failures of these early dams were caused by the low durability of the structure, the small
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thickness of the material and the anchoring system that was not well developed, i.e. the
dam was anchored by bolts which made holes in the rubber, causing stretching to occur at
the bolts.

Most of the newer dams are built by two Japanese companies, Sumitomo
Electric Industries and Bridgestone Corporation. These more developed dams have
material thickness that ranges from 4 to 23 mm. They are made of rubber, reinforced with
several layers of a synthetic fiber such as nylon. Sometimes, ceramic chips are embedded
in the lamination to increase the strength of the outer resistance of the structure. The

manufacturers claim that these dams have an expected lifetime of 30-40 years.

14 PRESENT STUDY

The proposed inflatable breakwater has the shape of a half circular cylinder. It is
anchored to the ocean floor and filled with water. The structure is totally submerged at a
small distance beneath the free surface. The three-dimensional motions of the structure are
analyzed and the flexibility of the structure is described using a finite element numerical
model. The linear fluid-structure interaction was investigated numerically by computing
the wave field around the structure. The effects of three-dimensionality and flexibility of
the structure on the reflected and transmitted waves were investigated, and the structural
performance as a breakwater was analyzed over a range of wave frequencies. It was found
that the flexible structure as a breskwater is very effective in reducing the wave amplitude

over awide range of wave frequencies.

The material in this thesis will be presented in the following manner. Chapter 2
describes previous research studies on the interaction of waves with rigid and flexible
structures. Next, in Chapter 3, the mathematical formulation of the boundary value
problem is discussed. Chapter 4 contains the validations performed on the finite element
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software ABAQUS and on the fluid program used for computing the wave field around

the structure. Chapter 5 discusses the results of the investigation on the effectiveness of
the proposed inflatable breakwater. Conclusions and suggestions for further research are

presented in Chapter 6. The figures and tables are presented at the end of each chapter.




CHAPTER 2 LITERATURE REVIEW

This chapter is divided into two sections. First, earlier works on the dynamics of
free surface waves over arigid structure benesth the free surface will be discussed briefly.
The second section will describe previous analytical, experimental and numerical works on

the interaction of flexible structures and water waves.

21 INTERACTION OF SURFACE WAVESWITH SUBMERGED
OBSTACLES

The dynamics of ocean surface waves is a topic that has been studied
extensively. Some of the well known results are contained in the books by Dean and
Darymple (1991), Me (1992) and Sorensen (1993). When analyzing the problem of
surface waves over rigid obstacles, the viscous effects are usually neglected. Therefore,

the flow is analyzed using potential flow theory.

Newman (1965) obtained an approximate solution for surface waves elevation in
the limit of a long submerged obstacle. Kobayashi and Wurjanto (1989) obtained the

approximate solution in the limit of long waves.

Me and Black (1969) presented numerical results on the investigation of the
scattering of waves by rectangular obstacles in two dimensions using a variational
formulation. Similarly, Williams and Darwiche (1988) analyzed the three-dimensional
scattering of waves by elliptical breakwaters using eigenfunction expansions. The
numerical results from both works are valid for the entire wavelength spectrum and finite

obstacle lengths.
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Subcritical and supercritical solutions for surface waves over circular bumps were
given by Shen, et al. (1989).

Chakrabarti and Naftzger (1989) evaluated the wave forces on a submerged semi-
cylinder resting on the bottom using a boundary integra method. The non-dimensional

horizontal and vertica forces were obtained at different values of the wave number.

In al of these works, the nonlinear effects are neglected, that is the free surface
boundary condition is linearized. A recent study by Grue (1992) on the diffraction of
waves by adlightly submerged obstacle or a bottom topography showed that nonlinearity
is important. For the submerged obstacles, horizontal circular cylinders of radius 100 mm
and 200 mm were used. For the bottom topography, a rectangular shelf with a cross
section 500 mm long and 410 mm high was used. All geometries, the circular cylinders
and the rectangular shelf, span the whole width of the wave channel of 14.2 m long and
0.47 m wide where the experiments were performed. Grue’s study showed that
nonlinearity can introduce subharmonic waves which can carry up to 25% of the incoming

energy flux.

22 FLEXIBLE STRUCTURES AND SURFACE WATER WAVES

Fluid-filled floating bags, wave blankets, fluid-filled circular cylinders and flexible
underwater mounds are examples of flexible structures used for wave control. Their
effectiveness in reducing wave intensity is due to structural damping which absorbs

energy, or structural motions generating waves that may cancel the incoming waves.

Ohyama, et al. (1989) performed a numerical and experimental study of the
transmission and reflection characteristics of waves over a submerged flexible mound. The

structure was modeled as a thin flexible membrane filled with water. It was fixed on the
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seabed and the water inside the membrane was hermetically sedled. In the numerical

analysis, the flexible membrane was modeled as a lumped-mass system and was discretized

equaly in the initia condition without stretching. The fluid was assumed to be
incompressible, inviscid and irrotational so that the velocity potential could be used to

describe the fluid motion. Linear theory was applied, assuming that the membrane and the

fluid motion were sufficiently small. The boundary value problems were formulated and
transformed into boundary integral equations using Green'’s function and Green’s formula
that satisfies the boundary conditions on both the free surface and the seabed. Equations
of motion were written for each nodal point on the membrane, containing the mass of the
element, density of the membrane’s material, membrane’s thickness, and hydrostatic and
hydrodynamic forces. The unknowns, i.e. the potential values and the displacement
magnitudes at nodal points and the potential values at any arbitrary point in the fluid
region, were found by solving the linear equations of motion. The results of the numerical

analysis were validated against experimental results.

Ohyama, et al. (1989) tested a model of a flexible mound in a wave tank 40.0 m
long and 4.0 m wide. The model was made of a rubber membrane with Young’s modulus
= 58,000 kN/r, pr = 1260 kg/m and material thickness = 1.65 mm. It had a base width
of 1.6 m and breadth of 4.0 m. The height of the flexible mound was varied. The water
depth was 0.8 m and the incident wave height was 4.0 cm. The reflected and transmitted
wave heights were recorded at three points along the membrane’s length. The transmission
and reflection coefficients obtained from the numerical analysis and experiments agreed
well, except at wave periods where reflection and transmission coefficients become
maximum and minimum, respectively. It was stated that the discrepancies were caused
mainly by the influence of the side membrane. The wave periods at which the coefficients
differed significantly may be the natural periods of the structure; then the response motion
is amplified considerably and differs from the two-dimensional motion. In this case, the

numerical analysis is no longer valid. It was found that at several wave periods, the
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transmission coefficient was zero. At these wave periods, the radiation waves had the
same height but inverse phase as those of the transmitted waves when the structure was
not moving. It was also observed that the stationary component of the internal pressure
increased considerably from the initial added pressure under the action of waves. If this
internal added pressure was adequate, the flexible membrane was effective in reducing the

transmitted waves over awide range of wave frequency.

Fathi, et al. (1994) studied the interaction between free-surface waves and a
floating flexible container. Three-dimensional linear potential theory (Newman, 1994),
which will be discussed extensively in Chapter 3, was used to solve the radiation-
diffraction problem. The container was modeled as a circular cylinder with spherical caps
at the ends. A total length of 30.48 m and a diameter of 1.46 m were used to give alength
to diameter ratio of approximately 20. Several hydroelastic mode shapes were added to
the conventional six rigid body modes to account for the motion of the container. Natural
modes for a uniform beam with free ends were chosen for these hydroelastic mode shapes.
An infinite depth was used for the analysis and the structural behavior was assumed to be
linear and elastic. A panel program named WAMIT was used to compute the amplitude of
the motions, the exciting forces and the hydrodynamic coefficients (added mass and
damping coefficients) for specified modes. One of the important results was that the
response amplitudes of the generalized modes (i.e. hydroelastic modes) are largest for the

first bending mode and decrease with increasing order.

Evans and Linton (1989) showed that a submerged body, allowed to move
subject to a restoring force, could reduce the wave intensity by utilizing the body’s
induced motion to generate waves which exactly canceled the incident waves. Assuming
the body and its motion to be symmetric, this cancellation of waves could be accomplished
without adding energy or taking energy out of the system if the velocity of the moving

body was chosen such that the incident waves were totally reflected. Theoretical
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calculations were performed for a submerged circular cylinder held down by two
inextensible cables at each end. The transmission coefficients for varying incident
wavelength were obtained at three different submergence levels. It was found that the
performance of the structure improved as its distance to the free surface was reduced (e.g.

at a clearance of 1/3 of its radius, the circular cylinder reflected 95% of the incident wave

energy over a very wide range of wavelengths). For a given specific gravity, the “tuned”
frequency (i.e. the frequency at which the body totally reflected the incident wave) was
discovered to be a function of the length of the cables and the water depth. At this tuning
frequency, the free surface profile showed that there were no transmitted waves
downstream. The maximum displacement of the cylinder, which occurred at a wavelength
longer than the tuned wavelength, was found to be slightly over twice the incident wave
amplitude. This relatively large displacement was stated to be necessary for the submerged
body to generate canceling waves. An experimental study was carried out on a polystyrene
cylinder of 51 mm radius and specific gravity of 0.06 which confirmed these theoretical

predictions.

Broderick and Leonard (1992) studied the nonlinear interaction between a highly
deformable fluid-filled membrane and sacé water waves. The finite element model of
the membrane was used to predict its nonlinear dynamic behavior such as large
displacements, surface rotations, nonlinear stress-strain relationships and non-conservative
loadings. The boundary element method was used to model the fluid domain and to
compute the hydrodynamic loading induced by water waves on the structure. Ideal fluid
flow was assumed in solving the diffraction/radiation problem. To treat the nonlinear
kinematic and dynamic free surface boundary conditions iteratively, either linear waves or
finite amplitude waves were assumed in the boundary element model. Volterra’s method
was used to include time implicitly in the governing field equations. The finite element
model and the boundary element model were coupled and an iterative procedure was

utilized to investigate the wave-structure interaction. Numerical calculations of the
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reflection and transmission coefficients showed that the membrane cylinder can be an

effective wave barrier for certain wave periods. The membrane’s effectiveness as it moved
closer to the free surface was not evaluated. A circular cylinder of 3-ft diameter and 12-ft

length was used in the experimental study to verify the numerical results.



CHAPTER 3 LINEAR ANALYSIS: FORMULATION

The analysis is divided into two parts. First, the structure is modeled using a
finite element program. It is assumed that initially the structure is filled with water until the
hydrostatic pressure of the internal water is equal to that of the externa water. At this
point, the structure has an exact semi-cylindrical shape because the internal pressure is
canceled by the external one. Then, more water is added into the structure until the
internal pressure is uniformly 5% higher than the maximum external hydrostatic pressure.
This pressure addition is treated as air pressure and is included in obtaining the vibration
frequencies and mode shapes. These mode shapes are called the “dry” mode shapes.
Second, the “dry” mode shapes of the structure are used as basis functions to
describe the displacement of the body surface. Then, the effects of internal and external

added mass are included in the analysis.
31 WITHOUT EXTERNAL AND INTERNAL WATER

The governing equations of motion for this analysis have the form:
MU +KU =0 (3.1)
whereU (t) Is the vector of the nodal displacements &ndand K are, respectively, the

mass and stiffness matrices of the structure. The mathtesnd K are real, symmetric

and positive definite. The numerical values of the mass matrix are obtained from the finite
element software ABAQUS (Hibbitt, et al., 1994) along with the vibration frequencies and
mode shapes. The “dry” natural frequendies, satisfy:

|K - wh, M[=0 (3.2)

For the ABAQUS analysis, a shell element S4R (4-node doubly- curved thin or

thick shell) is chosen. This element allows large deflections, large rotations and small

12
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strains. Each node of the element has six generalized displacements (u,v,w, 8,86, 6,),

resulting in atotal of 24 degrees of freedom per element (see Fig. 3.1).
3.2 WITH EXTERNAL WATER AND INTERNAL WATER

The fluid is assumed to be inviscid and incompressible. The fluid motion is
assumed to be irrotational, so that we can write the velocity field as the gradient of a
velocity potential @. A linear analysis is used in which the boundary conditions on the

free surface and the body boundary are linearized.

A coordinate system is defined such that z is positive upwards and the xy-plane
is coincident with the bottom surface (see Fig. 3.2.8). Incident waves will interact with the
submerged body, causing it to have small vibrations about the equilibrium position. It is
assumed that the body motion is sinusoidal at the radial frequency @ of the waves with

displacement &(t)=&e™“". In general, the body can have both rigid and flexural motions.
For this configuration, only the flexural modes are present. In this study, the “dry” mode

shapesS, (7() with Cartesian componentéuj,vj,wj) are used as basis functions to

describe the displacement of the body surface. Other choices of basis functions to define
the flexural displacement include orthogonal polynomials such as Chebychev or Legendre

polynomials ( Newman, 1994). We then approximate the displaceynaitany point of

the body surface as:

y(x,y,zt)= ij (t) S, (x.v.2) (3.3)

The governing equations of motion can be written as:
(Mg + A+ Ap)é + BE + K& = F'+F° (3.4)

where
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. (t)= {g‘j (t)} isthe J x1 vector the nodal displacement factors,

* A and B are the added mass and damping matrices, respectively, which represent
the influence of the external water,

* J =15 isthetotal number of flexural modes used in the analysis,
A enq 1S the added mass matrix due to the internal water,

« F' and F® are the hydrodynamic forces due to the incident and diffracted waves,
respectively,

e M, and K, are, respectively, the generalized modal mass and moda stiffness

matrices obtained from ABAQUS. M and K are diagonal and

(%), = (@), (M),

The velocity potential can be decomposed into:

(0 J .
<D(x,y,z,t):Re%0I ot Y qu(x,y,z)f.
j=1

—

. O

Je-iotg (35)
0
[l

where

« @ e’ isthe potentia of diffracted waves,

s @ e'“" isthe radiation potential for modej,

~

- ¢ isthe complex amplitude of body motion inthe j " mode, & (t) = fj e'et

« @ e isthe potential of incident waves, defined as (Newman, 1994):

_ 19w C0sh(k2) aik(xcosp+ysng) (36)

é w  cosh(kd)

where

* A IStheincident wave amplitude,

* disthewater depth,
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* w istheincident wave frequency (w = 2?”),
* kisthewave number, defined to be a positive root of the dispersion relation:
%2 = k tanh(kd) (3.7)

* [ istheangle of wave propagation (see Fig. 3.2.b).

In order to solve equation (3.4), we need to determine the fluid flow outside the

structure as well asinside the structure.

In the external fluid domain, each of the potentials ¢ must satisfy Laplace’s

equation,d’@, = 0. On the fluid boundaries, the following linearized boundary conditions

must be satisfied (see Fig. 3.3):

W’ 29,
e On the mean water surface=d : —— @ t—=
g Jz
J
* On the bottom: % =0, 9
Jz Jz
* On the body surface, : d_%:_%
an an
20, _ .
—=-iwn,
an J

where n; =S, .n=u;n, +v;n, +w;n, and the unit normaﬁ:(

from the body surface to the external fluid domain.

i=12,...,3

n,n n) points out

x 1y tiz

The exterior fluid flow is analyzed using a boundary integral method. The

appropriate Green’s function for this problem, which is the potential of a submerged

source of oscillatory strength in water of depth d (Wehausen and Lalt®6@), is

written as:
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1
G(P,Q)= + +
) VR +(z=¢f |R+(d+z+)
(3.8)
3 ﬁwajﬁcosh k(z + d) cosh k(¢ + d)

2 e™*"J,(kR) dk
wz
0 ksinh (kd)—Ecosh(kd)

where

«  P=(x,y,2) isthe coordinate of the field point,

«  Q=(&n.{) isthe coordinate of the source point,

¢ R=\(x=&f +(y-n).

Application of Green’s second identity provides a Fredholm equation of the

second kind for the values of the potential on the body surface:

dG(P Q)

—27T(/7(P)+J’J’(/JJ(Q) ds, H J(Q) G(P,Q) dS, (3.9)

The integral equation is solved numerically by a panel method in which the body
surface is approximated by an ensemble of flat quadrilateral panels and the value of the
potential is assumed to be constant over each panel. This assumption reduces the problem
of finding a continuous potential distribution to determining a finite number of unknown
potential strengths. Utilizing a collocation method in which the integral equation is
satisfied at one point for each panel, the problem is reduced to solving a linear system for

the values of the velocity potential on each panel.

The efficient calculation of the Green'’s functi@h defined by equation (3.8) is

central to the effectiveness of the present numerical method. In order to analyze each
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structure, the program needs 10% to 10° Green’s function evaluations The subroutine

FINGREEN developed by Newman (1985) was used to evaluate the Green’s function.

The incident wave potentigh, and the diffracted wave potenti@), are used to

find the hydrodynamic force:
F' +ED:—inWIIS (@ +@)n ds (3.10)

where g, =10259 kg/n? is the density of water. For the vertical and horizontal forces,

equation (3.10) can be written as follows:

I:hlorizontal + I:hlzrizontal = _i (U,OW IISb (@ + %)nx dS (311)
I:vlertical + Fvgnical = _iprJ’J’S (@ + %)nz dS (312)

The radiation potentialg; provide the values of the added mass and damping

matricesA and B as follows:

1 .
[A], _?Reﬁ'prIfsb on, dS% (3.13)

1 .
B8], —Elm% 'prIIso on, dS% (3.14)

For the internal fluid analysis, each of the potentiglsmust satisfy Laplace’s
equation,0%¢, =0, in the fluid domain. On the fluid boundaries, the following linearized

boundary conditions must be satisfied (see Fig. 3.4):

e On the bottom: — =

« On the body surface, : % —_iwn, ji=12..,J
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The interna fluid flow is aso analyzed using a boundary integral method as
discussed previously for the analysis of the external fluid flow. A Rankine source Green’s

function is chosen for this problem:

G(P.Q)= (3.15)

1
R +(z=¢)

whereP, Q andR are as defined earlier.

Application of Green’s second identity provides a Fredholm equation of the
second kind for the values of the potential on the body surface as written in equation (3.9).
The values of the internal added mass are obtained from equation (3.13). There is no

damping.

The amplitudesfj of the structural response are obtained by solving equation

(3.4). Then the flexural displacement of a point on the surface of the structure is
determined from equation (3.3). Green’'s theorem gives the values of the velocity

potentialsg on the free surface:

9(P)= 4ol

The total potentiatb is determined from equation (3.5). Given the values of the velocity

ﬁG( Q) ¢, (Q)

Ng

-G(P,Q)——* (3.16)

potential on the free surface, the free surface elevation is found as:

= -19® _ iw® (3.17)
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Figure3.1 A shell finite element.
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X

Figure3.2.a Schematic diagram of the coordinate system.

Breakwater y
V /
Wave crest\s . QB X
A (wavelength)

Figure3.2.b Definition of incident wave direction of propagation.
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Figure 3.3 Linearized boundary conditions for external fluid analysis.
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Figure 3.4 Linearized boundary conditions for internal fluid analysis.



CHAPTER 4 PROCEDURE VALIDATIONS

This chapter is divided into two sections. Section 4.1 describes the verifications
that were performed on the finite element software ABAQUS which is used to find the
vibration characteristics of the structure without the presence of external water. Section
4.2 explains the validation of the fluid-flow program which is used to determine the effects

of externa water on the structure.

41 WITHOUT EXTERNAL WATER

In this research, the finite element software ABAQUS (Hibbitt, et a., 1994) is
used to model the breakwater structure. From ABAQUS, we obtain:
» thevibration frequencies and mode shapes of the structure,
* thenumerical valuesfor the mass and stiffness matrices of the structure.
In order to validate ABAQUS's analysis on a structure’s vibration characteristics, several

2-D and 3-D structures were modeled and their vibration characteristics were obtained.

411  2-D STRUCTURE

Analytical solutions for the vibration frequencies of clamped and pinned circular
arches can be found in Chidamparan and Leissa (1993). Using ABAQUS, we modeled a
half circular arc segment (Fig. 4.1) and obtained the vibration frequencies. The radius of
the arc was 4 m and it was modeled by 100 quadrilateral panels of shell element S4R. The

following boundary conditions were applied to the model:

* no translation in the y-axis direction and no rotation about the x- and z-axes for all

nodes,

* the nodes at the ends of the arc were either clamped or pinned.

23
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The first four vibration frequencies obtained from ABAQUS were non-

dimensionalized and compared to those obtained by Chidamparan and Leissa (1993).
These vibration frequencies are presented in Table 4.1 (for the clamped arc) and Table 4.2
(for the pinned arc). For the clamped arc, the largest differenceis 6.5% at mode number 3,
while for the pinned arc, the maximum difference is 14.2% at mode number 3. These

diferences may be attributed to the number of panels used for ABAQUS analysis.

Moorthy, et al. (1995) performed a finite element analysis of the vibration
frequencies of a two-dimensional dam structure (Fig. 4.2) with the following

characteristics:

e E=21x10°N/m?

e v=0.3
e p=960kg/m?
e h=7.6mm

* perimeter =13.7m
* height=4.9m
* baselength=6.1m

In ABAQUS, we modeled the 2-D dam structure with 100 quadrilateral panels
of shell element AR (Fig. 4.3). The following boundary conditions were applied to the

structure:
* the nodes at the structure’s ends are pinned,

* no translation in the y-axis direction and no rotation about the x- and z-axes for all

nodes.

A uniform internal pressure of 28 kPa was applied to the structure and the
natural vibration frequencies of the structure were obtained. Table 4.3 shows the first six
vibration frequencies obtained by Moorthy, et al. (1995) and those obtained from

ABAQUS. The values agree fairly well, with the largest difference being 13.6% for mode
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number 2. These differences may be attributed to the following : Moorthy, et a. used a 9-
node shell element to model the structure, while the ABAQUS analysis used a 4-node shell

element.

412 3-D STRUCTURE

The vibration characteristics of a three-dimensional dam have been studied
numerically by Moorthy, et al. (1995). The cross-section of this 3-D dam structure was
described in the previous section (Fig. 4.2). In ABAQUS, we modeled the 3-D dam as a
40 m long structure using 980 quadrilateral panels of shell element SAR (Fig. 4.4). A
uniform internal pressure of 28 kPa was applied to the structure. The boundary conditions

were applied to the structure in the following manner:
¢ all nodes at the structure’s ends (y=0 and y=L) are clamped,

* all nodes along the sides parallel to the y-axis are pinned.

Table 4.4 contains the values of the vibration frequencies from the previous
study and from ABAQUS. It can be seen that ABAQUS's frequencies are higher than
those of Moorthy, et al. (1995). The largest difference is 16.9% for mode number 3.
Similar to the 2-D structure, the difference may be caused by the number of nodes in the

shell element.

From Soedel (1993), the frequency of an open circular cylindrical shell is written

as follows:
O O
2 E O L h mﬂaﬁ2 Q@gm O
“m” ,oa2 E mrra N DZ +12(1+ V)az @ L ' L E B D
O g+ ﬁzﬂ H
H L a E H
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where m and n are the numbers of half waves in the axial and circumferential directions,

respectively. The following parameters were used for ABAQUS'’s analysis:

e E=103.425 x 1ON/n?

e v=0.499

e p=1000 kg/ m
e h=13mm

e L=40m

e a=180

e a=4m

The ABAQUS model of the structure is shown in Fig. 4.5. It has 500
quadrilateral panels of shell element S4R. The following boundary conditions were
applied:

* no translation in the radial and circumferential directions and no rotation about the
radial and axial axes for all nodes at the four corners and all nodes at the structure’s
ends (y=0 and y=L),

* no translation in the radial and axial directions and no rotation about the
circumferential axis for all nodes along the sides parallel to the y-axis (except the

corner nodes).

Table 4.5 presents the first eight frequencies obtained from equation (4.1) and
from the finite element analysis using ABAQUS. Number of panels used for ABAQUS
analysis may contribute to the discrepancies between the two results. The largest
difference is 11.6% for mode number 3. The corresponding vibration mode shapes
obtained from ABAQUS are presented in Fig. 4.6 and Fig. 4.7.

4.2 WITH EXTERNAL AND INTERNAL WATER
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The fluid-flow code computes the added mass and damping matrices, the
hydrodynamic forces and the wave elevation. Verifications of each of these output

variables were performed to validate the program.

421 HYDRODYNAMIC FORCE VALIDATION

Chakrabarti and Naftzger (1989) evaluated the wave-induced horizontal and
vertical forces on a rigid hemicylinder resting on the bottom using a boundary integral
method. The same problem (see Fig. 4.8) was analyzed numerically using the present
method. A hemicylinder of 100 m length and 4 m radius was modeled for the program
using 1072 quadrilateral panels (Fig. 4.9). Other input variables for the program are listed
below:

e waveamplitude, 0.5H=1m,
e water depth, d =12.68 m,

e p, =10259kg/m®,

e g=9.80665m/s.

The results from Chakrabarti and Naftzger (1989) and the computed
hydrodynamic forces from the fluid-flow code are plotted in Fig. 4.10 and Fig. 4.11. These
plots show that the hydrodynamic forces computed from the fluid-flow code compare well
with the results from Chakrabarti and Naftzger (1989).

422 ADDED MASSVALIDATION

Kwak and Kim (1991) performed an analytica study on the axisymmetric
vibration of circular plates in contact with fluid (Fig. 4.12). In their study, the added
virtual mass incremental factor ( 3) was defined as the ratio of the kinetic energy of the

fluid due to the motion of the plate to the kinetic energy of the plate itself :
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,le—{z r gﬁ%@ 4.2)

where p,, isthe densty of the fluid, p, isthe mass density of the plate and, respectively,

a and h are the radius and the thickness of the plate. Kwak and Kim (1991) calculated the
values of the non-dimensionalized added virtual mass incremental (NAVMI) factor, I, for
circular plates vibrating axisymmetrically on the free surface. For circular plates vibrating
axisymmetrically submerged in the fluid, the NAVMI factor should be multiplied by 2. The
same problem was analyzed using the fluid-flow code. We obtained the added mass values
for a simply supported vibrating circular plate of radius 1 m, thickness 13 mm and mass
density 960 kg/m® submerged in water of 40 m depth. The added virtual mass incremental
factor is calculated from:
. 0.5J’(MA +m,)w? ?(s)ds

T
=_w = 4.3
p T, 05[m, W’ Wi (s)ds (43

where w, is the natural vibration frequency of the plate, ¢, is the vibration mode shape
(Fig. 4.13 and Fig. 4.14), M, is the dimensional added mass and m, is the generalized

mass of the plate for a specific mode shape. Since the vibration mode shapes in the water

M,+m
change very little compared to those in the air, f=—2—" . The values of [ are
m
p
calculated accordingly from equation (4.2) and the results from both studies are compared
and presented in Table 4.6 for six vibration frequencies. As Table 4.6 indicates, the

agreement is very good with the maximum difference being 6.89% for w,, =124.27

rad/sec.

423 DAMPING AND RESPONSE AMPLITUDE VALIDATION
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We verified the values of damping due to the influence of fluid indirectly by
verifying the response amplitudes fj . The result of Newman'’s (1994) analysis on bending
of a vertical column (see Fig. 4.15) was used for comparison. With reference to
Newman’s study, we used an identical vertical circular cylinder of radius 10 m extending

the entire depth of 200 m. It has a constant bending stiffrElss,and a uniform

distribution of massm along its length. A concentrated masg is placed at the free
surface to account for the ‘superstructure’. The concentrated mass is equal to the total
displaced massm, =p,7a’d, and the distributed mass is defined to be half of its
displaced mass,m=05p,/ma*. The stiffness of the cylinder is defined such that

El /d® =041m sec™. A set of orthogonal polynomials was used to define the “dry”

vibration mode shapes of the vertical cylinder (Fig. 4.16). These polynomials are defined

as follows (Newman, 1994):

f.(z)=d’PL(a) j=123.. (4.9)
whereq :§ and P is a polynomial of degree n defined as:

(4+2n-m)!

P (@)= ,Z)(_l)m m!(n- m)!(4+n—m)!qn_m (43)

The governing equations for the linear system are defined as follows:

Zf[ (2, + M, iwbij+Cij]=Xi (4.6)

The values of added masg , damping b, and hydrodynamic forceX; were obtained

from the fluid-flow program and are listed below for a wave period of 6.5 sec:

(1007 -131 -027 0007 [
D— 131 781 -0525 004 B
EL 027 -0526 594 —04020

0005 004 -0402 449 [

[a”] 10° x
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887 276
77 197
[3y]=20" %77 126
Hoo 072

176
126
080
046

100

O
071"
0460
0265

[L403- 3793i [
Hioo2 - 2703 H

{X}=10°x

0
F0641-1723i

365 - 09761

Thevaluesof M; and C; were given (Newman, 1994) asfollows:

M] =md—2 + 4.7
[ ]IJ 2i +3 My ( )
M 16 32 52 [
%6 172 380 640 U

[c], =(e1 /&) 32 380

%2 640

7356 12496 B

(4.8)

5 5 [
12496  220652[]

5

35 H

Solving equation (4.6), we obtained the response amplitudes ¢; for wave periods 5.0, 6.5

and 7.0 sec as presented in Table 4.7.

424 WAVE AMPLITUDE VALIDATION

There are only a few exact analytical solutions for diffraction (scattering) of

waves due to the presence of a sufficiently large body in the water. One of these solutions

can be found in Mei (1992) for the problem of wave diffraction by a vertical cylinder of

circular cross section which extends from the sea bottom to the free surface. In this case,

the free-surface displacement is given by:

P -0
,7 = Ancident Z gm(i) Eum(kr)_ Hm(kr)

3 (ka)
H:(ka)

Ecos (mé6) (4.9)
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where

A ceen 1S the amplitude of the plane incident wave, r is the distance between any

point on the free surface and the origin of the coordinate system and a is the radius of

the cylinder,
e g=land g, =2, m=123...,
* J,(kr) are Bessel functions of the first kind,

o H,(kr)=J,(k)+iY,(kr), where Y, (kr) are Bessel functions of the second kind,

o J(ka)=- m+l(ka)+ J +(ka) and H; (ka) = - m+l(ka)+ H +(ka)

A vertical cylinder of 1 m radius and of 5 m height (Fig. 4.17), discretized into
1000 quadrilateral panels, was used as an input geometry for the fluid-flow code. The
free-surface displacements were obtained from equation (4.9) and from the fluid-flow
code using an incident wave amplitude 1 m and different values of the wave number, k.
Fig. 4.18 and Fig. 4.19 show the wave amplitude on the cylinder surface (r = a). The solid
line was obtained from equation (4.9) while the circles are numerical results from the
program. Fig. 4.20 shows the wave amplitude for points on the x-axis. The solid line was
obtained from equation (4.9) while the dashed line was obtained from the fluid-flow code.

In all cases, the agreement between the analytical and the numerical results was very good.

The validations performed on ABAQUS show that its analysis of structural
vibration frequencies and mode shapes compares relatively well with previous studies.

Similarly, verifications of the fluid-flow code confirm that it can produce accurate results.
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Table4.1 Vibration frequencies of clamped half circular arc.

Present Study with ABAQUS Chidamparan and
Mode Leissa (1993)
number |  (rad/sec) A=wa*/pbh/El | A=wa’,/pbh/El
1 11.437 4.899 4.6
2 24.464 10.45 10.0
3 44.760 19.17 18.0
4 64.454 27.61 26.8

Table4.2 Vibration frequencies of pinned circular arc.

Present study with ABAQUS Chidamparan and
Mode Leissa (1993)
number |  (rad/sec) A=wa*/[pbh/El | A=wa’/pbh/El
1 6.0083 2.574 25
2 18.087 7.748 7.0
3 35.989 15.42 135
4 56.992 24.41 22.0
Table4.3 Natural Frequencies of 2-D dam (rad/sec).
Mode# | Moorthy etal. | Present study with ABAQUS
1 28.5 27.612
2 51.8 58.837
3 83.9 90.676
4 113.1 119.48
5 142.8 148.49
6 171.2 176.12
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Table4.4 Natura frequencies of 3-D structure (rad/sec).

Mode# | Moorthy etal. | Present study with ABAQUS
1 47.3 53.776
2 55.7 63.019
3 65.5 76.598
4 74.2 84.572
5 82.5 93.378
6 88.2 98.095

Table4.5 Vibration frequencies of 3-D structure (rad/sec).

Mode # (m,n) Soedel Present study with ABAQUS
1 (1,3) 1.1780 1.0743
2 (1,4) 1.4854 1.4016
3 (1,2 1.9686 1.7402
4 (1,5) 2.2074 2.1843
5 (2,4 2.4051 2.3281
6 (2,5 2.5393 2.5144
7 (1,6) 3.1498 3.2463
8 (2,6) 3.2857 3.2937

Table4.6 Added mass values of asimply supported vibrating circular plate.

Wry Generadlized mass |  Added mass r r
(rad/s) (kg) (ka) (Present) (Kwak and
Kim)
20.295 11.135 852.56 0.94358 0.98916
124.27 4.2843 124.16 0.36471 0.39168
301.60 5.9982 118.60 0.25270 0.24344
527.01 6.0655 87.389 0.18743 0.17636
925.99 5.5564 57.347 0.13772 0.13822
1336.0 4.0897 34.259 0.11407 0.11366
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Table4.7 Response amplitudesfj for avertical circular cylinder.

Period = 5.0 sec Period = 6.5 sec Period = 7.0 sec

¢ ¢ ¢ ¢ ¢ ¢
(Newman) (Present) (Newman) (Present) (Newman) (Present)
0.04813 0.04761 114505 114021 0.44875 044743
0.00423 0.00418 0.09698 0.09658 0.03795 0.03785
0.00010 0.00010 0.00135 0.00135 0.00046 0.00047
0.00002 0.00001 0.00024 0.00024 0.00008 0.00010
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E =0.103425 x 10° N/m? 7

v = 0.499
p = 1000 kg/m®
a=4.0m

h=0.4m (R =0.1)

b =56.3 mm

| =bh*¥12=3.0x 10" m*
pbh =22.52 kg/m

Figure4.1 ABAQUS modd of acircular arc.
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E=21x10° N/m’
v=0.3

p =960 kg/m’
h=7.6 mm
perimeter =13.7 m

49m

6.1m

Figure4.2 2-D dam structure ( Moorthy et al., 1995).

E=21x10° N/t

Figure4.3 ABAQUS model of a2-D dam structure.
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2.1x10° N/m?

E=
0.3

960 kg/m’
7.6 mm

U
p
h

Figure4.4 ABAQUS model of a3-D dam structure ( Moorthy et al., 1995).
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E = 103.425 x 10° N/m?

v =0.499

p = 1000 kg/m®
h=13mm
L=40m
a=180°

a=4m

Figure4.5 ABAQUS model of a3-D open circular cylindrical shell.
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Mode 1

1.4016 rad/sec

w=

1.0743 rad/sec

w=

2.1843 rad/sec

w=

1.7402 rad/sec

w=

Figure4.6 Vibration mode shapes 1 - 4 of an open circular cylindrical shell.
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2.5144 rad/sec

w=

2.3281 rad/sec

w=

3.2937 rad/sec

w=

3.2463 rad/sec

w=

Figure4.7 Vibration mode shapes5 - 8 of an open circular cylindrical shell.
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3.17

d/a

Figure4.8 Hydrodynamic forces on a hemicylinder ( Chakrabarti and Naftzger, 1989).

L =100 m
a=4m

d=12.68m

p,, = 1025.9 kg/m’

05H=1m

Figure4.9 Discretized model of a hemicylinder (1072 quadrilateral panels).
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0 Present study
— Chakrabarti and Naftzger (1989)

10 10 10”
KA

Figure 4.100  Nondimensional horzontal torce on a hemicylinder.
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(o sHLZ)
| 2 HL= |

10

1 @ Present study
"|—— Chakrabarti and Naftzger {1989)

SR 0 1 N S I
10° 10 10
ka

Figure 4.11 Nondimensional vertical force on a hemicylinder.



Fata D. Dewi Chapter 4. Procedure Validations 44

s ¢h ﬁ Circular plate
| —
J > |
o a a |

Fluid domain D

Figure4.12 Axisymmetric vibration of circular plates ( Kwak and Kim, 1991).

%/////////Iﬂ\\\\\\\

I =2

— <
LTS

Mode 1 Mode 2
w =20.295 rad/sec w=124.27 rad/sec

Figure4.13 Vibration mode shapes 1-2 of acircular plate.
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Mode 3
w = 301.60 rad/sec
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Mode5
w = 925.99 rad/sec
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Mode 4
w=527.01 rad/sec

<77
WS W
7/\\" \?;”//““‘« N,
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sy

Mode 6
w = 1336.0 rad/sec

Figure4.14 Vibration mode shapes 4-6 of acircular plate.
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d=200m {H-TTHH distributed mass, m= 0.5 p, &’
11} concentrated mass, m, = p, ma’d
1T El/d®=0.41m sec?
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Figure4.15 Discretized model of avertical column (1000 quadrilateral panels).



Feeter £, Dewid Chopter f, Procedore Volidarions 47
1 T T T T T T T T T
—— Mode 1 : !
0.8 % -+ 5 2 -+ H
—— Mode 2 : : s
: ! !

-—--Made 3 : P
0.6 v - -E—- - 2 .E e |I =

v Mode 4 ' ta

Column Deflection

0.6 i i
0

Figure 4.16
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Vibration mode shapes 1-4 for a vertical column,
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radius,a=1m
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/JD\ &
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Figure4.17 Discretized model of avertical column (1000 quadrilateral panels).
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Figure 4.18 Polar distribution of free-surface amplitude.
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Figure4.19 Polar distribution of free-surface amplitude.
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CHAPTER 5 NUMERICAL RESULTS

Numerical analysis of interaction of the structure with waves was performed at
two cases of water depth, 6 m and 5 m. In each case, the analysis includes free vibration
without water, free vibration with water and forced vibration. As discussed in Chapter 3,
the breakwater is modeled as a thin, isotropic, elastic shell. Using 1500 quadrilateral
panels of element AR, a breakwater of 150 m length and 4 m radius is constructed as
shown in Fig. 5.1. There are 20 panels along the circumference and 75 panels along the
length.

The structure’s boundary conditions are defined as follows:
» all nodes along the sides parallel to the y-axis are pinned,

» all nodes at the structure’s ends (y = 0 and y = L) are clamped.
51 WATER DEPTH OF 6m
511 FREE VIBRATION ANALYSISWITHOUT WATER

For a water depth of 6 m, 5% of the maximum external hydrostatic pressure is
determined to be 3000 NfmApplying this pressure as a uniform internal pressure to the
structure, small vibrations of the structure about the static equilibrium are analyzed using
ABAQUS. The first fiteen “dry” mode shapes are shown in Fig. 5.2. Modes
1,2,5,7,8,11,13,14, and 15 are symmetric while modes 3,4,6,9,10, and 12 are

antisymmetric. The natural frequencies of the structure are obtained from:
2 —
-w’M, +K,|=0 (5.1)
As discussed previously in Chapter 3, these “dry” mode shapes are used as basis functions

that describe the displacement of the body surface when external water is present.

52
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A study was conducted to determine the changes in the natural frequencies if the
structure is modeled as a membrane (e.g. no bending stiffness). Using the quadrilateral
membrane element M3D4R in ABAQUS, the natural frequencies of the structure were

found to be much smaller as shown in Table 5.1.
512 FREE VIBRATION ANALYSISWITH WATER

In order to obtain the “wet” natural frequencies of the structure, the effect of
external and internal water is included in the analysis. The “wet” vibration frequencies can

be determined from:
‘—a)z(Mg+A+Anmd)+Kg‘=O (5.2)

where the generalized mass matrM,,, and the generalized stiffness matrik, , are

’g’

obtained from ABAQUS.

The external added mass matAxis a function of wave frequenay; therefore
an iteration process is performed to get the natural vibration frequencies of the structure.
For example, to obtain the first “wet” natural frequency, an external added mass matrix,
A, is obtained atw=89639 rad/sec (the first “dry” natural frequency). Solving equation
(5.2) yields the new valuey =1378998 rad/sec which is used to obtain a new external

lwllflt'_ﬂ w4
w.

added mass matrix. The process is repeated Is less than or equal to 5%.

Notice that only external added mass changes with frequency. The internal added mass,

A.ena » 1S Independent of wave frequency since the water is contained inside of the

structure.

Figure 5.3.a and Fig. 5.3.b show the first four “dry” mode shapes and

frequencies along with the corresponding cross-sectional profiles at mid-structure and at
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one-quarter length from each end. Modes 1 and 2 are symmetric while modes 3 and 4 are

antisymmetric.

Figure 5.4.a and Fig. 5.4.b show the first four “wet” mode shapes and
frequencies. These figures show that the “wet” mode shapes do not change significantly as
compared to the “dry” mode shapes. Symmetric mode shapes are observed in modes 1 and

2 while antisymmetric mode shapes are observed in modes 3 and 4.

Table 5.1 contains the values of the generalized mass of the structure, the
diagonal elements of the external added mass matrix and the internal added mass matrix,
and the “dry” and “wet” frequencies. As can be seen, the influence of the external and
internal water is significant. The magnitudes of the external and internal added mass are
much larger than the mass of the structure. As a result, there is an average reduction of

82.7% on the magnitude of the first four natural frequencies of the structure.

513 FORCED VIBRATION OF THE STRUCTURE IN WAVES

5131 NORMAL INCIDENT WAVES(£=0)

Hydr odynamic coefficients, for ces, and response of the structure

We now consider the case of waves interacting with a flexible breakwater. As

discussed in Chapter 3, the effect of the external water is represented by the added mass

matrix, A, the damping matrixg , and the hydrodynamic forces, + F°.

Figure 5.5 shows the non-dimensional added mass values for mog and
for mode 2,A,,, as a function of the non-dimensional tekan ( k is the wave number

and a is the radius of the structure). This plot indicates that the added mass coefficient for
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mode 2 is much lower than that for mode 1. For mode 1, the added mass coefficient

reaches its maximum value at alower value of ka than for mode 2.

The values of the non-dimensional wave damping for mode 1, B,,, and for mode
2, B,,, are presented in Fig. 5.6. It can be observed that at low and high values of ka,

the values of these wave damping coefficients are negligible. Similar to the added mass

plot, the wave damping coefficient for mode 2 is much lower than that for mode 1.

Figure 5.7 shows the variation of the total nondimensional vertical and horizontal
hydrodynamic forces on the structure. These forces are the maximum wave-induced forces
as defined by Chakrabarti and Naftzger (1989) (see Fig. 4.8 and Section 4.2.1). The
vertical force decreases as ka increases, while the horizontal force increases initially with
ka but decreases after it reaches its maximum at  ka = 05. Figure 5.8 shows that for the
case of normal incident waves the hydrodynamic force for mode 1 is much higher than that
for mode 2. For low and high values of ka, the magnitudes of the wave forces are small

for both modes.

The Response Amplitude Operator (RAO); values are obtained by solving for fj

using equation (3.4). Figure 5.9 presents the (RAO); and (RAO), as functions of ka for
the case of normal incident waves. It can be seen that (RAO); is maximum close to the

first “wet” natural frequencyw, =146045 rad/sec ka = 097) and, likewise, (RAQ)is

maximum close to the second “wet” natural frequengy= 24650 rad/sec ka = 248).

Free surface elevation
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The amplitude of the free surface elevation ( {, see equation (3.17)) is obtained

for severa wave frequencies. The incident wave is taken to have a unit amplitude

( Ancident = 1)

Figure 5.10 and Fig. 5.11 show the wave amplitudes at the middle and at the end
of the structure for incident wave frequencies w = %T (ka=0437) and 7—2T (ka=11),

respectively. From these figures, it can be seen that the flexible structure is much more
effective as a breakwater than the fixed rigid structure in reducing the amplitude of the

incident waves.

In Fig. 5.12 to Fig. 5.17, different colors are used to represent the different
values of ¢ at different points in the xy-plane. The colorbar shows the corresponding

numerical value for each color. Notice that the color scale is different for each figure. The

breakwater extendsfromy =0toy =150 mand fromx =-4mtox =4 m.

For an incident wave of frequency w:g rad/sec, the non-dimensiona

amplitude of the free surface elevation are presented in Fig. 5.12. From the colorbar, it can
be seen that the wave amplitude behind the structure is reduced to 0.5 which means the
amplitudeis reduced by 50%.

Figure 5.13 shows the wave amplitude of the free surface elevation for wave
frequency w :g rad/sec (ka = 0.28). For this frequency, the wave intensity behind the

structure is reduced only by 20%. Figure 5.14 and Fig. 5.15 depict the wave amplitudes of

the free surface elevation for wave frequencies w=w, =146045 rad/sec (ka =097)

and w=w, =24650 rad/sec (ka=248), respectively. From the colorbar, it can be
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seen that the wave amplitude behind the structure is reduced by as much as 80% for wave

frequency w =w, and as much as 90% for wave frequency w =w,, . Figure 5.17 shows

the wave amplitude of the free surface elevation for wave frequency w = 71 rad/sec

(ka=40). For this wave frequency, it can be seen that the structure is no longer

effective. It is also observed that diffraction of the wave energy around the ends of the
structure has significant effect on the amplitude of the wave as depicted by the pattern
behind and in front of the structure (see Fig. 5.17). Figure 5.13 to Fig. 5.17 show that the
flexible breakwater is effective in reducing the maximum wave amplitude over a wide

range of frequencies. We can aso see that the wave field behind the structure is very
three-dimensional. It is observed that the structure is effective close to the middle but not

at the ends. This phenomenon can be explained as follows; the ends of the structure do not

move much (recall the ends are clamped); therefore the waves generated by the structure

to reduce the amplitude of the incoming waves are small. At low and high frequencies, the
breakwater is not effective. As shown in Table 5.2, the RAO’s for low or high frequency
waves are small compared to those for other frequencies; therefore the structure does not

move enough to generate waves that will cancel the incoming waves.

Figure 5.18 depicts the displacements of the structure over time for incident
waves of frequencyu:g rad/sec. The corresponding mid-section displacements over
time are presented in Fig. 5.19. As defined in equation (3.3), each “dry” mode shape has
influence on the displacement of the structure. It is evident from Fig. 5.19 that mode shape
1 is dominant becausél outweighs otherf 'S (see Table 5.2). The structure moves

mostly in mode 1 so that it generates waves that cancel the incident waves. Modes 3 and 4
are not excited because the disturbance is symmetric about the middle of the structure.

The free surface elevations at different times are presented in Fig. 5.20.a to Fig. 5.20.d.



Fata D. Dewi Chapter 5. Numerical Results 58

In a similar fashion, the displacements of the structure and the free surface

elevations over time for the case of incident wave frequency w=w, rad/sec are
presented in Fig. 5.21 to Fig. 5.23. Notice that the structure moves mostly in mode 2 since

32 IS dominant over other f’s.

5.1.32 OBLIQUE INCIDENT WAVES(B=15°, 30°)

Hydr odynamic coefficients, for ces, and response of the structure

For the case of oblique incident waves, the hydrodynamic coefficients are the
same as those for the case of normal incident waves. The hydrodynamic forces, however,
change significantly as can be seen in Fig. 5.24 and Fig. 5.25 for the case of incident waves
at an angle of 15 degrees and in Fig. 5.27 and Fig. 5.28 for the case of incident waves at

an angle of 30 degrees.

It can be observed that the frequency at the peak of the horizontal force as well
as its maximum magnitude decreases as the incoming angle increases. The curve of the
vertical force drops faster as the incoming angle increases, but its maximum magnitude
stays the same (see Fig. 5.7, Fig. 5.24, and Fig. 5.27). Referring to Fig. 5.8, the
hydrodynamic forces for modes 1 and 2 are reduced considerably as the incoming angle

increases.

Oblique incident waves excite the antisymmetric modes such as modes 3 and 4.
This is evident as shown in Fig. 5.26 and Fig. 5.29. However, the RAO’s reduce as the
incoming angle increases, which means the structure is not as effective as in the case of
normal incident waves. The frequencies at the peak of the RAO’s reduce as the incoming

angle increases.



Fata D. Dewi Chapter 5. Numerical Results 59

Free surface elevation

The wave amplitudes are obtained for several wave frequencies. Figure 5.30 to
Fig. 5.35 present the color image of the wave amplitudes. It is evident from these figures

that the breakwater becomes |ess effective as the incoming angle increases.

Figure 5.36 presents the structure’s displacements over time for an incident wave
at (=15 for wave frequency w:g rad/sec. The corresponding free surface
elevations are presented in Fig. 5.37.a to Fig. 5.37.d. Similarly, Fig. 5.38 to Fig. 5.39

present results for an incident wave @t 30° for wave frequencyw :%T rad/sec.

514 TRANSMISSION COEFFICIENT

In this analysis, the transmission coefficient is defined to be the mean value of the
wave amplitudes behind the middle of the structure at distances from the end of the
structure (x = 4 m) to 50 m from the center of the structure. Figure 5.40 shows the
variation of wave transmission coefficient as a functiork af for three different incident
wave angles. As shown in Fig. 5.40, the breakwater is effective over a wide range of
frequencies for the case of normal incident waves. Ferl5°, the structure is effective
only for a small frequency bandwidth. As the angle of the incident wave increases to 30

degrees, the breakwater becomes ineffective.
5.2 WATER DEPTH OF 5m

521 FREEVIBRATION ANALYSISWITHOUT WATER
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The same procedure used for the case of water depth 6 m is followed to obtain
the natural “dry” frequencies of the structure. Since the water depth is 5 m, 5% of the
maximum external hydrostatic pressure is determined to be 2500 Agnshown in Fig.
5.41, the first fifteen “dry” mode shapes are essentially the same as those for the case of
water depth 6 m. The frequencies, however, are slightly lower because the internal

pressure is slightly lower.

522 FREEVIBRATION ANALYSISWITH WATER

For the case of water depth 5 m, the values of the external and internal added
mass are calculated to find the “wet” natural frequencies of the structure. The iteration
process is also used. Figure 5.42 and Fig. 5.43 show, respectively, the first four “dry” and

“wet” mode shapes.

Compared to the case of water depth 6 m, the “wet” frequencies are slightly
higher. At a water depth of 5 m, the structure moves a smaller amount of external water
than if it were submerged in water of 6 m depth. As a result, the “wet” natural frequencies
of the structure are slightly higher, as observed. Notice that the “wet” mode shapes for
modes 3 and 4 are similar to each other.

523 FORCED VIBRATION OF THE STRUCTURE IN WAVES

52.3.1 NORMAL INCIDENT WAVES (3 =0)

Hydr odynamic coefficients, for ces, and response of the structure
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For the case of normal incident waves, the hydrodynamic coefficients are plotted

asfunctionsof ka in Fig. 5.44 and Fig. 5.45.

As shown in Fig. 5.44, for low and high values of ka, the non-dimensional
added mass coefficient for mode 1 is greater than that for mode 2. For ka =075 to
ka =225, the added mass coefficient for mode 1 is lower than that for mode 2. Referring
to Fig. 5.5, it can be seen that for a water depth of 5 m, the maximum values of the added

mass coefficients for modes 1 and 2 are greater than those for a water depth of 6 m.
Notice that the vertical scalesin Fig. 5.5 and Fig. 5.44 are different.

Figure 5.45 shows that the non-dimensional damping coefficient for mode 1 is

greater than that for mode 2 if ka < 23. For low and high values of ka, the damping

coefficients are negligible for both modes. Compared to the case of a water depth of 6 m
(see Fig. 5.6), the damping coefficients for the case of a water depth of 5 m are much

larger. Notice that the vertical scalesin Fig. 5.6 and Fig. 5.45 are also different.

Figure 5.46 indicates that the hydrodynamic forces do not change significantly as
the water depth changes. Referring to Fig. 5.7, it can be seen that the curve of the vertical
force drops more dowly for the case of water depth 5 m while the maximum of the

horizontal force increases slightly as the water depth decreases.

Figure 5.48 presents the vaues of (RAO); and (RAO), as functions of ka. It

can be seen that the curve of (RAO), has two peaks. This can be explained as follows: The
added mass, damping and hydrodynamic coefficients are strongly dependent on the
frequency of the wave (see Fig. 5.44, Fig. 5.45 and Fig. 5.47). The first peak of (RAO),
corresponds to the maximum hydrodynamic force for mode 2 as shown in Fig. 5.47 and
the second peak of (RAO), corresponds to the second “wet” natural frequency

w, = 27753 rad/sec ka = 314). The same explanation applies for the curve of (RAO)
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It can be seen that the maximum of (RAO); is not close to the first “wet” natural

frequencyw, =15936 rad/sec ka =116). As shown in Fig. 5.47, the maximum force for

mode 1 occurs ata = 05 and the peak of (RA@gplso occurs at this wave number.

Free surface elevation

Figure 5.49 and Fig. 5.50 show the wave amplitudes at the middle and at the

ends of the structure for wave frequencziesg rad/sec ka =047) and w, =27753

rad/sec ka=314), respectively. It can be seen that the structure reduces the wave

intensity efficiently and that the flexible structure is more effective than the rigid one.

The wave amplitudes at different frequencies are presented in Fig. 5.51 to Fig.
5.56. It is observed that for wave frequencies:g rad/sec ka=113) and

w, =15936 rad/sec ka=116), the wave amplitudes behind the structure are not
reduced much. As shown in Fig. 5.57, it is apparent that for wave frequenay, , the

structure does not move and therefore does not generate waves that cancel the incoming

waves.

Figure 5.58 depicts the displacements of the structure over time for incident
waves of frequencw:g rad/sec. It is evident that, for this wave frequency, the

structure moves mostly in mode 1 and generates waves that cancel the incident waves.
Modes 3 and 4 are not excited because the disturbance is symmetric about the middle of
the structure. The free surface elevations at different times are presented in Fig. 5.59.a to
Fig. 5.59.d.
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5.2.3.2 OBLIQUE INCIDENT WAVES (8 =15°)

Hydr odynamic coefficients, for ces, and response of the structure

For the case of oblique incoming waves, the hydrodynamic forces show the same
changes observed in the case of water depth 6 m. As shown in Fig. 5.60, the curve of the
vertical force drops faster for the incoming angle of 15 degrees. The magnitude of the
horizontal force is lower for the incoming angle of 15 degrees than that for the normal
incident waves. The forces for modes 1 and 2 are reduced considerably (see Fig. 5.61 and

Fig. 5.47) when the depth changesfrom 6 mto 5 m.

As shown in Fig. 5.62, oblique incident waves excite the antisymmetric modes
such as modes 3 and 4. However, the RAO’s reduce as compared to the case of normal
incoming waves (see Fig. 5.48), which means the structure is not as effective. The
frequencies at the peak of the RAO’s reduce as the incoming angle increases. This is also

observed for the case of a water depth 6 m.

Free surface elevation

Figure 5.63 and Fig. 5.64 present the color image of the wave amplitudes at
wave frequenciesw:g and 7—6T , respectively. It is evident that the structure is less

effective for the oblique incoming waves.

Figure 5.65 shows the displacements of the structure over time and Fig. 5.66

depicts the surface elevation at different times.

524  TRANSMISSION COEFFICIENT
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Figure 5.67 shows the transmission coefficients (defined previoudly in Section

5.1.4) asafunction of ka. For the case of normal incident waves in a water depth of 5 m,
the structure is effective for 0.25<ka <10 and 175<ka <34. For the case of oblique

incident waves, the structure is effective only for a small frequency bandwidth.
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Table5.1 Natura frequenciesfor shell and membrane structure.

Mode w (rad/sec) Difference
# Shell Membrane %
1 8.9639 7.8598 12.3
2 13.892 7.8853 43.2
3 14.227 8.4177 40.8
4 14.769 9.7190 34.2
5 15.126 10.327 31.7
6 16.776 10.870 35.2
7 19.170 11.366 40.7
8 19.876 11.366 42.8
9 22.164 11.374 48.7
10 22.805 11.378 50.1
11 24.326 11.413 53.1
12 25.540 11.451 55.2
13 25.549 11.490 55.0
14 26.394 11.571 56.2
15 26.846 11.629 56.7
Table5.2 External and internal added mass.
External | Internal added mass (kg)
Mode | Generalized added Dry w, | Wet w,
# | mass(kg) | mass(A) A A | (radise) | (radisec)
(kg) 05p, a’L
1 49,004.0 610,584.0 | 1,172,604.0 | 0.303 8.9639 1.4605
2 20,721.0 238,176.0 | 398,916.59 0.103 13.892 2.4650
3 23,034.0 265,334.0 | 434,454.41 0.112 14.227 2.5400
4 46,610.0 | 471,392.0 | 1,048,136.0 | 0.271 14.769 2.5508
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Table5.3 RAO for w:g, %T %"‘)nz’g’ and 77 rad/sec( f=0).
T I T
aJ:g aJ:Z w=w, w=w, aJ:E W=T7T
0.9882 1.567 1.906 0.169 1.677 0.014
0.0760 0.185 0.807 1.6649 0.903 0.118
1.542 x10° | 9.415x 10° | 2.248 x 10° | 4.494 x 10° | 3.144 x 10* | 4.011 x 10™
0.0014 5.357 x 1073 0.028 0.036 0.030 1.292 x 107
0.0268 0.064 0.258 0.449 0.287 0.066
2.323x10° | 1.351 x 10 | 2.697 x 10° 0.030 3.666 x 10° | 8.643 x 10°
0.0104 0.024 0.080 0.076 0.086 0.102
0.0505 0.061 0.069 0.052 0.070 0.056
2844 x 10° | 1612 x 10% | 2.777 x 10° 0.020 3.685x 107 | 4.278 x 10°
1.089 x 10” | 3.953x 10 | 1.698 x 102 | 3270x 10" | 1731 x 10° | 5396 x 10*
0.0115 0.017 0.019 0.017 0.020 90.879 x 10°
2242 x 10° | 8330 x 10° | 4.048 x 10*| 6:875%10° | 4255 x 10* | g 997 x 10°
0.0041 | 9389 x 10 0.028 0.023 0.029 0.013
0.0365 0.039 0.014 0.069 0.013 0.046
00031 | g473x10%| 0011 0.017 0.012 0.010
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E =1.05x 10° N/m?
p = 960 kg/m®

Figure5.1 The structure of the breakwater.
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Cross sections at:
L/2 O
L/4 - -

Mode 2
w = 13.892 rad/sec
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7
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Cross sections at:
L/2 O
L/4 - -

Figure 5.3.a Natural “dry” mode shapes 1-2.
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Mode 3
w =14.227 rad/sec

Cross sections at:
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Cross sections at:
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Figure 5.3.b Natural “dry” mode shapes 3-4.
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Mode 3
2.540 rad/sec

Cross sections at:
L/2 U]
L4 --

Cross sections at:
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Figure 5.4.b Natural “wet” mode shapes 3-4.
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0.7

0 0.5 1 15 2 2.5 3 3.5 4 4.5

Figure5.5 Non-dimensional added mass coefficients.
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Figure5.6 Non-dimensional damping coefficients.
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Figure5.7 Vertical and horizontal forces for the case of normal incident waves (8= 0).
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0.7

Figure5.8 Hydrodynamic forcesfor modes 1 and 2 ( 5= 0).
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Figure5.9 RAO for the case of normal incident waves ( 8= 0).
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Figure 5.12 The amplitude of the free surface elevation for = A {,.ff - 1]}.
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Figure5.19 Mid-section displacements over timefor A . =1 ( w:g, B=0).
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Figure5.20.c Free surface elevation ( w = 77: L=0).
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Figure5.20.d Free surface elevation ( w = IZT L=0).
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Figure5.22 Mid-section displacements over timefor A ;. =1 ( w=w, , f=0).
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Figure5.23.a Freesurface elevation (w=w, , B=0).
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Figure5.23.b Freesurface elevation (w=w, , f=0).
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Figure5.23.c Freesurface elevation (w=w, , B=0).



97

Chapter 5. Numerical Results

Fata D. Dewi

, B=0).

= wnz

Figure5.23.d Free surface elevation ( w



Fer 0¥, Diewi -I'_"l'.lrr;.l.'.:-.r 5, Mumeericol Bexifts i

2 I I I I I 1 I I
" T T T T . T T

; a
o : : : : : : :

O I R S A
|:|.

Figure 5.24  Vertical and honzontal forces for the case of obligue incident waves

{ f=15"),



Feiter 03 D {"l'.lrr;.l.'.;-." 5, Nigmrerieoa! Resilis LI

E_-l 1 1 1 1 i 1 1 1
0 L5 1 1.5 2 2.0 | 4.5 a 4.5
Y

Figure 5.25  Hydrodvnamic forces for modes 1, 2, Jand 4 ( 4= 157).



Fata D. Dewi Chapter 5. Numerical Results 100

1

0.9 — (RAO) i

- = (RAO)2
0.8 .

' - (RAO)3
0.7 (RAQ), i
0.6 |
51' 0.5 .

Ancident

0.4 .
0.3 .
0.2 |
0.1 |

0 = — = il |

3 3.5 4 4.5

Figure5.26 RAO for the case of oblique incident waves ( 5 =15°).



Fetor By Dewi Chepter 3, Wumericod Resalts LI

; ! ! ! ! : ! ! !
L : : : : . : : :
I : : :
I : : : : : ; ; ;

0.5 1 1 1 1 | 1 1 1
0 0.5 1 1.5 Z 2.5 3 3.5 8 4.5
ka

Figure 5.27  Verticul and honzontal forces for the case of obligue incident waves

(B =3P



Featg Iy Deuy -I:".l'.lr.';.l.'.:-." 5, Muymerteod Reseles 102

0.4 ! ) ) ) ! ) ) )

0 .5 1 1.3 & 2.9 3 3.9 4 4.5
ke

Figure 5.28 Hydrodynamic forces for modes 1L 2, 3and 40 F = 307)



Fater Y, Dewd Cheeprer 5, Numerical Resilis 1013

i i
— !Fi-ﬂ-{llé

=-,:.-{EAG]2:I.... sesied
g I rF|:.-!L-::||:,’r
-+ (RAO);

-"tr_l_h_" ............................................................................................... —
l:|.'| 1 1 1 1 1 1 1 1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 529 RAOQ for the case of obligue incident waves ( = 307 ).



Far 0¥, Dew l'_"l'.lrrll.l.'.;-.-' T, Mumertcoa! Resules 14

160 1.4
140} K
120 - N 1.2
100 B 1.4
_é B B 1 1
3
E0 - 4 049
44 U4
20 0.7
0 0.6
E'{Elli.:- [ a0

®{mj)

s - : ; : . . " T i
Figure 5.300  The amplitude of the free surtace elevation tor = ;— [ fF=157).
¥



Fato £}, Dewi

£ .'I"""rr-'l'-:'.l' :T ""'I""r-'l'l""l' L) { I"?(- '..'|'|'|I ]

115

1.4

1.4
1.2
é. H HHHEHHRH - ! |
-
i 4 0.8
0.6
0.4
210
al :
ximj

50

Figure 5.31 The amplitude of the free surface elevation for o - % Bl



Fanr 0¥, Diewy l'_"l'.lrrll.l.'.;-.-' 5, Mumericol Bexielis |1

160

M2
[ b=

[}

®im)



Fater v Dewy Chegprer 5, Niemerieod Resielis 1T

0.8

07

29

®{m)

Figure 5.33  The amplitude of the free surface elevation for w = = | # = 3(F).
5 e .



Feoter B2 Dy -I'_'l'.lr.'lll.'.;'." 5, MNigmeerteold Reselts L1

1.4

g (m

0.8

=]

0.6

50

L=
L]

()

: e . : . . N T s
Figure 5.34 The amplitude of the free surtace elevation tor w - i { 3= 30F).



Feter I3 Dy {”.l'.lr.';.l.'.;-." 5, Numperieod Resules {15

160

140

120 t

100

£ 80

y

40

20

B
Lhe=

X rmp

Figure 5,35 The amplitude of the free surface elevation for e =w | #=10 j



110

Chapter 5. Numerical Results

t=0125T

Fata D. Dewi

%
(s
(5
it e
WK
Wrassssse
PSP
(SIS
U
I
s
SIS SIS
U=
SIS
Quusisssssssssssss
RIS
e
Qirsssssszs
G —
il W
{ Il,/l

=0375T

)

t=0.625T

O

N
i
i

Xl

W
N
N

X

0
A\

e

Ve
Ut s
i = =
il =0. Wit

LSS o=

it = iyl =

Wy W22

il N\l

{ 0y 2= N =
2= W s
it = Wz
Itz ol
itttz Witttz
lnlnttz=== Nyt 07
Wilo 7= N\l
oy Uy %22 s
Wiz Wiz
iz Wil
\
Q ,.'l,,z %

R
&

N

S

t=0875T

QK

il 04
Wy o4
l...'.l.,.,.’l

[— _7T — O
Ancident _1( w_z’ ﬂ—lS )

Figure5.36 Displacements of structure over time for



Fata D. Dewi Chapter 5. Numerical Results 111

t=0.125T

-40

Figure5.37.a Free surface elevation (w = IZT , B=15°).
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Figure5.37.c Free surface elevation ( w = IZT , B=15°).
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Figure5.39.a Free surface elevation (w = IZT , B=30°).
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Figure5.40 Transmission coefficients.
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Figure 5.42.a Natural “dry” mode shapes 1-2.
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Figure 5.42.b Natural “dry” mode shapes 3-4.
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Figure5.45 Non-dimensiona damping coefficients.
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Figure5.46 Hydrodynamic forces for the case of normal incident waves, 5= 0.
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Figure5.47 Hydrodynamic forcesfor modes1and 2 ( 8= 0).
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Figure5.48 RAO for the case of normal incident waves ( 8= 0).
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t=0.125T

Figure5.59.a Free surface elevation (w = 77: L=0).
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t=0.375T

Figure 5.59.b Freewrfaceelevation(aﬁg, L=0).
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t=0.625T

Figure5.59.c Free surface elevation ( w = 77: L=0).
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Figure5.60 Hydrodynamic forces for the case of oblique incident waves, 8 =15°.
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Figure5.66.d Free surface elevation ( w = IZT , B=15°).
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CHAPTER 6 CONCLUSIONS

A three-dimensional numerical analysis has been performed to investigate the
effectiveness of a flexible structure as a breakwater. Two different water depths, 6 m and
5 m, were considered. For each depth, the response to normal and oblique incident waves
was analyzed.

The structure is an anchored hemicylinder filled with water. It was modeled as an
elastic shell using the finite element program ABAQUS. For the analysis of the external
and internal fluid flow, a boundary integral method was utilized and the integral equation
was solved numerically by a panel method. The fluid was assumed to be inviscid and
incompressible.

Vibration analysis of the structure was performed both in the absence and
presence of water. It was found that the effect of water (e.g. added mass) is significant in
reducing the magnitude of the natural frequencies. The mode shapes, however, do not
change substantially.

For the case of a water depth of 6 m and normal incident waves, the flexible
structure performs effectively in reducing the wave intensity for a wide range of wave
frequencies. The reduction is found to be as much as 80% for the wave frequency

w = w, =14605 rad/sec and 95% for the wave frequency w = w, =2465 rad/sec. For

the case of oblique incident waves, the structure is effective only for a small frequency
bandwidth. As the incoming angle increases, the flexible structure becomes | ess effective.

For the case of a water depth of 5 m and normal incident waves, the structure is
effective over certain ranges of wave frequencies. Outside these ranges, the structure does

not move enough to generate waves that cancel the incoming waves. The reduction is

found to be 80% for the wave frequency w = %T rad/sec and 95% for the wave frequency

w=w, =27753 rad/sec. It is observed again that for the case of oblique incident waves,

the structure is effective only for a small frequency bandwidth.

156
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Future work may include changing the design parameters of the structure, such

as the shell thickness, modulus of elasticity, or choice of material (e.g. composite
material). Different shapes of the structure such as an elliptical cross section as well as a
structure partialy filled with water may also be considered.
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