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THREE-DIMENSIONAL ANALYSIS OF WAVE ATTENUATION BY

ANCHORED HEMICYLINDRICAL SHELL

Fata D.E. Dewi

(ABSTRACT)

The performance of a flexible structure as a breakwater is investigated numerically.

The structure is a hemicylinder and is filled with water of uniform pressure. It is anchored

along the sides. Only flexural modes are present.

The structure is modeled as an elastic shell using the finite element program

ABAQUS. The fluid is assumed to be inviscid and incompressible. The fluid flow is

analyzed using a boundary integral method and the integral equation is solved numerically

by a panel method.

The vibration characteristics of the structure are analyzed both in the absence and

presence of water. The hydrodynamic coefficients, forces, and the dynamic response of the

structure in waves are obtained as a function of the wave number. Two different water

depths of 5 m and 6 m are considered. For each water depth, normal and oblique incident

waves are considered. The free surface elevation in front of and behind the structure is

evaluated for different wave frequencies and directions. The results indicate that the

flexible structure is effective in reducing the incident wave intensity over a wide range of

frequencies.
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CHAPTER  1 INTRODUCTION

1.1 MOTIVATION

In view of the increasing number of activities in the ocean environment, the role

of breakwaters has become more significant. Built to break the force of the waves,

breakwaters can stop beach erosion as well as damage to a harbor. Presently, most

existing breakwaters are fixed rigid structures such as the rubble-mound breakwater.

In this study we will investigate the use of inflatable, flexible structures as

breakwaters. The use of inflatable structures for breakwaters has a number of advantages.

First, they have relatively low cost and little weight compared to rigid structures. Their

cost does not increase substantially with depth, while the cost of a fixed structure

increases exponentially with depth. Second, they are relatively easy to install, do not

corrode, require little maintenance, and can handle extreme temperatures. Third, they can

be filled with air, water, or a combination of air and water which can be done in a

relatively short time, so they can be efficient in assembly and disassembly. Fourth, they are

easily transportable because, when deflated, the inflatable structures can be compressed

into a small volume. Lastly, inflatable breakwaters can be anchored to the ocean floor and

inflated only in the event of a severe storm. This is an attractive alternative to a fixed

breakwater, since in calm weather the inflatable structures are deflated and will not

obstruct marine life or navigation.

Recent developments in materials science have contributed significantly to

opening an opportunity for the development of flexible, inflatable structures as

breakwaters. Problems of material degradation and failure have been largely overcome.

With the use of modern materials, inflatable structures might be extremely effective as

breakwaters, absorbing or reflecting much of the wave energy.
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In the present day of ocean exploration, inflatable breakwaters can also support a

number of operations at sea, such as oil and gas extraction, fish farming, ocean mining,

and recreation. These structures can also be used to protect floating airports or portable

ports and to support temporary operations such as pollution control, salvage operations,

and construction and maintenance of offshore platforms. In addition, inflatable

breakwaters can alternatively act as sacrificial structures in the event of large storms,

reducing the size of waves incident on fixed breakwaters, shores, or offshore structures.

1.2 HISTORY

According to archaeological work, a sea-wall or breakwater was a common

feature in many Egyptian, Greek, and Roman ports. During the Roman Empire, numerous

breakwaters were constructed because of the scarcity of natural bays that could be formed

into harbors. The remains of these breakwaters have been found and they resemble the

present-day rubble mound breakwaters.

Contrary to the old concept of fixed breakwaters for coastal protection, the idea

of transportable breakwaters is more recent. The most famous use of this type of

breakwater was during the Normandy invasion of World War II, where the Bombardon

floating breakwater and the Phoenix caisson were deployed to form artificial harbors.

These structures performed well and their failures were caused by unexpected waves 5 m

high which produced stresses eight times greater than those of the design loads.

Other innovative designs of transportable breakwaters include the scrap tire

floating breakwater (where tires are chained to form a breakwater that can reach 600 m in

length), a single floating pontoon moored to the bottom, multiple pontoons, and floating

membrane, sheet, or blanket structures that can be filled with air, water, or a viscous
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liquid. The merits of these designs have been discussed by Jones (1971), Hales (1981) and

Jenkins and Leonard (1991).

Pirelli, an Italian tire company, have proposed the use of rubber structures to

protect Venice, Italy, from periodic flooding due to high tides. These structures would be

attached to the bottom of the channels. In the event of a storm, they would be inflated

with water thus protecting the historic city (Scott, 1976). Unfortunately, these tidal

barriers have not yet been constructed because of economic considerations, and Venice

continues to be flooded during high tides.

1.3 INFLATABLE DAMS

The research effort on the potential use of inflatable structures as breakwaters

was inspired by research studies done on inflatable dams. These dams can be used in many

applications such as: diversion of water for irrigation, hydroelectricity, tidal control, or

flood control; raising the height of fixed dams to increase reservoir capacity; creating

recreational basins; preventing contamination; and increasing groundwater supply.

Typically, inflatable dams are cylindrical in shape and are used as low-rise dams,

not exceeding a 6 m height. The length to height ratios can vary, ranging from 0.5 to 229.

The dams can be filled and inflated with air, water or a combination of both. These dams

may be anchored to a specifically made reinforced-concrete foundation strip or an existing

base, e.g. the crest of a dam or a breakwater. Anchorage can be a single or a double strip

system.

The early dams were called Fabridams, manufactured by Firestone (Firestone

Tire and Rubber Company, 1964; Firestone Coated Fabrics Company, 1968). A few

failures of these early dams were caused by the low durability of the structure, the small
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thickness of the material and the anchoring system that was not well developed, i.e. the

dam was anchored by bolts which made holes in the rubber, causing stretching to occur at

the bolts.

Most of the newer dams are built by two Japanese companies, Sumitomo

Electric Industries and Bridgestone Corporation. These more developed dams have

material thickness that ranges from 4 to 23 mm. They are made of rubber, reinforced with

several layers of a synthetic fiber such as nylon. Sometimes, ceramic chips are embedded

in the lamination to increase the strength of the outer resistance of the structure. The

manufacturers claim that these dams have an expected lifetime of 30-40 years.

1.4 PRESENT STUDY

The proposed inflatable breakwater has the shape of a half circular cylinder. It is

anchored to the ocean floor and filled with water. The structure is totally submerged at a

small distance beneath the free surface. The three-dimensional motions of the structure are

analyzed and the flexibility of the structure is described using a finite element numerical

model. The linear fluid-structure interaction was investigated numerically by computing

the wave field around the structure. The effects of three-dimensionality and flexibility of

the structure on the reflected and transmitted waves were investigated, and the structural

performance as a breakwater was analyzed over a range of wave frequencies. It was found

that the flexible structure as a breakwater is very effective in reducing the wave amplitude

over a wide range of wave frequencies.

The material in this thesis will be presented in the following manner. Chapter 2

describes previous research studies on the interaction of waves with rigid and flexible

structures. Next, in Chapter 3, the mathematical  formulation of the boundary value

problem is discussed. Chapter 4 contains the validations performed on the finite element



Fata D. Dewi Chapter 1.   Introduction 5

software ABAQUS and on the fluid program used for computing the wave field around

the structure. Chapter 5 discusses the results of the investigation on the effectiveness of

the proposed inflatable breakwater. Conclusions and suggestions for further research are

presented in Chapter 6. The figures and tables are presented at the end of each chapter.
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CHAPTER  2 LITERATURE REVIEW

This chapter is divided into two sections. First, earlier works on the dynamics of

free surface waves over a rigid structure beneath the free surface will be discussed briefly.

The second section will describe previous analytical, experimental and numerical works on

the interaction of flexible structures and water waves.

2.1 INTERACTION OF SURFACE WAVES WITH SUBMERGED

OBSTACLES

The dynamics of ocean surface waves is a topic that has been studied

extensively. Some of the well known results are contained in the books by Dean and

Dalrymple (1991), Mei (1992) and Sorensen (1993). When analyzing the problem of

surface waves over rigid obstacles, the viscous effects are usually neglected. Therefore,

the flow is analyzed using potential flow theory.

Newman (1965) obtained an approximate solution for surface waves elevation in

the limit of a long submerged obstacle. Kobayashi and Wurjanto (1989) obtained the

approximate solution in the limit of long waves.

Mei and Black (1969) presented numerical results on the investigation of the

scattering of waves by rectangular obstacles in two dimensions using a variational

formulation. Similarly, Williams and Darwiche (1988) analyzed the three-dimensional

scattering of waves by elliptical breakwaters using eigenfunction expansions. The

numerical results from both works are valid for the entire wavelength spectrum and finite

obstacle lengths.
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Subcritical and supercritical solutions for surface waves over circular bumps were

given by Shen, et al. (1989).

Chakrabarti and Naftzger (1989) evaluated the wave forces on a submerged semi-

cylinder resting on the bottom using a boundary integral method. The non-dimensional

horizontal and vertical forces were obtained at different values of the wave number.

In all of these works, the nonlinear effects are neglected, that is the free surface

boundary condition is linearized. A recent study by Grue (1992) on the diffraction of

waves by  a slightly submerged obstacle or a bottom topography showed that nonlinearity

is important. For the submerged obstacles, horizontal circular cylinders of radius 100 mm

and 200 mm were used. For the bottom topography, a rectangular shelf with a cross

section 500 mm long and 410 mm high was used. All geometries, the circular cylinders

and the rectangular shelf, span the whole width of the wave channel of 14.2 m long and

0.47 m wide where the experiments were performed. Grue’s study showed that

nonlinearity can introduce subharmonic waves which can carry up to 25% of the incoming

energy flux.

2.2 FLEXIBLE STRUCTURES AND SURFACE WATER WAVES

Fluid-filled floating bags, wave blankets, fluid-filled circular cylinders and flexible

underwater mounds are examples of flexible structures used for wave control. Their

effectiveness in reducing wave intensity is due to structural damping which absorbs

energy, or structural motions generating waves that may cancel the incoming waves.

Ohyama, et al. (1989) performed a numerical and experimental study of the

transmission and reflection characteristics of waves over a submerged flexible mound. The

structure was modeled as a thin flexible membrane filled with water. It was fixed on the
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seabed and the water inside the membrane was hermetically sealed. In the numerical

analysis, the flexible membrane was modeled as a lumped-mass system and was discretized

equally in the initial condition without stretching. The fluid was assumed to be

incompressible, inviscid and irrotational so that the velocity potential could be used to

describe the fluid motion. Linear theory was applied, assuming that the membrane and the

fluid motion were sufficiently small. The boundary value problems were formulated and

transformed into boundary integral equations using Green’s function and Green’s formula

that satisfies the boundary conditions on both the free surface and the seabed. Equations

of motion were written for each nodal point on the membrane, containing the mass of the

element, density of the membrane’s material, membrane’s thickness, and hydrostatic and

hydrodynamic forces. The unknowns, i.e. the potential values and the displacement

magnitudes at nodal points and the potential values at any arbitrary point in the fluid

region, were found by solving the linear equations of motion. The results of the numerical

analysis were validated against experimental results.

Ohyama, et al. (1989) tested a model of a flexible mound in a wave tank 40.0 m

long and 4.0 m wide. The model was made of a rubber membrane with Young’s modulus

= 58,000 kN/m2, ρm = 1260 kg/m3 and material thickness = 1.65 mm. It had a base width

of 1.6 m and breadth of 4.0 m. The height of the flexible mound was varied. The water

depth was 0.8 m and the incident wave height was 4.0 cm. The reflected and transmitted

wave heights were recorded at three points along the membrane’s length. The transmission

and reflection coefficients obtained from the numerical analysis and experiments agreed

well, except at wave periods where reflection and transmission coefficients become

maximum and minimum, respectively. It was stated that the discrepancies were caused

mainly by the influence of the side membrane. The wave periods at which the coefficients

differed significantly may be the natural periods of the structure; then the response motion

is amplified considerably and differs from the two-dimensional motion. In this case, the

numerical analysis is no longer valid. It was found that at several wave periods, the
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transmission coefficient was zero. At these wave periods, the radiation waves had the

same height but inverse phase as those of the transmitted waves when the structure was

not moving. It was also observed that the stationary component of the internal pressure

increased considerably from the initial added pressure under the action of waves. If this

internal added pressure was adequate, the flexible membrane was effective in reducing the

transmitted waves over a wide range of wave frequency.

Fathi, et al. (1994) studied the interaction between free-surface waves and a

floating flexible container. Three-dimensional linear potential theory (Newman, 1994),

which will be discussed extensively in Chapter 3, was used to solve the radiation-

diffraction problem. The container was modeled as a circular cylinder with spherical caps

at the ends. A total length of 30.48 m and a diameter of 1.46 m were used to give a length

to diameter ratio of approximately 20. Several hydroelastic mode shapes were added to

the conventional six rigid body modes to account for the motion of the container. Natural

modes for a uniform beam with free ends were chosen for these hydroelastic mode shapes.

An infinite depth was used for the analysis and the structural behavior was assumed to be

linear and elastic. A panel program named WAMIT was used to compute the amplitude of

the motions, the exciting forces and the hydrodynamic coefficients (added mass and

damping coefficients) for specified modes. One of the important results was that the

response amplitudes of the generalized modes (i.e. hydroelastic modes) are largest for the

first bending mode and decrease with increasing order.

Evans and Linton (1989) showed that a submerged body, allowed to move

subject to a restoring force, could reduce the wave intensity by utilizing the body’s

induced motion to generate waves which exactly canceled the incident waves. Assuming

the body and its motion to be symmetric, this cancellation of waves could be accomplished

without adding energy or taking energy out of the system if the velocity of the moving

body was chosen such that the incident waves were totally reflected. Theoretical
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calculations were performed for a submerged circular cylinder held down by two

inextensible cables at each end. The transmission coefficients for varying incident

wavelength were obtained at three different submergence levels. It was found that the

performance of the structure improved as its distance to the free surface was reduced (e.g.

at a clearance of 1/3 of its radius, the circular cylinder reflected 95% of the incident wave

energy over a very wide range of wavelengths). For a given specific gravity, the “tuned”

frequency (i.e. the frequency at which the body totally reflected the incident wave) was

discovered to be a function of the length of the cables and the water depth. At this tuning

frequency, the free surface profile showed that there were no transmitted waves

downstream. The maximum displacement of the cylinder, which occurred at a wavelength

longer than the tuned wavelength, was found to be slightly over  twice the incident wave

amplitude. This relatively large displacement was stated to be necessary for the submerged

body to generate canceling waves. An experimental study was carried out on a polystyrene

cylinder of 51 mm radius and specific gravity of 0.06 which confirmed these theoretical

predictions.

Broderick and Leonard (1992) studied the nonlinear interaction between a highly

deformable fluid-filled membrane and surface water waves. The finite element model of

the membrane was used to predict its nonlinear dynamic behavior such as large

displacements, surface rotations, nonlinear stress-strain relationships and non-conservative

loadings. The boundary element method was used to model the fluid domain and to

compute the hydrodynamic loading induced by water waves on the structure. Ideal fluid

flow was assumed in solving the diffraction/radiation problem. To treat the nonlinear

kinematic and dynamic free surface boundary conditions iteratively, either linear waves or

finite amplitude waves were assumed in the boundary element model. Volterra’s method

was used to include time implicitly in the governing field equations. The finite element

model and the boundary element model were coupled and an iterative procedure was

utilized to investigate the wave-structure interaction. Numerical calculations of the



Fata D. Dewi Chapter 2.   Literature Review 11

reflection and transmission coefficients showed that the membrane cylinder can be an

effective wave barrier for certain wave periods. The membrane’s effectiveness as it moved

closer to the free surface was not evaluated. A circular cylinder of 3-ft diameter and 12-ft

length was used in the experimental study to verify the numerical results.
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CHAPTER  3 LINEAR ANALYSIS: FORMULATION

The analysis is divided into two parts. First, the structure is modeled using a

finite element program. It is assumed that initially the structure is filled with water until the

hydrostatic pressure of the internal water is equal to that of the external water. At this

point, the structure has an exact semi-cylindrical shape because the internal pressure is

canceled by the external one. Then, more water is added into the structure until the

internal pressure is uniformly 5% higher than the maximum external hydrostatic pressure.

This pressure addition is treated as air pressure and is included in obtaining the vibration

frequencies and mode shapes. These mode shapes are called the “dry” mode shapes.

Second, the “dry” mode shapes of the structure are used as basis functions to

describe the displacement of the body surface. Then, the effects of internal and external

added mass are included in the analysis.

3.1 WITHOUT EXTERNAL AND INTERNAL WATER

The governing equations of motion for this analysis have the form:

M U K U&& + = 0     (3.1)

where ( )U t  is the vector of the nodal displacements and M  and K  are, respectively, the

mass and stiffness matrices of the structure. The matrices M  and K  are real, symmetric

and positive definite. The numerical values of the mass matrix are obtained from the finite

element software ABAQUS (Hibbitt, et al., 1994) along with the vibration frequencies and

mode shapes. The “dry” natural frequencies  ω dry  satisfy:

K Mdry− =ω 2 0     (3.2)

For the ABAQUS analysis, a shell element S4R (4-node doubly- curved thin or

thick shell) is chosen. This element allows large deflections, large rotations and small
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strains. Each node of the element has six generalized displacements ( u v w, , , ,θ θ θ1 2 3 ),

resulting in a total of 24 degrees of freedom per element (see Fig. 3.1).

3.2 WITH EXTERNAL WATER AND INTERNAL WATER

The fluid is assumed to be inviscid and incompressible. The fluid motion is

assumed to be irrotational, so that we can write the velocity field as the gradient of a

velocity potential Φ . A linear analysis is used in which the boundary conditions on the

free surface and the body boundary are  linearized.

A coordinate system is defined such that z is positive upwards and the xy-plane

is coincident with the bottom surface (see Fig. 3.2.a). Incident waves will interact with the

submerged body, causing it to have small vibrations about the equilibrium position. It is

assumed that the body motion is sinusoidal at the radial frequency ω  of the waves with

displacement ( )ξ ξ ωt e i t= −
$ . In general, the body can have both rigid and flexural motions.

For this configuration, only the flexural modes are present. In this study, the “dry” mode

shapes ( )S xj

r

 with Cartesian components ( )u v wj j j, ,  are used as basis functions to

describe the displacement of the body surface. Other choices of basis functions to define

the flexural displacement include orthogonal polynomials such as Chebychev or Legendre

polynomials ( Newman, 1994). We then approximate the displacement γ  at any point of

the body surface as:

( ) ( ) ( )γ ξx y z t t S x y zj j
j

J

, , , , ,=
=

∑
1

    (3.3)

The governing equations of motion can be written as:

( )M   A  A     B      K     F Fg g
I D+ + + + = +internal

&& &ξ ξ ξ     (3.4)

where
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• ( ) ( ){ }ξ ξt tj=  is the J ×1 vector the nodal displacement factors,

• A   and  B  are the added mass and damping matrices, respectively, which represent

the influence of the external water,

• J = 15  is the total number of flexural modes used in the analysis,

• Ainternal  is the added mass matrix due to the internal water,

• F I  and F D  are the hydrodynamic forces due to the incident and diffracted waves,

respectively,

• M g  and Kg  are, respectively, the generalized modal mass and modal stiffness

matrices obtained from ABAQUS. M g  and Kg  are diagonal and

( ) ( ) ( )K Mg ii dry i g ii
= ω 2 .

The velocity potential can be decomposed into:

( ) ( )Φ x y z t
I D j

x y z
j

j

J
e

i t
, , , Re , , $= + +

=
∑













−













φ φ φ ξ ω

1

    (3.5)

where

• φ ω
D

i te−  is the potential of diffracted waves,

• φ ω
j

i te−  is the radiation potential for mode j,

• $ξ j  is the complex amplitude of body motion in the j th  mode, ( )ξ ξ ω
j j

i tt e= −$ ,

• φ ω
I

i te−  is the potential of incident waves, defined as (Newman, 1994):

( )
( )φ

ω
β β

I
i k x yigA k z

k d
e= +incident cosh

cosh
( cos sin )     (3.6)

where

• Aincident  is the incident wave amplitude,

• d is the water depth,
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• ω  is the incident wave frequency (ω π= 2

T
),

• k is the wave number, defined to be a positive root of the dispersion relation:

 ω 2

g
k kd= tanh( )     (3.7)

• β  is the angle of wave propagation (see Fig. 3.2.b).

In order to solve equation (3.4), we need to determine the fluid flow outside the

structure as well as inside the structure.

In the external fluid domain, each of the potentials φ j  must satisfy Laplace’s

equation, ∇ =2 0φ j . On the fluid boundaries, the following linearized boundary conditions

must be satisfied (see Fig. 3.3):

• On the mean water surface, z d=  : − + = =ω φ
∂ φ
∂

2

0 1 2
g z

j Jj
j , , ...,

• On the bottom:
∂ φ
∂

∂ φ
∂

D j

z z
= =0 0,

• On the body surface, Sb  :
∂ φ
∂

∂ φ
∂

D I

n n
= −

∂ φ
∂

ωj
jn

i n j J= − = 1 2, , ...,

where n S n u n v n w nj j j x j y j z= = + +.
r

 and the unit normal ( )r

n n n nx y z= , ,  points out

from the body surface to the external fluid domain.

The exterior fluid flow is analyzed using a boundary integral method. The

appropriate Green’s function for this problem, which is the potential of a submerged

source of oscillatory strength in water of depth d (Wehausen and Laitone, 1960), is

written as:
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( )
( ) ( )

( ) ( )
( )

G P Q
R z R d z

k
g

k z d k d

k kd
g

kd

e J kR dkkh

,

cosh ( ) cosh ( )

sinh cosh

=
+ −

+
+ + +

+

+






 + +

−

∞
−∫

1 1

2

2

2 2 2 2

2

2
0

0

ζ ζ

ω ζ

ω

    (3.8)

where

• ( )P x y z= , ,  is the coordinate of the field point,

• ( )Q = ξ η ζ, ,  is the coordinate of the source point,

• ( ) ( )R x y= − + −ξ η2 2
.

Application of Green’s second identity provides a Fredholm equation of the

second kind for the values of the potential on the body surface:

( ) ( ) ( )− + =∫∫ ∫∫2π φ φ
∂

∂
∂ φ
∂j j

S Q
Q

j

QS

QP Q
G P Q

n
dS

n
Q G P Q dS

b b

( ) ( )
,

,     (3.9)

The integral equation is solved numerically by a panel method in which the body

surface is approximated by an ensemble of flat quadrilateral panels and the value of the

potential is assumed to be constant over each panel. This assumption reduces the problem

of finding a continuous potential distribution to determining a finite number of unknown

potential strengths. Utilizing a collocation method in which the integral equation is

satisfied at one point for each panel, the problem is reduced to solving a linear system for

the values of the velocity potential on each panel.

The efficient calculation of the Green’s function G  defined by equation (3.8) is

central to the effectiveness of the present numerical method. In order to analyze each
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structure, the program needs 108 to 109 Green’s function evaluations The subroutine

FINGREEN developed by Newman (1985) was used to evaluate the Green’s function.

The incident wave potential φ I  and the diffracted wave potential φ D  are used to

find the hydrodynamic force:

( )F F i n dSi
I

i
D

w I DS i
b

+ = − +∫∫ω ρ φ φ   (3.10)

where ρw = 10259.  kg/m3 is the density of water. For the vertical and horizontal forces,

equation (3.10) can be written as follows:

( )F F i n dSI D
w I DS x

b
horizontal horizontal+ = − +∫∫ω ρ φ φ   (3.11)

( )F F i n dSI D
w I DS z

b
vertical vertical+ = − +∫∫ω ρ φ φ   (3.12)

The radiation potentials φ j  provide the values of the added mass and damping

matrices A  and B  as follows: 

[ ]A i n dS
ij w jS i

b

= −



∫∫

1
2ω

ω ρ φRe   (3.13)

[ ]B i n dS
ij w jS i

b

= −



∫∫

1

ω
ω ρ φIm   (3.14)

For the internal fluid analysis, each of the potentials φ j  must satisfy Laplace’s

equation, ∇ =2 0φ j , in the fluid domain. On the fluid boundaries, the following linearized

boundary conditions must be satisfied (see Fig. 3.4):

• On the bottom:
∂ φ
∂

j

z
= 0

• On the body surface, Sb  :
∂ φ
∂

ωj
jn

i n j J= − = 1 2, , ...,



Fata D. Dewi Chapter 3.  Linear Analysis: Formulation 18

The internal fluid flow is also analyzed using a boundary integral method as

discussed previously for the analysis of the external fluid flow. A Rankine source Green’s

function is chosen for this problem:

( )
( )

G P Q
R z

, =
+ −

1
2 2ζ

  (3.15)

where P , Q  and R  are as defined earlier.

Application of Green’s second identity provides a Fredholm equation of the

second kind for the values of the potential on the body surface as written in equation (3.9).

The values of the internal added mass are obtained from equation (3.13). There is no

damping.

The amplitudes $ξ j  of the structural response are obtained by solving equation

(3.4). Then the flexural displacement of a point on the surface of the structure is

determined from equation (3.3). Green’s theorem gives the values of the velocity

potentials φ j  on the free surface:

( ) ( ) ( ) ( ) ( )φ
π

φ
∂

∂
∂ φ

∂j j
Q

j

QS

QP Q
G P Q

n
G P Q

Q

n
dS

b

= −










∫∫

1

4

,
,   (3.16)

The total potential Φ  is determined from equation (3.5). Given the values of the velocity

potential on the free surface, the free surface elevation is found as:

ζ ∂
∂

ω
= − =1

g t

i

g

Φ Φ
  (3.17)



Fata D. Dewi Chapter 3.  Linear Analysis: Formulation 19

Figure 3.1    A shell finite element.
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Figure 3.2.a    Schematic diagram of the coordinate system.

Figure 3.2.b    Definition of incident wave direction of propagation.
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Figure 3.3    Linearized boundary conditions for external fluid analysis.

d

  ∂φj  = 0
  ∂z

  ∂φD  = 0
  ∂z

   ω2           ∂φj-   φj +    =  0
   g             ∂z

 ∂φD          ∂φI  = - 
  ∂n           ∂n

 ∂φj          = - iωnj  ∂n         

a Sb

                       ω
wave speed = 
                        k

∇2 φj = 0
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Figure 3.4    Linearized boundary conditions for internal fluid analysis.

  ∂φj  = 0
  ∂z

 ∂φj          = - iωnj  ∂n         

a

Sb

∇2 φj = 0
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CHAPTER  4 PROCEDURE VALIDATIONS

This chapter is divided into two sections. Section 4.1 describes the verifications

that were performed on the finite element software ABAQUS which is used to find the

vibration characteristics of the structure without the presence of external water. Section

4.2 explains the validation of the fluid-flow program which is used to determine the effects

of external water on the structure.

4.1 WITHOUT EXTERNAL WATER

In this research, the finite element software ABAQUS (Hibbitt, et al., 1994) is

used to model the breakwater structure. From ABAQUS, we obtain:

• the vibration frequencies and mode shapes of the structure,

• the numerical values for the mass and stiffness matrices of the structure.

In order to validate ABAQUS’s analysis on a structure’s vibration characteristics, several

2-D and 3-D structures were modeled and their vibration characteristics were obtained.

4.1.1 2-D STRUCTURE

Analytical solutions for the vibration frequencies of clamped and pinned circular

arches can be found in Chidamparan and Leissa (1993). Using ABAQUS, we modeled a

half circular arc segment (Fig. 4.1) and obtained the vibration frequencies. The radius of

the arc was 4 m and it was modeled by 100 quadrilateral panels of shell element S4R. The

following boundary conditions were applied to the model:

• no translation in the y-axis direction and no rotation about the x- and z-axes for all

nodes,

• the nodes at the ends of the arc were either clamped or pinned.
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The first four vibration frequencies obtained from ABAQUS were non-

dimensionalized and compared to those obtained by Chidamparan and Leissa (1993).

These vibration frequencies are presented in Table 4.1 (for the clamped arc) and Table 4.2

(for the pinned arc). For the clamped arc, the largest difference is 6.5% at mode number 3,

while for the pinned arc, the maximum difference is 14.2% at mode number 3. These

diferences may be attributed to the number of panels used for ABAQUS analysis.

Moorthy, et al. (1995) performed a finite element analysis of the vibration

frequencies of a two-dimensional dam structure (Fig. 4.2) with the following

characteristics:

• E = 2.1 x 109 N/m2

• ν = 0.3

• ρ = 960 kg/m3

• h = 7.6 mm

• perimeter = 13.7 m

• height = 4.9 m

• base length = 6.1 m

In ABAQUS, we modeled the 2-D dam structure with 100 quadrilateral panels

of shell element S4R (Fig. 4.3). The following boundary conditions were applied to the

structure:

• the nodes at the structure’s ends are pinned,

• no translation in the y-axis direction and no rotation about the x- and z-axes for all

nodes.

A uniform internal pressure of 28 kPa was applied to the structure and the

natural vibration frequencies of the structure were obtained. Table 4.3 shows the first six

vibration frequencies obtained by Moorthy, et al. (1995) and those obtained from

ABAQUS. The values agree fairly well, with the largest difference being 13.6% for mode
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number 2. These differences may be attributed to the following : Moorthy, et al. used a 9-

node shell element to model the structure, while the ABAQUS analysis used a 4-node shell

element.

4.1.2 3-D STRUCTURE

The vibration characteristics of a three-dimensional dam have been studied

numerically by Moorthy, et al. (1995). The cross-section of this 3-D dam structure was

described in the previous section (Fig. 4.2). In ABAQUS, we modeled the 3-D dam as a

40 m long structure using 980 quadrilateral panels of shell element S4R (Fig. 4.4). A

uniform internal pressure of 28 kPa was applied to the structure. The boundary conditions

were applied to the structure in the following manner:

• all nodes at the structure’s ends (y=0 and y=L) are clamped,

• all nodes along the sides parallel to the y-axis are pinned.

Table 4.4 contains the values of the vibration frequencies from the previous

study and from ABAQUS. It can be seen that ABAQUS’s frequencies are higher than

those of Moorthy, et al. (1995). The largest difference is 16.9% for mode number 3.

Similar to the 2-D structure, the difference may be caused by the number of nodes in the

shell element.

From Soedel (1993), the frequency of an open circular cylindrical shell is written

as follows:

( )
ω

ρ

π

π π
α

ν
π π

mn
E

a

m a

L

m a

L

n

h

a

m a

L

n

L
2

2

4

2 2 2

2

12 1 2

2 2 2

=













+ 

















+
+







+ 













































    (4.1)
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where m and n are the numbers of half waves in the axial and circumferential directions,

respectively. The following parameters were used for  ABAQUS’s analysis:

• E = 103.425 x 106 N/m2

• ν = 0.499

• ρ = 1000 kg/ m3

• h = 13 mm

• L = 40 m

• α = 1800

• a = 4 m

The ABAQUS model of  the structure is shown in Fig. 4.5. It has 500

quadrilateral panels of shell element S4R. The following boundary conditions were

applied:

• no translation in the radial and circumferential directions and no rotation about the

radial and axial axes for all nodes at the four corners and all nodes at the structure’s

ends (y=0 and y=L),

• no translation in the radial and axial directions and no rotation about the

circumferential axis for all nodes along the sides parallel to the y-axis (except the

corner nodes).

Table 4.5 presents the first eight frequencies obtained from equation (4.1) and

from the finite element analysis using ABAQUS. Number of panels used for ABAQUS

analysis may contribute to the discrepancies between the two results. The largest

difference is 11.6% for mode number 3. The corresponding vibration mode shapes

obtained from ABAQUS are presented in Fig. 4.6 and Fig. 4.7.

4.2 WITH EXTERNAL AND INTERNAL WATER
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The fluid-flow code computes the added mass and damping matrices, the

hydrodynamic forces and the wave elevation. Verifications of each of these output

variables were performed to validate the program.

4.2.1 HYDRODYNAMIC FORCE VALIDATION

Chakrabarti and Naftzger (1989) evaluated the wave-induced horizontal and

vertical forces on a rigid hemicylinder resting on the bottom using a boundary integral

method. The same problem (see Fig. 4.8) was analyzed numerically using the present

method. A hemicylinder of 100 m length and 4 m radius was modeled for the program

using 1072 quadrilateral panels (Fig. 4.9). Other input variables for the program are listed

below:

• wave amplitude, 0.5 H = 1 m,

• water depth, d = 12.68 m,

• ρw  = 1025.9 kg/m3,

• g = 9.80665 m/s2.

The results from Chakrabarti and Naftzger (1989) and the computed

hydrodynamic forces from the fluid-flow code are plotted in Fig. 4.10 and Fig. 4.11. These

plots show that the hydrodynamic forces computed from the fluid-flow code compare well

with the results from  Chakrabarti and Naftzger (1989).

4.2.2 ADDED MASS VALIDATION

Kwak and Kim (1991) performed an analytical study on the axisymmetric

vibration of circular plates in contact with fluid (Fig. 4.12). In their study, the added

virtual mass incremental factor ( β) was defined as the ratio of the kinetic energy of the

fluid due to the motion of the plate to the kinetic energy of the plate itself :
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β ρ
ρ

= =















T

T

a

h
f

p

w

p

*

* Γ     (4.2)

where ρw  is the density of the fluid, ρ p  is the mass density of the plate and, respectively,

a and h are the radius and the thickness of the plate. Kwak and Kim (1991) calculated the

values of the non-dimensionalized added virtual mass incremental (NAVMI) factor, Γ, for

circular plates vibrating axisymmetrically on the free surface. For circular plates vibrating

axisymmetrically submerged in the fluid, the NAVMI factor should be multiplied by 2. The

same problem was analyzed using the fluid-flow code. We obtained the added mass values

for a simply supported vibrating circular plate of radius 1 m, thickness 13 mm and mass

density 960 kg/m3 submerged in water of 40 m depth. The added virtual mass incremental

factor is calculated from:

( )

( )
β

ω ψ

ω ψ
= =

+∫
∫

T

T

M m s ds

m s ds
w

p

A p n n

s

p n n

s

*

*

. ( )

.

0 5

05

2 2

2 2
    (4.3)

where ω n  is the natural vibration frequency of the plate, ψ n  is the vibration mode shape

(Fig. 4.13 and Fig. 4.14), M A  is the dimensional added mass and mp  is the generalized

mass of the plate for a specific mode shape. Since the vibration mode shapes in the water

change very little compared to those in the air, β =
+M m

m
A p

p

. The values of Γ are

calculated accordingly from equation (4.2) and the results from both studies are compared

and presented in Table 4.6 for six vibration frequencies. As Table 4.6 indicates, the

agreement is very good with the maximum difference being 6.89% for ω dry = 124 27.

rad/sec.

4.2.3 DAMPING AND RESPONSE AMPLITUDE VALIDATION
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We verified the values of damping due to the influence of fluid indirectly by

verifying the response amplitudes $ξ j . The result of Newman’s (1994) analysis on bending

of a vertical column (see Fig. 4.15) was used for comparison. With reference to

Newman’s study, we used an identical vertical circular cylinder of radius 10 m extending

the entire depth of 200 m. It has a constant bending stiffness, EI , and a uniform

distribution of mass m  along its length. A concentrated mass mo  is placed at the free

surface to account for the ‘superstructure’. The concentrated mass is equal to the total

displaced mass, m a do w= ρ π 2 , and  the distributed mass is defined to be half of its

displaced mass, m aw= 0 5 2. ρ π . The stiffness of the cylinder is defined such that

EI d mo/ . sec3 20 41= − . A set of orthogonal polynomials was used to define the “dry”

vibration mode shapes of the vertical cylinder (Fig. 4.16). These polynomials are defined

as follows (Newman, 1994):

( ) ( )f z q P q jj j= =−
2

1 1 2 3* , , , , ...     (4.4)

where q
z

d
=  and Pj

*  is a polynomial of degree n defined as:

( ) ( ) ( )
( ) ( )P q

n m

m n m n m
qn

m n m

m

n
* !

! ! !
= −

+ −
− + −

−

=
∑ 1

4 2

40

    (4.5)

The governing equations for the linear system are defined as follows:

( )[ ]ξ ω ωj ij ij ij ij i
j

a M i b C X− + + + =∑ 2     (4.6)

The values of added mass aij , damping bij  and hydrodynamic forces X i  were obtained

from the fluid-flow program and are listed below for a wave period of 6.5 sec:

[ ]aij = ×

− −
− −
− − −

−



















10

10 07 131 0 27 0 007

131 7 81 0 525 0 04

0 27 0 526 594 0 402

0 005 0 04 0 402 4 49

6

. . . .

. . . .

. . . .

. . . .
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[ ]bij = ×
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The values of M ij  and Cij  were given (Newman, 1994) as follows:
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    (4.8)

Solving equation (4.6), we obtained the response amplitudes ξ j  for wave periods 5.0, 6.5

and 7.0 sec as presented in Table 4.7.

4.2.4 WAVE AMPLITUDE VALIDATION

There are only a few exact analytical solutions for diffraction (scattering) of

waves due to the presence of a sufficiently large body in the water. One of these solutions

can be found in Mei (1992) for the problem of wave diffraction by a vertical cylinder of

circular cross section which extends from the sea bottom to the free surface. In this case,

the free-surface displacement is given by:

( ) ( ) ( ) ( )
( ) ( )η ε θ= −

′
′







=

∞

∑A i J kr H kr
J ka

H ka
cos mm

m

m m
m

mm
incident

0

    (4.9)
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where

• Aincident  is the amplitude of the plane incident wave, r  is the distance between any

point on the free surface and the origin of the coordinate system and a  is the radius of

the cylinder,

• ε0 1=  and εm m= =2 1 2 3, , , , ... ,

• ( )J krm  are Bessel functions of the first kind,

• ( ) ( ) ( )H kr J kr iY krm m m= + , where ( )Y krm  are Bessel functions of the second kind,

• ( ) ( ) ( )′ = − ++J ka J ka
m

ka
J kam m m1  and ( ) ( ) ( )′ = − ++H ka H ka

m

ka
H kam m m1

A vertical cylinder of 1 m radius and of 5 m height (Fig. 4.17), discretized into

1000 quadrilateral panels, was used as an input geometry for the fluid-flow code. The

free-surface displacements were obtained from equation (4.9) and from the fluid-flow

code using an incident wave amplitude 1 m and different values of the wave number, k .

Fig. 4.18 and Fig. 4.19 show the wave amplitude on the cylinder surface (r = a). The solid

line was obtained from equation (4.9) while the circles are numerical results from the

program. Fig. 4.20 shows the wave amplitude for points on the x-axis. The solid line was

obtained from equation (4.9) while the dashed line was obtained from the fluid-flow code.

In all cases, the agreement between the analytical and the numerical results was very good.

The validations performed on ABAQUS show that its analysis of structural

vibration frequencies and mode shapes compares relatively well with previous studies.

Similarly, verifications of the fluid-flow code confirm that it can produce accurate results.
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Table 4.1    Vibration frequencies of clamped half circular arc.

Mode
Present Study with ABAQUS Chidamparan and

Leissa (1993)
number ω (rad/sec) λ ω ρ= a bh / EI2 λ ω ρ= a bh / EI2

1 11.437 4.899 4.6
2 24.464 10.45 10.0
3 44.760 19.17 18.0
4 64.454 27.61 26.8

Table 4.2    Vibration frequencies of pinned circular arc.

Mode
Present study with ABAQUS Chidamparan and

Leissa (1993)
number ω (rad/sec) λ ω ρ= a bh / EI2 λ ω ρ=  a bh / EI2

1 6.0083 2.574 2.5
2 18.087 7.748 7.0
3 35.989 15.42 13.5
4 56.992 24.41 22.0

Table 4.3    Natural Frequencies of 2-D dam (rad/sec).

Mode # Moorthy et al. Present study with ABAQUS
1 28.5 27.612
2 51.8 58.837
3 83.9 90.676
4 113.1 119.48
5 142.8 148.49
6 171.2 176.12
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Table 4.4    Natural frequencies of 3-D structure (rad/sec).

Mode # Moorthy et al. Present study with ABAQUS
1 47.3 53.776
2 55.7 63.019
3 65.5 76.598
4 74.2 84.572
5 82.5 93.378
6 88.2 98.095

Table 4.5    Vibration frequencies of 3-D structure (rad/sec).

Mode # (m,n) Soedel Present study with ABAQUS
1 (1,3) 1.1780 1.0743
2 (1,4) 1.4854 1.4016
3 (1,2) 1.9686 1.7402
4 (1,5) 2.2074 2.1843
5 (2,4) 2.4051 2.3281
6 (2,5) 2.5393 2.5144
7 (1,6) 3.1498 3.2463
8 (2,6) 3.2857 3.2937

Table 4.6    Added mass values of a simply supported vibrating circular plate.

ωdry

(rad/s)
Generalized mass

(kg)
Added mass

(kg)
Γ

(Present)
Γ

(Kwak and
Kim)

20.295 11.135 852.56 0.94358 0.98916
124.27 4.2843 124.16 0.36471 0.39168
301.60 5.9982 118.60 0.25270 0.24344
527.01 6.0655 87.389 0.18743 0.17636
925.99 5.5564 57.347 0.13772 0.13822
1336.0 4.0897 34.259 0.11407 0.11366
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Table 4.7    Response amplitudes $ξ j  for a vertical circular cylinder.

Period = 5.0 sec Period = 6.5 sec Period = 7.0 sec
$ξ j

(Newman)

$ξ j

(Present)

$ξ j

(Newman)

$ξ j

(Present)

$ξ j

(Newman)

$ξ j

(Present)
0 04813

0 00423

0 00010

0 00002

.

.

.

.

0 04761

0 00418

0 00010

0 00001

.

.

.

.

114505

0 09698

0 00135

0 00024

.

.

.

.

114021

0 09658

0 00135

0 00024

.

.

.

.

0 44875

0 03795

0 00046

0 00008

.

.

.

.

0 44743

0 03785

0 00047

0 00010

.

.

.

.
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Figure 4.1    ABAQUS model of a circular arc.

X Y

ZE = 0.103425 x 109 N/m2

ν = 0.499

ρ = 1000 kg/m3

a = 4.0 m
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Figure 4.2    2-D dam structure ( Moorthy et al., 1995).

Figure 4.3    ABAQUS model of a 2-D dam structure.

6.1 m

4.9 m

E = 2.1 x 109  N/m2

υ = 0.3
ρ = 960  kg/m3

h = 7.6   mm
perimeter = 13.7  m

pin = 28  kN/m2

X Y

Z

56.3 mm

E = 2.1 x 109  N/m2

υ = 0.3
ρ = 960  kg/m3

h = 7.6  mm
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Figure 4.4    ABAQUS model of a 3-D dam structure ( Moorthy et al., 1995).

X
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40  m
E = 2.1 x 109  N/m2
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Figure 4.5    ABAQUS model of a 3-D open circular cylindrical shell.

X
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Z

E = 103.425 x 106 N/m2

ν = 0.499
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α = 180 0
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Figure 4.6    Vibration mode shapes 1 - 4 of an open circular cylindrical shell.

Mode 1
ω = 1.0743 rad/sec

Mode 3
ω = 1.7402 rad/sec

Mode 4
ω = 2.1843 rad/sec

Mode 2
ω = 1.4016 rad/sec
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Figure 4.7    Vibration mode shapes 5 - 8 of an open circular cylindrical shell.

Mode 5
ω = 2.3281 rad/sec

Mode 6
ω = 2.5144 rad/sec

Mode 8
ω = 3.2937 rad/sec

Mode 7
ω = 3.2463 rad/sec
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Figure 4.8    Hydrodynamic forces on a hemicylinder ( Chakrabarti and Naftzger, 1989).

Figure 4.9    Discretized model of a hemicylinder (1072 quadrilateral panels).

a

d

FH

FV

H

d/a = 3.17

X
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L = 100 m

a =  4 m

d = 12.68 m

ρw = 1025.9 kg/m3

0.5 H = 1 m
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Figure 4.12    Axisymmetric vibration of circular plates ( Kwak and Kim, 1991).

Figure 4.13    Vibration mode shapes 1-2 of a circular plate.

a a

Fluid domain D

SR

Circular plate
h

SB

SF

Mode 1

ω = 20.295 rad/sec

X Y

Z

Mode 2

ω = 124.27 rad/sec
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Figure 4.14    Vibration mode shapes 4-6 of a circular plate.

Mode 3

ω = 301.60 rad/sec

X Y
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Mode 4
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Figure 4.15    Discretized model of a vertical column (1000 quadrilateral panels).

X Y

Z

d = 200 m
radius, a = 10 m

distributed mass, m = 0.5 ρwπ a2

concentrated mass, mo = ρwπ a2d

EI/d3 = 0.41 mo sec-2
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Figure 4.17    Discretized model of a vertical column (1000 quadrilateral panels).

X Y

Z

5 m

radius, a = 1 m
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Figure 4.18    Polar distribution of free-surface amplitude.
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Figure 4.19    Polar distribution of free-surface amplitude.
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CHAPTER  5 NUMERICAL RESULTS

Numerical analysis of interaction of the structure with waves was performed at

two cases of water depth, 6 m and 5 m. In each case, the analysis includes free vibration

without water, free vibration with water and forced vibration. As discussed in Chapter 3,

the breakwater is modeled as a thin, isotropic, elastic shell. Using 1500 quadrilateral

panels of element S4R, a breakwater of 150 m length and 4 m radius is constructed as

shown in Fig. 5.1. There are 20 panels along the circumference and 75 panels along the

length.

The structure’s boundary conditions are defined as follows:

• all nodes along the sides parallel to the y-axis are pinned,

• all nodes at the structure’s ends (y = 0 and y = L) are clamped.

5.1 WATER DEPTH OF 6 m

5.1.1 FREE VIBRATION ANALYSIS WITHOUT WATER

For a water depth of 6 m, 5% of the maximum external hydrostatic pressure is

determined to be 3000 N/m2. Applying this pressure as a uniform internal pressure to the

structure, small vibrations of the structure about the static equilibrium are analyzed using

ABAQUS. The first fifteen “dry” mode shapes are shown in Fig. 5.2. Modes

1,2,5,7,8,11,13,14, and 15 are symmetric while modes 3,4,6,9,10, and 12 are

antisymmetric. The natural frequencies of the structure are obtained from:

− + =ω 2 0M Kg g     (5.1)

As discussed previously in Chapter 3, these “dry” mode shapes are used as basis functions

that describe the displacement of the body surface when external water is present.
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A study was conducted to determine the changes in the natural frequencies if the

structure is modeled as a membrane (e.g. no bending stiffness). Using the quadrilateral

membrane element M3D4R in ABAQUS, the natural frequencies of the structure were

found to be much smaller as shown in Table 5.1.

5.1.2 FREE VIBRATION ANALYSIS WITH WATER

In order to obtain the “wet” natural frequencies of the structure, the effect of

external and internal water is included in the analysis. The “wet” vibration frequencies can

be determined from:

( )− + + + =ω 2 0M A A Kg ginternal     (5.2)

where the generalized mass matrix, M g , and the generalized stiffness matrix, Kg , are

obtained from ABAQUS.

The external added mass matrix A  is a function of wave frequency ω ; therefore

an iteration process is performed to get the natural vibration frequencies of the structure.

For example, to obtain the first “wet” natural frequency, an external added mass matrix,

A , is obtained at ω = 8 9639.  rad/sec (the first “dry” natural frequency). Solving equation

(5.2) yields the new value ω = 1378998.  rad/sec which is used to obtain a new external

added mass matrix. The process is repeated until 
ω ω

ω
i i

i

− −1  is less than or equal to 5%.

Notice that only external added mass changes with frequency. The internal added mass,

Ainternal , is independent of wave frequency since the water is contained inside of the

structure.

Figure 5.3.a and Fig. 5.3.b show the first four “dry” mode shapes and

frequencies along with the corresponding cross-sectional profiles at mid-structure and at
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one-quarter length from each end. Modes 1 and 2 are symmetric while modes 3 and 4 are

antisymmetric.

Figure 5.4.a and Fig. 5.4.b show the first four “wet” mode shapes and

frequencies. These figures show that the “wet” mode shapes do not change significantly as

compared to the “dry” mode shapes. Symmetric mode shapes are observed in modes 1 and

2 while antisymmetric mode shapes are observed in modes 3 and 4.

Table 5.1 contains the values of the generalized mass of the structure, the

diagonal elements of the external added mass matrix and the internal added mass matrix,

and the “dry” and “wet” frequencies. As can be seen, the influence of the external and

internal water is significant. The magnitudes of the external and internal added mass are

much larger than the mass of the structure. As a result, there is an average reduction of

82.7% on the magnitude of the first four natural frequencies of the structure.

5.1.3 FORCED VIBRATION OF THE STRUCTURE IN WAVES

5.1.3.1 NORMAL INCIDENT WAVES ( β = 0 )

Hydrodynamic coefficients, forces, and response of the structure

We now consider the case of waves interacting with a flexible breakwater. As

discussed in Chapter 3, the effect of the external water is represented by the added mass

matrix, A , the damping matrix, B , and the hydrodynamic forces, F Fi
I

i
D+ .

Figure 5.5 shows the non-dimensional added mass values for mode 1, A11 , and

for mode 2, A22 , as a function of the non-dimensional term ka  ( k  is the wave number

and a  is the radius of the structure). This plot indicates that the added mass coefficient for
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mode 2 is much lower than that for mode 1. For mode 1, the added mass coefficient

reaches its maximum value at a lower value of  ka  than for mode 2.

The values of the non-dimensional wave damping for mode 1, B11 , and for mode

2, B22 , are presented in Fig. 5.6. It can be observed that at low and high values of  ka ,

the values of these wave damping coefficients are negligible. Similar to the added mass

plot, the wave damping coefficient for mode 2 is much lower than that for mode 1.

Figure 5.7 shows the variation of the total nondimensional vertical and horizontal

hydrodynamic forces on the structure. These forces are the maximum wave-induced forces

as defined by Chakrabarti and Naftzger (1989) (see Fig. 4.8 and Section 4.2.1). The

vertical force decreases as  ka  increases, while the horizontal force increases initially with

ka  but decreases after it reaches its maximum at  ka ≈ 05. . Figure 5.8 shows that for the

case of normal incident waves the hydrodynamic force for mode 1 is much higher than that

for mode 2. For low and high values of  ka , the magnitudes of the wave forces are small

for both modes.

The Response Amplitude Operator (RAO)j values are obtained by solving for $ξ j

using equation (3.4). Figure 5.9 presents the (RAO)1 and (RAO)2 as functions of  ka  for

the case of normal incident waves. It can be seen that (RAO)1 is maximum close to the

first “wet” natural frequency ω n1
146045= .  rad/sec (ka = 0 97. ) and, likewise, (RAO)2 is

maximum close to the second “wet” natural frequency ω n2
2 4650= .  rad/sec (ka = 2 48. ).

Free surface elevation
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The amplitude of the free surface elevation ( ζ , see equation (3.17)) is obtained

for several wave frequencies. The incident wave is taken to have a unit amplitude

( Aincident = 1).

Figure 5.10 and Fig. 5.11 show the wave amplitudes at the middle and at the end

of the structure for incident wave frequencies ω π=
4

 ( ka = 0 437. ) and 
π
2

 ( ka = 11. ),

respectively. From these figures, it can be seen that the flexible structure is much more

effective as a breakwater than the fixed rigid structure in reducing the amplitude of the

incident waves.

In Fig. 5.12 to Fig. 5.17, different colors are used to represent the different

values of ζ  at different points in the xy-plane. The colorbar shows the corresponding

numerical value for each color. Notice that the color scale is different for each figure. The

breakwater extends from y = 0 to y = 150 m and from x = -4 m to x = 4 m.

For an incident wave of frequency ω π=
4

 rad/sec, the non-dimensional

amplitude of the free surface elevation are presented in Fig. 5.12. From the colorbar, it can

be seen that the wave amplitude behind the structure is reduced to 0.5 which means the

amplitude is reduced by 50%.

Figure 5.13 shows the wave amplitude of the free surface elevation for wave

frequency ω π=
6

 rad/sec ( k a = 0 28. ). For this frequency, the wave intensity behind the

structure is reduced only by 20%. Figure 5.14 and Fig. 5.15 depict the wave amplitudes of

the free surface elevation for wave frequencies ω ω= =n1
146045.  rad/sec ( k a = 097. )

and ω ω= =n2
2 4650.  rad/sec ( k a = 2 48. ), respectively. From the colorbar, it can be
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seen that the wave amplitude behind the structure is reduced by as much as 80% for wave

frequency ω ω= n1
 and as much as 90% for wave frequency ω ω= n2

. Figure 5.17 shows

the wave amplitude of the free surface elevation for wave frequency ω π=  rad/sec

( k a = 4 0. ). For this wave frequency, it can be seen that the structure is no longer

effective. It is also observed that diffraction of the wave energy around the ends of the

structure has significant effect on the amplitude of the wave as depicted by the pattern

behind and in front of the structure (see Fig. 5.17). Figure 5.13 to Fig. 5.17 show that the

flexible breakwater is effective in reducing the maximum wave amplitude over a wide

range of frequencies. We can also see that the wave field behind the structure is very

three-dimensional. It is observed that the structure is effective close to the middle but not

at the ends. This phenomenon can be explained as follows; the ends of the structure do not

move much (recall the ends are clamped); therefore the waves generated by the structure

to reduce the amplitude of the incoming waves are small. At low and high frequencies, the

breakwater is not effective. As shown in Table 5.2, the RAO’s for low or high frequency

waves are small compared to those for other frequencies; therefore the structure does not

move enough to generate waves that will cancel the incoming waves.

Figure 5.18 depicts the displacements of the structure over time for incident

waves of  frequency ω π=
4

 rad/sec. The corresponding mid-section displacements over

time are presented in Fig. 5.19. As defined in equation (3.3), each “dry” mode shape has

influence on the displacement of the structure. It is evident from Fig. 5.19 that mode shape

1 is dominant because $ξ1  outweighs other $ξ ’s (see Table 5.2). The structure moves

mostly in mode 1 so that it generates waves that cancel the incident waves. Modes 3 and 4

are not excited because the disturbance is symmetric about the middle of the structure.

The free surface elevations at different times are presented in Fig. 5.20.a to Fig. 5.20.d.
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In a similar fashion, the displacements of the structure and the free surface

elevations over time for the case of incident wave frequency ω ω= n2
 rad/sec are

presented in Fig. 5.21 to Fig. 5.23. Notice that the structure moves mostly in mode 2 since

$ξ2  is dominant over other $ξ ’s.

5.1.3.2 OBLIQUE INCIDENT WAVES ( β = ° °15 30, )

Hydrodynamic coefficients, forces, and response of the structure

For the case of oblique incident waves, the hydrodynamic coefficients are the

same as those for the case of normal incident waves. The hydrodynamic forces, however,

change significantly as can be seen in Fig. 5.24 and Fig. 5.25 for the case of incident waves

at an angle of 15 degrees and in Fig. 5.27 and Fig. 5.28 for the case of incident waves at

an angle of 30 degrees.

It can be observed that the frequency at the peak of the horizontal force as well

as its maximum magnitude decreases as the incoming angle increases. The curve of the

vertical force drops faster as the incoming angle increases, but its maximum magnitude

stays the same (see Fig. 5.7, Fig. 5.24, and Fig. 5.27). Referring to Fig. 5.8, the

hydrodynamic forces for modes 1 and 2 are reduced considerably as the incoming angle

increases.

Oblique incident waves excite the antisymmetric modes such as modes 3 and 4.

This is evident as shown in Fig. 5.26 and Fig. 5.29. However, the RAO’s reduce as the

incoming angle increases, which means the structure is not as effective as in the case of

normal incident waves. The frequencies at the peak of the RAO’s reduce as the incoming

angle increases.
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Free surface elevation

The wave amplitudes are obtained for several wave frequencies. Figure 5.30 to

Fig. 5.35 present the color image of the wave amplitudes. It is evident from these figures

that the breakwater becomes less effective as the incoming angle increases.

Figure 5.36 presents the structure’s displacements over time for an incident wave

at  β = °15  for wave frequency  ω π=
4

 rad/sec. The corresponding free surface

elevations are presented in Fig. 5.37.a to Fig. 5.37.d. Similarly, Fig. 5.38 to Fig. 5.39

present results for an incident wave at  β = °30  for wave frequency  ω π=
4

 rad/sec.

5.1.4 TRANSMISSION COEFFICIENT

In this analysis, the transmission coefficient is defined to be the mean value of the

wave amplitudes behind the middle of the structure at distances from the end of the

structure (x = 4 m) to 50 m from the center of the structure. Figure 5.40 shows the

variation of wave transmission coefficient as a function of k a  for three different incident

wave angles. As shown in Fig. 5.40, the breakwater is effective over a wide range of

frequencies for the case of normal incident waves. For β = °15 , the structure is effective

only for a small frequency bandwidth. As the angle of the incident wave increases to 30

degrees, the breakwater becomes ineffective.

5.2 WATER DEPTH OF 5 m

5.2.1 FREE VIBRATION ANALYSIS WITHOUT WATER
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The same procedure used for the case of water depth 6 m is followed to obtain

the natural “dry” frequencies of the structure. Since the water depth is 5 m, 5% of the

maximum external hydrostatic pressure is determined to be 2500 N/m2. As shown in Fig.

5.41, the first fifteen “dry” mode shapes are essentially the same as those for the case of

water depth 6 m. The frequencies, however, are slightly lower because the internal

pressure is slightly lower.

5.2.2 FREE VIBRATION ANALYSIS WITH WATER

For the case of water depth 5 m, the values of the external and internal added

mass are calculated to find the “wet” natural frequencies of the structure. The iteration

process is also used. Figure 5.42 and Fig. 5.43 show, respectively, the first four “dry” and

“wet” mode shapes.

Compared to the case of water depth 6 m, the “wet” frequencies are slightly

higher. At a water depth of 5 m, the structure moves a smaller amount of external water

than if it were submerged in water of 6 m depth. As a result, the “wet” natural frequencies

of the structure are slightly higher, as observed. Notice that the “wet” mode shapes for

modes 3 and 4 are similar to each other.

5.2.3 FORCED VIBRATION OF THE STRUCTURE IN WAVES

5.2.3.1 NORMAL INCIDENT WAVES ( β = 0 )

Hydrodynamic coefficients, forces, and response of the structure
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For the case of normal incident waves, the hydrodynamic coefficients are plotted

as functions of k a  in Fig. 5.44 and Fig. 5.45.

As shown in Fig. 5.44, for low and high values of k a , the non-dimensional

added mass coefficient for mode 1 is greater than that for mode 2. For k a = 0 75.  to

k a = 2 25. , the added mass coefficient for mode 1 is lower than that for mode 2. Referring

to Fig. 5.5, it can be seen that for a water depth of 5 m, the maximum values of the added

mass coefficients for modes 1 and 2 are greater than those for a water depth of 6 m.

Notice that the vertical scales in Fig. 5.5 and Fig. 5.44 are different.

Figure 5.45 shows that the non-dimensional damping coefficient for mode 1 is

greater than that for mode 2 if  k a < 23. . For low and high values of k a , the damping

coefficients are negligible for both modes. Compared to the case of a water depth of 6 m

(see Fig. 5.6), the damping coefficients for the case of a water depth of 5 m are much

larger. Notice that the vertical scales in Fig. 5.6 and Fig. 5.45 are also different.

Figure 5.46 indicates that the hydrodynamic forces do not change significantly as

the water depth changes. Referring to Fig. 5.7, it can be seen that the curve of the vertical

force drops more slowly for the case of water depth 5 m while the maximum of the

horizontal force increases slightly as the water depth decreases.

Figure 5.48 presents the values of (RAO)1 and (RAO)2 as functions of k a . It

can be seen that the curve of (RAO)2 has two peaks. This can be explained as follows: The

added mass, damping and hydrodynamic coefficients are strongly dependent on the

frequency of the wave (see Fig. 5.44, Fig. 5.45 and Fig. 5.47). The first peak of (RAO)2

corresponds to the maximum hydrodynamic force for mode 2 as shown in Fig. 5.47 and

the second peak of (RAO)2 corresponds to the second “wet” natural frequency

ω n2
2 7753= .  rad/sec (ka = 314. ). The same explanation applies for the curve of (RAO)1.
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It can be seen that the maximum of (RAO)1 is not close to the first “wet” natural

frequency ω n1
15936= .  rad/sec (ka = 116. ). As shown in Fig. 5.47, the maximum force for

mode 1 occurs at k a = 05.  and the peak of (RAO)1 also occurs at this wave number.

Free surface elevation

Figure 5.49 and Fig. 5.50 show the wave amplitudes at the middle and at the

ends of the structure for wave frequencies ω π=
4

 rad/sec (k a = 0 47. ) and ω n2
2 7753= .

rad/sec (k a = 314. ), respectively. It can be seen that the structure reduces the wave

intensity efficiently and that the flexible structure is more effective than the rigid one.

The wave amplitudes at different frequencies are presented in Fig. 5.51 to Fig.

5.56. It is observed that for wave frequencies ω π=
2

 rad/sec (k a = 113. ) and

ω n1
15936= .  rad/sec (k a = 116. ), the wave amplitudes behind the structure are not

reduced much. As shown in Fig. 5.57, it is apparent that for wave frequency ω ω= n1
, the

structure does not move and therefore does not generate waves that cancel the incoming

waves.

Figure 5.58 depicts the displacements of the structure over time for incident

waves of  frequency ω π=
4

 rad/sec. It is evident that, for this wave frequency, the

structure moves mostly in mode 1 and generates waves that cancel the incident waves.

Modes 3 and 4 are not excited because the disturbance is symmetric about the middle of

the structure. The free surface elevations at different times are presented in Fig. 5.59.a to

Fig. 5.59.d.
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5.2.3.2 OBLIQUE INCIDENT WAVES ( β = °15 )

Hydrodynamic coefficients, forces, and response of the structure

For the case of oblique incoming waves, the hydrodynamic forces show the same

changes observed in the case of water depth 6 m. As shown in Fig. 5.60, the curve of the

vertical force drops faster for the incoming angle of 15 degrees. The magnitude of the

horizontal force is lower for the incoming angle of 15 degrees than that for the normal

incident waves. The forces for modes 1 and 2 are reduced considerably (see Fig. 5.61 and

Fig. 5.47) when the depth changes from 6 m to 5 m.

As shown in Fig. 5.62, oblique incident waves excite the antisymmetric modes

such as modes 3 and 4. However, the RAO’s reduce as compared to the case of normal

incoming waves (see Fig. 5.48), which means the structure is not as effective. The

frequencies at the peak of the RAO’s reduce as the incoming angle increases. This is also

observed for the case of a water depth 6 m.

Free surface elevation

Figure 5.63 and Fig. 5.64 present the color image of the wave amplitudes at

wave frequencies ω π=
2

 and 
π
6

, respectively. It is evident that the structure is less

effective for the oblique incoming waves.

Figure 5.65 shows the displacements of the structure over time and Fig. 5.66

depicts the surface elevation at different times.

5.2.4 TRANSMISSION COEFFICIENT
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Figure 5.67 shows the transmission coefficients (defined previously in Section

5.1.4) as a function of k a . For the case of normal incident waves in a water depth of 5 m,

the structure is effective for 0 25 10. .< <k a  and 175 34. .< <k a . For the case of oblique

incident waves, the structure is effective only for a small frequency bandwidth.
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Table 5.1    Natural frequencies for shell and membrane structure.

Mode ω  (rad/sec) Difference
# Shell Membrane %
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

8.9639
13.892
14.227
14.769
15.126
16.776
19.170
19.876
22.164
22.805
24.326
25.540
25.549
26.394
26.846

7.8598
7.8853
8.4177
9.7190
10.327
10.870
11.366
11.366
11.374
11.378
11.413
11.451
11.490
11.571
11.629

12.3
43.2
40.8
34.2
31.7
35.2
40.7
42.8
48.7
50.1
53.1
55.2
55.0
56.2
56.7

Table 5.2    External and internal added mass.

Mode Generalized
External
added

Internal added mass (kg)
Dry ωn Wet ωn

# mass (kg) mass (Ajj)
(kg)

Ajj A

a L
jj

w05 2. ρ π
(rad/sec) (rad/sec)

1 49,004.0 610,584.0 1,172,604.0 0.303 8.9639 1.4605

2 20,721.0 238,176.0 398,916.59 0.103 13.892 2.4650

3 23,034.0 265,334.0 434,454.41 0.112 14.227 2.5400

4 46,610.0 471,392.0 1,048,136.0 0.271 14.769 2.5508
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Table 5.3    RAO  for ω π π ω ω π=
6 4 21 2

, , , , ,n n  and  π   rad/sec ( β = 0 ).

ω π=
6

ω π=
4

ω ω= n1
ω ω= n2

ω π=
2

ω π=

0.9882
0.0760

1.542 ×10-6

0.0014
0.0268

2.323 × 10-5

0.0104
0.0505

2.844 × 10-5

1.089 × 10-4

0.0115
2.242 × 10-5

0.0041
0.0365
0.0031

1.567
0.185

9.415 × 10-6

5.357 × 10-3

0.064
1.351 × 10-4

0.024
0.061

1.612 × 10-4

3.953× 10-4

0.017
8.339 × 10-5

9.389 × 10-3

0.039
5.473 × 10-3

1.906
0.807

2.248 × 10-3

0.028
0.258

2.697 × 10-3

0.080
0.069

2.777 × 10-3

1.698 × 10-3

0.019
4.048  × 10-4

0.028
0.014
0.011

0.169
1.6649

4.494 × 10-3

0.036
0.449
0.030
0.076
0.052
0.020

3.270 × 10-4

0.017
6.875 × 10-5

0.023
0.069
0.017

1.677
0.903

3.144 × 10-4

0.030
0.287

3.666 × 10-3

0.086
0.070

3.685 × 10-3

1.731 × 10-3

0.020
4.255 × 10-4

0.029
0.013
0.012

0.014
0.118

4.011 × 10-4

1.292 × 10-3

0.066
8.643 × 10-3

0.102
0.056

4.278 × 10-3

5.396 × 10-4

9.879 × 10-3

9.907 × 10-5

0.013
0.046
0.010
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Figure 5.1    The structure of the breakwater.
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Figure 5.2    Natural “dry” mode shapes and frequencies.
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Figure 5.3.a    Natural “dry” mode shapes 1-2.
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Figure 5.3.b    Natural “dry” mode shapes 3-4.
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Figure 5.4.a    Natural “wet” mode shapes 1-2.
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Figure 5.4.b    Natural “wet” mode shapes 3-4.
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Figure 5.5    Non-dimensional added mass coefficients.
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Figure 5.6    Non-dimensional damping coefficients.
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Figure 5.7    Vertical and horizontal forces for the case of normal incident waves ( β = 0).
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Figure 5.8    Hydrodynamic forces for modes 1 and 2 ( β = 0).
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Figure 5.9    RAO for the case of normal incident waves ( β = 0).
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Figure 5.18    Displacements of structure over time for  Aincident = 1 ( ω π β= =
4

0, ).
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Figure 5.19    Mid-section displacements over time for  Aincident = 1 ( ω π β= =
4

0, ).
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Figure 5.20.a    Free surface elevation ( ω π β= =
4

0, ).
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Figure 5.20.b    Free surface elevation ( ω π β= =
4

0, ).

-40 -20 0 20 40

X

0

50

100

150

Y

t = 0.25 T

-40 -20 0 20 40

X

0

50

100

150

Y

t = 0.375 T



Fata D. Dewi Chapter 5.  Numerical Results 90

Figure 5.20.c    Free surface elevation ( ω π β= =
4

0, ).
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Figure 5.20.d    Free surface elevation ( ω π β= =
4

0, ).
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Figure 5.21    Displacements of structure over time for  Aincident = 1 ( ω ω β= =n2
0, ).
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Figure 5.22    Mid-section displacements over time for  Aincident = 1 ( ω ω β= =n2
0, ).
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Figure 5.23.a    Free surface elevation ( ω ω β= =n2
0, ).
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Figure 5.23.b    Free surface elevation ( ω ω β= =n2
0, ).
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Figure 5.23.c    Free surface elevation ( ω ω β= =n2
0, ).
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Figure 5.23.d    Free surface elevation ( ω ω β= =n2
0, ).
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Figure 5.26    RAO for the case of oblique incident waves ( β = °15 ).
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Figure 5.36    Displacements of structure over time for  Aincident = 1 ( ω π β= = °
4

15, ).
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Figure 5.37.a    Free surface elevation ( ω π β= = °
4

15, ).
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Figure 5.37.b    Free surface elevation ( ω π β= = °
4

15, ).
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Figure 5.37.c    Free surface elevation ( ω π β= = °
4

15, ).
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Figure 5.37.d    Free surface elevation ( ω π β= = °
4

15, ).
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Figure 5.38    Displacements of structure over time for  Aincident = 1 ( ω π β= = °
4

30, ).
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Figure 5.39.a    Free surface elevation ( ω π β= = °
4

30, ).
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Figure 5.39.b    Free surface elevation ( ω π β= = °
4

30, ).
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Figure 5.39.c    Free surface elevation ( ω π β= = °
4

30, ).
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Figure 5.39.d    Free surface elevation ( ω π β= = °
4

30, ).
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Figure 5.40    Transmission coefficients.
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Figure 5.41    Natural “dry” mode shapes and frequencies (water depth = 5 m).
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Figure 5.42.a    Natural “dry” mode shapes 1-2.
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Figure 5.42.b    Natural “dry” mode shapes 3-4.
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Figure 5.43.a    Natural “wet” mode shapes 1-2.
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Figure 5.43.b    Natural “wet” mode shapes 3-4.
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Figure 5.45    Non-dimensional damping coefficients.
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Figure 5.46    Hydrodynamic forces for the case of normal incident waves,  β = 0 .
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Figure 5.47    Hydrodynamic forces for modes 1 and 2 ( β = 0).
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Figure 5.48    RAO for the case of normal incident waves ( β = 0).
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Figure 5.57    Displacements of structure over time for  Aincident = 1 ( ω ω β= =n1
0, ).
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Figure 5.58    Displacements of structure over time for  Aincident = 1 ( ω π β= =
4

0, ).
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Figure 5.59.a    Free surface elevation ( ω π β= =
4

0, ).
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Figure 5.59.b    Free surface elevation ( ω π β= =
4

0, ).
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Figure 5.59.c    Free surface elevation ( ω π β= =
4

0, ).
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Figure 5.59.d    Free surface elevation ( ω π β= =
4

0, ).
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Figure 5.60    Hydrodynamic forces for the case of oblique incident waves,  β = °15 .
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Figure 5.65    Displacements of structure over time for  Aincident = 1 ( ω π β= = °
4

15, ).
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Figure 5.66.a    Free surface elevation ( ω π β= = °
4

15, ).
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Figure 5.66.b    Free surface elevation ( ω π β= = °
4

15, ).
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Figure 5.66.c    Free surface elevation ( ω π β= = °
4

15, ).
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Figure 5.66.d    Free surface elevation ( ω π β= = °
4

15, ).
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Figure 5.67    Transmission coefficients
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CHAPTER  6 CONCLUSIONS

A three-dimensional numerical analysis has been performed to investigate the

effectiveness of a flexible structure as a breakwater. Two different water depths, 6 m and

5 m, were considered. For each depth, the response to normal and oblique incident waves

was analyzed.

The structure is an anchored hemicylinder filled with water. It was modeled as an

elastic shell using the finite element program ABAQUS. For the analysis of the external

and internal fluid flow, a boundary integral method was utilized and the integral equation

was solved numerically by a panel method. The fluid was assumed to be inviscid and

incompressible.

Vibration analysis of the structure was performed both in the absence and

presence of water. It was found that the effect of water (e.g. added mass) is significant in

reducing the magnitude of the natural frequencies. The mode shapes, however, do not

change substantially.

For the case of a water depth of 6 m and normal incident waves, the flexible

structure performs effectively in reducing the wave intensity for a wide range of wave

frequencies. The reduction is found to be as much as 80% for the wave frequency

ω ω= =n1
14605.  rad/sec and 95% for the wave frequency  ω ω= =n2

2 465.  rad/sec. For

the case of oblique incident waves, the structure is effective only for a small frequency

bandwidth. As the incoming angle increases, the flexible structure becomes less effective.

For the case of a water depth of 5 m and normal incident waves, the structure is

effective over certain ranges of wave frequencies. Outside these ranges, the structure does

not move enough to generate waves that cancel the incoming waves. The reduction is

found to be 80% for the wave frequency  ω π=
4

 rad/sec and 95% for the wave frequency

ω ω= =n2
2 7753.  rad/sec. It is observed again that for the case of oblique incident waves,

the structure is effective only for a small frequency bandwidth.
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Future work may include changing the design parameters of the structure, such

as the shell thickness, modulus of elasticity, or choice of material (e.g. composite

material). Different shapes of the structure such as an elliptical cross section as well as a

structure partially filled with water may also be considered.
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