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Abstract 

 

Many researchers have devoted their work to the development of modal analysis 

extraction techniques in order to obtain more reliable identification of the modal 

parameters.  Also, as a consequence of all this work, there are some other works devoted 

to the evaluation and comparison of these methods in order to find which one is the most 

reliable method with respect to certain characteristics.   

 

In this thesis the Rational Fraction Polynomial (RFP) Method, the Prony or 

Complex Exponential Method (CEM), the Ibrahim Time Domain (ITD) Method, and 

Hilbert Envelope Method are used to evaluate how the accuracy of the damping ratio is 

affected with respect to various parameters and conditions.  The investigation focuses in 

the estimation of damping ratio because among the modal parameters, it is the most 

difficult to model.  Each method is evaluated individually in order to understand how the 

damping ratio estimation is affected with respect to each method when the characteristics 

of the FRF are changed.  Also, they are compared to show that, in general, the Rational 

Fraction Polynomial Method is a more reliable method than the other methods.  To 

investigate this, a simulated analytical data and an experimental data are processed to 

estimate the modal parameters, but focusing in the damping ratio.  For the simulated 

analytical data the damping ratio’s percent of error were calculated.  The highest damping 

ratio’s percent of error of the RFP was 0.0073501%.  In the other hand, for the CEM, 

ITD, and Hilbert Envelope Method their highest damping ratio’s percent of error were 

83.02%, 99.82%, and 4.077%, respectively. 
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CHAPTER 1 

Introduction and Literature Review 

 

The dynamic response of structures and the transmission of vibrations to the 

surroundings are critically determined by the damping mechanisms, and its value is very 

important for the design and analysis of vibrating structures.  When the structure is 

modeled, the stiffness and mass distributions are quite well determined, but there is great 

uncertainty regarding the energy dissipating mechanism provided by the damping of the 

structure because it is the least well understood.  But, in order to validate these models, 

the damping must be estimated by experimental modal analysis. 

 

The experimental modal analysis is the analysis of the structural dynamic 

properties in terms of its modal parameters.  These modal parameters can be identified 

from the measured frequency response function (FRF).  This process of identifying 

parameters is often referred to as curve fitting or parameters estimation.  The modal 

parameters are the measured natural frequencies, damping ratios and mode shapes.  But, 

many parameters and conditions, depending on which modal parameter extraction 

technique is used, affect the accuracy of estimating damping ratio.  Part of this thesis’ 

work is to investigate the capabilities of the modal parameter extraction techniques to do 

curve fitting. 

 

The goal of this thesis is to investigate how the accuracy of estimating damping 

ratio changes with respect to: the modal parameter extraction technique, different 

damping ratios, truncation in the FRF, close modes, separated modes, and two 

approaches: multiple degree of freedom and single mode approach.  Four modal 

parameter extraction techniques were selected to perform this investigation; these are the 

Prony or Complex Exponential Method (CEM), the Ibrahim Time Domain (ITD) 

Method, the Rational Fraction Polynomial Method, and the Hilbert Envelope Method.  

Regarding the other parameters and conditions, these are selected because these are the 
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characteristics that the real data presents, also the accuracy of estimating damping ratio 

can be affected depending of the method used and the characteristics of the FRF. 

 

In order to accomplish these goals, a simulated analytical and experimental data 

were analyzed by estimating the modal parameters.  The simulated analytical data is very 

useful because the exact values are known and the characteristics of the FRF can be 

varied in order to observe how the damping ratio accuracy is affected.  The experimental 

data was measured at various locations of a structure and then analyzed in the same 

manner as the simulated analytical data with the difference that for the experimental data 

the exact values are not know and the error cannot be calculated.  For all the methods and 

cases, the data is regenerated using the estimated modal parameters in order to calculate 

the residual, or difference, and the standard deviation between the original and 

regenerated FRF.  In order to test if the curve fit behaves in the same manner in 

experimental data as for the simulate data, the residual and standard deviations are 

compared between the type of data with respect to the characteristics of FRF and the 

modal analysis parameter extraction technique. 

 

Literature Review 
A lot of work has being devoted to the development and improvement of the 

modal analysis extraction techniques.  As a consequence of all this work, some other 

work has being performed in regard to compare these techniques and investigate their 

reliability.  Svend Gade and Henrik Herlufsen [1] compared the Digital Filter (DF) 

techniques vs. the Discrete/Fast Fourier Transform (DFT/FFT) techniques for damping 

measurements by vibration decay measurements or bandwidth determination of measured 

modal resonances.  Also, these methods are summarized with respect to their advantages 

and disadvantages.  For the DF analysis the damping is estimated from the decay of the 

free vibration response due to an impact excitation and they address that the advantage of 

this method is that it is very fast and doesn’t have limitations in dealing with very light 

damped systems.  But, due to the poor resolution of DF analyzer it is not well suited for 

bandwidth determination of measured modal resonances.  For the FFT techniques the 

damping was measured using free vibration decay, curve fit of frequency response 
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function measured using impact excitation and random excitation with shaker, and decay 

of impulse response function using pseudo random excitation with a shaker.  The 

vibration decay method doesn’t have any limitation in regard to low damping, but the 

limit for the estimation of high damping values comes from the limited transfer rate of 

spectra, which depends of the measuring system.  Also, it requires that the resonances be 

well separated in the analysis.  The curve fit of the frequency response function measured 

using impact excitation is done in a single-degree-of-freedom  approach and uses an 

exponential window in order to decrease the leakage error.  This method has the 

advantage over the decay methods in regard that high damped systems with high 

coupling between the modes can be analyzed.  The same method is used for random 

excitation, but due to the low resolution it uses zoom measurements with sufficient 

resolution to eliminate leakage.  The disadvantage of the zoom technique is that it takes 

to much time for the analysis.  For the last FFT techniques the frequency response 

function is estimated using shaker with a pseudo random force signal, then the decay 

envelope of the impulse response function for each mode is calculated by isolating the 

different resonances in the frequency response function.  This method is faster than the 

previous one.  They say that in general, FFT analysis is better for heavily damped 

structures, but it is advantageous to use DF analysis when dealing with lightly damped 

structures.   

 

M. Imregun compared two different single-degree-of-freedom (SDOF) modal 

analysis techniques and global multi-degree-of freedom (MDOF) method applied to 

frequency response function measurements taken on a lightly damped linear structure.  

For the SDOF, the circle-fit and the line-fit were used to identify the modal properties, 

which gave very similar results for most of the cases.  But, sometimes there was not 

possible to fit a reliable circle fit of the FRF data.  Also, the weak and coupled modes 

were among the most difficult to analyze.  He addresses that the circle-fit method gives 

reliable results when there are enough data points around resonance and that damping is 

not too low.  In other hand, this method should not be used when the data contains noise 

around resonance.  He found that the global identification method produces a consistent 

set of modal properties and is much faster than the SDOF approach.  He also found that a 
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reliable batch processing of measured FRF data is possible as long as simple, but 

rigorous, checks are made to ensure the quality of global parameters identification.  

 

 In another paper [3], S O’F Fahey and J. Pratt explain how to fit experimental 

data using single-degree-of-freedom and multiple-degree-of-freedom techniques.  The 

SDOF techniques are the Half-Power and Finite Difference method.  They say that these 

two techniques are attractive when performing quick field analysis or to provide initial 

estimates for more complex MDOF techniques.  For the MDOF techniques they 

explained the simultaneous frequency-domain method and the rational polynomial 

method.  Finally, they addressed the topic about refitting data to obtain global modal 

parameters.  But in another article [4], they compared different time-domain modal-

estimation techniques.  These techniques are the Complex Exponential Algorithm, 

Pisarenko’s Harmonic Decomposition, Ibrahim’s Time Domain method, and the Eigen-

system Realization Algorithm.  They developed a numerical example in order to compare 

and contrast them.  They say that there is a difference between the frequency-domain 

techniques and the time-domain techniques with respect to the system-damping ratio.  

This difference is that the time-domain techniques generally work better than the 

frequency-domain techniques when the system damping is less than 0.5 percent.  But, the 

frequency-domain techniques, generally gives more reasonable results when the damping 

is greater than 4.0 percent.   

 

Nuno Manuel Mendes Maia [5] described and compared some SDOF modal 

analysis methods.  He gave a brief review of the Peak Amplitude, the Quadrature 

Response, the Maximum Quadrature Component, the Kennedy-Pancu, the Circle-Fittin, 

the Inverse and Dobson methods.  He shows that the Dobson’s method is a more refined 

and more powerful version than the Inverse method.  Also, he demonstrates that for 

practical use, Dobson’s method gives better results than the Inverse method and it works 

better than the Circle Fitting method. 

 

Gilles Collot [6] compares the Half Power Frequency Domain Method, the 

Hilbert Transform Method and the Half Power Frequency Domain Method based on 
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zoom measurements.  There was concluded that third method is time consuming and that 

should be used when it is absolutely necessary to improve the frequency resolution.  For 

light damping the Hilbert Transform gives better results than the Half Power Frequency 

Domain Method.  Also, there was shown that the first method gives good and fast loss 

factor calculation when there are good coherence and small frequency resolution. 

 

S. Gade, K. Zaveri, H. Konstantin-Hansen and H. Herlufsen [7] compared and 

demonstrated a resonant and a non-resonant method to measure damping of visco-elastic 

materials.  There was found that the advantage of the non-resonant method over the 

resonant method is that it calculates the damping as a continuous function of frequency. 
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CHAPTER 2 

Theory 

 

This chapter develops the theory used to develop the data processing MatLab 

codes (see Appendix A) described in section 2.4.  First, the necessary assumptions are 

established in order to develop of the next sections, which use this information to 

establish the analytical equations.  Then, the frequency response function (FRF) 

estimation is explained.  After this section, the modal parameters extraction techniques 

are developed having in mind the assumptions and that these techniques are applied to the 

measured FRF. 

2.1 Assumption 

 I order to develop the theory applied to the various modal parameters extraction 

techniques and the frequency response function (FRF) estimation, four basic assumptions 

have to established about structure: 

1. It is a linear system where its dynamic behavior can be described by a second-

order differential equation. 

2. It is time invariant. 

3. Obeys Maxwell’s reciprocity theorem. 

4. It is underdamped. 

2.2 Frequency Response Function Estimation 

Assume the following form of the general input/output model.   

 

 

 

 

 

 

Figure 2.2.1: General input/output model 
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Then, 
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where X(f) is the measured input, which is equal to the correlated or ideal input, and Y(f) 

is the measured output, which is the sum of the correlated or ideal output plus the 

uncorrelated output. 
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where the symbol * means complex conjugate, and H1 is a complex valued function.  The 

magnitude of the FRF is commonly referred to as gain, and the phase angle is the angle 

between the output relative to the input, which is obtained from the cross-spectrum in the 

numerator of the estimator. 

 

The coherence function is: 
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The coherence function has a value between 0 and 1.  When the coherence γ2 = 1, 

implies that Gnn = 0, which states that there is no uncorrelated content on the output 

measurement.  In the other hand when coherence γ2 = 0, implies that Gnn = Gyy and this 

suggests that the output measurement is composed entirely of uncorrelated content. 
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A broader explanation regarding the FRF estimation can be found in section 2.3 

of reference [9]. 

2.3 Modal Parameters Extraction Techniques 

2.3.1 The Complex-Exponential Method 

A complete development of the this method is found in pages 189 to 192 of 

reference [9]. 

 

 In the frequency domain, the frequency response function (FRF) in terms of 

receptance Hjk (displacement at point j due to a force at point k) for a linear, viscously 

damped system with N degree of freedom (DOF) can be given by: 

 

( ) ( )( ) ( )( )∑
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            (2.3.1.1) 

 

where ωr is the natural frequency, ξr is the damping ratio and rAjk is the residue 

corresponding to each mode r; * denotes complex conjugate.  Another way of writing 

equation (2.3.1.1) is 

 

( ) ( )∑
= ′−+

=
N

r rrr

jkr
jk ωωiξω

A
ωH
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1

                 (2.3.1.2) 

 

where 
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*
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rNr

rrr
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ωω

ξωω

=

′−=′
−=′

+

+

21
                  (2.3.1.3) 

 

and ωr is the natural frequency, ξr is the damping ratio, and A is the residue. 
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 The CEM works with the corresponding impulse response function (IRF), 

obtained by an inverse Fourier transform: 
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                  (2.3.1.4) 

or, 
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                  (2.3.1.5) 

 

where sr = -ωrξr + iω′r and the properties in equation (2.3.1.3) hold.  The time response 

h(t) (real-valued) at series of L equally spaced time intervals ∆t, is 
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                 (2.3.1.6) 

 

or, 
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                   (2.3.1.7) 

 

with 

 
∆ts

r
reV =                    (2.3.1.8) 

 

 We know the values of hi, but we do not know A′r, Vr.  The roots sr for a 

underdamped system always occur in complex conjugate pairs, so do the modified 

variable Vr.  There always exists a polynomial in Vr of order L with real coefficients β 

(called the autoregressive coefficients) such that the following relation is verified: 

 

02
210 =++++ L

rLrr VβVβVββ L                 (2.3.1.9) 

 

In order to calculate the coefficients βj to evaluate Vr, multiply both sides of equation 

(2.3.1.7) by β0 to βL and sum the result.  This procedure gives: 
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            (2.3.1.10) 

 

The inner summation in the right side of equation (2.3.1.10) is exactly the 

polynomial in equation (2.3.1.9).  Therefore, that summation is going to be equal to zero 

for each Vr, it follows that 
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 From equation (2.3.1.11) we can calculate the coefficients βj (hj is measured).  

These coefficients are used to calculate the roots of equation (2.3.1.9), Vr, and are 

calculated as follow: we make M = L/2, and n = DOF + 1.  There will be n sets of data 

points hj, each set shifted one time interval, and βL is assumed equal to 1.  This gives: 
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            (2.3.1.12) 

 

or, 

 

[ ] { } { }
11 ×××
′=

MnnM
hβh                  (2.3.1.13) 

 

 From this equation it is possible to calculate {β}, as [h] and {h′} are known 

matrices.  This can done using pseudo-inverse technique, multiply by [h]T (transpose), 

and then solve for {β}.  The result is 

 

{ } [ ] [ ]( ) [ ] { }( )hhhhβ TT ′=
−1

               (2.3.1.14) 

 

 After calculating {β}, it is used to calculate the roots Vr.  In order to calculate the 

natural frequencies, and damping ratios, equation (2.3.1.8) is used, as follows: 
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 With the values of Vr, we can calculate the residues A′r if equation (2.3.1.7) is 

written as: 
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            (2.3.1.16) 

 

2.3.2 The Hilbert-Envelope Method 

 The shape of a signal that contains a rapidly oscillating component that varies 

slowly with time is called “envelope”.  With the use of the Hilbert transform, the rapid 

oscillations can be removed from the signal to produce the representation to the envelope. 

 

The Hilbert transform to x(t) is: 

 

( ) ( ){ }jωXjωFFx(t)f(t)x(t)
πt

(t)X Hi
11 −=∗=∗−=               (2.3.2.1) 

 

 The Fourier transform of (-πt)-1 is i sgn ωr, which is +i for positive ω and �i for 

negative ω.  The Hilbert transformation is equivalent to a filtering, in which the 

amplitudes of the spectral components are left unchanged, but their phases are altered by 

π/2, positively or negative according to the sign of ω. 
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 Also, the Hilbert transforms of even functions are odd and those of odd functions 

are even.  The cosine component transforms into negative sine components and sine 

components transform into cosine components. 

 

In order to obtain a more deep explanation regarding the Hilbert transform, it can 

be found in pages 266 to 272 of reference [11]. 

 

 The impulse response function of a single-degree-of-freedom system is an 

exponential damped sinusoid.  The Hilbert transform is used to calculate a new time 

signal from the original signal.  Both signals are combined to form the analytical signal as 

follows, 

 

( ) (t)iXx(t)tx Hi−=                   (2.3.2.2) 

 

 The magnitude of the analytic signal is the envelope of the original time signal.  

When the envelope is plotted in a dB scale, the graph is a line.  Then, the slope of the line 

is related to the damping ratio as will be shown next. 

 

 The impulse response function of a single-degree-of-freedom system can be 

described with the following equation: 

 

( )( )t-ξωAex(t) n
tξωn 21sin−=                  (2.3.2.3) 

 

where ωn is the natural frequency, ξ is the damping ratio, and A is the residue.  The 

Hilbert transform (from equation 2.3.2.1) of this signal is, 

 

( )( )t-ξωAe(t)X n
tξω

Hi
n 21cos−=                 (2.3.2.4) 

 

The analytic signal is, 

 



 14

( )( ) ( )( )( )t-ξωi t-ξωAex(t) nn
tξωn 22 1cos1sin += −               (2.3.2.5) 

 

 The magnitude of the analytic signal eliminates the oscillatory component, and 

gives the envelope as follow, 

 

( ) ( )( ) ( )( )( ) tξω
nn

tξω nn Aet-ξωt-ξωAex(t) −− =+= 22222
1cos1sin             (2.3.2.6) 

 

 Taking the natural logarithm of each side yields, 

 

( ) ( )tξω(A)Aex(t) n
tξωn −== − lnlnln                 (2.3.2.7) 

 

 This is the equation of a straight line.  If the slope of the line is calculated, we can 

estimate the damping ratio as follow, 

 

nω
slopeξ −=                    (2.3.2.8) 

 

Reference [10] gives a brief explanation of how to apply this method to a MDOF 

FRF, which is explained next. 
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 This is a single-degree-of-freedom method.  In order to apply it to a multiple-

degree-of-freedom (MDOF) FRF the procedure showed in Figure (2.3.2.1) can be used.   

 

 

 

 

 

 

       (a) MDOF FRF     (b) MDOF IRF 

 

 

 

 

 

 

       (c) Isolated single-mode               (d) IRF of the isolated single-mode 

 

 

 

 

 

 

 (e) Envelope of the single-mode’s IRF          (f) Envelope in natural log scale 

Figure 2.3.2.1: Procedure to apply the Hilbert envelope method to a multiple-degree-of-

freedom FRF. 

 

Figure 2.3.2.1(a) shows a frequency response function, and Figure 2.3.2.1(b) 

shows the corresponding impulse response function.  But, this cannot be used to calculate 

the damping because it contains five exponential damped sinusoids (one for each 

resonance) superimposed.  The damping at each resonance frequency can be determined 



 16

if we isolate each natural frequency and calculate the impulse response function that 

corresponds to each one. 

 
Figure 2.3.2.1(c) shows a single resonance that has been isolated from Figure 

2.3.2.1(a).  Its corresponding IRF is shown in Figure 2.3.2.1(d), which is the Inverse 

Fourier Transform of the FRF.  Figure 2.3.2.1(e) shows the magnitude of the analytic 

signal of the impulse response function on a linear amplitude scale.  Then, using a dB 

scale, the envelope is a straight line (Figure 2.3.2.1(f)). The Linear Least Square Method 

can be used to calculate the slope of the line in order to estimate the damping ratio (ξ). 

 

After estimating the damping ratios of each mode, the eigenvalues can be 

calculated.  Then, equation (2.3.1.17), from previous section, can used to estimate the 

residues. 

 

2.3.3 The Ibrahim Time Domain method 

Reference [9] at pages 200 to 202 and reference [12] gives a complete derivation 

of this method.  This method uses the free response of the structure under test.  During its 

free response, the system is assumed to be described by the following equation: 

 

[ ]{ } [ ]{ } [ ]{ } 0=++ xKxCxM &&&                  (2.3.3.1) 

 

As in the Complex Exponential Method, it is assumed that the solution of this 

equation is: 

 

{ } { }stpex =                    (2.3.3.2) 

 

whence 

 

[ ] [ ] [ ][ ] 02 =++ pKCsMs                  (2.3.3.3) 
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 For an underdamped structure, the roots sr of equation (2.3.3.3) are complex and 

occur in conjugate pairs as, 

 

2
21 rξiωωξibas rrrrrr −±−=±=                 (2.3.3.4) 

 

where ξr is the damping ratio, and ωr is the natural frequency in radians per second that 

correspond to mode r. 

 

The response of a N degree of freedom (DOF) at point i and time tj is expressed as 

a summation of the individual responses of each mode: 

 

( ) ∑
=

=
N

r

ts
irji
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                  (2.3.3.5) 

 

where pir is the ith component of the eigenvector {pr}.  The response measured at L 

instances of time can be expressed in matrix form as 
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or, 

 

[ ] [ ] [ ]
LNNL
ΛPX

×××
=

2211
0                   (2.3.3.7) 

 

If we consider a response that is shifted one interval ∆t with respect to the first, it 

follows that 
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or, 
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Consider another response that is shifted two intervals with respect to (2.3.3.5), it 

is 
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or, 
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If m+1 data sets of responses are measured and if the last set is shifted m intervals 

with respect to equation (2.3.3.5), the last response is as follow 
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or, 
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 The responses can be manipulated to solve for the eigenvalues and eigenvectors.  

First, the measured m responses are grouped in two matrices as follow, 
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or, 
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and 
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or 

 

[ ] [ ] [ ] [ ] [ ] [ ]
LNNNLmLNLmLm
ΛΛΨΛΨΦ
××××××
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2222

ˆˆˆ                (2.3.3.17) 

 

Now equations (2.3.3.12) and (2.3.3.14) are manipulated in order to eliminate [Λ], 

obtaining 

 

[ ] [ ][ ] [ ]ΦΨΨΦ 1ˆˆ −=                 (2.3.3.18) 

 

 A square matrix [As] of order m is defined as follow, 

 

[ ] [ ][ ] 1ˆ −= ΨΨAs                  (2.3.3.19) 

 

Substituting equation (2.3.3.16) in equation (2.3.3.15), 

 

[ ][ ] [ ]ΦΦAs
ˆ=                  (2.3.3.20) 

 

 This equation can be solved for [As] via the pseudo-inverse technique.  This 

technique leads to two expressions, which are, 
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 A combination of both equations, known as Double Least-Squares (DLS), is used 

because it leads to a better estimate of the damping factors.  This gives, 

 

[ ] [ ][ ] [ ][ ] [ ][ ]( ) [ ][ ]( ) 






 +









=

−− 11
ˆˆˆˆ

2
1 TTTT

s ΦΦΦΦΦΦΦΦA            (2.3.3.22) 

 

 From equations (2.3.3.16) and (2.3.3.14), 

 

[ ][ ] [ ] [ ][ ] 0ˆ =− ΛΨΨAs                 (2.3.3.23) 

 

 This equation can be written for each column vector, [Ψr], of [Ψ] as follow, 

 

[ ][ ] [ ][ ] 0=− r
∆ts

rs ΨeΨA r                (2.3.3.24) 

 

or 

 

[ ] [ ][ ][ ] 0=− r
∆ts

s ΨIeA r                 (2.3.3.25) 

 

 This equation is an eigenvalue problem.  After calculating [As] in equation 

(2.3.3.19), it can be solved as a standard eigenvalue problem, which will give m 

eigenvalues and eigenvectors. 

 

The relationship between the eigenvalues, βr + iγr, and sr = ar + ibr, the roots of 

equation (2.3.3.3), is used to calculate the damping ratios, and natural frequencies, as 

follow, 

 
( )

r
∆tiba Veiγβ ==+ +                 (2.3.3.26) 

 

This gives, 
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               (2.3.3.27) 

 

With the values of Vr, we can calculate the residues if equation (2.3.1.17) is used, 

and substituting h(t) by x(t). 

 

2.3.4 Rational Fraction Polynomial Method 

This method works in the frequency domain.  The formulation of the FRF is 

expressed in the rational fraction form instead of the partial fraction form where the error 

function is established in a way that the resulting system of equations is linear.  Because 

the resulting linear system of equations involves matrices that are ill conditioned, the 

Gradient Method is used to minimize this error function and the initial estimate is 

calculated by using the Least Square Method.  The derivation of this method up to 

equation 2.3.4.12 is found at pages 237 to 239 of reference [9] and in references [14] and 

[15].  The theory of the Gradient Method was obtained from reference [16]. 

 

The FRF, in terms of receptance, for a linear system, with N DOF, and viscous 

damping can be modeled with the following partial fraction equation: 
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                (2.3.4.1) 

 

where Ar and Br are constants. 

 

It can also be expressed in the rational fraction form as follow, 
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The difference between the analytical FRF H(ω) and the experimental FRF He(ω) 

is the error function given by: 
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Now, the error function is linearized by working with the following modified 

error function: 
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and making b2N = 1.  This leads to, 
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An error vector is defined for all the L measured frequencies: 
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Equation (2.3.4.5) expressed in the matrix form becomes, 
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         (2.3.4.7) 

 

or, 

 

{ } [ ] { } [ ] { } { }
)(Lx)Nx(N)(Lx)Nx(N)(Lx)(Lx

WbTaPE
11221221

−−=                 (2.3.4.8) 

 

The equation that will be minimized with the Gradient Method is the squared error 

function J, 

 

{ } { }EEJ T*=                    (2.3.4.9) 

 

where * indicates the complex conjugate.  Then, substituting equation (2.3.4.8) in 

equation (2.3.4.9), and after performing some manipulations, we obtain 

 

{ } [ ] [ ]( ){ } { } [ ] [ ]( ){ } { } { }
{ } [ ] [ ]( ){ } { } [ ] [ ]( ) { } [ ] [ ]( )WTbWPabTPa

WWbTTbaPPaJ
T*TT*TT*T

T*T*TT*T

Re2Re2Re2

ReRe

+−

−++=
          (2.3.4.10) 

 

This is an equation that has ill-conditioned matrices, that is why it has to be 

solved by using the Gradient Method in order to minimize the error function of equation 

(2.3.4.10).  But, the Least Square Method can be used to obtain the initial estimate 

needed for the Gradient Method. 
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The Least Square Method is done by taking the derivatives of equation (2.3.4.10) 

with respect to {a} and {b} and equaling them to zero gives the following system of 

equations: 

 

[ ] [ ]( ){ } [ ] [ ]( ){ } [ ] { }( ) { }
[ ] [ ]( ){ } [ ] [ ]( ){ } [ ] { }( ) { }0ReReRe

0ReReRe

=+−
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           (2.3.4.11) 

 

or, 
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where 
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                (2.3.4.13) 

 

Then solve for the initial values of {a} and {b}.  Then use these values to evaluate 

the gradient.  The gradient with respect to {a} is the partial derivative of equation 

(2.3.4.10) with respect to {a}: 

 

[ ] [ ]( ){ } [ ] [ ]( ){ } [ ] { }( ) { }MWPbTPaPP T*T*T* =−− ReReRe            (2.3.4.14) 

 

where [M] is the gradient vector with respect to {a}. 

 

The gradient with respect to {b} is the partial derivative of equation (2.3.4.10) 

with respect to {b}: 
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[ ] [ ]( ){ } [ ] [ ]( ){ } [ ] { }( ) { }NWTaPTbTT T*T*T* =+− ReReRe            (2.3.4.15) 

 

where [N] is the gradient vector with respect to {b}. 

 

Then with equations (2.3.4.14 and (2.3.4.15) the gradient vector is: 

 

{ }








=
N
M

V                  (2.3.4.16) 

 

The gradient vector direction is calculated to subtract it to the coefficients in order 

to move in the direction where the function is minimized.  The gradient vector direction 

is: 

 

{ } { }
{ }V

VS −=                  (2.3.4.17) 

 

where the ||{V}|| is the norm of the vector. 

 

Then, the new coefficients are: 

 

{ } { }SV
b
a

+=








                (2.3.4.18) 

 

Then the gradient vector and its respective norm is calculated and compared with 

the desired tolerance.  If the value is greater than the tolerance, the gradient vector 

direction is subtracted to the coefficients in order to compute new coefficients. The 

process is repeated until the norm of the gradient vector is smaller than the tolerance. 

 

After obtaining the coefficients of rational fraction equation (2.3.4.2), we can 

calculate the modal parameters.  The roots or poles of the denominator polynomial 
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contain the values of the natural frequency and damping ratio.  These can be obtained as 

follow, 

 

r

r
r

r
r

P
)al(Pξ

π
P

f

Re
2

−=

=
                (2.3.4.19) 

 

where Pr is the pole of mode r. 

 

In order to calculate the residues, the rational fraction is expanded in a partial 

fraction equation and the numerator becomes a pair of complex conjugate constants, 

called residues. 
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Chapter 3 

Analysis and Procedure 

 

Two types of analysis were preformed in this research in order to investigate the 

accuracy of estimating damping ratio by four different modal parameters extraction 

techniques.  The first analysis was done to a simulated analytical data set with known 

properties and the second was an experimental data.  Both data were processed using a 

MatLab code (see appendix), which was written specifically for this investigation.  After 

this code loads the frequency response function (FRF) data, it asks if it was truncated and 

how many lines were truncated.  If the data is truncated in the FRF, the program adds 

spectral zero components to replace the same amount of truncated spectral lines in order 

to obtain the correct sampling frequency when the impulse response function (IRF) is 

calculated from the FRF.  When some frequency range is isolated with a rectangular 

window, the truncated components are replaced with spectral zero components.  This is 

done because the CEM, ITD, and Hilbert Envelope method estimate the modal 

parameters in the time domain.  In the Hilbert Envelope method, the time range to 

estimate the damping ratio is specified on the dB-scale plot of the IRF envelope. 

 

3.1 Simulated Analytical Data 

The simulated analytical data was generated in two blocks that were divided by 

two different set of damping ratios.  Each block has five degrees of freedom, the same 

natural frequencies, and the same residues.  This data is divided in different cases to 

estimate the damping ratio.  For the CEM, ITD, and RFP methods it was divided in three 

cases, where two are in a multiple degree of freedom (MDOF) approach and one in a 

single-mode approach.  The MDOF approach was separated in truncation and without 

truncation in the FRF.  The single-mode approach was performed using an isolating 

rectangular window of 50 spectral lines.  As the Hilbert Envelope Method is a single-

mode approach, it was divided in two cases using two different isolating rectangular 

windows of 50 and 20 spectral lines.  For each case the natural frequency, damping ratio, 
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FRF curve fit residual, standard deviation, and damping ratio’s percent of error with 

respect to the analytical input damping ratio were calculated.  The FRF curve fit residual 

is the difference between the original FRF and the regenerated signal (curve fit) with 

respect to each method.  The standard deviation is calculated from the difference between 

the original FRF and the regenerated dignal. 

 

3.2 Experiment 

3.2.1 Equipment 

The following equipment was used to perform the modal analysis experiment 

• Hewlett Packard (HP) Dynamic Signal Analyzer 35665A (Figure 3.2.1.1) 

• Aluminum T-plate structure (Figure 3.2.1.2) 

• Foam support for the structure (Figure 3.2.1.2) 

• Four pounds electromagnetic shaker (Figure 3.2.2.1) 

• Accelerometer (Figure 3.2.2.1) 

• Amplifier (Figure 3.2.2.1) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1.1: Hewlett Packard (HP) Dynamic Signal Analyzer 35665A 
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Figure 3.2.1.2: Specified output measuring location points of the T-plate structure 

 

3.2.2 Setup 

The damping ratio measurements were performed on a T-plate structure.  The T-

plate is place on the foam to approximate a freely suspended structure.  The 

electromagnetic shaker was placed at the driving point at location point six (Figure 

3.2.1.2).  This shaker is used to excite the structure via a swept sine or chirp excitation in 

a frequency range from 0 to 800 Hz.  The response is measured with an accelerometer 

that is placed normal to surface at each specified point on figure 3.2.1.2.  The 

measurement configuration setup is shown in figure 3.2.2.1. 

 

The HP Dynamic Signal Analyzer was setup to measure 25 averages, to send 

swept sine from 0 to 800 Hz, to measure the input (channel 1) and output (channel 2), and 

to calculate the FRF and coherence.  The FRF and coherence is displayed at the same 
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time in an upper and lower window, respectively.  No window was applied to the signal.  

After everything is connected and the HP dynamic signal analyzer is setup, the start 

button, on the analyzer, is pressed in order to start the 25 averaging measurements.  When 

the 25 averages are completed, this data is saved in a floppy disk, and the accelerometer 

is changed to the next location.  The process is the same for all the location points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.2.1: Experiment configuration setup 

 

3.2.3 Analysis 

The experimental modal analysis data was measured (output) on six different 

locations (each corner) of the T-plate structure (Figure 3.2.1.2.), where location six is the 

driving point (input).  The HP dynamic signal analyzer calculated the FRF and coherence 

in a frequency range from 0 to 800 Hz and 25 averages.  To obtain coherence equal to 

one, a chirp excitation was used because it is a controlled input that doesn’t have 

uncorrelated content.  The analyzer calculates the FRF as in chapter 2.  After obtaining 

the FRF data, it is saved in a floppy disk and the data format is changed to ASCII format 

that is divided in frequency, real, and imaginary columns, 1, 2, and 3, respectively.  This 
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data is loaded into the MatLab program and processed using the four modal parameters 

extraction techniques.  Due to the anti-aliasing filter, the FRF is truncated, and the 

sampling frequency is equal to 2.56 multiplied by the highest spectral frequency line.  To 

obtain the number of truncated spectral lines multiply the sampling frequency by the 

inverse of the frequency resolution, and then subtract the amount of the FRF spectral 

lines to this result.  For this analysis the CEM, ITD and RFP were used in an MDOF 

approach, and the Hilbert Envelope method in a single-mode approach.  The same values 

were calculated as in the previous section, except for the damping ratio’s percent of error 

because there is no way to know which is the exact damping ratio.  For this reason the 

coherence has to be equal to one, and the residual between the original and the 

regenerated (curve fit) signal is calculated to check the curve fit validity, therefore the 

estimated damping ratio. 
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CHAPTER 4 

Results and Discussion 
 

This chapter has the numerical estimated values of the processed data.  The 

necessary plots are shown in order to demonstrate and discuss how the damping ratio 

values are affected with respect to some parameters.  This chapter is separated in two 

major sections: the simulated analytical data, and the experimental data 

 
The results are discussed with respect to how the accuracy of the estimated 

damping ratios is affected and why.  The discussion of the simulated analytical data 

results is more precise because the error was calculated.  The experimental data results 

are the results processed from the experimental FRF measured on the T-plate structure 

where the error could not be calculated because there is no way to now the exact damping 

ratio value.  In order to evaluate the damping ratio accuracy, the residual between the 

original data curve and the curve fit were calculated for the simulated analytical and 

experimental data.  Then the local and global standard deviations were calculated from 

the residual.  Having all this in mind is how these results were analyzed. 

4.1 Simulated Analytical Data 
 

In this section the parameters of the simulated analytical data sets are presented. 

Table 4.1.1 gives the data collection parameters, which are the frequency response 

function (FRF) parameters.  The properties of the first and second data sets are presented 

in tables 4.1.2 and 4.1.3, respectively.  The first data set has lower damping ratio than the 

second data set.  Both have the same degree of freedoms equal to five and the same 

natural frequencies.  The impulse response function, FRF, and phase angle plots for each 

simulated data set is represented on figure 4.1.1 and 4.1.2.  The first three modes for each 

data set are well separated and the last two are close to each other (see figure 4.1.1 and 

4.1.2). 

 
Figures 4.1.3 and 4.1.4 show the FRF, phase angle and IRF plots of the truncated 

first and second data sets.  The time leakage is not visible for the first data, but the second 
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data shows it at the end of the IRF (figure 4.1.4(c)).  Where the time leakage is due to the 

truncation in the FRF. 

 
The tables and figures of the estimated parameters are divided by method.  The 

Complex Exponential Method (CEM), the Ibrahim Time Domain (ITD) Method, and the 

Rational Fraction Polynomial (RFP) Method are organized in two subsections, MDOF 

and single-mode approach.  The Hilbert Envelope Method is a single-mode method.  The 

tables have the values of the estimated damping ratio, the damping ratio’s percent of 

error, and local and global standard deviation with respect to each mode.  The damping 

ratio’s percent of error is relative to the damping ratio’s value on table 4.1.2 and 4.1.3 

with respect to the mode and data set.  The standard deviations are calculated from the 

residual, or difference, between the original and regenerate FRF data.  The local standard 

deviation is calculated around the natural frequencies with a range of 10 spectral lines.  

The regenerated signal was estimated using the estimated modal parameters.  The figures 

are shown on each section after the tables.  The residual plots are the values of the 

difference between the original and regenerated FRF data plotted with respect to each 

frequency. 

 
Table 4.1.1: Data collection parameters 

 
Table 4.1.2: Properties of the first simulated data set (lower damping ratio) 

 
Table 4.1.3: Properties of the second simulated data set (higher damping ratio) 

 

Mode Residue Natural Frequency (Hz) Damping Ratio
1 10 128 0.00100000000
2 20 256 0.00083333333
3 30 512 0.00046296296
4 39 768 0.00030864198
5 50.7 806.4 0.00015432099

Sample rate 2048 Hz
Number of samples 2048
Frequency resolution 1 Hz
Nyquist frequency 1024 Hz

Mode Residue Natural Frequency (Hz) Damping Ratio
1 10 128 0.00400000000
2 20 256 0.00333333333
3 30 512 0.00185185185
4 39 768 0.00123456790
5 50.7 806.4 0.00061728395
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(a) IRF plot 

 

 

 

 

 

 

 

(b) FRF plot 

 

 

 

 

 

 

 

(c) Phase angle plot 

 

Figure 4.1.1: IRF (a), FRF (b) and Phase Angle (c) of the first simulated data set without 

truncation in the FRF 
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(a) IRF plot 

 

 

 

 

 

 

 

(b) FRF plot 

 

 

 

 

 

 

 

(c) Phase angle plot 

 

Figure 4.1.2: IRF (a), FRF (b) and Phase Angle (c) of the second simulated data set 

without truncation in the FRF 
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(a) FRF plot truncated at 820 Hz 

 

 

 

 

 

 

 

(b) Phase angle plot truncated at 820 Hz 

 

 

 

 

 

 

 

(c) IRF plot calculated from the truncated FRF 

 

Figure 4.1.3: FRF (a), Phase angle (b) and IRF (c) of the first simulated data set truncated 

at 820 Hz 
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(a) FRF plot truncated at 820 Hz 

 

 

 

 

 

 

 

(b) Phase angle plot truncated at 820 Hz 

 

 

 

 

 

 

 

(c) IRF plot calculated from the truncated FRF 

 

Figure 4.1.4: FRF (a), Phase angle (b) and IRF (c) of the second simulated data set 

truncated at 820 Hz 
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Complex Exponential Method (CEM) Estimated Parameters 
 

In this method we can observe from the MDOF approach that it gives better 

damping ratio estimation for higher damping ratios.  This is shown in the two cases, with 

and without truncation, when the damping ratio’s percent of error, and the local and 

global standard deviation of the second data set is smaller than the first data set in each 

case (see tables 4.1.4 to 4.1.7).  Another general behavior, for all the cases in CEM, is 

that the residual plot (figures 4.1.5(c), 4.1.6(c), 4.1.8(b), and 4.1.9(c)) shows that the 

residual increases when the natural frequency increases.  This is due because of the way 

the auto-regression works by dividing the IRF in n blocks (section 2.3.1).  Another fact 

that affects the estimation of damping ratios is when the mode is close to another mode.  

This can be noticed because the difference in the percent of error, and local standard 

deviation between the separated (first three) and close modes (last two) is higher than the 

difference among the values of the separated modes; the residual plots has a sudden 

increase at the close modes. 
 
The estimated damping ratios, for the case without truncation, are very accurate 

for both data sets because the damping ratio’s percent of error, and the local and global 

standard deviation are very small.  Also, if we observe figure 4.1.5(a)(b) and 4.1.6(a)(b), 

they show that the curve fit is the same as the analytical simulated curve. 
 
The numerical values (table 4.1.6 and 4.1.7) and figures (figures 4.1.7 to 4.1.9) of 

the case with truncation at 820 Hz demonstrate that the accuracy of estimating the 

damping ratio is affected when the FRF is truncated.  The damping ratio’s percent of 

error, and the local and global standard deviation increased for all the modes relative to 

the case without truncation.  But, the effect on the first three modes is not too high; the 

estimated damping ratios are almost the same as the analytical damping ratios.  Figure 

4.1.7 shows the FRF analytical curve and curve fit in the same graph for the first data set 

with truncation, it has a zoom-in at the peak of mode 4 and 5 to show that the curves 

don’t match.  Figure 4.1.9, second data set with truncation, doesn’t have a zoom-in 

because it has the same behavior as the first data set.  We can say that the truncation 

affected mode 5 more than mode 4, and this effect is less while the mode is farther from 

the truncation because of the differences in the statistical values, relative to the case 
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without truncation.  The problem with the truncation is that when the IRF is calculated it 

has time leakage and some information is lost, therefore the estimated damping ratio will 

deviate from the exact solution. 
 
The numerical values (table 4.1.8 and 4.1.10) and figures (figure 4.1.10) of the 

single-mode approach demonstrate that while the FRF looses more information the 

estimated damping ratio deviates from its exact value.  It has the same problem as in the 

case of and MDOF approach with truncated FRF, except that the FRF was truncated at 

both side of the mode in order to isolate it. 
 

Multiple Degree of Freedom (MDOF) Approach 
 

Table 4.1.4: CEM estimated parameters in a MDOF approach of the first simulated data 
set without truncation 

 
Table 4.1.5: CEM estimated parameters in a MDOF approach of the second simulated 

data set without truncation 

 
Table 4.1.6: CEM estimated parameters in a MDOF approach of the first simulated data 

set truncated at 820 Hz 

 
Table 4.1.7: CEM estimated parameters in a MDOF approach of the second simulated 

data set truncated at 820 Hz 

 

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128.00000002 0.00100000002 0.00000238082 0.000051445
2 256.00000000 0.00083333340 0.00000859204 0.000072014
3 512.00000000 0.00046296299 0.00000564190 0.000075790 0.00023630737
4 768.00000006 0.00030864207 0.00003213200 0.000709280
5 806.39999989 0.00015432097 0.00001101768 0.001458200

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128.00000010 0.00399999987 0.00000328901 0.000080776
2 256.00000003 0.00333333367 0.00001024504 0.000071750
3 512.00000004 0.00185185194 0.00000452935 0.000057242 0.00013462825
4 768.00000031 0.00123456808 0.00001487944 0.000439940
5 806.39999981 0.00061728395 0.00000082170 0.000803670

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 127.99998088 0.00100051012 0.05101232596 18.0164
2 255.99997161 0.00083351397 0.02167665827 19.4848
3 512.00007479 0.00046282326 0.03017541793 27.5647 117.9329441
4 768.01489261 0.00032293615 4.63131310315 147.5440
5 806.43911356 0.00019440415 25.97389219865 671.0049

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 127.99996014 0.00400114359 0.02858964501 21.2748
2 255.99991989 0.00333386134 0.01584006567 22.9280
3 512.00021992 0.00185141162 0.02377229833 31.6119 91.7418743
4 768.05015678 0.00127455279 3.23877615600 107.9156
5 806.49818506 0.00069758168 13.0082324809 485.0540
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(a) FRF plot of the analytical and fitted curve 

 

 

 

 

 

 

 

          (b) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(c) Residual plot 

 

Figure 4.1.5: FRF (a), Phase angle (b) and Residual (c) plots of the analytical curve and 

CEM curve fit performed to the first simulated data without truncation 
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(a) FRF plot of the analytical and fitted curve 

 

 

 

 

 

 

 

          (b) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(c) Residual plot 

 

Figure 4.1.6: FRF (a), Phase angle (b) and Residual (c) plots of the analytical curve and 

CEM curve fit performed to the second simulated data without truncation 
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Figure 4.1.7: FRF plot of the analytical curve and CEM curve fit performed to the first 

simulated data truncated at 820 Hz 
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(a) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 

 

 

 

 

(b) Residual plot 

 

Figure 4.1.8: Phase angle (a) and Residual (b) plots of the analytical curve and CEM 

curve fit performed to the first simulated data truncated at 820 Hz 
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(a) FRF plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(b) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(c) Residual plot 

 

Figure 4.1.9: FRF (a), Phase angle (b) and Residual (c) plots of the analytical curve and 

CEM curve fit performed to the second simulated data truncated at 820 Hz 
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Single Mode Approach 
 
Table 4.1.8: CEM estimated parameters of the first simulated data set in a single-mode 

approach with an isolating rectangular window of 51 spectral lines 

 
Table 4.1.9: CEM estimated parameters of the second simulated data set in a single-mode 

approach with an isolating rectangular window of 51 spectral lines 

 
 

 

 

 

 

 

 
(a) Single mode IRF plot 

 

 

 

 

 

 

 
 

(b) Single mode isolated FRF plot with the analytical and fitted curve 

Figure 4.1.10: The 768 Hz natural frequency IRF (a) and FRF plot (b) with the analytical 

and fitted curve of the CEM single-mode approach of the first simulated data set 

Damping Ratio's Standard Deviation
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 25 Spectral Lines)

1 128.10984721 0.00035871133 64.12886674597 229.9660
2 255.92366412 0.00050175807 39.78903196674 307.9028
3 511.99243992 0.00084732274 83.02171254053 570.5418
4 767.95115265 0.00020224175 34.47367252959 459.0667
5 806.46152785 0.00005710131 62.99835266054 865.4528

Damping Ratio's Standard Deviation
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 25 Spectral Lines)

1 128.20835219 0.00273545441 31.61363968872 153.1857
2 255.87600839 0.00224271375 32.71858735378 187.8851
3 511.73576583 0.00310072664 67.43923843020 293.3045
4 767.86879634 0.00093558755 24.21740881082 292.1937
5 806.48688785 0.00043516735 29.50288884182 531.2362
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Ibrahim Time Domain (ITD) Method Estimated Parameters 
 
This method shows the same behavior as the CEM with respect that it works 

better for higher damping ratios and that the accuracy of the estimated damping ratio is 

affected in the same way when the FRF is truncated for the MDOF and single-mode 

approach.  To corroborate this, observe from table 4.1.10 to 4.1.13 how the damping 

ratio’s percent of error, and local and global standard deviation change when the FRF is 

truncated.  Also, when the FRF is truncated in the MDOF approach, it affects more the 

modes that are near the truncation.  Because this method works in the time domain, it has 

the same problem as the CEM with respect to truncation due to the lost of information 

when the IRF is calculated. 
 
The residual plots (figure 4.1.11 and 4.1.12), the damping ratio’s percent of error, 

and the local standard deviation (table 4.1.9 and 4.1.10) of the MDOF approach without 

truncation show that the accuracy of the estimated damping ratio doesn’t depend if the 

natural frequency increases, it is affected if there are close modes (mode 4 and 5). 
 
Multiple Degree of Freedom (MDOF) Approach 
 

Table 4.1.10: ITD estimated parameters in a MDOF approach of the first simulated data 
set without truncation 

 
Table 4.1.11: ITD estimated parameters in a MDOF approach of the second simulated 

data set without truncation 

 
Table 4.1.12: ITD estimated parameters in a MDOF approach of the first simulated data 

set truncated at 820 Hz 

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128.00000005 0.00099999997 0.00000316577 0.000134570
2 256.00000001 0.00083333340 0.00000818810 0.000084776
3 512.00000001 0.00046296298 0.00000354197 0.000087589 0.00013296604
4 768.00000010 0.00030864201 0.00001087546 0.000749560
5 806.39999997 0.00015432101 0.00001666532 0.000500050

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128.00000012 0.00399999981 0.00000477448 0.000100270
2 256.00000004 0.00333333369 0.00001068740 0.000075970
3 512.00000004 0.00185185194 0.00000450143 0.000059715 0.00011486165
4 768.00000032 0.00123456808 0.00001487944 0.000446540
5 806.39999985 0.00061728397 0.00000331379 0.000633970

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 127.99999976 0.00100005500 0.00549958966 16.8171
2 255.99999760 0.00083333474 0.00016877183 18.2278
3 511.99998566 0.00046296427 0.00028145092 24.9213 39.3162230
4 768.00332066 0.00031407865 1.76148115113 62.2212
5 806.40514861 0.00014188749 8.05690921548 172.5245
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Table 4.1.13: ITD estimated parameters in a MDOF approach of the second simulated 

data set truncated at 820 Hz 

 

 

 

 

 

 

 
(a) FRF plot of the analytical and fitted curve 

 

 

 

 

 

 

 
(b) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 
(c) Residual plot 

 
Figure 4.1.11: FRF (a), Phase angle (b) and Residual (c) plots of the analytical curve and 

ITD curve fit performed to the first simulated data without truncation 

 

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 127.99999767 0.00399999699 0.00007530750 13.7279
2 256.00000096 0.00333334121 0.00023636548 16.6116
3 511.99999976 0.00185183864 0.00071328902 23.1991 27.0435102
4 768.01351384 0.00124852907 1.13085506865 62.7624
5 806.41112259 0.00059942870 2.8925499435 117.5541
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(a) FRF plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(b) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(c) Residual plot 

 

Figure 4.1.12: FRF (a), Phase angle (b) and Residual (c) plots of the analytical curve and 

ITD curve fit performed to the second simulated data without truncation 
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Figure 4.1.13: FRF plot of the analytical curve and ITD curve fit performed to the first 

simulated data truncated at 820 Hz 
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(a) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 

 

 

 

 

(b) Residual plot 

 

Figure 4.1.14: Phase angle (a) and Residual (b) plots of the analytical curve and CEM 

curve fit performed to the first simulated data truncated at 820 Hz 
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(a) FRF plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(b) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(c) Residual plot 

 

Figure 4.1.15: FRF (a), Phase angle (b) and Residual (c) plots of the analytical curve and 

ITD curve fit performed to the second simulated data truncated at 820 Hz 
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Single Mode Approach 
 
Table 4.1.14: ITD estimated parameters of the first simulated data set in a single-mode 

approach with an isolating rectangular window of 51 spectral lines 

 
Table 4.1.15: ITD estimated parameters of the second simulated data set in a single-mode 

approach with an isolating rectangular window of 51 spectral lines 

 
 

 

 

 

 

 

 
(a) Single mode IRF plot 

 

 

 

 

 

 

 
 

(b) Single mode isolated FRF plot with the analytical and fitted curve 
Figure 4.1.16: The 768 Hz natural frequency IRF (a) and FRF plot (b) with the analytical 

and fitted curve of the CEM single-mode approach of the first simulated data set. 

Damping Ratio's Standard Deviation
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 25 Spectral Lines)

1 127.88059141 0.00100527540 0.52753989352 207.8755
2 255.93965232 0.00074460234 10.64771896814 173.5117
3 512.02215946 0.00000080397 99.82634246698 935.8428
4 767.84983064 0.00009289731 69.90127097531 1093.8693
5 806.57463015 0.00004526414 70.66883801213 1703.2066

Damping Ratio's Standard Deviation
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 25 Spectral Lines)

1 128.07348866 0.00340447071 14.88823214028 81.6296
2 255.95591449 0.00391270322 17.38109646774 85.4354
3 516.17320789 0.00022887929 87.64051823927 1135.9111
4 767.69280405 0.00045311581 63.29761966550 782.6443
5 806.67158535 0.00015660812 74.62948502851 1589.6020
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Rational Fraction Polynomial (RFP) Method Estimated Parameters 
 
With this method, the estimated damping ratios are not affected by the truncation 

in the MDOF and single-mode approach.  It gives an accurate and consistent damping 

ratio estimation; all the damping ratio’s percent of error, and the local standard deviation 

(tables 4.1.16 to 4.1.21) are small.  The highest residuals and local standard deviations, 

for all the cases, occur at the close modes (mode 4 and 5), but these values are still small.  

Also, if we observe the figures (figures 4.1.17 to 4.1.21), they show that the analytical 

curve and curve fit match exactly even when the FRF is truncated.  The truncation in the 

FRF doesn’t affect this method because it works in the frequency domain and doesn’t 

have to calculate the IRF to estimate the damping ratio. 
 
Multiple Degree of Freedom (MDOF) Approach 
 

Table 4.1.16: RFP estimated parameters in a MDOF approach of the first simulated data 
set without truncation 

 
Table 4.1.17: RFP estimated parameters in a MDOF approach of the second simulated 

data set without truncation 

 
Table 4.1.18: RFP estimated parameters in a MDOF approach of the first simulated data 

set truncated at 820 Hz 

 
Table 4.1.19: RFP estimated parameters in a MDOF approach of the second simulated 

data set truncated at 820 Hz 

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128.06253066 0.00100000312 0.00031197330 0.0080943
2 256.12506119 0.00083333536 0.00024299413 0.0056654
3 512.25012257 0.00046296410 0.00024604482 0.0082612 0.01226093549
4 768.37518338 0.00030864187 0.00003523283 0.0088717
5 806.79394265 0.00015432060 0.00024884641 0.0063880

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128.06253113 0.00100000456 0.00045595495 0.0050468
2 256.12506167 0.00083333440 0.00012810812 0.0056179
3 512.25012188 0.00046296335 0.00008348859 0.0045485 0.0082805
4 768.37518334 0.00030864149 0.00015770589 0.0051799
5 806.79394215 0.00015432090 0.00005645518 0.0219100

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128.06252989 0.00399997060 0.00073501491 0.0057526
2 256.12505611 0.00333332977 0.00010702787 0.0069943
3 512.25012656 0.00185185507 0.00017397622 0.0064013 0.0105746
4 768.37517738 0.00123457120 0.00026713136 0.0099079
5 806.79394252 0.00061728605 0.0003394010 0.0284890

Damping Ratio's Local Standard Deviation Global
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128.06253298 0.00399997976 0.00050604430 0.0057564
2 256.12506001 0.00333331683 0.00049524654 0.0074841
3 512.25011905 0.00185185707 0.00028204966 0.0048564 0.00968554114
4 768.37518720 0.00123456769 0.00001714405 0.0103330
5 806.79394344 0.00061728340 0.00008883918 0.0090598
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(a) FRF plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(b) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(c) Residual plot 

 

Figure 4.1.17: FRF (a), Phase angle (b) and Residual (c) plots of the analytical curve and 

RFP curve fit performed to the first simulated data without truncation 
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(a) FRF plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(b) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(c) Residual plot 

 

Figure 4.1.18: FRF (a), Phase angle (b) and Residual (c) plots of the analytical curve and 

RFP curve fit performed to the second simulated data without truncation 
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(a) FRF plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(b) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(c) Residual plot 

 

Figure 4.1.19: FRF (a), Phase angle (b) and Residual (c) plots of the analytical curve and 

RFP curve fit performed to the first simulated data truncated at 820 Hz 
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(a) FRF plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(b) Phase angle plot of the analytical and fitted curve 

 

 

 

 

 

 

 

(c) Residual plot 

 

Figure 4.1.20: FRF (a), Phase angle (b) and Residual (c) plots of the analytical curve and 

RFP curve fit performed to the first simulated data truncated at 820 Hz 
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Single Mode Approach 
 
Table 4.1.20: RFP estimated parameters of the first simulated data set in a single-mode 

approach with an isolating rectangular window of 51 spectral lines 

 
Table 4.1.21: RFP estimated parameters of the second simulated data set in a single-mode 

approach with an isolating rectangular window of 51 spectral lines 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.21: Single mode isolated FRF plot with the analytical and fitted curve 

performed with the RFP single-mode approach of the first simulated data set. 

Damping Ratio's Standard Deviation
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 25 Spectral Lines)

1 128.06253052 0.00099999997 0.00000282990 0.000767
2 256.12506106 0.00083333334 0.00000036829 0.018810
3 512.25012227 0.00046296346 0.00010838284 0.005170
4 768.37518395 0.00030864290 0.00029847349 0.017995
5 806.79394293 0.00015432280 0.00117312011 0.084062

Damping Ratio's Standard Deviation
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 25 Spectral Lines)

1 128.06253044 0.00399999968 0.00000791775 0.000322
2 256.12506107 0.00333333332 0.00000041574 0.000004
3 512.25012238 0.00185185233 0.00002602007 0.001303
4 768.37518447 0.00123457176 0.00031221145 0.009317
5 806.79393672 0.00061728402 0.00001116715 0.080318

 

Semilog 
Magnitude 

Frequency (Hz) 



 60

Hilbert Envelope Method Estimated Parameters 
 

This method estimates the damping ratio by isolating each mode in the FRF, then 

plotting the envelope of the single-mode IRF in natural logarithmic scale (see figures 

4.1.22 to 4.1.25) in order to obtain a line from where the slope contains the damping ratio 

value.  The damping ratio’s percent of error  (tables 4.1.22 to 4.1.25) decreases and the 

IRF envelope plots are better when the spectral frequency range of the isolating 

rectangular window increases.  The first data set has better plots than the second data set 

because the anti-resonance frequencies of the second data set influence more on each 

mode because its magnitude is lower.  Also, the plots are worst when there are close 

modes (mode 4 and 5).  This means that the estimated damping ratio accuracy is affected 

when the mode has a close mode or a low magnitude anti-resonance frequency, or both. 
 
Single Mode Approach 
 
Table 4.1.22: Hilbert Envelope Method estimated parameters of the first simulated data 

set with an isolating rectangular window of 51 spectral lines 

 
Table 4.1.23: Hilbert Envelope Method estimated parameters of the second simulated 

data set with an isolating rectangular window of 51 spectral lines 

 
Table 4.1.24: Hilbert Envelope Method estimated parameters of the first simulated data 

set with an isolating rectangular window of 21 spectral lines 

 
Table 4.1.25: Hilbert Envelope Method estimated parameters of the second simulated 

data set with an isolating rectangular window of 21 spectral lines 

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128 0.00100026103 0.02610326674 6.7698
2 256 0.00083185355 0.17757421532 8.0564
3 512 0.00046275518 0.04488005193 12.5110 714.5111004
4 768 0.00030878784 0.04726027649 88.7805
5 806.4 0.00015307492 0.80745330489 4984.4902

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128 0.00098722759 1.27724085383 7.8668000
2 256 0.00082295677 1.24518769691 13.7461000
3 512 0.00045916922 0.81944852009 18.0788000 715.7985333
4 768 0.00030409868 1.47202742503 98.0368000
5 806.4 0.00014821987 3.95352476975 4993.3044000

Damping Ratio's Local Standard Deviation Global 
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128 0.00390492491 2.37687726144 12.0840000
2 256 0.00319743558 4.07693260897 29.7805000
3 512 0.00180192173 2.69622674009 31.4477000 238.6429083
4 768 0.00120929493 2.04711079885 86.3498000
5 806.4 0.00060590208 1.8438629953 1647.4846000

Damping Ratio's Local Standard Deviation Global
Mode Natural Frequency (Hz) Damping Ratio Percent of Error (%) (+ - 10 Spectral Lines) Standard Deviation

1 128 0.00399272221 0.18194470630 7.2857000
2 256 0.00332687640 0.19370797934 8.2854000
3 512 0.00184572569 0.33081251600 13.2535000 236.7294818
4 768 0.00122962328 0.40051471297 76.1895000
5 806.4 0.00061685640 0.06926328159 1635.2180000
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(a) 128 Hz 

 

 

 

 

 

(b) 256 Hz 

 

 

 

 

 

(c) 512 Hz 

 

 

 

 

 

(d) 768 Hz 

 

 

 

 

 

(e) 806 Hz 

Figure 4.1.22: IRF envelope of the first data with isolating window of 51 spectral lines 
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(a) 128 Hz 

 

 

 

 

 

(b) 256 

 

 

 

 

 

(c) 512 

 

 

 

 

 

(d) 768 Hz 

 

 

 

 

 

(e) 806 Hz 

Figure 4.1.23: IRF envelope of the second data with isolating window of 51 spectral lines 
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(a) 128 Hz 

 

 

 

 

 

(b) 256 Hz 

 

 

 

 

 

(c) 512 Hz 

 

 

 

 

 

(d) 768 Hz 

 

 

 

 

 

(e) 806 Hz 

Figure 4.1.24: IRF envelope of the first data with isolating window of 21 spectral lines 
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(a) 128 Hz 

 

 

 

 

 

(b) 256 Hz 

 

 

 

 

 

(c) 512 Hz 

 

 

 

 

 

(d) 768 Hz 

 

 

 

 

 

(e) 806 Hz 

Figure 4.1.25: IRF envelope of the second data with isolating window of 21 spectral lines 
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4.2 Experimental Data 

 

This section presents the estimated values from the T-plate’s experimental data.  

These values are separated by output measurement location point.  Each section has each 

method’s estimated parameters organized by tables and then the FRF, phase angle, and 

IRF plots are shown in regard to the structure’s output measurement point.  The tables in 

this section present the values of the estimated natural frequency, damping ratio, and the 

local and global standard deviation.  In comparison to the previous section’s tables, the 

following tables don’t have the damping ratio’s percent of error because the exact 

damping ratio value cannot be calculated for real structures.  In the other hand, the 

residual and standard deviations are calculated in order to validate the estimated modal 

parameters. 

 

At the end of this section, figures 4.2.7(a) and 4.2.7(b) show the best and worst 

coherence plots, respectively, are shown in order to demonstrate that this is good data. 

 

When the estimated damping ratios for each location with respect to the natural 

frequency were inconsistent among the methods was because there were close modes, or 

close anti-resonance frequency with or without low magnitude, or both.  The Hilbert 

Envelope Method was affected more by the anti-resonance frequency with low 

magnitude even if it was not close to the mode, but it affected more the closest mode to it.  

Also, if there was a mode near the maximum frequency of the FRF, the CEM and ITD 

method’s estimated damping ratio were affected because of the truncation (223 truncated 

spectral lines).  But, with all these problems, the RFP method always had the lowest local 

standard deviation among the methods with respect to each mode, and the lowest global 

standard deviation for each FRF’s output measurement location point processed.  There is 

no way to know which is the most exact estimated damping ratio, but residual and 

standard deviations are good guides. 
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First Location 
 
Table 4.2.1: CEM estimated parameters on the structure’s first output measurement 

location point 

 
Table 4.2.2: ITD estimated parameters on the structure’s first output measurement 

location point 

 
Table 4.2.3: RFP estimated parameters on the structure’s first output measurement 

location point 

 
Table 4.2.4: Hilbert Envelope Method estimated parameters on the structure’s first output 

measurement location point 

 

Isolating Window Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio  Range (+ - 10 Spectral Lines) Standard Deviation

139 0.00069532596 25 2.097700
253 0.00117389618 25 0.786700
501 0.00177620338 10 0.476120 0.958119229
526 0.00070516143 20 5.342200
661 0.00378268379 20 0.121200
776 0.00303534773 20 0.274580

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

139.39503567359 0.00072912177 0.052026
252.74218887631 0.00122082717 0.055784
500.83039727767 0.00217666487 0.170240 0.111842071
525.32979623439 0.00066968354 0.265570
661.06111696236 0.00332874117 0.093230
776.10716234617 0.00262571494 0.369090

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

139.41319857252 0.00078111379 0.153500
252.73217116949 0.00122367752 0.086380
500.69207435945 0.00144415706 0.274510 0.345771862
525.35611343718 0.00067920729 0.451360
661.08343317263 0.00439011067 0.113180
775.94567248597 0.00139384631 1.840600

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

139.46013352719 0.00070780397 0.040979
252.87972317807 0.00121675344 0.026440
501.23962448564 0.00182051091 0.042104 0.037435634
525.56899714450 0.00070743485 0.057459
661.18542057729 0.00362327753 0.034222
776.47223507694 0.00299321968 0.104210
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(a) FRF plot 

 

 

 

 

 

 

 

(b) Phase angle plot 

 

 

 

 

 

 

 

(c) IRF plot calculated from the FRF 

 

Figure 4.2.1: FRF (a), Phase angle (b) and IRF (c) of the structure’s first output 

measurement location point 
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Second Location 
 
Table 4.2.5: CEM estimated parameters on the structure’s second output measurement 

location point 

 
Table 4.2.6: ITD estimated parameters on the structure’s second output measurement 

location point 

 
Table 4.2.7: RFP estimated parameters on the structure’s second output measurement 

location point 

 
Table 4.2.8: Hilbert Envelope Method estimated parameters on the structure’s second 

output measurement location point 

 
 

Isolating Window Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio  Range (+ - 10 Spectral Lines) Standard Deviation

139 0.00069532596 25 2.006100
252 0.00117389618 25 0.105230
501 0.00177620338 10 0.054455 0.530361913
525 0.00070516143 15 0.563520
662 0.00378268379 20 0.249140
773 0.00303534773 20 0.541450

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

139.39999469361 0.00097514020 0.081321
251.87709312619 0.00231908200 0.067059
500.89289336951 0.00778637708 0.116840 0.088579715
525.04626509145 0.00091282392 0.266490
661.55290497059 0.00200344168 0.037994
772.75126405374 0.00555592381 0.076129

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

139.41831042927 0.00106358899 0.170830
251.90870813348 0.00241962699 0.047591
514.90082562075 0.00297033338 0.274750 0.477102965
524.91869285102 0.00071001782 1.629100
661.24510288169 0.00231360912 0.157110
772.92162727152 0.00208557423 0.256850

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

139.46908267781 0.00089399332 0.081321
252.02851621968 0.00243603222 0.067059
501.18754232972 0.00182476484 0.116840 0.065656224
525.32738302445 0.00095031818 0.266490
661.46913464390 0.00216705481 0.037994
774.66259251183 0.00766892357 0.076129
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(a) FRF plot 

 

 

 

 

 

 

 

(b) Phase angle plot 

 

 

 

 

 

 

 

(c) IRF plot calculated from the FRF 

 

Figure 4.2.2: FRF (a), Phase angle (b) and IRF (c) of the structure’s second output 

measurement location point 
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Third Location 
 
Table 4.2.9: CEM estimated parameters on the structure’s third output measurement 

location point 

 
Table 4.2.10: ITD estimated parameters on the structure’s third output measurement 

location point 

 
Table 4.2.11: RFP estimated parameters on the structure’s third output measurement 

location point 

 
Table 4.2.12: Hilbert Envelope Method estimated parameters on the structure’s third 

output measurement location point 

 

Isolating Window Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio  Range (+ - 10 Spectral Lines) Standard Deviation

141 0.00051272141 25 0.116380
261 0.00021808858 25 0.048281
500 0.00198531784 10 2.830200 1.892790416
521 0.00100578354 15 9.188700
666 0.00100836288 20 0.508210

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

140.98082842701 0.00050980488 0.114290
260.96693663261 0.00034922231 0.116320
499.33967427463 0.00191484902 0.242750 0.585593808
520.47924775275 0.00101380046 0.563710
665.80302400246 0.00086911748 0.321210

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

140.98816591457 0.00049930618 0.076221
260.90416590858 0.00028797381 0.113690
499.72285691875 0.00150856110 2.039300 0.961773176
520.53877601790 0.00079538578 2.959800
655.48537491167 0.01118129887 0.362160

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

141.05364000729 0.00051429893 0.011078
261.08397682728 0.00021825649 0.012388
499.55062287839 0.00189527446 0.150660 0.041189462
520.70774991386 0.00102213710 0.160820
665.76254502648 0.00090237728 0.004652
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(a) FRF plot 

 

 

 

 

 

 

 

(b) Phase angle plot 

 

 

 

 

 

 

 

(c) IRF plot calculated from the FRF 

 

Figure 4.2.3: FRF (a), Phase angle (b) and IRF (c) of the structure’s third output 

measurement location point 
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Fourth Location 
 
Table 4.2.13: CEM estimated parameters on the structure’s fourth output measurement 

location point 

 
Table 4.2.14: ITD estimated parameters on the structure’s fourth output measurement 

location point 

 
Table 4.2.15: RFP estimated parameters on the structure’s fourth output measurement 

location point 

 
Table 4.2.16: Hilbert Envelope Method estimated parameters on the structure’s fourth 

output measurement location point 

 

Isolating Window Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio  Range (+ - 10 Spectral Lines) Standard Deviation

141 0.00067304468 25 0.076372
261 0.00026974090 25 0.086058
498 0.00164534078 10 4.737800 1.540290298
523 0.00109769388 15 4.191600
665 0.00094483935 20 0.482340

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

140.98690429174 0.00067752341 0.100780
260.95093431720 0.00029059256 0.110580
497.46419850365 0.00163717371 0.265090 0.634951744
522.55998851097 0.00106541522 0.492490
665.35896166737 0.00086185004 0.308880

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

140.98288879466 0.00069159171 0.050243
260.97133553794 0.00001098022 0.043899
497.44392305449 0.00163506052 0.386700 0.492887238
522.57763864120 0.00103422581 0.539330
666.00918378415 0.00046299209 0.355390

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

141.05946645125 0.00067996340 0.019277
261.07577466861 0.00023893859 0.003368
497.72048939382 0.00161745018 0.213130 0.065115797
522.84354899954 0.00110829922 0.275280
665.67822966886 0.00090249448 0.004390
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(a) FRF plot 

 

 

 

 

 

 

 

(b) Phase angle plot 

 

 

 

 

 

 

 

(c) IRF plot calculated from the FRF 

 

Figure 4.2.4: FRF (a), Phase angle (b) and IRF (c) of the structure’s fourth output 

measurement location point 
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Fifth Location 
 
Table 4.2.17: CEM estimated parameters on the structure’s fifth output measurement 

location point 

 
Table 4.2.18: ITD estimated parameters on the structure’s fifth output measurement 

location point 

 
Table 4.2.19: RFP estimated parameters on the structure’s fifth output measurement 

location point 

 
Table 4.2.20: Hilbert Envelope Method estimated parameters on the structure’s fifth 

output measurement location point 

 
 

Isolating Window Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio  Range (+ - 10 Spectral Lines) Standard Deviation

141 0.00054126029 25 0.247140
261 0.00026968167 25 0.062160
500 0.00168864209 10 2.410100 1.115060674
520 0.00095191949 15 3.243200
666 0.00090971216 20 0.373090

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

140.96309880351 0.00050317835 0.136680
260.93695017610 0.00016255225 0.132960
499.45110322944 0.00162551180 0.361230 0.553379565
519.84382254393 0.00087391690 0.934380
665.61312883428 0.00112139427 0.348870

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

140.96343477894 0.00055898578 0.042682
260.93329565599 0.00016212660 0.020593
499.17354862137 0.00234380842 1.326500 0.861828916
519.86666802659 0.00133672979 4.159800
661.80411254112 0.00859471412 0.430570

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

141.03620398058 0.00053654705 0.019767
261.02256817507 0.00017655619 0.332920
499.65966346407 0.00177351979 0.097540 0.188883354
520.11960985140 0.00092999996 0.251810
665.60746814208 0.00090428020 0.012650
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(a) FRF plot 

 

 

 

 

 

 

 

(b) Phase angle plot 

 

 

 

 

 

 

 

(c) IRF plot calculated from the FRF 

 

Figure 4.2.5: FRF (a), Phase angle (b) and IRF (c) of the structure’s fifth output 

measurement location point 

 

 

 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
1 0

- 3

1 0
- 2

1 0
- 1

1 0
0

1 0
1

1 0
2

f r e q u e n c y  ( H z )

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
- 4

- 3

- 2

- 1

0

1

2

3

4

f r e q u e n c y  ( H z )

ph
as

e 
an

gl
e

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
- 0 . 5

- 0 . 4

- 0 . 3

- 0 . 2

- 0 . 1

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

t i m e  ( s )

Time (s)

Real

Frequency (Hz) 

Phase Angle 
(Radians) 

Frequency (Hz) 

Semilog 
Magnitude 



 76

Sixth Location 
 
Table 4.2.21: CEM estimated parameters on the structure’s sixth output measurement 

location point 

 
Table 4.2.22: ITD estimated parameters on the structure’s sixth output measurement 

location point 

 
Table 4.2.23: RFP estimated parameters on the structure’s sixth output measurement 

location point 

 
Table 4.2.24: Hilbert Envelope Method estimated parameters on the structure’s sixth 

output measurement location point 

 

Isolating Window Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio  Range (+ - 10 Spectral Lines) Standard Deviation

141 0.00054126029 25 0.247140
261 0.00026968167 25 0.062160
500 0.00168864209 10 2.410100 1.115060674
520 0.00095191949 15 3.243200
666 0.00090971216 20 0.373090

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

140.95281110473 0.00074491825 0.207880
260.92596422559 0.00016143674 0.228590
497.12839919202 0.00213572781 0.421090 0.587366539
522.12643740060 0.00118793341 0.502700
665.21500992041 0.00068536346 0.497790

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

140.97791192576 0.00048545079 0.307670
260.41520643888 0.00015683507 0.366760
497.85414106582 0.00329219828 5.030200 1.502781877
521.38474284828 0.00225193450 5.995400
666.03145705058 0.00361548407 0.661970

Local Standard Deviation Global 
Natural Frequency (Hz) Damping Ratio (+ - 10 Spectral Lines) Standard Deviation

141.02459255842 0.00072246544 0.012537
261.03524431840 0.00024821459 0.005264
497.37760526718 0.00207223997 0.240980 0.056263602
522.41137483553 0.00119362831 0.184150
665.53410212401 0.00095570468 0.007291
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(a) FRF plot 

 

 

 

 

 

 

 

(b) Phase angle plot 

 

 

 

 

 

 

 

(c) IRF plot calculated from the FRF 

 

Figure 4.2.6: FRF (a), Phase angle (b) and IRF (c) of the structure’s sixth output 

measurement location point 
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(a) First Location 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Third Location 

 

Figure 4.2.7: Coherence of the  (a) First and (b) Third Location 
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CHAPTER 5 

Conclusions and Recommendations 

 

The present investigation provides results that can be used to understand how and 

when the accuracy of the damping ratio is affected with respect to which method is used.  

Based on the discussion (chapter 5) and the results (chapter 4) the following conclusions 

can be made: 

• In general, the Rational Fraction Polynomial Method gives the most accurate 

damping ratio estimate.  This the most reliable method because it works in the 

frequency domain and doesn’t have to calculate the IRF.  Therefore, the 

truncation in the FRF doesn’t affect the damping ratio estimation. 

• The Hilbert Envelope Method gives a more reliable damping ratio estimation 

than the CEM and ITD when the FRF is truncated. 

• When using the CEM and ITD method as a single-mode method the operator 

has to be very careful because when the mode is isolated the FRF looses a lot 

of information and the calculated IRF will have leakage error. 

• If the CEM or ITD method is used to process a truncated FRF, its estimated 

damping ratio of the highest natural frequencies near to the maximum FRF 

frequency will not be exact. 

• CEM and ITD methods are more suitable for heavily damped systems than for 

lightly damped systems. 

 

The following recommendations are made for future work in order to try to 

improve the accuracy of the damping ratio estimation: 

• Apply the cosine taper data window from reference [18] (page 146) to the 

FRF to: 

! isolate each single-mode in the Hilbert Envelope method  

! isolate each single-mode when the CEM and ITD method are used in the 

single-mode approach. 
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! compensate the FRF truncation when the CEM and ITD are used in the 

multiple degree of freedom approach. 

• If there is time leakage and the CEM or ITD method is used, specify the IRF 

time range where parameters are going to be estimated.  This can be done to 

avoid using the time leakage when the parameters are estimated from the IRF. 

• Perform experiments with some other excitations in order to observe if the 

method’s performance depends of the excitation, due to the frequency range 

input. 
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Appendix A 

Data Processing Codes 
 

The following MatLab codes were used to process the data.  MatLab created all 

the plots and calculated the values for the tables, excluding the damping ratio percent of 

errors.  While these codes were processing the data, they were displaying and creating an 

output result file. 

 

These codes were created for the simulated analytical analysis, and the 

experimental analysis.  The simulated analytical codes first generated the data with the 

specific parameters and then calculated the values with the specified method.  The 

experimental data was obtained from the HP dynamic signal analyzer, but it was changed 

to ASCII format with three columns before processing it in MatLab. 
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A.1 Code for the Simulated Analytical Data 

Generating Data 
clear 

clc 

format long g 

close all hidden 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%---- Signal Parameters ----% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

df = 1; % Frequency Resolution 

tt = 1/df;  % Total time 

L = tt*2048; % Sampling Frequency Number 

t = linspace(0,tt,L); 

dt = t(3) - t(2);
N = L/2;
f = linspace(0,df*(N-1),N);

%##############################################################%
%----------- Simulated Analytical Data Generation ------------%
%##############################################################%

% First Mode
A1 = 10;
E1 = input('First damping ratio: ');
fn1 = df*N/8;
wn1 = fn1*2*pi;
a1 = E1*wn1;
wd1 = wn1*sqrt(1 - E1^2);

% Second Mode
A2 = 2*A1;
E2 = E1/1.2;
fn2 = 2*fn1;
wn2 = fn2*2*pi;
a2 = E2*wn2;
wd2 = wn2*sqrt(1 - E2^2);

% Third Mode
A3 = 1.5*A2;
E3 = E2/1.8;
fn3 = 2*fn2;
wn3 = fn3*2*pi;
a3 = E3*wn3;
wd3 = wn3*sqrt(1 - E3^2);

% Fourth Mode
A4 = 1.3*A3;
E4 = E3/1.5;
fn4 = 1.5*fn3;
wn4 = fn4*2*pi;
a4 = E4*wn4;
wd4 = wn4*sqrt(1 - E4^2);

% Fifth Mode
A5 = 1.3*A4;
E5 = E4/2;
fn5 = 1.05*fn4;
wn5 = fn5*2*pi;
a5 = E5*wn5;
wd5 = wn5*sqrt(1 - E5^2);

x = (A1*exp(-a1*t).*sin(wd1*t) + A2*exp(-a2*t).*sin(wd2*t) + A3*exp(-a3*t).*sin(wd3*t)...
+ A4*exp(-a4*t).*sin(wd4*t) + A5*exp(-a5*t).*sin(wd5*t));

% Calculating the Frequency Response Function (FRF)
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x_dft = fft(x);

% Calculating the Impulse Response Function (IRF)
x_ift = ifft(x_dft);

%--- Displaying Freqs. and Damping Ratios ---%

disp('Natural Frequencies and Damping Ratios for the data with two close modes')
Natural_frequency_Damping_ratio = [ fn1 E1 ; fn2 E2 ; fn3 E3 ; fn4 E4 ; fn5 E5]

fig = 1;
p_fig = menu('Plot graphs?','Yes','No');
if p_fig == 1
%#########################################################%
%---------------------------------------------------------%
% Graphing Data %
%---------------------------------------------------------%
%#########################################################%

%### Plotting the FRFs and IRFs in the same plot for each data ###%
%----- Data with two close modes (x2) -----%

figure(fig)
fig = 1 + fig;
subplot(2,1,1)
semilogy(f,abs(x_dft(1:N)))
title(sprintf('FRF with two close modes'))
xlabel('frequency (Hz)')
subplot(2,1,2)
plot(t,x)
title(sprintf('IRF with two close modes'))
xlabel('time (seconds)')
clear w* a* tt A* p_fig
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%------------------------------%%%%%
%%%%% Estimating the Damping Ratio %%%%%
%%%%%------------------------------%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

method = MENU('Choose method','ITD','CEM','RFP','Hilbert');
if method == 1

itd_analysis_cm_tr
elseif method == 2

cem_analysis_cm_tr
elseif method == 3

rfp_analysis_cm_tr
else

hil_analysis_cm_tr
end
 

Complex Exponential Method 
format long g
%%%%%%%%%%%%%%%%%%%%%%%

method = 'cem';
frf = x_dft;
dofm = menu('Approach','MDOF','SDOF');
if dofm == 1

diary (sprintf('%s_%1.0d_Mdof_results.m',method,E1))
disp('MDOF Simulated Data')

else
diary (sprintf('%s_%1.0d_Sdof_results.m',method,E1))
disp('SDOF Simulated Data')

end
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disp([sprintf('\n')])
disp('CEM METHOD')
disp([sprintf('\n')])
disp('Two Close Modes')
disp([sprintf('\n')])
disp('Natural Frequencies and Damping Ratios for the data with two close modes')
Natural_frequency_Damping_ratio = [ fn1 E1 ; fn2 E2 ; fn3 E3 ; fn4 E4 ; fn5 E5 ]

W_TR = length(frf)/2;;
N = length(frf)/2;
frf = conj(frf(1:N)'); % The HP analyzer just gives the positive freq components
f = f(1:N);
df = f(3) - f(2);

% Before getting to this point I need to select the data
% and need freq. matrix

%----------- Specifying the freq range of curve fit -----------%
wind = menu('Do you want to specify the freq. range for the curve fit?','Yes','No');
if wind == 1
disp('Frequency Range Specified')
specify = menu('How do you want to specify the freq. range?','Point on Graph','Type

it');
if specify == 1

figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (minimum frequency)')
[x_frm1,y]=ginput(1);
figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (maximum frequency)')
[W_TR,y]=ginput(1);
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum freq

= %8.4g',x_frm1,W_TR)
else

figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
x_frm1 = input('Minimum Frequency (Hz): ');
W_TR = input('Maximum Frequency (Hz): ');
sprintf('The selected frequency range is:\n\tMinimum freq = %d\n\tMaximum freq = %d'

,x_frm1,W_TR)
end

% Isolating the Frequency Range
x_frm1 = round(x_frm1/df + 1);
W_TR = round(W_TR/df + 1);
frf_F1 = zeros(x_frm1-1,1); % Putting zeros before the isolated

FRF components
frf_F1(x_frm1:W_TR) = frf(x_frm1:W_TR); % Isolated FRF components
frf_F1(W_TR+1:N) = ones(N-(W_TR),1); % Putting zeros after the isolated FRF

components
% Adding the conjugate components to the FRF

frf_F1(N+1) = real(frf_F1(N));
frf_F1(N+2:2*N) = conj(frf_F1(N:-1:2));
[r,c] = size(frf_F1);
if r < c

frf = conj(frf_F1');
else

frf = frf_F1;
end
clear frf_F1

else
% Adding the conjugate components to the FRF
frf(N+1) = real(frf(N));
frf(N+2:2*N) = conj(frf(N:-1:2));
x_frm1 = 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(fig + 1)
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semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
dof = input('How many DOF?: '); %%% D O F

diary off % Turns diary off
%------- Calculating the Impulse Response Function from the FRF Inverse -------%
irf = real(ifft(frf));

%-- Time parameters --%
t = linspace(0,1/df,2*N);
dt = t(2)-t(1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------- Processing Data --------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
L = length(irf);
M = L/2;
n = dof*2; % this value is equal to - DOF*2

for r = 1:n
h1(:,r) = real(irf(r:M-1+r));

end
for r = 1:M

hv1(r,:) = -real(irf(n+r));
end

B1 = inv(h1'*h1)*(h1'*hv1);

B1(n+1,1) = 1;
B1v = B1(n+1:-1:1);
V_cem = roots(B1v);

%--- Calculating the Natural Freq & Damping Ratio ---%
n = length(V_cem);
for r = 1:n

wn_cem(r) = abs(log(V_cem(r)))/dt;
Fn_cem(r) = wn_cem(r)/(2*pi);
Damp_ratio_cem(r) = sqrt(1/(((imag(log(V_cem(r)))/real(log(V_cem(r))))^2)+1));

end

%--------- Calculating eigenvector ---------%
for r = 0:(2*N - 1)

Va_cem(r+1,:) = [conj(V_cem').^r ];
end

Ar_cem = (inv(conj(Va_cem')*Va_cem)*conj(Va_cem')*(irf));

%---------- Calcualting the IRF Curve Fit ----------%
x_cem = Va_cem*Ar_cem;

%---------- Calcualting the FRF Curve Fit ----------%
frf_cem = fft(x_cem);

%--------- Calculating the Residual ---------%
%-- FRF --%
Residual = frf(x_frm1:W_TR) - frf_cem(x_frm1:W_TR);
%-- IRF --%
ResidualT = real(x_cem) - irf;

%--------- Plotting ---------%
figure(fig + 2)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)),f(x_frm1:W_TR),abs(frf_cem(x_frm1:W_TR)))

figure(fig + 3)
plot(f(x_frm1:W_TR)',angle(frf(x_frm1:W_TR)),f(x_frm1:W_TR)',angle(frf_cem(x_frm1:W_TR)))

figure(fig + 4)
plot(f(x_frm1:W_TR)',imag(frf(x_frm1:W_TR)),f(x_frm1:W_TR)',imag(frf_cem(x_frm1:W_TR)))

figure(fig + 5)
subplot(2,1,1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
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subplot(2,1,2)
plot(f(x_frm1:W_TR),abs(Residual))

figure(fig + 6)
plot(t,irf,t,real(x_cem))

figure(fig + 7)
plot(t,ResidualT)

diary on % Turns diary ON

%--------- Displaying Results ---------%
Residues_Eigenvalues_cem = [ Ar_cem V_cem ]
format long g
Natural_freq_Damping_ratio_cem = [ Fn_cem' Damp_ratio_cem' ]

%--------- Calculating & Displaying the Standard Deviation ---------%
% Frequecy domain (Residual)
Curvefit_Standard_deviation_FRF = sqrt((Residual'*Residual)/length(Residual))

% Time domain (ResidualT)
Curvefit_Standard_deviation_IRF = sqrt((ResidualT'*ResidualT)/length(ResidualT))

% Around each natural frequency in the FRF
stdn = menu('Standard Deviation around each nat. freq.','Yes','No');
if stdn == 1

std_nat_freq
end

diary off % Turns diary off

if dofm == 1
sprintf('The Output file (results) is %s_%1.0d_Mdof_results.m',method,E1)

else
sprintf('The Output file (results) is %s_%1.0d_Sdof_results.m',method,E1)

end
 

Ibrahim Time Domain Method 
format long g
%%%%%%%%%%%%%%%%%%%%%%%

method = 'itd';
frf = x_dft;
dofm = menu('Approach','MDOF','SDOF');
if dofm == 1

diary (sprintf('%s_%1.0d_Mdof_results.m',method,E1))
disp('MDOF Simulated Data')

else
diary (sprintf('%s_%1.0d_Sdof_results.m',method,E1))
disp('SDOF Simulated Data')

end
disp([sprintf('\n')])
disp('ITD METHOD')
disp([sprintf('\n')])
disp('Two Close Modes')
disp([sprintf('\n')])
disp('Natural Frequencies and Damping Ratios for the data with two close modes')
Natural_frequency_Damping_ratio = [ fn1 E1 ; fn2 E2 ; fn3 E3 ; fn4 E4 ; fn5 E5 ]

W_TR = length(frf)/2;;

N = length(frf)/2;
frf = conj(frf(1:N)'); % The HP analyzer just gives the positive freq components
f = f(1:N);
df = f(3) - f(2);

% Before getting to this point I need to select the data
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% and need freq. matrix

%----------- Specifying the freq range of curve fit -----------%
wind = menu('Do you want to specify the freq. range for the curve fit?','Yes','No');
if wind == 1

disp('Frequency Range Specified')
specify = menu('How do you want to specify the freq. range?','Point on Graph','Type

it');

if specify == 1
figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (minimum frequency)')
[x_frm1,y]=ginput(1);
figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (maximum frequency)')
[W_TR,y]=ginput(1);
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum freq

= %8.4g',x_frm1,W_TR)
else

figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
x_frm1 = input('Minimum Frequency (Hz): ');
W_TR = input('Maximum Frequency (Hz): ');
sprintf('The selected frequency range is:\n\tMinimum freq = %d\n\tMaximum freq =

%d',x_frm1,W_TR)
end

% Isolating the Frequency Range
x_frm1 = round(x_frm1/df + 1);
W_TR = round(W_TR/df + 1);
frf_F1 = zeros(x_frm1-1,1); % Putting zeros before the isolated

FRF components
frf_F1(x_frm1:W_TR) = frf(x_frm1:W_TR); % Isolated FRF components
frf_F1(W_TR+1:N) = ones(N-(W_TR),1); % Putting zeros after the isolated FRF

components
% Adding the conjugate components to the FRF

frf_F1(N+1) = real(frf_F1(N));
frf_F1(N+2:2*N) = conj(frf_F1(N:-1:2));
[r,c] = size(frf_F1);
if r < c
frf = conj(frf_F1');
else

frf = frf_F1;
end
clear frf_F1

else
% Adding the conjugate components to the FRF
frf(N+1) = real(frf(N));
frf(N+2:2*N) = conj(frf(N:-1:2));
x_frm1 = 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(fig + 1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
dof = input('How many DOF?: '); %%% D O F

diary off % Turns diary off

%------- Calculating the Impulse Response Function from the FRF Inverse -------%
irf = real(ifft(frf));

%-- Time parameters --%
t = linspace(0,1/df,2*N);
dt = t(2)-t(1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------- Processing Data --------------%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
L = length(irf);
M = L/2;
n = 2*dof +1; % n = DOF*2+1
for r = 1:n-1

x1_itd(r,:) = [real(irf(r:L-(n-r)))]';
x2_itd(r,:) = [real(irf(r+1:L-(n-(r+1))))]';

end
A = (1/2)*( (x2_itd*x2_itd')*inv((x1_itd*x2_itd')) +
(x2_itd*x1_itd')*inv(x1_itd*x1_itd'));

[Ar_itd,V_itd] = eig(A);

%--- Calculating the Natural Freq & Damping Ratio ---%
n = length(V_itd);
for r = 1:n

wn_itd(r) = abs(log(V_itd(r,r)))/dt;
Fn_itd(r) = wn_itd(r)/(2*pi);
Damp_ratio_itd(r) = sqrt(1/(((imag(log(V_itd(r,r)))/real(log(V_itd(r,r))))^2)+1));

end

%--------- Calculating eigenvector ---------%
rr =1;
for r = 1:n

% Filtering the eigenvalues; needs the values to be greater than one
if abs(real(V_itd(r,r)))<= 1 & abs(imag(V_itd(r,r)))<= 1

r
V_itd_2(rr) = V_itd(r,r);
inda(rr) = r;
rr = rr + 1;

end

end

L = length(irf);
for r = 0:L-1

Va_itd(r+1,:) = [ V_itd_2.^r ];
end

Ar_itd_2 = (inv(conj(Va_itd')*Va_itd)*conj(Va_itd')*(irf));

%---------- Calcualting the IRF Curve Fit ----------%
x_itd= Va_itd*Ar_itd_2;

%---------- Calcualting FRF Curve Fit ----------%
frf_itd = fft(x_itd);

%--------- Calculating the Residual ---------%
%-- FRF --%
Residual = frf(x_frm1:W_TR) - frf_itd(x_frm1:W_TR);

%-- IRF --%
ResidualT = real(x_itd) - irf;

%--------- Plotting ---------%
figure(fig + 2)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)),f(x_frm1:W_TR),abs(frf_itd(x_frm1:W_TR)))

figure(fig + 3)
plot(f(x_frm1:W_TR)',angle(frf(x_frm1:W_TR)),f(x_frm1:W_TR)',angle(frf_itd(x_frm1:W_TR)))

figure(fig + 4)
plot(f(x_frm1:W_TR)',imag(frf(x_frm1:W_TR)),f(x_frm1:W_TR)',imag(frf_itd(x_frm1:W_TR)))

figure(fig + 5)
subplot(2,1,1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
subplot(2,1,2)
plot(f(x_frm1:W_TR),abs(Residual))

figure(fig + 6)
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plot(t,real(x_itd),t,irf)

figure(fig + 7)
plot(t,ResidualT)

diary on % Turns diary ON
%--------- Displaying Results ---------%
Residues_and_Effective_Eigenvalues_itd = [ Ar_itd_2 conj(V_itd_2') ]
format long g
Natural_freq_Damping_ratio_itd = [ Fn_itd' Damp_ratio_itd' ]

%--------- Calculating & Displaying the Standard Deviation ---------%
% Frequecy domain (Residual)
Curvefit_Standard_deviation_FRF = sqrt((Residual'*Residual)/length(Residual))

% Time domain (ResidualT)
Curvefit_Standard_deviation_IRF = sqrt((ResidualT'*ResidualT)/length(ResidualT))

% Around each natural frequency in the FRF
stdn = menu('Standard Deviation around each nat. freq.','Yes','No');
if stdn == 1

std_nat_freq
end

diary off % Turns diary off

if dofm == 1
sprintf('The Output file (results) is %s_%1.0d_Mdof_results.m',method,E1)

else
sprintf('The Output file (results) is %s_%1.0d_Sdof_results.m',method,E1)

end

Rational Fraction Polynomial Method 
format long g
%%%%%%%%%%%%%%%%%%%%%%%

method = 'rfp';
frf = x_dft;
dofm = menu('Approach','MDOF','SDOF');
if dofm == 1

diary (sprintf('%s_%1.0d_Mdof_results.m',method,E1))
disp('MDOF Simulated Data')

else
diary (sprintf('%s_%1.0d_Sdof_results.m',method,E1))
disp('SDOF Simulated Data')

end
disp([sprintf('\n')])
disp('RFP METHOD')
disp([sprintf('\n')])
disp('Two Close Modes')
disp([sprintf('\n')])
disp('Natural Frequencies and Damping Ratios for the data with two close modes')
Natural_frequency_Damping_ratio = [ fn1 E1 ; fn2 E2 ; fn3 E3 ; fn4 E4 ; fn5 E5 ]

W_TR = length(frf)/2;;

N = length(frf)/2;
frf = (frf(1:W_TR)); % The HP analyzer just gives the positive freq components
f = f(1:W_TR);
df = f(3) - f(2);

% Before getting to this point I need to select the data
% and need freq. matrix

%----------- Specifying the freq range of curve fit -----------%
wind = menu('Do you want to specify the freq. range for the curve fit?','Yes','No');
if wind == 1

disp('Frequency Range Specified')
specify = menu('How do you want to specify the freq. range?','Point on Graph','Type

it');
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if specify == 1
figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (minimum frequency)')
[x_frm1,y]=ginput(1);
figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (maximum frequency)')
[W_TR,y]=ginput(1);
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum freq

= %8.4g',x_frm1,W_TR)
else

figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
x_frm1 = input('Minimum Frequency (Hz): ');
W_TR = input('Maximum Frequency (Hz): ');
sprintf('The selected frequency range is:\n\tMinimum freq = %d\n\tMaximum freq =

%d',x_frm1,W_TR)
end

% Isolating the Frequency Range
x_frm1 = round(x_frm1/df + 1);
W_TR = round(W_TR/df + 1);
frf_F1 = ones(x_frm1-1,1); % Putting ones before the isolated FRF

components (mult by mean of irf)
frf_F1(x_frm1:W_TR) = frf(x_frm1:W_TR); % Isolated FRF components
frf_F1(W_TR+1:N) = ones(N-(W_TR),1); % Putting ones after the isolated FRF

components (mult by mean of irf)
%---------------------%
[r,c] = size(frf_F1);

if r > c
frf = conj(frf_F1');

else
frf = frf_F1;

end
clear frf_F1

else
x_frm1 = 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(fig + 1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
dof = input('How many DOF?: '); %%% D O F

diary off % Turns diary OFF

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------- Processing Data --------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

w = 2*pi*f(x_frm1:W_TR);
% Scaling the frequency from 0 to 1
% Dividing by the maximum frequency
wi = w/max(w);
n = dof*2;
wt = ones(1,length(frf(x_frm1:W_TR)));
iter = 100;
tol = 0;
[A,B] = invfreqs(frf(x_frm1:W_TR),wi,n,n,wt,iter,tol);
[R_rfp,P_rfp,K] = residue(A,B); % Residues & Poles, respectively

%--- Calculating the Natural Freq & Damping Ratio ---%
Damp_ratio_rfp = -real(P_rfp)./(abs(P_rfp));
% Here the natural frequency is multiplied by
% the maximum in because the frequencies were
% scaled from 0 to 1 to avoid problems in
% the invfreqs function
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Fn_rfp = abs(P_rfp)*max(w)/(2*pi);

%---------- Calcualting the FRF Curve Fit ----------%
frf_rfp = freqs(A,B,wi);

%--- Adding the conjugate components to the FRF and zeros in the truncated ---%
% Experimental FRF
frf(1:x_frm1-1) = 0;
frf(N+1) = 0;
frf(N+2:2*N) = conj(frf(N:-1:2));
% Curve Fit
frf_rfp(x_frm1:W_TR) = frf_rfp;
frf_rfp(1:x_frm1 -1) = zeros(1,x_frm1 -1);
frf_rfp(N+1) = 0;
frf_rfp(N+2:2*N) = conj(frf_rfp(N:-1:2));

%--- Calculating the Impulse Response Function from the FRF Inverse ---%
irf = real(ifft(frf));
irf_rfp = real(ifft(frf_rfp));

%--------- Calculating the Residual ---------%
%-- FRF --%
Residual = frf(x_frm1:W_TR) - frf_rfp(x_frm1:W_TR);
%-- IRF --%
ResidualT = irf - irf_rfp;

%--------- Plotting ---------%
figure(fig + 2)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)),f(x_frm1:W_TR),abs(frf_rfp(x_frm1:W_TR)))

figure(fig + 3)
plot(f(x_frm1:W_TR),angle(frf(x_frm1:W_TR)),f(x_frm1:W_TR),angle(frf_rfp(x_frm1:W_TR)))

figure(fig + 4)
plot(f(x_frm1:W_TR),imag(frf(x_frm1:W_TR)),f(x_frm1:W_TR),imag(frf_rfp(x_frm1:W_TR)))

figure(fig + 5)
subplot(2,1,1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
subplot(2,1,2)
plot(f(x_frm1:W_TR),abs(Residual))

figure(fig + 6)
t = linspace(0,1/df,2*N);
plot(t,irf,t,irf_rfp)

figure(fig + 7)
plot(t,(ResidualT))

diary on % Turns diary ON

%--------- Displaying Results ---------%
Residues_and_Poles_rfp = [ R_rfp P_rfp ]
format long g
Natural_freq_Damping_ratio_rfp = [ Fn_rfp Damp_ratio_rfp ]

%--------- Calculating & Displaying the Standard Deviation ---------%
% Frequecy domain (Residual)
Curvefit_Standard_deviation_FRF = sqrt((Residual*Residual')/length(Residual))

% Time domain (ResidualT)
Curvefit_Standard_deviation_IRF = sqrt((ResidualT*ResidualT')/length(ResidualT))

% Around each natural frequency in the FRF
stdn = menu('Standard Deviation around each nat. freq.','Yes','No');
if stdn == 1

std_nat_freq_rfp
end

diary off % Turns diary off
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if dofm == 1
sprintf('The Output file (results) is %s_%1.0d_Mdof_results.m',method,E1)

else
sprintf('The Output file (results) is %s_%1.0d_Sdof_results.m',method,E1)

end

 

Hilbert Envelope Method 
format long g
%%%%%%%%%%%%%%%%%%%%%%

method = 'hil';
frf = x_dft;
diary (sprintf('%s_%1.0d_results.m',method,E1))

disp('Hilbert Envelope METHOD')
disp([sprintf('\n')])
disp('Two Close Modes')
disp([sprintf('\n')])
disp('Natural Frequencies and Damping Ratios for the data with two close modes')
Natural_frequency_Damping_ratio = [ fn1 E1 ; fn2 E2 ; fn3 E3 ; fn4 E4 ; fn5 E5 ]

W_TR = length(frf)/2;;

N = length(frf)/2;
frf = conj(frf(1:N)'); % The HP analyzer just gives the positive freq components
f = f(1:N);
df = f(3) - f(2);

% Before getting to this point I need to select the data
% and need freq. matrix

%----------- Specifying the freq range of curve fit -----------%
wind = menu('Do you want to specify the freq. range for the curve fit?','Yes','No');
if wind == 1

disp('Frequency Range Specified')
specify = menu('How do you want to specify the freq. range?','Point on Graph','Type

it');
if specify == 1

figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (minimum frequency)')
[x_frm1,y]=ginput(1);
figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (maximum frequency)')
[W_TR,y]=ginput(1);
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum freq

= %8.4g',x_frm1,W_TR)
else

figure(fig + 1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
x_frm1 = input('Minimum Frequency (Hz): ');
W_TR = input('Maximum Frequency (Hz): ');
sprintf('The selected frequency range is:\n\tMinimum freq = %d\n\tMaximum freq =

%d',x_frm1,W_TR)
end

% Isolating the Frequency Range
x_frm1 = round(x_frm1/df + 1);
W_TR = round(W_TR/df + 1);
frf_F1 = zeros(x_frm1-1,1); % Putting zeros before the isolated

FRF components
frf_F1(x_frm1:W_TR) = frf(x_frm1:W_TR); % Isolated FRF components
frf_F1(W_TR+1:N) = zeros(N-(W_TR),1); % Putting zeros after the isolated

FRF components
% Adding the conjugate components to the FRF

frf_F1(N+1) = real(frf_F1(N));
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frf_F1(N+2:2*N) = conj(frf_F1(N:-1:2));
frf = frf_F1;
clear frf_F1

else
% Adding the conjugate components to the FRF
frf(N+1) = real(frf(N));
frf(N+2:2*N) = conj(frf(N:-1:2));
x_frm1 = 1;

end

figure(fig + 1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
%%%%%%%%%%%%%%%%%%%%%%%%

dof = input('How many DOF?: '); %%% D O F

%-- Time parameters --%
t = linspace(0,1/df,2*N);
dt = t(2)-t(1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------- Processing Data --------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for n = 1:dof
figure(fig + 1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
sprintf('Type natural frequency (Hz) # %d',n)
fn(n) = input('');
disp('')
%---------- Selecting in which way the freq. range will be specified ----------%
specify = menu('How do you want to specify the freq. range?','Range of window','Point

on Graph','Type it');
if specify == 1

% (+-) Value for the isolating window centered at the natural freq
R = input('Type the range (spectral lines) of the window (+ -): ');
% Isolate specified freq range
Comp_f = abs(round(fn(n)/df + 1)); % Componenet in 'f' where the nat freq is

located
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum freq

= %8.4g',f(Comp_f-R),f(Comp_f+R))

frf_F1 = zeros(Comp_f-R-1,1); % Putting zeros before
the isolated FRF components

frf_F1(Comp_f-R:Comp_f+R) = frf(Comp_f-R:Comp_f+R); % Isolated FRF
components

frf_F1(Comp_f+R+1:N) = zeros(N-(Comp_f+R),1); % Putting zeros after
the isolated FRF components

elseif specify == 2 | specify == 3
if specify == 2

figure(fig + 1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
title('Select the first point (minimum frequency)')
[x_frmh1,y]=ginput(1);
figure(fig + 1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
title('Select the first point (maximum frequency)')
[x_frmh2,y]=ginput(1);
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum

freq = %8.4g',x_frmh1,x_frmh2)
else

figure(fig + 1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
x_frmh1 = input('Minimum Frequency (Hz): ');
x_frmh2 = input('Maximum Frequency (Hz): ');
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum

freq = %8.4g',x_frm1,x_frm2)
end
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% Isolating the Frequency Range
x_frmh1 = round(x_frmh1/df + 1);
x_frmh2 = round(x_frmh2/df + 1);
frf_F1 = zeros(x_frmh1-1,1); % Putting zeros before the

isolated FRF components (mult by mean of irf)
frf_F1(x_frmh1:x_frmh2) = frf(x_frmh1:x_frmh2); % Isolated FRF components
frf_F1(x_frmh2+1:N) = zeros(N-(x_frmh2),1); % Putting zeros after the

isolated FRF components (mult by mean of irf)
% Adding the conjugate components to the FRF

frf_F1(N+1) = real(frf_F1(N));
frf_F1(N+2:2*N) = conj(frf_F1(N:-1:2));

end

% Adding the conjugate components to the FRF
frf_F1(N+1) = real(frf_F1(N));
frf_F1(N+2:2*N) = conj(frf_F1(N:-1:2));

% Separating the DFT in order to change the phase
for nn = 2:N;

frf_F1_j(nn) = j*frf_F1(nn); % Mult by the complex number j
end

for nn = N+2:2*N;
frf_F1_j(nn) = -j*frf_F1(nn); % Mult by the complex number -j the conjugate

part of the DFT
end

% Impulse Response Function of the isolated FRF
irf_F1 = (ifft(frf_F1));
irf_F1 = conj(irf_F1');

% Hilbert transform (quadrature function). The phase was changed previously
hil_F1 = (ifft(frf_F1_j));

% Envelope of the decaying signal
env_F1 = irf_F1 - j*hil_F1;
env_F1_dB = 20*log10(abs(env_F1)); % dB scale for the envelope's magnitude

% Least Square Method to calculate slope, and then damping ratio
specifyT = menu('How do you want to specify the IRF time range?','Point on

Graph','Type it');

if specifyT == 1
figure(fig + n + 1)
plot(t,env_F1_dB)
title('Select two points in the time domain (x axis)')
[x,y]=ginput(2);
sprintf('The selected time range is:\n\tMinimum time: %8.5g \n\tMaximum time:

%8.5g',x(1),x(2))
else

figure(fig + n + 1)
plot(t,env_F1_dB)
disp('The selected time range is:')
x(1) = input(' Minimum time: ');
x(2) = input(' Maximum time: ');

end

[np] = round(x/dt + 1);
t1 = t(np(1):np(2));
env_F1_dB1 = env_F1_dB(np(1):np(2));
m = length(t1); % Calculates the amount of points data
sum_x = sum(t1); % Summatory of the t points (x components)
sum_y = sum(env_F1_dB1); % Summatory of the env_dB points (y components)
sum_x_sq = dot(t1,t1); % Summatory of the square value of each t points (x

components)
sum_xy = dot(t1,env_F1_dB1); % Summatory of the multiplication of t and env_dB

points (x and y components)
LQ1 = [m sum_x; sum_x sum_x_sq];
LQ2 = [sum_y ; sum_xy];
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LQ3 = inv(LQ1) * LQ2;
slope = LQ3(2);
% Calculating damping ratio
damping_F1(n) = -slope/(20*log10(exp(1))) ;
damping_ratio_F1(n) = damping_F1(n)/(fn(n)*(2*pi)) ;

% Plotting the Hilbert Process in four plots (for each mode)
figure(fig + n + 1)
subplot(2,2,1)
plot(f,abs(frf_F1(1:W_TR)))
title(sprintf('Isolated Natural Frequency # %d',n))

subplot(2,2,2)
plot(t,real(irf_F1))
title('Impulse Response Function')

subplot(2,2,3)
plot(t,abs(env_F1))
title('Envelope of the Impulse Response Function')

subplot(2,2,4)
plot(t,env_F1_dB)
%title('dB Scale of the Envelope')
xlabel('time (s)')
ylabel('dB scale')

end
%--------- Calculatin the Exp. IRF ---------%
irf = real(ifft(frf));

%--------- Calculating the eigenvalues ---------%
V_hil = exp((-damping_ratio_F1 + i*sqrt(1 - damping_ratio_F1.^2)).*fn*2*pi*dt);
rr = length(V_hil);
V_hil(rr+1:2*rr) = conj(V_hil);

%--------- Calculating eigenvector ---------%
L = length(t);
for r = 0:L-1

Va_hil(r+1,:) = [conj(V_hil).^r ];
end

Ar_hil = (inv(conj(Va_hil')*Va_hil)*conj(Va_hil')*(irf));

%---------- Calcualting the IRF Curve Fit ----------%
x_hil = Va_hil*Ar_hil;

%---------- Calcualting FRF Curve Fit ----------%
frf_hil = fft(x_hil);

%--------- Calculating the Residual ---------%
%-- FRF --%
Residual = frf(x_frm1:W_TR) - frf_hil(x_frm1:W_TR);
%-- IRF --%
ResidualT = real(x_hil) - irf;

%--------- Plotting ---------%
figure(fig + dof + 2)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)),f(x_frm1:W_TR),abs(frf_hil(x_frm1:W_TR)))

figure(fig + dof + 3)
plot(f(x_frm1:W_TR),angle(frf(x_frm1:W_TR)),f(x_frm1:W_TR),angle(frf_hil(x_frm1:W_TR)))

figure(fig + dof + 4)
plot(f(x_frm1:W_TR),imag(frf(x_frm1:W_TR)),f(x_frm1:W_TR),imag(frf_hil(x_frm1:W_TR)))

figure(fig + dof + 5)
subplot(2,1,1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
subplot(2,1,2)
plot(f(x_frm1:W_TR),abs(Residual))

figure(fig + dof + 6)
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plot(t,real(x_hil),t,irf)

figure(fig + dof + 7)
plot(t,ResidualT)

%--------- Displaying Results ---------%
Residues_Eigenvalues_hil = [ Ar_hil conj(V_hil') ]
Natural_freq_Damping_ratio_hil = [ fn' damping_ratio_F1' ]

%--------- Calculating & Displaying the Standard Deviation ---------%
% Frequecy domain (Residual)
Curvefit_Standard_deviation_FRF = sqrt((Residual'*Residual)/length(Residual))

% Time domain (ResidualT)
Curvefit_Standard_deviation_IRF = sqrt((ResidualT'*ResidualT)/length(ResidualT))

% Around each natural frequency in the FRF
stdn = menu('Standard Deviation around each nat. freq.','Yes','No');
if stdn == 1

std_nat_freq
end

diary off % Turns diary off

sprintf(' The Output file (results) is %s_%1.0d_results.m',method,E1)

Standard Deviation 
clear x_frm1
disp('Standard Deviation around each nat. freq.')
disp([sprintf('\n')])
np = input(' How many modes were identified? ');
disp([sprintf('\n')])
for r = 1:np

NT = input(sprintf('\tType natural freq # %d (integer number): ',r));
x_frm1 = round((NT - min(f))/df + 1); % Index Matrix of Nat. Freq.
disp([sprintf('\t\t') 'Standard Deviation = ' ...

num2str(sqrt((Residual(x_frm1-10:x_frm1+10)'...
*Residual(x_frm1-10:x_frm1+10))/length(Residual(x_frm1-10:x_frm1+10))))])

disp([sprintf('\n')])
end

Standard Deviation for the RFP 
clear x_frm1
disp('Standard Deviation around each nat. freq.')
disp([sprintf('\n')])
np = input(' How many modes were identified? ');
disp([sprintf('\n')])
for r = 1:np

NT = input(sprintf('\tType natural freq # %d (integer number): ',r));
x_frm1 = round((NT - min(f))/df + 1); % Index Matrix of Nat. Freq.
disp([sprintf('\t\t') 'Standard Deviation = ' ...

num2str(sqrt((Residual(x_frm1-10:x_frm1+10)...
*Residual(x_frm1-10:x_frm1+10)')/length(Residual(x_frm1-10:x_frm1+10))))])

disp([sprintf('\n')])
end

 

A.2 Code for Experimental Data 

Selecting Method 
close all hidden
method = MENU('Choose method','ITD','CEM','RFP','Hilbert');
if method == 1
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itd_analysis2 % file-name if the itd method
elseif method == 2

cem_analysis2 % file-name if the cem method
elseif method == 3

rfp_analysis2 % file-name if the rfp method
else

hil_analysis2 % file-name if the hilbert method
end
 

Complex Exponential Method 
clear
clc
close all hidden
format long
%%%%%%%%%%%%%%%%%%%%%%
ls *dat
method = 'cem';

disp('Write between quotes the name of the selected data (do not write extension)')
data = input('');

frf = load (sprintf('%s.dat',data));

[r,c] = size(frf);

if c == 3

diary (sprintf('%s_%s_results.m',method,data))

disp('CEM_METHOD')
sprintf('\nSelected data is: %s\n',data)

f = frf(:,1);
df = f(3) - f(2);
frf = frf(:,2) + i*frf(:,3);
W_TR = length(frf);
N = W_TR;

%----------- Truncation in the FRF -----------%
trf = menu('Is this FRF truncated in the frequency domain?','Yes','No');
if trf == 1

spl = input('How many spectral lines were truncated? ');
frf(N+spl) = 0;
N = length(frf);
disp(sprintf('FRF with %d truncated spectral lines',spl))

end

% Before getting to this point I need to select the data
% and need freq. matrix

%----------- Specifying the freq range of curve fit -----------%
wind = menu('Do you want to specify the freq. range for the curve fit?','Yes','No');
if wind == 1

disp('Frequency Range Specified')
specify = menu('How do you want to specify the freq. range?','Point on Graph','Type

it');
mean_irf = mean(real(ifft(frf)));
if specify == 1

figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (minimum frequency)')
[x_frm1,y]=ginput(1);
figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (maximum frequency)')
[W_TR,y]=ginput(1);
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum freq

= %8.4g',x_frm1,W_TR)
else
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figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
x_frm1 = input('Minimum Frequency (Hz): ');
W_TR = input('Maximum Frequency (Hz): ');
sprintf('The selected frequency range is:\n\tMinimum freq = %d\n\tMaximum freq =

%d',x_frm1,W_TR)
end

% Isolating the Frequency Range
x_frm1 = round((x_frm1 - min(f))/df + 1);
W_TR = round((W_TR - min(f))/df + 1);
frf_F1 = zeros(x_frm1-1,1); % Putting zeros before the isolated FRF components
frf_F1(x_frm1:W_TR) = frf(x_frm1:W_TR); % Isolated FRF components
frf_F1(W_TR+1:N) = ones(N-(W_TR),1); % Putting zeros after the isolated FRF

components
% Adding the conjugate components to the FRF

frf_F1(N+1) = real(frf_F1(N));
frf_F1(N+2:2*N) = conj(frf_F1(N:-1:2));
frf = frf_F1;
clear frf_F1

else
% Adding the conjugate components to the FRF
frf(N+1) = real(frf(N));
frf(N+2:2*N) = conj(frf(N:-1:2));
x_frm1 = 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
dof = input('How many DOF?: '); %%% D O F

diary off % Turns diary off
%------- Calculating the Impulse Response Function from the FRF Inverse -------%
irf = real(ifft(frf));

%-- Time parameters --%
t = linspace(0,1/df,2*N);
dt = t(2)-t(1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------- Processing Data --------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
L = length(irf);
M = L/2;
n = dof*2; % this value is equal to - DOF*2

for r = 1:n
h1(:,r) = real(irf(r:M-1+r));

end
for r = 1:M

hv1(r,:) = -real(irf(n+r));
end

B1 = inv(h1'*h1)*(h1'*hv1);

B1(n+1,1) = 1;
B1v = B1(n+1:-1:1);
V_cem = roots(B1v);

%--- Calculating the Natural Freq & Damping Ratio ---%
n = length(V_cem);
for r = 1:n

wn_cem(r) = abs(log(V_cem(r)))/dt;
Fn_cem(r) = wn_cem(r)/(2*pi);
Damp_ratio_cem(r) = sqrt(1/(((imag(log(V_cem(r)))/real(log(V_cem(r))))^2)+1));

end

%--------- Calculating eigenvector ---------%
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for r = 0:(2*N - 1)
Va_cem(r+1,:) = [conj(V_cem').^r ];

end

Ar_cem = (inv(conj(Va_cem')*Va_cem)*conj(Va_cem')*(irf));

%---------- Calcualting the IRF Curve Fit ----------%
x_cem = Va_cem*Ar_cem;

%---------- Calcualting the FRF Curve Fit ----------%
frf_cem = fft(x_cem);

%--------- Calculating the Residual ---------%
%-- FRF --%
Residual = frf(x_frm1:W_TR) - frf_cem(x_frm1:W_TR);
%-- IRF --%
ResidualT = real(x_cem) - irf;

%--------- Plotting ---------%
figure(2)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)),f(x_frm1:W_TR),abs(frf_cem(x_frm1:W_TR)))

figure(3)
plot(f(x_frm1:W_TR)',angle(frf(x_frm1:W_TR)),f(x_frm1:W_TR)',angle(frf_cem(x_frm1:W_TR)))

figure(4)
plot(f(x_frm1:W_TR)',imag(frf(x_frm1:W_TR)),f(x_frm1:W_TR)',imag(frf_cem(x_frm1:W_TR)))

figure(5)
subplot(2,1,1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
subplot(2,1,2)
plot(f(x_frm1:W_TR),abs(Residual))

figure(6)
plot(t,real(x_cem),t,irf)

figure(7)
plot(t,ResidualT)

diary on % Turns diary ON

%--------- Displaying Results ---------%
Residues_Eigenvalues_cem = [ Ar_cem V_cem ]
format long g
Natural_freq_Damping_ratio_cem = [ Fn_cem' Damp_ratio_cem' ]

%--------- Calculating & Displaying the Standard Deviation ---------%
% Frequecy domain (Residual)
Curvefit_Standard_deviation_FRF = sqrt((Residual'*Residual)/length(Residual))

% Time domain (ResidualT)
Curvefit_Standard_deviation_IRF = sqrt((ResidualT'*ResidualT)/length(ResidualT))

% Around each natural frequency in the FRF
stdn = menu('Standard Deviation around each nat. freq.','Yes','No');
if stdn == 1

std_nat_freq
end

diary off % Turns diary off

sprintf(' The Output file (results) is %s_%s_results.m',method,data)

else
error('Can not process data')
disp('The FRF data needs to be in three columns')
disp(' - First column: frequency')
disp(' - Second column: Real part')
disp(' - Third column: Imaginary part')

end
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Ibrahim Time Domain Method 
clear
clc
close all hidden
format long
%%%%%%%%%%%%%%%%%%%%%%%
ls *dat
method = 'itd';
disp('Write between quotes the name of the selected data (do not write extension)')
data = input('');

frf = load (sprintf('%s.dat',data));

[r,c] = size(frf);

if c == 3

diary (sprintf('%s_%s_results.m',method,data))

disp('ITD_METHOD')
sprintf('\nSelected data is: %s\n',data)

f = frf(:,1);
df = f(3) - f(2);
frf = frf(:,2) + i*frf(:,3);
W_TR = length(frf);
N = W_TR;

%----------- Truncation in the FRF -----------%
trf = menu('Is this FRF truncated in the frequency domain?','Yes','No');
if trf == 1

spl = input('How many spectral lines were truncated? ');
frf(N+spl) = 0;
N = length(frf);
disp(sprintf('FRF with %d truncated spectral lines',spl))

end
% Before getting to this point I need to select the data
% and need freq. matrix

%----------- Specifying the freq range of curve fit -----------%
wind = menu('Do you want to specify the freq. range for the curve fit?','Yes','No');
if wind == 1

disp('Frequency Range Specified')
specify = menu('How do you want to specify the freq. range?','Point on Graph','Type

it');
mean_irf = mean(real(ifft(frf)));
if specify == 1

figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (minimum frequency)')
[x_frm1,y]=ginput(1);
figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (maximum frequency)')
[W_TR,y]=ginput(1);
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum freq

= %8.4g',x_frm1,W_TR)
else

figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
x_frm1 = input('Minimum Frequency (Hz): ');
W_TR = input('Maximum Frequency (Hz): ');
sprintf('The selected frequency range is:\n\tMinimum freq = %d\n\tMaximum freq =

%d',x_frm1,W_TR)
end

% Isolating the Frequency Range
x_frm1 = round((x_frm1 - min(f))/df + 1);
W_TR = round((W_TR - min(f))/df + 1);
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frf_F1 = zeros(x_frm1-1,1); % Putting zeros before the isolated
FRF components

frf_F1(x_frm1:W_TR) = frf(x_frm1:W_TR); % Isolated FRF components
frf_F1(W_TR+1:N) = ones(N-(W_TR),1); % Putting zeros after the isolated FRF

components
% Adding the conjugate components to the FRF

frf_F1(N+1) = real(frf_F1(N));
frf_F1(N+2:2*N) = conj(frf_F1(N:-1:2));
frf = frf_F1;
clear frf_F1

else
% Adding the conjugate components to the FRF
frf(N+1) = real(frf(N));
frf(N+2:2*N) = conj(frf(N:-1:2));
x_frm1 = 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
dof = input('How many DOF?: '); %%% D O F

diary off % Turns diary off

%------- Calculating the Impulse Response Function from the FRF Inverse -------%
irf = real(ifft(frf));

%-- Time parameters --%
t = linspace(0,1/df,2*N);
dt = t(2)-t(1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------- Processing Data --------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
L = length(irf);
M = L/2;
n = 2*dof +1; % n = DOF*2+1
for r = 1:n-1

x1_itd(r,:) = [real(irf(r:L-(n-r)))]';
x2_itd(r,:) = [real(irf(r+1:L-(n-(r+1))))]';

end
A = (1/2)*( (x2_itd*x2_itd')*inv((x1_itd*x2_itd')) +
(x2_itd*x1_itd')*inv(x1_itd*x1_itd'));

[Ar_itd,V_itd] = eig(A);

%--- Calculating the Natural Freq & Damping Ratio ---%
n = length(V_itd);
for r = 1:n

wn_itd(r) = abs(log(V_itd(r,r)))/dt;
Fn_itd(r) = wn_itd(r)/(2*pi);
Damp_ratio_itd(r) = sqrt(1/(((imag(log(V_itd(r,r)))/real(log(V_itd(r,r))))^2)+1));

end

%--------- Calculating eigenvector ---------%
rr =1;
for r = 1:n

% Filtering the eigenvalues; needs the values to be greater than one
if abs(real(V_itd(r,r)))<= 1 & abs(imag(V_itd(r,r)))<= 1

V_itd_2(rr) = V_itd(r,r);
inda(rr) = r;
rr = rr + 1;

end

end

L = length(irf);
for r = 0:L-1
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Va_itd(r+1,:) = [ V_itd_2.^r ];
end

Ar_itd_2 = (inv(conj(Va_itd')*Va_itd)*conj(Va_itd')*(irf));

%---------- Calcualting the IRF Curve Fit ----------%
x_itd= Va_itd*Ar_itd_2;

%---------- Calcualting FRF Curve Fit ----------%
frf_itd = fft(x_itd);

%--------- Calculating the Residual ---------%
%-- FRF --%
Residual = frf(x_frm1:W_TR) - frf_itd(x_frm1:W_TR);

%-- IRF --%
ResidualT = real(x_itd) - irf;

%--------- Plotting ---------%
figure(2)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)),f(x_frm1:W_TR),abs(frf_itd(x_frm1:W_TR)))

figure(3)
plot(f(x_frm1:W_TR)',angle(frf(x_frm1:W_TR)),f(x_frm1:W_TR)',angle(frf_itd(x_frm1:W_TR)))

figure(4)
plot(f(x_frm1:W_TR)',imag(frf(x_frm1:W_TR)),f(x_frm1:W_TR)',imag(frf_itd(x_frm1:W_TR)))

figure(5)
subplot(2,1,1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
subplot(2,1,2)
plot(f(x_frm1:W_TR),abs(Residual))

figure(6)
plot(t,real(x_itd),t,irf)

figure(7)
plot(t,ResidualT)

diary on % Turns diary ON
%--------- Displaying Results ---------%
Residues_and_Effective_Eigenvalues_itd = [ Ar_itd_2 conj(V_itd_2') ]
format long g
Natural_freq_Damping_ratio_itd = [ Fn_itd' Damp_ratio_itd' ]

%--------- Calculating & Displaying the Standard Deviation ---------%
% Frequecy domain (Residual)
Curvefit_Standard_deviation_FRF = sqrt((Residual'*Residual)/length(Residual))

% Time domain (ResidualT)
Curvefit_Standard_deviation_IRF = sqrt((ResidualT'*ResidualT)/length(ResidualT))

% Around each natural frequency in the FRF
stdn = menu('Standard Deviation around each nat. freq.','Yes','No');
if stdn == 1

std_nat_freq
end

diary off % Turns diary off

sprintf(' The Output file (results) is %s_%s_results.m',method,data)

else
error('Can not process data')
disp('The FRF data needs to be in three columns')
disp(' - First column: frequency')
disp(' - Second column: Real part')
disp(' - Third column: Imaginary part')

end
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Rational Fraction Polynomial Method 
clear
clc
close all hidden
format long
%%%%%%%%%%%%%%%%%%%%%%%
ls *dat
method = 'rfp';
disp('Write between quotes the name of the selected data (do not write extension)')
data = input('');

frf = load (sprintf('%s.dat',data));

[r,c] = size(frf);

if c == 3

diary (sprintf('%s_%s_results.m',method,data))

disp('RFP_METHOD')
sprintf('\nSelected data is: %s\n',data)

f = frf(:,1);
df = f(3) - f(2);
frf = frf(:,2) + i*frf(:,3);
W_TR = length(frf);
N = W_TR;

%----------- Truncation in the FRF -----------%
trf = menu('Is this FRF truncated in the frequency domain?','Yes','No');
if trf == 1

spl = input('How many spectral lines were truncated? ');
%frf(N+spl) = 0;
%N = length(frf);
N = W_TR + spl;
disp(sprintf('FRF with %d truncated spectral lines',spl))

end

% Before getting to this point I need to select the data
% and need freq. matrix

%----------- Specifying the freq range of curve fit -----------%
wind = menu('Do you want to specify the freq. range for the curve fit?','Yes','No');
if wind == 1

disp('Frequency Range Specified')
specify = menu('How do you want to specify the freq. range?','Point on Graph','Type

it');
mean_irf = mean(real(ifft(frf)));
if specify == 1

figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (minimum frequency)')
[x_frm1,y]=ginput(1);
figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (maximum frequency)')
[W_TR,y]=ginput(1);
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum freq

= %8.4g',x_frm1,W_TR)
else

figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
x_frm1 = input('Minimum Frequency (Hz): ');
W_TR = input('Maximum Frequency (Hz): ');
sprintf('The selected frequency range is:\n\tMinimum freq = %d\n\tMaximum freq =

%d',x_frm1,W_TR)
end

% Isolating the Frequency Range
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x_frm1 = round((x_frm1 - min(f))/df + 1);
W_TR = round((W_TR - min(f))/df + 1);
frf_F1 = ones(x_frm1-1,1); % Putting ones before the isolated FRF

components (mult by mean of irf)
frf_F1(x_frm1:W_TR) = frf(x_frm1:W_TR); % Isolated FRF components
frf_F1(W_TR+1:N) = ones(N-(W_TR),1); % Putting ones after the isolated FRF

components (mult by mean of irf)
%---------------------%

frf = frf_F1;
clear frf_F1

else
x_frm1 = 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
dof = input('How many DOF?: '); %%% D O F

diary off % Turns diary OFF

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------- Processing Data --------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

w = 2*pi*f(x_frm1:W_TR);
% Scaling the frequency from 0 to 1
% Dividing by the maximum frequency
wi = w/max(w);
n = dof*2;
wt = ones(1,length(frf(x_frm1:W_TR)));
iter = 50;
tol = 0;
[A,B] = invfreqs(frf(x_frm1:W_TR),wi,n,n,wt,iter,tol);
[R_rfp,P_rfp,K] = residue(A,B); % Residues & Poles, respectively

%--- Calculating the Natural Freq & Damping Ratio ---%
Damp_ratio_rfp = -real(P_rfp)./(abs(P_rfp));
% Here the natural frequency is multiplied by
% the maximum in because the frequencies were
% scaled from 0 to 1 to avoid problems in
% the invfreqs function
Fn_rfp = abs(P_rfp)*max(w)/(2*pi);

%---------- Calcualting the FRF Curve Fit ----------%
frf_rfp = freqs(A,B,wi);

%--- Adding the conjugate components to the FRF and zeros in the truncated ---%
% Experimental FRF
frf(1:x_frm1-1) = 0;
frf(N+1) = 0;
frf(N+2:2*N) = conj(frf(N:-1:2));
% Curve Fit
frf_rfp(x_frm1:W_TR) = frf_rfp;
frf_rfp(1:x_frm1 -1) = zeros(1,x_frm1 -1);
frf_rfp(N+1) = 0;
frf_rfp(N+2:2*N) = conj(frf_rfp(N:-1:2));

%--- Calculating the Impulse Response Function from the FRF Inverse ---%
irf = real(ifft(frf));
irf_rfp = real(ifft(frf_rfp));

%--------- Calculating the Residual ---------%
%-- FRF --%
Residual = frf(x_frm1:W_TR) - frf_rfp(x_frm1:W_TR);
%-- IRF --%
ResidualT = irf_rfp - irf;

%--------- Plotting ---------%
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figure(2)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)),f(x_frm1:W_TR),abs(frf_rfp(x_frm1:W_TR)))

figure(3)
plot(f(x_frm1:W_TR),angle(frf(x_frm1:W_TR)),f(x_frm1:W_TR),angle(frf_rfp(x_frm1:W_TR)))

figure(4)
plot(f(x_frm1:W_TR),imag(frf(x_frm1:W_TR)),f(x_frm1:W_TR),imag(frf_rfp(x_frm1:W_TR)))

figure(5)
subplot(2,1,1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
subplot(2,1,2)
plot(f(x_frm1:W_TR),abs(Residual))

figure(6)
t = linspace(0,1/df,2*N);
plot(t,irf,t,irf_rfp)

figure(7)
plot(t,(ResidualT))

diary on % Turns diary ON

%--------- Displaying Results ---------%
Residues_and_Poles_rfp = [ R_rfp P_rfp ]
format long g
Natural_freq_Damping_ratio_rfp = [ Fn_rfp Damp_ratio_rfp ]

%--------- Calculating & Displaying the Standard Deviation ---------%
% Frequecy domain (Residual)
Curvefit_Standard_deviation_FRF = sqrt((Residual'*Residual)/length(Residual))

% Time domain (ResidualT)
Curvefit_Standard_deviation_IRF = sqrt((ResidualT'*ResidualT)/length(ResidualT))

% Around each natural frequency in the FRF
stdn = menu('Standard Deviation around each nat. freq.','Yes','No');
if stdn == 1

std_nat_freq
end

diary off % Turns diary off

sprintf(' The Output file (results) is %s_%s_results.m',method,data)

else
error('Can not process data')
disp('The FRF data needs to be in three columns')
disp(' - First column: frequency')
disp(' - Second column: Real part')
disp(' - Third column: Imaginary part')

end
 

Hilbert Envelope Method 
clear
clc
close all hidden
format long g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ls *dat
method = 'hil';
disp('Write between quotes the name of the selected data (do not write extension)')
data = input('');

frf = load (sprintf('%s.dat',data));

[r,c] = size(frf);
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if c == 3

diary (sprintf('%s_%s_results.m',method,data))

disp('Hilbert Envelope Method')
sprintf('\nSelected data is: %s\n',data)

f = frf(:,1);
df = f(3) - f(2);
frf = frf(:,2) + i*frf(:,3);
W_TR = length(frf);
N = W_TR;

%----------- Truncation in the FRF -----------%
trf = menu('Is this FRF truncated in the frequency domain?','Yes','No');
if trf == 1

spl = input('How many spectral lines were truncated? ');
frf(N+spl) = 0;
N = length(frf);
disp(sprintf('FRF with %d truncated spectral lines',spl))

end

% Before getting to this point I need to select the data
% and need freq. matrix

%----------- Specifying the freq range of curve fit -----------%
wind = menu('Do you want to specify the freq. range for the curve fit?','Yes','No');
if wind == 1

disp('Frequency Range Specified')
specify = menu('How do you want to specify the freq. range?','Point on Graph','Type

it');
if specify == 1

figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (minimum frequency)')
[x_frm1,y]=ginput(1);
figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
title('Select the first point (maximum frequency)')
[W_TR,y]=ginput(1);
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum freq

= %8.4g',x_frm1,W_TR)
else

figure(1)
semilogy(f(1:W_TR),abs(frf(1:W_TR)))
x_frm1 = input('Minimum Frequency (Hz): ');
W_TR = input('Maximum Frequency (Hz): ');
sprintf('The selected frequency range is:\n\tMinimum freq = %d\n\tMaximum freq =

%d',x_frm1,W_TR)
end

% Isolating the Frequency Range
x_frm1 = round(x_frm1/df + 1);
W_TR = round(W_TR/df + 1);
frf_F1 = zeros(x_frm1-1,1); % Putting zeros before the isolated

FRF components
frf_F1(x_frm1:W_TR) = frf(x_frm1:W_TR); % Isolated FRF components
frf_F1(W_TR+1:N) = zeros(N-(W_TR),1); % Putting zeros after the isolated

FRF components
% Adding the conjugate components to the FRF

frf_F1(N+1) = real(frf_F1(N));
frf_F1(N+2:2*N) = conj(frf_F1(N:-1:2));
frf = frf_F1;
clear frf_F1

else
% Adding the conjugate components to the FRF
frf(N+1) = real(frf(N));
frf(N+2:2*N) = conj(frf(N:-1:2));
x_frm1 = 1;
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end

figure(1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
%%%%%%%%%%%%%%%%%%%%%%%%

dof = input('How many DOF?: '); %%% D O F

%-- Time parameters --%
t = linspace(0,1/df,2*N);
dt = t(2)-t(1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------- Processing Data --------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for n = 1:dof
figure(1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
sprintf('Type natural frequency (Hz) # %d',n)
fn(n) = input('');
disp('')
%---------- Selecting in which way the freq. range will be specified ----------%
specify = menu('How do you want to specify the freq. range?','Range of window','Point

on Graph','Type it');
if specify == 1

% (+-) Value for the isolating window centered at the natural freq
R = input('Type the range (spectral lines) of the window (+ -): ');
% Isolate specified freq range
Comp_f = abs(round(fn(n)/df + 1)); % Componenet in 'f' where the nat freq is

located
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum freq

= %8.4g',f(Comp_f-R),f(Comp_f+R))

frf_F1 = zeros(Comp_f-R-1,1); % Putting zeros before the isolated FRF components
frf_F1(Comp_f-R:Comp_f+R) = frf(Comp_f-R:Comp_f+R); % Isolated FRF components
frf_F1(Comp_f+R+1:N) = zeros(N-(Comp_f+R),1); % Putting zeros after the

isolated FRF components

elseif specify == 2 | specify == 3
if specify == 2

figure(1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
title('Select the first point (minimum frequency)')
[x_frmh1,y]=ginput(1);
figure(1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
title('Select the first point (maximum frequency)')
[x_frmh2,y]=ginput(1);
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum

freq = %8.4g',x_frmh1,x_frmh2)
else

figure(1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
x_frmh1 = input('Minimum Frequency (Hz): ');
x_frmh2 = input('Maximum Frequency (Hz): ');
sprintf('The selected frequency range is:\n\tMinimum freq = %8.4g\n\tMaximum

freq = %8.4g',x_frm1,x_frm2)
end
% Isolating the Frequency Range
x_frmh1 = round(x_frmh1/df + 1);
x_frmh2 = round(x_frmh2/df + 1);
frf_F1 = zeros(x_frmh1-1,1); % Putting zeros before the

isolated FRF components (mult by mean of irf)
frf_F1(x_frmh1:x_frmh2) = frf(x_frmh1:x_frmh2); % Isolated FRF components
frf_F1(x_frmh2+1:N) = zeros(N-(x_frmh2),1); % Putting zeros after the

isolated FRF components (mult by mean of irf)
% Adding the conjugate components to the FRF

frf_F1(N+1) = real(frf_F1(N));
frf_F1(N+2:2*N) = conj(frf_F1(N:-1:2));
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end

% Adding the conjugate components to the FRF
frf_F1(N+1) = real(frf_F1(N));
frf_F1(N+2:2*N) = conj(frf_F1(N:-1:2));

% Separating the DFT in order to change the phase
for nn = 2:N;

frf_F1_j(nn) = j*frf_F1(nn); % Mult by the complex number j
end

for nn = N+2:2*N;
frf_F1_j(nn) = -j*frf_F1(nn); % Mult by the complex number -j the

conjugate part of the DFT
end

% Impulse Response Function of the isolated FRF
irf_F1 = (ifft(frf_F1));
irf_F1 = conj(irf_F1');

% Hilbert transform (quadrature function). The phase was changed previously
hil_F1 = (ifft(frf_F1_j));

% Envelope of the decaying signal
env_F1 = irf_F1 - j*hil_F1;
env_F1_dB = 20*log10(abs(env_F1)); % dB scale for the envelope's magnitude

% Least Square Method to calculate slope, and then damping ratio
figure(n + 1)
plot(t,env_F1_dB)
title('Select two points in the time domain (x axis)')
[x,y]=ginput(2);
[np] = round(x/dt + 1);
t1 = t(np(1):np(2));
env_F1_dB1 = env_F1_dB(np(1):np(2));
m = length(t1); % Calculates the amount of points data
sum_x = sum(t1); % Summatory of the t points (x components)
sum_y = sum(env_F1_dB1); % Summatory of the env_dB points (y components)
sum_x_sq = dot(t1,t1); % Summatory of the square value of each t

points (x components)
sum_xy = dot(t1,env_F1_dB1); % Summatory of the multiplication of t and

env_dB points (x and y components)
LQ1 = [m sum_x; sum_x sum_x_sq];
LQ2 = [sum_y ; sum_xy];
LQ3 = inv(LQ1) * LQ2;
slope = LQ3(2);
% Calculating damping ratio
damping_F1(n) = -slope/(20*log10(exp(1))) ;
damping_ratio_F1(n) = damping_F1(n)/(fn(n)*(2*pi)) ;

% Plotting the Hilbert Process in four plots (for each mode)
figure(n + 1)
subplot(2,2,1)
plot(f,abs(frf_F1(1:N-spl)))
title(sprintf('Isolated Natural Frequency # %d',n))

subplot(2,2,2)
plot(t,real(irf_F1))
title('Impulse Response Function')

subplot(2,2,3)
plot(t,abs(env_F1))
title('Envelope of the Impulse Response Function')

subplot(2,2,4)
plot(t,env_F1_dB)
title('dB Scale of the Envelope')

end
%--------- Calculatin the Exp. IRF ---------%
irf = real(ifft(frf));
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%--------- Calculating the eigenvalues ---------%
V_hil = exp((-damping_ratio_F1 + i*sqrt(1 - damping_ratio_F1.^2)).*fn*2*pi*dt);
rr = length(V_hil);
V_hil(rr+1:2*rr) = conj(V_hil);

%--------- Calculating eigenvector ---------%
L = length(t);
for r = 0:L-1

Va_hil(r+1,:) = [conj(V_hil).^r ];
end

Ar_hil = (inv(conj(Va_hil')*Va_hil)*conj(Va_hil')*(irf));

%---------- Calcualting the IRF Curve Fit ----------%
x_hil = Va_hil*Ar_hil;

%---------- Calcualting FRF Curve Fit ----------%
frf_hil = fft(x_hil);

%--------- Calculating the Residual ---------%
%-- FRF --%
Residual = frf(x_frm1:W_TR) - frf_hil(x_frm1:W_TR);
%-- IRF --%
ResidualT = real(x_hil) - irf;

%--------- Plotting ---------%
figure(dof + 2)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)),f(x_frm1:W_TR),abs(frf_hil(x_frm1:W_TR)))

figure(dof + 3)
plot(f(x_frm1:W_TR),angle(frf(x_frm1:W_TR)),f(x_frm1:W_TR),angle(frf_hil(x_frm1:W_TR)))

figure(dof + 4)
plot(f(x_frm1:W_TR),imag(frf(x_frm1:W_TR)),f(x_frm1:W_TR),imag(frf_hil(x_frm1:W_TR)))

figure(dof + 5)
subplot(2,1,1)
semilogy(f(x_frm1:W_TR),abs(frf(x_frm1:W_TR)))
subplot(2,1,2)
plot(f(x_frm1:W_TR),abs(Residual))

figure(dof + 6)
plot(t,real(x_hil),t,irf)

figure(dof + 7)
plot(t,ResidualT)

%--------- Displaying Results ---------%
Residues_Eigenvalues_hil = [ Ar_hil conj(V_hil') ]
Natural_freq_Damping_ratio_hil = [ fn' damping_ratio_F1' ]

%--------- Calculating & Displaying the Standard Deviation ---------%
% Frequecy domain (Residual)
Curvefit_Standard_deviation_FRF = sqrt((Residual'*Residual)/length(Residual))

% Time domain (ResidualT)
Curvefit_Standard_deviation_IRF = sqrt((ResidualT'*ResidualT)/length(ResidualT))

% Around each natural frequency in the FRF
stdn = menu('Standard Deviation around each nat. freq.','Yes','No');
if stdn == 1

std_nat_freq
end

diary off % Turns diary off

sprintf(' The Output file (results) is %s_%s_results.m',method,data)
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else
error('Can not process data')
disp('The FRF data needs to be in three columns')
disp(' - First column: frequency')
disp(' - Second column: Real part')
disp(' - Third column: Imaginary part')

end
 

Standard Deviation 
clear x_frm1
disp('Standard Deviation around each nat. freq.')
disp([sprintf('\n')])
np = input(' How many modes were identified? ');
disp([sprintf('\n')])
for r = 1:np

NT = input(sprintf('\tType natural freq # %d (integer number): ',r));
x_frm1 = round((NT - min(f))/df + 1); % Index Matrix of Nat. Freq.
disp([sprintf('\t\t') 'Standard Deviation = ' ...

num2str(sqrt((Residual(x_frm1-10:x_frm1+10)'*Residual(x_frm1-
10:x_frm1+10))/length(Residual(x_frm1-10:x_frm1+10))))])

disp([sprintf('\n')])
end
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