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Chapter 2  
 
Wave Propagation in Viscous Fluid 
 
 
 
 
 
This chapter summarizes with the derivation of the mathematical form of the acoustic 

wave propagation in the fluid. Before we derive the final form of the wave propagation 

equation in viscous fluid, we first look at two conservation (mass and momentum) of 

equations and state equation in the fluid.  Detailed derivations can be found in the 

literatures [4, 6, 27, 28].  We limit our discussion only on the lossy 1-dimensional plane 

wave. 

 

2.1 One-dimensional Viscous Wave Equation 

2.1.1 One-dimensional Continuity Equation (Conversation of Mass) 
 
Consider the flow of a compressible fluid through a duct of arbitrary cross section (area 

S) in one dimension.  The control volume (CV), is the segment between x and xx ∆+ .  
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We want to know the rate at which the inside mass changes.  First, we made two 

assumptions: 

 

1. The CV is fixed in space  

2. The flow is one-dimensional, so the mass flow only depends on t and x. 

 

 

 

 

 

 

 

, where ρ, u are the average mass flow density and average mass flow speed, 

respectively.  For 0→∆x , ρ and u will become a true point function. 

 

The time rate of increase of mass inside the CV is equal to net mass flow into the CV 

through the CV surfaces or in mathematical terms, 

 

xxx uSuSxS
t ∆+−=∆
∂
∂ ||)( ρρρ        ( 1 ) 

Since S is a constant and x∆  is not a function of time, Eq. (1) may be rearranged as 

following: 

 

x
uu

t
xxx

∆
−

=
∂
∂ ∆+|| ρρρ  

 

Note that, to simplify the notation, we use the subscript (t & x) to represent the derivative 

of the function respective to time and/or distance.  In the limit as 0→∆x , the right-hand 

side becomes xu ∂∂− )(ρ , and we obtain 

 

Mass flow in 
= xuS |ρ  

x  xx ∆+

Mass flow out 
 = xxuS ∆+|ρ  

Mass flow in 
= xuS |ρ  

x  xx ∆+

Mass flow out 
 = xxuS ∆+|ρ  
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0)( =+ xt uρρ          ( 2 ) 

 

This is the equation of continuity. 

 

 

2.1.2 Conversation of Momentum in One Dimension 
 

The same control volume (CV) is again used to derive the conservation of momentum 

relation.  The momentum per unit volume is uρ , and the momentum flux (momentum 

per unit area per unit time) is Su 2ρ . 

 

 

 

 

 

 

 

Applying Newton’s second law, and taking into account the momentum inflow across the 

CV boundaries, the time rate of increase of momentum inside the CV equals to the sum 

of the net momentum inflow across boundaries and the sum of the forces acting on the 

CV. 

 

Forces are generally classified into two kinds: body forces and surface forces.  In this 

case, we make some assumptions about the forces in addition to the assumptions listed 

for the derivation of continuity equation. 

 

1. We could neglect body forces.  The most common body force is gravity, since we 

are only considering a short distance; the effect of gravity is not significant. 

2. The fluid is inviscid, (we will later discuss the effect of viscosity).  So the only 

significant surface force is that due to the pressure P at the CV end surface. 

xxPS ∆+|  xPS |  

Momentum outflow 
xxSu ∆+= |2ρ  

Momentum inflow 
xSu |2ρ=  

x xx ∆+
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Given these four assumptions, the mathematical form of the conservation of momentum 

statement is 

 

xxxxxx PSPSSuSuxSu
t ∆+∆+ −+−=∆

∂
∂ ||||)( 22 ρρρ  

 

Divide the above equation by xS ∆ , and take the limit as 0→∆x : 

0)()( 2 =++ xxt Puu ρρ         ( 3 ) 

 

Expanding the first two terms, we have 

 

0)( =++++ xxxtt Puuuuuu ρρρρ  

 

From the continuity equation (eq (2)), the first and third term is canceled: 

0)( =++ xxt Puuuρ         ( 4 ) 

,which is simpler than eq (3).  Thus, it is the final form of the conservation of momentum. 

 

To include the viscous effect in momentum equation, the surface force is therefore 

present.  From Navier-Stokes equation, we could rewrite the conservation of momentum 

as: 

 

zzxxt uPuuu )2()( µλρ +=++        ( 5 ) 

, where µ is the shear viscosity coefficient and λ is the dilatational viscosity coefficient. 

 

2.1.3 Equation of State 
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For fluids or gases, the equation of state relates to pressure can be expressed as a function 

of density and entropy.  When losses are negligible, the entropy remains constant, and 

then the pressure is a function of density alone: 

 

)(ρPP =  

 

For gases, the isentropic equation of state (so called adiabatic gas law) is often used: 

 

γ

ρ
ρ )()(

00
=p

P          ( 6 ) 

 

where γ is the specific heats ratio and 0p  and 0ρ  are the static values of P and ρ. 

 

In the case of liquid, the equation of state can be expressed as the series of the general 

isentropic equation of state from eq. (6): 

 

L+
−

+
−

+
−

+= 3

0
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0

0

0

0
0 )(

!3
)(

!2 ρ
ρρ

ρ
ρρ

ρ
ρρ CBApP      ( 7 ) 

 

The coefficient A, B, C … are determined from experiments or from other analyses.  

From some derivation coefficient A is equal to 2
00 cρ . 0ρ  is the static value of the fluid’s 

density and 0c is the static value of the velocity of the wave, respectively. 

 

If we take a further step, simplify eq. (7) by introducing the excess pressure 

 

0pPp −≡  

 

and the excess density is 
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0ρρρδ −≡  

 

and incorporating these into coefficient A, then the isentropic state of equation for fluid 

(eq (7)) becomes 

 

])(
!3!2

1[
00

2
0 L

ρ
ρδ

ρ
ρδδρ

A
C

A
Bcp ++=       ( 8 ) 

 

 

2.1.4 Linearization / Small-signal approximation 
 

Eq. (2), (5), (8) are nonlinear equations, we could obtain the linear version by introducing 

the so-called small-signal approximation.  Most sound waves disturb the status quo in the 

fluid only around a small region, the variables associated with sound, excess pressure, 

excess density, and particle velocity may be assumed to be small quantities of first order.  

We start by assuming 

 

0ρρδ <<  

 

Given the expression of excess density, we can expand the equation of continuity (eq (2)) 

as 

 

00 =+++ xxxt uuu δρρδρδρ  

 

The second and fourth terms are second-order terms; each contains the products of two 

small quantities.   The first and third terms are first-order term.  If the first-order terms 

are small, then the second-order can be neglected.  Dropping them, we obtain 

 

00 =+ xt uρδρ          ( 9 ) 
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The momentum equation may be linearized similarly.  Expanded eq. (5) becomes 

 

xxxxtxt upuuuuuu )2(00 µλδρδρρρ +=++++      ( 10 ) 

 

Again, we can drop the higher order terms.  The second, third, fourth terms are higher 

than first order, so we can neglect them.  Then the conservation of momentum equation 

becomes 

 

xxxt upu )2(0 µλρ +=+         ( 11 ) 

 

Lastly, the isentropic equation of state (eq. (8)) can be linearized by inspection.  Eq. 8 

becomes 

δρ2
0cp =           ( 12 ) 

 

2.1.5 Linear Viscous Wave Equation 
 

Partial Discharge (PD) is a point charge emitted from the windings [19].  Since it is a 

sudden release of energy, it generates some acoustic wave propagating around its 

neighborhood.  Besides, considering the point charge is released in an infinitely large 

amount of medium, the acoustic wave could be considered as a plane wave. 

 

The three fundamental acoustic plane wave equations are derived in the previous section.  

The linearized equations are summarized as following: 

 

Continuity: ,00 =+ xt uρδρ   (9) 

Momentum: xxxt upu )2(0 µλρ +=+  (10) 

State: δρ2
0cp =  (11) 



 

 12

 

ρ  is the density of the fluid, p is the excessive pressure of the fluid, u is the velocity of 

the fluid.   The subscript (t & x) represents the derivative of the function respective to the 

variable. ,λ ,and µ are dilatational and shear viscosity coefficients, respectively. 

 

In this section, we combine eq. (9), (10) and (11) to find the final form of the viscous 

wave equation. 

 

Since the shear viscosity coefficient µ  has been measured for many fluids, the 

dilatational viscosity coefficient λ  will not be found.  By Stoke’s assumption, we could 

approximate 32µλ −= , which leads to replacement of µλ 2+  by 34µ .  For fluids 

that do not follow Stokes’s assumption, modern practice is to replace λ  by Bµµ +− 32 , 

where Bµ  is called the bulk viscosity coefficient.  Therefore, VB
~2 3

4 µµµµλ =+=+ , 

where µµ BV += 34~ .  In our study, we assume that the fluids follow Stoke’s 

assumption.  The momentum equation becomes 

xxxt upu
3

4
0

µρ =+          ( 13 )  

 

take the derivative respective to x on (9) and substitute xxu  into (12) and it becomes: 

txxt pu δρ
ρ
µρ

0
0 3

4
−=+                   ( 14 ) 

from (11), we take the derivative respective to t and x, and we get txtx cp δρ2
0= , and 

substitute txδρ  into (13), 

 

txxt p
c

pu 2
00

0 3
4
ρ
µρ −=+  

 

and we take the derivative respect to x of the above equation 
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txxxxtx p
c

pu 2
00

0 3
4
ρ
µρ −=+         ( 15 ) 

 

From (9) and take the derivative respect to t, and we get xttt u0ρδρ −= ; also from (11) 

and take the 2nd derivative respective to t, and we get tttt pc 2
01=δρ , therefore 

ttttxt pcu 0
2
00 11 ρδρρ −=−= .  Finally we substitute xtu  into (14), and then we have 

 

01
3
4

2
0

2
0

=−+ ttxxxxt p
c

pp
c
ν         ( 16 ) 

 

where 0ρµν =  is the kinematic viscosity coefficient.  The three-dimensional version of 

this equation is shown as follows: 
 

01
3
4

2
0

22
2
0

=−∇+∇ ttt p
c

pp
c
ν         ( 17 ) 
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2.2 Time-Harmonic Analytical Solutions to the Viscous 
Wave Equation 

 

2.2.1 Solution 
 
To solve eq(16), it is customary to assume a general solution of the partial differential 

equation and find the particular solution for the equation.  Also, to take the various 

mechanism of dispersion in the fluid one at a time, we can determine their effect on 

sound propagation by following the procedure outlines in Fig 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Dispersion relation algorithm 
 

Since we let )(
0

kxtjepp −= ω , then )(2
0 )( kxtj

xxt ejkpp −⋅−= ωω , )(2
0 )( kxtj

xx ekpp −−= ω , 

and )(2
0 )( kxtj

tt epp −−= ωω .  Insert the above three derivatives into eq(15) and 

eliminating the constant and the common exponential terms, then we get 

 

Wave Equation

Assume solution )(
0

kxtjepp −= ω  

Dispersion relation
)(ωkk =  

αβ jk −=

Phase velocity 
βω /=phc

Attenuation 
coefficient α 

Assume solution )(
0

kxtjepp −= ω  Assume solution )(
0

kxtjepp −= ω  
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0)
3
41( 2

0

2
2

2
0

=−+
c

k
c

j ωνω  

or 

 

 

 

 

, where vδ  is the dimensionless coefficient 

 

2
0cv
νωδ =  

 

If we only consider the wave propagates in positive direction, which k=β - jα , the time-

harmonic solution of the excess pressure becomes 

 

)(

0

)(
0

)(
0

βω
ω

α

βωα

αβω

xtj
x

xtjx

xjxtj

eep

eep

epp

−
−

−−

+−

=

=

=

         (18) 

 

The magnitude of the attenuation coefficient α determines how fast the peak amplitude of 

)(
βω

ω
xtj

e
−

 decays.  Also, the variation of wave propagation speed βω=phc  will be 

determined by β.  

 

Notice that the form of above excess pressure is ideal for time-harmonic forced waves.  A 

source emitting a signal tjepp ω
0=  at x=0 is implied.  Also, the above derivation is done 

in Cartesian coordinate; it can be easily extended to spherical or cylindrical coordinate.  

 

)(

3
41

0 αβ
δ

ω j
j

ck
v

−±=
+

±=
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2.2.2 Ideal 1D Acoustic Wave Propagation at Different Frequencies in 
Water and Oil 

 
To study the wave propagation phenomenon in different mediums and under different 

frequencies, we can apply the theoretical acoustic viscous wave equation solution from 

section 5 with the coefficients associated with different fluid medium. 

 

Recap assumptions on the acoustic wave theoretical derivation: 

 
• Plane wave (1-dimension) 

• Adiabatic process 

• No internal molecular process 

• Only viscous effect considered 

• The fluid follows Stoke’s assumption, for which the dilatational viscosity 

coefficient equals to minus two-third of viscosity coefficient. 

 
Using caster oil as the medium, the parameters are given as following: 

Density: )(950 30 m
kg=ρ  

Propagation Velocity: )(15400 s
mc =  

Viscosity coefficient: )(96.00 m
sN −=µ  

 
Let the wave peak amplitude be 1 at the source (x=0), we simulate the wave peak 

amplitude, which is the term xep α−
0  in eq. (17) with p0 to be 1, vs. the distance from the 

source at various frequencies.  The results are shown in the following two figures (in dB 

and linear scale): 
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Fig 2. Excess pressure amplitude (dB) vs. the distance from the origin.  The wave peak amplitude at 

the origin is 1. 
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Fig 3. Excess pressure amplitude vs. the distance from the origin.  The wave peak amplitude at the 
origin is 1. 
 
 
As expected, the peak wave amplitude becomes smaller as we move further from the 

source.  We can also notice that as the wave frequency goes higher, more attenuation can 

be observed at any given location.  In other word, the attenuation factor depends on both 

the location and frequency. 

 
Similarly, we simulate the wave peak amplitude vs. distance of water using the following 

parameters: 
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Density: )(998 30 m

kg=ρ  

Velocity: )(14810 s
mc =  

Viscosity coefficient: )(001.00 m
sN −=µ  

 
The major difference between caster oil and water, in terms of parameters, is viscosity.  

Water is much less viscous than oil, about a thousand times less.  So we can expect that 

the wave peak amplitude attenuation in water as further away from the source is much 

less the attenuation in caster oil. 

 
Fig. 4 and 5 shows the wave peak amplitude vs. distance from the origin in water 
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Fig 4. Excess pressure amplitude (dB) vs. the distance from the origin.  The wave peak amplitude at 

the origin is 1. 
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Fig 5. Excess pressure amplitude vs. the distance from the origin.  The wave peak amplitude at the 

origin is 1. 
 
 
Note that, the acoustic wave peak amplitude in water gets very minor attenuation across 

frequencies in this calculation, even if we are at 2 meter away from the source.  In the 

caster oil case, we could observe large attenuation of wave peak amplitude, due to the 

larger coefficient of viscosity.  This result shows that if we measure the acoustic wave in 

water at any location, assuming we are inline with the source, we will get a comparable 

signal density as the source, however in the caster oil case, we will need a more sensitive 

sensor to catch up the signal and perhaps a need for more complicated signal processing 

units to filter out the noises, since the signal level might be low. 

 

2.3 Experiment 
 

We measured the acoustic wave with a container filled with water inside.  Two PZTs, one 

acting as the source emitter and one as the detector are then immersed inside the water. 

The experiment setting is shown in Fig 6. 
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Fig 6. Experiment setup.  Left: top view. Right view: side view 
 
The source and detector are inline and both are lifted up to a same height by some steel 

fixture.  A typical acoustic waveform is shown in fig. 7. 
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Fig 7. Typical acoustic waveform 

 
We recorded the waveform three times at each location and did an average in time 

domain among the three.  Then we performed Discrete Fourier Transform to get the 

spectrum of the waveforms.  Most of the energy concentrates in the region of 300kHz to 

400kHz.  The following two plots show the zoom spectrum between 100kHz and 

600kHz; and 280kHz and 400kHz, respectively. 
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Fig 8. Zoomed FFT of the averaged acoustic wave between 100kHz and 600kHz. The legend indicates 

the distance between the source and measurement point 
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Fig 9. Zoomed FFT of the averaged acoustic wave between 280kHz and 400kHz. The legend indicates 

the distance between the source and measurement point 
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As shown in fig. 8 and fig. 9, the maximum amplitude occurs in the region of 320kHz 

and 340kHz across different locations.  The maximum peak between 300kHz and 

400kHz region (in fig. 10) shows that there is not much amplitude variation. 
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Fig 10. Maximum amplitude between 300kHz and 400kHz. 

 
Also, we compare the peak amplitudes at 320 kHz. The peak amplitudes stay within the 

same level across the distances from the origin. 
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Fig 11. Amplitude at 320kHz. 
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The experiment results in water coincide with the findings from theoretical derivation, 

which the acoustic wave peak amplitude does not change with various distances from the 

origin. 

 
 

2.4 Simulation 
 
A computer simulation using ABAQUS is set up using the geometry of the experimental 

container; the acoustic wave propagation damping-rate in the experimental container can 

be estimated. Fig 12 shows the normalized wave amplitude at the locations with different 

distances from the source. 

 
 
 
 
 

 
  

 
 
 
 
 
 
 
 
 
 

Fig 12. Propagation Damping Rate in the Experimental Container 

 
Comparing these two figures (Fig 10 and Fig 12) obtained from the experiment and the 

simulation; it is found the wave propagation damping-rates are similar. The wave peak 

amplitude does not change much with various distances from source in water, which 

confirms the above conclusion when comparing the experimental result with the 

theoretical analysis result. But when distance to the source is larger than 120mm, the 

damping rate from the experiment and the computer simulation are different from that of 

the theoretical analysis. In the theoretical analysis, acoustic wave propagates in the 
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infinite medium while it is not the case in the experimental container. So the discrepancy 

was due to the size limitation of the experimental container (same happened to the 

computer simulation model), and influence of its inner structures. The wave would be 

reflected at the rear surface of the experimental container to fortify the wave amplitude it 

to some extent. In this situation, the wave propagation may show different damping 

features from that in infinite medium in the theoretical analysis. 

 


