Adjusting Process Count on Demand for Petascale Global Optimization
by
Nicholas Radcliffe

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
in

Computer Science and Applications

Layne T. Watson, Chair
Adrian Sandu
Kevin Shinpaugh

Dec. 15, 2011
Blacksburg, Virginia

Key words: Message Passing Interface (MPI); Global optimization; Petascale computing;

Dynamic process count

Copyright 2011, Nicholas Radcliffe

Adjusting Process Count on Demand for Petascale Global Optimization
by
Nicholas Radcliffe

(ABSTRACT)

There are many challenges that need to be met before efficient and reliable computation
at the petascale is possible. Many scientific and engineering codes running at the petascale
are likely to be memory intensive, which makes thrashing a serious problem for many
petascale applications. One way to overcome this challenge is to use a dynamic number
of processes, so that the total amount of memory available for the computation can be
increased on demand. This thesis describes modifications made to the massively parallel
global optimization code pVTdirect in order to allow for a dynamic number of processes. In
particular, the modified version of the code monitors memory use and spawns new processes
if the amount of available memory is determined to be insufficient. The primary design

challenges are discussed, and performance results are presented and analyzed.

ACKNOWLEDGEMENTS

I have been very lucky to have had such a knowledgeable advisor, Dr. Layne T. Watson.
His advice has been invaluable, and his prodding has helped me get to where I needed to
be. I am fortunate to have taken an interesting and informative course with Dr. Adrian
Sandu, and I am glad that he is on my thesis committee. I am also thankful to Dr. Kevin
Shinpaugh for taking time out of his busy schedule to be on my committee. I thank Dr.
Masha Sosonkina for advice and support with my research, and I thank Dr. Raphael Haftka
and Dr. Michael Trosset for their advice.

I thank my lab mates for their support and kindness during my time here at Virginia
Tech. T thank Dave Easterling for helping me get started when I first arrived at Virginia
Tech, and I thank Shubhangi Deshpande for her help with typesetting my thesis.

I would like to thank the National Energy Research Scientific Computing Center
(NERSC) for use of the Carver cluster, and Aron Ahmadia at the King Abdullah University
of Science and Technology (KAUST) for use of the Shaheen and Neser clusters.

I would also like to thank my parents for making sure that I received a good education,
and for their love and support over the years. Finally, I would like to thank the love of my
life, Cecile Nevares, for making all the hard work worthwhile.

This work was supported in part by AFOSR Grant FA9550-09-1-0153 and AFRL Grant
FA8650-09-2-3938.

iii

TABLE OF CONTENTS

CIntroduction ... 1
L Literature Review e 2
. Description of DIRECT ... e e 3
3.1 Important Details of the Implementation — 4

. Problem Descriptioncooiiiiiii 6
4.1 Choosing the Spawning Communicator — i, 6
4.2 Executing the Spawn ... e 7
4.3 Updating the Communication Scheme ciiiiiiiiin... 9
4.4 Integration of the Spawned Masters — 10

. Comparison of the “Many Communicator” and “Merge” Methods 13
5.1 Experimental Setup ... 14
5.2 ResSUItS 16
6. Dynamic Load Balancing 21
. Performance Results i 22
7.1 Toy Problems e 22
7.2 M DN o 24
7.3 Performance of the Dynamic Load Balancing Mechanism 26

. COMCIUSIONS oottt e 29
REfErenCes ... 30
Appendix A: List of Figures 31
Appendix B: spVTdirect.fO5 32

LIST OF FIGURES

Figure 1. Illustrations of DIRECT’s box columns (left), as well as VTdirect in action

(TEgIE) .+t 4
Figure 2. Illustration of the “many communicator” method 13
Figure 3. Illustration of the “merge” method 14
Figure 4. “Many communicator” (triangles) and “merge” method (circles) broadcasts
ON SYSEEIM G ..ot 16
Figure 5. “Many communicator” (triangles) and “merge” method (circles) gathers on
SYStEI G .o 17

Figure 6. “Many communicator” (triangles) and “merge” method (circles) point-to-

point communications with wild card source on System G 18

v

Figure 7. Point-to-point communication times for MPI_SEND on System G (left) and

Carver (TIght) ... 19
Figure 8. Point-to-point communication times for MPI_.SEND on Shaheen (left) and
Neser (Tight) . ..o 19
Figure 9. Point-to-point communication times for MPI_SEND on System G using Open
MPT (left) and MVAPICH (right)o 19
Figure 10. Point-to-point communication times for MPI_SEND on Neser using GCC
(left) and TFORT (Tight)oenen e 20

Figure 11. Comparison of runtimes per iteration for the GR (left) and QU (right)
objective fUNCEIONS i 23

Figure 12. Comparison of runtimes per iteration for the SC (left) and MI (right)

objective fUNCEIONSt 23
Figure 13. Runtimes per iteration for the MISleep objective function 24
Figure 14. Runtimes per iteration for the MFDn objective function 25
Figure 15. Box count versus iteration for GR (left) and QU (right) 26
Figure 16. Load deviation versus iteration for GR (left) and QU (right) 26

Figure 17. Box count (top) and deviation (bottom) versus iteration for QU using

temporary “aggressive” switch 28

Chapter 1: INTRODUCTION

The ultimate goal of the work presented in this thesis is to develop a robust global optimization
code that runs efficiently and effectively at the petascale. This means that the program
must run efficiently, and be able to tolerate failures of any kind, on a cluster with hundreds
of thousands of cores. There are a number of challenges that must be overcome before this
is possible, for instance, designing the optimization code so that the speedup obtained by
using multiple cores scales up to hundreds of thousands of cores. This challenge alone is
enough to make the petascale daunting [1].

Beyond maintaining the efficiency of the code at the petascale, one must ensure that
the code is robust and can recover from any number of failures. One possible failure results
when a node in the cluster crashes. This type of failure is generally dealt with by including a
checkpointing mechanism in the code. Another type of failure that can occur is insufficient
main memory, which can lead to thrashing. Given the crippling effects of thrashing, a
mechanism for dealing with insufficient memory would be indispensable to a large number
of scientific and engineering codes that hope to run efficiently at the petascale.

The main contribution of this work is a global optimization code that is able to detect
insufficient levels of available memory, and in response spawn new processes on nodes with
available memory. The solution to insufficient memory presented in this thesis is specific
to a particular global optimization code (pVTdirect), but many aspects of the design, as
well as the lessons learned, can be applied to a number of parallel scientific or engineering

codes, especially those that make use of the master-worker design pattern.

Chapter 2: LITERATURE REVIEW

Adaptive parallel applications are applications that can alter their process count in response
to changes in available resources. Adaptive parallel applications are primarily used in grid
computing due to fluctuations in available resources (a user might not want cycles being
borrowed from his machine when he is using it), as well as the loose coupling of tasks. As far
as the authors know, dynamically adjusting the process count of a parallel MPI application
with tightly coupled processes is unique to the current work.

Tools have been developed to help users write adaptive parallel applications. In [11], a
system that enables OpenMP programs to run on a network of workstations with a variable
number of nodes is described. There are similar systems for grid computing, such as the
system described in [12]. The adaptive parallel systems intended for grid computing are
of little use for the purposes of this work, because they depend on the noninteraction of
processes in the user application (i.e., the user application must be embarrassingly parallel).
The communication between the masters in pVTdirect complicates increasing their count.

Process migration has been used to adjust the number of MPI processes running on a
physical processor (although the total number of processes remains unchanged). Adaptive
MPI [13] uses processor virtualization to dynamically manage resources. In particular, virtual
MPI processes can be migrated from one physical processor to another, allowing applications
written with Adaptive MPI to increase the process count on a particular processor (while
decreasing the process count on one or more processors). Although Adaptive MPI is intended
for use with applications developed in C++, it might seem as if process migration more
generally could be useful for the present work. For instance, if masters lacked sufficient
memory, one or more masters could be migrated to processors with more available memory.
However, this is not an ideal strategy for increasing the memory available to masters in
pVTdirect for two reasons. First, if a process is migrated to a new node, then the memory
that had been used to store boxes on the previous node is lost. Second, unused processors
are in general needed to increase overall available memory (see Chapter 4.2.1). Within
master-worker style applications, such as pVTdirect, it may be wasteful to allocate one
process per node, and so it is difficult to ensure enough memory without spawning an extra

process on a “fresh” node.

Chapter 3: DESCRIPTION OF DIRECT

The algorithm DIRECT (Dlviding RECTangles) by D. R. Jones [2] is a deterministic
global optimization algorithm. DIRECT does not require the computation of the gradient of
the objective function, or even objective function values (ranking information is sufficient).
It performs Lipschitzian optimization, but does not require knowledge of the Lipschitz
constant.

DIRECT works as follows [3]. The algorithm begins with an initial box normalized to
the unit hypercube. The objective function (assumed to satisfy a Lipschitz condition) is
evaluated at the center of this box. The current minimum value is initialized to this value.
An evaluation counter m and an iteration counter ¢ are initialized to m = 1 and ¢t = 0.
The following process is repeated until m or ¢ reaches some prespecified limit (although the
subroutine pVTdirect [3] supports several other stopping conditions).

Selection. Identify the set S of “potentially optimal” boxes. Here “potentially optimal”
means that (1) for some Lipschitz constant K, the box potentially contains a point with
smaller objective function value than any other box, and (2) F(¢)— K -L/2 < frin— €| fminl,
where F' is the objective function, ¢ is the center point of the box, K is the same Lipschitz
constant, L is the box diameter, f,,;, is the current minimum value for the objective
function, and € is a small, nonnegative, fixed constant.

Sampling. Select one of the potentially optimal boxes B from S. For box B, identify
the set I of dimensions with maximum side length L, and let § = L/3. Sample the function
at the points of the form ¢ + de; for each i € I, where c is the center of the box and e; is
the ith standard basis vector. Update m.

Division. Divide the box containing the point ¢ into thirds along the dimensions in
I, beginning with the dimension with the least value of min {f(c + de;), f(c — de;)}, and
ending with the dimension with the greatest such value. Update the minimum value.

Iteration. Remove the box B from the set of potentially optimal boxes S. If S = 0,
then increment ¢ and go to Selection. Otherwise, go to Sampling.

The method of choosing the subbox according to both objective function value and
box size gives DIRECT its local and global aspects. DIRECT performs a convex hull
computation to determine potentially optimal boxes without using the Lipschitz constant
directly (see Figure 1 for an illustration). From Figure 1, it is clear that if a box is on the
convex hull, then the box has an objective function value that is minimal amongst all boxes
of the same size (notice that the set of boxes of the same size forms a “box column”, as
seen in Figure 1). Since every box is ultimately examined, DIRECT will not get stuck at a
local optimum, but will instead perform a global search of the feasible set. Further details
can be found in [2].

VTDIRECT [4] is a Fortran 95 implementation of DIRECT that uses dynamic data

structures and has options and stopping conditions not in earlier implementations of DIRECT.

3

Center Function Value

fmin
f

10

i - box column Lo o -3
08 08 - 35 -39
o - 43
O O Q 0.6 06 s - 48
L5 O - s - 52
O
O D 0.4 04 s - 57
O i O 57 — 62
O O O : i O O 02 02 62 _ 66
| [) [66 - 7.0
D O ; ! O 0'00.0 02 04 06 08 L0 '0(:.(; 02 04 06 os 10 [l70-7s
O Q D D initial after | iteration ® Points
D O 10 10
0g ©
08 08
O O O O \-— - 06 06
= o o O ; convex hull "' F “B
= 2 02
et 1.‘__\‘ 0 I
S screening line %90 02 o4 05 08 10 oo 02 04 m 08 10
after 5 iterations after 10 iterations

-

Box Dhameter

Figure 1. Illustrations of DIRECT’s box columns (left), as well as VTdirect in
action (right).

Based on experience from using the serial code VIDIRECT on applications such as aircraft
design, cell cycle modeling, and wireless communication system design, VIDIRECT was
polished and extended to include both serial and massively parallel (terascale) versions.
These codes eventually became part of the ACM TOMS algorithm VIDIRECT95 [3]. In
this Fortran 95 package the user callable subroutines are VTdirect (serial) and pVTdirect
(parallel). pVTdirect is efficient at the terascale [5, 6, 7] on real applications, but likely
not so at the petascale. The motivation for the present work is modifying pVTdirect to be
efficient at the petascale, where applications in systems biology and nuclear physics await

such capability.

3.1 Important Details of the Implementation

pVTdirect, the parallel version of VTdirect and the only version under consideration
in this thesis, makes use of the master-worker design pattern. The masters handle the
program logic, whereas the workers perform function evaluation tasks. The masters are
tightly coupled, in the sense that the state of one master significantly affects the state of
other masters. There is a global worker pool shared by all masters. Workers from the
pool select masters to which they send requests, and masters respond to these requests
by sending points at which to evaluate the objective function. Optionally, the initial box
can be partitioned into subdomains, each with assigned masters, where masters assigned
to separate subdomains operate independently. In fact, when n subdomains are used, it is
almost like running n separate instances of pVTdirect, with the important exception that
the separate subdomain optimizations share some resources, e.g., workers. Both the masters
and the workers run through a main loop. Since the masters handle all the program logic,

4

an iteration of pVTdirect will be defined as an iteration of the main loop for the masters.
The masters synchronize at every iteration of their main loop via MPI_BARRIER, whereas
the workers do not synchronize at all.

It is possible to have more than one master per subdomain. The computational work
done by masters is relatively insignificant, but more than one master per subdomain may
be desired—the masters store the current state of the search (in the form of box columns),
and the memory available to multiple masters may be required to completely store the
current state. By the nature of the computation, the memory required to store the current
state of the search increases with time. This means that the current collection of masters
may become unable to store the current state of the search, which may lead to thrashing.
Thrashing can be avoided by increasing the number of processors in the computation, hence
increasing the amount of memory available to store the current state of the search. Since
the memory burden is primarily on the masters, it is necessary to spawn new masters on
idle processors in order to obtain a substantial amount of extra memory. Ideally, one would
like to dynamically increase the number of masters, rather than restarting the computation
(which may last for days, or even months) with a greater number of masters. Doing this in
the context of MPI and the (necessarily) distributed data structures used by pVTdirect is

nontrivial, and constitutes the core topic of this thesis.

Chapter 4: PROBLEM DESCRIPTION

Running low on memory is a problem for masters in pVTdirect. pVTdirect was
modified in order to keep track of memory use, and to spawn new masters when the amount
of available memory falls below a certain threshold. Spawning new masters when memory
is low, and subsequently integrating them into the running program, is a complicated and
subtle task. The primary challenges are (1) determining which processes should do the
spawning (this choice affects other design factors, such as how the communication scheme is
handled), (2) executing the spawn when the workers behave asynchronously, (3) updating the
communication scheme of the newly expanded collection of processes, and (4) integrating the
spawned masters into the current job, obtaining a coherent execution unit. A modification
of pVTdirect, called spVTdirect, is considered as a possible solution to the challenges
described above.

The code spVTdirect works as follows. The number of boxes possessed by a particular
master is monitored, and if the memory needed to store those boxes exceeds a user-defined
threshold, a spawn request is made. When all processes have detected the spawn request,
MPI_COMM_SPAWN is executed and new masters are spawned. All processes, both spawning
and spawned, must then update their state in order to integrate the new masters into the
already-running job. After the state update procedure is completed, the current iteration
restarts at the top of the main loop for the masters, and the workers restart at the top of

their main loop.

4.1 Choosing the Spawning Communicator

The choice of communicator used to spawn the new masters is important, because it
affects how communication between workers and spawned masters will be handled. After
MPI_COMM_SPAWN has been executed, a handle for an intercommunicator is returned. Since the
local group of the intercommunicator contains the processes that performed the spawn, and
the remote group contains the spawned masters, the spawned masters can only communicate
directly with the processes that performed the spawn. Consequently, as far as communication
is concerned, the best choice of spawning communicator is the entire collection of current
processes. This choice of communicator facilitates communication between the spawned
masters and all current processes.

However, using the entire collection of current processes to perform the spawn is
problematic, because the spawning subroutine MPT_COMM_SPAWN is both blocking and collective
over the set of spawning and spawned processes. If the entire collection of current processes
performs the spawn, then the masters and workers must all make a collective blocking call to
MPI_COMM_SPAWN. This is simple for the masters, which synchronize at every iteration of their
main loop via MPI_BARRIER. However, the situation is more complicated with the workers
since they operate asynchronously, in the sense that attempts to synchronize their behavior
with MPI_BARRIER (or any collective, blocking operation) generally lead to deadlock.

6

4.2 Executing the Spawn

Every master monitors its own memory usage. If the amount of available memory for
a master falls below a given threshold, it notifies all other processes of a need to spawn
new masters (i.e., obtain more memory). After a process has received notification of a
spawn request, that process first calls a spawning subroutine that executes MPI_COMM_SPAWN,
followed by a subroutine that updates state.

Using all of the current masters, as well as the workers, to perform the spawn is a delicate
procedure. Since the masters already synchronize at the top of their main loop, it would be
tempting to synchronize all processes at that point, and then use a collective communication
to notify all processes of a spawn request. However, all attempts to synchronize the workers
with MPI_BARRIER have lead to deadlock. T'wo options for notifying all processes of a spawn
request have been explored in the current work. One option is to notify all processes of
a spawn request by having the requesting process write to a “spawn request” file. This
can be problematic, because different processes read the spawn request file at different
times, and hence one process may begin executing MPI_COMM_SPAWN while the others are still
busy, which can lead to deadlock. A time sharing method can be used to prevent deadlock
from occurring when a process performs point-to-point communications—when performing
a point-to-point communication, a process goes back and forth between checking if the
communication has completed, and reading the “spawn request” file to see if there is a
pending request. Collective communications are only performed by the masters, and they
only occur when the masters and workers are not communicating. Hence, they are never a
source of deadlock during the spawn notification procedure.

The time sharing method is effective, but it is not portable, due to its reliance on a
shared file system. A more portable solution is to first notify all masters of a spawn request
using a type of reduction operation (technically, MPI_ALL_REDUCE is used), and then have
the lead master notify the workers. If the MPI_ALL REDUCE is executed at the top of the
main loop for the masters, then the masters can prepare for a spawning event before the
next iteration even begins. After the masters have been notified, the simplest solution for
notifying the workers is to use code that is already in place in pVTdirect. In pVTdirect, the
workers receive messages from masters at every iteration of an inner loop for the workers,
and the tag associated with a message determines the response to that message. So, in
spVTdirect, the lead master can simply send a message to each worker with a tag indicating
a pending spawn request. The workers receive the messages and prepare for spawning.

On iterations without a pending spawn request (this is the vast majority of them),
there is no extra overhead for the workers, and the only overhead for masters is one
MPI_ALL_REDUCE per iteration. This overhead is minimal, and performance results have
shown that the overhead has negligible impact on the runtime per iteration (see Chapter 7

for performance results).

4.2.1 Further issues with spawning

There are a few further issues related to spawning that must be considered. First, MPI
does not support spawning on a cluster with a scheduler [8], as MPI_COMM_SPAWN requires
the user to provide a list of processes in the form of a host file (the host file contains node
names, like “ithacad42”, not just ranks). Consequently, a Fortran 95 module designed to
support spawning on scheduled clusters was developed and tested. Currently, the module
(called QSPAWN) only provides subroutines that build a host file for spawning, but further
support for spawning on scheduled clusters may be added in the future. In order to build
a host file, the names of all nodes scheduled for the job must be obtained, as well as the
number of cores available on each node. MPI provides support for determining node names,
but not for determining the number of cores available on a node—for this, the OpenMP
command OMP_GET_MAX_THREADS is used.

Second, the new masters should ideally be spawned on idle processors in order to obtain
a substantial amount of extra memory. Where these idle processors come from is a serious
concern. One possibility is to replace a worker with the spawned master. However, it is not
guaranteed that a worker will be running on its own processor—it is possible for the worker
to be running on a node along with other workers and a master (since masters are memory
hogs, it is preferable to place them on separate nodes). So, the only solution that will work
consistently is to spawn new masters on unused nodes. For clusters without a scheduler, this
can be done by providing spVTdirect with a list of all available nodes (possibly obtained
from a system administrator). For clusters with a scheduler, one solution is to use a system
call to push a new job onto the scheduler’s queue. Performance concerns dictate that the
computation should continue, and hence state update be postponed, until after the new
job is launched by the scheduler, as their may be a substantial delay before the new job is
launched. After the job is launched, communication can be established between the current
and newly-launched jobs, and state update can proceed as described in Chapter 4.4.

Another solution is to run multiple jobs simultaneously, allowing these jobs to share
a global pool of nodes. Rather than launching each job separately, a single job with one
process (but many reserved nodes) could be launched using the cluster’s scheduler. The
single process could then spawn all of the specified jobs using MPI_COMM_SPAWN, as well as
maintain a list of available nodes. All involved jobs would simply take nodes off the list as
they consume them, and repopulate the list with nodes as they finish with them. This idea of
consolidating jobs can only work if (most of) the jobs have fluctuating resource requirements,
allowing them to consume and release nodes periodically. Although the number of nodes
needed by spVTdirect may increase with time, it never decreases. Consequently, it is not

clear if this solution is feasible for spVTdirect.

8

4.3 Updating the Communication Scheme

The spawning procedure reorders some processes (the ranks of workers are translated),
and add others (the spawned masters). This means that communicators must be updated in
order to ensure that messages are sent to and from the correct processes. In particular, the
state (ordering of processes) of the communicators after being updated must be consistent
with the state of the communicators before the spawning procedure began.

The communication between the current and spawned processes depends on which subset
of the current processes does the spawning. If only the set of current masters performs
the spawning, then communication between the workers and the spawned masters becomes
infeasible—the intercommunicator returned from the call to MPI_COMM_SPAWN only allows for
direct communication between the spawning and spawned processes. If the workers are not
involved in spawning the new masters, then communication between the workers and spawned
masters must be indirect. Although indirect communication is possible (and can be coded
cleanly with wrappers for the standard MPI communication subroutines), it is relatively
inefficient as all communication between the workers and spawned masters must pass through
one (or more) of the current masters. In particular, if there is only one master, then that
master becomes a bottleneck for all communication between the workers and spawned masters.
Therefore, it is preferable to have the set of all current processes execute MPI_COMM_SPAWN. In
this case, communication between the workers and the spawned masters is direct. If every
member of the current world of processes executes MPI_COMM_SPAWN, then the best way to
update the communication scheme is as follows. The command MPI_INTERCOMM_MERGE is used
to merge the local and remote groups of the intercommunicator returned by MPI_COMM_SPAWN.
The processes in this merged intracommunicator must be reordered so that they are consistent
with the current ordering of processes—masters have the lower ranks, starting with zero,
and workers have the higher ranks, beginning with the number of masters. This allows
spVTdirect, with an updated communication scheme, to continue to run properly.

However, the communication scheme was not originally updated as described above.
This is because the authors had initially used only the set of current masters to perform
the spawning. As explained above, this choice was made to simplify the spawning pro-
cedure itself, but such simplified spawning greatly complicates communication. In this
case, communication is handled by using wrappers for the standard MPI communication
subroutines. These wrappers are named MC_(subroutine name), where MC stands for “many
communicator”. The wrapper subroutines take an array of communicators called commArray
(rather than a single communicator) as an argument, allowing the communication scheme
to adjust to increases in the number of masters. Processes are given a global rank within
the collection of communicators specified by commArray. The global rank of a process in

the 7th communicator is
I‘ankglobal =N +No+ ...+ N;_1 + ranklocab

9

where N is the size of the jth communicator for j =1,...,7—1, and rankjec, is the usual
rank of the process within the ¢th communicator.

Such “many communicator” subroutines were written for both point-to-point and
collective communications. For example, consider the “many communicator” subroutine
for a point-to-point send communication, called MC_SEND. For the subroutine MC_SEND, the
global rank of the receiving process is given as an input parameter. The global rank is
used to determine the relevant communicator and the local rank of the receiving process
within that communicator. If the global rank is strictly less than the size of commArray
(1), then commArray (1) is the communicator and the local rank of the receiving process in
commArray (1) is simply its global rank. If the global rank is greater than or equal to the size
of commArray (1), then the receiving process must be an element of commArray (i) for some
i > 1. In this case, the size of commArray (1) is subtracted from the global rank to obtain
a new value, and this value is compared against the size of commArray (2) to determine if
the receiving process is an element of this communicator. This process is repeated until the
relevant communicator and local rank within that communicator are determined.

The idea behind MC_SEND, as well as the other “many communicator” subroutines,
is to allow the communication scheme of spVTdirect to be updated simply and cleanly
every time new masters are spawned. When new masters are spawned, only a few data
structures (such as commArray) need to be updated. These data structures are then passed
as input parameters to the “many communicator” subroutines, and the communication
scheme is automatically adjusted to take into account the newly spawned masters. Stress
tests were done to compare the performance of the two methods—“many communicator”

and “merge”—described above. The results of these tests are presented in Chapter 5.

4.4 Integration of the Spawned Masters

The current job has n,, masters and n,, workers, whereas the spawned job has n,,
masters and zero workers (notice that the spawned job is not intended to run on its own).
These two jobs need to be integrated into a coherent execution unit with 2n,, masters and
n,, workers. The integration of the two jobs is complicated by the inconsistencies in state
between the current and spawned masters—at the point of spawning, the current masters
have generally run through quite a few iterations of the main loop, whereas the spawned
masters are just beginning. Dealing with the difference in state between the current and
spawned masters is tricky, and it is all too easy for subtle problems to arise when attempting
to integrate the spawned masters into the already-running job.

After the intercommunicator has been merged, the difference in state between the
current and spawned masters must be dealt with in order to successfully integrate the
spawned masters into the current job. One solution is to transfer state from one of the

current masters to the spawned masters. Although this solution may seem obvious, the real

10

challenge is in the details of making this seemingly simple solution work. For a trivial example
of the challenges involved, consider the following facts about pVTdirect. In pVTdirect, the
lead master in a subdomain (i.e., the master with rank zero) behaves differently from the
other masters in the same subdomain. Since, in general, the lead master is the only master
guaranteed to exist, it makes sense to transfer the state of the lead master to the spawned
masters. However, if done naively, this would mean that all spawned masters would think
they were lead masters, which is obviously problematic. This problem is trivial—it is only
meant to illustrate the sort of problems that can arise when the states of all processes are
not properly updated after spawning new masters.

A conservative approach is taken to updating state after a spawning event. In general,
an aspect of the state of a process is reset when it is not clear how to properly maintain
and/or augment that aspect. This means that some information is lost; however, the lost
information has no effect on the mathematical correctness of the algorithm. Succinctly,
VTdirect, pVTdirect, and spVTdirect all produce exactly the same set of boxes and
function values. Note that some aspects of state, such as the iteration counter, must be
fabricated for the spawned masters (since the iteration number can be used as a stopping
condition).

Since state is reset when it is not clear how to update and /or augment it, it is beneficial
for the states of data structures to not be persistent across iterations (note that it is sufficient
for the state of a data structure to be determined by a simple formula, i.e., the ith element
of an array is the rank of the ith master). If the state of a data structure is not persistent
(or if it can be determined by a simple formula), then its state is trivial to update after
a spawning event. Hence, the less state that is persistent, the easier it is to update the
state of a process after a spawning event. For example, consider the array 1cConvex, which
contains the convex hull box counters for every master in a subdomain. Since convex hull
boxes are reassigned to different masters at every iteration, the values of 1cConvex are
recomputed at every iteration, and hence it is safe to reset 1cConvex to an arbitrary state
after a spawning event.

Now consider the following example of state that is persistent across iterations. When a
worker chooses a master in order to make a request, the worker chooses from the set of busy
masters, which requires the 2-dimensional arrays masterID and masterStat. The array
masterID holds the ranks of every master in every subdomain, and the array masterStat
holds the status (‘busy’ or ‘idle’) of every master in every subdomain. Updating the
contents of masterID after a spawning event is trivial (its contents are determined by a
simple formula), but it is not obvious how to update the contents of masterStat while
maintaining the statuses of the spawning masters. Hence, a conservative strategy that

simply (re)initializes the contents of masterStat is used.

11

4.4.1 Derived data types

The data structures with derived types used for storing box-related information do not
have to be updated for any process. The main data structure holding box information is
mHead (technically, mHead is just the initial link in a larger data structure). mHead is a fairly
complex data structure, basically a dynamic list of matrices, where columns in the matrices
represent box columns. If a particular box column grows beyond the height of the matrix,
the column can be extended (multiple times, if necessary) using fixed-length arrays. The
boxes stored by a particular process are unique to that process, and so the data structure
pointed to by mHead need not be transferred to spawned masters—the spawned masters
initialize mHead and fill it in with box information from scratch. This means that there is a
substantial imbalance in the number of boxes stored by spawning and spawned masters. A
dynamic load balancing mechanism is used to balance the number of boxes stored by each

master (Chapter 5).

12

Figure 2. Illustration of the “many communicator” method.

Chapter 5: Comparison of the “Many Communicator” and “Merge” Methods

Stress tests were performed to compare the two methods—the “merge” method and the
“many communicator” method—for updating the communication scheme after a spawning
event. As described above, the “merge” method requires that the spawning process be collec-
tive over all processes. In this case, the intercommunicator returned from MPI_COMM_SPAWN
is simply merged into an intracommunicator. The “many communicator” method was de-
signed so that the spawning process need only be collective over the current set of masters.
This method uses an array of communicators to implement a communication scheme that
can adjust to increases in the number of masters.

In Figure 2, an initial communicator consisting of all current masters (A) spawns
two child communicators (B and C), both containing new masters. In this situation, the
“many communicator” method would be used to effectively merge A, B, and C into a

single communicator. In Figure 3 (left), communicator A contains all current processes,

13

Figure 3. Illustration of the “merge” method.

and it spawns new masters (B). The illustration on the right in Figure 3 shows the two

communicators (A and B) merged into an unnamed communicator, which then spawns C.

5.1 Experimental Setup

For the “many communicator” method, four sets of tests were performed—broadcast
and gather tests, as well as two types of point-to-point tests. In one type of point-to-point
test, a wild card value (MPI_ANY_SOURCE) was used as the source argument for the receiving
process; in the other type of point-to-point test, a specific value was used as the source
argument. All four sets of tests ran through 20 iterations, increasing the number of integers
communicated at each iteration. At each iteration, two extraneous sends and receives were
needed to handle the timing. This did not substantially affect the accuracy of the timing
measurements because the communications being timed sent much more data than the
communications needed for taking measurements. For the send and receive tests, the source
was chosen at random from one of two communicators, and the destination was chosen at
random from the other communicator. For the broadcast and gather tests, the root process

was chosen at random. Further, the tests for each message length were performed 1000

14

times, and the mean communication time was determined. To do this, a separate program
was used to execute the timing program 1000 times, and to obtain data such as means and

standard deviations, for each message length.

5.1.1 Broadcast and gather

Two communicators were used in all the tests, each containing 32 processes. One was
a parent communicator that spawned the other. The tests consisted of 20 iterations of
communication, where the message length increased with each iteration. For broadcast,
500 - k integers were sent to every process at iteration k, making for a total of 32,000 - k
integers broadcast at each iteration. For gather, 500 - k integers were gathered from each
process, making for a total of 32,000 - k integers gathered at each iteration. Although
32,000 - k integers are communicated during each subroutine call, the message length at
iteration k will be considered 500k (integers per process, with 64 processes involved in each

communication). The root was chosen as a random element of the parent communicator.

5.1.2 Send and receive

Two communicators—a parent and a child communicator—were used in all the tests,
and each communicator contained four processes. The tests consisted of 20 iterations of
communication, where the message length was 5,000,000 times the iteration number. The
source was selected as a random number between zero and seven, and the destination was
chosen as follows. First, a random number, h, between zero and three was generated. If the
value of the source was between zero and three, then the destination was h + 4; otherwise,
the value of the destination was simply h. Notice that this guaranteed that the source and

destination were in distinct communicators.

5.1.3 The “merge” method

For the “merge” method, one simply needs to use MPI_INTERCOMM MERGE to obtain a
merged intracommunicator, and then this communicator can be used with existing MPI
communication subroutines. Thus, ignoring spawning concerns, the “merge” method is
quite simple to implement. Whenever possible, the experimental setup for the “merge”
method was the same as the setup for the “many communicator” method. In particular,
the number of integers sent per communication at each iteration, the number of timing tests
performed at each iteration, and the selection of the source, destination, and root were the

same as described above for the “many communicator” method.

15

—+— MC mean

Bcast

Time (in7r(r)1illiseconds) e MC+o0o
60- * ——MC -0
50 — —e— MG mean
40F e - MG+o
30;— ‘\\ —e MG -0
208 A
10f

02000 6000 8000 i00ob cssage Length

Figure 4. “Many communicator” (triangles) and “merge” method (circles) broad-

casts on System G.

5.1.4 Hardware/software

The experiments were conducted on System G, which is the world’s largest power-
aware compute research cluster. System G has working power-aware features, power and
thermal sensors on-board and accessible via software, and high performance processors and
interconnects. The cluster consists of 325 Apple MacPro (dual processor quad core Xeon 2.8
GHz) systems with 8GB memory per node and a Mellanox QDR Infiniband interconnect.
Users have access to the 30+ thermal sensors and 30+ power sensors in each MacPro. The
version of MPI used for the tests was Open MPI 1.4.1.

5.2 Results

In general, the results for the “many communicator” method are illustrated in plots
using triangles, and circles are used for the “merge” method. The middle curve for each
method represents the mean, and the curves above and below the middle curve show one
standard deviation above (4o in the plot legend) and below (—o) the mean, respectively.
The three curves for each method form a band that likely contains the “true” runtime curve
for the method.

5.2.1 Broadcast and gather

For the broadcast and gather tests (Figures 4 and 5), with a few exceptions, the “many

communicator” method generally performed better. For message lengths of 1000 to 2000

16

—— MC mean
Gather
Time (in milliseconds) ~—+MC+o0o
300
—+— MC -0
250}
—e— MG mean
200F
[—o— MG+ 0o
150F
s —o— MG -0
100}
50L

3000 4000 6000 8000 ioo0olcssase Length
Figure 5. “Many communicator” (triangles) and “merge” method (circles) gathers
g y g g g

on System G.

integers per process, the “merge” method outperformed the “many communicator” method
for the broadcast tests. The runtimes for both methods were relatively low for these message
lengths, producing a “dip” in both bands. For message lengths of 2500 to 10,000, the “many
communicator” method performed better than the “merge” method. Notice that there was
no overlap in bands whenever the “many communicator” method outperformed the “merge”
method.

5.2.2 Send and receive

For the send /receive tests using MPI_ANY_SOURCE as the source argument, the “merge”
method consistently outperformed the “many communicator” method (see Figure 6). The
performance of the “merge” method was also more consistent—the standard deviation
for the “merge” method was generally less than 0.5, whereas the standard deviation for
the “many communicator” method was between about two and five. It is not clear why
the “merge” method performed better than the “many communicator” method. It is
possible that the relatively poor performance of the “many communicator” method is due
to using MPI_TPROBE to determine the relevant communicator. A more efficient method for
determining the communicator could yield better runtimes for the “many communicator”
method.

The performance of both methods was nearly identical for the send/receive tests using
a specific value for the source argument (plot not shown). Since only two communicators

were used in the tests, it was quite simple to determine the communicator that contained the

17

—MC
Send, MPI_ANY_SOURCE mean
Time (in milliseconds) MC + o
200}
[—+— MC -0
150F —e— MG mean
[—e— MG+ 0o
100+
I —e— MG -0
50+
- Message Length

2x10" 4x107 6x107 8x10" 1x10°
Figure 6. “Many communicator” (triangles) and “merge” method (circles) point-

to-point communications with wild card source on System G.

destination, as well as the local rank of the destination process within that communicator.
Consequently, most of the runtime was taken up by the transmission time associated with
a standard MPI_SEND. Presumably, this is why the runtimes for the two methods were so
similar. This situation is not unrealistic, as the number of spawning events should generally

be small.

5.2.3 Buggy timing code

The stress tests discussed above were not the original tests performed. The initial
stress tests produced unreliable results due to a bug in the timing function, which produced
a large amount of artificial noise in the runtime data. The timing code allowed certain
processes to initiate a send operation long before the receiving process was ready. Since
the bug was due to processes “jumping ahead” to later iterations, running each iteration
separately by hand produced accurate timing results. This “fix” for the bug was quickly
determined, although the source of the bug was not determined until much later.

The tests were performed on a variety of clusters, using multiple compilers and im-
plementations of MPI in order to determine if the observed noise was due to a hard-
ware/software/compiler problem. Of course, the noise was reproduced on all clusters, using
any compiler or implementation of MPI. Figures 7-10 show some of the results using various
clusters, etc.

Clusters at the National Energy Research Scientific Computing Center (Carver) and
the King Abdullah University of Science and Technology (Shaheen and Neser) were used

18

System G Carver

Time (milliseconds) Time (milliseconds)
200 200}
150 150}
100 100}
50 sof
- 20 0 60 80 Top tteration - 20 20 60 80 Toy [teration
Figure 7. Point-to-point communication times for MPI_SEND on System G (left)
and Carver (right).
Shaheen Neser
Time (milliseconds) Time (milliseconds)
p ¢ p Py .
| X ﬂ H r » »
8000 2500F
6000 2000}
1500}
4000 !
1000} W
z %
000 sool !
n'h u“ 3P
- Iteration — > Iteration
20 40 60 30 100 20 40 60 80 100
Figure 8. Point-to-point communication times for MPI_SEND on Shaheen (left)
and Neser (right).
System G and OpenMPI System G and MVAPICH
Time (milliseconds) Time (milliseconds)
1 i 1400}) ‘m‘[
1200 p
1200}
1000
1000} (
800
800}
600 600l
400 N | 400k
D¢
200 n ot 200} M ‘
- it ! L : ~ Jteration M . + . — Jteration

20 40 60 80 100 20 40 60 80 100

Figure 9. Point-to-point communication times for MPI_SEND on System G using
Open MPI (left) and MVAPICH (right).

to confirm that the observed noise was not unique to the cluster used for the initial tests

(System G). Carver is a liquid cooled IBM iDataPlex system with 3,200 processor cores

19

Neser and GCC Neser and Ifort

Time (milliseconds) Time (milliseconds)
pe p p . <
| M
2500 ’
1500}
2000
1500 1000}
1000 "H
h 500} L iL
500
& i “ M'
J) .
B 20 20 60 80 Top Meration B 20 30 60 80 T 'teration

Figure 10. Point-to-point communication times for MPI_SEND on Neser using
GCC (left) and IFORT (right).

and 400 compute nodes. The nodes are interconnected by 4X QDR InfiniBand technology,
so that 32 Gb/s of point-to-point bandwidth is available for high-performance message
passing and I/O. Shaheen is an IBM Blue Gene/P. Each of 16 racks contains 1024 quad-core
PowerPC 450 compute nodes running at 850MHz. I/O on the Blue Gene/P is provided
via quad-core PowerPC 450 I/O nodes (850MHz, 4GB RAM). Neser is an x86_64 compute
cluster consisting primarily of 128 IBM System x 3550 compute nodes. Each compute node
is equipped with 2 quad-core Intel "Harpertown” E5420 CPUs.

20

Chapter 6: DYNAMIC LOAD BALANCING

The main source of memory use for masters is storing boxes, so “memory load” and
“box load” are essentially interchangeable for masters. The box load on masters is monitored
to determine when new masters must be spawned. If we define spawn count to be the
number of spawning events that have occurred at a certain point of the execution of the
program, then the memory threshold for masters is roughly 1—1/2'*% where s is the current
number of spawning events, i.e., new masters are spawned when one half of the currently
available memory is used. The threshold for sufficient memory is intentionally low because
boxes are not transferred from the current to the spawned masters. Rather, the rate at
which boxes are accumulated decreases (resp. increases) temporarily for the current (resp.
spawned) masters. Notice that each spawning event doubles the number of masters (and
because of this exponential increase in masters, the number of spawning events is limited
by a user-defined parameter).

As mentioned above, the box load is strongly imbalanced immediately after new masters
are spawned, as the spawned masters have not had time to accumulate boxes. Since spawning
new masters creates an imbalance in box load, a dynamic load balancing mechanism is
required. To this end, load deviation for the ith master is defined as

dev, = be; — bca’
bey
where be; is the total box count across all masters, bc, is the average box count, and bc; is
the box count for the ith master. Load deviation measures the extent (either positive or
negative) to which a master’s box count deviates from the average box count. Notice that
the sum of load deviations for all masters is zero, and that |dev;| < 1.

In order to dynamically balance the box load for all masters, the number of boxes
received by a master after the convex hull computation is initially |(1 —dev;)T/N |, where T'
is the total number of new boxes obtained from the convex hull computation, and N is the
number of masters. After the initial distribution of boxes, remaining boxes are distributed
pseudorandomly amongst the masters. This essentially scales a master’s share of new boxes
by 1 — dev;, so that masters with below average box loads will receive more boxes than
those with above average loads. In Chapter 7.3, it is shown that this method is effective in

dynamically balancing box load after new masters are spawned.

21

Chapter 7: PERFORMANCE RESULTS

A variety of optimization problems were used to test the modifications made to pVT-
direct. Several toy problems, as well as a realistic nuclear physics problem (MFDn), were
used. Since both pVTdirect and spVTdirect consider the objective function to be a black
box, the runtime per iteration for both pvTdirect and spVTdirect should only depend on
the runtime of the objective function. Consequently, it is useful to test the performance
of spVTdirect using objective functions with a variety of runtimes and runtime patterns
(i.e., the runtime per iteration might increase with iterations, or stay roughly constant).
Four of the toy problems have negligible runtimes (on the order of 10~* seconds), one toy
problem (GRSleep) has runtimes around one second, and the real-world physics problem
has (parallel) runtimes ranging from about eight to fifteen seconds.

A single spawning event was artificially made to occur at the seventh iteration of
spVTdirect. For the toy problems, pVTdirect was run with either nine or twelve processes,
and spVTdirect was run with eight or ten processes (chosen to meet the restraints set by
pVTdirect on the ratio of masters to workers). spVTdirect spawned either one or two
new masters, so that the numbers of processes used by pVTdirect and spVTdirect were
identical after the spawning event. For the MFDn objective function, pVTdirect was run
with six processes, and spVTdirect was run with five processes. spVTdirect spawned one
new master, so that pVTdirect and spVTdirect were both running with six processes after

the spawning event. Every instance of MFDn was run with six processes.

7.1 Toy Problems

The four toy problems with negligible runtimes were the Griewank function (GR), the
Quartic function (QU), Schwefel’s function (SC), and Michalewicz’s function (MI), all taken
from [3]. Figures 11 and 12 show runtimes per iteration for pVTdirect and spVTdirect
with GR, QU, SC, and MI as objective functions. The runtimes for spVTdirect are shown
with triangles, and those for pVTdirect are shown with circles. Notice that the runtimes
per iteration for spVTdirect are quite similar to the runtimes per iteration for pVTdirect.
Predictably, the runtime for spVTdirect is much larger for the seventh iteration (when the
spawning event occurred). The runtime per iteration for spVTdirect generally stabilizes
to values that consistently hover slightly above the values for pVTdirect. See the plot of
runtimes per iteration for MI (Figure 12, right) for a nice illustration of this effect.

The toy problems with negligible runtimes were convenient for comparing the total
number of iterations and function evaluations for spVTdirect and pVTdirect, as well as
comparing other global properties. The total number of iterations and objective function
evaluations, the minimum box diameter, and the stopping rule used to end the search were

always identical for spVTdirect and pVTdirect. Although there are very minor differences

22

Runtime per iteration for GR Runtime per iteration for QU

Time (seconds) Time (seconds)
0.0005
—— spVTdirect 0.0006F [1 T w —— spVTdirect
0.0004
—e— pVTdirect 0.0005¢ —e— pVTdirect
0.0003F 0.0004
0.0003F
0.0002F
0.0002F
. 1F
0:000 0.0001f xﬁQ
5 0752025 30 leraton 5 075202530 leraton

Figure 11. Comparison of runtimes per iteration for the GR (left) and QU (right)

objective functions.

Runtime per iteration for SC Runtime per iteration for MI
Time (seconds) Time (seconds)
) 0.0004}
—— spVTdirect —+— spVTdirect

0.0003- —e— pVTdirect 0.0003}+ —e— pVTdirect
0.0002F 0.0002}
0.0001F 0.0001}

- L v v L Iteration - L L L L L Jteration

5 10 15 20 25 5 10 15 20 25 30

Figure 12. Comparison of runtimes per iteration for the SC (left) and MI (right)

objective functions.

in performance, the boxes examined at every iteration are identical for pVTdirect and
spVTdirect.

In Figure 13, the runtimes per iteration are plotted for pVTdirect and spVTdirect
with the objective function MISleep—a variant of the MI toy problem discussed above—that
is designed to run for about one second. The runtimes for spVTdirect and pVTdirect are
shown with triangles and circles, respectively. From the plot in Figure 13, it is clear that the
runtimes per iteration for pVTdirect and spVTdirect with the MISleep objective function
are nearly identical, with the exception of the seventh iteration for spVTdirect (where the
spawning event occurs). The same basic pattern is seen in other similar variants of the
toy problems (GRSleep, etc.). One can conclude that the overhead for spVTdirect has
negligible impact on the runtime per iteration when the objective function has a sufficiently
long runtime (according to the tests done for this work, a runtime of at least one second is

sufficiently long).

23

Runtime per iteration for MISleep
Time (seconds)

3.0F

2.5

2.0}

1.5}

—— spVTdirect

—e— pVTdirect

t....|....|....|....|....|....|. 1
" 5 10 15 20 25 30 lteration

Figure 13. Comparison of runtimes per iteration for the MISleep objective function.

7.2 MFDn

MFDn, which stands for “many fermion dynamics nuclear”, is a nuclear physics code [9]
developed at Iowa State University that computes theoretical values for certain observables
relevant to the spectra of atomic nuclei. The computed values for these observables can be
compared to empirical values using a x? function, and a value is obtained representing the
goodness of fit. Since MFDn has an input file containing several input parameters, one can
vary these parameters, and observe the goodness of fit obtained by each setting of input
parameters. This suggests the use of an optimization algorithm in order to find an optimal
set of parameters, where an “optimal” set of parameters means a set of parameters that
yields a minimal x? value. For the problem considered here, there are only three input
parameters that vary. Also, the output of the objective function is not simply the x? value
for the (sequences) of computed and empirical values. Instead, MFDn is run twice with two
separate input files. The input files are identical with the exception of a single parameter,
which is not amongst the three that are varied. The output of the objective function is the
sum of the two x? values for the two runs of MFDn.

The computation of the MFDn objective function is very complex and involves finding
a solution to the Schrodinger equation with a large, sparse, and irregularly structured
Hamiltonian matrix [10]. One reason for this complexity is that MFDn is itself a parallel
computation, and so it must be spawned using MPI_COMM_SPAWN. Another reason is that
two instances of MFDn need to be run in order to determine the output of the objective

function (each instance of MFDn uses a different input data set). A third reason is that

24

Runtime per iteration for MFDn
Time (seconds)

60f
50f
40f

[—— spVTdirect
30

—e— pVTdirect
20F
10}

é - .110. — .115. - .210- - -215- — -310- Iteration

Figure 14. Comparison of runtimes per iteration for the MFDn objective function.

multiple processes may execute MPI_COMM_SPAWN simultaneously, and hence (on shared file
systems) multiple processes may attempt to access the executable simultaneously, causing
the program to crash. Notice that even though MFDn runs on separate processes from the
worker that spawned it, the worker’s call to the objective function does not complete until
both instances of MFDn complete, because the objective function waits for a completion
message from MFDn. This means that the computation of the MFDn objective function
takes on the order of eight to fifteen seconds to complete. The runtime of this objective
function is not entirely consistent because the computation is done in parallel.

MPI does not provide any means for locking executables to prevent race conditions
when calling MPTI_COMM_SPAWN, so it is up to the user to prevent such conditions. Fortunately,
MPI does provide support for locking files when reading or writing to them. So, one way
to prevent race conditions when using MPI_COMM_SPAWN is to have each process read a value
from a file, where the value indicates which process currently “owns” the executable. A
process continually reads from the file until it reads “f” (for “free”), in which case the
process writes its own rank to the file, executes MPI_COMM_SPAWN, and then writes “f” to
the file once both instances of MFDn have been spawned.

Figure 14 shows runtimes per iteration for pVTdirect and spVTdirect, both with
MFDn as objective function. The triangles and circles show the runtimes per iteration for
spVTdirect and pVTdirect, respectively. The runtimes per iteration for spVTdirect with
objective function MFDn are roughly the same as runtimes per iteration for pVTdirect,
ignoring the variations in runtime for both pVTdirect and spVTdirect. The overhead in
spVTdirect does not have a significant impact on its performance.

25

Box count for GR after a spawning event Box count for QU after a spawning event

Box count Box count
4000+

800}
3000F

600}
2000F 200k

10001

—— Initial —— Initial

—e— Spawned 200¢

—e— Spawned

30 60 80 100 120

3'0 4'0 5'0 6I0 Iteration -

Figure 15. Box count versus iteration for GR (left) and QU (right).

Load imbalance for GR after a spawning event Load imbalance for QU after a spawning event
Deviation Deviation
04
0.2
Iteration
02 —— Initial 02 —— Initial
04 —e— Spawned| -04 —e— Spawned

Iteration

Iteration

Figure 16. Load deviation versus iteration for GR (left) and QU (right).

7.3 Performance of the Dynamic Load Balancing Mechanism

In order to test the dynamic load balancing mechanism, spVTdirect was run with one
master using GR and QU as objective functions. The amount of memory available on a
node is read from an input file. The value for available memory was set artificially low so
that a spawning event would occur at iteration 25, increasing the number of masters to two.
Box count and load deviation were monitored before and after the spawning event. Before
the spawning event, the spawned master did not exist, and hence its box count is assumed
to be zero. After the spawning event, the box count for the spawned master increased until
it was almost identical to the box count for the current master (Figure 15).

The tests for load deviation began at iteration 25, when the new master was spawned.
Load deviation was initially 0.5 for the spawning master, and —0.5 for the spawned master
for both objective functions. For both GR and QU, the load deviation moved toward zero for
both masters; however, load deviation approached zero more quickly (and smoothly) for GR

(Figure 16). This was due to the fact that the number of new boxes added per iteration was

26

greater for GR than for QU, and that (for technical reasons) the lead master must receive at
least one box per iteration. In general, at most three new boxes were added per iteration for
QU, and since the lead master received at least one box, the spawned master could receive
at most two boxes, regardless of the load deviation. This observation inspired a possible
modification to the load balancing mechanism that increases the number of boxes added
per iteration, thereby balancing the box load in fewer iterations. An input parameter for
pVTdirect and spVTdirect, called the “aggressive” switch, specifies that all boxes on the
convex hull should be selected, not just those meeting the minimum improvement condition.
For 20 iterations after a spawning event, the aggressive switch is turned on. This number of
iterations was selected based on the observation that 20 iterations was generally sufficient to
reduce load deviation to about 0.1. When the temporary aggressive switch is used (Figure
17), it takes far fewer iterations for load deviation to reach 0.1 (about 7 iterations, versus 50
iterations when the “aggressive” switch is not used at all). A serious problem with turning
the “aggressive” switch on temporarily is that it can destroy determinism—if spVTdirect is
run on two machines, one with more memory than the other, then spVTdirect may spawn
new masters on one machine and not the other. This can lead to different minimum values
being found at the end of the two runs on the different machines. In order to avoid this

loss of determinism, the “aggressive” switch is not modified after spawning.

27

Box count for QU after a spawning event

using temporary "aggressive" switch

Box count
1400¢

1200}
1000}
800L
600L
400}
200}

T

T

—— Initial

—e— Spawned

—

.410. , l610l . l810l . II(I)OI . -1iolterat10n

Load imbalance for "aggressive" QU after a spawning event
Deviation

e e s v v v . Jteration

-0.2

T

—— Initial

—e— Spawned

—0.4}

Figure 17. Box count (top) and deviation (bottom) versus iteration for QU using

temporary “aggressive” switch.

28

Chapter 8: CONCLUSIONS

This work shows that it is possible to dynamically adjust the number of masters in the
global optimization code pVTdirect, and hence prevent (or at least substantially delay)
thrashing when the amount of available memory becomes insufficient. Performance results
show that the extra communication overhead in spVTdirect has a negligible impact on the
performance of the application.

There were a number of lessons learned during the course of this work that should be
useful to anyone designing a master-worker style parallel code with the capability to adjust
process count on demand. Updating state after new processes are spawned can be quite
subtle if some of the processes are tightly coupled and/or there are persistent aspects of
program state, i.e., aspects of state that are persistent across iterations of a main loop. One
way to deal with the problem of updating/fabricating state is to design the code so that
processes are only loosely coupled, i.e., the state of a given process has minimal effect on
the state of any other process. If the processes must be tightly coupled, then a reasonable
design choice is to prevent state from being persistent across iterations. If processes are
unaware of any state from the previous iteration, then integrating spawned processes into the
computation should be simple. Another useful design choice is to regularly synchronize all
masters. This should simplify the task of notifying all processes of a spawn request, assuming
all processes are involved in the spawning procedure. Of course, all processes need not be
involved, but the present work has shown that this can simplify communication between
the current and spawned processes. Synchronizing the workers may also be beneficial, at
the risk of creating an unreasonable amount of idle time for the workers.

One final point is that the number of workers could also be dynamically adjusted
on demand. This would require only minor modifications to spVTdirect—the spawn
notification method used for masters could be used for spawning new workers, and the state
update would be simpler than for spawning masters. Adjusting the number of workers on
demand would be useful in many situations. For instance, the user could supply parameters
specifying that some minimal amount of progress has to be made by the search in a fixed
amount of time. If sufficient progress is not made, then more workers could be spawned on
demand to perform more function evaluations, and hopefully speed up the progress of the

search.

29

References

[1] Balaji, P.; Buntinas, D.; Goodell, D.; Gropp, W.; Kumar, S.; Lusk, E.; Thakur, R.; Larsson, J.
(2009), “MPI on a million processors,” in Proceedings of the 16th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Springer-Verlag 20-30, Berlin, Heidelberg.

[2] Jones, D. R.; Perttunen, C.D.; Stuckman, B. E. (1993), “Lipschitzian optimization without the
Lipschitz constant,” J. Optim. Theory Appl., 79, 1, 157-181.

[3] He, J.; Watson, L. T.; Sosonkina, M. (2009), “Algorithm 897: VIDIRECT95: serial and parallel
codes for the global optimization algorithm DIRECT,” ACM Transactions on Mathematical Software,
26, 3, Article 17, 24 pp..

[4] He, J.; Watson, L. T.; Ramakrishnan, N.; Shaffer, C. A.; Verstak, A.; Jiang, J.; Bae, K.; Tranter,
W. H. (2002), “Dynamic data structures for a direct search algorithm,” Comput. Optim. Appl., 23,
1, 5-25.

[5] He, J; Verstak, A.; Watson, L. T.; Sosonkina, M. (2009), “Performance modeling and analysis of a
massively parallel DIRECT - part 1,” Int. J. High Perform. Comput. Appl., 23, 1, 14-28.

[6] He, J.; Verstak, A.; Sosonkina, M.; Watson, L. T. (2009), “Performance modeling and analysis of a
massively parallel DIRECT - part 2,” Int. J. High Perform. Comput. Appl., 23, 1, 29-41.

[7] Panning, T. D.; Watson, L. T.; Allen, N. A.; Chen, K. C.; Shaffer, C. A.; Tyson, J. J. (2008),

“Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle,” J.

of Global Optimization, 40, 4, 719-738.

Squyres, J., “The spawn of MPI”, cw.squyres.com Feb. 2005, ClusterWorld magazine, Nov. 2011

<http://cw.squyres.com/columns/2005-02-CW-MPI-Mechanic.pdf>.

[9] Vary, J. P., “The Many-Fermion-Dynamics Shell-Model code,” Iowa State University, 1994, Unpub-
lished.

[10] Sternberg, P.; Ng, E. G.; Yang, C.; Maris, P.; Vary, J. P. ; Sosonkina, M.; Le, H. V. (2008),
“Accelerating configuration interaction calculations for nuclear structure,” in Proceedings of the 2008
ACM/IEEE conference on Supercomputing (SC ’08), IEEE Press Article 15 (12 pages), Piscataway,
NJ, USA.

[11] Scherer, A.; Lu, H; Gross, T.; Zwaenepoel, W. (1999), “Transparent adaptive parallelism on NOWs
using OpenMP,” in Proceedings of the 7th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ’99), ACM 96-106, New York, NY.

[12] Godard, E.; Setia, S.; White, E. L. (2000), “DyRecT: software support for adaptive parallelism on
NOWSs,” in Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed Processing
(IPDPS ’00), Springer-Verlag 1168-1175, London, UK.

[13] Huang, C; Lawlor, O.; Kalé, L. V. (2003), “Adaptive MPI,” in Proceedings of the 16th International
Workshop on Languages and Compilers for Paralle] Computing (LCPC 2003), LNCS 2958 306-322,
College Station, Texas.

[14] Snir, M.; Otto, S.; Huss-Lederman, S.; Walker, D.; Dongarra, J. (2000), MPI—the Complete
Reference, Vol. 1: the MPI Core, 2nd ed, MIT Press: Cambridge, MA.

[15] Gropp, W.; Huss-Lederman, S.; Lumsdaine, A.; Lusk, E.; Nitzberg, B.; Saphir, W.; Snir, M. (2000),
MPI—the Complete Reference, Vol. 2: the MPI Extension, 2nd ed, MIT Press: Cambridge, MA.

[8

30

APPENDIX A: LIST OF FIGURES

Figure 1. Illustrations of DIRECT’s box columns (left), as well as VTdirect in action

(TEEIE) © e 4
Figure 2. Illustration of the “many communicator” method 13
Figure 3. Illustration of the “merge” method iiii... 14
Figure 4. “Many communicator” (triangles) and “merge” method (circles) broadcasts
ON SYSEEIN G ot e 16
Figure 5. “Many communicator” (triangles) and “merge” method (circles) gathers on
SYSEEIM G ettt 17

Figure 6. “Many communicator” (triangles) and “merge” method (circles) point-to-
point communications with wild card source on System G 18

Figure 7. Point-to-point communication times for MPI_SEND on System G (left) and

Carver (right) ... i 19
Figure 8. Point-to-point communication times for MPI_SEND on Shaheen (left) and
Neser (Tight) ... 19
Figure 9. Point-to-point communication times for MPI_SEND on System G using Open
MPI (left) and MVAPICH (right) 19
Figure 10. Point-to-point communication times for MPI_SEND on Neser using GCC
(left) and TRFORT (Tight)oene e 20

Figure 11. Comparison of runtimes per iteration for the GR (left) and QU (right)
objective fUNCEIONSt 23

Figure 12. Comparison of runtimes per iteration for the SC (left) and MI (right)

objective fUnNCHIONSo e 23
Figure 13. Runtimes per iteration for the MISleep objective function 24
Figure 14. Runtimes per iteration for the MFDn objective function 25
Figure 15. Box count versus iteration for GR (left) and QU (right) 26
Figure 16. Load deviation versus iteration for GR (left) and QU (right) 26

Figure 17. Box count (top) and deviation (bottom) versus iteration for QU using

temporary “aggressive” switCh 28

31

APPENDIX B: spVTdirect.f 5

! This file (spVTdirect.f95) contains the module spVTdirect_MOD that ! Point(s) responding to a blocking request.
! defines data types, subroutines, and functions used in the parallel INTEGER, PARAMETER :: POINT_BREQ = 4
! VIDIRECT implementation. ! No more point for evaluation.
! INTEGER, PARAMETER :: NO_POINT = 5
MODULE spVTdirect_MOD ! Returned point function value(s).
USE VTDIRECT_GLOBAL ! Module (shared_modules.f95) for data types, INTEGER, PARAMETER :: FUNCVAL = 6
! parameters, global variables, interfaces, and internal subroutines. ! A1l search work is done.
USE VTDIRECT_COMMSUB ! Module (shared_modules.f95) for subroutines INTEGER, PARAMETER :: MYALL_DONE = 7
! used by VTdirect and spVTdirect in common. ! Updating the global counter for the blocked workers.
USE VIDIRECT_CHKPT ! Module (shared_modules.f95) for data types, INTEGER, PARAMETER :: COUNT_DONE = 8
! subroutines, functions, global variables used by checkpointing. ! Search results.
USE OMP_LIB ! OpenMP library. INTEGER, PARAMETER :: RESULT_DATA = 9
USE MPI ! MPI library functions. ! Converting a master to a worker.
! INTEGER, PARAMETER :: BE_WORKER = 11
!OptResults: Contains the search results for a subdomain. ! Termination.
! fmin - Minimum function value. INTEGER, PARAMETER :: TERMINATE = 13
' x - The point coordinates associated with ’fmin’. ! Updating intermediate search results.
! max_iter - Number of iterationms. INTEGER, PARAMETER :: UPDATES = 14
! max_evl - Number of evaluations. ! Transferring state to spawned masters.
! min_dia - Minimum diameter. INTEGER, PARAMETER :: STATE_TRANSFER_TAG = 15
! status - Search return status. ! Creating intracommunicator from parent and child intercommunicators.
! INTEGER, PARAMETER :: INTERCOMM_CREATE_TAG = 16
TYPE OptResults ! Request to spawn more masters.
REAL(KIND = R8) :: fmin INTEGER, PARAMETER :: SPAWN_REQ = 17
REAL(KIND = R8), DIMENSION(:), POINTER :: x ! Handle for the spawning host file.
INTEGER :: max_iter INTEGER, PARAMETER :: QSPAWN_UNIT = 18
INTEGER :: max_evl ! MPI error.
REAL(KIND = R8) :: min_dia INTEGER, PARAMETER :: DMPI_ERROR = 40
INTEGER :: status
END TYPE OptResults CONTAINS
! MPI message types. SUBROUTINE spVTdirect_finalize()

! MPI finalization.
! A nonblocking function evaluation request. !

INTEGER, PARAMETER :: NONBLOCK_REQ = 1 ! On input: None.
! A blocking function evaluation request. !
INTEGER, PARAMETER :: BLOCK_REQ = 2 ! On output: Nome.
! Point(s) responding to a nonblocking request. !
INTEGER, PARAMETER :: POINT_NBREQ = 3 ! Local variable.

32

INTEGER :: ierr

CALL MPI_FINALIZE(ierr)
RETURN
END SUBROUTINE spVTdirect_finalize

SUBROUTINE spVTdirect_init (iflag)
! MPI initialization.

!

! On input: None.

!

! On output:

! iflag - Initialization status.

!

INTEGER, INTENT(OUT) :: iflag

iflag =0

CALL MPI_INIT(iflag)

IF (iflag /= MPI_SUCCESS) THEN
iflag = DMPI_ERROR

END IF

RETURN

END SUBROUTINE spVTdirect_init

SUBROUTINE spVTdirect(N, L, U, OBJ_FUNC, X, FMIN, PROCID, STATUS, &
SWITCH, MAX_ITER, MAX_EVL, MIN_DIA, OBJ_CONV, EPS, &
MIN_SEP, W, BOX_SET, NUM_BOX, N_SUB, N_MASTER, &
BINSIZE, RESTART, TOTAL_MEM)

IMPLICIT NONE

! This is a parallel implementation of the DIRECT global

! unconstrained optimization algorithm described in:

!

! D.R. Jones, C.D. Perttunen, and B.E. Stuckman, Lipschitzian

! optimization without the Lipschitz constant, Journal of Optimization

! Theory and Application, Vol. 79, No. 1, 1993, pp. 157-181.

! The algorithm to minimize f(x) inside the box L <= x <= U is as follows:

! 1. Normalize the search space to be the unit hypercube. Let c_1 be

! the center point of this hypercube and evaluate f(c_1).

! 2. Identify the set S of potentially optimal rectangles.

! 3. For all rectangles j in S:

! 3a. Identify the set I of dimensions with the maximum side length.

33

Let delta equal one-third of this maximum side length.

3b. Sample the function at the points c +- delta*e_i for all i
in I, where c is the center of the rectangle and e_i is the ith
unit vector.

3c. Divide the rectangle containing c into thirds along the
dimensions in I, starting with the dimension with the lowest
value of f(c +- delta*e_i) and continuing to the dimension
with the highest f(c +- delta*e_i).

4. Repeat 2.-3. until stopping criterion is met.

On input:

N is the dimension of L, U, and X.

L(1:N) is a real array giving lower bounds on X.
U(1:N) is a real array giving upper bounds on X.

OBJ_FUNC is the name of the real function procedure defining the
objective function f(x) to be minimized. OBJ_FUNC(C,IFLAG) returns
the value f(C) with IFLAG=0, or IFLAG/=0 if f(C) is not defined.
0BJ_FUNC is precisely defined in the INTERFACE block below.

Optional arguments:

SWITCH =
1 select potentially optimal boxes on the convex hull of the
(box diameter, function value) points (default).
0 select as potentially optimal the box with the smallest function
value for each diameter that is above the roundoff level.
This is an aggressive selection procedure that generates many more
boxes to subdivide.

MAX_ITER is the maximum number of iterations (repetitions of Steps 2-3)
allowed; defines stopping rule 1. If MAX_ITER is present but <= 0
on input, there is no iteration limit and the number of iterations
executed is returned in MAX_ITER.

MAX_EVL is the maximum number of function evaluations allowed; defines
stopping rule 2. If MAX_EVL is present but <= 0 on input, there is no
limit on the number of function evaluations, which is returned in
MAX_EVL.

MIN_DIA is the minimum box diameter allowed; defines stopping rule 3.
If MIN_DIA is present but <= 0 on input, a minimum diameter below
the roundoff level is not permitted, and the box diameter of the
box containing the smallest function value FMIN is returned in
MIN_DIA.

0BJ_CONV is the smallest acceptable relative improvement in the minimum
objective function value ’FMIN’ between iterations; defines
stopping rule 4. 0OBJ_CONV must be positive and greater than the round
off level. If absent, it is taken as zero.

EPS is the tolerance defining the minimum acceptable potential
improvement in a potentially optimal box. Larger EPS values
eliminate more boxes from consideration as potentially optimal,
and bias the search toward exploration. EPS must be positive and
greater than the roundoff level. If absent, it is taken as
zero. EPS > 0 is incompatible with SWITCH = O.

MIN_SEP is the specified minimal (weighted) distance between the
center points of the boxes returned in the optional array BOX_SET.

If absent or invalid, MIN_SEP is taken as 1/2 the (weighted) diameter
of the box [L, U].

W(1:N) is a positive real array. It is used in computing the distance

between two points X and Y as SQRT(SUM((X-Y)*W*(X-Y))) or scaling the

dimensions W#(U-L) for domain decomposition. If absent, W is taken as

all ones.

BOX_SET is an empty array (TYPE HyperBox) allocated to hold the desired
number of boxes.

N_SUB is the specified number of subdomains that run the DIRECT search
in parallel. If absent or invalid (out of the range [1,32]), it is
taken as 1 (default).

N_MASTER is the specified number of masters per subdomain. If absent or
invalid, it is taken as 1 (default).

BINSIZE is the number of function evaluations per task to be sent at one
time. If absent, it is taken as 1 (default).

RESTART
0, checkpointing is off (default).

34

1, function evaluations are logged to a file ’pvtdirchkpt.dat*’ tagged
with the subdomain ID and the master ID.

2, the program restarts from checkpoint files on all masters and new
function evaluation logs will be appended to the end of the files.
When ’N_MASTER’ has changed for the recovery run, at every
iteration, each master reads all the checkpoint logs for that
iteration from all checkpoint files. A new set of checkpoint files
is created to record the function evaluation logs.

TOTAL_MEM is an integer specifying the total amount of memory (in MB) on any

node involved in the computation. This implicitly assumes that the host
cluster uses a homogeneous memory scheme. If absent, new masters are
never spawned.

On output:

X(1:N) is a real vector containing the sampled box center with the
minimum objective function value FMIN.

FMIN is the minimum function value.

PROCID is the assigned processor ID that is used for printing out the
final results.

STATUS is an array of return status flags for ’N_SUB’ subdomains. For
the final search result, the units decimal digit of the ith element
of the array represents the return status of subdomain i; the units
decimal digit tens decimal digit indicates a successful return, or an
error condition with the cause of the error condition reported in the
units digit. During the search process, the first array element is used
for intermediate status on each processor.

Tens digit =
0 Normal return.
Units digit =
1 Stopping rule 1 (iteration limit) satisfied.
2 Stopping rule 2 (function evaluation limit) satisfied.
3 Stopping rule 3 (minimum diameter reached) satisfied. The
minimum diameter corresponds to the box for which X and
FMIN are returned.
4 Stopping rule 4 (relative change in ’FMIN’) satisfied.
1 Input data error.
Units digit =

0 N<2.

1 Assumed shape array L, U, or X does not have size N.

2 Some lower bound is >= the corresponding upper bound.

3 MIN_DIA, OBJ_CONV, or EPS is invalid or below the roundoff level.

4 None of MAX_EVL, MAX_ITER, MIN_DIA, and OBJ_CONV are specified;
there is no stopping rule.

5 Invalid SWITCH value.

6 SWITCH = O and EPS > 0 are incompatible.

7 RESTART has an invalid value.

8 Problem with the parallel scheme: the requested number of

processors is too small, or the worker to master ratio is less
than 2, or BOX_SET is specified for the multiple masters case.
9 BINSIZE has an invalid value.
2 Memory allocation error or failure.
Units digit =
0 BoxMatrix type allocation.
1 BoxLink or BoxLine type allocation.
2 int_vector or real_vector type allocation.
3 HyperBox type allocation.
4 BOX_SET is allocated with a wrong problem dimension.
3 Checkpoint file error.
Units digit =
0 Open error. If RESTART==1, an old checkpoint file may be present
and needs to be removed. If RESTART==2, the file may not exist.
1 Read error.
2 Write error.
3 The file header does not match with the current setting.
4 A log is missing in the file for recovery.
4 MPI error.
Units digit =
0 Initialization error.
MPI_COMM_RANK error.
MPI_COMM_GROUP error.
MPI_COMM_SIZE error.
MPI_GROUP_INCL error.
MPI_COMM_CREATE error.
MPI_GROUP_RANK error.
At least one processor aborts.

~N O O W

For example,
03 indicates a normal return (tens digit = 0) with "stopping rule 3
satisfied" (units digit = 3), and
12 indicates an input error (tens digit = 1) when "some lower bound

35

! is >= the corresponding upper bound" (units digit = 2).

! Optional arguments:

! MAX_ITER (if present) contains the number of iterations.

! MAX_EVL (if present) contains the number of function evaluations.

! MIN_DIA (if present) contains the diameter of the box associated with
! X and FMIN.

! MIN_SEP (if present) is unchanged if it was a reasonable value on
! input. Otherwise, it is reset to the default value.

! W (if present) is unchanged if it was positive on input. Any
! non-positive component is reset to ome.

! BOX_SET (if present) is an array of TYPE (HyperBox) containing the
! best boxes with centers separated by at least MIN_SEP.

! The number of returned boxes NUM_BOX <= SIZE(BOX_SET) is as
! large as possible given the requested separation.

! NUM_BOX (if present) is the number of boxes returned in the array
! BOX_SET(1:).

! N_SUB (if present) is the actual number of subdomains.

! N_MASTER (if present) is the actual number of masters.
!
INTEGER, INTENT(IN) :: N
REAL (KIND = R8), DIMENSION(:), INTENT(INOUT) :: L
REAL (KIND = R8), DIMENSION(:), INTENT(INOUT) :: U
INTERFACE
FUNCTION OBJ_FUNC(C, IFLAG) RESULT(F)
USE REAL_PRECISION, ONLY : R8
REAL (KIND = R8), DIMENSION(:), INTENT(IN) :: C
INTEGER, INTENT(OUT) :: IFLAG
REAL(KIND = R8) :: F
END FUNCTION OBJ_FUNC
END INTERFACE
REAL (KIND = R8), DIMENSION(:), INTENT(OUT) :: X
REAL (KIND = R8), INTENT(OUT) :: FMIN
INTEGER, INTENT(OUT) :: PROCID

INTEGER, DIMENSION(:), INTENT(OUT) :: STATUS

INTEGER, INTENT(IN), OPTIONAL :: SWITCH

INTEGER, INTENT(INOUT), OPTIONAL :: MAX_ITER

INTEGER, INTENT(INOUT), OPTIONAL :: MAX_EVL

REAL (KIND = R8), INTENT(INOUT), OPTIONAL :: MIN_DIA

REAL (KIND = R8), INTENT(IN), OPTIONAL :: OBJ_CONV

REAL(KIND = R8), INTENT(IN), OPTIONAL :: EPS

REAL (KIND = R8), INTENT(INOUT), OPTIONAL :: MIN_SEP

REAL (KIND = R8), DIMENSION(:), INTENT(INOUT), OPTIONAL :: W

TYPE (HyperBox) , DIMENSION(:), INTENT(INOUT), OPTIONAL :: BOX_SET

INTEGER, INTENT(OUT), OPTIONAL :: NUM_BOX
INTEGER, INTENT(INOUT), OPTIONAL :: N_SUB
INTEGER, INTENT(INOUT), OPTIONAL :: N_MASTER

INTEGER, INTENT(IN), OPTIONAL :: RESTART
INTEGER, INTENT(IN), OPTIONAL :: BINSIZE
INTEGER, INTENT(IN), OPTIONAL :: TOTAL_MEM

! Local variables.
CHARACTER(LEN = 30) ::
CHARACTER(LEN = 34) ::
CHARACTER(LEN = 32) ::
CHARACTER (LEN = 9)
CHARACTER(LEN = 15) :: str ! Temporary string for constructing the
! checkpoint filename at the run-time.
CHARACTER(LEN = 32), ALLOCATABLE, DIMENSION(:) :: gspawn_proc_list ! Array
! containing host names.
INTEGER :: alloc_err ! Allocation error status.
INTEGER :: b_id ! Box matrix identifier.
INTEGER :: BINSIZE_I ! The local copy of ’BINSIZE’.
INTEGER :: bits_sub ! A flag for the result collection from 1 to N_SUB_I-1
! subdomain. Bit i represents the subdomain i+1. When bit i is set 1,
! the results from subdomain i+1 have been collected.

cpfile, cpfilel ! Strings for checkpoint file names.
cpfile2 ! String for a checkpoint file name.
exec_name ! Name of the executable to be spawned.

INTEGER :: box_count ! Counter for the number of boxes stored by a master.
INTEGER :: box_count_global ! The total number of boxes across all masters.
INTEGER :: boxset_ind ! BOX_SET array index counter.

INTEGER :: box_size ! Size of a box in ’lbuffer’ and ’gbuffer’.

INTEGER :: bufsize ! Length of ’buffer’.

INTEGER :: c_alldone ! Counter for MYALL_DONE messages to workers.

INTEGER :: c_bits_sub ! Counter for finished subdomains.

INTEGER :: check_t ! Current iteration number for checkpoint recovery.
INTEGER :: child_comm ! Intercommunicator used by initial masters to

! communicate with spawned masters.
INTEGER :: chk_n ! N read from a checkpoint log file.

:: hostfile = "qspawn.hf" ! Name of hostfile for spawning.

36

INTEGER :: chk_sd ! N_SUB_I read from a checkpoint log file.
INTEGER :: chk_sm ! N_MASTER_I read from a checkpoint log file.
INTEGER :: chk_sml ! N_MASTER_I read from other checkpoint log files.
INTEGER :: chk_switch ! SWITCH read from a checkpoint log file.
INTEGER :: col ! Local column index.
INTEGER :: eval_c ! Function evaluation counter.
INTEGER :: eval_c_i ! Local ’eval_c’ on each subdomain master.
INTEGER :: gbuffer_len ! Length of ’gbuffer’.
INTEGER :: gc_convex ! The global convex box counter.
INTEGER :: group_world ! The group world ID for the masters in a subdomain.
INTEGER :: i, j, k ! Loop counters.
INTEGER :: ierr ! Error status for file I/0 and MPI function calls.
INTEGER :: iflag ! Error flag for subroutine calls.
INTEGER :: info ! Value of ’info’ argument used for spawning new masters.
INTEGER :: i_start ! Records the start index for searching in a node of
! ’setInd’.
INTEGER :: 1lbc ! If 1, LBC (limiting box columns) is enabled (default).

! If 0, LBC is disabled when the size of ’BOX_SET’ is greater than 1 or
! MAX_ITER is not specified.

INTEGER :: lbuffer_len ! Lengths for ’lbuffer’.
INTEGER :: loc_pid = 1, loc_sid = 2, loc_eid = 3, loc_val = 4, loc_c =5
INTEGER :: loc_side, loc_diam ! When gbuffer and lbuffer are used as buffers

! for convex hull boxes, each unit has box_size=2*N + 5 elements. In each
! unit:
! loc_pid=1 holds the original box owner’s Processor ID,
! loc_sid=2 holds ’setInd’ link ID of the box,
! loc_eid=3 holds the ’setInd’ link element ID of the box,
! loc_val=4 holds function value of the box center,
! loc_c=5:N+4 holds point coordinates of the box center,
! loc_side=N+5:2*N+4 holds the sides of the box, and
! loc_diam=2*N+5 holds the diameter squared of the box.
INTEGER ::

max_spawn = 2 ! Maximum number of spawning events.
INTEGER :: N_MASTER_I ! Local copy of argument ’N_MASTER’.
INTEGER :: N_WORKER_I ! Number of workers.
INTEGER :: N_SUB_I ! Local copy of argument ’N_SUB’.
INTEGER :: num_children ! The number of new masters to be spawned at a spawning
! event.
INTEGER :: parent_comm ! Intercommunicator used by spawned masters to

! communicate with initial masters.

INTEGER :: mygid ! Group ID.

INTEGER :: myid ! Processor ID.

INTEGER :: old_switch ! The value of the aggressive switch before a spawning
! event.

INTEGER :: gspawn_err ! The error code for ’makeHostFile’.

INTEGER :: gspawn_num_procs ! The number of unique host names for a given
! communicator.
INTEGER :: recv_tag ! The tag received to indicate the message type.

INTEGER :: RESTART_I ! Local copy of argument RESTART.
INTEGER :: set_size ! Size of a set in ’lbuffer’ holding box dividing info.
! When lbuffer is used as a buffer to hold ’setI’ info (only used in
! VTdirect) for all convex hull boxes for further processing in sampleP()
! and divide(), each unit has set_size=N+4 elements. In the first unit:
! 1: setI’dim, the length of ’setI’ holding sampling directions,
! 2: the parent box column ID,
! 3: the ’setInd’ ID,
! 4: the global box column ID, and

! 5:N+4: setlielements, the elements of ’setI’.
INTEGER :: size_pointer = 4 ! Size of a pointer in bytes.
INTEGER :: size_r8 ! Size of the R8 real type in bytes.
INTEGER :: spawn_count = O ! The current number of spawning events.
INTEGER :: stop_rule ! Bits 0, 1, 2, 3 being set correspond to stopping rules

! 1 (iteration limit), 2 (function evaluation limit), 3 (minimum box
! diameter), 4 (relative change in ’FMIN’) respectively.

INTEGER :: SWITCH_I ! Local copy of argument SWITCH.
INTEGER :: switch_iter ! The iteration at which the last spawning event
! occured.
INTEGER :: t ! Iteration counter.
INTEGER :: temp_comm_world ! Temporary communicator containing all processes

! after the parent and child intercommunicators are merged.

INTEGER :: temp_group_worker ! Temporary group containing workers.
INTEGER :: temp_group_world ! Temporary group used to make ’temp_comm_world’.
INTEGER :: trans_comm ! Communicator used to transfer state from the lead

! master to the spawned master(s).

INTEGER :: trans_group ! Group used to make ’trans_comm’.
INTEGER :: update_counter ! The counter for ’update_array’.
INTEGER :: world_size ! The total number of processes.
INTEGER :: xm_comm ! Handle for extended master communicator.
INTEGER :: xw_comm ! Handle for extended world communicator.
INTEGER :: xm_group ! Handle for extended master group.
INTEGER :: xw_group ! Handle for extended world group.

INTEGER, DIMENSION(:), ALLOCATABLE :: array_masters ! An array of processor
! IDs of masters in the same subdomain.

INTEGER, DIMENSION(:), ALLOCATABLE :: b_worker ! An array of blocking
! status of workers in multiple subdomain search. b_worker(i) represents
! the worker with processor ID = i. When b_worker(i) is 1, the worker has
! sent two blocking requests to this master.

37

INTEGER, DIMENSION(:), ALLOCATABLE :: chk_len ! An array holding the number
! of logs for an iteration on all masters.
INTEGER, DIMENSION(1) :: spawnErrcodes ! Array of errcodes for spawning.
INTEGER, DIMENSION(:), ALLOCATABLE :: displs ! An array used in gathering
! local convex hull boxes from subdomain masters.
INTEGER, DIMENSION(:), ALLOCATABLE :: lc_convex ! An array of the local
! convex box counters for all subdomain masters.
INTEGER, DIMENSION(:), ALLOCATABLE ::
! IDs.
INTEGER, DIMENSION(:), ALLOCATABLE :: m_group ! An array of sub-group IDs.
INTEGER, DIMENSION(:), ALLOCATABLE :: master_ranks ! An array containing the
! ranks of masters, used for building communicators after spawning.
INTEGER, DIMENSION(MPI_STATUS_SIZE) :: mstatus ! An array of info for MPI_RECV.
INTEGER, DIMENSION(14) :: mySIZE ! Array meant to simulate ’SIZE’ primitive for
! spawned masters.
INTEGER :: q_counter ! The counter for workers in ’q_worker’.
INTEGER, DIMENSION(:), ALLOCATABLE :: g_worker ! A queue holding processor IDs
! of workers that have sent blocking requests to this master.
INTEGER, ALLOCATABLE, DIMENSION(:) :: gspawn_num_cores ! An array containing
! the number of cores on the given nodes.
INTEGER, ALLOCATABLE, DIMENSION(:) :: gspawn_num_hosted ! An array containing
! the number of processes running on the given nodes.
INTEGER, DIMENSION(49) :: statebuf_integer ! Buffer for transferring INTEGER
! variables to the spawned master(s).
INTEGER, DIMENSION(2) :: sub_divisor ! An array of decomposition parameters.
INTEGER, DIMENSION(2) :: sub_index ! An array of dimension indices.
INTEGER, DIMENSION(:), ALLOCATABLE :: trans_ranks
INTEGER, DIMENSION(:), ALLOCATABLE :: update_array ! An array holding processor
! IDs of masters that have updated results.
INTEGER, DIMENSION(:), ALLOCATABLE :: worker_ranks

m_comm ! An array of sub-communicator

LOGICAL :: do_it ! Sign to process first box in each column of BoxMatrix.
LOGICAL :: spawn_initiated ! Spawn procedure has been initiated.
LOGICAL :: spawn_requested_global ! Spawn procedure has been requested

! globally.
LOGICAL :: spawn_requested_local ! Spawn procedure has been requested locally.
LOGICAL :: spawned ! Flag specifying if a master was spawned.

LOGICAL, DIMENSION(1) :: statebuf_logical ! Buffer for transferring LOGICAL
! variables to the spawned master(s).

REAL(KIND = R8) :: box_mem ! Memory required to store a single ’HyperBox’

REAL(KIND = R8) :: chk_eps ! EPS read from a checkpoint log file.

REAL(KIND = R8) :: dia ! Diameter squared associated with *FMIN’.
REAL(KIND = R8) :: dia_i ! The local ’dia’ on a subdomain master.
REAL(KIND = R8) :: dia_limit ! Minimum diameter permitted.

REAL(KIND = R8) :: EPS_I ! Local copy of argument EPS.

: fmin_old ! FMIN backup.

REAL (KIND = R8) :

REAL(KIND = R8) :: FMIN_I ! The local ’FMIN’ on a subdomain master.
REAL(KIND = R8) :: MIN_SEP_I ! Local copy of argument MIN_SEP.
REAL(KIND = R8) :: size_mb = 1048576.0_R8 ! Size of a megabyte in bytes.
REAL(KIND = R8) :: tmpf ! Temporary real variable for function

! values read from the checkpoint log file and swapping operations.
REAL (KIND = R8), DIMENSION(:), ALLOCATABLE :: buffer ! MPI messaging buffer.
! When ’buffer’ holds an evaluation task to a worker:
! buffer(1) holds point starting index,
! buffer(2) holds the number of points for this task, and
! buffer(3:) holds points.
! When ’buffer’ holds the result data:
! buffer(1) holds FMIN,
! buffer(2:N+1) holds X,
! buffer (N+2) holds MAX_ITER,
! buffer (N+3) holds MAX_EVL,
! buffer (N+4) holds MIN_DIA,
! buffer (N+5) holds STATUS, and
! buffer (N+6) holds c_alldone.
REAL (KIND = R8), DIMENSION(:), ALLOCATABLE :
! from checkpoint log file.

: chk_1, chk_u ! L and U read

REAL(KIND = R8), DIMENSION(N) :: current_center ! Center coordinates of

! the best unmarked box in the current box data structure.
REAL(KIND = R8), DIMENSION(2) :: dim_len ! An array of dimension ranges.
REAL(KIND = R8), DIMENSION(:), ALLOCATABLE :: gbuffer ! A global buffer holding

! convex boxes.
REAL (KIND = R8),
! convex boxes

DIMENSION(:), ALLOCATABLE :: lbuffer ! A local buffer holding
or info for dividing boxes on a master.

REAL(KIND = R8), DIMENSION(11) :: statebuf_real ! Buffer for transferring REAL
! variables to the spawned master(s).

REAL(KIND = R8), DIMENSION(N) :: tmp_x ! X normalized to unit hypercube.

REAL(KIND = R8), DIMENSION(N) :: UmL ! An array containing U(:) - L(:).

REAL(KIND = R8), DIMENSION(N) :: unit_x ! X normalized to unit hypercube.

REAL(KIND = R8), DIMENSION(N) :: unit_x_i ! The local ’unit_x’ on each SM.

REAL(KIND = R8), DIMENSION(N) :: W_I ! Local copy of weights W.

TYPE(OptResults), DIMENSION(:), ALLOCATABLE :: array_results ! An array of
! collected results from subdomain 1 to N_SUB_I-1, not including subdomain O,
! which collects results from other subdomains.
TYPE(BoxMatrix), POINTER :: m_head ! The first box matrix.
TYPE(BoxLink), POINTER :: p_1 ! Pointer to the current box link.
TYPE(BoxMatrix), POINTER :: p_b ! Pointer to box matrix.
TYPE (Hyperbox) , POINTER :: p_box ! Box for the removed parent box to divide.

38

TYPE (HyperBox) , POINTER :: p_save ! Pointer to the saved best box.

TYPE(int_vector), POINTER :: p_start ! Records the start node for searching
! the column with CONVEX_BIT set in ’setInd’.

TYPE(int_vector), POINTER :: p_iset ! Pointer to a node of ’int_vector’ type

’setInd’, ’setFcol’.

setB ! Buffer for newly sampled boxes and resized parent

! linked lists, i.e.
TYPE(BoxLine) ::
! boxes.
TYPE(int_vector), POINTER :: setFcol ! A linked list. Each node holds free
! column indices in BoxMatrices.
TYPE(int_vector), POINTER :: setInd ! A linked list. Each node holds column
! indices corresponding to different squared diameters in ’setDia’.
TYPE(real_vector), POINTER :: setDia ! A linked list. Each node holds
! current different squared diameters from largest to smallest.
TYPE(ValList) :: setW ! Function values for newly sampled center points.

! Get the name of the executable to be spawned.
CALL GETARG(0O, exec_name)

! Initialize box counts.
box_count = 0
box_count_global = 0

! Determine if this process was spawned, and if so obtain parent communicator.
CALL MPI_COMM_GET_PARENT (parent_comm, ierr)
IF (parent_comm == MPI_COMM_NULL) THEN

spawned = .FALSE.
ELSE

spawned = .TRUE.
END IF

! Initialize ’child_comm’.
child_comm = MPI_COMM_NULL

! Initialize ’xw_comm’, and spawning status variables.

xw_comm = MPI_COMM_WORLD
spawn_requested_global = .FALSE.
spawn_requested_local = .FALSE.

spawn_initiated = .FALSE.

! Initialize ’STATUS’.
STATUS(:) =

! Tolerance for REAL number equality tests.

EPS4N = REAL(4%N, KIND = R8)*EPSILON(1.0_R8)

! Set the MPI_ERRORS_RETURN handler for the initialization phase.
CALL MPI_ERRHANDLER_SET(MPI_COMM_WORLD, MPI_ERRORS_RETURN, ierr)
! Find ’myid’, ’group_world’, and ’world_size’.
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
IF (ierr /= MPI_SUCCESS) THEN
STATUS(1) = DMPI_ERROR + 1
RETURN
END IF
CALL MPI_COMM_GROUP(MPI_COMM_WORLD, group_world, ierr)
IF (ierr /= MPI_SUCCESS) THEN
STATUS(1) = DMPI_ERROR + 2
RETURN
END IF
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, world_size, ierr)
IF (ierr /= MPI_SUCCESS) THEN
STATUS(1) = DMPI_ERROR + 3
RETURN
END IF
PROCID = myid

! Perform sanity check of input arguments and set local variables derived
! from input arguments.

STATUS(1) = sanitycheck()

IF (STATUS(1) /= 0) RETURN

! Allocate and initialize buffers. Find the byte size of R8 type and compute
! ’box_mem’ and ’bufsize’.
INQUIRE (IOLENGTH=size_r8) 1.0_R8

! Set the amount of memory used by a ’HyperBox’.

box_mem = REAL(2*(N + 1)*size_r8 + 2*size_pointer, R8) ! A ’HyperBox’ has
! two pointers (4 bytes each), two REAL’s (KIND = R8), and two arrays
! of length N containing REAL’s (KIND = R8).

bufsize = MAX(2 + BINSIZE_I*(N + 2), N + 6)*size_r8 ! ’buffer’ is used to hold

! an evaluation task to a worker (2+BINSIZE_I*(N+2)) or to hold the result
! data (N+6) from a master.

ALLOCATE (buffer (bufsize/size_r8))

buffer(:) =0

ALLOCATE (array_masters (world_size))

array_masters(:) = 0

! Assign group ID ’mygid’.
IF (world_size == 1) THEN ! Only one processor is used.
mygid = 0
ELSE ! Multiple processors are used, so allocate ’m_comm’ and ’m_group’ to
! group processors for different subdomains .
ALLOCATE (m_comm (N_SUB_I))
ALLOCATE (m_group(N_SUB_I))
m_comm(:) =0
m_group(:) =0
! Create one sub-communicator for each subdomain and store the
! group IDs in ’m_group’ and communicator IDs in ’m_comm’.
DO i =1, N.SUB_I
DO j =1, N_MASTER_I
array_masters(j) = (i - 1)*N_MASTER_I + j - 1
END DO
CALL MPI_GROUP_INCL(group_world, N_MASTER_I, array_masters, &
m_group(i), ierr)
IF (ierr /= MPI_SUCCESS) THEN
STATUS(1) = DMPI_ERROR + 4
RETURN
END IF
CALL MPI_COMM_CREATE(MPI_COMM_WORLD, m_group(i), m_comm(i), ierr)
IF (ierr /= MPI_SUCCESS) THEN
STATUS(1) = DMPI_ERROR + 5
RETURN
END IF
! For a master, obtain the group ID.
IF (inQueue(array_masters, N_MASTER_I, myid)) THEN
CALL MPI_GROUP_RANK(m_group(i), mygid, ierr)
IF (ierr /= MPI_SUCCESS) THEN
STATUS(1) = DMPI_ERROR + 6
RETURN
END IF
END IF
END DO
! Initialize ’master_ranks’ and ’worker_ranks’.
N_WORKER_I = world_size - (N_MASTER_I*N_SUB_I)
ALLOCATE (master_ranks (N_MASTER_I))
ALLOCATE (worker_ranks (N_WORKER_I))
DO i =1, N_MASTER_I
master_ranks(i) =i - 1
END DO

DO i =1, N_WORKER_I sub_divisor(1:2) = (/ N_SUB_I, 1 /)

worker_ranks(i) = world_size - N_WORKER_I + (i - 1) ELSE
END DO sub_divisor(1:2) = (/ 1, N_SUB_I /)
END IF DO
DO i = sub_divisor(1) + 1, N_SUB_I
! Reset the MPI_ERRORS_ARE_FATAL handler. IF (MOD(N_SUB_I, i) == 0) EXIT
CALL MPI_ERRHANDLER_SET(MPI_COMM_WORLD, MPI_ERRORS_ARE_FATAL, ierr) END DO
IF (dim_len(1)*N_SUB_I < i*i*dim_len(2)) EXIT
! Tnitialize ’bits_sub’ and ’c_bits_sub’. sub_divisor(1:2) = (/ i, N_SUB_I/i /)
bits_sub = 0 END DO
c_bits_sub =0 IF (ABS(REAL(sub_divisor(2), KIND = R8)/ &
! Branch to either a master or a worker depending on ’myid’. REAL(sub_divisor (1), KIND = R8) - &
IF (world_size < 3 .0R. ((world_size >= 3) .AND. & dim_len(2)/dim_len(1)) > &
(myid < N_MASTER_I#N_SUB_I))) THEN ! The processor is a master when fewer ABS(REAL(N_SUB_I, KIND = R8)/REAL(i*i, KIND = R8) - &
! than 3 processors are used, or when more than 3 processors are used and dim_len(2)/dim_len(1))) THEN
! ’myid’ is within the range of master IDs [0, N_MASTER_I*N_SUB_I-1]. sub_divisor(1:2) = (/ i, N_SUB_I/i /)
! Allocate and initialize buffers and counters used by the master. END IF
ALLOCATE(q_worker (world_size)) END IF
gq_worker(:) =0
q_counter = 0 ! Decompose the domain along the longest scaled dimensions indexed
ALLOCATE (b_worker (world_size)) ! by ’sub_index(1:2)’ for the master processor myid. The subdomain ID for the
b_worker(:) =0 ! master processor ’myid’ is myid/N_MASTER_I.
c_alldone = 0 SPLITLOOP: DO i =1, 2
IF (N_SUB_I > 1) THEN ! For a multiple subdomain search, divide the tmpf = (U(sub_index(i)) - L(sub_index(i)))/ &
! original domain into ’N_SUB_I’ parts by subdividing the two longest REAL (sub_divisor (i), KIND = R8)
! scaled dimensions (in dim_len(:)) into sub_divisor(1l) and sub_divisor(2) IF (i == 1) THEN
! parts, respectively, where sub_divisor(1)*sub_divisor(2)=N_SUB_I, and L(sub_index(i)) = L(sub_index(i)) + tmpf* &
! sub_divisor(2)/sub_divisor (1) approximates dim_len(2)/dim_len(1). ! The subdomain column ID is:
! REAL (MOD (myid/N_MASTER_I, sub_divisor(1)), KIND = R8)
! Find the index for the longest scaled dimension. ELSE
sub_index(1) = MAXLOC(W_I(1:N)*(U(1:N) - L(1:N)), DIM=1) L(sub_index(i)) = L(sub_index(i)) + tmpf* &
! Save that longest scaled dimension in dim_len(1). ! The subdomain row ID is:
dim_len(1) = W_I(sub_index(1))*(U(sub_index(1)) - L(sub_index(1))) REAL ((myid/N_MASTER_I)/sub_divisor(1), KIND = R8)
tmpf = W_I(sub_index(1)) ! Save that dimension’s weight. END IF
! Zero that weight to find the next longest scaled dimension. U(sub_index(i)) = L(sub_index(i)) + tmpf
W_I(sub_index(1)) = 0.0_R8 END DO SPLITLOOP
sub_index(2) = MAXLOC(W_I(1:N)*(U(1:N) - L(1:N)), DIM=1)
dim_len(2) = W_I(sub_index(2))*(U(sub_index(2)) - L(sub_index(2))) ! The root master allocates ’array_results’ for merging final results
W_I(sub_index(1)) = tmpf ! Recover the zeroed weight. ! from different subdomains.
IF (myid == 0) THEN
! Adjust ’sub_divisor’ so that the ratio sub_divisor(2)/sub_divisor(1) ALLOCATE (array_results(N_SUB_I - 1))
! approximates dim_len(2)/dim_len(1). DOi=1, N.SUB_I -1
IF (dim_len(1) >= N_SUB_I*dim_len(2)) THEN ALLOCATE (array_results(i)%x(N))

40

END DO
END IF
END IF
! Each root subdomain master allocates ’update_array’ for intermediate
! result updates.
IF (mygid == 0) ALLOCATE(update_array(N_MASTER_I))
! Prepare ’array_masters’ for calling master().
DO i =1, N_MASTER_I
array_masters(i) = INT(myid/N_MASTER_I)*N_MASTER_I + i - 1
END DO
iflag =0
CALL master(iflag)
IF (iflag /= 0) THEN
STATUS (1) = iflag
IF (iflag /= DMPI_ERROR + 7) THEN
! Notify all others that it has to abort the program. Use ’b_worker’
! as the send buffer and ’q_worker’ as the receive buffer.
b_worker(:) =0
CALL MPI_ALLTOALL(b_worker, 1, MPI_INTEGER, q_worker, 1, &
MPI_INTEGER, xw_comm, ierr)
WRITE(*,315) myid, iflag
315 FORMAT (" Master Processor ",I5, &

" aborts the program with error flag ", &
I3,". See comments in spVTdirect to interpret flag.")
END IF
RETURN
END IF
! The master releases workers in the queue by sending ’MYALL_DONE’
! messages.
DO
IF (q_counter == 0) EXIT ! Exit when no more workers in the queue.

CALL MPI_SEND(buffer, bufsize, MPI_BYTE, &
q_worker (q_counter), MYALL_DONE, xw_comm, ierr)
gq_counter = gq_counter - 1
c_alldone = c_alldone + 1
END DO
! The root master merges subdomain results and initiates the global
! termination to all other masters.
IF (myid == 0) THEN ! The root master.
IF (c_bits_sub > 0) THEN

! At least one subdomain has finished earlier than the root subdomain.

! Process the results stored in array_results(:).
DOi=1, N_SUB_I -1

41

IF (BTEST(bits_sub, i)) THEN ! Merging results for subdomain i.
IF (array_results(i)’fmin < FMIN) THEN
FMIN = array_results(i)%fmin
X(:) = array_results(i)%x
END IF
IF (PRESENT(MAX_ITER)) THEN
IF (MAX_ITER < array_results(i)/max_iter) MAX_ITER = &
array_results(i)/%max_iter
END IF
IF (PRESENT(MAX_EVL)) MAX_EVL = MAX_EVL + array_results(i)%max_evl
IF (PRESENT(MIN_DIA)) THEN
IF (MIN_DIA > array_results(i)%min_dia) MIN_DIA = &
array_results(i)%min_dia
END IF
STATUS(i + 1) = array_results(i)’status
END IF
END DO
END IF
! Clean up all left-over requests before starting the global termination.
! Collect results from subdomains that are finishing.
DO
IF ((c_bits_sub >= N_SUB_I - 1) .AND. &
(c_alldone >= (world_size - N_SUB_I*N_MASTER_I)*N_SUB_I)) EXIT
! Wait for messages until all subdomain results are collected and
! all workers have received MYALL_DONE to terminate themselves.
CALL MPI_RECV(buffer, bufsize, MPI_BYTE, MPI_ANY_SOURCE, &
MPI_ANY_TAG, xw_comm, mstatus, ierr)
IF (mstatus(MPI_TAG) == RESULT_DATA) THEN
! Merge the received results from a root subdomain master.
IF (buffer(1) < FMIN) THEN
FMIN = buffer(1)
X(:) = buffer(2:N + 1)
END IF
IF (PRESENT(MAX_ITER)) THEN
IF (MAX_ITER < INT(buffer(N + 2))) MAX_ITER = INT(buffer(N + 2))
END IF
IF (PRESENT(MAX_EVL)) MAX_EVL = MAX_EVL + INT(buffer (N + 3))
IF (PRESENT(MIN_DIA)) THEN
IF (MIN_DIA > buffer(N + 4)) MIN_DIA = buffer(N + 4)
END IF
STATUS (mstatus (MPI_SOURCE) /N_MASTER_I + 1) = INT(buffer(N + 5))
! Update ’c_bits_sub’ and ’c_alldone’.
c_bits_sub = c_bits_sub + 1

c_alldone = c_alldone + INT(buffer(N + 6))

END IF

! Process the received left-over request from workers.

IF ((mstatus(MPI_TAG) == NONBLOCK_REQR) .OR. (mstatus(MPI_TAG) &
== BLOCK_REQ)) THEN

! Send MYALL_DONE’ to remove itself from the worker’s master list.

CALL MPI_SEND(buffer, bufsize, MPI_BYTE, &
mstatus (MPI_SOURCE), MYALL_DONE, xw_comm, ierr)

! Update ’c_alldone’ if the message is not from a master-converted
! worker.
IF (INT(buffer(1)) == 0) c_alldone = c_alldone + 1

END IF

! Process the received message to update ’c_alldone’.

IF (mstatus(MPI_TAG) == COUNT_DONE) THEN
c_alldone = c_alldone + INT(buffer(1))

END IF

END DO

! The root sends termination messages to its left and right processors.

i =myid*2 + 1
J = myid*2 + 2
IF (i <= N_MASTER_I*N_SUB_I - 1) THEN
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, i, TERMINATE, &
Xw_comm, ierr)
END IF
IF (j <= N_MASTER_I*N_SUB_I - 1) THEN
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, j, TERMINATE, &
Xw_comm, ierr)
END IF
ELSE ! Nonroot master.
IF (mygid == 0) THEN ! The root subdomain master.
! Send the search results and ’c_alldone’ to the root master.
buffer(1) = FMIN
buffer(2:N + 1) = X
buffer(N + 2) = t
buffer(N + 3) = eval_c
buffer(N + 4) = SQRT(dia)
buffer(N + 5) = STATUS(1)
buffer(N + 6) = c_alldone
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, O, RESULT_DATA, &
Xw_comm, ierr)

END IF
! A1l nonroot masters send the counter ’c_alldone’ to the root master.
buffer(1l) = c_alldone

CALL MPI_SEND(buffer, bufsize, MPI_BYTE, O, COUNT_DONE,&
xw_comm, ierr)
! Wait for the final termination message and pass it down to the binary
! tree of master processors.
TERMLOOP: DO
CALL MPI_RECV(buffer, bufsize, MPI_BYTE, MPI_ANY_SOURCE, &
MPI_ANY_TAG, xw_comm, mstatus, ierr)
IF (mstatus(MPI_TAG) == TERMINATE) THEN
Received a termination message.
i = myid*2 + 1
j = myid*2 + 2
IF (i <= N_MASTER_I*N_SUB_I - 1) THEN
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, i, &
mstatus (MPI_TAG), xw_comm, ierr)

END IF
IF (j <= N_MASTER_I*N_SUB_I - 1) THEN
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, j, &
mstatus (MPI_TAG), xw_comm, ierr)
END IF
EXIT TERMLOOP
END IF
IF (mstatus(MPI_TAG) == BE_WORKER) THEN
! Receive a "BE_WORKER" message. To become a worker, obtain
! ’bits_sub’ (busy status of all subdomains) from ’buffer’
! preparing to call worker().
bits_sub = INT(buffer(1))
! The root subdomain master passes this "BE_WORKER" msg to nonroot
! subdomain masters (if any).
IF ((myid == array_masters(1)) .AND. (N_MASTER_I > 1)) THEN
DO i = 2, N_MASTER_I
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, &
array_masters(i), BE_WORKER, xw_comm, ierr)
END DO
END IF
CALL worker (bits_sub)
EXIT TERMLOOP
END IF
IF ((mstatus(MPI_TAG) == NONBLOCK_REQ) .OR. (mstatus(MPI_TAG) &
== BLOCK_REQ)) THEN
! Process the received request from a worker. Send "MYALL_DONE"
! reply to remove itself from the worker’s master list.
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, &
mstatus (MPI_SOURCE), MYALL_DONE, xw_comm, ierr)

! Send the update of ’c_alldone’ to the root master if the message
! is not from a master-converted worker.
IF (INT(buffer(1)) == 0) THEN
buffer(1) =1
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, &
0, COUNT_DONE, xw_comm, ierr)
END IF
END IF
END DO TERMLOOP
END IF ! end of IF (myid ==0)

! Deallocate buffers.
DEALLOCATE (q_worker)
DEALLOCATE (b_worker)
IF (N_SUB_I > 1) THEN
! Deallocate ’array_results’, ’buffer’, and ’update_array’.
IF (myid == 0) THEN
DOi=1, N.SUB_.I -1
DEALLOCATE (array_results (i) %x)
END DO
DEALLOCATE (array_results)
END IF
END IF
IF (mygid == 0) DEALLOCATE (update_array)
ELSE ! A worker.
CALL worker (bits_sub)
END IF

! If new masters were spawned, then free parent and child intercommunicators.
IF (spawn_count > 0) THEN
IF (spawned) THEN
CALL MPI_COMM_FREE(parent_comm, ierr)
ELSE
CALL MPI_COMM_FREE(child_comm, ierr)
END IF
END IF

! Deallocate common buffers.
DEALLOCATE (array_masters)
DEALLOCATE (buffer)
IF (world_size > 1 .AND. .NOT. spawned) THEN
DOi=1, N_SUB_I
IF (m_comm(i) /= MPI_COMM_NULL) CALL MPI_COMM_FREE(m_comm(i), ierr)

43

IF (m_group(i) /= MPI_GROUP_NULL) CALL MPI_GROUP_FREE(m_group(i), ierr)
END DO
DEALLOCATE (m_group)
DEALLOCATE (m_comm)
END IF

RETURN
CONTAINS

SUBROUTINE boxSelection(tmpbox, m_portion, iflag)

IMPLICIT NONE

Select potentially optimal boxes (convex hull boxes) in parallel when
multiple masters are used in a subdomain, or in sequential when only one
master is used in a subdomain.

On input:
! xm_comm - The sub-communicator of the master.
! tmpbox - A pre-allocated temporary buffer for swapping boxes in ’gbuffer’.

! On output:
! m_portion - Number of global convex hull boxes for this master.

! tmpbox - As above under "On input".
! iflag - Status to return.

! 0 Normal return.

! >0 Error return.

REAL(KIND = R8), DIMENSION(:), INTENT(INOUT) :: tmpbox
INTEGER, INTENT(OUT) :: m_portion
INTEGER, INTENT(INOUT) :: iflag

! Local variables.

DOUBLE PRECISION :: box_avg ! Average box load over masters.

DOUBLE PRECISION :: box_dev ! Percent deviation from average box load.
INTEGER :: eid ! Box element ID extracted from ’gbuffer’.

INTEGER :: endbox ! Index of the last convex hull box for this master.
INTEGER :: i, i1, i2, j ! Loop counters.
INTEGER :: mycol ! Box column index.

INTEGER, DIMENSION(:), ALLOCATABLE :: seed ! Seed for random number generator.

INTEGER :: seed_size ! Size of random seed array.

INTEGER :: sid ! Box set ID extracted from ’gbuffer’.

INTEGER :: startlocl, startloc2 ! Start indices for ’gbuffer’ or ’lbuffer’.
INTEGER :: startbox ! Index of the first convex hull box for this master.
INTEGER :: tmp_portion ! Used to store box portion information.

INTEGER :: tmp_rank ! Used to store process rank.

INTEGER :: top ! Top box index for the box stack.

! contained in the comm buffer.

REAL(KIND = R8) :: harvest ! Stores random real used to distribute excess
! box portion.

REAL(KIND = R8) :: slope, slope_min ! Real variables for slope computation.

! Initialize ’iflag’, ’lc_convex’, and ’gc_convex’.

iflag =0

lc_convex(:) =0

gc_convex = 0

IF (N_MASTER_I > 1) THEN

Using multiple subdomain masters, when convex hull processing is on,

1. Each master finds its local convex hull boxes;
2. The root master gathers all local convex hull boxes and finds

the global convex set of boxes.

3. Each master obtains its own portion of global convex boxes.

(SWITCH_I==1) convex hull boxes will be processed in parallel as follows:

When convex hull processing is off (SWITCH_I==0), the root master collects
all the lowest boxes, removes the ones with smaller diameters than the one
with FMIN’, and redistributes them to all masters in the same subdomain.

Initially, the master marks the lowest boxes from the one with the

biggest diameter to the one holding the current ’FMIN’ as convex
! hull boxes.
p_iset => setInd
MARKLOOP: DO
IF (p_iset)dim == 0) THEN
EXIT MARKLOOP
END IF
DO i =1, p_iset’dim
! Mark the box as the convex hull box.
p_iset¥flags(i) = IBSET(p_iset%flags(i), CONVEX_BIT)
! Update ’gc_convex’.
gc_convex = gc_convex + 1
! Exit if the column has reached the one with ’FMIN’.
b_id = (p_iset¥%elements(i) - 1)/col_w + 1
col = MOD(p_iset%elements(i) - 1, col_w) + 1
p_b => m_head
DO j =1, b_id -1
p_b => p_blchild
END DO
IF (dia_i == p_b%M(1,col)%diam) EXIT MARKLOOP

44

END DO

! Go to the next link if any.

IF (ASSOCIATED(p_iset%next)) THEN
p_iset => p_iset/next

ELSE
EXIT MARKLOOP

END IF

END DO MARKLOOP

IF (SWITCH_I == 1) THEN ! Convex hull processing is on.
! Find local convex hull boxes from all the marked boxes.
CALL findconvex(m_head, p_iset, 0, setInd)
! Enlarge ’lbuffer’ to hold ’gc_convex’ number of local convex boxes
! if needed.
IF (gc_convex*box_size > lbuffer_len) THEN
DEALLOCATE (1buffer)
ALLOCATE (1buffer (MAX(INT (2*1buffer_len), gc_convex*box_size)))
lbuffer_len = SIZE(1lbuffer)
END IF
END IF
! The master puts all marked boxes to ’lbuffer’.
p_iset => setInd
PUTLOOP: DO
IF (p_iset%dim == 0) EXIT PUTLOOP
DO i =1, p_iset’dim
b_id = (p_isetlelements(i) - 1)/col_w + 1
col = MOD(p_iset’elements(i) - 1, col_w) + 1
p_b => m_head
DO j =1, b_id -1
p_b => p_bY%child
END DO
IF (BTEST(p_iset’flags(i), CONVEX_BIT)) THEN
! Found a local convex box, so put it in ’lbuffer’.
startlocl = lc_convex(mygid + 1)*box_size
lbuffer(startlocl + loc_pid) = myid
lbuffer(startlocl + loc_sid) = p_iset’id
lbuffer(startlocl + loc_eid) i
lbuffer(startlocl + loc_c: startlocl + loc_c + N - 1) &
= p_b%M(1,col)%c(:)
lbuffer(startlocl + loc_side: startlocl + loc_side + N - 1) &
= p_b%M(1,col)%side(:)
lbuffer(startlocl + loc_val) = p_b%M(1,col)%val
lbuffer(startlocl + loc_diam) = p_b%M(1,col)’%diam

lc_convex(mygid + 1) = lc_convex(mygid + 1) + 1 lc_convex(:) = INT(lc_convex(:)/(box_size*size_r8))
! Clear the CONVEX_BIT.

p_iset%flags(i) = IBCLR(p_iset%flags(i), CONVEX_BIT) ! The root subdomain master merges the boxes by size.
END IF IF (mygid == 0) THEN
END DO ! First, merge box sets according to box diameters in ’gbuffer’.
! Go to the next link if any. ! Initially, the merged portion is the box set at root subdomain master.
IF (ASSOCIATED(p_isetYnext)) THEN gc_convex = lc_convex (1)
p_iset => p_iset/next MERGELOOP1: DO i = 2, N_MASTER_I
ELSE IF (lc_convex(i) <= 0) CYCLE
EXIT PUTLOOP il = 0 ! Index to the merged portion of gbuffer.
END IF i2 = 0 ! Index to the portion to be merged from subdomain master ’i’.
END DO PUTLOOP MERGELOOP2: DO
! Wait for all subdomain masters to get to this point. startlocl = ilx*box_size
CALL MPI_BARRIER(xm_comm, ierr) startloc2 = displs(i)/size_r8 + i2*box_size
! The root subdomain master gathers the local counters in ’lc_convex’ IF (gbuffer(startloc2 + loc_diam) > gbuffer(startlocl + loc_diam)) THEN
! from all masters. Then, it collects local convex hull boxes from ! The diameter is bigger, so insert this box indexed by ’i2’
! ’1buffer’ on each master, save them in its ’gbuffer’, and finds the ! before box ’il’ in the merged portion.
! global convex boxes. tmpbox(:) = gbuffer(startloc2 + l:startloc2 + box_size)
CALL MPI_GATHER(lc_convex(mygid + 1), 1, MPI_INTEGER, & gbuffer(startlocl + box_size + l:startlocl &
lc_convex(mygid + 1), 1, MPI_INTEGER, O, xm_comm, ierr) + (gc_convex - il + 1)#*box_size) = &
IF (mygid == 0) THEN gbuffer(startlocl + 1:startlocl + (gc_convex - il)*box_size)
IF (gbuffer_len < SUM(1lc_convex(:))*box_size) THEN gbuffer(startlocl + 1l:startlocl + box_size) = tmpbox(:)
! The global buffer ’gbuffer’ is not big enough to hold all local ! Update the counter ’gc_convex’ for the merged boxes.
! convex hull boxes. Reallocate ’gbuffer’. gc_convex = gc_convex + 1
DEALLOCATE (gbuffer) ! Update ’il’ and ’i2’.
ALLOCATE (gbuffer (MAX (INT(2*gbuffer_len), SUM(lc_convex(:)*box_size)))) il=1i1+1
gbuffer_len = SIZE(gbuffer) i2 =132 +1
END IF ELSE ! Smaller or equal diameters.
! The root subdomain master prepares ’displs’ to gather local convex boxes. IF ((ABS(gbuffer(startlocl + loc_diam) - &
! Each entry i specifies the displacement relative to a buffer at which to gbuffer(startloc2 + loc_diam))/ &
! place the incoming data from master i. gbuffer(startloc2 + loc_diam)) <= EPS4N) THEN
displs(1) =0 ! The diameters are equal, so compare the function values.
DO i = 2, N_MASTER_I IF (gbuffer(startlocl + loc_val) &
displs(i) = displs(i - 1) + lc_convex(i - 1)*box_size*size_r8 > gbuffer(startloc2 + loc_val)) THEN
END DO ! Smaller function value wins. Override the box ’il’.
END IF gbuffer(startlocl + l:startlocl + box_size) = &
! The root subdomain master gathers the boxes. Compute the amount of gbuffer(startloc2 + l:startloc2 + box_size)
! data in unit of MPI_BYTE for gathering in lc_convex(:). ELSE
lc_convex(:) = lc_convex(:)*box_size*size_r8 IF (gbuffer(startlocl + loc_val) &
CALL MPI_GATHERV(lbuffer, lc_convex(mygid + 1), MPI_BYTE, & == gbuffer(startloc2 + loc_val)) THEN
gbuffer, lc_convex(:), displs, MPI_BYTE, & ! For equal function values, smaller lex order wins.
0, xm_comm, ierr) IF (gbuffer(startloc2 + loc_c:startloc2 + loc_c + N - 1) &
! Recover lc_convex with the number of boxes in place of the number of units. .1lexLT. gbuffer(startlocl + loc_c:startlocl + loc_c &

45

+ N - 1)) THEN
gbuffer(startlocl + 1:startlocl + box_size) = &
gbuffer(startloc2 + 1:startloc2 + box_size)

END IF
END IF
END IF
! Update ’il’ and ’i2’. ’gc_convex’ stays the same.
il=4i1+1
i2 =12+ 1
ELSE ! The diameter is smaller, so ’i2’ stays the same and will be
! compared with the next box ’il’ in the merged portion.
il=41+1
END IF
END IF
! When ’i2’ reaches the last box for that subdomain master, exit
! MERGELOOP2 and move on to local convex hull boxes from next
! subdomain master.
IF (i2 >= lc_convex(i)) EXIT MERGELOOP2
IF (il >= gc_convex) THEN
! When ’il1’ reaches the end of merged portion, insert the rest of
! the local convex hull boxes starting from ’i2’ for subdomain ’i’
! to the end of merged portion.
startlocl = il*¥box_size
startloc2 = displs(i)/size_r8 + i2*box_size
gbuffer(startlocl + l:startlocl + (lc_convex(i) - i2)*box_size) = &
gbuffer(startloc2 + 1:startloc2 + (lc_convex(i) - i2)*box_size)
gc_convex = gc_convex + lc_convex(i) - i2
EXIT MERGELOOP2
END IF
END DO MERGELOOP2
END DO MERGELOOP1
! Throw away boxes after the one with ’FMIN’.
DO i =0, gc_convex - 1
IF (dia == gbuffer(i*box_size + loc_diam)) THEN
! Update ’gc_convex’.
gc_convex = i + 1
EXIT
END IF
END DO
IF (SWITCH_I == 1) THEN ! Convex hull processing is on.
! Identify the global convex boxes in ’gbuffer’.
i =0 ! Index to the boxes in ’gbuffer’.
! Slightly modified Graham’s scan algorithm is used to find a lower

46

! right convex hull instead of a generic convex hull. Scan through the
! lowest boxes starting from the box with the biggest diameter using

! a stack to backtrack boxes. ’gbuffer’ serves as both the buffer for
! all boxes and a stack for back-tracking.

! Initially, on top of the box stack is the ’b_i’ with the biggest
! diameter in ’gbuffer’.

top

=1

! Find the box ’b_j’ after ’b_i’, that has a smaller function value.

DO j

=i+1, gc_convex - 1

IF (gbuffer(i*box_size + loc_val) > gbuffer(j*box_size + loc_val)) EXIT
END DO
! Remove the boxes between ’b_i’ and ’b_j’.
IF (j <= gc_convex - 1) THEN
gbuffer((i + 1)*box_size + 1:(i + 1)*box_size &
+ (gc_convex - j)*box_size) = &

gbuffer (j*box_size + 1:gc_convex*box_size)

! Update counter ’gc_convex’.
gc_convex = gc_convex - (j - i - 1)
! Update ’j’

j=1i+1

END

IF

! Now ’b_j’ is at the top of stack.

top

=]

! Loop checking if the next box b_k (k=top+1l,...) is on the current
! convex hull and keep updating b_i and top.

k =

J

SCANLOOP: DO

k

=k+1

IF (k >= gc_convex) EXIT SCANLOOP
IF (onRight(gbuffer(i*box_size + loc_val), &

SQRT (gbuffer (i*box_size + loc_diam)), &
gbuffer(j*box_size + loc_val), &
SQRT (gbuffer (j*box_size + loc_diam)), &
gbuffer (k*xbox_size + loc_val), &
SQRT (gbuffer (k¥box_size + loc_diam)))) THEN
! ’b_k’ is on the right of the line connecting ’b_i’ and ’top’.
! Pop ’top’ at ’j’ position out of stack.
gbuffer(j*box_size + 1:j*box_size + (gc_convex - j - 1)*box_size) = &
gbuffer((j + 1)*box_size + 1:gc_convex*box_size)
gc_convex = gc_convex — 1
k=k-1
! Update counters.

top = top - 1 i=7j

i=top-1 ! Let b_k be b_top.
! Back-tracking until ’top’ can stay on the current convex hull. j=k
BTLOOP: DO top = j
IF (top == 0) EXIT BTLOOP END IF
IF (onRight(gbuffer(i*box_size + loc_val), & END IF
SQRT (gbuffer (i*box_size + loc_diam)), & END DO SCANLOOP
gbuffer (top*box_size + loc_val), & ! Check the EPS_I condition on the global convex boxes in ’gbuffer’ to
SQRT (gbuffer (top*box_size + loc_diam)), & ! prevent search from becoming too local.
gbuffer(kxbox_size + loc_val), & IF (EPS_I /= 0) THEN
SQRT (gbuffer (k*¥box_size + loc_diam)))) THEN i=0
! Pop out ’top’. j=1i+1
gbuffer(top*box_size + 1:top*box_size+ & DO
(gc_convex - top - 1)*box_size) = & IF (j >= gc_convex) EXIT
gbuffer((top + 1)*box_size + 1l:gc_convex*box_size) ! Compute the slope from the convex box ’i’ to the imaginary point
! Update counters. ! with val=FMIN-(ABS(FMIN)+1)*EPS_I and diam=0.
gc_convex = gc_convex - 1 slope_min = (gbuffer(i*box_size + loc_val) &
k=k-1 - (FMIN - (ABS(FMIN) + 1)*EPS_I))&
top = top - 1 /SQRT (gbuffer (i*box_size + loc_diam))
i=top-1 ! Compute the slope from the convex box ’i’ to the convex box ’j’.
IF (i == -1) EXIT BTLOOP slope = (gbuffer(i*box_size + loc_val) &
ELSE - gbuffer(j*box_size + loc_val))&
EXIT BTLOOP / (SQRT (gbuffer (i*box_size + loc_diam)) &
END IF - SQRT(gbuffer (j*box_size + loc_diam)))
END DO BTLOOP IF (sLope < slope_min) THEN
! Let ’b_k’ be ’top’, and ’b_i’ is the same. ! When the slope between two convex boxes is smaller than
top =k ! ’slope_min’, remove all boxes after the box ’i’ and exit.
i=top-1 gc_convex =i + 1
j=k EXIT
ELSE ! ’b_k’ is on the left of the line connecting b_i and b_top. ELSE ! Move down the indices for box ’i’ and ’j’.
IF (gbuffer(k*box_size + loc_val) & i=j
> gbuffer(j*box_size + loc_val)) THEN j=i+1
! ’b_k’ has a bigger function value. Pop it out and move on to END IF
! the next one. END DO
IF (k < gc_convex - 1) THEN END IF
gbuffer (k*xbox_size + 1:k*box_size & END IF
+ (gc_convex - k - 1)*box_size) = & END IF
gbuffer((k + 1)*box_size + 1:gc_c0nvex*box_size) ! Broadcast ’gc_convex’ and ’gbuffer’ to all subdomain masters, each of
END IF ! which will take its own portion of boxes to subdivide.
gc_convex = gc_convex — 1 CALL MPI_BCAST(gc_convex, 1, MPI_INTEGER, O, xm_comm, ierr)
k=k-1 CALL MPI_BCAST(gbuffer, gc_convex*box_sizex*size_r8, MPI_BYTE, 0, &
ELSE ! ’b_k’ has a smaller or an equal value. Xm_comm, ierr)
! Let ’top’ be ’b_i’. ! Compute ’m_portion’ for this subdomain master.

47

box_avg = DBLE(box_count_global) / DBLE(N_MASTER_I)
box_dev = (DBLE(box_count) - box_avg) / DBLE(box_count_global)
IF (gc_convex > N_MASTER_I) THEN
m_portion = FLOOR(DBLE(gc_convex)* (1.0 - box_dev) / DBLE(N_MASTER_I))
! Make sure that lead master is assigned at least one box.
IF (N_MASTER_I > 1) THEN
IF (mygid == 0) THEN
CALL MPI_SEND(m_portion, 1, MPI_INTEGER, &
1, 0, xm_comm, ierr)
IF (m_portion == 0) m_portion = 1
ELSE IF (mygid == 1) THEN
CALL MPI_RECV(tmp_portion, 1, MPI_INTEGER, &
0, 0, xm_comm, mstatus, ierr)
IF (tmp_portion == 0) m_portion = m_portion - 1
END IF
END IF
CALL MPI_ALLREDUCE(m_portion, j, 1, MPI_INTEGER, &
MPI_SUM, xm_comm, ierr)
CALL RANDOM_SEED(SIZE = seed_size)
ALLOCATE(seed(seed_size))
seed =t + 101%(/ (i - 1, i = 1, seed_size) /)
CALL RANDOM_SEED(PUT = seed)
DO i =1, gc_convex - j
CALL RANDOM_NUMBER (harvest)
tmp_rank = NINT(DBLE(N_MASTER_I - 1)*harvest)
IF (mygid == tmp_rank) m_portion = m_portion + 1
END DO
ELSE ! The number of boxes is smaller than N_MASTER_I.
j=1
i = N_MASTER_I
IF (mygid < gc_convex) THEN
m_portion = 1
ELSE
m_portion
END IF
END IF
! If needed, reallocate ’lbuffer’ to hold output from findsetI().
IF (lbuffer_len < m_portion*set_size) THEN
DEALLOCATE (1buffer)
ALLOCATE (1buffer (MAX(INT(2*lbuffer_len), m_portionk*set_size)))
lbuffer_len = SIZE(lbuffer)
END IF
IF (N_MASTER_I == 1) THEN ! There is one master.

]
o

startbox = 1
endbox = m_portion
ELSE IF (N_MASTER_I == 2) THEN !There are two masters.
IF (mygid == 0) THEN
startbox = 1
endbox = m_portion
CALL MPI_SEND(endbox + 1, 1, MPI_INTEGER, &
1, 0, xm_comm, ierr)
ELSE IF (mygid == 1) THEN
CALL MPI_RECV(startbox, 1, MPI_INTEGER, &
0, 0, xm_comm, mstatus, ierr)
endbox = startbox + m_portion - 1
END IF
ELSE ! There are three or more masters.
IF (mygid == 0) THEN
startbox = 1
endbox = m_portion
CALL MPI_SEND(endbox + 1, 1, MPI_INTEGER, &
1, 0, xm_comm, ierr)
END IF
DO i =1, N_MASTER_I - 2
IF (mygid == i) THEN
CALL MPI_RECV(startbox, 1, MPI_INTEGER, &
i-1, 0, xm_comm, mstatus, ierr)
endbox = startbox + m_portion - 1
CALL MPI_SEND(endbox + 1, 1, MPI_INTEGER, &
i+ 1, 0, xm_comm, ierr)
END IF
END DO
IF (mygid == N_MASTER_I - 1) THEN
CALL MPI_RECV(startbox, 1, MPI_INTEGER, &
N_MASTER_I - 2, 0, xm_comm, mstatus, ierr)
endbox = startbox + m_portion - 1
END IF
END IF
IF (m_portion > 0) THEN

! Go through ’gbuffer’ three times to post-processing the convex boxes.
! First, mark the convex boxes that are originally local, because ’sid’

! and ’eid’ may be changed in the following two operations.
DO i = startbox, endbox
startlocl = (i - 1)*box_size
IF (gbuffer(startlocl + loc_pid) == myid) THEN
! This box is originally local, so mark the convex bit.

48

sid = gbuffer(startlocl + loc_sid)
eid = gbuffer(startlocl + loc_eid)
p_iset => setlInd
DO j =1, sid - 1
p_iset => p_iset/next
END DO
p_iset¥%flags(eid) = IBSET(p_iset’flags(eid), CONVEX_BIT)

IF (tempbox¥%val == FMIN_I) THEN
IF ((tempbox¥%diam < dia_i) .OR. ((tempboxidiam == dia_i) &
.AND. (tempbox¥%c(:) .lexLT. unit_x_i))) THEN
dia_i = tempboxidiam
unit_x_i(:) = tempboxic(:)
END IF
END IF

! Insert ’tempbox’ to the box data structure.
END DO CALL insMat(tempbox, m_head, setDia, setInd, setFcol, iflag, 1)

! Second, remove boxes that have been assigned to other subdomain masters. IF (iflag /= 0) RETURN
-1 END IF

END IF

DO i = gc_convex, 1,

startlocl = (i - 1)*box_size
IF ((i < startbox) .0OR. (i > endbox)) THEN
IF (gbuffer(startlocl + loc_pid) == myid) THEN
! Delete the box that is assigned to another subdomain master.
sid = gbuffer(startlocl + loc_sid)
eid = gbuffer(startlocl + loc_eid)
p_iset => setInd
DO j=1, sid -1
p_iset => p_isetVnext
END DO
b_id = (p_iset’/elements(eid) - 1)/col_w + 1
mycol = MOD(p_iset%elements(eid) - 1, col_w) + 1
CALL rmMat(b_id, mycol, eid, p_iset)
END IF
END IF

END DO

! Last, add boxes that are assigned from other subdomain masters.
DO i = startbox, endbox
startlocl = (i - 1)*box_size
IF (gbuffer(startlocl + loc_pid) /= myid) THEN
tempbox¥val = gbuffer(startlocl + loc_val)
tempbox/%c(:) = gbuffer(startlocl + loc_c:startlocl + loc_c + N - 1)
tempbox¥side(:) = gbuffer(startlocl + loc_side:startlocl + &
loc_side + N - 1)
tempbox/diam = gbuffer(startlocl + loc_diam)
! Since this box is from other master, check if need to update
! ’FMIN_I’ and ’unit_x_1i’.
IF (tempboxival < FMIN_I) THEN
FMIN_I = tempbox¥%val
unit_x_i(:) = tempbox¥%c(:)
dia_i = tempbox}diam
END IF

49

END DO
ELSE ! m_portion == 0, no convex hull boxes have been assigned.
! Remove all boxes that have been assigned to other subdomain masters.
DO i = gc_convex, 1, -1
startlocl = (i - 1)*box_size
IF (gbuffer(startlocl + loc_pid) == myid) THEN
! Delete the box that is on another master.
sid = gbuffer(startlocl + loc_sid)
eid = gbuffer(startlocl + loc_eid)
p_iset => setInd
DO j =1, sid - 1
p_iset => p_iset/next
END DO
b_id = (p_iset’%elements(eid) - 1)/col_w + 1
mycol = MOD(p_iset’elements(eid) - 1, col_w) + 1
CALL rmMat(b_id, mycol, eid, p_iset)
END IF
END DO
END IF

END IF

IF (N_MASTER_I == 1) THEN ! Only one subdomain master.

! Preprocess for identifying potentially optimal hyperboxes of Step
! 3a for the next iteration. Find and process the hyperboxes which
! are on the convex hull if SWITCH_I== 1; otherwise, process the first
! box of each column until it reaches the one with ’FMIN’.
p_iset => setInd
gc_convex = 0
OUTER: DO
DO i =1, p_iset¥dim
p_iset¥%flags(i) = IBSET(p_iset%flags(i), CONVEX_BIT)
gc_convex = gc_convex + 1

! Check if the column has reached the one with ’FMIN’.
b_id = (p_isetlelements(i) - 1)/col_w + 1
col = MOD(p_iset%elements(i) - 1, col_w) + 1
p_b => m_head
DO j =1, b_id -1
p_b => p_bYchild
END DO
IF (dia_i == p_b%M(1,col)’diam) EXIT OUTER
END DO
IF (ASSOCIATED(p_iset%next)) THEN
p_iset => p_iset/next
ELSE
EXIT OUTER
END IF
END DO OUTER

IF (SWITCH_I == 1) CALL findconvex(m_head, p_iset, i, setInd)

! Assign ’m_portion’.

m_portion = gc_convex

! If needed, reallocate lbuffer to hold info from findsetI().

IF (lbuffer_len < gc_convex*set_size) THEN
DEALLOCATE(1lbuffer)
ALLOCATE (1buffer (MAX(INT (2*1buffer_len), gc_convex*set_size)))
lbuffer_len = SIZE(1lbuffer)

END IF

END IF ! End of IF (N_MASTER_I==1)

RETURN
END SUBROUTINE boxSelection

SUBROUTINE cleanup()

IMPLICIT NONE

! Clean up all data structures allocated to prevent a memory leak.
!

! On input: None.

!

! On output: Nome.

!

! Local variables.

INTEGER :: i, j ! Loop counters.
TYPE(BoxMatrix), POINTER :: p_b, p_bm
TYPE(BoxLink), POINTER :: p_1
TYPE(int_vector), POINTER :: p_seti

TYPE(real_vector), POINTER :: p_setr

! Deallocate box links and box matrices starting from the first box matrix.
! First deallocate all box links associated with each box matrix, and
! finally deallocate the box matrix.
p_b => m_head
! Check all columns with box links which will be deallocated one by one
! starting from the last box link.
DO WHILE(ASSOCIATED(p_b))
! Check all the columns in ’p_b’.
DOi=1, col_w
IF (p_b%ind(i) > row_w) THEN
! There must be box link(s). Chase to the last one and start
! deallocating them one by one.
p-1 => p_bY%sibling(i)%p
DO WHILE(ASSOCIATED (p_l%next))
p_1l => p_lYnext
END DO
! Found the last box link ’p_1’. Trace back and deallocate all links.
DO WHILE(ASSOCIATED(p_1))
IF (ASSOCIATED(p_l%prev)) THEN
! Its previous link is still a box link.
p_-1 => p_lVprev
ELSE
! There is no box link before it. This is the first box link of
! this column.
DO j =1, row_w
DEALLOCATE (p_1%Line(j)%c)
DEALLOCATE (p_1%Line(j)%side)
END DO
DEALLOCATE (p_1%Line)
DEALLOCATE(p_1)
EXIT
END IF
DO j =1, row_w
DEALLOCATE (p_l1%next%Line (j)%c)
DEALLOCATE (p_1%next%Line (j)%side)
END DO
DEALLOCATE (p_l%next/Line)
DEALLOCATE (p_l1%next)
END DO
END IF
END DO

50

! Save the pointer of this box matrix for deallocation.
p_bm => p_b
! Before it’s deallocated, move to the next box matrix.
p_b => p_blchild
! Deallocate this box matrix with all box links cleaned up.
DEALLOCATE (p_bm%ind)
DEALLOCATE (p_bm)%sibling)
DOi=1, row_w
DO j =1, col_w
DEALLOCATE (p_bm#%M (i, j)%c)
DEALLOCATE (p_bm%M (i, j)%side)
END DO
END DO
DEALLOCATE (p_bm%M)
DEALLOCATE (p_bm)
END DO

! Deallocate ’setB’ and ’setW’.

DO i = 1, SIZE(setBY%Line)
DEALLOCATE (setB%Line (i) %c)
DEALLOCATE (setBYLine (i) %side)

END DO

DEALLOCATE (setB%Line)

DEALLOCATE (setB%dir)

DEALLOCATE (setW/val)

DEALLOCATE (setW%dir)

! Deallocate nodes of ’setDia’, ’setInd’ and ’setFcol’ starting from
! the last node.

p_setr => setDia
DO WHILE(ASSOCIATED (p_setr%next))
p_setr => p_setrinext
END DO
! Found the last link pointed to by ’p_setr’ of ’setDia’, so deallocate

! 1links one by one until reaching the head node which has a null ’prev’.

DO
DEALLOCATE (p_setrielements)
IF (p_setr%id /= 1) THEN
p_setr => p_setryprev
DEALLOCATE (p_setrnext)
ELSE
DEALLOCATE (setDia)
EXIT

51

END IF
END DO
p_seti => setInd
DO WHILE(ASSOCIATED(p_seti%next))
p_seti => p_setilnext
END DO
! Found the last link pointed to by ’p_seti’ of ’setInd’, so deallocate
! 1inks one by one until reaching the head node which has a null ’prev’.
DO
DEALLOCATE(p_seti’elements)
DEALLOCATE(p_setilflags)
IF (p_seti%id /= 1) THEN
p_seti => p_setiYprev
DEALLOCATE(p_seti/next)
ELSE
DEALLOCATE (setInd)
EXIT
END IF
END DO
p_seti => setFcol
DO WHILE (ASSOCIATED (p_seti%next))
p_seti => p_setilnext
END DO
! Found the last link pointed to by ’p_seti’ of ’setFcol’, so deallocate
! 1inks one by one until reaching the head node that has a null ’prev’.
DO
DEALLOCATE (p_seti’elements)
IF (p_seti%id /= 1) THEN
p_seti => p_setilprev
DEALLOCATE (p_setilnext)
ELSE
DEALLOCATE (setFcol)
EXIT
END IF
END DO

! Deallocate p_box.
DEALLOCATE (p_box%c)
DEALLOCATE (p_box%side)
DEALLOCATE (p_box)

! Deallocate tempbox
DEALLOCATE (tempbox’c)

DEALLOCATE (tempboxside)
DEALLOCATE (tempbox)

RETURN
END SUBROUTINE cleanup

SUBROUTINE divide(b, setB, setDia, setInd, setFcol, p_box, setW, iflag)
IMPLICIT NONE

’setB’.
the dimension with minimum w to the one with maximum w, where w is
minf (c+delta), f(c-delta).

Divide all boxes in Each box subdivision starts from

On input:
b - The head link of box matrices.
setB - A set of ’HyperBox’ type structures, each with newly sampled

center point coordinates and the corresponding function value.
After dividing, it contains complete boxes with associated side
lengths and the squared diameters.

setDia - A linked list of current different squared diameters of box
matrices. It’s sorted from the biggest to the smallest.

setInd - A linked list of column indices corresponding to the different
squared diameters in ’setDia’.

setFcol - A linked list of free columns in box matrices.

p_box - A ’HyperBox’ type structure to hold removed parent box to
subdivide.

setW - A set of type ’VallList’ used to sort wi’s, where wi is defined as
minf (c+delta*ei), f(c-delta*ei), the minimum of function values
at the two newly sampled points.

On output:

b - ’b’ has the parent box removed and contains the newly formed boxes

after dividing the parent box.

setB - Cleared set of type ’BoxLine’. All newly formed boxes have been
inserted into ’b’.

setDia - Updated linked list ’setDia’ with new squared diameters of boxes,
if any.

setInd - Updated linked list ’setInd’ with new column indices corresponding

to newly added squared diameters in ’setDia’.
setFcol - Updated linked list ’setFcol’ with current free columns in ’b’.

p_box - A ’HyperBox’ structure holding removed parent box to subdivide.
setW - ’setW’ becomes empty after dividing.
iflag - status to return.

0 Normal return.

52

! 1
!

TYPE(BoxMatrix), INTENT(INOUT),TARGET :: b

Allocation failures.

TYPE (BoxLine), INTENT(INOUT) :: setB
TYPE(real_vector) ,INTENT (INOUT), TARGET :: setDia
TYPE(int_vector), INTENT(INOUT), TARGET :: setInd

TYPE(int_vector), INTENT(INOUT) :: setFcol
TYPE (HyperBox) , INTENT(INOUT) :: p_box
TYPE(ValList), INTENT(INOUT) :: setW
INTEGER, INTENT(OUT) :: iflag

! Local variables.

INTEGER :: b_id ! Box matrix ID.

INTEGER :: id ! ’setInd’ link ID.

INTEGER :: i, i1, j, j1, k, m ! Loop counters.

INTEGER :: leaf, maxid, maxpos ! Heap operation variables.
INTEGER :: mycol ! Box column ID.

INTEGER :: newbox_c ! Counter for new boxes.

INTEGER :: parent_i ! Parent element ID in a ’setInd’ link.
INTEGER :: setlen ! Number of total new boxes.

INTEGER, DIMENSION(2*n) :: sortInd ! An array for sorting.

REAL(KIND = R8), DIMENSION(N) :: maxc ! Point coordinates with ’maxf’.
REAL(KIND = R8) :: maxf ! Maximum function value in a heap.
REAL(KIND = R8) :: temp ! Temporary variable.

TYPE(BoxMatrix), POINTER :: p_b ! Pointer to a box matrix.
TYPE(int_vector), POINTER :: p_iset ! Pointer to ’setInd’ or ’setFcol’ links.
TYPE(BoxLink), POINTER :: p_1, p_11 ! Pointers to box links.

! Initialize ’iflag’ for a normal return.
iflag = 0
! Loop subdividing each convex box in ’setB’.
newbox_c = 0
DOm =0, gc_convex - 1
setlen = 2*xINT(lbuffer (m*set_size + 1))
parent_i = INT(lbuffer (m*set_size + 2))
id = INT(lbuffer (m*set_size + 3))
! Find the desired node of ’setInd’.
p_iset => setInd

DOi=1,id -1
p_iset => p_iset¥next
END DO

IF (p_iset’elements(parent_i) <= col_w) THEN
! This column is in the head link of box matrices.

p_-b=>b
mycol = p_isetlelements(parent_i)
ELSE
! Find the box matrix that contains this column.
b_id = (p_isetV%elements(parent_i) - 1)/col_w + 1
mycol = MOD(p_iset%elements(parent_i) - 1, col_w) + 1
p_-b=>b
DOi=1, b_id - 1
p_b => p_bY%child
END DO
END IF
! Fill out ’setW’.
DO i = newbox_c + 1, newbox_c + setlen, 2
! Add minimum ’val’ of a pair of newly sampled center points
! into ’setW’.
setW/val((i - newbox_c + 1)/2) = MIN(setB)Line(i)%val, &
setB/Line (i + 1)%val)
setW/dir ((i - newbox_c + 1)/2) = setB¥dir(i)
END DO
setW/%dim = setlen/2

! Find the order of dimensions for further dividing by insertion
! sorting wi’s in ’setW’.
DO i = 2, setW/dim
DO j=1, 2, -1
IF (setW/val(j) < setW/val(j - 1)) THEN
! Element j is smaller than element j-1, so swap ’val’ and ’dir’.
temp = setW/val(j)
k = setWidir(j)
setW/val(j) = setWjval(j - 1)
setW/dir(j) = setWjdir(j - 1)
setW/val(j - 1) = temp
setW/dir(j - 1) = k
ELSE
EXIT
END IF
END DO
END DO

! Sort the indices of boxes in ’setB’ according to the dividing order in
! ’setW/%dir’. Record the sorted indices in ’sortInd’.
DO i =1, setW/dim

DO j = newbox_c + 1, newbox_c + setlen, 2

IF (setB%dir(j) == setW)dir(i)) THEN
sortInd(2*i - 1) = j - newbox_c
sortInd(2*i) = j - newbox_c + 1
END IF
END DO
END DO
! ’setW/dir’ contains the order of dimensions to divide the parent box.
! Loop dividing on all dimensions in ’setW/dir’ by setting up the new
! side lengths as 1/3 of parent box side lengths for each newly
! sampled box center.
DO i =1, setW/dim
temp = p_b%M(1, mycol)’%side(setW/dir(i))/3.0_R8
DO j = i, setW/dim
setB)Line (newbox_c + sortInd(2*j - 1))%side(setW/dir(i)) = temp
setB/Line (newbox_c + sortInd(2x*j))%side(setW/dir(i)) = temp
END DO
! Modify the parent’s side lengths.
p_b%M(1,mycol)%side(setW/dir(i))= temp
END DO
! Clear ’setW’ for next time.
setW/dim = 0
! Move the parent box from box matrix ’p_b’ to ’setB’.
p_box = p_b%M(1, mycol)
! Move the last box to the first position.
IF (p_b%ind(mycol) <= row_w) THEN
! There are no box links.
IF (p_blkind(mycol)>1) p_b%M(1, mycol) = p_biM(p_b%ind(mycol), mycol)
ELSE
! There are box links. Chase to the last box link.
p_1l => p_bYsibling(mycol)%p
DO i =1, (p_b%kind(mycol) - 1)/row_w - 1
p-1 => p_lVnext
END DO
p_b%M(1, mycol) = p_1%Line(p_1%ind)
p-l%ind = p_1%ind - 1
END IF
! Update counters.
p_b%ind(mycol) = p_b%ind(mycol) - 1
! Adjust this box column to a heap by calling siftdown.
CALL siftdown(p_b, mycol, 1)
! Modify the diameter squared for the parent box temporarily saved in
! ’p_box’, which will be stored at the end of ’setB’ for insertion later.
p_box¥%diam = DOT_PRODUCT (p_box%sidexUmL, p_box’%side*UmL)

setB/ind = setBlind + 1
setB)Line(setB/ind) = p_box

! Update ’dia’ associated with ’FMIN’ which has coordinates in ’unit_x’.

IF (ALL(unit_x_i == p_boxJc)) dia_i = p_box’diam
! Compute squared diameters for all new boxes in ’setB’.
DO i = newbox_c + 1, newbox_c + setlen
setB%Line(i)%diam = DOT_PRODUCT (setBYLine(i)%side*UnL, &
setBLine (i) %side*UmL)
! Update ’dia’ if needed.
IF (ALL(unit_x_i == setB)Line(i)%c)) THEN
dia_i = setB%Line(i)%diam
END IF
END DO
! Update counter.
newbox_c = newbox_c + setlen
END DO
! Update local box count.
box_count = box_count + newbox_c

! Add all new boxes and parent boxes in ’setB’ to ’b’

! according to their squared diameters and function values.

DO i = 1, setB¥%ind
CALL insMat(setBYLine(i), b, setDia, setInd, setFcol, iflag, 0)
IF (iflag /= 0) RETURN

END DO

setB%ind = 0

! Scan through box columns to remove empty box columns, and squeeze box

! column lengths to MAX_ITER-t+1 if LBC (limiting box columns) is enabled.

p_iset => setlInd
DO WHILE(ASSOCIATED(p_iset))
i=1
DO
IF (i > p_iset’dim) EXIT
IF (p_iset’elements(i) <= col_w) THEN
! This column is in the head link of box matrices.
p_-b=>b
mycol = p_isetlelements (i)
ELSE
! Find the box matrix that contains this column.
b_id = (p_iset%elements(i) - 1)/col_w + 1
mycol = MOD(p_iset%elements(i) - 1, col_w) + 1
p_-b=>b

DO j=1, b_id - 1
p_b => p_blchild
END DO
END IF
IF (p_b%ind(mycol) == 0) THEN
! This column is empty. Remove this diameter squared from a
! corresponding node of ’setDia’.
CALL rmNode(col_w, p_iset%id - 1, i, setDia)
! Push the released column back to top of ’setFcol’.
IF (setFcol%dim < col_w) THEN
! The head node of ’setFcol’ is not full.
CALL insNode(col_w, p_iset}elements(i), &
setFcol)dim + 1, setFcol)
ELSE
! The head node is full. There must be at least one more node
! for ’setFcol’. Find the last non-full node of ’setFcol’ to
! insert the released column.
p_iset => setFcol/next
DO
IF (p_iset%dim < col_w) THEN
! Found it.
CALL insNode(col_w, p_isetlelements(i), &
p_isetidim + 1, p_iset)
EXIT
END IF
! Go to the next node.
p_iset => p_isetVnext
END DO
END IF
! Remove the column index from a corresponding node of ’setInd’.
CALL rmNode(col_w, O, i, p_iset)
! Decrease ’i’ by 1 to compensate for this removal.
i=1i-1
ELSE ! This box column is not empty.
IF (1bc == 1) THEN
! LBC is used, so adjust the box column length to MAX_ITER-t+1.
IF (p_b%ind(mycol) > MAX_ITER - t + 1) THEN
! This box column has more boxes than needed for the remaining
! iterations. Loop removing the largest elements until the box
! column length equals MAX_ITER-t+1.
DO
IF (p_blkind(mycol) == MAX_ITER - t + 1) EXIT
! Look for the largest element starting from the first leaf.

54

leaf = p_b%ind(mycol)/2 + 1
IF (leaf <= row_w) THEN
! The first leaf node starts inside M.
maxid = 0
maxpos = leaf
maxf = p_b%M(leaf, mycol)%val
maxc(:) = p_b%M(leaf, mycol)%c(:)

ELSE ! The first leaf node starts from a box link.

maxid = (leaf - 1)/row_w
maxpos = MOD(leaf - 1, row_w) + 1
p_1l => p_blsibling(mycol)%p
DO k =1, maxid - 1
p-1 => p_llnext
END DO
maxf = p_l%Line(maxpos)’val
maxc(:) = p_l1Y%Line(maxpos)%c(:)
END IF
IF (maxid == 0) THEN
! Search starts from M.
DO k = maxpos + 1, row_w
IF (k > p_blind(mycol)) EXIT
IF ((p_b%M(k, mycol)%val > maxf) .OR. &
((p_b%M(k, mycol)%val == maxf) .AND. &
(maxc .1lexLT. p_b%M(k, mycol)’c))) THEN
maxf = p_b%M(k, mycol)’val
maxc(:) = p_b%M(k, mycol)%c(:)
maxpos = k
END IF
END DO
p_1l => p_blsibling(mycol)%p
k=0
j=0
i1 =0
ELSE
! Start from a box link.
k = maxid - 1
j = maxpos
il = maxid - 1
END IF
! Search through box links.
DO j1 =1, (p_bkind(mycol) - 1)/row_w - il
IF (.NOT. ASSOCIATED(p_1)) EXIT
IF (p_1%ind == 0) THEN

DEALLOCATE(p_1)
EXIT
END IF
k=k+1
DO
j=3+1
IF (j > p_1%ind) THEN
! Reset ’j’ if it reached the end of the box link.
j=0
EXIT
END IF
IF ((p_1%Line(j)%val > maxf) .OR. &
((p_1%Line(j)%val == maxf) .AND. &
(maxc .lexLT. p_l%Line(j)%c))) THEN
maxf = p_1Line(j)%val
maxc = p_l%Line(j)%c
maxid = k

maxpos = j
END IF
END DO
p_-1 => p_l/next
END DO
! Found the largest fval box at maxid link and maxpos position.
! If maxpos is not the last element in the heap, replace it
! with the last element of the heap and sift it up.
IF (maxpos + maxid*row_w < p_b¥%ind(mycol)) THEN
! Locate the last heap element.
IF (p_b%ind(mycol) <= row_w) THEN
! The last element is inside M.
p_b%M(maxpos,mycol) = p_b%M(p_b%ind(mycol), mycol)
! Update the box counter for the box column.
p_b%ind(mycol) = p_b¥%ind(mycol) - 1
call siftup(p_b, mycol, maxpos)
ELSE ! The last element is inside a box link.
IF (maxid == 0) THEN
! The largest element is inside M.
p_11 => p_bY%sibling(mycol) %p
DO k = 1, (p_b%ind(mycol) - 1)/row_w - 1
p-11 => p_l1Ynext
END DO
p_b’%M(maxpos,mycol) = &
p-11%Line (MOD(p_b%ind (mycol) - 1, row_w) + 1)
ELSE ! The largest element is inside a box link.

55

p_1 => p_bY%sibling(mycol)%p

DOk =1, maxid - 1
p-1 => p_lVnext

END DO

p_11 =>p_1

DO k = 1, (p_b%ind(mycol) - 1)/row_w - maxid
p-11 => p_l1/next

END DO

p_1l%Line (maxpos) = &
p-11%Line (MOD(p_b%ind(mycol) - 1, row_w) + 1)

END IF

! Update counters for the box link and the box column.

p_11%ind = p_11%ind - 1
p_b%ind(mycol) = p_b%ind(mycol) - 1
! Siftup the box that replaced the largest fval box.
call siftup(p_b,mycol,maxid*row_w + maxpos)
END IF
ELSE ! The largest element is the last element.
IF (maxid > 0) THEN
! Locate the box link that holds it.
p-1 => p_b¥%sibling(mycol)%p
DO k =1, (p_b%ind(mycol) - 1)/row_w - 1
p_1l => p_lYnext
END DO
p_l%ind = p_1%ind - 1
END IF
! Update the counter.
p_bkind(mycol) = p_b%ind(mycol) - 1
END IF
END DO
END IF
END IF
END IF
! Go to the next box column.
i=3i+1
END DO
! Go to the next ’setInd’ link.
p_iset => p_iset/next
END DO

RETURN
END SUBROUTINE divide

56

FUNCTION findcol(i_start, p_start, index, do_it) RESULT(p_iset)
IMPLICIT NONE

! Find the rightmost column (setInd/elements(index)), in the plot of

! (box diameter, function value) points, with CONVEX_BIT of ’flags’ set
in linked list ’setInd’, which indicates a potentially optimal box

to be subdivided.

On input:
i_start - The index to start searching in node ’p_start’.
p_start - The pointer to the node at which to start searching.

! On output:

! index - The found index in node ’p_iset’ of the linked list ’setInd’.

! do_it - The returned sign to continue processing or not.

! i_start - The index at which to resume searching in node ’p_start’

! next time.

! p_start - The pointer to the node at which to resume searching next time.
! p_iset - The returned node, which contains the next box to subdivide.

INTEGER, INTENT(INOUT) :: i_start
TYPE(int_vector), POINTER :: p_start
INTEGER, INTENT(OUT) :: index
LOGICAL, INTENT(OUT) :: do_it
TYPE(int_vector), POINTER :: p_iset

! Local variables.
INTEGER :: i, start
TYPE(int_vector), POINTER :: p_set

do_it = .FALSE.
start = i_start
p_set => p_start
DO WHILE (ASSOCIATED (p_set))
DO i = start, p_set%dim
! Find the first column with CONVEX_BIT set in ’flags’ of ’p_set’.
IF (BTEST(p_set%flags(i), CONVEX_BIT)) THEN
! Clear the CONVEX_BIT of ’flags’ as being processed.
p_set¥flags(i) = IBCLR(p_set%flags (i), CONVEX_BIT)
do_it = .TRUE.
index = i
p_iset => p_set

! Save them to i_start and p_start for resuming searching
! next time.

i_start = 1
p_start => p_set
EXIT
END IF
END DO
! There are no more box column with CONVEX_BIT set in ’flags’ in
! this node. Go to the next one.
IF (.NOT. do_it) THEN
p_set => p_setnext
! Reset ’start’ to be 1 for all the following iterations except the
! first one which resumed from ’i_start’.
start =1
ELSE
EXIT
END IF
END DO

RETURN
END FUNCTION findcol

SUBROUTINE findconvex(b, p_fmin, i_fmin, setInd)

IMPLICIT NONE

! In ’setInd’, clear CONVEX_BIT of columns if the first boxes on these

! columns are not on convex hull. Bit CONVEX_BIT with value O indicates

! the first box on the column is not one of potentially optimal boxes.

This is determined by comparing slopes. When a single master is used with
EPS_I==0 or when multiple masters are used in a subdomain, starting from
the first column, find the maximum slope from the first box on that column
to the first boxes on all other columns until reaching the box with ’FMIN’.
! Then, starting from the next column with the first box on convex hull,
repeat the procedure until no more columns before the column with ’FMIN’
to check. In case of a single master, if EPS_I is greater than O, the outer
loop breaks out when the maximum slope is less than the value:

(val - (FMIN - EPS_I))/diam.

On input:

'Db - The head link of box matrices.

! p_fmin - Pointer to the node holding the column index of the box with

! ’FMIN’ (a single master only).

i_fmin - Index of the column in the node ’p_fmin’ (a single master only).
setInd - A linked list holding column indices of box matrices.

On output:

o7

! setInd - ’setInd’ has the modified column indices.
1

TYPE(BoxMatrix), INTENT(IN), TARGET :: b
TYPE(int_vector), POINTER :: p_fmin
INTEGER, INTENT(IN) :: i_fmin
TYPE(int_vector), INTENT(INOUT), TARGET :: setInd

! Local variables.

INTEGER :: b_id1l, b_id2, coll, col2, i, j, k, target_i
LOGICAL :: stop_fmin

REAL(KIND = R8) :: slope, slope_max

TYPE(BoxMatrix), POINTER :: p_bl, p_b2

TYPE(int_vector), POINTER :: p_isetl, p_iset2, target_set

! Initialize the first node pointer.
p_isetl => setInd
IF (p_isetl%dim == 0) RETURN ! Exit when ’setInd’ is empty.

! Initialization for outer loop which processes all columns before
! the column containing ’FMIN’ in order to find a convex hull curve.
stop_fmin = .FALSE.
i=1
k=1
OUTLOOP: DO WHILE((.NOT. stop_fmin) .AND. ASSOCIATED(p_iset1))
! Initialization for inner loop, which computes the slope from the first
! box on the fixed column ’i’ to the first boxes on all the other columns,
! before reaching the column containing a box with ’FMIN’, to locate the
! target column with maximum slope. Mark off any columns in between the
! fixed first column and the target column.
NULLIFY(target_set)
slope_max = -HUGE(slope)
p_iset2 => p_isetl
! Fix the first convex hull column as column ’i’ in ’p_isetl’.
! The second column used to calculate the slope has index ’k’ in

! ’p_iset2’. ’k’ is incremented up to the column index corresponding
! to ’FMIN’. Find the box matrix ’p_bl’ and the local column index
! ’coll’.

b_idl =(p_isetl/elements(i) - 1)/col_w + 1
coll = MOD(p_isetlelements(i) - 1, col_w) + 1
p_bl => b
DO j =1, b_id1l - 1

p_bl => p_bi%child
END DO

! Check if the first column has reached the column with ’FMIN’. If
! so, break out of the outer loop.
IF (dia_i == p_b1%M(1, coll)’diam) EXIT OUTLOOP
k=1i+1
INLOOP: DO
IF (k > p_iset2)dim) THEN
! Move to the next node as k increments beyond the maximum
! length for each node of ’setInd’.
p_iset2 => p_iset2)next
IF (.NOT.ASSOCIATED(p_iset2)) EXIT INLOOP
IF (p_iset2)dim == 0) EXIT INLOOP
! Reset ’k’ for the next box link.
k=1
END IF
! To compute the slope from the first box on column ’i’ of ’p_isetl’ to
! the first box on column ’k’ of ’p_iset2’, find the local column index
! ’col2’ and the corresponding box matrix ’p_b2’.
b_id2 = (p_iset2lelements(k) - 1)/col_w + 1
col2 = MOD(p_iset2)elements(k) - 1, col_w) + 1
p_b2 =>b
DO j =1, b_id2 -1
p_b2 => p_b2Ychild
END DO
! Use the slope formula (f1 - £2)/(dl - d2), where f1 and f2 are the
! function values at the centers of the two boxes with diameters
! d1 and d2.
slope = (p_b1%M(1, coll)¥val - p_b2/M(1, col2)%val) / &
(SQRT(p_b1%M(1, coll)¥diam) - SQRT(p_b2%M(1, col2)%diam))
! Compare the new slope with the current maximum slope. Keep track
! of the target column index and the target node.
IF (slope > slope_max) THEN
slope_max = slope
target_i =k
target_set => p_iset2
! Check if this target column contains ’FMIN’.
IF (dia_i == p_b2%M(1, col2)%diam) stop_fmin = .TRUE.
END IF
! IF the target column contains ’FMIN’, break out the inner loop.
IF (dia_i == p_b2%M(1, col2)’diam) EXIT INLOOP
! Move on to the next column.
k=k+1
END DO INLOOP
! Mark off boxes in between.

58

IF (ASSOCIATED(target_set)) CALL markoff (i, target_i, p_isetl, target_set)

IF (N_MASTER_I == 1) THEN
! When a single master is used for convex hull processing,
! check if EPS_I /= 0. If so, it stops if the found ’slope_max’ from
! the first box is less than the desired accuracy of the solution.
IF ((EPS_I /= 0) .AND. ASSOCIATED(target_set)) THEN
IF ((p_b1¥M(1, coll)’val - (FMIN - (ABS(FMIN) + 1)*EPS_I))/ &
SQRT(p_b1%M(1, coll)¥diam) > slope_max) THEN

! Mark off the first boxes on the columns from the column target_i to

! the one with ’FMIN’.
target_set/flags(target_i) = IBCLR(target_set’flags(target_i), &
CONVEX_BIT)

gc_convex = gc_convex — 1

CALL markoff (target_i, i_fmin, target_set, p_fmin)

IF (BTEST(p_fminjflags(i_fmin), CONVEX_BIT)) THEN
! Mark off the first box on the column with ’FMIN’ if it is not
! marked off yet as the target_set.
p_fminYflags(i_fmin) = IBCLR(p_fmin¥%flags(i_fmin), CONVEX_BIT)
gc_convex = gc_convex — 1

END IF

EXIT OUTLOOP

END IF
END IF
END IF

! To start the next pass, the first fixed column jumps to the target column

! just found which is the next column on convex hull.
i = target_i
p_isetl => target_set

END DO OUTLOOP

RETURN
END SUBROUTINE findconvex

SUBROUTINE findsetI(b, col)

IMPLICIT NONE

! Fill out ’lbuffer’, holding dimensions with the maximum side length
! of the first boxes on ’col’ in box matrix links ’b’.

!

! On input:

! b - The head link of box matrices.

col - The global column index of box matrix links.

On output: Nome.

TYPE(BoxMatrix), INTENT(IN), TARGET :: b
INTEGER, INTENT(IN) :: col

! Local variables.

INTEGER :: b_id, i, j, pos
REAL(KIND = R8) :: temp
TYPE(BoxMatrix), POINTER :: p_b

! Find the box matrix link that ’col’ is associated with.
IF (col <= col_w) THEN

p_b=>b
j = col
ELSE

b_id = (col - 1)/col_w + 1
j = MOD(col - 1, col_w) + 1
p_b=>b
DOi=1, b_id - 1
p_b => p_bYchild
END DO
END IF

! Search for the maximum side length.
temp = MAXVAL(p_b%M(1, j)%side(:))
! Find all the dimensions with the maximum side length.
D0Oi=1,N
pos = lbuffer(gc_convex*set_size + 1)
IF ((ABS(p_b%M(1, j)%side(i) - temp)/temp) <= EPS4N) THEN
! Add it to ’lbuffer’.
lbuffer(gc_convex*set_size + 5 + pos) = i
lbuffer(gc_convex*set_size + 1) = pos + 1
END IF
END DO

RETURN
END SUBROUTINE findsetI

SUBROUTINE init (b, status, role)

IMPLICIT NONE

! Allocate the arrays and initializes the first center point.

! Evaluate the function value at the center point and initializes
! ’FMIN’ and ’unit_x’.

!

59

! On input:

! role - The role of initialization. If O, it initializes as the root

! subdomain master. If 1, it is a nonroot subdomain master.
!

! On output

'b - The first box matrix to initialize.

! status - Status of return.

! =0 Successful.

! >0 Allocation or restart related error.
1

TYPE(BoxMatrix), INTENT(OUT), TARGET :: b

INTEGER, INTENT(OUT):: status

INTEGER, INTENT(IN) :: role

! Local variables.
INTEGER :: i, iflag

! Normal status.
status = 0
iflag = 0

! Allocate arrays.
ALLOCATE (b%M(row_w, col_w), STAT = status)
IF (status /= 0) THEN; status=ALLOC_ERROR; RETURN; END IF
ALLOCATE (b%ind(col_w), STAT = status)
IF (status /= 0) THEN; status=ALLOC_ERROR; RETURN; END IF
! Clear the box counter for each column.
b%ind(:) =0
! Nullify the child link to the next box matrix.
NULLIFY(b%child)
ALLOCATE (b%sibling(col_w), STAT = status)
IF (status /= 0) THEN; status=ALLOC_ERROR; RETURN; END IF
DOi=1, col_w
NULLIFY (b%sibling(i)%p)
END DO
DOi=1, row_w
DO j =1, col_w
ALLOCATE (b%M(i, j)%c(N), STAT = status)
IF (status /= 0) THEN; status=ALLOC_ERROR; RETURN; END IF
ALLOCATE (b%M(i, j)%side(N), STAT = status)
IF (status /= 0) THEN; status=ALLOC_ERROR; RETURN; END IF
END DO
END DO

! Store the function value and initialize ’FMIN_I’ at root.

! Initialize the center of the first unit hypercube in box matrix ’b’ iflag =0
! and ’unit_x’ in the normalized coordinate system. FMIN_I = OBJ_FUNC(L + b%M(1, 1)%c(:)*UmL, iflag)
IF (role == 0 .AND. .NOT. spawned) THEN ! The root subdomain master. ! Check the iflag to deal with undefined function values.
! Initialize ’setFcol’ starting from the last column, push free columns IF (iflag /= 0) THEN
! to ’setFcol’. ! It is evaluated at an undefined point, so assign it a huge value.
DO0i=1, colw-1 FMIN_I = HUGE(1.0_R8)
setFcollelements(i) = col_w - (i - 1) END IF
END DO IF (RESTART_I == 1) THEN
setFcolYdim = col_w - 1 OPEN (UNIT=CHKSUNIT, FILE=cpfile, FORM="UNFORMATTED", STATUS="UNKNOWN",&
biM(1, 1)%c(:) = 0.5_R8 POSITION="APPEND", IOSTAT=ierr)
b%M(1, 1)%side(:) = 1.0_R8 IF (ierr /= 0) THEN; iflag = FILE_ERROR; RETURN; END IF
unit_x_i(:) = 0.5_R8 ! Write a function evaluation log to the checkpoint file and
unit_x(:) = unit_x_i ! the sub-header consisting of t and setB size.
IF (RESTART_I == 2) THEN ! Recover from the checkpoint logs. WRITE (UNIT=CHKSUNIT, IOSTAT=ierr) t, 1
IF (chk_sm /= N_MASTER_I) THEN ! Recover from the root’s checkpoint file. IF (ierr /= 0) THEN; iflag = FILE_ERROR + 2; RETURN; END IF
! Read the sub-header. WRITE (UNIT=CHKSUNIT, IOSTAT=ierr) b%M(1,1)%c, FMIN_I
READ (UNIT=CHKSUNIT + 1, I0OSTAT=ierr) check_t, chk_len(1) IF (ierr /= 0) THEN; iflag = FILE_ERROR + 2; RETURN; END IF
IF (ierr /= 0) THEN; status=FILE_ERROR + 4; RETURN; END IF CLOSE (CHKSUNIT)
! Recover the first log. END IF
READ (UNIT=CHKSUNIT + 1, IOSTAT=ierr) X, tmpf END IF
IF (ierr /= 0) THEN; status=FILE_ERROR + 4; RETURN; END IF b%M(1, 1)%val = FMIN_I
IF (ALL(X == b%M(1, 1)%c)) THEN FMIN = FMIN_I
FMIN_I = tmpf eval_c_i =1
ELSE eval_c =0
status = FILE_ERROR + 4 ! Initialize the diameter squared for this box and ’dia’,
RETURN ! the diameter squared associated with ’FMIN_I’.
END IF dia_i = DOT_PRODUCT (b%M(1, 1)%side*UmL, b/M(1, 1)%side*UmL)
! Open a new checkpoint file to append the new sequence of evaluations. b%M(1, 1)%diam = dia_i
OPEN (UNIT=CHKRUNIT + chk_sm, FILE=cpfile2, FORM="UNFORMATTED", & dia = dia_i
STATUS="UNKNOWN", POSITION="APPEND", IOSTAT=ierr) ! ITnitialize the ’ind’ for the first column and ’id’ for this box matrix.
IF (ierr /= 0) THEN; status=FILE_ERROR; RETURN; END IF bkind(1) =1
WRITE(UNIT=CHKRUNIT + chk_sm, IOSTAT=ierr) t, 1 bkid = 1
IF (ierr /= 0) THEN; status=FILE_ERROR + 3; RETURN; END IF ! Initialize ’setDia’ and ’setInd’.
WRITE (UNIT=CHKRUNIT + chk_sm, I0STAT=ierr) byM(1,1)%c, FMIN_I setDia¥dim = 1
IF (ierr /= 0) THEN; status=FILE_ERROR + 3; RETURN; END IF setDia%elements(1) = m_head’M(1,1)%diam
CLOSE (CHKRUNIT + chk_sm) ! Set the first box as being on convex hull by setting the CONVEX_BIT
ELSE ! Recover from the list of logs. ! of the ’flags’.
IF (.NOT. inList(b%M(1, 1)%c, FMIN_I)) THEN setInd/dim = 1
status = FILE_ERROR + 4 setInd/elements(1l) = 1
END IF setInd%flags (1) = IBSET(setInd%flags (1), CONVEX_BIT)
END IF ELSE
ELSE ! Evaluate objective function at ’c’. ! A nonroot subdomain master has no box in the data structure and will

60

! receive convex boxes from the root subdomain master.

IF ((RESTART_I == 2) .AND. (chk_sm /= N_MASTER_I)) THEN
! Read the first point to bypass it for MAIN_LOOP.
READ (UNIT=CHKSUNIT + 1, I0OSTAT=ierr) check_t, chk_len(1)
IF (ierr /= 0) THEN; status=FILE_ERROR + 4; RETURN; END IF
! Recover the first log.
READ (UNIT=CHKSUNIT + 1, IOSTAT=ierr) X, tmpf
IF (ierr /= 0) THEN; status=FILE_ERROR + 4; RETURN; END IF

END IF

b%id = 1

eval_c_i =0

unit_x_i(:) = 0.0_RS8

unit_x(:) = unit_x_i(:)

FMIN_I = HUGE(1.0_R8)

dia_i = HUGE(1.0_R8)

DOi=1, col_w
setFcolYelements(i) = col_w - (i - 1)

END DO

setFcol’dim = col_w

END IF

RETURN
END SUBROUTINE init

FUNCTION inQueue(list, s, e) RESULT(ans)

IMPLICIT NONE

Return TRUE if ’e’ is in ’list’ with length ’s’. Otherwise, return
FALSE.

! On input:

! 1ist - A list of integers.

!'s - The length of ’list’ under consideration.

le - The element to be located in ’list’.

!

! On output:

! ans - Answer to return.

! .TRUE. ’e’ is found in the range [1,s] of ’list’.

! .FALSE. Otherwise.

INTEGER, DIMENSION(:), INTENT(IN) :: list
INTEGER, INTENT(IN) :: s

INTEGER, INTENT(IN) :: e

LOGICAL :: ans

61

! Local variable
INTEGER :: i

ans = .FALSE.

DOi=1, s

IF (list(i) == e) THEN; ans = .TRUE.; EXIT; END IF
END DO
RETURN

END FUNCTION inQueue

SUBROUTINE markoff (i, target_i, p_isetl, target_set)

IMPLICIT NONE

! Mark off columns in between the column ’i’ of ’p_isetl’ and column
! “target_i’ of ’target_set’ by clearing the CONVEX_BIT in ’flags’.
!

! On input:
U - Column index of the first box for computing slope in findconvex.
! target_i - Column index of the second box for computing slope in

! findconvex.
p_isetl - The node of ’setInd’ holding the column ’i’.
target_set - The node of ’setInd’ holding the column ’target_i’.

! On output:
! p_isetl - ’p_isetl’ has changed column indices.
! target_set - ’target_set’ has changed column indices.

]

INTEGER, INTENT(IN) :: i

INTEGER, INTENT(IN) :: target_i

TYPE(int_vector), INTENT(INOUT), TARGET :: p_isetl
TYPE(int_vector), POINTER :: target_set

! Local variables.
INTEGER :: j
TYPE(int_vector), POINTER :: p_set

! Check if any columns in between.

IF (ASSOCIATED(target_set, p_isetl)) THEN
! If ’target_i’ is next to column ’i’ or no columns in between, return.
IF ((i == target_i) .OR. (i + 1 == target_i)) RETURN

END IF

! Clear all CONVEX_BITs in ’flags’ in between.

j=1i
p_set => p_isetl
DO

i=i+1

IF (j > p_set’dim) THEN
p_set => p_set/next
IF (.NOT. ASSOCIATED(p_set)) EXIT
IF (p_set’dim == 0) EXIT
j=1
END IF
! Check if at the target node.
IF (ASSOCIATED(target_set, p_set)) THEN
! If ’j’ has reached ’target_i’, exit.
IF (j == target_i) EXIT
END IF
! Clear the CONVEX_BIT of ’flags’ for column ’j’ of ’p_set’.
p_setiflags(j) = IBCLR(p_set’%flags(j), CONVEX_BIT)
gc_convex = gc_convex — 1
END DO
END SUBROUTINE markoff

SUBROUTINE master(iflag)

IMPLICIT NONE

! A master is responsible for box SELECTION and DIVISION. During
SELECTION, it selects convex hull boxes to be subdivided. When more
than one subdomain masters exist, they collaborate with each other
to select a set of global convex hull boxes in parallel. Then

the master samples new points around convex hull boxes and obtain
their function values either by local computation when no workers

Lastly, it subdivides the convex hull boxes according to function
values obtained (DIVISION). These three steps repeat until the
stopping condition is satisfied.

On input: None.

On output:

! iflag - Status to return.
! 0
! >0 Error return.
!

INTEGER, INTENT(OUT) :: iflag

Normal return.

are present or by distributed computation among workers (SAMPLING).

62

! Local variables.

INTEGER :: i, j ! Loop counters.

INTEGER :: m_portion ! Number of global convex hull boxes for this master.
INTEGER :: setB_c ! Counter for elements that will be stored in ’setB’.
INTEGER :: setB_len ! Length of ’setB’ buffer.

LOGICAL :: good_ratio ! True if the ratio of masters to workers will be
! acceptable after spawning new masters.
LOGICAL :: order ! Used to determine the ordering of ranks in the merged
! parent-child intracommunicator.
LOGICAL :: spawn_if_lowmem ! Flag specifying if new masters should be spawned
! when the amount of avialable memory falls below a certain threshold.
REAL(KIND = R8) :: mem_threshold ! If available memory for a master falls below
! this value, then a local spawn request flag is set.
REAL(KIND = R8), DIMENSION(:), ALLOCATABLE :: tmpbox ! Temporary buffer with
! length ’box_size’.

REAL (KIND = R8)
REAL (KIND = R8)
! processor.
TYPE(int_vector), POINTER :: p_iset ! Pointer to a node of ’int_vector’

! type data structures, i.e. ’setInd’ and ’setFcol

: tmpf ! Temporary function value for recovering checkpoints.
:: totl_mem ! The total amount of memory (in MB) available on a

! Initialize ’iflag’.
iflag =0

! Initialize ’totl_mem’, ’mem_threshold’, and ’switch_iter’.
spawn_if_lowmem = PRESENT (TOTAL_MEM)
IF (spawn_if_lowmem) THEN
totl_mem = REAL(TOTAL_MEM, R8)
mem_threshold = totl_mem / 2.0_R8
END IF
switch_iter = 1

! Set ’xm_comm’.
IF (.NOT. spawned) THEN
IF (world_size == 1) THEN
xm_comm = MPI_COMM_WORLD
ELSE
xm_comm = m_comm(INT (myid/N_MASTER_I) + 1)
END IF
END IF

! Assign ’row_w’ and ’col_w’ in terms of N.

IF (N <= 10) THEN
row_w = MAX(10, 2xN)
ELSE
row_w = 17 + CEILING(LOG(REAL(N))/L0G(2.0))
END IF
IF (1bc == 1) THEN
! Limit ’row_w’ to be not greater than ’MAX_ITER’.
IF (row_w > MAX(MAX_ITER,2)) row_w = MAX(MAX_ITER,2)
END IF
col_w = 35*N
! Assign parameter values and allocate buffers.
box_size = 5 + N*2
set_size =4 + N
loc_side = N + loc_c
loc_diam = 2*N + loc_c

IF (N_MASTER_I > 1) THEN
! Only with multiple subdomain masters, ’gbuffer’ and ’displs’ are

! needed. Initially, allocate 100*N_MASTER_I slots for boxes in ’gbuffer’.

gbuffer_len = 100xN_MASTER_I*box_size
IF (ALLOCATED(gbuffer)) DEALLOCATE(gbuffer)
ALLOCATE (gbuffer (gbuffer_len), STAT = alloc_err)
IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 3; RETURN; END IF
gbuffer(:) = 0
IF (ALLOCATED(displs)) DEALLOCATE(displs)
ALLOCATE (displs (N_MASTER_I), STAT = alloc_err)
IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 3; RETURN; END IF
END IF
lbuffer_len = 100*box_size
IF (ALLOCATED(1lbuffer)) DEALLOCATE(1lbuffer)
ALLOCATE(1buffer (lbuffer_len))
lbuffer(:) =0
! Initially allocate ’setB’ with at least 1000 elements to reduce
! the number of reallocations.
setB_len = 1000
IF (ASSOCIATED(setBY%Line)) NULLIFY(setB%Line)
ALLOCATE(setBY%Line(setB_len), STAT = alloc_err)
IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 1; RETURN; END IF
IF (ASSOCIATED(setBY%dir)) NULLIFY(setBj%dir)
ALLOCATE (setBYdir(setB_len) ,STAT = alloc_err)
IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 1; RETURN; END IF
DO i =1, setB_len
IF (ASSOCIATED(setBLine(i)%c)) NULLIFY(setB%Line(i)%c)

63

ALLOCATE(setBYLine(i)%c(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 1; RETURN; END IF
IF (ASSOCIATED(setB%Line(i)%side)) NULLIFY(setBY%Line(i)¥%side)
ALLOCATE(setBY%Line(i)%side(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 1; RETURN; END IF

END DO

! Allocate ’tmpbox’.

IF (ASSOCIATED (tempbox)) NULLIFY (tempbox)
ALLOCATE (tmpbox (box_size), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 3; RETURN; END IF
! Allocate ’lc_convex’.

IF (ALLOCATED(lc_convex)) DEALLOCATE(lc_convex)
ALLOCATE(lc_convex(N_MASTER_I), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 3; RETURN; END IF
lc_convex(:) =0

! Allocate ’setW’.

IF (ASSOCIATED(setW)val)) NULLIFY(setW/%val)

ALLOCATE (setW/%val(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 2; RETURN; END IF
ALLOCATE (setW/%dir (N), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 2; RETURN; END IF
setW)dim = 0

! Allocate ’setDia’, ’setInd’, and ’setFcol’ for the first box matrix.
ALLOCATE(setDia)

ALLOCATE(setDia%elements(col_w), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 2; RETURN; END IF
NULLIFY(setDia%next)

NULLIFY(setDia¥prev)

setDia%id = 1

setDia)dim = 0

ALLOCATE(setInd)

ALLOCATE(setIndl,elements(col_w), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 2; RETURN; END IF
ALLOCATE(setInd/flags(col_w), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 2; RETURN; END IF
setInd/flags(:) =0

NULLIFY(setInd%next)

NULLIFY(setInd¥%prev)

setInd%id = 1

setInd)dim = O

ALLOCATE(setFcol)

ALLOCATE(setFcoljelements(col_w), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 2; RETURN; END IF
NULLIFY(setFcolYnext)

NULLIFY(setFcollprev)

NULLIFY(setFcol)flags)

setFcollid = 1

setFcolldim = O

! Allocate p_box.

ALLOCATE (p_box)

ALLOCATE (p_box%c(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 3; RETURN; END IF
ALLOCATE (p_box%side(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 3; RETURN; END IF

! Allocate tempbox.

ALLOCATE (tempbox)

ALLOCATE (tempboxYc (N) ,STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 3; RETURN; END IF
ALLOCATE (tempbox%side (N), STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 3; RETURN; END IF

! Initialize ’m_portion’ and ’t’.
IF (.NOT. spawned) THEN
m_portion = 0
t=0
END IF

! Step 1: Checkpoint file/log management, normalization of the search
! space, and initialization of first hyperbox.
ALLOCATE(m_head, STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR; RETURN; END IF

! Initialize the checkpointing mechanism.
CALL initCheckpoint ()

! Initialization for main loop.
CALL init(m_head, iflag, mygid)
IF (iflag /= 0) RETURN

! Notify all others that it has passed the initialization. Use ’b_worker’
! as the send buffer and ’q_worker’ as the receive buffer.
b_worker(:) =1

64

IF (.NOT. spawned) THEN
CALL MPI_ALLTOALL(b_worker, 1, MPI_INTEGER, q_worker, 1, &
MPI_INTEGER, MPI_COMM_WORLD, ierr)

IF (SUM(q_worker) /= world_size) THEN
! At least one processor did not pass the initialization.
iflag = DMPI_ERROR + 7

RETURN
END IF
END IF
b_worker(:) =0
q_worker(:) =0

! The root subdomain master has one box initially.
IF (.NOT. spawned) THEN

IF (mygid == 0) m_portion = 1

t=1
END IF

! Spawned masters update state.
IF (spawned) THEN
! Initialize state transfer. In particular, receive values for ’N_MASTER_I’
! and ’world_size’.
CALL initStateTransfer()
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, num_children, ierr)

! Determine N_WORKER_I’ allocate rank arrays used for merging the parent and

! child intercommunicators.

N_WORKER_I = world_size - N_MASTER_I

IF (ALLOCATED(master_ranks)) THEN
DEALLOCATE (master_ranks)

END IF

ALLOCATE (master_ranks (N_MASTER_I))

IF (ALLOCATED(worker_ranks)) THEN
DEALLOCATE (worker_ranks)

END IF

ALLOCATE (worker_ranks (N_WORKER_I))

IF (ALLOCATED (trans_ranks)) THEN
DEALLOCATE (trans_ranks)

END IF

ALLOCATE(trans_ranks(1 + num_children))

! Assign ranks to the old masters.

DO i =1, N_MASTER_I - num_children
master_ranks(i) =i - 1

END DO
! Assign ranks to the new masters beginning at ’world_size - 1°.
DO i =1, num_children

master_ranks ((N_MASTER_I - num_children) + i) &

= (world_size - num_children) + (i - 1)

END DO
! Assign ’worker_ranks’.
DO i =1, N_WORKER_I

worker_ranks (i) = (N_MASTER_I - num_children) + (i - 1)
END DO
! Assign state transfer ranks.
trans_ranks(1) = 0
DO i =1, num_children

trans_ranks(i + 1) = (world_size - num_children) + (i - 1)
END DO
! Merge parent and child intercommunicators.
order = .TRUE.
CALL MPI_INTERCOMM_MERGE (parent_comm, order, temp_comm_world, ierr)
! Create expanded communicator for new set of masters.
CALL MPI_COMM_GROUP(temp_comm_world, temp_group_world, ierr)
CALL MPI_GROUP_INCL(temp_group_world, N_MASTER_I, master_ranks, &

Xm_group, ierr)

CALL MPI_COMM_CREATE (temp_comm_world, xm_group, xm_comm, ierr)

! Create expanded communicator for new world (= old world + spawned masters).

CALL MPI_GROUP_INCL(temp_group_world, N_WORKER_I, worker_ranks, &
temp_group_worker, ierr)

CALL MPI_GROUP_UNION (xm_group, temp_group_worker, xw_group, ierr)

CALL MPI_COMM_CREATE (temp_comm_world, xw_group, xw_comm, ierr)

! Create communicator for state transfer.

CALL MPI_GROUP_INCL(temp_group_world, 1 + num_children, trans_ranks, &
trans_group, ierr)

CALL MPI_COMM_CREATE(temp_comm_world, trans_group, trans_comm, ierr)

! Get new ranks.

CALL MPI_COMM_RANK (xw_comm, myid, ierr)

CALL MPI_COMM_RANK(xm_comm, mygid, ierr)

! Update *PROCID’ and ’N_MASTER’.

PROCID = myid

N_MASTER = N_MASTER_I

! Call the state update subroutine.

CALL bcastState()

! Set the iteration at which the last spawning event occured.

switch_iter =t

! Wait for all masters to synchronize.

65

CALL MPI_BARRIER(xw_comm, ierr)

END IF

MAIN_LOOP: DO

! If there is a global spawn request, then prepare for spawning.
IF (spawn_requested_global) THEN
! Send spawn request messages to workers.
IF (mygid == 0) THEN
DO i = N_SUB_I*N_MASTER_I, N_SUB_I*N_MASTER_I + (N_WORKER_I - 1)
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, i, SPAWN_REQ, &
Xw_comm, ierr)
END DO
END IF
! Initiate the spawning procedure.
CALL spawnInit(ierr)
IF (ierr /= 0) THEN
! Abort the spawning procedure.
spawn_initiated = .FALSE.
END IF
END IF
! If span initialization succeeded, then finalize the spawning procedure by
! updating state to account for the spawned masters.
IF (spawn_initiated) THEN
CALL spawnFinalize()
! Wait for all masters to synchronize.
CALL MPI_BARRIER(xw_comm, ierr)
END IF
! If available memory for this master has fallen below the specified
! threshold, then set the local spawn request flag.
IF (spawn_if_lowmem) THEN
! Determine the memory threshold based on total memory and spawn count.
mem_threshold = totl_mem*(1.0_R8 - 1.0_R8 / 2.0_R8**(1 + spawn_count))
! Determine if the ratio of masters to workers will be good after spawning.
good_ratio = .FALSE.
IF (2%xN_MASTER_I <= (world_size + N_MASTER_I)/3) THEN
good_ratio = .TRUE.
END IF
! Set flag for a local spawn request if spawning conditions hold.
IF (REAL(box_count, R8)*box_mem / size_mb > mem_threshold .AND. &
t - switch_iter > 2 .AND. spawn_count < max_spawn .AND. &
N_SUB_I == 1 .AND. good_ratio) THEN
spawn_requested_local = .TRUE.
END IF

END IF

END DO
! Determine the total box count across masters in a subdomain. END DO
CALL MPI_ALLREDUCE(box_count, box_count_global, 1, MPI_INTEGER, & ! Sort the list in ascending lexicographical order of ’X’.
MPI_SUM, xm_comm, ierr) CALL sortList()
! If there is a local spawn request, notify all other masters. ELSE ! No more logs in the checkpoint file. Release the list of logs.
CALL MPI_ALLREDUCE (spawn_requested_local, spawn_requested_global, 1, & CALL cleanList()

MPI_LOGICAL, MPI_LOR, xm_comm, ierr) ! Close all units of checkpoint files.

DO i =1, chk_sm

! Reset counters and clear buffers. CLOSE(CHKSUNIT + i)
update_counter = 0 END DO

IF (mygid == 0) update_array(:) =0 DEALLOCATE(chk_len)
b_worker(:) =0 END IF

IF (t > 1) eval_c_i =0 ! Open a new checkpoint file to record the new sequence of
IF (RESTART_I == 1) THEN ! function evaluations.
! Open the checkpoint log file(s) for writing at the beginning OPEN (UNIT=CHKRUNIT + chk_sm, FILE=cpfile2, FORM="UNFORMATTED", &
! of each iteration. STATUS="UNKNOWN", POSITION="APPEND", I0OSTAT=ierr)
OPEN (UNIT=CHKSUNIT, FILE=cpfile, FORM=’UNFORMATTED’, & IF (ierr /= 0) THEN; iflag = FILE_ERROR; RETURN; END IF
STATUS=’UNKNOWN’, POSITION=’APPEND’, IOSTAT=ierr) END IF

IF (ierr /= 0) THEN; iflag = FILE_ERROR; RETURN; END IF IF (chk_sm == N_MASTER_I) THEN ! Recover directly from its own list.

END IF ! When all function values in the list have been recovered

IF (RESTART_I == 2) THEN ! (t >= check_t + 1), open the checkpoint file for appending new logs.
IF ((chk_sm /= N_MASTER_I) .AND. moreList()) THEN IF (t >= check_t + 1) THEN

! Read the number of logs for the current iteration from
! ’chk_sm’ number of checkpoint files.
DO j =1, chk_sm
READ (UNIT=CHKSUNIT + j, IOSTAT=ierr) check_t, chk_len(j)

IF (t == check_t + 1) CALL cleanList() ! Release the list of logs.

OPEN (UNIT=CHKSUNIT, FILE=cpfile, FORM="UNFORMATTED", &
STATUS="UNKNOWN", POSITION="APPEND", I0OSTAT=ierr)

IF (ierr /= 0) THEN; iflag = FILE_ERROR; RETURN; END IF

IF (ierr < 0) EXIT ! Exit when no more logs to recover. END IF
END DO END IF
IF (ierr == 0) THEN END IF

! Sum up the total number of logs for this iteration.

i = SUM(chk_len) !Step 2: Identify the set of potentially optimal boxes.

IF (i > sizeList()) THEN ! They are the first boxes of all columns with CONVEX_BIT set
! Enlarge the list to hold all logs for this iteration. ! in ’flags’ in ’setInd’.

CALL enlargeList(MAX(i,2*sizeList()), .FALSE.) IF (t > 1) THEN
ELSE ! Reset the counter to start loading logs from the files.

! Except for the first iteration, the loop starts with convex
CALL resetList()

! hull box selection that marks the CONVEX_BIT in ’setInd’.

END IF CALL boxSelection(tmpbox, m_portion, iflag)
! Read all logs for this iteration to the list. IF (iflag /= 0) RETURN
DO j =1, chk_sm END IF

DO i = 1, chk_len(j)

READ (UNIT=CHKSUNIT + j, IOSTAT=ierr) X, tmpf ! Initialize ’i_start’ and ’p_start’ in order to search such
IF (ierr /= 0) THEN; iflag = FILE_ERROR + 4; RETURN; END IF ! columns in ’setInd’. The first boxes on columns with CONVEX_BIT set
CALL insList(X, tmpf) ! in ’flags’ are potentially optimal.

66

i_start =1 ! will be returned.

p_start => setInd p_iset => findcol(i_start, p_start, i, do_it)
! If OBJ_CONV is present and not zero, save ’FMIN’ in ’fmin_old’ to be IF (do_it) THEN
! compared with the updated ’FMIN’ later. ! Step 3:
IF (PRESENT(0OBJ_CONV)) THEN ! Step 3a: Obtain the ’setI’ of dimensions with the maximum
IF (OBJ_CONV /= 0.0_R8) fmin_old = FMIN ! side length for the first box on column
END IF ! ’p_isetlelements(i)’, where ’i’ is the index
! Loop processing any boxes in the columns with CONVEX_BIT set in ’flags’ ! in ’setInd’ for the column holding the hyperbox to
! in ’setInd’. ! subdivide.
! Initialize counters and buffers. CALL findsetI(m_head, p_isetV%elements(i))
gc_convex = 0 ! Save information used in sampleP() and divide() in ’lbuffer’.
lbuffer(:) =0 lbuffer(gc_convex*set_size + 2) = i ! ’setInd’ element ID.
setB_c =0 lbuffer(gc_convex*set_size + 3) = p_iset’id ! ’setInd’ link ID.
IF (m_portion == 0) THEN lbuffer(gc_convex*set_size + 4) = p_iset/elements(i) ! Box column ID.
! No convex hull boxes have been assigned to this master, so release ! Update ’setB_c’ and ’gc_convex’.
! blocked workers (if any). setB_c = setB_c + 2x1lbuffer(gc_convex*set_size + 1)
DO WHILE (q_counter > 0) gc_convex = gc_convex + 1
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, q_worker(q_counter), & ELSE
NO_POINT, xw_comm, ierr) ! There are no more columns of boxes to divide for this iteration.
g_counter = g_counter - 1 EXIT INNER
END DO END IF
END DO INNER
IF (RESTART_I == 1) THEN ! Allocate or reallocate ’setB’ with a reasonable size. ’setB’ holds
! Record a log with an empty setB size in the checkpoint file. ! all newly generated boxes from divide() and their subdivided parent
WRITE(UNIT=CHKSUNIT, IOSTAT=ierr) t, O ! boxes.
END IF setB_c = setB_c + gc_convex + 1
IF (RESTART_I == 2) THEN IF (setB_len < setB_c) THEN
IF (chk_sm /= N_MASTER_I) THEN ! Reallocate a bigger ’setB’.
! Record a log with an empty setB size in the new checkpoint file. setB_len = MAX(setB_c, 2*setB_len)
WRITE(UNIT=CHKRUNIT + chk_sm, I0OSTAT=ierr) t, O DO i = 1, SIZE(setB}Line)
ELSE DEALLOCATE (setB%Line (i) %c)
IF (t >= check_t + 1) THEN ! All iterations have been recovered. DEALLOCATE (setB%Line (i) %side)
! Append a log with an empty setB size in the old checkpoint file. END DO
WRITE(UNIT=CHKSUNIT, IOSTAT=ierr) t, O DEALLOCATE (setB%Line)
END IF DEALLOCATE (setB%dir)
END IF ALLOCATE (setBYLine(setB_len), STAT = alloc_err)
END IF IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 1; RETURN; END IF
ELSE ! Start looking for convex hull boxes in the data structures. ALLOCATE (setBYdir(setB_len), STAT = alloc_err)
INNER: DO IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 1; RETURN; END IF
do_it = .FALSE. DO i =1, setB_len
! Find such a box column in linked list ’setInd’ starting ALLOCATE(setB%Line(i)%c(N), STAT = alloc_err)
! from position ’i_start’ in the node ’p_start’. If found, IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 1; RETURN; END IF
! ’do_it’ will be set TRUE and index ’i’ and node ’p_iset’ ALLOCATE(setB%Line(i)%side(N), STAT = alloc_err)

67

IF (alloc_err /= 0) THEN; iflag = ALLOC_ERROR + 1; RETURN; END IF
END DO
END IF
! Initialize the buffer counter ’setB¥ind’.
setBYind = 0
! Sample new points around all convex boxes and store them in ’setB’.
! Step 3b: Sample new center points at c + delta*e_i and
! c - deltaxe_i for all dimensions in ’lbuffer’, where
! c is the center of the parent box being processed,
! and e_i is the ith unit vector. Evaluate the objective
! function at new center points and keep track of current
! global minimum ’FMIN’ and its associated ’unit_x’.
CALL sampleP(m_head, setB)
! For all the newly sampled points in ’setB’, evaluate their
! function values or obtain the values via checkpoint logs.
IF ((world_size >= 3) .AND. (N_MASTER_I*N_SUB_I /= world_size)) THEN
! When more than 3 processors are available and some of them are
! workers, call sampleF to distribute function evaluation tasks to
! workers. If checkpointing is on for recovery, sampleF_local is
! called instead.
IF ((RESTART_I == 2) .AND. moreList()) THEN
! Not all checkpoint logs are recovered, so obtain the function
! values from the local list or table.
CALL sampleF_local(setB, eval_c_i, iflag)
IF (iflag /= 0) EXIT MAIN_LOOP
ELSE
CALL sampleF(setB, eval_c_i)
END IF
ELSE ! When less than 3 processors are available, or all of them
! are masters (no workers), call sampleF_local to evaluate function
! values locally.
CALL sampleF_local(setB, eval_c_i, iflag)
IF (iflag /= 0) EXIT MAIN_LOOP
END IF
! Step 3c: Divide the hyperbox containing c into thirds along the
! dimensions in ’lbuffer’, starting with the dimension with
! the lowest function value of f(c +- deltax*e_i) and
! continuing to the dimension with the highest function
! value f(c +- deltaxe_i).
CALL divide(m_head, setB, setDia, setInd, setFcol, p_box, setW, iflag)
IF (iflag /= 0) THEN
STATUS(1) = ALLOC_ERROR + iflag - 1
EXIT MAIN_LOOP

END IF
END IF
IF (N_MASTER_I > 1) THEN

! When more than one masters per subdomain, update intermediate results

! from different masters at every iteration.
IF (mygid == 0) THEN ! The root subdomain master.
IF (FMIN_I < FMIN) THEN
FMIN = FMIN_I
unit_x = unit_x_i
dia = dia_i
END IF
IF (FMIN_I == FMIN) THEN
IF (dia_i < dia) THEN
dia = dia_i
unit_x = unit_x_i
ELSE
IF (dia_i == dia) THEN
IF (unit_x_i .lexLT. unit_x) THEN
dia = dia_i
unit_x = unit_x_i
END IF
END IF
END IF
END IF
eval_c = eval_c + eval_c_i
! Update the counter and buffer for updating.
update_counter = update_counter + 1
update_array(1) = 1
DO WHILE (update_counter < N_MASTER_I)

! Loop receiving the updates from all nonroot subdomain masters.
CALL MPI_RECV(buffer, bufsize, MPI_BYTE, MPI_ANY_SOURCE, MPI_ANY_TAG, &

Xw_comm, mstatus, ierr)

! For a message ’UPDATES’, merge the results to the global copy.

IF (mstatus(MPI_TAG) == UPDATES) THEN
IF (buffer(1) < FMIN) THEN
FMIN = buffer(1)
unit_x = buffer(2:N + 1)
dia = buffer(N + 3)
END IF
IF (buffer(1) == FMIN) THEN
IF (ALL(buffer(2:N + 1) == unit_x)) THEN
! It’s the same box with smaller diameter.

68

IF (buffer(N + 3) < dia) THEN
dia = buffer(N + 3)
unit_x = buffer(2:N + 1)
END IF
ELSE
IF (buffer(2:N + 1) .lexLT. unit_x) THEN
dia = buffer(N + 3)
unit_x = buffer(2:N + 1)
END IF
END IF
END IF
eval_c = eval_c + INT(buffer(N + 2))
! Update the counter and buffer for updating.
update_counter = update_counter + 1
! Find ’mygid’ for this subdomain master.
DO k = 2, N_MASTER_I
IF (mstatus(MPI_SOURCE) == array_masters(k)) EXIT
END DO
update_array(k) = 1
! Exit when it has received all updates.
IF (update_counter == N_MASTER_I) EXIT
END IF
! For results from a root subdomain master, store the results.
IF (mstatus(MPI_TAG) == RESULT_DATA) THEN
! Find the subdomain ID.
k = mstatus(MPI_SOURCE)/N_MASTER_I
! Set bit k in ’bits_sub’ for the finished subdomain.
bits_sub = IBSET(bits_sub, k)
c_bits_sub = c_bits_sub + 1
array_results(k)%fmin = buffer(1)
array_results(k)’%x = buffer(2:N + 1)
array_results(k)%max_iter = INT(buffer(N + 2))
array_results(k)%max_evl = INT(buffer(N + 3))
array_results(k)/%min_dia = buffer(N + 4)
array_results(k)’%status = INT(buffer(N + 5))
c_alldone = c_alldone + INT(buffer(N + 6))
! Send a ’BE_WORKER’ message and ’bits_sub’ to this master.
buffer(1l) = bits_sub
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus(MPI_SOURCE), &
BE_WORKER, xw_comm, ierr)
END IF
! For a delayed nonblocking request from a worker, reply a
! ’NO_POINT’ message.

IF (mstatus(MPI_TAG) == NONBLOCK_REQ) THEN
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus (MPI_SOURCE), &
NO_POINT, xw_comm, ierr)
END IF
! Process a delayed blocking request from a worker.
IF (mstatus(MPI_TAG) == BLOCK_REQ) THEN
IF (N_SUB_I > 1) THEN
! For a multiple subdomain search, let the worker try to seek work
! from other masters if this is its first blocking request.
IF (b_worker (mstatus(MPI_SOURCE) + 1) == 0) THEN
! Assign ’b_worker’ to remember the first blocking request for
! this worker.
b_worker (mstatus (MPI_SOURCE) + 1) =1
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus (MPI_SOURCE), &
NO_POINT, xw_comm, ierr)
ELSE ! This is the second blocking request from this worker, so
! block this worker in the queue ’q_worker’.
IF (.NOT. inQueue(q_worker, q_counter, mstatus(MPI_SOURCE))) THEN
g_counter = g_counter + 1
q_worker (q_counter) = mstatus(MPI_SOURCE)
END IF
END IF
ELSE ! For a single subdomain search, block the worker in ’q_worker’.
IF (.NOT. inQueue(q_worker, q_counter, mstatus(MPI_SOURCE))) THEN
q_counter = gq_counter + 1
q_worker(q_counter) = mstatus(MPI_SOURCE)
END IF
END IF
END IF
! Update ’c_alldone’.
IF (mstatus(MPI_TAG) == COUNT_DONE) THEN
c_alldone = c_alldone + buffer(1)
END IF
END DO
! Send the updates to all other masters.
buffer (1) = FMIN
buffer(2:N + 1) = unit_x
buffer(N + 2) = eval_c
buffer(N + 3) = dia
i=1
DO
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, i, UPDATES, &
Xw_comm, ierr)

69

i=1i+1
IF (i == N_MASTER_I) EXIT
END DO
ELSE ! Nonroot subdomain masters.
! Send updates to the root subdomain master.
buffer(1) = FMIN_I
buffer(2:N + 1) = unit_x_i
buffer(N + 2) = eval_c_i
buffer(N + 3) = dia_i
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, array_masters(1), UPDATES, &
Xw_comm, ierr)
! Wait for the updated results from the root master.
DO
CALL MPI_RECV(buffer, bufsize, MPI_BYTE, MPI_ANY_SOURCE, &
MPI_ANY_TAG, xw_comm, mstatus, ierr)
IF (mstatus(MPI_TAG) == UPDATES) THEN
! Update the global copy of results.
FMIN = buffer(1)
unit_x = buffer(2:N + 1)
eval_c = INT(buffer (N + 2))
dia = buffer(N + 3)
EXIT
END IF
! For a delayed requests from a worker, reply a "NO_POINT" message.
IF (mstatus(MPI_TAG) == NONBLOCK_REQ) THEN
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus(MPI_SOURCE), &
NO_POINT, xw_comm, ierr)
END IF
IF (mstatus(MPI_TAG) == BLOCK_REQ) THEN
IF (N_SUB_I > 1) THEN
IF (b_worker (mstatus(MPI_SOURCE) + 1) == 0) THEN
b_worker (mstatus (MPI_SOURCE) + 1) = 1
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus(MPI_SOURCE), &
NO_POINT, xw_comm, ierr)
ELSE
IF (.NOT. inQueue(q_worker, q_counter, mstatus(MPI_SOURCE))) THEN
g_counter = q_counter + 1
q_worker (q_counter) = mstatus(MPI_SOURCE)
END IF
END IF
ELSE
IF (.NOT. inQueue(q_worker, q_counter, mstatus(MPI_SOURCE))) THEN
g_counter = g_counter + 1

70

q_worker(q_counter) = mstatus(MPI_SOURCE)
END IF
END IF
END IF
END DO
END IF ! End of IF (mygid==0)
! Update the local copy of results.
FMIN_I = FMIN
unit_x_i = unit_x
dia_i = dia
ELSE ! Only one subdomain master.
FMIN = FMIN_I
unit_x = unit_x_i
dia = dia_i
eval_c = eval_c + eval_c_i
END IF
! Check stop rules:
! Stop rule 1: maximum iterations.
IF (BTEST(stop_rule, 0)) THEN
IF (t >= MAX_ITER) THEN; STATUS(1) = 1; EXIT MAIN_LOOP; END IF
END IF
! Stop rule 2: maximum evaluations.
IF (BTEST(stop_rule, 1)) THEN
IF (eval_c >= MAX_EVL) THEN; STATUS(1) = 2; EXIT MAIN_LOOP; END IF
END IF
! Stop rule 3: minimum diameter.
! Check if minimum diameter has been reached regardless of whether
! MIN_DIA was specified.
IF (sqrt(dia) <= dia_limit) THEN
STATUS(1) =3
EXIT MAIN_LOOP
END IF
! Stop rule 4: objective function convergence.
! If the optional argument OBJ_CONV is present, save ’FMIN’ to be
! compared with the updated ’FMIN’.
IF (PRESENT(OBJ_CONV)) THEN
IF ((OBJ_CONV /= 0.0_R8) .AND. (fmin_old /= FMIN)) THEN
! ’FMIN’ has been updated.
IF (fmin_old - FMIN < (1.0_R8 + ABS(fmin_o1ld))*0BJ_CONV) THEN

STATUS = 4
EXIT MAIN_LOOP
END IF
END IF

END IF

! Close logical units for writing checkpoint logs at the end of each
! iteration.
IF (RESTART_I == 1) CLOSE(CHKSUNIT)
IF (RESTART_I == 2) THEN
IF (chk_sm /= N_MASTER_I) THEN
! Close the logical unit for the new checkpoint file.
CLOSE (CHKRUNIT + chk_sm)
ELSE

! Close the logical unit for appending new logs to the checkpoint file

! after all iterations have been recovered.
IF (t >= check_t + 1) CLOSE(CHKSUNIT)
END IF
END IF
! Update iteration counter.
t=t+1
END DO MAIN_LOOP

IF (iflag /= 0) RETURN
IF (RESTART_I == 2) THEN
IF ((chk_sm /= N_MASTER_I) .AND. moreList()) THEN
! Release the list of logs.
CALL cleanList()
! Close all units of checkpoint files.
DO i =1, chk_sm
CLOSE(CHKSUNIT + i)
END DO
DEALLOCATE (chk_len)
END IF
IF ((chk_sm == N_MASTER_I) .AND. (t <= check_t)) THEN
CALL cleanList()
DEALLOCATE (chk_len)
END IF
END IF

IF (mygid == 0) THEN
! The root subdomain master prepares to return the results.
! Scale ’unit_x’ back to ’X’ in original coordinates.
X =L + unit_x*UmL
! Return current diameter of the box with ’FMIN’.
IF (PRESENT(MIN_DIA)) MIN_DIA = SQRT(dia)
! Return the total iterations and evaluations.

71

IF (PRESENT(MAX_ITER)) MAX_ITER =t
IF (PRESENT(MAX_EVL)) MAX_EVL = eval_c
END IF

! Find as many as SIZE(BOX_SET) best boxes.

IF (PRESENT(BOX_SET)) THEN
! Put the function value and the center coordinates of the best box into

! "BOX_SET’.

Initialize the ’current_center’ as the best box.

current_center = unit_x

boxset_ind =

boxset_ind + 1

BOX_SET (boxset_ind)%val= FMIN
! Scale the center coordinates to the original coordinate system.
BOX_SET(boxset_ind)%c = L + unit_x*UmL
! Loop to find SIZE(BOX_SET) - 1 best boxes.
OUTER1: DO k = 1, SIZE(BOX_SET) - 1
! Set an initial value to be compared with box function values.
! Reuse the real variable ’fmin_old’ (FMIN backup) .
fmin_old = HUGE(0.0_R8)
! Loop over the entire data structure starting from the box matrix

! ’m_head’.

p_b => m_head
! Initialize the number of marked boxes (with zero diameter) ’t’ to be
! 0. Reuse the integer variable ’t’ (loop counter for main loop).

t=0

INNER1: DO WHILE(ASSOCIATED(p_b))
! Check all the columns in ’p_b’.
INNER2: DO i =1, col_w
DO j = 1, MOD(p_b%ind(i) - 1, row_w) + 1
! Only in the first pass, locate the box with ’FMIN’ and mark it.
IF (k == 1) THEN
IF (ALL(unit_x == p_b¥%M(j,i)%c)) THEN

BOX_SET(1)%side
BOX_SET(1)%diam
p-b/M(j,1i)%diam

Fill in the ’side’ and ’diam’ of the first best box in
BOX_SET. Scale them back to the original coordinate

system. Mark this box by setting its diameter zero and update
.

= p_biM(j, i)%side*UnL
SUM(BOX_SET (1) %side**2)

0

t=t+1
CYCLE
END IF

END IF
! Process unmarked boxes (with non-zero diameter) and update ’t’.

IF (p_b%M(j,i)%diam /= 0) THEN
! Compute the weighted separation between ’current_center’ and the
! center of this box ’p_biM(j,i)’.
tmp_x= (current_center - p_b%M(j,i)%c)*UmL
IF (DOT_PRODUCT (tmp_x*W_I, tmp_x) < MIN_SEP_I) THEN
! If the separation is less than ’MIN_SEP_I’, mark this box by
! setting its diameter zero.
p_b%M(j,i)%diam = O
t=t+1
ELSE
! If the separation >= MIN_SEP_I, compare the function value
! of the box with the current best value saved in ’fmin_old’.
IF (p_bkM(j,i)%val < fmin_old) THEN
fmin_old = p_b%M(j,i)%val
! Backup the pointer to the current best box.
p_save => p_b%M(j,i)
END IF
END IF
ELSE
t=t+1
END IF
END DO
! Repeat the above steps if any box link exists.
IF (p_b%ind(i) > row_w) THEN
! There must be box link(s).
p_1 => p_b%sibling(i)%p
DO WHILE(ASSOCIATED(p_1))
DO j =1, p_1l%ind
IF (p_l%Line(j)%diam /= 0) THEN
tmp_x = (current_center - p_lYLine(j)%c)*UmL
IF (DOT_PRODUCT (tmp_x*W_I, tmp_x)< MIN_SEP_I) THEN
p_1%Line(j)%diam = 0
t=t+1
ELSE
IF (p_l1%Line(j)%val < fmin_old) THEN
fmin_old = p_1%Line(j)%val
p_save => p_l1%Line(j)
END IF
END IF
ELSE
t=t+1
END IF
END DO

72

! Move to the next box link, if any.
p-1 => p_lVnext
END DO

END IF

END DO INNER2

! Move to the next box matrix, if any.

p_b => p_blchild

END DO INNER1
IF (ASSOCIATED(p_save)) THEN

IF (p_saveldiam /= 0) THEN
! Found the next best box. Put it into BOX_SET and mark it.
boxset_ind = boxset_ind + 1
BOX_SET(boxset_ind) = p_save
! Scale the coordinates back to the original coordinate system.
BOX_SET(boxset_ind)%c =L + &

BOX_SET (boxset_ind)%c*xUmL

BOX_SET (boxset_ind)%side = BOX_SET (boxset_ind)%side*UmL
BOX_SET (boxset_ind)%diam = SUM(BOX_SET (boxset_ind)%side**2)
p_savejdiam = 0
t=t+1
! Update ’current_center’.
current_center = p_savec

END IF

ELSE ! Exit when the next best box satisfying MIN_SEP is not available.

EXIT
END IF
! If all boxes in the data structure are marked, exit.
IF (eval_c <= t) EXIT
END DO OUTER1
! If the NUM_BOX or MIN_SEP is specified as an optional input
! argument, assign the value to it.
IF (PRESENT(NUM_BOX)) NUM_BOX
IF (PRESENT(MIN_SEP)) MIN_SEP
END IF

boxset_ind
SQRT(MIN_SEP_I)

! Deallocate all the data structures explicitly allocated, including
! box matrices, box links, setB, setW, setInd, setFcol, setDia,

! and p_box.

CALL cleanup()

IF (N_MASTER_I > 1) THEN
DEALLOCATE (gbuffer)
DEALLOCATE(displs)

END IF
DEALLOCATE (1buffer)
DEALLOCATE (tmpbox)

RETURN
END SUBROUTINE master

FUNCTION onRight (boxlv, boxld, box2v, box2d, box3v, box3d) RESULT (ans)

IMPLICIT NONE
! Return .TRUE. if line

REAL(KIND = R8), INTENT(IN) :: boxlv, boxld, box2v, box2d, box3v, box3d
LOGICAL :

On input:
boxlv - The
boxld - The
box2v - The
box2d - The
box3v - The
box3d - The
On output:
ans

function
diameter
function
diameter
function
diameter

box1l-box3 is on the right side of boxl-box2.

value of boxl.
of box1.
value of box2.
of box2.
value of box3.
of box3.

- The result of checking "on-right" condition.

ans

ans = .FALSE.

IF ((boxlv - box3v)*(boxld - box2d) - &
(box1d - box3d)*(boxlv - box2v) > 0) ans

RETURN
END FUNCTION onRight

SUBROUTINE rmMat(b_id, mycol, eid, p_iset)

IMPLICIT NONE

! Remove the first box in the box column ’mycol’ in ’b_id’ box matrix

.TRUE.

and adjust setDia, setInd, and setFcol accordingly.

On input:

b_id
mycol
eid

- Box matrix ID of the box column.

- Box column ID.

- Element ID in a node of linked list
! p_iset - Pointer to a node in linked list ’setInd’.

’setInd’.

73

On output:
p_iset - Pointer to the changed setFcol.

INTEGER, INTENT(IN) :: b_id
INTEGER, INTENT(IN) :: mycol
INTEGER, INTENT(IN) :: eid
TYPE(int_vector), POINTER :: p_iset

Local variables.

INTEGER :: i

p_b => m_head
DOi=1, b_id -1

p_b => p_bYchild

END DO

Move the last box to the first position in heap.

IF (p_b%ind(mycol) <= row_w) THEN

! There are no box links.
IF (p_b%ind(mycol) > 1) p_b%M(1,mycol) = p_b%M(p_blind(mycol) ,mycol)

ELSE

! There are box links. Chase to the last box link.
p_1 => p_blsibling(mycol)%p
DO i =1, (p_bkind(mycol) - 1)/row_w - 1
p-1 => p_lYnext
END DO
p_b%M(1, mycol) = p_1/Line(p_1%ind)
p_-1l%ind = p_1%ind - 1

END IF
p_b%ind(mycol) = p_b%ind(mycol) - 1

Update ’setDia’, ’setInd’ and ’setFcol’ if this column is empty.
Find which node ’setInd’ is associated with, by checking
’setInd’%id’. Find the link in setInd.

IF (p_b%ind(mycol) == 0)THEN

! This column is empty. Remove this diameter squared from a
! corresponding node of ’setDia’.
CALL rmNode(col_w, p_iset%id - 1, eid, setDia)
! Push the released column back to top of ’setFcol’.
IF (setFcol%dim < col_w) THEN
! The head node of ’setFcol’ is not full.
CALL insNode(col_w, p_isetl%elements(eid), setFcol/dim + 1, setFcol)
ELSE
! The head node is full. There must be at least one more node

! for ’setFcol’. Find the last non-full node of ’setFcol’ to INTEGER :: c_completed ! Counter for completed evaluations.
! insert the released column. INTEGER :: i, j, k ! Counters.
p_iset => setFcol/next

DO ! Initialization.
IF (p_iset%dim < col_w) THEN c_completed = 0
! Found it. i =0 ! Counter for sending boxes.
CALL insNode(col_w, p_iset%elements(eid), p_iset’dim + 1, p_iset) ! Record the total number ’setB%ind’ of logs for this iteration to the
EXIT ! checkpoint file or the new checkpoint file.
END IF IF (RESTART_I == 1) THEN
! Go to the next node. WRITE(UNIT=CHKSUNIT) t, setBYind
p_iset => p_isetY%next ELSE IF (RESTART_I == 2) THEN
END DO IF ((chk_sm == N_MASTER_I) .AND. (t >= check_t + 1)) THEN
END IF WRITE(UNIT=CHKSUNIT) t, setBiind
! Remove the column index from a corresponding node of ’setInd’. ELSE IF (chk_sm /= N_MASTER_I) THEN
CALL rmNode(col_w, 0, eid, p_iset) WRITE(UNIT=CHKRUNIT + chk_sm) t, setB%ind
ELSE END IF
! Call siftdown to reorder the heap. END IF
CALL siftdown(p_b, mycol, 1) LOOP1: DO WHILE (c_completed < setBY%ind)
END IF ! There is at least one point to evaluate, so send to workers.
LOOP2: DO WHILE ((g_counter > 0) .AND. (i < setB%ind))
RETURN ! There is at least one worker in ’q_worker’, so send tasks
END SUBROUTINE rmMat ! and update g_counter.
IF (i + BINSIZE_I <= setB)ind) THEN
SUBROUTINE sampleF(setB, eval_c_i) ! The first slot holds the point starting index.
IMPLICIT NONE buffer(1) =i + 1
! Evaluate the objective function at each newly sampled center point. ! The second slot holds the number of points for this task.
! Keep updating ’FMIN’ and ’unit_x’. Function evaluations are distributed buffer(2) = BINSIZE_I
! to workers. ! The remaining slots hold the set(s) of point coordinates.
! DO j =1, BINSIZE_I
! On input: buffer(3 + (j - 1)*N:(j - D*N+ N+ 2) =L + &
! setB - The set of newly sampled boxes with their center points’ setB)Line(i + j)%c*UmL
! coordinates. END DO
! eval_c_i - The local counter of evaluations on this master. ! Update ’i’.
! i =1+ BINSIZE_I
! On output: ELSE
! setB - The set of newly sampled boxes with added function values buffer(1) =i + 1
! at center points. buffer(2) = setB%ind - i
! eval_c_i - The updated local counter of evaluations on this master. DO j = 1, INT(buffer(2))
! buffer(3+ (j - 1)*N:(j - D*N + N+ 2) =L + &
TYPE(BoxLine), INTENT(INOUT) :: setB setBYLine(i + j)%c*UmL
INTEGER, INTENT(INOUT) :: eval_c_i END DO
! Update ’i’.
! Local variables. i=1i+ INT(buffer(2))

74

END IF
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, q_worker(q_counter), &
POINT_BREQ, xw_comm, ierr)
g_counter = g_counter - 1
END DO L0OOP2
IF (N_SUB_I > 1) THEN
! For a multiple subdomain search, release the remaining blocked workers
! after sending all tasks to blocked workers.
DO WHILE (q_counter > 0)
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, q_worker(q_counter), &
NO_POINT, xw_comm, ierr)
g_counter = g_counter - 1
END DO
END IF
! Wait for messages from workers.
CALL MPI_RECV(buffer, bufsize, MPI_BYTE, MPI_ANY_SOURCE, &
MPI_ANY_TAG, xw_comm, mstatus, ierr)
recv_tag = mstatus(MPI_TAG)

SELECT CASE (recv_tag)

CASE (NONBLOCK_REQ) ! A nonblocking request from a worker.
! If there is at least one point, send a task to this worker. Otherwise,
! send ’NO_POINT’.

IF (i < setB%ind) THEN
IF (i + BINSIZE_I <= setBYind) THEN
buffer(1) =i + 1
buffer(2) = BINSIZE_I
DO j =1, BINSIZE_I
buffer(3 + (j - 1)*N:(j - 1)*N+ N+ 2) =L + &
setB/Line (i + j)%c*UmL
END DO
i =i+ BINSIZE_I
ELSE
buffer(1) =i + 1
buffer(2) = setB¥%ind - i
DO j = 1, INT(buffer(2))
buffer(3 + (j -)*N:(j - 1)*N+ N+ 2) =L + &
setB/Line (i + j)%c*UmL
END DO
i =1+ INT(buffer(2))
END IF
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus(MPI_SOURCE), &
POINT_NBREQ, xw_comm, ierr)

ELSE
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus(MPI_SOURCE), &
NO_POINT, xw_comm, ierr)
END IF
CASE (FUNCVAL) ! Returned function value(s) from a worker.
c_completed = c_completed + INT(buffer(2))
! Put the value(s) back to ’setB’. ’buffer(2)’ holds the number of
! function values in this returned buffer.
DO j = 1, INT(buffer(2))
! >buffer(1)’ holds the point starting index. Function values
! are stored starting from ’buffer(3)’.
setBYLine (INT(buffer(1)) + j - 1)%val = buffer(3 + 2*(j - 1))
IF (INT(buffer(4 + 2%(j - 1))) /= 0) THEN
! ’iflag’ returned for the function evaluation is not 0, so
! it was evaluated in an undefined point. Assign a huge value.
setB%Line (INT(buffer(1)) + j - 1)%val = HUGE(1.0_R8)
END IF
! Update evaluation counter.
eval_c_i =eval_c_i+1
END DO
! Send another task if at least one point is available.
IF (i < setB}ind) THEN
IF (i + BINSIZE_I <= setB%ind) THEN
buffer(1) =i + 1
buffer(2) = BINSIZE_I
DO j =1, BINSIZE_I
buffer(3 + (j - 1)*N:(j - 1)*N + N+ 2) =L + &
setB/Line(i + j)%c*UmL

END DO

i =1 + BINSIZE_I
ELSE

buffer(1) =i + 1

buffer(2) = setBlind - i
DO j = 1, INT(buffer(2))
buffer(3 + (j - 1)*N:(j - 1)*N+ N+ 2) =L +&
setB/Line (i + j)%c*UmL
END DO
i =1 + INT(buffer(2))
END IF
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus(MPI_SOURCE), &
POINT_NBREQ, xw_comm, ierr)
ELSE ! Send ’NO_POINT’ to this worker.
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus(MPI_SOURCE), &

75

NO_POINT, xw_comm, ierr)
END IF
CASE (BLOCK_REQR) ! A blocking request from a worker.
! If it has at least one point to evaluate, send a task.
IF (i < setB%ind) THEN
IF (i + BINSIZE_I <= setB%ind) THEN

buffer(1) =i + 1

buffer(2) = BINSIZE_I

DO j =1, BINSIZE_I

buffer(3 + (j - 1)*N:(j - 1)*N+ N+ 2) =L + &
setB/Line (i + j)%c*UmL

END DO

i =i+ BINSIZE_I
ELSE

buffer(1) =i + 1

buffer(2) = setB%ind - i
DO j = 1, INT(buffer(2))
buffer(3 + (j - I*N:(j - 1)*N+ N+ 2) =L + &
setB/Line (i + j)%c*UmL
END DO
i =1 + INT(buffer(2))
END IF
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus(MPI_SOURCE), &
POINT_BREQ, xw_comm, ierr)
ELSE ! No point to evaluate.
IF (N_SUB_I > 1) THEN
! For a multiple subdomain search, if ’b_worker’ for this worker
! is not set 1 (the worker has not sent any blocking request to
! this master in this iteration), set the bit to 1 and send
’NO_POINT’; if ’b_worker’ for this worker is set 1 block it

! in ’q_worker’.
IF (b_worker (mstatus(MPI_SOURCE) + 1) == 0) THEN
b_worker (mstatus (MPI_SOURCE) + 1) =1
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus (MPI_SOURCE), &
NO_POINT, xw_comm, ierr)
ELSE
IF (.NOT. inQueue(q_worker, q_counter, mstatus(MPI_SOURCE))) THEN
g_counter = g_counter + 1
g_worker (q_counter) = mstatus (MPI_SOURCE)
END IF
END IF
ELSE ! For a single domain search, always queue up the worker
! that sent a blocking request.

IF (.NOT. inQueue(q_worker, q_counter, mstatus(MPI_SOURCE))) THEN
g_counter = g_counter + 1
g_worker (q_counter) = mstatus(MPI_SOURCE)
END IF
END IF
END IF
CASE (RESULT_DATA) ! For a root master only: results from a finished
! subdomain root master. Save the results.
k = mstatus (MPI_SOURCE)/N_MASTER_I
bits_sub = IBSET(bits_sub, k)
c_bits_sub = c_bits_sub + 1
array_results(k)%fmin = buffer(1)
array_results(k)%x = buffer(2:N + 1)
array_results(k)%max_iter = INT(buffer(N + 2))
array_results(k)%max_evl = INT(buffer(N + 3))
array_results(k)%min_dia = buffer (N + 4)
array_results(k)’%status = INT(buffer(N + 5))
c_alldone = c_alldone + INT(buffer(N + 6))
! Send ’BE_WORKER’ message and ’bits_sub’ to this master.
buffer (1) = bits_sub
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, mstatus(MPI_SOURCE), &
BE_WORKER, xw_comm, ierr)
CASE (UPDATES) ! The root subdomain master received updates from a
! nonroot subdomain master. Merge the updated results.
IF (buffer(1) < FMIN) THEN
FMIN = buffer(1)
unit_x = buffer(2:N + 1)
dia = buffer(N + 3)
END IF
IF (buffer(1) == FMIN) THEN
IF (ALL(buffer(2:N + 1) == unit_x)) THEN
! It’s the same box with smaller diameter.
IF (buffer(N + 3) < dia) THEN
dia = buffer(N + 3)
unit_x = buffer(2:N + 1)
END IF
ELSE
IF (buffer(2:N + 1) .lexLT. unit_x) THEN
dia = buffer(N + 3)
unit_x = buffer(2:N + 1)
END IF
END IF
END IF

76

eval_c = eval_c + INT(buffer(N + 2)) !

update_counter = update_counter + 1 ! On input:
! Find ’mygid’ for the sender and set the update status. ! setB - The set of newly sampled boxes with their center points’
DO k = 1, N_MASTER_I ! coordinates.
IF (mstatus(MPI_SOURCE) == array_masters(k)) EXIT ! eval_c - The counter of evaluations.
END DO !
update_array(k) = 1 ! On output:
CASE (COUNT_DONE) ! The root master updates ’c_alldone’. ! setB - The set of newly sampled boxes with added function values
c_alldone = c_alldone + INT(buffer(1)) ! at center points.
END SELECT ! eval_c - The updated counter of evaluations.
END DO LOOP1 ! jerr - Status to return.
! Update ’FMIN_I’ and ’unit_x_i’. If needed, record all evaluations in ’setB’ ! =0 Normal return.
! to the checkpoint file. ! >0 Error return.
DO i =1, setB¥ind !
IF (FMIN_I > setBjLine(i)%val) THEN TYPE(BoxLine), INTENT(INOUT) :: setB
FMIN_I = setB}Line(i)%val INTEGER, INTENT(INOUT) :: eval_c_i
unit_x_i(:) = setB%Line(i)Y%c INTEGER, INTENT(OUT) :: ierr
END IF
IF (FMIN_I == setB%Line(i)%val) THEN ! Local variables.
IF (setBYLine(i)%c .lexLT. unit_x_i) THEN INTEGER :: i
! The new point has a smaller lexicographical order than ’unit_x’.
unit_x_i(:) = setBLine(i)%c ! Loop evaluating all the new center points of boxes in ’setB’.
END IF ierr = 0
END IF ! Record ’t’ and ’setB’ size to the checkpoint file either when RESTART_I==
! Log the point (in the scaled frame) and its function value. ! or RESTART_I==2 when all logs have been recovered.
IF (RESTART_I == 1) THEN IF (RESTART_I == 1) THEN
WRITE (UNIT=CHKSUNIT) setB%Line(i)%c, setB)Line(i)%val WRITE(UNIT=CHKSUNIT) t, setB%ind
ELSE IF (RESTART_I == 2) THEN ELSE IF (RESTART_I == 2) THEN
IF (chk_sm == N_MASTER_I) THEN IF ((chk_sm == N_MASTER_I) .AND. (t >= check_t + 1)) THEN
WRITE(UNIT=CHKSUNIT) setB%Line(i)%c, setBjLine(i)%val WRITE (UNIT=CHKSUNIT) t, setB¥ind
ELSE ELSE IF (chk_sm /= N_MASTER_I) THEN
WRITE(UNIT=CHKRUNIT + chk_sm) setBY%Line(i)%c, setBLine(i)%val ! Record ’t’ and ’setB’ size to the new checkpoint file.
END IF WRITE(UNIT=CHKRUNIT + chk_sm) t, setBjind
END IF END IF
END DO END IF
DO i = 1, setB¥ind
RETURN ! Evaluate the function in the original coordinate system.
END SUBROUTINE sampleF IF (RESTART_I == 2) THEN
IF (((chk_sm /= N_MASTER_I) .AND. moreList()) .OR. &
SUBROUTINE sampleF_local(setB, eval_c_i, ierr) ((chk_sm == N_MASTER_I) .AND. (t < check_t + 1))) THEN
IMPLICIT NONE ! Recover from logs.
! Evaluate the objective function locally at each newly sampled center point. IF ((chk_sm /= N_MASTER_I) .AND. moreList()) THEN
! Keeps updating ’FMIN’ and ’unit_x’. ! Recover from the merged list sorted in lexicographical order.

7

IF (.NOT. lookupTab(setB}Line(i)%c, setB)Line(i)%val)) THEN END IF

! The function value cannot be found in the checkpoint log file. ! Update ’FMIN_I’ and ’unit_x_i’ in Lexicographical order.
ierr = FILE_ERROR + 4 IF (FMIN_I == setB¥%Line(i)%val) THEN
EXIT IF (setBYLine(i)%c .lexLT. unit_x_i) THEN
END IF ! The new point has a smaller lexicographical order than ’unit_x_i’.
! Record it to the new checkpoint file. unit_x_i(:) = setB)Line(i)lc
WRITE (UNIT=CHKRUNIT + chk_sm) setB%Line(i)%c, setB)Line(i)%val END IF
END IF END IF
IF ((chk_sm == N_MASTER_I) .AND. (t < check_t + 1)) THEN END DO
! Recover from the list.
IF (.NOT. inList(setB%Line(i)%c, setB)Line(i)%val)) THEN RETURN
! The function value cannot be found in the checkpoint log file. END SUBROUTINE sampleF_local
ierr = FILE_ERROR + 4
EXIT SUBROUTINE sampleP(b, setB)
END IF IMPLICIT NONE
END IF ! On each dimension in ’lbuffer’, samples two center points at the c+deltaxe_i

END IF
ELSE ! A normal evaluation.
setBYLine(i)%val = OBJ_FUNC(L + setB¥Line(i)%c*UmL, iflag)

and c-delta*e_i, where e_i is the ith unit vector. In ’setB’,
records all the new points as the centers of boxes which will be formed
completely through subroutines sampleF and divide.

! Check ’iflag’. ! On input:
IF (iflag /= 0) THEN ' b - The head link of box matrices.
! It is evaluated at an undefined point, so assign it a huge value. ! setB - The empty box set (type ’HyperBox’) which will hold newly sampled
setBYLine(i)%val = HUGE(1.0_RS8) ! points as the centers of new boxes.
END IF !
! Record it to the checkpoint file or the new checkpoint file. ! On output:
IF (RESTART_I == 1) THEN 'b - The head link of box matrices.
WRITE(UNIT=CHKSUNIT) setB%Line(i)%c, setB)Line(i)%val ! setB - The box set holding the newly sampled center points.
ELSE IF (RESTART_I == 2) THEN !
IF (chk_sm == N_MASTER_I) THEN TYPE(BoxMatrix) , INTENT(INOUT), TARGET :: b
WRITE(UNIT=CHKSUNIT) setB)Line(i)J%c, setB)Line(i)%val TYPE(BoxLine), INTENT(INOUT) :: setB
ELSE
WRITE (UNIT=CHKRUNIT + chk_sm) setB¥%Line(i)%c, setB%Line(i)%val ! Local variables.
END IF INTEGER :: bc ! Box counter.
END IF INTEGER :: b_id ! Box matrix ID.
END IF INTEGER :: col ! Box column index
! Update evaluation counter. INTEGER :: i ! Loop counter.
eval_c_i =eval_c_i + 1 INTEGER :: j ! Local column index converted from the global one ’col’.
INTEGER :: new_i ! Index of new points in setB.
IF (FMIN_I > setBJLine(i)%val) THEN REAL (KIND = R8) :: delta ! 1/3 of the maximum side length.
! Update ’FMIN_I’ and ’unit_x_i’. TYPE (BoxMatrix), POINTER :: p_b ! Pointer to the associated box matrix.
FMIN_I = setB%Line(i)%val
unit_x_i(:) = setB%Line(i)Y%c DO bc = 0, gc_convex - 1

78

col = lbuffer(bc*set_size + 4)
! Find the box matrix that ’col’ is associated with. Store the pointer
! to box matrix in ’p_b’. The local column index ’j’ will be converted from
! 2col’.
IF (col <= col_w) THEN

p_-b=>b

j = col
ELSE

b_id = (col - 1)/col_w + 1

j = MOD(col - 1, col_w) + 1

p_-b=>b

DOi=1, b_id - 1

p_b => p_blchild

END DO

END IF

! Find the maximum side length by obtaining the dimension in ’setI’.

! Then, extract the maximum side length from the first box on column ’j’ of
! box matrix ’p_b’. Calculate ’delta’, 1/3 of the maximum side length.
delta = p_b%M(1, j)%side(INT(lbuffer(bc*set_size + 5)))/3

! Loop sampling two new points of all dimensions in ’setI’.
! ¢ + delta*e_i => newpt_1; c - delta*e_i => newpt_2, where e_i is
! the ith unit vector.
DO i = 1, INT(lbuffer(bc*set_size + 1))
new_i = setBjind + 1
! Copy the coordinates of parent box to the two new boxes
setBYLine(new_1)%c(:) = p_b%M(1, j)%c(:)
setBjLine(new_i + 1)%c(:) = p_b%M(1, j)%c(:)
! Assign changed coordinates to the two new points in ’setB’.
setBY)Line(new_i)%c (INT (lbuffer (bc*set_size + 4 + i))) = &
p_bkM(1, j)%c(INT(lbuffer(bc*set_size + 4 + i))) + delta
setBY%Line(new_i + 1)%c(INT(lbuffer(bc*set_size + 4 + i))) = &
p_bkM(1, j)%c(INT(lbuffer(bc*set_size + 4 + i))) - delta

! Record the directions with changes in ’setBYdir’ for further
! processing to find the dividing order of dimensions.
setBYdir(new_i) = INT(lbuffer(bc*set_size + 4 + i))
setBldir(new_i + 1) = INT(lbuffer(bc*set_size + 4 + i))

! Update ’ind’ of ’setB’.
setB%ind = setBjind + 2

79

! Initialize side lengths of new points for further dividing
! by copying the sides from the parent box.
setB)Line(new_i)%side(:) = p_b%iM(1, j)¥%side(:)
setB)Line(new_i + 1)%side(:) = p_b%M(1, j)%side(:)
END DO
END DO

RETURN
END SUBROUTINE sampleP

FUNCTION sanitycheck() RESULT(iflag)

IMPLICIT NONE

! Check the sanity of the input parameters, and set all local variables
! derived from input arguments.

!

! On input: None.

! On output:

! iflag - The sanity check result.

!

INTEGER :: iflag

! Initialize ’iflag’.
iflag =0
!
! Check the required arguments.
!
IF (N < 2) THEN
iflag = INPUT_ERROR
RETURN
ELSE
N_I=N
END IF

IF ((SIZE(X) /= N) .OR. (SIZE(L) /= N) .OR. (SIZE(U) /= N)) THEN
iflag = INPUT_ERROR + 1
RETURN
END IF
IF (ANY(L >= U)) THEN
iflag = INPUT_ERROR + 2
RETURN
END IF
1

! Check the optional arguments.

IF (PRESENT(W)) THEN
IF (SIZE(W) /= N) THEN
iflag = INPUT_ERROR + 1
RETURN
END IF
END IF
! Default: processing boxes only on convex hull.
SWITCH_I = 1
IF (PRESENT(SWITCH)) THEN
IF ((SWITCH < 0) .OR. (SWITCH > 1)) THEN
iflag = INPUT_ERROR + 5
RETURN
END IF
IF (SWITCH == 0) THEN
IF (PRESENT(EPS)) THEN
IF (EPS > 0.0_R8) THEN
iflag = INPUT_ERROR + 6
RETURN
END IF
END IF
END IF
! Assign the local copy ’SWITCH_I’.
SWITCH_I = SWITCH
END IF
old_switch = SWITCH_I
! Enable LBC (limiting box column) by default.
lbc =1
stop_rule = 0

! When MAX_ITER <=0, the number of iterations will be returned on exit.

IF (PRESENT(MAX_ITER)) THEN
IF (MAX_ITER > 0) THEN
! Set bit 0 of stop_rule.
stop_rule = IBSET(stop_rule, STOP_RULE1)
ELSE ! Disable LBC (limiting box columns).
lbc = 0
END IF
ELSE
lbc = 0 ! Disable LBC (limiting box columns).
END IF

! When MAX_EVL <=0, the number of evaluations will be returned on exit.

IF (PRESENT(MAX_EVL)) THEN
IF (MAX_EVL > 0) THEN

! Set bit 1 of stop_rule.
stop_rule = IBSET(stop_rule, STOP_RULE2)
! When ’MAX_ITER’ is positive and ’MAX_EVL’ is
! sufficiently small, disable LBC (limiting box columns).
IF (PRESENT(MAX_ITER)) THEN
IF ((MAX_ITER > 0) .AND. (MAX_EVL*(2*N + 2) < 2D+6)) lbc = 0
END IF
END IF
END IF

! Even if user doesn’t specify ’MIN_DIA’, a diameter smaller than
! SQRT (SUM(UmL*UmL)) *EPSILON(1.0_R8)*N is not permitted to occur.
! When MIN_DIA <=0, the diameter associated with X and FMIN will be
! returned on exit. Assign ’UmL’.
UmL(:) = U(:) - L(:)
dia_limit = SQRT(SUM(UmL*UmL))*EPSILON(1.0_R8)
IF (PRESENT(MIN_DIA)) THEN
IF (MIN_DIA > 0.0_R8) THEN
IF (MIN_DIA < dia_limit) THEN
iflag = INPUT_ERROR + 3
RETURN
ELSE
dia_limit = MIN_DIA
! Set bit 2 of stop_rule.
stop_rule = IBSET(stop_rule, STOP_RULE3)
END IF
END IF
END IF

! When OBJ_CONV is present a minimum relative change in the minimum
! objective function value will be enforced.
IF (PRESENT(OBJ_CONV)) THEN
IF (0OBJ_CONV /= 0.0_R8) THEN
IF ((OBJ_CONV < EPSILON(1.0_R8)+*REAL(N, KIND = R8)) .OR. &
(0BJ_CONV >= 1.0_R8)) THEN
iflag = INPUT_ERROR + 3
RETURN
ELSE
! Set bit 3 of stop_rule.
stop_rule = IBSET(stop_rule, STOP_RULE4)
END IF
END IF
END IF

80

! When EPS is present a test involving EPS is used to define potentially
! optimal boxes. The absence of this test is equivalent to EPS=0.
! Initialize the local copy ’EPS_I’.
EPS_I = 0.0_R8
IF (PRESENT(EPS)) THEN
IF (EPS /= 0.0_R8) THEN
IF ((EPS < EPSILON(1.0_R8)) .0R. (EPS > 1.0_R8)) THEN
iflag = INPUT_ERROR + 3
RETURN
ELSE
EPS_I = EPS
END IF
END IF
END IF

! Check if stop_rule has at least at 1 bit set. Otherwise no stopping rule
! has been given.
IF (stop_rule == 0) THEN
iflag = INPUT_ERROR + 4
RETURN
END IF

! Set default weights for distance definition or dimension scaling.
W_I(1:N) = 1.0_R8
! Verify W.
IF (PRESENT(W)) THEN
WHERE (W > 0)
W_I=W
ELSEWHERE
W=1.0_R8
END WHERE
END IF

! Check if MIN_SEP and BOX_SET are correctly set.
IF (PRESENT (BOX_SET)) THEN
! Compute the weighted diameter of the original design space. Reuse
! the variable ’dia’ (the diameter squared associated with *FMIN’).
dia = SQRT(SUM(UmL*W_I*UmL))
! Check the optional argument MIN_SEP. Set a default value if it is not
! present or correctly assigned.
MIN_SEP_I = (0.5_R8*dia)**2
IF (PRESENT(MIN_SEP)) THEN

81

IF ((MIN_SEP < dia*EPSILON(1.0_R8)) .OR. (MIN_SEP > dia)) THEN
MIN_SEP = 0.5_R8*dia

END IF

MIN_SEP_I = MIN_SEP**2
END IF
! Initialize BOX_SET by allocating its component arrays c(:) and
! side(:).

DO i = 1, SIZE(BOX_SET)
IF (ASSOCIATED(BOX_SET(i)%c)) THEN
IF (SIZE(BOX_SET(i)%c) /= N) THEN
iflag = ALLOC_ERROR + 4
RETURN
END IF
ELSE ! Allocate component ’c’.
ALLOCATE(BOX_SET (i) %c(N))
END IF
IF (ASSOCIATED(BOX_SET(i)%side)) THEN
IF (SIZE(BOX_SET(i)%side) /= N) THEN
iflag = ALLOC_ERROR + 4
RETURN
END IF
ELSE ! Allocate component ’side’.
ALLOCATE (BOX_SET (i) %side(N))
END IF
END DO
! Initialize the index counter ’boxset_ind’.
boxset_ind = 0
! Disable LBC (limiting box columns) that removes boxes needed for
! finding ’BOX_SET’.
lbc =0
END IF

! Assign default values to ’N_SUB_I’ and ’N_MASTER_I’.
N_SUB_I =1

N_MASTER_I = 1

! Check if reasonable values for N_SUB and N_MASTER are given.
IF (PRESENT(N_SUB)) N_SUB_I = N_SUB

IF ((N_SUB_I > 32) .0R. (N_SUB_I < 1)) THEN

N_SUB_I =1
N_SUB = N_SUB_I
END IF

IF (PRESENT(N_MASTER)) N_MASTER_I = N_MASTER
IF (N_MASTER_I < 1) THEN

N_MASTER_I = 1
N_MASTER = N_MASTER_I
END IF
IF (N_MASTER_I*N_SUB_I > world_size) THEN
iflag = INPUT_ERROR + 8
RETURN
END IF
IF (PRESENT(BOX_SET)) THEN
! ’BOX_SET’ should not be set for multiple masters.
IF (N_MASTER_I*N_SUB_I > 1) THEN
iflag = INPUT_ERROR + 8
END IF
END IF

! When workers are used and the worker to master ratio is less than
! 2, that is (world_size-N_MASTER_I*N_SUB_I)/(N_SUB_I*N_MASTER_I)<2, return
! an error status. Notice that this sanity check is essentially performed for
! spawned masters before the spawning occurs.
IF (.NOT. spawned) THEN
IF ((N_MASTER_I*N_SUB_I /= world_size) .AND. &
(N_MASTER_I*N_SUB_I > world_size/3)) THEN
iflag = INPUT_ERROR + 8
RETURN
END IF
END IF

! Initialize ’RESTART_I’, the local copy of ’RESTART’.
RESTART_I = 0
IF (PRESENT(RESTART)) THEN
IF ((RESTART < 0) .OR. (RESTART > 2)) THEN
iflag = INPUT_ERROR + 7
RETURN
END IF
! Copy RESTART to ’RESTART_I’.
RESTART_I = RESTART
END IF

BINSIZE_ I =1
IF (PRESENT(BINSIZE)) THEN
IF (BINSIZE > 0) THEN
BINSIZE_I = BINSIZE
ELSE
iflag = INPUT_ERROR + 9

82

RETURN
END IF
END IF

RETURN
END FUNCTION sanitycheck

SUBROUTINE verifyHeader(fileunit, sm, iflag)
IMPLICIT NONE
Verify the file header of the checkpoint file specified by ’fileunit’.

On input:
fileunit - File unit number.

! On output:
! sm - Number of masters in the checkpoint file.
! iflag - Status to return.

! 0 Successfully verified.
! >0 Error return.

!

INTEGER, INTENT(IN) :: fileunit
INTEGER, INTENT(OUT) :: sm

INTEGER, INTENT(OUT) :: iflag

! Verify ’N’.
READ(UNIT=fileunit, I0OSTAT=ierr) chk_n
IF (ierr /= 0) THEN; iflag = FILE_ERROR + 1; RETURN; END IF
IF (chk_n /= N) THEN; iflag = FILE_ERROR + 3; RETURN; END IF
READ(UNIT=fileunit, I0OSTAT=ierr) chk_1l, chk_u, chk_eps, chk_switch, &
chk_sd, sm
IF (ierr /= 0) THEN; iflag = FILE_ERROR + 1; RETURN; END IF
! Verify ’L’ and ’U’.
IF ((.NOT. ALL(chk_1 == L)) .0R. .NOT. ALL(chk_u == U)) THEN
iflag = FILE_ERROR + 3
RETURN
END IF
IF ((chk_eps /= EPS_I) .0OR. (chk_switch /= SWITCH_I) .OR. (chk_sd /=&
N_SUB_I)) THEN
iflag = FILE_ERROR + 3
RETURN
END IF

RETURN

END SUBROUTINE verifyHeader

SUBROUTINE worker (sub_status)

IMPLICIT NONE

! Perform the tasks of a worker who obtains points to be evaluated from
! master(s) and returns the function values.

!

! On Input:

! sub_status - An integer containing bit statuses of subdomains. If bit i is
! set, subdomain i+1 has finished. Then, the worker will not
! send requests to masters in the finished subdomain.

1

! On Output: Nome.

!

INTEGER, INTENT(IN) :: sub_status

! Local variables.
INTEGER :: c_active ! Counter for active masters that have not been done.
INTEGER :: c_idle ! Counter for idle active masters.
INTEGER, DIMENSION(N_SUB_I) :: c_masters ! An array of subdomain master
! counters. c_masters(i) counts the masters in subdomain i.
INTEGER :: i, j ! Counters.
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: 1l_masters ! A 2-D array of
! master IDs. Row i holds master IDs for subdomain i. l_masters(i,j)
! holds the master ID for master j in subdomain i.
INTEGER :: loop_s ! Loop status. O is nonblocking and 1 is blocking.
INTEGER :: master_id ! Master ID.
INTEGER :: recv_tag ! The tag value received to indicate the message type.
INTEGER :: r_int ! The random integer converted from ’r_real’.
INTEGER, ALLOCATABLE, DIMENSION(:) ::
! The random seed for selecting masters.
INTEGER :: seed_size ! Compiler dependent size of array ’seed’.
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: s_masters ! A 2-D array holding
! master busy statuses. Element (i,j) holds the status for the master whose
! ID is in 1_masters(i,j). O is busy (with work), 1 is idle (no work), 2 is

seed

! all done.

INTEGER :: sub_id ! Subdomain ID.

LOGICAL :: m_converted ! A flag indicating the worker is converted from a
! master.

REAL(KIND = R8) :: r_real ! The random number between O and 1.

REAL(KIND = R8), DIMENSION(N) :: tmpc ! Holding point coordinates.

! Allocate ’1_masters’ and ’s_masters’

83

ALLOCATE(1_masters(N_SUB_I, world_size))
ALLOCATE(s_masters(N_SUB_I, world_size))

! Initialization.
loop_s =0
1_masters(:,:) =0
c_masters(:) =0
c_active = 0
m_converted = .FALSE.
! Fill in ’1_masters’.
DO i =1, N_SUB_I
IF (i == 1) THEN
! Root subdomain is always active.
DO j =1, N_MASTER_I
1_masters(i, j) = (i - 1)*N_MASTER_I + j - 1
END DO
c_masters(i) = N_MASTER_I
c_active = c_active + c_masters(i)
ELSE ! Check ’sub_status’ to determine if subdomain i is still active.
IF (.NOT. BTEST(sub_status, i - 1)) THEN
DO j =1, N_MASTER_I
1_masters(i, j) = (i - 1)*#N_MASTER_I + j - 1
END DO
c_masters(i) = N_MASTER_I
c_active = c_active + c_masters(i)
END IF
END IF
END DO
! The worker was converted from a master if not all masters are active.
IF (c_active < N_MASTER_I*N_SUB_I) m_converted = .TRUE.

IF (.NOT. m_converted) THEN
! Notify others that it has passed the initialization.
array_masters(:) = 1
CALL MPI_ALLTOALL(array_masters, 1, MPI_INTEGER, array_masters, 1, &
MPI_INTEGER, MPI_COMM_WORLD, ierr)
IF (SUM(array_masters) /= world_size) THEN
iflag = DMPI_ERROR + 7
RETURN
END IF
END IF

! Assume all masters busy initially.

s_masters(:,:) =0

c_idle = 0

! Assign ’seed’ for random number generation.
CALL RANDOM_SEED(SIZE = seed_size)
ALLOCATE(SEED (seed_size))

seed(1:seed_size) = 32749 + 128*myid

CALL RANDOM_SEED(PUT = seed(1:seed_size))
DEALLOCATE (SEED)

! Receive messages from masters.
OUTER: DO
IF (spawn_requested_global) THEN
CALL spawnlnit(ierr)
IF (ierr /= 0) THEN
! Abort spawning.
spawn_initiated = .FALSE.
END IF
END IF
IF (spawn_initiated) THEN
CALL spawnFinalize()
DEALLOCATE(1_masters)
DEALLOCATE (s_masters)
ALLOCATE(1_masters(N_SUB_I, world_size))
ALLOCATE(s_masters(N_SUB_I, world_size))
CALL updateWorker(c_masters, c_active, 1_masters, s_masters, sub_status)
c_idle =0
m_converted = .FALSE.
CALL MPI_BARRIER(xw_comm, ierr)
END IF
IF (loop_s == 0) THEN ! Nonblocking loop.
! Send a nonblocking request to a randomly selected busy master.
CALL RANDOM_NUMBER (HARVEST = r_real)
r_int = INT(r_real*(c_active - c_idle)) + 1
! Find the master ID from ’1l_masters’ with status = 0 (busy)
! in ’s_masters’.
master_id = 0
INNER2: DO i = 1, N_SUB_I
DO j =1, N_MASTER_I
IF (s_masters(i,j) == 0) THEN
r_int = r_int - 1
IF (r_int == 0) THEN
master_id = 1_masters(i,j)
EXIT INNER2

84

END IF
END IF
END DO
END DO INNER2
! Mark the message if sent from a master-converted worker.
IF (m_converted) THEN; buffer(1) = 1; ELSE; buffer(1) = 0; END IF
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, master_id, &
NONBLOCK_REQ, xw_comm, ierr)
ELSE ! Since loop_s == 1, send a blocking request.
! Assign this worker to one of the active masters.
r_int = MOD(myid - c_active, c_active) + 1
! Find the master ID from ’1_masters’ with status = 0 (busy)
! in ’s_masters’.
INNER3: DO i = 1, N_SUB_I
DO j =1, N_MASTER_I
IF (s_masters(i,j) == 0) THEN
r_int = r_int - 1
IF (r_int == 0) THEN
master_id = 1_masters(i, j)
EXIT INNER3
END IF
END IF
END DO
END DO INNER3
! Mark the message if sent from a master-converted worker.
IF (m_converted) THEN; buffer(1) = 1; ELSE; buffer(1) = 0; END IF
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, master_id, &
BLOCK_REQ, xw_comm, ierr)
END IF
! Loop checking responses from master(s).
INNER: DO
CALL MPI_RECV(buffer, bufsize, MPI_BYTE, MPI_ANY_SOURCE, &
MPI_ANY_TAG, xw_comm, mstatus, ierr)
recv_tag = mstatus (MPI_TAG)
SELECT CASE (recv_tag)
CASE (POINT_NBREQR) ! A function evaluation task.
! Loop evaluating all the points in the task. ’buffer(2)’ holds
! the number of points to be evaluated.
DO i = 1, INT(buffer(2))
! Extract a set of point coordinates.
tmpc(:) = buffer(3 + (i - 1)*N:(i - 1)*N + N + 2)
! Put the function value to the buffer.
buffer(3 + (i - 1)*2) = 0BJ_FUNC(tmpc, iflag)

! ’iflag’ is stored after the function value.
buffer(4 + (i - 1)*2) = iflag
END DO
! Return the function value(s).
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, &
mstatus (MPI_SOURCE), FUNCVAL, xw_comm, ierr)

CASE (POINT_BREQR) ! An evaluation task responding to a blocking request.

IF (s_masters(mstatus(MPI_SOURCE)/N_MASTER_I + 1, &
MOD (mstatus (MPI_SOURCE), N_MASTER_I) + 1) == 1) THEN

! The master has changed from idle to busy. Mark it back to be busy.

s_masters(mstatus (MPI_SOURCE)/N_MASTER_I + 1, &
MOD (mstatus (MPI_SOURCE) , N_MASTER_I) + 1) = 0
! Update ’c_idle’.
c_idle = c_idle - 1
END IF
! Loop changes to be nonblocking since at least one master is busy.
loop_s =0
! Evaluate the points in the task.
DO i = 1, INT(buffer(2))
tmpc(:) = buffer(3 + (i - 1)*N: (i - 1)*N + N + 2)
buffer(3 + (i - 1)*2) = OBJ_FUNC(tmpc, iflag)
buffer(4 + (i - 1)*2) = iflag
END DO
! Return the function value(s).
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, &
mstatus (MPI_SOURCE), FUNCVAL, xw_comm, ierr)
CASE (NO_POINT) ! No more points to evaluate from this master for this
! iteration.
IF (s_masters(mstatus(MPI_SOURCE)/N_MASTER_I + 1, &
MOD (mstatus (MPI_SOURCE) , N_MASTER_I) + 1) == 0) THEN
! This master has changed from busy to idle. Mark it as idle.
s_masters (mstatus (MPI_SOURCE) /N_MASTER_I + 1, &
MOD (mstatus (MPI_SOURCE) , N_MASTER_I) + 1) =1
! Update ’c_idle’.
c_idle = c_idle + 1
END IF
EXIT INNER ! Exit INNER loop to request work from other masters.
CASE (MYALL_DONE) ! This master has finished all iterationms.
! Find the subdomain ID ’sub_id’. Mark off all the master(s) in this
! subdomain.
sub_id = INT(mstatus(MPI_SOURCE)/N_MASTER_I) + 1
IF (c_masters(sub_id) /= 0) THEN
! Update ’c_active’ and ’c_masters’.

c_active = c_active - c_masters(sub_id)
c_masters(sub_id) = 0
! Mark the status of all masters in this subdomain to be 2 (alldone)
! and update ’c_idle’.
DO i =1, N_MASTER_I
IF (s_masters(sub_id,i) == 1) c_idle = c_idle - 1
s_masters(sub_id,i) = 2
END DO
END IF
IF (c_active == 0) THEN
! A1l masters have done all the work. The worker terminates itself
! if it was not converted from a master; otherwise, it waits for the
! final termination message if it was converted from a master to a
! worker.
IF (.NOT. m_converted) THEN
EXIT OUTER
ELSE
CYCLE INNER
END IF
END IF
EXIT INNER ! Exit to request work from other masters.
CASE (BLOCK_REQ)
! This worker was converted from a master, so there might be some
! delayed requests from workers. Send ’MYALL_DONE’ to let them update
! their master lists.
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, &
mstatus (MPI_SOURCE), MYALL_DONE, xw_comm, ierr)
! Send a message to update ’c_alldone’ at the root master.
buffer(1) =1
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, &
0, COUNT_DONE, xw_comm, ierr)
CASE (NONBLOCK_REQR)
! React similarly as for ’BLOCK_REQ’.
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, &
mstatus (MPI_SOURCE), MYALL_DONE, xw_comm, ierr)
! Update ’c_alldone’ at the root master.
buffer(1) =1
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, &
0, COUNT_DONE, xw_comm, ierr)
CASE (SPAWN_REQ)
! There is a pending spawn request.
spawn_requested_global = .TRUE.
EXIT INNER

85

CASE (TERMINATE)
! Received a termination message and pass it to its neighbors.
i = myid*2 + 1
j = myid*2 + 2
IF (i <= N_MASTER_I*N_SUB_I - 1) THEN
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, i, &
TERMINATE, xw_comm, ierr)
END IF
IF (j <= N_MASTER_I*N_SUB_I - 1) THEN
CALL MPI_SEND(buffer, bufsize, MPI_BYTE, j, &
TERMINATE, xw_comm, ierr)
END IF
EXIT OUTER
END SELECT
END DO INNER
IF (c_active == c_idle) THEN
! There is no busy master, so set the loop status to be blocking.
loop_s =1
! Before move to the blocking loop, assume all active masters are busy.
DO i =1, N_SUB_I
DO j =1, N_MASTER_I
IF (s_masters(i, j) == 1) s_masters(i, j) =0
END DO
END DO
c_idle =0
E1SE ! There is at least one busy master, set the loop status to be
! nonblocking.
loop_s =0
END IF
END DO OUTER

RETURN
END SUBROUTINE worker

SUBROUTINE spawnInit(spawnErr)

IMPLICIT NONE

! Initialize a spawning event by spawning the new master(s). However, state

! update is handled later.

!

! On input: None.

!

! On output:

! spawnErr - An error flag for the subroutine. It is set to O if the spawning

86

! is executed without error, and 1 otherwise.
1

INTEGER, INTENT(OUT) :: spawnErr

! Local variables.
INTEGER :: root_proc ! Root process for executing ’MPI_COMM_SPAWN’.
INTEGER :: size_hostfile ! The number of hosts specified in the host file.

! Inialize ’spawnErr’.
spawnErr = 0

! Tnitialize ’num_children’.
num_children = N_MASTER_I

! Update spawning status.
spawn_requested_local = .FALSE.
spawn_requested_global = .FALSE.
spawn_initiated = .TRUE.

! Prepare to spawn.
root_proc = 0
CALL initProcList (xw_comm)
IF (myid == 0) THEN
CALL makeHostFile(num_children, hostfile, len(hostfile), size_hostfile)
IF (size_hostfile < num_children) THEN
spawnErr = 1
RETURN
END IF
CALL MPI_INFO_CREATE(info, ierr)
CALL MPI_INFO_SET(info, "hostfile", hostfile, ierr)
END IF
! Free old ’child_comm’ before spawning.
IF (child_comm /= MPI_COMM_NULL) THEN
CALL MPI_COMM_FREE(child_comm, ierr)
END IF
! Spawn the master.
CALL MPI_COMM_SPAWN(exec_name, MPI_ARGV_NULL, num_children, info, &
root_proc, xw_comm, child_comm, spawnErrcodes, ierr)

RETURN
END SUBROUTINE spawnInit

SUBROUTINE spawnFinalize ()

! Finalize a spawning event. This consists in updating state for initial

! masters and workers. Spawned masters update state separately.

!

! On input: None.

!

! On output: Nome.
!

! Local variables.
INTEGER :: tempint
LOGICAL :: order

! Update spawning status and count.
spawn_initiated = .FALSE.
spawn_count = spawn_count + num_children
! Update other variables to account for the spawned master(s).
N_MASTER_I = N_MASTER_I + num_children
world_size = world_size + num_children
gbuffer_len = 100*N_MASTER_I*box_size
q_counter = 0
! Allocate memory for arrays used to manipulate communicators.
IF (ALLOCATED(master_ranks)) DEALLOCATE (master_ranks)
ALLOCATE (master_ranks (N_MASTER_I))
IF (ALLOCATED (worker_ranks)) DEALLOCATE (worker_ranks)
ALLOCATE (worker_ranks (N_WORKER_I))
IF (ALLOCATED(trans_ranks)) DEALLOCATE(trans_ranks)
ALLOCATE (trans_ranks(1 + num_children))
! Update arrays to account for spawned masters.
IF (ALLOCATED(gbuffer)) THEN ! Update ’gbuffer’.
DEALLOCATE (gbuffer)
END IF
ALLOCATE (gbuffer (gbuffer_len))
gbuffer(:) = 0
IF (ALLOCATED(lc_convex)) THEN ! Update ’lc_convex’.
tempint = SIZE(lc_convex)
DEALLOCATE(1lc_convex)
ALLOCATE(1c_convex(tempint + num_children))

! ’1c_convex’ is recomputed every iteration, so it can be reset to all zeros.

lc_convex(:) =0

END IF

IF (ALLOCATED(displs)) THEN ! Update ’displs’.
DEALLOCATE(displs)

END IF

ALLOCATE (displs (N_MASTER_I))

87

! ’displs’ is recomputed every iteration, so it can be reset to all zeros.
displs(:) =0
IF (ALLOCATED(update_array)) THEN ! Update ’update_array’.
tempint = SIZE(update_array)
DEALLOCATE (update_array)
ALLOCATE (update_array(tempint + num_children))
! Progress was interrupted by spawn request, so we assume no updates.
update_array(:) = 0
END IF
IF (ALLOCATED(array_masters)) THEN ! Update ’array_masters’.
tempint = SIZE(array_masters)
DEALLOCATE (array_masters)
ALLOCATE (array_masters (tempint + num_children))
array_masters(:) = 0
DO i =1, N_MASTER_I
array_masters(i) = INT(myid/N_MASTER_I)*N_MASTER_I + i - 1
END DO
END IF
IF (ALLOCATED(q_worker)) THEN ! Update ’q_worker’.
tempint = SIZE(q_worker)
DEALLOCATE (q_worker)
ALLOCATE(q_worker (tempint + num_children))
q_worker(:) =0
END IF
IF (ALLOCATED(b_worker)) THEN ! Update ’b_worker’.
tempint = SIZE(b_worker)
DEALLOCATE (b_worker)
ALLOCATE (b_worker (tempint + num_children))
b_worker(:) =0
END IF
! Initialize the state transfer to the spawned master(s).
IF (myid == 0) THEN
CALL initStateTransfer()
END IF
! Assign ranks to the old masters.
DO i = 1, N_MASTER_I - num_children
master_ranks(i) =i - 1
END DO
! The ranks of the new masters begin at ’world_size - 1°.
DO i = 1, num_children
master_ranks ((N_MASTER_I - num_children) + i) &
= (world_size - num_children) + (i - 1)
END DO

! Update ’worker_ranks’.
DO i =1, N_WORKER_I
worker_ranks(i) = (N_MASTER_I - num_children) + (i - 1)
END DO
! Assign state transfer ranks.
trans_ranks(1) = 0
DO i =1, num_children
trans_ranks(i + 1) = (world_size - num_children) + (i - 1)
END DO
! Merge intercomm.
order = .FALSE.
CALL MPI_INTERCOMM_MERGE(child_comm, order, temp_comm_world, ierr)
! Create expanded communicator for new set of masters.
CALL MPI_COMM_GROUP (temp_comm_world, temp_group_world, ierr)
CALL MPI_GROUP_INCL(temp_group_world, N_MASTER_I, master_ranks, &
xm_group, ierr)
CALL MPI_COMM_CREATE(temp_comm_world, xm_group, xm_comm, ierr)

! Create expanded communicator for new world (= old world + spawned masters).

CALL MPI_GROUP_INCL(temp_group_world, N_WORKER_I, worker_ranks, &
temp_group_worker, ierr)
CALL MPI_GROUP_UNION(xm_group, temp_group_worker, xw_group, ierr)
CALL MPI_COMM_CREATE(temp_comm_world, xw_group, xw_comm, ierr)
! Create communicator for state transfer.
CALL MPI_GROUP_INCL(temp_group_world, 1 + num_children, trans_ranks, &
trans_group, ierr)
CALL MPI_COMM_CREATE(temp_comm_world, trans_group, trans_comm, ierr)
! Get new ranks.
CALL MPI_COMM_RANK(xw_comm, myid, ierr)
IF (myid < N_MASTER_I) THEN
CALL MPI_COMM_RANK(xm_comm, mygid, ierr)
END IF
! Update ’PROCID’ and ’N_MASTER’.
PROCID = myid
N_MASTER = N_MASTER_I
! Transfer state to spawned master(s).
IF (myid == 0) THEN
CALL bcastState()
END IF
! Set the iteration at which the last spawning event occured.
switch_iter = t

RETURN
END SUBROUTINE spawnFinalize

88

SUBROUTINE updateWorker (c_mast, c_act, 1l_mast, s_mast, sub_status)
IMPLICIT NONE
! Update certain aspects of the state of a worker that are not updated by the

subroutine ’spawnFinalize’. These aspects are variables and arrays that are
defined within the ’worker’ subroutine itself, and their update is taken

directly from the ’worker’ subroutine.

! On input:

! c_mast - An array of subdomain master counters. c_masters(i) counts the
! masters in subdomain i.

! c_act - Counter for idle active masters.

! 1_mast - A 2-D array of master IDs. Row i holds master IDs for subdomain
! i. 1_masters(i,j) holds the master ID for master j in subdomain
! i.

! s_mast - A 2-D array holding master busy statuses. Element (i,j) holds

! the status for the master whose ID is in l_masters(i,j). 0 is

! busy (with work), 1 is idle (no work), 2 is all done.

! sub_status - An integer containing bit statuses of subdomains. If bit i is
! set, subdomain i+1 has finished. Then, the worker will not

! send requests to masters in the finished subdomain.

! On output:

! c_mast - Same as upon input, but recomputed with new ’N_MASTER_I’.
! c_act - Same as upon input, but recomputed with new ’N_MASTER_I’.
! 1_mast - Same as upon input, but recomputed with new ’N_MASTER_I’.
! s_mast - Same as upon input, but recomputed with new ’N_MASTER_I’.
1

INTEGER, DIMENSION(:), INTENT(INOUT) :: c_mast

INTEGER, INTENT(INOUT) :: c_act

INTEGER, DIMENSION(:,:), INTENT(INOUT) :: 1_mast

INTEGER, DIMENSION(:,:), INTENT(INOUT) :: s_mast

INTEGER, INTENT(IN) :: sub_status

! Local variables.

INTEGER :: i, j ! Loop counters.
! Initializations.
c_act =0

c_mast(:) =0

1_mast(:, :) =0

s_mast(:, :) =0

! Update variables and arrays.

DO i =1, N_SUB_I
IF (i == 1) THEN
! Root subdomain is always active.
DO j =1, N_MASTER_I
l_mast(i,j) = (i - 1)*N_MASTER_I + j - 1
END DO
c_mast(i) = N_MASTER_I
c_act = c_act + c_mast (i)
ELSE ! Check ’sub_status’ to determine if subdomain i is still active.
IF (.NOT. BTEST(sub_status, i - 1)) THEN
DO j =1, N_MASTER_I
l_mast(i,j) = (i - 1)*N_MASTER_I + j - 1
END DO
c_mast(i) = N_MASTER_I
c_act = c_act + c_mast (i)
END IF
END IF
END DO

RETURN
END SUBROUTINE updateWorker

SUBROUTINE bcastState()

IMPLICIT NONE

! Broadcast state of lead master to the spawned master(s). The exact state of
the lead master is not sent, because certain aspects of state need to be
taylored to the spawned master(s).

On input: None.
!

! On output: Nome.
!

! Local variables.
INTEGER :

comm ! Communicator used for state transfer.
INTEGER :: myarray_masters = 1 ! Indices for ’mySIZE’ array.
INTEGER :: mybuffer = 2
INTEGER :: myb_worker = 3
INTEGER :: mychk_1 = 4
INTEGER :: mychk_len = 5
INTEGER :: mychk_u =6
INTEGER :: mydispls = 7
INTEGER :: mygbuffer = 8
INTEGER :: mylbuffer = 9

89

INTEGER :: mylc_convex = 10

INTEGER :: mym_comm =11

INTEGER :: mym_group = 12

INTEGER :: myq_worker = 13

INTEGER :: myupdate_array = 14

INTEGER :: root ! Root value for broadcasting state.

! Set values for ’comm’ and ’root’.
comm = trans_comm
root = 0
! Set buffer for global integers.
IF (.NOT. spawned) THEN
statebuf_integer(1:5) = (/ alloc_err, b_id, BINSIZE_I, bits_sub, &
boxset_ind /)
statebuf_integer(6:10) = (/ box_size, bufsize, c_alldone, c_bits_sub, &
check_t /)
statebuf_integer(11:15) = (/ chk_n, chk_sd, chk_sm, chk_sml, chk_switch /)
statebuf_integer(16:20) = (/ col, eval_c, eval_c_i, gbuffer_len, gc_convex /)
statebuf_integer(21:25) = (/ group_world, iflag, i_start, lbc, lbuffer_len /)
statebuf_integer(26:30) = (/ loc_pid, loc_sid, loc_eid, loc_val, loc_c /)
statebuf_integer(31:35) = (/ loc_side, loc_diam, N_MASTER_I, N_SUB_I, &
spawn_count /)
statebuf_integer(36:40) = (/ q_counter, recv_tag, RESTART_I, set_size, &
size_r8 /)
statebuf_integer(41:45) = (/ stop_rule, SWITCH_I, t, update_counter, &
world_size /)
statebuf_integer(46:49) = (/ col_w, row_w, N_I, switch_iter /)
END IF
! Broadcast integer’s.
CALL MPI_BCAST(statebuf_integer, SIZE(statebuf_integer), MPI_INTEGER, root, &
comm, ierr)
IF (spawned) THEN
CALL processStatebufInteger()
END IF
! Set buffer for global real’s.
IF (.NOT. spawned) THEN
statebuf_real(1:5) = (/ chk_eps, dia, dia_i, dia_limit, EPS_I /)
statebuf_real(6:10) = (/ fmin_old, FMIN_I, MIN_SEP_I, tmpf, FMIN /)
statebuf_real(11:11) = (/ EPS4N /)
END IF
! Broadcast real’s.
CALL MPI_BCAST(statebuf_real, SIZE(statebuf_real)*size_r8, MPI_BYTE, root, &
comm, ierr)

IF (spawned) THEN
CALL processStatebufReal ()

END IF

! Set buffer for global logical’s.

IF (.NOT. spawned) THEN
statebuf_logical(1l) = do_it

END IF

! Broadcast logical’s.

CALL MPI_BCAST(statebuf_logical, SIZE(statebuf_logical), MPI_LOGICAL, root, &

comm, ierr)
IF (spawned) THEN
CALL processStatebufLogical()
END IF
! Broadcast optional parameters.

END IF
IF (PRESENT(EPS)) THEN
CALL MPI_BCAST(EPS, 1, MPI_REAL, root, comm, ierr)
END IF
IF (PRESENT(MIN_SEP)) THEN
CALL MPI_BCAST(MIN_SEP, 1, MPI_REAL, root, comm, ierr)
END IF
IF (PRESENT(W)) THEN
CALL MPI_BCAST(W, N*size_r8, MPI_BYTE, root, comm, ierr)
END IF
! Broadcast global character arrays.
CALL MPI_BCAST(cpfile, 30, MPI_CHARACTER, root, comm, ierr)
CALL MPI_BCAST(cpfilel, 30, MPI_CHARACTER, root, comm, ierr)
CALL MPI_BCAST(cpfile2, 34, MPI_CHARACTER, root, comm, ierr)

IF (PRESENT(SWITCH)) THEN CALL MPI_BCAST(str, 30, MPI_CHARACTER, root, comm, ierr)
CALL MPI_BCAST(SWITCH, 1, MPI_INTEGER, root, comm, ierr) ! Broadcast global integer arrays.

END IF IF (mySIZE(myarray_masters) /= -1) THEN

IF (PRESENT(MAX_ITER)) THEN CALL MPI_BCAST(array_masters, mySIZE(myarray_masters), MPI_INTEGER, root, &
CALL MPI_BCAST(MAX_ITER, 1, MPI_INTEGER, root, comm, ierr) comm, ierr)

END IF END IF

IF (PRESENT(MAX_EVL)) THEN IF (mySIZE(myb_worker) /= -1) THEN
CALL MPI_BCAST(MAX_EVL, 1, MPI_INTEGER, root, comm, ierr) CALL MPI_BCAST(b_worker, mySIZE(myb_worker), MPI_INTEGER, root, &

END IF comm, ierr)
IF (PRESENT(NUM_BOX)) THEN END IF
CALL MPI_BCAST(NUM_BOX, 1, MPI_INTEGER, root, comm, ierr) IF (mySIZE(mychk_len) /= -1) THEN
END IF CALL MPI_BCAST(chk_len, mySIZE(mychk_len), MPI_INTEGER, root, &
IF (PRESENT(N_SUB)) THEN comm, ierr)
CALL MPI_BCAST(N_SUB, 1, MPI_INTEGER, root, comm, ierr) END IF
END IF IF (mySIZE(mydispls) /= -1) THEN
IF (PRESENT(N_MASTER)) THEN CALL MPI_BCAST(displs, mySIZE(mydispls), MPI_INTEGER, root, &
CALL MPI_BCAST(N_MASTER, 1, MPI_INTEGER, root, comm, ierr) comm, ierr)
END IF END IF

IF (PRESENT(RESTART)) THEN
CALL MPI_BCAST(RESTART, 1, MPI_INTEGER, root, comm, ierr)

IF (mySIZE(mylc_convex) /= -1) THEN
CALL MPI_BCAST(lc_convex, mySIZE(mylc_convex), MPI_INTEGER, root, &

END IF comm, ierr)
IF (PRESENT(BINSIZE)) THEN END IF
CALL MPI_BCAST(BINSIZE, 1, MPI_INTEGER, root, comm, ierr) IF (mySIZE(mym_comm) /= -1) THEN
END IF CALL MPI_BCAST(m_comm, mySIZE(mym_comm), MPI_INTEGER, root, &
IF (PRESENT(MIN_DIA)) THEN comm, ierr)
CALL MPI_BCAST(MIN_DIA, 1, MPI_REAL, root, comm, ierr) END IF
END IF IF (mySIZE(mym_group) /= -1) THEN

IF (PRESENT(OBJ_CONV)) THEN CALL MPI_BCAST(m_group, mySIZE(mym_group), MPI_INTEGER, root, &
CALL MPI_BCAST(OBJ_CONV, 1, MPI_REAL, root, comm, ierr) comm, ierr)

90

END IF
IF (mySIZE(myupdate_array) /= -1) THEN
CALL MPI_BCAST(update_array, mySIZE(myupdate_array), MPI_INTEGER, root, &
comm, ierr)
END IF
IF (mySIZE(myq_worker) /= -1) THEN
CALL MPI_BCAST(q_worker, mySIZE(myq_worker), MPI_INTEGER, root, &
comm, ierr)
END IF
CALL MPI_BCAST(sub_divisor, 2, MPI_INTEGER, root, comm, ierr)
CALL MPI_BCAST(sub_index, 2, MPI_INTEGER, root, comm, ierr)
CALL MPI_BCAST(STATUS, N_SUB_I, MPI_INTEGER, root, comm, ierr)
! Broadcast global real arrays.
IF (mySIZE(mychk_1) /= -1) THEN
CALL MPI_BCAST(chk_1, mySIZE(mychk_1)*size_r8, MPI_BYTE, root, &
comm, ierr)
END IF
IF (mySIZE(mychk_u) /= -1) THEN
CALL MPI_BCAST(chk_u, mySIZE(mychk_u)*size_r8, MPI_BYTE, root, &
comm, ierr)
END IF
IF (mySIZE(mybuffer) /= -1) THEN
CALL MPI_BCAST(buffer, mySIZE (mybuffer)*size_r8, MPI_BYTE, root, &
comm, ierr)
END IF
CALL MPI_BCAST(dim_len, 2*size_r8, MPI_BYTE, root, comm, ierr)
IF (mySIZE(mygbuffer) /= -1) THEN
CALL MPI_BCAST(gbuffer, mySIZE(mygbuffer)*size_r8, MPI_BYTE, root, &
comm, ierr)
END IF
IF (mySIZE(mylbuffer) /= -1) THEN
CALL MPI_BCAST(lbuffer, mySIZE(mylbuffer)*size_r8, MPI_BYTE, root, &
comm, ierr)
END IF
CALL MPI_BCAST(tmp_x, N*size_r8, MPI_BYTE, root, comm, ierr)
CALL MPI_BCAST(UmL, N*size_r8, MPI_BYTE, root, comm, ierr)
CALL MPI_BCAST(unit_x, N*size_r8, MPI_BYTE, root, comm, ierr)
CALL MPI_BCAST(unit_x_i, N*size_r8, MPI_BYTE, root, comm, ierr)
CALL MPI_BCAST(W_I, N*size_r8, MPI_BYTE, root, comm, ierr)
CALL MPI_BCAST(L, N*size_r8, MPI_BYTE, root, comm, ierr)
CALL MPI_BCAST(U, N*size_r8, MPI_BYTE, root, comm, ierr)
CALL MPI_BCAST(X, N*size_r8, MPI_BYTE, root, comm, ierr)

91

RETURN
END SUBROUTINE bcastState

SUBROUTINE initCheckpoint ()
IMPLICIT NONE

Initialize the checkpoint mechanism.
On input: None.
On output: None.

Check the user-specified restart condition.

IF (RESTART_I > 0) THEN

! Form the checkpoint filename with subdomain ID and master ID.
WRITE(str, 3000) (INT(myid/N_MASTER_I) + 1)/1000.0, mygid/1000.0
3000 FORMAT (f4.3, £4.3)
cpfile = ’pvtdirchkpt.dat’//str
IF (RESTART_I == 1) THEN ! Record checkpoint logs.
! Each master writes N, L, U, EPS_I, SWITCH_I, and N_SUB_I,
! and N_MASTER_I as the checkpoint file header.
OPEN (UNIT=CHKSUNIT, FILE=cpfile, FORM=’UNFORMATTED’, STATUS=’NEW’, &
POSITION="REWIND’, IOSTAT=ierr)
IF (ierr /= 0) THEN
iflag = FILE_ERROR
RETURN
END IF
WRITE(UNIT=CHKSUNIT, IOSTAT=ierr) N
IF (ierr /= 0) THEN
iflag = FILE_ERROR + 2
CLOSE (CHKSUNIT)
RETURN
END IF
WRITE(UNIT=CHKSUNIT, I0STAT=ierr) L, U, EPS_I, SWITCH_I, &
N_SUB_I, N_MASTER_I
IF (ierr /= 0) THEN
iflag = FILE_ERROR + 2
CLOSE (CHKSUNIT)
RETURN
END IF
CLOSE (CHKSUNIT)
END IF
IF (RESTART_I == 2) THEN ! Restart from checkpoint logs.
! Initialize the list to hold INITLEN (defined in VIDIRECT_CHKPT) logs.

CALL initList (INITLEN) iflag = FILE_ERROR + 1;

IF (mygid == 0) THEN ! Root subdomain master. CLOSE (CHKSUNIT)
! Each root subdomain verifies if the checkpoint log file matches with ! Notify other masters (if any).
! the current setting. CALL MPI_BCAST(O, 1, MPI_INTEGER, O, xm_comm, &
OPEN (UNIT=CHKSUNIT, FILE=cpfile, FORM=’UNFORMATTED’, STATUS=’O0LD’, & ierr)
POSITION="REWIND’, IOSTAT=ierr) RETURN
IF (ierr /= 0) THEN END IF
iflag = FILE_ERROR + 1 CALL verifyHeader (CHKSUNIT, chk_sml, iflag)
CLOSE (CHKSUNIT) IF (iflag /= 0) THEN
! Notify other masters (if any). CLOSE (CHKSUNIT)
CALL MPI_BCAST(0O, 1, MPI_INTEGER, O, xm_comm, ierr) DEALLOCATE(chk_1)
RETURN DEALLOCATE (chk_u)
END IF ! Notify other masters (if any).
! Allocate ’chk_1’ and ’chk_u’ to verify ’L’ and ’U’ bounds. CALL MPI_BCAST(O, 1, MPI_INTEGER, O, xm_comm, &
ALLOCATE(chk_1(N)) ierr)
ALLOCATE (chk_u(N)) RETURN
CALL verifyHeader (CHKSUNIT, chk_sm, iflag) END IF
IF (iflag /= 0) THEN ! Verify if ’chk_sml’ is same as ’chk_sm’ in the checkpoint file of
CLOSE (CHKSUNIT) ! the root subdomain master.
DEALLOCATE (chk_1) IF (chk_sml /= chk_sm) THEN
DEALLOCATE (chk_u) iflag = FILE_ERROR + 3
! Notify other masters (if any). CLOSE (CHKSUNIT)
CALL MPI_BCAST(0O, 1, MPI_INTEGER, O, xm_comm, ierr) DEALLOCATE(chk_1)
RETURN DEALLOCATE (chk_u)
END IF ! Notify other masters (if any).
! Free ’chk_1’ and ’chk_u’. CALL MPI_BCAST(O, 1, MPI_INTEGER, O, xm_comm, &
DEALLOCATE (chk_1) ierr)
DEALLOCATE (chk_u) RETURN
IF (chk_sm /= N_MASTER_I) THEN END IF
! Close unit. CLOSE (CHKSUNIT)
CLOSE (CHKSUNIT) END DO
! Different number of masters were used for the checkpointing logs. ! Broadcast the number of existing masters ’chk_sm’ read from the
! Verify each checkpointing file header with the current setting. ! checkpoint file to all subdomain masters so that each master
! Allocate ’chk_1’ and ’chk_u’ to verify ’L’ and ’U’ bounds. ! reads the logs from all checkpointing files.
ALLOCATE(chk_1(N)) CALL MPI_BCAST(chk_sm, 1, MPI_INTEGER, O, xm_comm, &
ALLOCATE (chk_u(N)) ierr)
DOi=1, chk_sm -1 ! Allocate ’chk_len’.
! Form the checkpoint filename with other master IDs. ALLOCATE(chk_len(chk_sm))
WRITE(str, 1000) (INT(myid/N_MASTER_I) + 1)/1000.0, mygid + 1/1000.0 ! Open each checkpoint file, read the header, and keep it open.
cpfilel = ’pvtdirchkpt.dat’//str DO j =1, chk_sm
OPEN (UNIT=CHKSUNIT, FILE=cpfilel, FORM=’UNFORMATTED’, STATUS=’0LD’, & WRITE(str, 1000) (INT(myid/N_MASTER_I) + 1)/1000.0, (j - 1)/1000.0
POSITION="REWIND’, IOSTAT=ierr) cpfilel = ’pvtdirchkpt.dat’//str
IF (ierr /= 0) THEN OPEN (UNIT=CHKSUNIT + j, FILE=cpfilel, FORM="UNFORMATTED", &

92

STATUS="0OLD", POSITION="REWIND", IOSTAT=ierr) IF (chk_len(1) > (sizelList() - idxList())) THEN

IF (ierr /= 0) THEN; iflag = FILE_ERROR; EXIT; END IF ! Keep the stored logs in the list and enlarge it.
! Bypass N, L, U, EPS_I, SWITCH_I, N_SUB_I, and N_MASTER_I. CALL enlargelList(MAX(chk_len(1) + idxList(), 2*sizeList()), .TRUE.)
READ (UNIT=CHKSUNIT + j, IOSTAT=ierr) chk_n END IF
IF (ierr /= 0) THEN; iflag = FILE_ERROR + 1; EXIT; END IF DO i =1, chk_len(1)
READ (UNIT=CHKSUNIT + j, IOSTAT=ierr) chk_1, chk_u, chk_eps, & READ (UNIT=CHKSUNIT, IOSTAT=ierr) X, tmpf
chk_switch, chk_sd, chk_sm IF (ierr /= 0) THEN; iflag = FILE_ERROR + 4; RETURN; END IF
IF (ierr /= 0) THEN; iflag = FILE_ERROR + 1; EXIT; END IF ! Insert the function value to the list.
END DO CALL insList(X, tmpf)
! Release the memory for ’chk_1’ and ’chk_u’. END DO
DEALLOCATE(chk_1) END DO OUTER
DEALLOCATE (chk_u) CLOSE (CHKSUNIT)
IF (iflag /= 0) THEN; CLOSE(CHKSUNIT); RETURN; END IF ! Reset the index of function value list to O preparing for recovery.
! Open a new checkpoint file to record the new sequence of CALL resetList()
! function evaluations with the changed number of masters. END IF
WRITE(str, 2000) (INT(myid/N_MASTER_I) + 1)/1000.0, mygid/1000.0 ELSE ! Nonroot subdomain masters.
2000 FORMAT(f4.3, £4.3) ! Receive the broadcast message to recover the checkpoint logs.
cpfile2 = ’pvtdirchkpt.dat.new’//str chk_sm = 0
OPEN (UNIT=CHKRUNIT + chk_sm, FILE=cpfile2, FORM="UNFORMATTED", & CALL MPI_BCAST(chk_sm, 1, MPI_INTEGER, O, xm_comm, &
STATUS="NEW", I0OSTAT=ierr) ierr)
IF (ierr /= 0) THEN; iflag = FILE_ERROR; RETURN; END IF IF (chk_sm == 0) THEN
! Write the new header. ! Exit because error occurred at the root subdomain master.
WRITE(UNIT=CHKRUNIT + chk_sm, IOSTAT=ierr) N iflag = FILE_ERROR
IF (ierr /= 0) THEN; iflag = FILE_ERROR + 2; RETURN; END IF RETURN
WRITE(UNIT=CHKRUNIT + chk_sm, IOSTAT=ierr) L, U, EPS_I, SWITCH_I, & END IF
N_SUB_I, N_MASTER_I ! Allocate ’chk_len’.
IF (ierr /= 0) THEN; iflag = FILE_ERROR + 2; RETURN; END IF ALLOCATE(chk_len(chk_sm))
CLOSE(CHKRUNIT + chk_sm) IF (chk_sm == N_MASTER_I) THEN ! Recover from its own checkpoint file.
ELSE WRITE(str, 1000) (INT(myid/N_MASTER_I) + 1)/1000.0, mygid/1000.0
! Same number of masters were used. Broadcast ’chk_sm’ to all cpfilel = ’pvtdirchkpt.dat’//str
! subdomain masters so that each master reads its own file to OPEN (UNIT=CHKSUNIT, FILE=cpfilel, FORM="UNFORMATTED", STATUS="0LD", &
! recover the logs by the order that they were written. POSITION="REWIND", IOSTAT=ierr)
CALL MPI_BCAST(chk_sm, 1, MPI_INTEGER, O, xm_comm, & IF (ierr /= 0) THEN; iflag = FILE_ERROR; RETURN; END IF
ierr) ! Allocate ’chk_1’ and ’chk_u’ for verifying the file header.
! Allocate ’chk_len’. ALLOCATE(chk_1(N))
ALLOCATE(chk_len(1)) ALLOCATE (chk_u(N))
! Read the logs from its own checkpoint file that is open. CALL verifyHeader (CHKSUNIT, chk_sml, iflag)
OUTER: DO IF (iflag /= 0) THEN
! Read the sub-header consisting of iteration number and the number CLOSE (CHKSUNIT)
! of logs for that iteration. DEALLOCATE(chk_1)
READ (UNIT=CHKSUNIT, IOSTAT=ierr) check_t, chk_len(1) DEALLOCATE (chk_u)
IF (ierr < 0) EXIT OUTER RETURN
! Check if the list has enough space. END IF

93

! Free ’chk_1’ and ’chk_u’. READ (UNIT=CHKSUNIT + j, IOSTAT=ierr) chk_1, chk_u, chk_eps, &

DEALLOCATE (chk_1) chk_switch, chk_sd, chk_sm
DEALLOCATE (chk_u) IF (ierr /= 0) THEN; iflag = FILE_ERROR + 1; EXIT; END IF
! Verify if ’chk_sm’ is the same as N_MASTER_I. END DO
IF (chk_sml /= N_MASTER_I) THEN ! Release the memory for ’chk_1’ and ’chk_u’.
iflag = FILE_ERROR + 3 DEALLOCATE (chk_1)
CLOSE (CHKSUNIT) DEALLOCATE (chk_u)
RETURN IF (iflag /= 0) THEN; CLOSE(CHKSUNIT); RETURN; END IF
END IF
! Load the logs from the checkpoint file. ! Open a new checkpoint file to record the new sequence of
DO ! function evaluations with the changed number of masters.
READ (UNIT=CHKSUNIT, IOSTAT=ierr) check_t, chk_len(1) WRITE(str, 1000) (INT(myid/N_MASTER_I) + 1)/1000.0, mygid/1000.0
IF (ierr < 0) EXIT 1000 FORMAT(£f4.3, £4.3)
! Check the list size. cpfile2 = ’pvtdirchkpt.dat.new’//str
IF (chk_len(1) > (sizelist() - idxList())) THEN OPEN (UNIT=CHKRUNIT + chk_sm, FILE=cpfile2, FORM="UNFORMATTED", &
! Keep the stored logs in the list and enlarge it. STATUS="NEW", I0OSTAT=ierr)
CALL enlargelList(MAX(chk_len(1) + idxList(), 2*sizeList()), .TRUE.) IF (ierr /= 0) THEN; iflag = FILE_ERROR; RETURN; END IF
END IF ! Write the new header.
IF (ierr < 0) EXIT WRITE (UNIT=CHKRUNIT + chk_sm, I0OSTAT=ierr) N
DO i =1, chk_len(1) IF (ierr /= 0) THEN; iflag = FILE_ERROR + 2; RETURN; END IF
READ (UNIT=CHKSUNIT, IOSTAT=ierr) X, tmpf WRITE (UNIT=CHKRUNIT + chk_sm, I0OSTAT=ierr) L, U, EPS_I, SWITCH_I, &
IF (ierr /= 0) THEN; iflag = FILE_ERROR + 4; RETURN; END IF N_SUB_I, N_MASTER_I
CALL insList(X, tmpf) IF (ierr /= 0) THEN; iflag = FILE_ERROR + 2; RETURN; END IF
END DO CLOSE (CHKRUNIT + chk_sm)
END DO END IF
CLOSE (CHKSUNIT) END IF
! Reset the index of function value list to O preparing for recovery. END IF
CALL resetList() END IF
ELSE ! Read the logs to bypass headers for all checkpoint files, which
! are kept open until all logs have been recovered. RETURN
! Allocate ’chk_1’ and ’chk_u’ for holding the file header. END SUBROUTINE initCheckpoint
ALLOCATE (chk_1(N))
ALLOCATE (chk_u(N)) SUBROUTINE processStatebufInteger ()
DO j =1, chk_sm IMPLICIT NONE
WRITE(str, 2003) (INT(myid/N_MASTER_I) + 1)/1000.0, (j-1)/1000.0 ! Set values of global variables from the integer buffer for state transfer.
2003 FORMAT(f4.3, £4.3) !
cpfilel = ’pvtdirchkpt.dat’//str ! On input: None.

OPEN (UNIT=CHKSUNIT + j, FILE=cpfilel, FORM="UNFORMATTED", & !
STATUS="0OLD", POSITION="REWIND", IOSTAT=ierr)

IF (ierr /= 0) THEN; iflag = FILE_ERROR; EXIT; END IF !

! Bypass N, L, U, EPS_I, SWITCH_I, N_SUB_I, and N_MASTER_I

READ (UNIT=CHKSUNIT + j, I0OSTAT=ierr) chk_n

IF (ierr /= 0) THEN; iflag = FILE_ERROR + 1; EXIT; END IF

On output: Nome.

Set ’alloc_err’, ’b_id’, ’BINSIZE_I’, ’bits_sub’, ’boxset_ind’,
’box_size’, ’bufsize’, ’c_alldone’, ’c_bits_sub’, and ’check_t’.

94

alloc_err = statebuf_integer (1)
b_id = statebuf_integer(2)
BINSIZE_I = statebuf_integer(3)
bits_sub = statebuf_integer(4)
boxset_ind = statebuf_integer(5)
box_size = statebuf_integer(6)
bufsize = statebuf_integer(7)
c_alldone = statebuf_integer(8)
c_bits_sub = statebuf_integer(9)
check_t = statebuf_integer(10)

! Set ’chk_n’, ’chk_sd’, ’chk_sm’, ’chk_sml’, ’chk_switch’,
! 7col’, ’eval_c’, ’eval_c_i’, ’gbuffer_len’, and ’gc_convex’.
chk_n = statebuf_integer(11)

chk_sd = statebuf_integer (12)

chk_sm = statebuf_integer(13)

chk_sml = statebuf_integer(14)

chk_switch = statebuf_integer(15)

col = statebuf_integer(16)

eval_c = statebuf_integer (17)

eval_c_i = statebuf_integer(18)

gbuffer_len = statebuf_integer(19)

gc_convex = statebuf_integer(20)

! Set ’group_world’, ’iflag’, ’i_start’, ’1lbc’, ’lbuffer_len’,
! ’loc_pid’, ’loc_sid’, ’loc_eid’, ’loc_val’, and ’loc_c’.
group_world = statebuf_integer(21)

iflag = statebuf_integer(22)

i_start = statebuf_integer(23)

1lbc = statebuf_integer(24)

lbuffer_len = statebuf_integer(25)

loc_pid = statebuf_integer(26)

loc_sid = statebuf_integer(27)

loc_eid = statebuf_integer(28)

loc_val = statebuf_integer(29)

loc_c = statebuf_integer (30)

! Set ’loc_side’, ’loc_diam’, ’N_MASTER_I’, N_SUB_I’, ’spawn_count’,
! ’q_counter’, ’recv_tag’, ’RESTART_I’, ’set_size’, and ’size_r8’.
loc_side = statebuf_integer(31)

loc_diam = statebuf_integer(32)

N_MASTER_I = statebuf_integer(33)

N_SUB_I = statebuf_integer(34)

95

spawn_count = statebuf_integer(35)
g_counter = statebuf_integer (36)
recv_tag = statebuf_integer (37)
RESTART_I = statebuf_integer(38)
set_size = statebuf_integer(39)
size_r8 = statebuf_integer (40)

! Set ’stop_rule’, *SWITCH_I’, ’t’, ’update_counter’, ’world_size’,
! °’N’>, ’PROCID’, ’col_w’, ’row_w’, and ’N_I’.
stop_rule = statebuf_integer(41)

SWITCH_I = statebuf_integer(42)

t = statebuf_integer(43)

update_counter = statebuf_integer(44)
world_size = statebuf_integer(45)

col_w = statebuf_integer (46)

row_w = statebuf_integer (47)

N_I = statebuf_integer(48)

switch_iter = statebuf_integer(49)

RETURN
END SUBROUTINE processStatebuflInteger

SUBROUTINE processStatebufReal
IMPLICIT NONE

! Set values of global variables from the real buffer for state transfer.

! On input: None.

! On output: Nome.

! Set ’chk_eps’, ’dia’, ’dia_i’, ’dia_limit’, and ’EPS_I’.
chk_eps = statebuf_real(1)

dia = statebuf_real(2)

dia_i = statebuf_real(3)

dia_limit = statebuf_real(4)

EPS_I = statebuf_real(5)

! Set ’fmin_old’, ’FMIN_I’, °MIN_SEP_I’, ’tmpf’, and ’FMIN’.
fmin_old = statebuf_real(6)

FMIN_I = statebuf_real(7)

MIN_SEP_I = statebuf_real(8)

tmpf = statebuf_real(9)

FMIN = statebuf_real(10)

! Set ’EPS4N’.
EPS4N = statebuf_real(11)

RETURN
END SUBROUTINE processStatebufReal

SUBROUTINE processStatebufLogical

IMPLICIT NONE

! Set values of global variables from the logical buffer for state transfer.
!

! On input: None.

!

! On output: Nome.
!

! do_it
do_it = statebuf_logical(1)

RETURN
END SUBROUTINE processStatebufLogical

SUBROUTINE initStateTransfer()

IMPLICIT NONE

Initialize state transfer. First, send the number of masters per subdomain
and total number of processes to the spawned masters. This allows for the
parent and child intercommunicators to be merged before the state transfer
subroutine, simplifying state transfer. Next, send the sizes of all arrays
defined in the ’spVTdirect’ subroutine.

On input: None.

! On output: Nome.
!

! Local variables.

INTEGER :: comm ! Communicator handle for state transfer.
INTEGER :: myarray_masters = 1 ! Indices for ’mySIZE’ array.
INTEGER :: mybuffer = 2

INTEGER :: myb_worker = 3

INTEGER :: mychk_1 = 4

INTEGER :: mychk_len = 5

INTEGER :: mychk_u = 6

96

INTEGER :: mydispls =7

INTEGER :: mygbuffer = 8
INTEGER :: mylbuffer = 9
INTEGER :: mylc_convex = 10
INTEGER :: mym_comm =11

INTEGER :: mym_group = 12

INTEGER :: myq_worker = 13

INTEGER :: myupdate_array = 14

INTEGER, DIMENSION(2) :: proc_info ! Number of masters for this subdomain, as
! well as the total number of processes.

INTEGER :: root ! Root value for broadcasting state.
INTEGER :: tag ! Tag for state transfer

INTEGER :: tmp_size ! Size of array to be transferred.
! Set ’tag’.

tag = STATE_TRANSFER_TAG

! Initial masters send information to spawned masters.
IF (.NOT. spawned) THEN
! Set values for the communicator and the root process for broadcasts.
comm = child_comm
root = MPI_ROOT
! Send the number of masters and the total number of processes to the spawned
! masters.
proc_info = (/ N_MASTER_I, world_size /)
CALL MPI_SEND(proc_info, 2, MPI_INTEGER, O, STATE_TRANSFER_TAG, comm, &
ierr)
! Send the sizes of arrays defined in the ’spVTdirect’ subroutine.
IF (ALLOCATED(array_masters)) THEN
tmp_size = SIZE(array_masters)
ELSE
tmp_size = -1
END IF
mySIZE(myarray_masters) = tmp_size
IF (ALLOCATED(b_worker)) THEN
tmp_size = SIZE(b_worker)
ELSE
tmp_size = -1
END IF
mySIZE(myb_worker) = tmp_size
IF (ALLOCATED(chk_len)) THEN
tmp_size = SIZE(chk_len)
ELSE

tmp_size = -1
END IF
mySIZE (mychk_len) = tmp_size
IF (ALLOCATED(displs)) THEN
tmp_size = SIZE(displs)
ELSE
tmp_size = -1
END IF
mySIZE (mydispls) = tmp_size
IF (ALLOCATED(lc_convex)) THEN
tmp_size = SIZE(lc_convex)
ELSE
tmp_size = -1
END IF
mySIZE(mylc_convex) = tmp_size
IF (ALLOCATED (m_comm)) THEN
tmp_size = SIZE(m_comm)
ELSE
tmp_size = -1
END IF
mySIZE(mym_comm) = tmp_size
IF (ALLOCATED (m_group)) THEN
tmp_size = SIZE(m_group)
ELSE
tmp_size = -1
END IF
mySIZE(mym_group) = tmp_size
IF (ALLOCATED(update_array)) THEN
tmp_size = SIZE(update_array)
ELSE
tmp_size = -1
END IF
mySIZE(myupdate_array) = tmp_size
IF (ALLOCATED(q_worker)) THEN
tmp_size = SIZE(q_worker)
ELSE
tmp_size = -1
END IF
mySIZE(myq_worker) = tmp_size
IF (ALLOCATED(chk_1)) THEN
tmp_size = SIZE(chk_1)
ELSE
tmp_size = -1

97

END IF
mySIZE(mychk_1) = tmp_size
IF (ALLOCATED(chk_u)) THEN
tmp_size = SIZE(chk_u)
ELSE
tmp_size = -1
END IF
mySIZE(mychk_u) = tmp_size
IF (ALLOCATED(buffer)) THEN
tmp_size = SIZE(buffer)
ELSE
tmp_size = -1
END IF
mySIZE(mybuffer) = tmp_size
IF (ALLOCATED(gbuffer)) THEN
tmp_size = SIZE(gbuffer)
ELSE
tmp_size = -1
END IF
mySIZE(mygbuffer) = tmp_size
IF (ALLOCATED(1lbuffer)) THEN
tmp_size = SIZE(1lbuffer)
ELSE
tmp_size = -1
END IF
mySIZE(mylbuffer) = tmp_size
CALL MPI_SEND(mySIZE, SIZE(mySIZE), MPI_INTEGER, O, tag, comm, ierr)
! Spawned masters receive information from the initial masters.

ELSE

! Set values for the communicator and the root process for broadcasts.
comm = parent_comm
root = 0
! Receive the number of masters and the total number of processes, and
! broadcast this information to all other spawned masters.
IF (myid == 0) THEN

CALL MPI_RECV(proc_info, 2, MPI_INTEGER, O, tag, comm, &

MPI_STATUS_IGNORE, ierr)

END IF
CALL MPI_BCAST(proc_info, 2, MPI_INTEGER, root, MPI_COMM_WORLD, ierr)
N_MASTER_I = proc_info(1)
world_size = proc_info(2)
! Receive the sizes of arrays defined in the ’spVTdirect’ subroutine, and
! broadcast this information to all other spawned masters.

IF (myid == 0) THEN

CALL MPI_RECV(mySIZE, SIZE(mySIZE), MPI_INTEGER, O, tag, comm, &
MPI_STATUS_IGNORE, ierr)

END IF

CALL MPI_BCAST(mySIZE, SIZE(mySIZE), MPI_INTEGER, root, MPI_COMM_WORLD, ierr)

tmp_size = mySIZE(myarray_masters)

IF (tmp_size /= -1) THEN
IF (ALLOCATED(array_masters)) DEALLOCATE(array_masters)
ALLOCATE (array_masters (tmp_size))

END IF

tmp_size = mySIZE (myb_worker)

IF (tmp_size /= -1) THEN
IF (ALLOCATED(b_worker)) DEALLOCATE (b_worker)
ALLOCATE (b_worker (tmp_size))

END IF

tmp_size = mySIZE(mychk_len)

IF (tmp_size /= -1) THEN
IF (ALLOCATED(chk_len)) DEALLOCATE(chk_len)
ALLOCATE(chk_len(tmp_size))

END IF

tmp_size = mySIZE(mydispls)

IF (tmp_size /= -1) THEN
IF (ALLOCATED(displs)) DEALLOCATE(displs)
ALLOCATE(displs (tmp_size))

END IF

tmp_size = mySIZE(mylc_convex)

IF (tmp_size /= -1) THEN
IF (ALLOCATED(lc_convex)) DEALLOCATE(lc_convex)
ALLOCATE (1c_convex (tmp_size))

END IF

tmp_size = mySIZE (mym_comm)

IF (tmp_size /= -1) THEN
IF (ALLOCATED (m_comm)) DEALLOCATE (m_comm)
ALLOCATE (m_comm (tmp_size))

END IF

tmp_size = mySIZE (mym_group)

IF (tmp_size /= -1) THEN
IF (ALLOCATED (m_group)) DEALLOCATE (m_group)
ALLOCATE (m_group (tmp_size))

END IF

tmp_size = mySIZE(myupdate_array)

IF (tmp_size /= -1) THEN
IF (ALLOCATED(update_array)) DEALLOCATE (update_array)

98

ALLOCATE (update_array(tmp_size))
END IF
tmp_size = mySIZE(myq_worker)
IF (tmp_size /= -1) THEN

IF (ALLOCATED(q_worker)) DEALLOCATE(q_worker)

ALLOCATE (g_worker (tmp_size))

END IF

tmp_size = mySIZE(mychk_1)

IF (tmp_size /= -1) THEN
IF (ALLOCATED(chk_1)) DEALLOCATE(chk_1)
ALLOCATE(chk_1(tmp_size))

END IF

tmp_size = mySIZE (mychk_u)

IF (tmp_size /= -1) THEN
IF (ALLOCATED(chk_u)) DEALLOCATE (chk_u)
ALLOCATE (chk_u(tmp_size))

END IF

tmp_size = mySIZE (mybuffer)

IF (tmp_size /= -1) THEN
IF (ALLOCATED(buffer)) DEALLOCATE (buffer)
ALLOCATE (buffer (tmp_size))

END IF

tmp_size = mySIZE(mygbuffer)

IF (tmp_size /= -1) THEN
IF (ALLOCATED(gbuffer)) DEALLOCATE(gbuffer)
ALLOCATE (gbuffer (tmp_size))

END IF

tmp_size = mySIZE(mylbuffer)

IF (tmp_size /= -1) THEN
IF (ALLOCATED(lbuffer)) DEALLOCATE (1buffer)
ALLOCATE (1buffer (tmp_size))

END IF

END IF

RETURN
END SUBROUTINE initStateTransfer

SUBROUTINE checkProcList(not_in_list, length, host_name, list)

IMPLICIT NONE

! length

Check if a host name is already contained in a list of host names.

On input:

- The length of the list to be checked.

! host_name - The name of the host whose membership is being checked.

! list - An array of host names possibly containing ’host_name’.

!

! On output:

! not_in_list - A boolean that specifies the membership of ’host_name’ in
! the array ’list’.

!

LOGICAL, INTENT(OUT) :: not_in_list

INTEGER, INTENT(IN) :: length

CHARACTER(LEN = 32), INTENT(IN) :: host_name
CHARACTER (LEN = 32), DIMENSION(length), INTENT(IN) :: list
! Local variables.

INTEGER :: i

! Set ’not_in_list’ to >.TRUE.’ if ’host_name’ is in not in ’1list’, or
! 7 _FALSE.’ otherwise.
not_in_list = .TRUE.
DO i =1, length
IF (list(i) == host_name) THEN
not_in_list = .FALSE.
EXIT
END IF
END DO

RETURN
END SUBROUTINE checkProcList

SUBROUTINE initProcList(comm)

IMPLICIT NONE

! Initialize the list of host names that will be used to create a host file.

!

! On input:

! comm - The handle for the communicator whose member processes will contribute
! their host names to the list of host names.

!

! On output: Nome.

1

INTEGER, INTENT(IN) :: comm

! Local variables.
CHARACTER(LEN = 32), ALLOCATABLE, DIMENSION(:) ::
! of host names used to produce final list.

tmp_proc_list ! Initial list

99

LOGICAL, ALLOCATABLE, DIMENSION(:) :: tmp_mark_list ! List of boolean values

! used to mark which hosts have already been added to the final host list.
INTEGER :: comm_size ! The number of member processes in ’comm’.
INTEGER, ALLOCATABLE, DIMENSION(:) :: hname_length ! The length of a host name.
INTEGER, ALLOCATABLE, DIMENSION(:) :: tmp_num_cores ! Initial list of core

! counts for each processor used to produce the final list of core counts.
INTEGER :: i, j, k ! Loop counters.
INTEGER :: pid ! The rank of a process in ’comm’.

! Determine the ranks of all processes and the size of ’comm’.
CALL MPI_COMM_RANK(comm, pid, gspawn_err)

CALL MPI_COMM_SIZE(comm, comm_size, gspawn_err)

ALLOCATE (tmp_proc_list (comm_size))

ALLOCATE (tmp_num_cores (comm_size))

ALLOCATE (tmp_mark_list (comm_size))

ALLOCATE (hname_length(comm_size))

! Initialize the initial list of host names, and mark all host names as not in
! the list.
DO i =1, comm_size
tmp_proc_list(i) = ""
tmp_mark_list(i) = .FALSE.
END DO

! Get processor names for all participating processes and broadcast them to
! all processes in ’comm’.
CALL MPI_GET_PROCESSOR_NAME (tmp_proc_list(1 + pid), hname_length(l + pid), &
gspawn_err)
DO i=1, comm_size
CALL MPI_BCAST(hname_length(i), 1, MPI_INTEGER, &
i -1, comm, gspawn_err)
END DO
DO i =1, comm_size
CALL MPI_BCAST(tmp_proc_list(i), hname_length(i), MPI_CHARACTER, &
i -1, comm, gspawn_err)
END DO
! Find complete set of unique host names.
tmp_mark_list (1) .TRUE.
gspawn_num_procs = 1
IF (pid == 0) THEN
tmp_num_cores (1) = OMP_GET_MAX_THREADS ()
END IF
CALL MPI_BCAST(tmp_num_cores(1), 1, MPI_INTEGER, &

0, comm, gspawn_err)
DO i = 2, comm_size
! Check if the host name has already been added to the list.
CALL checkProcList(tmp_mark_list(i), i - 1, tmp_proc_list(i), &
tmp_proc_list)
IF (tmp_mark_list(i)) THEN
! Update the number of unique host names.
gspawn_num_procs = gspawn_num_procs + 1
! Determine the number of cores for the node running this process.
IF (pid == i - 1) THEN
tmp_num_cores (i) = OMP_GET_MAX_THREADS()
END IF
CALL MPI_BCAST(tmp_num_cores(i), 1, MPI_INTEGER, &
i -1, comm, gspawn_err)
END IF
END DO
! Create final lists of host names and core counts, and determine the number of
! cores already hosting a process for each node.
IF (ALLOCATED(gspawn_proc_list)) DEALLOCATE(gspawn_proc_list)
ALLOCATE (gspawn_proc_list (gspawn_num_procs))
IF (ALLOCATED(gspawn_num_cores)) DEALLOCATE (gspawn_num_cores)
ALLOCATE (gspawn_num_cores (gspawn_num_procs))
IF (ALLOCATED(gspawn_num_hosted)) DEALLOCATE(gspawn_num_hosted)
ALLOCATE (gspawn_num_hosted (gspawn_num_procs))
j=1
DO i =1, comm_size
IF (tmp_mark_list(i)) THEN
gspawn_proc_list(j) = tmp_proc_list(i)
gspawn_num_cores(j) = tmp_num_cores (i)
! Determine the number of processes hosted on this node.
gspawn_num_hosted(j) = 1
DOk =1+ 1, comm_size
IF (tmp_proc_list(i) == tmp_proc_list(k)) THEN
gspawn_num_hosted(j) = gspawn_num_hosted(j) + 1
END IF
END DO
j=3+1
ELSE
gspawn_num_hosted (k) = gspawn_num_hosted(k) + 1
END IF
END DO
! Deallocate local arrays that are no longer needed.
DEALLOCATE (tmp_proc_list)

100

DEALLOCATE (tmp_num_cores)
DEALLOCATE (tmp_mark_list)
DEALLOCATE (hname_length)

RETURN
END SUBROUTINE initProcList

SUBROUTINE makeHostFile (num_hosts, hostfile, hfname_length, counter)
IMPLICIT NONE
! Make a host file from the hosts in ’qspawn_proc_list’. Note that this must

! only be called after ’initProcList’ has been used to create the host list.
!

! On input:
! num_hosts - The desired number of hosts in the host file.
! hostfile - The name of the host file.

! hfname_length - The length of the host file name.

!

! On output:

! counter - The actual number of hosts specified in the host file.
!

INTEGER, INTENT(IN) :: num_hosts
CHARACTER(LEN = hfname_length), INTENT(IN) ::
INTEGER, INTENT(IN) ::hfname_length

INTEGER, INTENT(OUT) ::

hostfile

counter

! Local variables.

INTEGER :: i ! Loop counter.
INTEGER :: marker ! A marker used to determine if all cores have been assigned.
LOGICAL :: flag ! Flag used to specify if the marker has been set.

! Write host names to host file in a round-robin fashion.
OPEN(UNIT=QSPAWN_UNIT, FILE=hostfile)

flag = .TRUE.
marker = 0
i=1

counter = 0
DO WHILE (.TRUE.)
! Exit loop if we have returned to the marker, or if ’num_hosts’ hosts have
! been assigned.
IF (i == marker .OR. counter == num_hosts) EXIT
IF (gspawn_num_hosted(i) < gspawn_num_cores(i)) THEN
WRITE (QSPAWN_UNIT, *) gspawn_proc_list(i)
gspawn_num_hosted(i) = gspawn_num_hosted(i) + 1

counter = counter + 1
flag = .TRUE.
! If the marker has not been set, then mark ’i’ as the first node with all
! cores assigned.
ELSE IF (flag) THEN
marker = i
flag = .FALSE.
END IF
i=1i+1
IF (i > gspawn_num_procs) THEN

101

i=1
END IF
END DO
CLOSE (UNIT=QSPAWN_UNIT)

RETURN

END SUBROUTINE makeHostFile
END SUBROUTINE spVTdirect
END MODULE spVTdirect_MOD

