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(ABSTRACT) 
 

The Thermal Radiation Group at Virginia Polytechnic Institute and State University has 

been working closely with scientists and engineers at NASA’s Langley Research Center 

to develop accurate analytical and numerical models suitable for designing next-

generation thin-film thermal radiation detectors for earth radiation budget measurement 

applications. The current study provides an analytical model of the notional thermal 

radiation detector that takes into account thermal transport phenomena, such as the 

contact resistance between the layers of the detector, and is suitable for use in parameter 

estimation. It was found that the responsivity of the detector can increase significantly 

due to the presence of contact resistance between the layers of the detector. Also 

presented is the effect of doping the thermal impedance layer of the detector with 

conducting particles in order to electrically link the two junctions of the detector. It was 

found that the responsivity and the time response of the doped detector decrease 

significantly in this case. The corresponding decrease of the electrical resistance of the 

doped thermal impedance layer is not sufficient to significantly improve the electrical 

performance of the detector. Finally, the “roughness effect” is shown to be unable to 

explain the decrease in the thermal conductivity often reported for thin-film layers.   
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Chapter 1: Introduction 

For many years the Thermal Radiation Group (TRG) at Virginia Polytechnic Institute and 

State University, under the direction of Professor J.R. Mahan, has been involved in 

developing advanced numerical tools for modeling the optical, thermal and electrical 

processes in thermal radiation detectors. During the last two years the Group, working 

with scientists and engineers at NASA’s Langley Research Center, has pursued the 

design of a new thermal radiation detector to be used for more accurate measurements of 

the earth radiation budget (ERB) from space. The ERB refers to the balance at the top of 

the atmosphere between the incoming energy from the sun and the outgoing thermal and 

reflected energy from the earth. 

The growing interest in ground-based measurements using instruments such as 

pyranometers [Smith, 1999], which are cheaper and easier to monitor than space-borne 

instruments, makes it crucial for the proponents of space-borne measurements to develop 

more reliable instruments using the latest technologies available in order to remain 

competitive. The sensors of these latter instruments have to be as small as possible, with 

extremely short time response and a maximum responsivity, so that they can be organized 

into linear or focal-plane arrays [Weckmann, 1997; Barreto, 1998; Sanchez, 1998; 

Sorensen, 1998]. These factors all favor the development of a thin-film multilayer 

thermal radiation detector technology, as illustrated in Figure 1. In this approach six 

layers of material are sputtered onto a substrate to form the detector. This allows layers 

on the order of a few microns thick. The absorption of thermal radiation by the absorber 

layer increases the temperature of the active junction, and the difference of temperature 
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between this active junction and the reference junction generates an electromotive force 

proportional to the temperature difference between them. 

Analysis of heat transfer in the resulting thin-film thermal radiation detector is essential 

for its successful design and for the prediction of its performance. Creation of the heat 

transfer model requires applying either macroscale or microscale transport theories, 

depending on the physical dimensions (length scales) of the detector and its frequency 

response characteristics (time scale). If macroscale heat transfer theory is applied to a 

microscale problem in a situation for which it is inappropriate, then a significant error in 

the calculated heat transfer rate or temperature distribution can result [Flik et al., 1992]. 

The model also requires the precise knowledge of the thermophysical properties of 

materials used in the conception of the detector. With the contemplated geometry and 

fabrication technique, several interesting questions arise, and the performance of the 

detector will depend on the response to these questions. Ignoring these nuances could 

lead to very poor thermal models of the detector. 

Normally the thermal resistance offered to heat conduction by a uniform layer is directly 

proportional to its thickness. When two materials having different thermal conductivities 

are in mechanical contact, a temperature discontinuity can occur at their interface. This 

temperature jump results from contact resistance between the two layers. In fact, even 

with thin-films, perfect contact at the interface occurs only at a limited number of spots 

[Hmina et al., 1997; Kelkar et al., 1996] and the void found elsewhere between the layers 

is filled with gas or a vacuum. It is possible that the intrinsic thermal resistance of a thin 

film is significantly smaller than the contact resistance at the interface. Modeling the 

detector without taking into account this hypothetical contact resistance could lead to a 

serious departure from reality. Even if the values of the contact resistances between the 

different layers are not currently known, it is important to include them in the thermal 

models. These more general models can then be used by other members of the Thermal 

Radiation Group who are developing parameter estimation techniques aimed at 

recovering the thermophysical properties of the detector. The use of fictitious contact 

resistance values in the model will reveal the importance of that factor to the performance 

of the detector. 
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The correct treatment of the thin-film effect is another key factor in the process of 

obtaining a good thermal model. The thin-film effect has been defined in terms of the 

departure of the thermal conductivity of a layer from its bulk value as the thickness of the 

layer approaches the order of magnitude of the mean free path of the energy carriers, a 

definition that presupposes that Fourier’s law of heat conduction governs thin-film heat 

transfer. However the thin-film effect implies the use of microscale heat transfer theories. 

In these theories the classical Fourier’s law no longer describes the temperature and heat 

flow fields, and the thermal conductivity loses its meaning as an intrinsic thermal 

property of the thin-film material. Several analytical [Flik et al., 1990; and Kumar et al., 

1994] and experimental [Nath et al., 1974; Lambropoulos et al., 1989; Lee et al., 1997; 

and Orain et al., 1998] studies have shown that the thermal conductivity of thin-film 

layers, defined as the heat flux divided by the temperature difference across the layer per 

unit thickness, can be several orders of magnitude lower than that of the bulk material. 

The closed-form models for computing thermal transport in such cases require the 

knowledge of material properties such as the mean free path that are unknown for 

materials contemplated for use in the notional detector.  

In the current effort the use of a geometrical property characterizing the mechanical 

roughness of the film layer is considered in an attempt to show the dependence between 

the effective thermal conductivity and the layer thickness. It is evident that in a thin film, 

the roughness of the layer can be of the same order of magnitude as the layer thickness 

itself. The idea here is to try to explain the decrease of the thermal conductivity often 

attributed to the thin-film effect in terms of a roughness effect. A numerical thermal 

model derived from a macroscale approach with the roughness as a parameter is used to 

analyze the dependence of the effective thermal conductivity on the roughness of the 

layer. 

The overall distance between the two thermocouple junctions of the notional detector 

shown in Figure 1 is less than fifty microns. Another problem that arises is how to 

electrically connect these two junctions. Fabrication and size limitations preclude the use 

of a traditional electrical conductor (a “wire” lead) to connect these two junctions. The 

NASA design team led by Kist [1999] has proposed that the thermal impedance layer 
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between the two thermocouple junctions also double as an electrical conductor. One idea 

would be to dope the thermal impedance layer with carbon particles. It is hoped that these 

particles would then effect the electrical connection between the junctions without 

completely eliminating the thermal impedance needed to maintain the temperature 

difference between the active and reference thermocouple junctions. Two different 

approaches are considered in order to characterize the thermal and electrical behavior of 

this new detector configuration. The first approach consists of using a model adapted 

from Vick and Scott [1998]. The second approach models the heterogeneous thermal 

impedance layer of the detector using micromechanical approximations to obtain 

averaged electrical and thermophysical properties. In the first approach the thermal 

impedance layer is modeled as a matrix with embedded small particles, and heat is 

assumed to be transferred from the matrix to the separated particles. The temperature 

distribution within such a layer is obtained by solving two coupled equations derived 

from the energy balance of the matrix and the particles. In the second approach, an 

equivalent thermal conductivity and heat capacity are used to represent an appropriately 

layered medium, and the detector is modeled as if the layers were homogeneous. The 

same homogeneous approximations are also used in order to analyze the change of the 

electrical resistance of the doped thermal impedance layer. In either case, the resulting 

model would need to be suitable for later use in a parameter estimation scheme. 

Objectives 

The objectives of the current investigation are to explore the following three questions: 

• How might the presence of contact resistance influence the response of the 

detector? 

• Can the so-called thin-film effect be explained and treated as a roughness effect? 

• What is the effect of the addition of electrically conducting particles in the 

thermal impedance layer on the performance of the detector? 

Even if the answer to the second question is negative, a secondary goal is to advance the 

Group’s knowledge of this interesting phenomenon. 
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In pursuing the answers of these questions the author has profited from the fruits of 

earlier investigations by members of the Thermal Radiation Group. Weckmann’s [1997] 

model of the dynamic electrothermal response of a similar thermal radiation detector 

ignored contact resistance and did not speculate on the possible consequences of a “thin-

film” effect. Sánchez [1998] formulated a Monte-Carlo ray-trace radiative model of an 

integrated detector concept in which a linear array of the detectors from Weckmann’s 

thesis was bonded to the wall of a V-groove cavity, and Barreto [1998] designed 

experiments for estimating the electro-thermophysical properties of the materials in 

Weckmann’s detector concept. More recently Sorensen [1998] performed analytical and 

experimental characterizations of some aspects of the detector. Sorensen is currently 

developing genetic and hybrid algorithms and designing experiments to estimate the 

electro-thermophysical properties of detectors such as the one shown in Figure 1. 

Chapter 2 addresses the problem of modeling the effects of contact resistance for use in 

the optimal design of experiments aimed at recovering its value. 
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Chapter 2: The Effect Contact Resistance  

Three questions bearing on the electrothermal performance of thin-film thermal radiation 

detectors were posed in Chapter 1. In the current chapter, one of these questions, that 

concerning contact resistance, is explored in detail. 

2.1 Description of the notional thermal radiation detector 

The notional thermal radiation detector considered in this thesis consists of six parallel 

layers of different materials, as illustrated in Figure 1. A 1.0-µm thick platinum layer is 

deposited on an aluminum-nitride substrate, and then a 1.0-µm zinc-antimonide layer is 

sputtered over the platinum. Next, a 25-µm thick thermal impedance layer is deposited 

over the zinc-antimonide layer. Then additional layers of zinc-antimonide and platinum 

are deposited on the thermal impedance layer. Finally, the platinum is coated with a 10-

µm thick black absorber layer to increase the absorption of thermal radiation. The 

platinum/zinc-antimonide layer near the substrate forms the reference junction of the 

thermocouple, and the platinum/zinc-antimonide layer on the thermal impedance layer 

forms the active junction. The junction materials are chosen to provide the highest 

available Seebeck coefficient [Weckmann, 1997]. In this baseline configuration the 

thermal impedance is not doped with carbon particles. The doped configuration is 

considered in Chapter 4. The thermal impedance layer considered in the current chapter is 

assumed to be fabricated from Parylene. The nominal properties of the material used in 

the detector are given in Table 1. 
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Figure 1: Configuration of the notional thermal radiation detector considered in this 
thesis. 
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Table 1: Thermophysical properties of materials used in the baseline thermal radiation 
detector model [Weckmann, 1997]. 
 

 
Mass 

density 

(kg/m3) 

Specific 
heat 

( KkgJ ⋅/ ) 

Conductivity 

( KmW ⋅/ ) 

Diffusivity 

(m2/s) 

Seebeck 

Coefficient 

(V/K) 

Aluminum 
Substrate 

3260 800 165 
51033.6 −×  N/A 

Absorber 

Layer 
1400 669 0.209 

71023.2 −×  N/A 

Parylene 1289 712 0.084 
81015.9 −×  N/A 

Platinum 21450 133 71.6 
51051.2 −×  N/A 

Zinc 
Antimonide 

6880 200 60 
5104.4 −×  N/A 

Carbon 2620 710 1.59 
71055.8 −×  N/A 

Platinum/Zinc-
Antimonide 

Junction 

N/A N/A 65.3 
51009.3 −×  

610960 −×  
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2.2 One-dimensional model of the detector with contact resistance 

Due to the thickness of the layers of the thermal detector, on the order of a few microns, 

the thermal resistance resulting from the imperfect contact between layers, illustrated in 

Figure 2(a), may play an important role in the overall thermal resistance. In fact, a careful 

search of the literature provided no insight into the nature of the interface and the 

consequent contact resistance at the interface between the sputtered materials in the 

notional detector. With contact resistance, the temperature profile through the detector 

would be discontinuous at the interfaces between layers. The first objective of the model 

is to validate the results obtained assuming perfect thermal contact. A preliminary study 

is also carried out to evaluate the effect of the thickness of a Parylene thermal impedance 

layer on detector time response and responsivity.  

In order to develop a one-dimensional analytical model we assume for both the steady-

state and transient cases that: 

• the thermophysical properties (conductivity, specific heat, density) are constant 

and uniform, 

• thermal radiation is negligible, 

• Fourier’s law is valid, and 

• internal heat generation is absent. 
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Figure 2: (a) Model of the detector with contact resistance, and (b) boundary conditions. 
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2.2.1 Steady-state temperature distribution 

For each layer (i) the steady-state temperature rise )(, xisθ above the substrate temperature 

is governed by 

    0
2

,
2

=
dx

d isθ
 , 1+<< ii xxx ,  6,...,2,1=i , (2-1) 

subject to the boundary conditions, indicated in Figure 2(b), 

    01, =sθ  , at 0=x  ,   (2-2) 

 )( 1,,1,
,

++ −=− isisii
is

i h
dx

d
k θθ

θ
 , at the interfaces 1+= ixx ,  (2-3) 

 
dx

d
k

dx

d
k is

i
is

i
1,

1
, +

+=
θθ

  , 5,...,2,1=i ,    (2-4) 

and    q
dx

d
k s =6,

6

θ
 , at  6xx =  .   (2-5) 

The heat flux q is uniform through the different layers. 

The differential equations given by Equations 2-1 through 2-5 can be solved directly. 

For the first layer 

    0
2

1,
2

=
dx

d sθ
 ,      (2-6) 

    01, =sθ  , at 0=x  ,   (2-7) 

and   
dx

d
kq s 1,

1

θ
=  , at 1xx =  .   (2-8) 
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The temperature profile is then  x
k

q
xs

1
1, )( =θ  .   (2-9) 

For the second layer 

   0
2

2,
2

=
dx

d sθ
 ,       (2-10) 

   [ ])()( 12,11,2,1
1,

1 xxh
dx

d
k ss

s θθ
θ

−=−  at 1xx =  ,  (2-11) 

 

and  
dx

d
kq s 2,

2

θ
=     at 2xx =  .  (2-12) 

 

Thus,    







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



−∗+=
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1

2
2,

111
)(

hkk
x

k

x
qxsθ  .   (2-13) 

 

More generally the steady-state temperature distribution for any layer is given by 
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2.2.2 Transient temperature distribution 

The differential equation describing the evolution of the transient temperature rise 

),( txiθ above the substrate temperature for each layer is 

   
t

tx

x

tx i

i

i

∂
∂

=
∂

∂ ),(1),(
2

2 θ
α

θ
 in  1+<< ii xxx , 0>t  , (2-15) 

where 6,...,2,1=i   , subject to the boundary conditions 

   0),0(1 =tθ    at   1xx =  , (2-16) 

  )( 11, ++ −=
∂
∂

− iiii
i

i h
x

k θθθ
  at the interfaces 1+= ixx , (2-17) 

  
x

k
x

k i
i

i
i ∂

∂
=

∂
∂ +

+
1

1

θθ
  , 5,...,2,1=i  , 0>t  , (2-18) 

and 

  q
x

k =
∂

∂ 6
6

θ
    at 6xx =  , 0>t  . (2-19) 

The initial condition is  0)0,( =xiθ .     (2-20) 

This problem can be solved by different techniques, including the finite difference 

method, by the finite element method and by finite integral transforms. However an 

analytical solution being more convenient for later parameter estimation studies, the 

orthogonal expansion technique [Özisik, 1993] for a multi-layer medium with perfect 

contact between layers is adapted to the transient model described by Equations 2-15 

through 2-20. The problem involves a nonhomogeneous boundary condition at 6xx = (at 

the top of the detector) and so cannot be directly solved using separation of variables. In 

order to transform this nonhomogeneous boundary condition into a homogeneous one, we 
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consider that ),( txiθ  is obtained by the superposition of two problems, as suggested in 

Figure 3: 

• a steady-state problem with specified heat flux at 6xx = :  )(, xisθ  

• a transient problem with insulated boundary at 6xx = :  ),(, txitθ  

Thus    ),()(),( ,, txxtx itisi θθθ += .     (2-21) 

 

 

 

 

 

 

 

 

Figure 3: Illustration of the superposition principle. 

 

The steady-state problem is described by an ordinary differential equation and has 

already been solved; the solution is given by Equation 2-14. 

The transient solution ),(, txitθ  is governed by a homogeneous partial differential equation 

and is solved using the separation of variables technique. Let us assume that ),(, txitθ  may 

be expressed  

    )()(),(, txXtx iit Γ=θ  .     (2-22) 

x 

= + 

0)0,(

),(1),(
2

2

=

∂
∂

=
∂

∂

x

t

tx

x

tx

i

i

i

i

θ

θ
α

θ

q 

0),0(1 =tθ  
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Substitution into Equation 2-15 yields 

 

     
t

txX

x

txX i

i

i

∂
Γ∂

=
∂

Γ∂ ))()((1))()((
2

2

α
 .  (2-23) 

 

Thus    2
2

2 1 βα
−=Γ

Γ
=

dt

d

dx

Xd

X
i

i

i   ,  (2-24) 

 

where the eigenvalue β  is the separation constant. The minus sign in front of 2β  is 

required to capture the exponential nature of the variation with time. The change of 

variables transforms the partial differential equation into two ordinary differential 

equations, 

 

     02 =Γ+
Γ

mm
m

dt

d β      (2-25) 

and     0,

2

2

,
2

=+ mi
i

mmi X
dx

Xd

α
β

 .   (2-26) 

 

The subscript m is used in Equations 2–25 and 2-26 to indicate that there are an infinite 

number of eigenvalues mβ . 

For a given eigenvalue the solution of Equation 2-25 is obtained directly as 

     
tmetm

2
)(

β−
=Γ  .    (2-27) 
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The complete solution is then of the form 

     ∑
∞

=

−=
1

,,

2

)(),(
m

t
mimit

mexXCtx βθ  ,   (2-28) 

where the coefficients mC are eventually obtained by exploiting the orthogonality 

property.  

The ordinary differential equation to be solved to obtain the eigenfunctions miX ,  and the 

corresponding eigenvalues is 

    0,

2

2

,
2

=+ mi
i

mmi X
dx

Xd

α
β

, 1+<< ii xxx  , 6,...,1=i , (2-29) 

with boundary conditions 

    0)0(1 =mX   at   0=x  , (2-30) 

  
dx

dX
k

dx

dX
k mi

i
mi

i
,1

1
, +

+=   at the interfaces ixx =  , (2-31) 

  )( ,1,1,
,

mimiii
mi

i XXh
dx

dX
k ++ −=− , 5,...,2,1=i  ,   (2-32) 

and    06
6 =

dx

dX
k m   at 6xx =  .   (2-33) 

 

The general solution of this eigenvalue problem is [Özisik, 1993] 

 

    









+










= xBxAxX

i

m
mi

i

m
mimi α

β
α

β
cossin)( ,,, .  (2-34) 
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Let us assume that i

i

m
i x

α
βη = .       (2-35) 

 

Then Equation 2-34 becomes 

    





+





=

i
imi

i
imimi x

x
B

x

x
AxX ηη cossin)( ,,,  .  (2-36) 

 

The derivative of Equation 2-36 is 
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
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


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i
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x

x
B

x

x
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dx

dX
ηη
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β

sincos ,,
,  . (2-37) 

 

Substitution of Equations 2-35 and 2-37 into Equations 2-31 and 2-32 yields 

 

[ ] [ ])sin()cos()cos()sin(

cossin

1,,1,,

1
1

,11
1

,1

iiimimiiiimimi

i
i

i
mii

i

i
mi
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



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

  (2-38) 

and 

[ ])sin()cos(sincos ,,1,1
1

,11
1

,1 imiimiiii
i

i
mii

i

i
mi BAK

x

x
B

x

x
A ηηηη −=





−





++

+
++

+
+ , (2-39) 
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where   
iii

i
ii

h

k
H

α1,

1,

+
+ =       (2-40) 

and   
i

i

i

i
ii k

k
K

α
α 1

1
1,

+

+
+ = .      (2-41) 

In matrix form Equations 2-38 and 2-39 can be written  

 

( ) ( )
( ) ( )

.
)sin()cos(

)sin()cos()cos()sin(

/sin/cos

/cos/sin

,

,

1,1,

1,1,

,1

,1

1111

1111

















−

−+
=

















−

++

++

+

+

++++

++++

mi

mi

iiiiii

imiiiimiii

mi

mi

iiiiii

iiiiii

B

A

KK

HH

B

A

xxxx

xxxx

ηη
ηβηηβη

ηη
ηη

  (2-42) 

 

Solving Equation 2-42 for the unknown coefficients miA ,  and miB ,  yields 

 





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x
UA ηη  , 5,...,2,1=i  , (2-43) 

and 

 





−





= +

+
+

+
+ 1

1
,1

1
,,1 sincos i

i

i
mii

i

i
mimi x

x
V

x

x
UB ηη  , 5,...,2,1=i  , (2-44) 

where  

[ ] [ ])sin()cos()cos()sin( 1,,1,,, imiiimiiiimimimi HBHAU ηβηηβη ++ −++=  (2-45) 

and 
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  [ ])sin()cos( ,,1,, imiimiiimi BAKV ηη −= +  .    (2-46) 

The boundary condition given by Equation 2-30 requires that 0,1 =mB . Thus we can set 

1,1 =mA . 

All of the coefficients miA ,  and miB ,  can now be computed using Equations 2-43 and 2-

44. Introducing 1,1 =mA  into Equation 2-42 and expanding it for the six layers of the 

detector yields  
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The eigenvalues mβ are the solutions of the transcendental equation obtained by setting 

the determinant of the matrix in Equation 2-47 equal to zero. To obtain the remaining 

coefficients mC  of Equation 2-28, we exploit orthogonality and the initial condition. The 

eigenfunctions )(, xX mi  satisfy the orthogonal relation [Özisik, 1993] 
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The normalization integral mN  and is given by 
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When 0=t      
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Now multiplying both sides of Equation 2-50 by )(, xX
k
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α
, integrating from ix  to 1+ix , 

and summing the result from 1=i to 6 (the number of layers) yields 
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Thus     ∫∑
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 .  (2-52) 

At this point all of the parameters needed to compute ),(, txitθ  from Equation 2-28 are 

known. The complete solution of the transient problem is given by Equation 2-21. 

The C++ program homog.cpp listed in Appendix A is implemented using the preceding 

results to determine the temperature profile through the thermal radiation detector. A 

parametric study is performed to determine the optimum value of the thickness of the 

actual thermal impedance layer (Parylene). The influence of the contact conductance on 

the accuracy of the results obtained assuming perfect contact between layers is also 

considered. 

 

2.3 Results 

The actual values of the contact conductances are currently unknown for the fabrication 

technique (sputtering) anticipated for the notional detector. Further studies of the type 

being pursued by Sorensen will be necessary in order to determine these values. The 

models developed in the current chapter are anticipated to be an essential tool of 

Sorensen’s research. The current objectives are to simulate the thermal behavior of the 

detector using different assumed values of the contact conductances to investigate the 

sensitivity of the overall behavior to this parameter. The bulk properties of the materials 

are used in this preliminary study. Assuming continuum mechanics, the thermal 

properties of thin-film layers are known to be a function of the layer thickness [Nath and 

Chopra, 1974; Kelemen, 1976; and Kumar et al, 1994]. However, thin-film properties for 

the materials in this investigation are currently unavailable. This is the topic of Chapter 3. 

Figures 4 and 5 show, respectively, the transient temperature distribution of the detector 

with perfect contact and with imperfect contact conductance (in which case the contact 

conductance is arbitrarily set at 50,000 W/m2 K for the six interfaces). This assumed 

value of contact conductance produces an increase of the temperature at all the locations 
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of the detector, as shown in Figure 5. The temperature is uniform across each junction 

and discontinuous at the interfaces for the non-perfect thermal contact between layers. 

Figure 6 presents the steady-state response of the detector for different values of contact 

resistance as well as for perfect contact. As expected, the lower contact conductance 

results in a higher overall temperature rise at the active junction. It is apparent that the 

contact resistance effect, if present, cannot be neglected without underestimating the 

response of the detector. Also, the curious situation in Figures 5 and 6 in which the two 

components of the thermocouple junction are at different temperatures raises a question 

about how to interpret the temperatures in terms of the thermoelectric effect.  
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Figure 4: Temperature response of the notional detector of Figure 1 with perfect thermal 
contact between all layers. 

q = 1.0 W/m2 
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Figure 5: Temperature response of the notional detector of Figure 1 with a uniform 
thermal contact resistance between the layers. 
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Figure 6: Steady-state temperature response of the notional detector of Figure 1 for 
different values of interlayer contact conductance. 
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The transient temperature response of the active junction, when the detector is subjected 

to a uniform heat flux of 1 W/m 2 on the upper surface of the absorber layer, is shown in 

Figure 7. The response is quasi-first order. The time constant is defined as the time for 

the temperature to undergo 63 percent of the temperature change from the initial to the 

steady-state value. The responsivity of the detector is the difference between the steady-

state temperature of the active junction and that of the reference junction provoked by the 

heat flux. Figure 8 shows a linear increasing dependence of the responsivity on the 

thickness of the thermal isolation layer. However, the time constant also increases with 

thickness. 
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Figure 7: Transient temperature response of the active junction of the notional thermal 
radiation of Figure 1 detector with no contact resistance (thermophysical properties given 
in Table 1). 

 

The use of less dense materials such as Larc-Si and aerogels, having superior thermal 

insulation properties, is anticipated to be the subject of future investigations. These 
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materials could possibly lead to a lower thermal capacitance for a layer of equal 

thickness, resulting in both a faster time response and a higher responsivity. One of the 

problems with these new materials is that their thin-film thermal properties are unknown.  

The numerical model developed in the current chapter is modified in Chapter 4 in order 

to take into account a nonhomogeneous thermal impedance layer consisting of a mixture 

of aerogel and carbon, or a mixture of Larc-Si and carbon, or a mixture of Parylene and 

carbon. 

 

0

2

4

6

8

10

12

0 10 20 30 40
Thickness of the thermal impedance layer (µm)

0

0.1

0.2

0.3

0.4

0.5

µ

 Time constant

 responsivity

 

Figure 8: Time constant and responsivity of the notional detector of Figure 1 and Table 1 
as a function of the thickness of the thermal impedance layer. 
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Chapter 3: The Thin-Film Effect 

3.1 Review of thin-film heat transfer  

In Chapter 2 the effect of contact resistance on detector performance was considered. In 

the current chapter we take up the question of the possible departure of thermophysical 

properties from their bulk values due to the so-called thin-film effect. 

The heat conduction mechanism occurs in solids through collisions among phonons and 

electrons. In metals the main energy carriers are free electrons, while in insulators and 

semi-conductors, the energy is mainly carried by phonons. The macroscale heat transfer 

theories such as heat diffusion given by Fourier’s law fail to describe the heat transfer 

process in microstructures if they are not used appropriately. The classical Fourier’s law 

may be written  

     Tkq ∇−=   ,     (3-1) 

where q is the heat flux, k is the thermal conductivity and, ∇T is the local temperature 

gradient. 

In situations where the characteristic length or/and characteristic time of a structure 

approaches, respectively, the mean free path or the mean free time of the main energy 

carrier, microscale heat transfer models are more appropriate. The classical macroscopic 

Fourier’s law defined by Equation 3-1 breaks down because the definition of thermal 

conductivity depends on the existence of a gradient of temperature within the structure 
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[Majumdar, 1993]. The macroscopic models assume that the physical structure is so large 

and the time scale sufficiently long that sufficient collisions occur between the energy 

carriers as to assure that a local thermodynamic equilibrium is reached. In fact, the very 

concept of temperature at a given point is strictly defined only under the condition of 

local thermodynamic equilibrium. Therefore a meaningful temperature can be defined 

only at points separated by at least the mean free path of the energy carriers [Bejan, 

1988]. We conclude that for heat conduction across a thin-film layer whose thickness 

approaches the order of magnitude of the mean free path, the thermal conductivity of the 

material cannot be defined as given by Equation 3-1. Because an insufficient number of 

heat carriers are present within the material, the temperature field becomes discontinuous 

through the layer and the temperature gradient concept looses its physical meaning within 

the layer. Microscale heat transfer can occur either in length scale or in time scale or in 

both scales. The two-step phonon-electron interaction model, the phonon-scattering 

model, the phonon radiative model, and the thermal wave model are some of the 

available microscale heat transfer models and are discussed by Tzou [1997]. 

An important issue of microscale heat transfer is the dependence of the thermophysical 

properties of thin-films on the microstructure of those films. In a 1984 effort, Decker et 

al. report that the measurements of the thermal conductivities of SiO2 and Al2O3 thin 

films are apparently one or two orders of magnitude lower than those for the 

corresponding bulk materials. They also report that the thickness dependence is more 

pronounced for thermal conductivity than for the heat capacity and density in dielectric 

thin-films. Nath et al. [1974] report similar behavior by measuring the thermal 

conductivity of copper films ranging in thickness from 400 to 8000 Å in the temperature 

range 100-500 K. This decrease is attributed to a structural disorder inside the thin film 

layer, to a large interface thermal resistance, or to the limitation of the mean free path. 

Orain et al. [1998] also report a decrease of the thermal conductivity of ZrO2 films with 

thickness ranging from 750 to 10,000 Å deposited on Al2O3 substrates. 

Based on kinetic theory, the thermal conductivity of dielectrics and semiconductors is 

given by [Zima, 1960] 
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      Cvlk
3

1=  ,    (3-2) 

where C is the phonon specific heat, v is the speed of sound, and l is the phonon mean 

free path. 

Equation 3-2 shows that the thermal conductivity is directly proportional to the mean free 

path of the main energy carrier. In thin films the mean free path is reduced from its bulk 

value because of the scattering on the boundaries, and thus so is the thermal conductivity. 

Also the mean free path being smaller in the transverse dimension of the film, the thermal 

conductivity in that direction is smaller than that in the longitudinal direction. For a film 

thickness much larger than the mean free path, the scattering being small, the decrease of 

the thermal conductivity by scattering can be neglected. From Equation 3-2, it is clear 

that the computation of an effective thermal conductivity of the thin film requires the 

knowledge of the mean free path of the main heat carrier. However the contradiction of 

using Equation 3-2 to explain departures from bulk thermal behavior in a mean free path 

regime where Fourier’s law itself probably does not apply is obvious and must be 

recognized.  

Kumar et al. [1994], using the Boltzmann transport theory, derived closed-form 

expressions that predict the reduction in the longitudinal thermal conductivity (in the 

direction parallel to the plane bounding the thin film) of thin metallic films due to 

boundary scattering. Flik and Tien [1990] argue that since the thermal conductivity is 

directly proportional to the mean free path, the reduction of the thermal conductivity 

should be equal to the reduction of the mean free path. They use geometric assumptions 

to evaluate the reduction in the component of the mean free path along the longitudinal 

direction of the film due to the termination of the path lines at the boundaries. They 

derive for the longitudinal conductivity of a thin metallic film, assuming that the path 

lines originate uniformly along the transverse direction (direction normal to the plane 

bounding the thin film) of the thin film, 
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and  
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1−=

bulk

film

k

k
 , 1>δ ,     (3-4) 

where δ is the ratio of the film thickness to the mean free path, and ( ) 2
1

21 δ−=s  in 

Equation 3-3. 

Figure 9 shows the ratio of the “thin-film” longitudinal conductivity to the bulk 

conductivity for a range of thicknesses determined using Equations 3-3 and 3-4. The 

figure clearly shows the dependence of the thin-film thermal conductivity on the ratio of 

the thin-film thickness to the mean free path length. 
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Figure 9: The ratio of the longitudinal thin-film to the bulk conductivities as defined by 
Equations 3-3 and 3-4. 

3.2 The thin-film thermal conductivity anomaly as a roughness effect 

The thermal conductivity is a parameter that has a direct influence on the accuracy of 

models of heat conduction processes. The experimental studies reported in the open 

literature that attempt to recover the effective thermal conductivity of a thin film fail to 
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take into account the roughness of the thin film. They seem to assume that the thin-film is 

completely smooth or that its roughness is negligible. Closed-form equations of the 

thermal conductivity of thin films, such as Equations 3-3 and 3-4, require the knowledge 

of the mean free path of the energy carrier, a property that is not available in the literature 

for the materials of the notional thermal radiation detector. When the film layer is very 

thin (on the order of microns), its relative roughness can no longer be neglected. It may 

be hypothesized that roughness plays an important role in the apparent deviation of the 

properties of individual layers from their bulk values. In other words, reported deviations 

of thermal properties from the bulk values may be an artifact of experimental techniques 

that ignore the possibility of roughness effects. 

The objective here is to determine whether or not unsampled surface roughness could 

possibly explain the observed decrease of thermal conductivity. In fact, no effective 

conductivity data are available in the open literature for the special materials, such as 

Larc-Si and Zinc-antimonide, that are being considered for use in the notional detector. 

One can then imagine performing an experiment to define the statistical description of 

surface roughness for a given sample and then using this information and the bulk 

thermal conductivity with an appropriate model to predict the effective thermal 

conductivity. 

A statistical technique is required for solving the heat transfer equations describing the 

roughness effect for very complicated surface topographies. 

3.2.1 The random walk approach 

The Monte-Carlo method, also called the method of statistical trials, is a system of 

techniques that enables complex physical models of problems to be solved in relatively 

simple manners. The computer is instructed to do most of the work. This approach is 

limited only by the availability of adequate computer resources (mainly speed). In 

Monte-Carlo methods, instead of directly solving an analytical problem, one “plays a 

game” following rules similar to those governing the actual physical process. The game 

has the same outcome as the actual physical process but is in some sense easier to play. 
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The random walk is a Monte-Carlo method used to solve boundary-value and initial 

condition problems. The random walk method enables problems with irregular 

geometries and multiple dimensions to be solved using algorithms that are quite simple 

compared to other methods such as the finite difference or finite element methods. 

 

3.2.1.1 Presentation of the technique 

In the current study, a two-dimensional steady-state heat conduction problem with no 

internal heat generation is considered. 

The mathematical formulation of the problem is 
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with either 

    ),( yxfT =        (3-6) 
or   0),( =yxq        (3-7) 

specified on the boundary Γ. That is, the kind of boundary condition considered is either 

specified boundary temperature or an insulated boundary. 

 

 

 

 

 

Figure 10: Network of nodes for an arbitrary irregular geometry. 
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One would like to compute the temperature at a given point ),( 00 yxP  in the two-

dimensional domain limited by the boundary Γ , as illustrated in Figure 10. The random 

walk technique works as follow. 

Starting at ),( 00 yxP  a random number uniformly distributed between zero and unity is 

drawn to determine in which direction to “step”. In a two-dimensional net, one can step 

with equal probability either to the north, the south, the east or the west with a step size 

x∆  in the x  direction and y∆ in the y  direction. Having arrived at the appropriate 

neighboring node, the same process is repeated to determine the direction of the next 

step. This process is repeated until a boundary node is reached. Having arrived at a node 

whose location is approximately on the boundary, the next step depends on the type of 

boundary condition: either a specified temperature or an insulated boundary is 

considered. When an insulated boundary node is reached, the next node in the random 

walk is identical to the previous node, as in specular reflection. When a boundary node 

with a specified temperature is reached, a counter 0ζ is incremented by the value of the 

temperature specified at that node. Then the whole process recommences at point 

),( 00 yxP  and is repeated until a large number N  of random walks has been completed. 

Finally, after a sufficiently large number of random walks initiated a point ),( 00 yxP , the 

temperature at point ),( 00 yxP  is estimated as N0ζ  . 

The precision of the temperature computed this way depends on the value of the number 

of random walks N  and the fineness of the grid. The larger N , the more accurate the 

result for a sufficiently fine grid. On the other hand increasing either N or the fineness of 

the grid increases the computational time. A trade-off clearly exists between the precision 

sought and the computer time needed to get that precision, assuming the grid is 

sufficiently fine to provide the desired precision. 

Another problem of using random walk methods is the lack of reproducibility of the 

results if N  is not sufficiently high. When running the same problem several times, one 

never gets exactly the same results. This is due to the difference in the sequences of 

random numbers generated for each experiment. 
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The interested reader is referred to the book by Shreider [1966] for additional information 

on this technique. 

The flowchart given in Figure 11 illustrates the random walk technique in a two-

dimensional heat condition problem without internal heat generation. 

 

 

 

 

 

 

 

 

 

Figure 11: Flowchart of a two-dimensional random walk (continued on next page). 
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3.2.1.2 Results 

The program randwalk2d.cpp listed in the Appendix B can be used to determine the 

temperature profile for different geometries. The random walk method developed is 

benchmarked using a problem for which exact closed-form solutions are available. 

The benchmark problem considered using this technique is one-dimensional steady-state 

heat conduction in a flat plate, as illustrated in Figure 12. 

 

 

 

 

 

 

 

Figure 12: One-dimensional, steady-state heat transfer in a flat plate. 

 

The analytical temperature distribution is  
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In Equation 3-9, )(yTrw  is the value of the temperature obtained using the random walk 

method and yn  is the number of discrete divisions in the y direction. 

The random walk code is executed for different values of the number of random walks, 

N . The reproducibility at a given N is studied by running the code several times with 

different starting seeds in the pseudorandom number generator used to draw the required 

random number. The error ε   is computed for each run. 

Table 2 displays the results obtained for fives runs at a given value of N and shows that 

the error is different from one run to the next. The lack of reproducibility from one run to 

the next is illustrated in Figure 13. 

 

Table 2: Error values for different runs of the random walk solution to the problem 
defined by Figure 11 with ny = 50. 
 
 

Number of 
random walks, 

N 

error, ε (%, Equation 3-9), ny = 50 

 first run second run third run fourth run fifth run 

50 19.26 17.91 16.91 16.16 10.57 

100 12.48 7.07 10.22 11.61 10.53 

250 8.72 5.71 8.67 6.34 7.03 

500 5.81 4.19 3.33 4.29 5.20 

1000 4.20 3.78 2.90 3.27 2.76 
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Figure 13: First two runs for N = 50 compared with exact temperature distribution for 
the problem defined by Figure 12. 
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Figure 14: First two runs for N = 1000 compared with the exact solution for the problem 
defined by Figure 12. 

 



The Thin-Film Effect  41 

Table 2 and Figure 14 show that the lack of reproducibility decreases significantly when 

the number of random walks increases. The value of ny is fifty for each of these 

experiments. 

Table 3 presents the influence of the number of random walks on the machine time (SGI; 

Model: Indigo2 XZ, Extreme; Operating System: IRIX Release 6.5) and on the mean 

error. The machine time is the time it takes to complete the computation, and the mean 

error <ε> is obtained by setting rwT  in Equation 3-9 equal to the arithmetic mean value of 

rwT , <Trw>, for all the runs; that is, 
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where nr is the number of runs for a given number of random walks, N. 

As one would anticipate, by increasing the number of random walks, the machine time 

increases and the result becomes more accurate. Once again the number of y divisions, 

ny, is fifty for each of these numerical experiments. 

 

Table 3: Influence of the number of random walks on the machine time and the mean 
error for the problem defined by Figure 12 with ny = 50. 
 
Number of random 

walks, N 
Machine time (s) Number of runs, nr Mean error (%) 

50 8 5 7.88 

100 17 5 3.61 

250 44 5 2.90 

500 88 5 2.52 

1000 176 5 1.73 

5000 885 1 1.54 
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Figure 15 shows a comparison between the result obtained for just one run with 5000 

random walks and the exact solution. The error being only about 1.5 percent, the 

temperature obtained by the random walk technique can be acceptably accurate. 
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Figure 15: Comparison of the temperature distribution computed using the random walk 
method with N = 5000 and ny = 50 with the exact solution for the problem defined by 
Figure11 with. 

 

The two-dimensional random walk technique has also been used to compute the 

temperature distribution when surfaces are modeled as trigonometric functions, as 

illustrated in Figure 16. 

Figure 17 represents the temperature profile at x = 5 µm in Figure 16 computed using the 

random walk method for different values of the number of walks N. 
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Figure 16: Irregular geometry representing a layer of variable thickness.  
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Figure 17: Comparison of the temperature distribution computed using the random walk 
method at x = 5 µm in Figure 16 with ny=50, N = 1000, 5000, and 10000. 
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3.2.2 Effective thermal conductivity of a thin-film layer of irregular thickness. 

The investigation of the effective thermal conductivity of a thin-film layer based on a 

roughness effect begins with the simple two-dimensional model illustrated in Figure 18. 

The idea is that if the results obtained using this model are consistent with the expected 

trend, that is a decrease of the thermal conductivity of the thin-film as the roughness 

increases, then more realistic surfaces would be considered. It is convenient to use a finite 

difference model in order to determine the temperature distribution for the geometry in 

Figure 18. The finite difference method is conceptually simple for problems having 

regular rectangular boundaries. It involves the use of nodal networks, finite difference 

approximations for derivatives in space and time, standard energy conservation 

formulation concepts, and computer solution of systems of algebraic nodal equations. 

The control volume approach is used for the discretization of the governing equations. 

The C++ code eff_cond.cpp listed in Appendix C and developed for computing the 

temperature profile using the finite difference method in a two-dimensional regime 

without internal heat generation is adapted from Vick [1998]. If this study indicates that 

an unsampled roughness effect can explain the observed thin-film effect, then the random 

walk method will be used to study more realistic geometries. 

 

 

 

 

 

 

 

Figure 18: Model of a hypothetical two-dimensional rough surface. 
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Here, the effective conductivity effk  of a real surface is defined as the conductivity of a 

hypothetical plane surface having the following three properties: 

• the same length L  as the surface in Figure 18, 

• the same total heat flux as the problem defined by Figure 18, 

• a uniform thickness of 2/RH + , where H and R are defined in Figure 18. 

A discretized version of Figure 18 is shown in Figure 19. Because the problem is two-

dimensional, the total heat flux in the y direction is approximated using the bottom row of 

control volumes in the Figure 19. Then for a given control volume at the bottom of 

Figure 19, the heat flux through the ith heat flow channel is approximated by 

    i
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The total heat flux is then approximated by 
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where ii , is the number of control volumes in the x direction, and bulkk  is the bulk 

conductivity of the material. 

The total heat flux of the hypothetical flat surface is given by 
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Equating Equations 3-13 and 3-14 yields 
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Figure 19: Control volume discretization of the hypothetical two-dimensional rough 
surface of Figure 18. 
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Figure 20: ratio of the effective thermal conductivity to the bulk thermal conductivity for 
the problem defined by Figures 18 and 19 with forty control volumes in the x direction 
and L/H = 5. 
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In order to study how the roughness, represented by the nondimensional quantity 

)/( HRR +  influences the ratio bulkeff kk / , the value of R  is set constant in the finite 

difference procedure and the ratio is computed for different values of H . Figure 20 

illustrates the result obtained.  

The trend of Figure 20 is completely the opposite of what is expected. That is if 

unsampled roughness is to account for the observed [Nath and Chopra, 1974; and Orain 

et al., 1998] behavior of effective thermal conductivity in thin-film layers, a decrease of 

the effective thermal conductivity is expected as the roughness increases. The effective 

conductivity for the model of Figure 19 exceeds the bulk value when the roughness 

increases, and approaches the bulk value as the surface becomes smoother . Looking 

more closely at the geometry Figure 18, one can see that when H becomes smaller 

compared to R, the surface at higher temperature T1 is closer to the plane at temperature 

T2 so that the local gradient of temperature is larger. The larger temperature gradient 

yields a higher total heat flux and therefore a higher effective conductivity. 

We conclude that the approach used is unable to reproduce the trends reported in the 

literature. In other words, unsampled surface roughness cannot explain experimental 

results. Therefore, the random walk technique is not considered further for studies with 

more realistic surface models.  

Evidently other approaches such as experimental measurements or parameter estimation 

techniques will have to be used to determine how the thermal conductivities for the 

materials of current interest are affected by the thin-film effect. 

In Chapter 4 we investigate the effect on effective thermal and electrical conductivity of 

doping the thermal impedance layer with conducting material such as finely divided 

graphite.
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Chapter 4: Effect of Doping the Thermal Impedance 

Layer with Conducting Particles 

In the previous Chapter we investigated and rejected surface roughness as a possible 

explanation for the so-called “thin-film” effect. In this Chapter we consider the effect on 

thermal and electrical conductivity of doping the thermal impedance layer with finely 

divided carbon. 

The NASA team led by Mr. Edward H. Kist, Jr., has proposed that the thermal impedance 

layer of the thermal radiation detector be doped with up to fifty percent by volume of 

finely divided graphite. The reason for this is to decrease the internal electrical resistance 

of the thermal impedance layer, thereby assuring the electrical connection between the 

two junctions of the thermal radiation detector. As stated before, the geometry and size of 

the detector preclude linking the two junctions by a more traditional conductor. 

Experiments carried out by Sorensen [1998] showed a decrease of the electrical 

resistance of thin layers of Larc-Si doped with powdered graphite. Minimization of the 

electrical resistance of this layer is a key factor for reducing an important noise source in 

radiation detectors. Johnson noise in an electric circuit is known to be directly 

proportional to the square root of its electrical resistance [Lenoble, 1993]. The noise 

sources in thermal radiation detectors are discussed by Lenoble [1993] and Haeffelin 

[1997]. 

An obvious concern is that reduction of the electrical resistance would also lead to 

reduction of the thermal resistance and concomitant reduction of the detector’s 
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responsivity. The objective here then is to develop an analytical model that predicts the 

performance of the detector whose thermal impedance layer is doped with conductive 

particles. This situation is shown in Figure 21. The model is applied to the specific case 

of a Parylene impedance layer doped with carbon particles. 

 

 

 

 

 

 

Figure 21: Detector geometry with graphite doped thermal impedance layer. 

 

The behavior of the thermal radiation detector is studied first using a model of the 

detector derived from a model by Vick and Scott [1998] and then using micromechanical 
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in a matrix. In this model heat is first conducted to the matrix material from the 

boundaries and then transferred from the matrix to the particles through a contact 
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conductance. The particles are not in perfect thermal contact with the matrix material and 

they can receive heat only from the matrix. The boundaries of the thermal impedance 

layer in the current version of the model are the two zinc-antimonide layers of the active 

and reference junctions shown in Figure 21.  

On the basis of an energy balance Vick and Scott have proposed that  
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for the doped matrix for one-dimensional transient heat flow. 

In Equations 4-1 and 4-2 mm cfC ))(1( ρ−=  is the heat capacity of the matrix per total 

volume and mkfK )1( −=  is the thermal conductivity of the matrix-particle system. 

pp cfC )(ρ=  is the heat capacity of the embedded particles per total volume, and f is the 

volume fraction of the embedded particles. The coupling coefficient between the matrix 

and the particles is )( pNAhH = , where Ap = π a2 is the surface area of a particle, h is the 

contact conductance, and N is the number of particles per volume. 

This model is analogous to the two-step model developed by Tzou [1997] in order to 

describe the microscale heat transfer process for metals in which the electron gas is 

heated first and then the heat is transferred to the metal lattice. It holds for each of the six 

layers of the thermal radiation detector, but the number of particles is set equal to zero for 

layers with no carbon particles. The boundary conditions are a specified temperature at 

the base of the detector and a constant and uniform heat flux applied at the upper surface. 

The coupled equations, Equations 4-1 and 4-2 are not solvable analytically. Vick and 

Scott used a fully implicit finite difference numerical approach to discretize those 
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equations. The fully implicit discretization makes the results unconditionally stable. The 

results of the discretization are 
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where j  and i  are the indices of the nodes and time steps, respectively. 

To solve these coupled equations, i
jPT ,  from Equation 4-4 is first substituted into 

Equation 4-3 and the resulting tridiagonal matrix is solved for the temperatures i
jmT ,  at 

each time step. The values of i
jmT ,  are then substituted into Equation 4-4 to compute the 

particle temperature i
jPT ,  within the thermal impedance layer. 

The program heterog.cpp listed in Appendix D determines the temperature response of 

the detector for different values of the contact conductance between the carbon particles 

and the matrix material. The values of the contact conductance and the particle diameters 

are chosen so that the Biot number always remains small (less than 0.1). In this case the 

lumped capacity approximation is valid within each particle; that is, temperature 

gradients are negligible within a given particle. 

4.1.2 Results 

In all the cases considered in this chapter, the contact resistances between the different 

layers of the thermal radiation detector are assumed negligible, and the carbon particles 

are assumed to be uniform in size. It is recognized that this latter assumption would be 

difficult to realize in practice. However, the assumption approximates the situation in 

which a mean particle size is used to represent some size distribution. The contact 
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resistances between the layers forming the detector are neglected in order to focus on 

only one phenomenon at a time. 

Studies of the effect of three parameters on detector response were carried out using the 

two-step model process. The three parameters are: 

• the volume fraction, f, of the particles, 

• the contact conductance between the particles and the matrix and 

• the particle size. 
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Figure 22: Temperature response of the active junction with h = 50 W/m2 K. 

 

The model developed here holds only for a matrix with dimensions much greater than a 

particle diameter and with a small volume fraction of particles within the matrix. Vick 

and Scott do not specify the volume fraction limit at which the model breaks down. 

Therefore the model is used here only for volume fractions of particles ranging between 

zero and thirty percent. 
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Figure 22 shows the transient temperature response of the active junction for four cases 

of particle volume fraction, f. The contact conductance between the particles and the 

matrix is 50 W/m2 K in all four cases. The figure reveals an increase of the steady-state 

temperature of the active junction of the detector as the particle volume fraction 

increases. This result seems to be counterintuitive; that is, it is expected that the thermal 

impedance would decrease as the volume fraction of conductive particles increased. 
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Figure 23: Effect of contact conductance between the particles and the matrix on the 
steady-state temperature rise of the active junction. 

 

Figure 23 shows that the contact conductance between the matrix and the particles has 

negligible effect on the response of the thermal radiation detector. The greatest change of 

the response of the detector with respect to the contact conductance is less than one 

percent for the range of particle volume fractions considered in this study.  
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For the geometry and range of parameters investigated, the contact conductance has more 

effect on the temperature of the particles than on the temperature of the active junction of 

the detector, as shown in Figure 24. The heat is transferred from the matrix to the 

particles; therefore when the contact conductance increases, the time lag of the particles 

decreases. Note that the curve labeled “matrix” in Figure 24 actually consists of three 

superposed curves corresponding to the three values of h. Therefore it is clear that the 

contact conductance has little effect on the matrix temperature. The time lag of the 

particles decreases rapidly as the contact conductance increases. When h is about 10 W/ 

m2 K the time lag between the matrix and particle temperatures is effectively zero. 

 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Time (ms)  

Figure 24: Matrix and particle temperatures at x = 12 µm for different values of the 
contact conductance. 

 

The effect of the particle size on the steady-state response of the detector is shown in 

Figure 25. The range of particle diameters was chosen so that the lumped capacity 

assumption holds. In this range it was found that the particle size has a very small effect 
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on the output of the detector. The maximum temperature change of the active junction is 

less than one-third of a percent.  
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Figure 25: Particle size effect on the steady-state temperature rise of the active junction 
for a volume fraction of particles of ten percent. 

 

4.1.3 Discussion of the results 

The temperature response shown in the Figure 22 for the thermal radiation detector does 

not agree with what one would expect by doping a material of low thermal conductivity 

(the conductivity of the Parylene is 0.084 W/m2 K) with a material of higher thermal 

conductivity (the conductivity of the carbon particles is 1.59 W/m2 K). In Equation 4-1 of 

the two-step transient model, the conductivity K is equal to mkf )1( − , where km is the 

conductivity of the matrix. This expression for K requires that the thermal conductivity 

decrease as the volume fraction of particles increases, with the result that the temperature 
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of the active junction increases. With this model, the steady-state temperature distribution 

depends only on the thermal conductivity of the matrix and the volume fraction of 

particles, and not on the thermal conductivity of those particles. The steady-state 

temperature increases as the volume fraction of the particles increases. This is contrary to 

intuitive expectations as well as to observations of decreases in electrical resistance of 

Larc-Si layer with an increased loading of graphite particles [Sorensen, 1998]. 

It is hypothesized that this two-step model could be improved by somehow taking into 

account the thermal conductivity of the particles, even if the lumped capacity 

approximation is assumed. One way would be to solve the Laplace equation for heat 

conduction subject to the conditions of continuity of the temperature (assuming perfect 

contact between the particles and the matrix) and heat flux at the interface of each 

particle and the surrounding matrix. This direct method would of course be 

computationally intensive. The alternative approach in this thesis, described below, is to 

compute equivalent properties for a heterogeneous thermal impedance layer. The 

response of the detector is then analyzed using the analytical transient model developed 

in Chapter 2. 

 

4.2 Heat transfer in a heterogeneous material using micromechanical property 

models. 

4.2.1 Thermal analysis 

The determination of the thermophysical properties of heterogeneous mixtures has been 

and continues to be a very active area of research because of the wide range of 

applications of these materials in engineering [Meredith et al., 1962]. Although some 

properties of these mixtures, such as the specific heat, do not present any difficulties, 

other thermal and transport properties, such as thermal or electrical conductivities, 

require more sophisticated treatments. The simple mixing rules that consist of averaging 

the transport properties of pure phases to get those of the mixture do not apply in these 

latter cases. The complexity of the problem increases for more concentrated mixtures.  
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The primary interest here is the determination of the effective thermal conductivity and 

heat capacity of a two-phase composite material consisting of spherical carbon particles 

embedded in a continuous matrix. 

 

4.2.1.1 Effective thermal capacity of the mixture 

The effective heat capacity of a mixture can be directly obtained using a simple mixing 

rule. The effective specific heat of the matrix-particle mixture is 

     mmPP cfcfc ′+′=      (4-5) 

where subscripts p and m indicate “particle” and “matrix” respectively and f ′  is the 

appropriate mass fraction, 
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Equation 4-5 is a statement of conservation of energy, and Equation 4-9 is a statement of 

conservation of mass. 

Combining equations 4-5 and 4-6 yields 

     mP cfcfc ))(1()( ρρρ −+=  .   (4-10) 

In Equation 4-10, cρ  is the effective heat capacity of the matrix-particle mixture and f is 

the volume fraction of the particles. Equation 4-10 is valid for both dilute and 

concentrated mixtures. 

 

4.2.1.2 Effective thermal conductivity 

The theoretical investigation of the equivalent thermal conductivity requires the 

distinction between dilute and concentrated mixtures. 

 

4.2.1.2.1 Dilute mixtures 

Dilute mixtures are mixtures in which the disturbance of the lines of heat flow by one 

particle is independent of the disturbance provoked by any other particle. For these dilute 

mixtures, Maxwell [1954] derived an equation for the effective electrical conductivity by 

solving the Laplace equation for a single sphere in a matrix. The mathematical behavior 

of the physical properties thermal and electrical conductivity being analogous, the result 

obtained for the effective electrical conductivity is applicable for the effective thermal 

conductivity. 

The result obtained by Maxwell when the thermal conductivity is substituted for 

electrical conductivity, is 
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where K  is the relative effective thermal conductivity that is the ratio of the effective 

thermal conductivity of the mixture, k , to that of the matrix , mk . The quantity Kd is the 

ratio of the thermal conductivity of the spherical particles, dk , to that of the surrounding 

matrix. 

Equation 4-11 is valid regardless of the size (particles of uniform size) and spatial 

distribution (random or ordered dispersions) of spherical particles as long as the volume 

fraction of the particles is less than 0.2 and the contact resistance between the particles 

and the matrix is negligible. 

Hasselman and Johnson [1987] modified the theory of Maxwell and derived an 

expression for the effective thermal conductivity of mixtures with a thermal contact 

resistance between the particles and the matrix. They found that the effective thermal 

conductivity of a given composite system and dispersed phase do not depend only on the 

volume fraction of the particles but also on the particle size.  They show that 
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where h is the contact conductance between the spherical particles and the matrix 

material, kd is the thermal conductivity of the particles, and a is the diameter of the 

particles. Like the Maxwell expression, Equation 4-12 is valid only for dilute mixtures. 

When h goes to infinity Equation 4-12 reduces to Equation 4-11. 

 

4.2.1.2.2 Concentrated mixtures 

 

The determination of the effective properties of composites in which the volume fraction 

of the dispersed phase is high (f > 0.2) presents increased mathematical difficulties 

[Meredith et al., 1962]. As the volume fraction of particles increases, the heat flow fields 
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surrounding the particles begin to interact. The microstructure of the composite material 

begins to play a more important role and so does the manufacturing technique upon 

which the microstructure depends. The effective properties depend on the arrangement of 

the particles with respect to the direction of the heat flow lines. Many predictive formulas 

of the effective thermal conductivity have been derived for different geometries and 

arrangements of the dispersed phase. Lord Raleigh [1964] found that for a cubic array of 

spheres where the heat flow field is on the average perpendicular to a side of the cube, the 

effective thermal conductivity is given by 

  ( ) ( )dddd KfKfKK
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Equation 4-13 is valid for f less than π/6. Meredith and Tobias [1962] derived another 

equation for K  for the same conditions using a different potential function. They found 

that  
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Equations 4-13 and 4-14 are valid for the cases of ordered arrangements of the particles 

where the position of each particle is known and the locations of the particles are chosen 

so that they are symmetric and thus produce fewer interactions among particles. The 

general results for randomly distributed particles are quite different. A large number of 

relations exist in the literature for the computation of the effective thermal conductivity in 

the case of randomly distributed spherical particles in a matrix. The relation derived by 

Meredith and Tobias [1962] is used in the current investigation. For two-phase mixtures, 

Meredith and Tobias found that 
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The maximum and minimum values of the thermal conductivity are obtained in the 

following limiting cases [McLachlan, 1990] : 
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• the particles of the suspended phase link up parallel to the direction of the mean 

heat flow, as in Figure 26 (a). 

• the particles of the suspended phase link up perpendicular to the direction of the 

mean heat flow as in, Figure 26 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26:  (a) lamina parallel to the heat flow direction; (b) lamina perpendicular to the 
heat flow direction. 
 

The effective thermal conductivities corresponding to these two cases are, respectively, 

the arithmetic mean and the harmonic mean of the thermal conductivity of the matrix and 

the particles. That is, 

heat flow direction 

(b) 

(a) 

heat flow direction 
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     md kffkk )1( −+=      (4-16) 

and  

     md kfkfk /)1(//1 −+=  .   (4-17) 

In Equations 4-16 and 4-17 k is the effective thermal conductivity, kd the thermal 

conductivity of the particles and km the thermal conductivity of the matrix. Note that 

Equations 4-16 and 4-17 follow directly from the limiting cases of the conductance of 

parallel and series networks, as shown if Figure 26. 

 

4.2.1.3 Results 

The effective thermal conductivity of dilute mixtures is governed by the magnitude of the 

parameter )/(ahkd , as described by Equation 4-12. In a matrix doped with very small 

particles this term can have a strong influence on the effective thermal conductivity, as 

shown in Figure 27. The effective thermal conductivity is maximum when the contact 

between the matrix and the particles is perfect. The effective thermal conductivity is 

lowest when the nondimensional parameter )/(ahkd goes to infinity because of the 

additional thermal resistance to the heat transfer that builds around the particles. The 

determination of the contact resistance between the particles and the matrix would be a 

challenging experimental problem because of the dimensions of the detector. To obtain a 

first approximation of the effective thermal conductivity, the contact conductance term is 

neglected in this current effort and thus the Equations 4-11 and 4-15 are used in 

determining the effective thermal conductivities. The use of these two equations assumes 

randomly distributed particles in the matrix. The computer code homog.cpp listed in 

Appendix A has been modified to take into account the dependence of the heat capacity 

and the thermal conductivity of the thermal impedance layer on the volume fraction of 

the particles. 
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Figure 27: Effective thermal conductivity of the doped thermal impedance layer for Kd = 
km/kd = 18.93 and for a range of kd/ah. 

 

The effective thermal conductivity of the thermal impedance layer is shown in Figure 28 

for values of the particle volume fraction of up to fifty percent. An increase of the 

effective thermal conductivity of the matrix occurs as the volume fraction of the particles 

increases. Also presented in that figure are the two limiting cases, Equations 4-16 and 4-

17. The effective thermal conductivity is bounded by these two limiting cases for the 

entire volume fraction range. It is clear that using one of these two limiting cases would 

lead to important errors in the value of the effective thermal conductivity, assuming the 

other models are correct. Equation 4-15 being in good agreement with the Maxwell 

expression, Equation 4-11, for a volume fraction less than twenty percent, it is used for 

computing the effective thermal conductivity for the entire range of values of the particle 

volume fraction. 

Equation 4-12 
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Figure 28: Prediction of the effective thermal conductivity of the doped impedance layer 
for km = 0.084 W/m K and kd = 1.59 W/m K. 
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Figure 29: Active junction transient temperature rise of the detector with doped thermal 
impedance using homogeneous approximations method for a range of values of the 
volume fraction of the particles and kd/(ah) = 0. 
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Figure 29 shows that the temperature of the active junction drops as the volume fraction 

of the particles increases, as expected. As the effective thermal conductivity of the 

impedance layer increases, more heat is transferred through the detector. The matrix 

being doped (perfect contact) with better thermally conducting particles, its ability to 

transfer heat to the layers below is improved. This is in keeping with the electrical 

conductivity experiments reported by Sorensen. Although the heat capacity of the matrix 

increases as the volume fraction of particles increases, Figure 29 shows a faster time 

response of the detector with increased particle volume fraction; that is the lower steady-

state temperature is reached more quickly. 

Figure 30 shows how the steady-state temperature of the active junction and the 

corresponding potential difference decrease when the particle volume fraction is 

increased. The temperature drops from about 300 to 75 µK and the potential difference 

from about 0.28 to 0.008 µV as the volume fraction goes from zero to 50 percent. The 

doping of the matrix by the particles greatly decreases the responsivity of the detector. 

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

Particle volume fraction (%)

T
em

pe
ra

tu
re

 R
is

e 
(m

K
)

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ot

en
ti

al
 D

if
fe

re
nc

e 
(m

V
)

Temperature Rise

Potential Difference

 
Figure 30: Active junction steady-state temperature rise and corresponding potential 
difference (Seebeck coefficient ×  Temperature Rise) for a range of values of the volume 
fraction of the particles. 
 

Seebeck coefficient = KV /10960 6−×  
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Finally the temperature distribution through the detector with the thermal impedance 

layer doped with fifty percent of particles is shown in Figure 31. The temperature 

gradients are smaller than those in Figure 4 but the temperatures of the two layers 

forming each junction are still essentially uniform through the junction. While the 

performance of the thermal impedance layer is diminished, the temperature of the 

reference junction remains that of the aluminum substrate. At this concentration of 

particles, the steady-state condition is reached in about ten milliseconds. That is, the time 

response of the doped detector is almost three times faster than that of the configuration 

without particles.  

Figure 32 shows the steady-state temperature distribution through the detector computed 

using the two-step process model and the macromechanical model with thirty percent of 

particle volume fraction, and that of the undoped thermal detector. The contact 

conductance h is fixed high enough so that it can be assumed perfect contact between the 

matrix and the particles. 

The use of the mixing rules for computing the effective thermal capacity and predictive 

formulas for the effective thermal conductivity of the matrix and particles gives results 

that are in accord with intuition. Although the predictive correlations start to break down 

for higher values of volume fraction, results given by the homogeneous approximations 

encompassed by Equations 4-10 and 4-15 are more realistic than those for the two-step 

model reported in Section 4-1. 
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Figure 31: Temperature profile through the detector doped with fifty percent of carbon 
particles using the homogeneous approximations method to estimate the thermal 
conductivity and the heat capacity of the thermal impedance layer. 
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Figure 32: Comparison of steady-state temperature profile through the detector obtained 
using (a) the two-step model, with (c) that obtained using the micromechanical model, 
and (b) the undoped detector model (the thermal impedance layer of the detector is doped 
with thirty percent of particles for the first two cases).
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4.2.2 Electrical analysis 

4.2.2.1 Effective properties 

The effective electrical conductivity of the system composed of a matrix doped with 

conductive particles is obtained using the same equations derived for the effective 

thermal conductivity (Equations 4-10 through 4-17). The objective is to determine how 

the effective electrical resistance between the upper surface (S1) and the lower surface 

(S2) of the thermal impedance layer, illustrated in Figure 33, changes as the volume 

fraction of the particles increases. The electric current flow is from S1 to S2 and the other 

two boundaries of the thermal impedance are assumed to be electrically insulated. 

 

 

 

 

 

 

Figure 33: Thermal impedance layer doped with particles. 

 

The heterogeneous matrix-particle system is electrically modeled as a homogenous 

material with effective electrical properties. Based upon the effective themal conductivity 

equations, the relative effective electrical conductance is given by 
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where Λ  is the relative effective electrical conductivity; that is, the ratio of the effective 

electrical conductivity of the mixture, σ , to that of the matrix, mσ , and the quantity dΛ  

is the ratio of the electrical conductivity of the spherical particles, dσ , to that of the 

surrounding matrix. 

The electrical conductivity for the two limiting cases, i.e. Case (a) and (b) of Figure 26, 

is, respectively 

     ( ) md ff σσσ −+= 1      (4-19) 

and 

     ( ) md ff σσσ /1//1 −+=  .   (4-20) 

The effective electrical resistance ( )R  between the surfaces S1 and S2 of the thermal 

impedance layer is a function of the cross-sectional area S, the length L, and the effective 

resistivity 




 =

σ
ϕ 1

 of that layer; that is, 

     
S

w
R ϕ=  .     (4-21) 

 

4.2.2.2 Results and Discussions 

The effective electrical resistance is determined using the homogeneous approximations 

for a Parylene layer with embedded carbon particles. The experimental determination of 

the electrical resistance actually underway at NASA Langley Research Center is done for 

a Larc-Si matrix with embedded carbon particles. The thermophysical properties of this 

new material being currently not well known, Parylene is considered in this investigation. 

However, the same equations could be used latter on when the properties of the Larc-Si 

are known. 
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The resistivities of Parylene and carbon are respectively 14106× and 41027.7 ×  11 −−Ω m . 

The resistivity of Parylene being several orders of magnitude higher than that of the 

carbon, Equations 4-18 through 4-20 can be simplified and become respectively, 

     
( )( )
( )( ) mm ff

ff σσσ ×
−−
++=×Λ=

21

21
 ,  (4-22) 

     dfσσ =    ,   (4-23) 

and    
f

m

−
=

1

σσ    .   (4-24) 

Figures 34 and 35 present the behavior of the effective resistivity and electrical resistance 

of the thermal impedance layer as the volume fraction of the particles increases. Although 

the figures show decreasing resistivity and electrical resistance, these two properties still 

remain far too high. The electrical conductivity of the Parylene is so low (σm = 

111410167.0 −−− Ω× m ) [Parylene Coating Services, 1999] that doping it with the carbon is 

not able to sufficiently improve the electrical properties of the thermal impedance. 

Another factor that influences the electrical resistance is the ratio S
w . This multiplying 

factor of the resistivity is equal to 3107 ×  for the dimensions of the thermal impedance 

(square cross-section with mL µ60=  and mw µ4.25= ). The results show that doping 

the thermal impedance leads to a decrease in the electrical resistance. The decrease would 

be greater if the matrix had a much higher electrical conductivity to begin with.  

The limiting cases, Equations 4-23 and 4-24, are not shown in Figure 31 because of their 

order of magnitude compare to that of Equation 4-22.  

The approach presented here could be used to characterize the electrical performance of 

other combinations of matrices and particles, and different dimensions of the thermal 

impedance layer. 
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Figure 34: Effective resistivity of the thermal impedance layer defined by Figure 33 with 
σm = 0.167 ×10-14 Ω−1 m-1. 
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Figure 35: Effective electrical resistance of the thermal impedance layer defined by 
Figure 33 with L = 25.4 µm and S = 60×60 µm2. 

Equation 4-22 

Equation 4-21 with Equation 4-22 
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Chapter 5: Conclusions and Recommendations 

5.1 Conclusions 

Several results follow and conclusions can be drawn from the research reported in this 

thesis: 

1. An analytical model based on the orthogonal expansion technique has been 

developed to characterize the effect on the performance of the thermal 

radiation detector of hypothetical contact resistance between the layers of 

detector.  

2. The model shows that the existence of a contact resistance yields a greater 

temperature response of the detector. For example the steady-state 

temperature response of the detector rises from about 300 µK for a perfect 

contact between layers to 600 µK for an hypothetical 10,000 W/m2 K contact 

conductance between the layers.  

3. The responsivity and time response of the detector both increase as the 

thickness of the thermal impedance layer increases. This suggests that an 

optimum configuration may exist within the constraints of geometry and input 

signal strength. 

4. In order to investigate the possible effect of interface roughness on thermal 

conductivity, the random walk technique has been adapted for solving 

conduction heat transfer problems in two-dimensional geometries with 

specified boundary temperatures or insulated boundaries. The reproducibility 
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of the method is benchmarked by solving the special case of a one-

dimensional heat conduction problem in a flat plate. Both the precision of the 

method and the machine time increase as the number of random walks 

increases. 

5. The roughness effect model is unable to reproduce the decrease of the 

effective thermal conductivity of thin-films layers reported in the literature, 

and must be rejected as a possible explanation of the so-called thin-film effect. 

6. A two-step model is used to characterize the heat conduction in the thermal 

impedance layer doped with conducting particles. The model predicts that by 

doping the thermal impedance layer with particles with higher thermal 

conductivity, the steady-state temperature response of the detector would 

increase, which is a counterintuitive. 

7. The detector with doped thermal impedance layer performance is also 

investigated by determining effective electro- and thermophysical properties 

of the matrix-particle system using micromechanical models. Doping the 

thermal impedance layer of the matrix by conducting particles is shown to 

decrease the thermal impedance of the detector, as expected. As a result the 

detector responsivity decreases significantly. However the time response of 

the doped detector is found to be almost three times faster than that of the 

configuration without particles.  

8. The decrease of the electrical resistance of the Parylene layer doped up to 50 

percent by carbon particles does not have a significant effect on the electrical 

performance of the notional detector. 

9. The thermal contact resistance and the micromechanical mixture models are 

expected to be useful in the ongoing parameter estimation activity in the 

Thermal Radiation Group.    
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5.2 Recommendations 

Several recommendations can be drawn from the research reported in this thesis: 

1 For further research in the development of the notional thin-film 

thermal radiation detector that is the subject of this effort, it is 

suggested that a special effort be dedicated to the determination of the 

unknown properties of the materials of the notional detector. 

2  Although the current research was done using macroscale theories, the 

knowledge of properties such as the ratio of the thickness of a layer 

and the mean free path would give more insight in the understanding 

of the heat transfer process in the thermal radiation detector. 

3  Measurement of the contact resistance between layers or the 

integration of its effect in an equivalent thermal resistance of layers 

will also be valuable. 

4  Efforts should also be oriented toward the determination of other 

combinations of materials for the thermal impedance layer in order to 

decrease the electrical resistance of this layer without sacrificing its 

thermal performance. 
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Appendix A: homog.cpp 

 
****************************************************************************** 
The program homog.cpp computes the temperature rise above the aluminum substrate within the 
thermal radiation at a given location, x, and a given time, t. 
****************************************************************************** 
List of functions 
 
* eigen 
The function eigen returns the determinant of the matrix in Equation 2-47. 
 
* zbrak 
This function is used by the bisection method for root finding. When a function has multiple roots 
in an interval, zbrak determines the subintervals in that interval containing just one root. 
 
* findroot 
findroot is a root finder by bisection method. This function is used to determine the eigenvalues by 
setting the determinant returned by the function eigen equal to zero. 
  
* cprime 
cprime computes sum{x_node[j-1]*(1/K[j-1]-1/K[j])} for j = 1: i. 
 
* Nm 
Nm is the normalization integral. 
 
* Cm 
Cm returns the coefficients of θt,i. 
 
******************************************************************************** 
List of variables 
 
A   matrix in Equation 2-47 
A[] and B[]  vectors of the coefficients of the Xi,m’s 
alpha [ ]  thermal diffusivity vector, m2/s     
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beta   eigenvalue 
guess_beta  guess for the eigenvalue beta 
kij [ ]   vector defined by Equation 2-41 
K [ ]   thermal conductivity vector, W/m.K 
layer   index of a layer 
Mass_density  mass density vector, Kg/m3 
nb   number of eigenvalues 
q   heat flux, W/m2 
Specific_heat [ ] specific heat vector, J/Kg.K 
t   time, s 
t_trans   transient component of the temperature rise, K 
t_ss   steady-state component of the temperature rise, K 
Thickness [ ]  thickness vector, m 
x_node [ ]  layer upper surface coordinate vector, m 
x   location, m 
******************************************************************************** 
 
*Headers and Library functions 
#define WANT_STREAM                       // include.h will get stream functions 
#define WANT_MATH                       // include.h will get math functions 
                                      // newmatap.h will get include.h 
#include "newmatap.h"                      // need matrix applications 
#include "newmatio.h"                        // need matrix output routines 
#ifdef use_namespace 
using namespace NEWMAT;                       // access NEWMAT namespace 
#endif 
#define coef 1.0*pow(10,-6) // define a constant coef 
 
------------------------------------------------------------------------------------------------------------------------ 
 
float eigen(float guess_beta,float rap[],float x_node[],float kij[]) 
{ 
//definition of the matrix 
      Matrix A(11,11); 
 A<<1<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0 
 <<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0 
 <<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0 
 <<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0 
 <<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0 
 <<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0 
 <<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0 
 <<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0 
 <<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0 
 <<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0 
 <<0<<0<<0<<0<<0<<0<<0<<0<<0<<0<<0; 
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 A(1,1)=sin(guess_beta*rap[1]); 
 A(1,2)=-sin(guess_beta*rap[2]*x_node[1]/x_node[2]); 
 A(1,3)=-cos(guess_beta*rap[2]*x_node[1]/x_node[2]); 
 A(2,1)=kij[1]*cos(guess_beta*rap[1]); 
 A(2,2)=-cos(guess_beta*rap[2]*x_node[1]/x_node[2]); 
 A(2,3)=sin(guess_beta*rap[2]*x_node[1]/x_node[2]); 
 A(3,2)=sin(guess_beta*rap[2]); 
 A(3,3)=cos(guess_beta*rap[2]); 
 A(3,4)=-sin(guess_beta*rap[3]*x_node[2]/x_node[3]); 
 A(3,5)=-cos(guess_beta*rap[3]*x_node[2]/x_node[3]); 
 A(4,2)=kij[2]*cos(guess_beta*rap[2]); 
 A(4,3)=-kij[2]*sin(guess_beta*rap[2]); 
 A(4,4)=-cos(guess_beta*rap[3]*x_node[2]/x_node[3]); 
 A(4,5)=sin(guess_beta*rap[3]*x_node[2]/x_node[3]); 
 A(5,4)=sin(guess_beta*rap[3]); 
 A(5,5)=cos(guess_beta*rap[3]); 
 A(5,6)=-sin(guess_beta*rap[4]*x_node[3]/x_node[4]); 
 A(5,7)=-cos(guess_beta*rap[4]*x_node[3]/x_node[4]); 
 A(6,4)=kij[3]*cos(guess_beta*rap[3]); 
 A(6,5)=-kij[3]*sin(guess_beta*rap[3]); 
 A(6,6)=-cos(guess_beta*rap[4]*x_node[3]/x_node[4]); 
 A(6,7)=sin(guess_beta*rap[4]*x_node[3]/x_node[4]); 
 A(7,6)=sin(guess_beta*rap[4]); 
 A(7,7)=cos(guess_beta*rap[4]); 
 A(7,8)=-sin(guess_beta*rap[5]*x_node[4]/x_node[5]); 
 A(7,9)=-cos(guess_beta*rap[5]*x_node[4]/x_node[5]); 
 A(8,6)=kij[4]*cos(guess_beta*rap[4]); 
 A(8,7)=-kij[4]*sin(guess_beta*rap[4]); 
 A(8,8)=-cos(guess_beta*rap[5]*x_node[4]/x_node[5]); 
 A(8,9)=sin(guess_beta*rap[5]*x_node[4]/x_node[5]); 
 A(9,8)=sin(guess_beta*rap[5]); 
 A(9,9)=cos(guess_beta*rap[5]); 
 A(9,10)=-sin(guess_beta*rap[6]*x_node[5]/x_node[6]); 
 A(9,11)=-cos(guess_beta*rap[6]*x_node[5]/x_node[6]); 
 A(10,8)=kij[5]*cos(guess_beta*rap[5]); 
 A(10,9)=-kij[5]*sin(guess_beta*rap[5]); 
 A(10,10)=-cos(guess_beta*rap[6]*x_node[5]/x_node[6]); 
 A(10,11)=sin(guess_beta*rap[6]*x_node[5]/x_node[6]); 
 A(11,10)=cos(guess_beta*rap[6]); 
 A(11,11)=-sin(guess_beta*rap[6]); 
 
 return A.LogDeterminant().Value(); //computes the determinant 
} 
 
//---------------------------------------------------------------------------------------------------------------------- 
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void zbrak(float (*fx)(float x,float rap[],float x_node[],float kij[]),float x1,float x2,int n ,float 
xb1[], float xb2[], int *nb,float rap[],float x_node[],float kij[]) 
{ 
 int nbb=0,i; 
 float x,fp,fc,dx; 
 x=x1; 
 dx=(x2-x1)/n; 
 fp=(*fx)(x1,rap,x_node,kij); 
 
 for (i=1;i<=n;i++) 
 { 
         fc=(*fx)(x+=dx,rap,x_node,kij); 
            if (fp*fc<=0.0) 
  { 
    xb1[++nbb]=x-dx; 
     xb2[nbb]=x; 
     if (*nb==nbb)return; 
  } 
           fp=fc; 
 } 
 *nb=nbb; 
} 
 
//---------------------------------------------------------------------------------------------------------------------- 
 
 
void find_root (float (*fx)(float x,float rap[],float x_node[],float kij[]),float xb1[],float xb2[], float 
beta[],int nb,float rap[],float x_node[],float kij[]) 
{ 
 for (int i=1;i<=nb;i++) 
   { 
         float x1=xb1[i]; 
        float x2=xb2[i]; 
        float x_mid, estimated_root; 
        float precision_x = pow(10,-5); 
         int number_iteration=0,max_iteration=50; 
 
        if (fabs((*fx)(x1,rap,x_node,kij))<=precision_x) 
               estimated_root=x1; 
 
         else if (fabs((*fx)(x2,rap,x_node,kij))<=precision_x) 
                  estimated_root=x2; 
 
        else if ((*fx)(x1,rap,x_node,kij)*(*fx)(x2,rap,x_node,kij)>0) 
  { 
       cout<<"There’s no root between x1 and x2.\n"; 
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       exit(EXIT_FAILURE); 
  } 
 
      else if ((*fx)(x1,rap,x_node,kij)*(*fx)(x2,rap,x_node,kij)<0) 
           { 
    do 
               { 
       x_mid=0.5*(x1+x2); 
 
      if ((*fx)(x_mid,rap,x_node,kij)==0) 
            estimated_root=x_mid; 
  
            else if ((*fx)(x1,rap,x_node,kij)*(*fx)(x_mid,rap,x_node,kij)<0) 
    x2=x_mid; 
        else  
    x1=x_mid; 
 
          number_iteration+=1; 
              } 
 while (number_iteration<=max_iteration&fabs(0.5*(x2-
x1))>precision_x&fabs((*fx)(x_mid,rap,x_node,kij))>precision_x); 
 estimated_root=x_mid; 
} 
 
  beta[i]=estimated_root; 
} 
} 
 
//---------------------------------------------------------------------------------------------------------------------- 
 
float cprime(int i,float x_node[], float K[]) 
{ 
   float result=0.0; 
     if (i==1) 
 return 0; 
     else 
 {for (int j=2;j<=i;j++) 
   result+=x_node[j-1]*(1/K[j-1]-1/K[j]);} 
    return result; 
}   
 
//---------------------------------------------------------------------------------------------------------------------- 
 
float Nm(float A[],float B[],float K[],float x_node[],float alpha[],float b) 
{ 
   float sum_1=0.0; 
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   for(int i=1;i<=6;i++) 
 { 
  float u=2*x_node[i-1]*b/sqrt(alpha[i]); 
  float v=2*x_node[i]*b/sqrt(alpha[i]); 
  sum_1+=K[i]/alpha[i]*(0.5*(A[i]*A[i]+B[i]*B[i])*(x_node[i]-x_node[i-1])+ 
        0.5/b*A[i]*B[i]*sqrt(alpha[i])*(cos(u)-cos(v))+ 
        sqrt(alpha[i])/(4.0*b)*(A[i]*A[i]-B[i]*B[i])*(sin(u)-sin(v))); 
 } 
 return sum_1; 
} 
//---------------------------------------------------------------------------------------------------------------------- 
 
float Cm(float A[],float B[],float K[],float x_node [],float alpha[],float b,float q) 
{ 
   float sum_2=0.0; 
   for (int i=1;i<=6;i++) 
 { 
  float u=x_node[i-1]*b/sqrt(alpha[i]); 
  float v=x_node[i]*b/sqrt(alpha[i]); 
  sum_2+=-q/(sqrt(alpha[i])*b*b)*((A[i]*cprime(i,x_node,K)*K[i]*b-B[i]*sqrt(alpha[i]))* 
     (cos(u)-cos(v))-(A[i]*sqrt(alpha[i])+B[i]*cprime(i,x_node,K)*K[i]*b)* 
     (sin(u)-sin(v))+A[i]*b*(x_node[i-1]*cos(u)-x_node[i]*cos(v))- 
     B[i]*b*(x_node[i-1]*sin(u)-x_node[i]*sin(v))); 
  
 } 
  
return (sum_2/Nn(A,B,K,x_node,alpha,b)); 
} 
//---------------------------------------------------------------------------------------------------------------------- 
 
// Beginning of the main program 
 
int main() 
{   
     
    // Initialization  

float t=0.02;//time (ms) 
float x=39.4*pow(10,-6);//location in the detector 
float q=1.0;//heat flux q=1W/m2.K 
float K[7]={0,71.6,60,0.084,71.6,60,0.209};//layers conductivity (W/m.K) 
float Thickness[7]={0,coef,coef,25.4*coef,coef,coef,10*coef};//layers  thickness (m) 
float Specific_heat[7]={0,133.0,200.0,712.0,133.0,200.0,669.0};//specific heat(J/kg.K) 
float Mass_density[7]={0,21450.0,6880.0,1289.0,21450.0,6880.0,1400.0};//(kg/m^3) 
float t_trans=0;//initialization of the transient temperature 
float phi; 
int layer;// index of layer  
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float alpha[7]={0};//layers diffusivity (m^2/s) 
float rap[7]={0};//rap gives the ratio x_node[i]/sqrt[alpha[i]] for computing eta[i] 
float x_node[7]={0.0}; 

   for (int i=1;i<7;i++) 
           { 
   x_node[i]=x_node[i-1]+Thickness[i]; 
   alpha[i]=K[i]/(Mass_density[i]*Specific_heat[i]); 
   rap[i]=x_node[i]/sqrt(alpha[i]); 
      } 
 
     float kij[6]={0};//kij gives the value of (K[i]/K[i+1])*sqrt(alpha[i+1]/alpha[i]) 
     for (i=1;i<6;i++) 
      { 
     kij[i]=(K[i]/K[i+1])*sqrt(alpha[i+1]/alpha[i]); 
      } 

int nb=10; //nb is the maximum of eigenvalues sought 
float beta[11]={0}; 
float xb1[11];//size always nb+1 
float xb2[11];//size always nb+1 
zbrak(eigen,0.0,290.0,10,xb1,xb2,&nb,rap,x_node,kij); 

 
     find_root (eigen,xb1,xb2,beta,nb,rap,x_node,kij);//computes the eigenvalues 
 

//find the layer index corresponding to the value of x 
 

 if      (x>0.0 && x<=coef) 
   layer=1; 
 
 else if (x>coef && x<=2*coef) 
  layer=2; 
 
 else if (x>2*coef && x<=27.4*coef) 
  layer=3; 
 
 else if (x>27.4*coef && x<=28.4*coef) 
  layer=4; 
 
 else if (x>28.4*coef && x<=29.4*coef) 
  layer=5; 
 else   
  layer=6; 
 
 
       for (int indbeta=1;indbeta<=nb;indbeta++) 
           { 
              float b=beta[indbeta]; 
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        float A[7]={0.0,1.0}; 
          float B[7]={0.0,0.0}; 
     
        for (i=1;i<=5;i++) 
              { 
            float eta=rap[i]*b; 
            float c=x_node[i]*rap[i+1]*b/x_node[i+1]; 
  

A[i+1]=sin(c)*(A[i]*sin(eta)+B[i]*cos(eta))+kij[i]*cos(c)*(A[i]*cos(eta)-B[i]*sin(eta)); 
B[i+1]=cos(c)*(A[i]*sin(eta)+B[i]*cos(eta))-kij[i]*sin(c)*(A[i]*cos(eta)-B[i]*sin(eta)); 

     
               } 
  

phi=A[layer]*sin(b*x/sqrt(alpha[layer]))+B[layer]*cos(b*x/sqrt(alpha[layer]));  
t_trans+=exp(-b*b*t)*Cn(A,B,K,x_node,alpha,b,q)*phi;//computes the transient component  

of the temperature rise. 
            
         }  
 
    float t_ss=q*(x/K[layer]+cprime(layer,x_node,K)); //steady-state component. 
 

//displays on the screen the values of the location, time, and temperature rise 
 cout<<"\nThe temperature rise at x = "<<x<<" at t="<<t<<" is"<<(t_trans+t_ss)*pow(10,6) 
<<" _micro_K"<<"\n\n"; 

    
 
  return 0; 
} 
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Appendix B:  randwalk2d.cpp 

 
 
******************************************************************************** 
The computer program randwalk2d.cpp determines the temperature at a given location using a two-
dimensional random walk algorithm. The boundary conditions are specified temperature at the 
upper and lower surfaces, and insulated at the two other surfaces.  
******************************************************************************** 
 
 
// C++ headers 
 
#include<iostream.h> 
#include<math.h> 
#include<stdlib.h> 
#include<stdio.h> 
#include<time.h> 
#include<fstream.h> 
//---------------------------------------------------------------------------------------------------------------------- 
 
List of variables 
 
N number of random walks 
nx number of nodes in the x direction 
ny number of nodes in the y direction 
L dimension in the x direction, m 
H dimension in the y direction, m 
dx step size in the x direction, m 
dy step size in the y direction, m 
r random number 
(xi,yi) coordinates of the starting point, m 
T_1 temperature of the upper surface, K 
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T_2 temperature of the lower surface, K 
 
 
ofstream Point5_file("result.dat");//create a file called result to store the temperature distribution. 
 
float funct_1(float x,float H)    //the upper and lower boundary  
{ return 0*sin(3*x)+0.5; }   // of the surface are represented by 
float funct_2(float x,float H)  // trigonometric functions 
{ return 0.0*cos(x)-0.5; } 
 
 
// start of the main program 
 
int main() 
{ 
 
//Initialization 
     clock_t start_time=clock(); 
     int N=1500; // number of simulations at each node.  
     int nx=100;// number of discrete points in the x-direction 
     float L=10.0;//dimension in the x direction, m 
     float H=1; //dimension in the y direction, y 
     int ny=100;// number of discrete points in the y-direction 
     float dx=L/nx;//step size in the x-direction 
     float dy=H/ny;//step size in the x-direction 
     float r;//random number; 
     float xi=dx/2.0;//x coordinate 
     float yi=dy/2.0;//y coordinate  
     float T_1=20;//temperature of the upper surface 
     float T_2=0;//temperature of the lower surface 
     float temp=0.0; 
 
//change the seed of the random number generator 
 int seed=(int) time(NULL); 
 srand(seed); 
 
   
  for (int i=1;i<=N;i++) 
     { 
        float x=xi; 
        float y=yi; 
 

while (y<funct_1(x,H) && y>funct_2(x,H)) 
      { 
     if(x = = ) 
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       { 
   x+=dx/2; 

          y=y; 
  } 

 
    if(x = = L) 
 
       { 

   x-=dx/2; 
         y=y; 

   } 
   
    r=rand()/(RAND_MAX+1.0); // drawing of the random number 
 
 
// search for direction 
 

if (r<0.25) 
               { 
   y=y; 
   if (x = = dx/2) 
      x- = dx/2; 
   else 
     x- = dx; 
          } 
  
     else if(r>=.25 && r<0.5) 
          { 
    y = y; 
    if (x = =L-dx/2.0) 
    x+ = dx/2; 
    else 
        x+ = dx; 
         
             } 
     
     else if (r>=0.5 && r<0.75) 
           

{ 
         x=x; 
         y-=dy; 

            } 
     
     else 
              { 
        x = x; 
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             y+=dy; 
                }; 
                 
    }  
 
// temperature computation after a boundary node is reached 
 
     if (y>0) 
        temp+=T_1; 
     else 
 
        temp+=T_2; 
 
}  
 
//write in the file result  
Point5_file<<xi<<" "<<yi<<" "<<temp/N<<"\n"; 
 
//compute the machine time 
 
clock_t stop_time=clock(); 
cout<<"Time taken = "<<(stop_time-start_time)/CLOCKS_PER_SEC<<" secs.\n"; 
 
return 0; 
 
}  
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Appendix C: eff_cond.cpp 

 
 
******************************************************************************** 
This code uses a finite difference scheme to determine the temperature profile in a two-dimensional 
geometry. The temperature distribution obtained is used to approximate the heat flux in the y 
direction for the geometry in Figure 19. Equation 3-15 is then used to compute the ratio of the 
effective and bulk conductivities. 
********************************************************************************  
 
 
//C++ headers  
 
#include<iostream.h> 
#include<math.h> 
#include<stdio.h> 
#include<fstream.h> 
 
//creation of different files 
 
ofstream Point1_file("fd2d.dat");  //temperature file 
ofstream Point2_file("x.dat");  //x coordinate 
ofstream Point3_file("y.dat");            //y coordinate 
ofstream Point4_file("h_ratio.dat"); //ratio R/(R+H) and k_eff/k_bulk 
 
 
const int ii=5;//number of control volumes  in the x_direction 
const int kk=20;//number of control volume by which R has been divided 
 
 
//The function convergence checks if the convergence criteria during the computation of the 
// temperature is satisfied 
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float convergence (float (*M_1)[ii+3],float (*M_2)[ii+3],int jj) 
{ 
  float sum=0.0; 
 
  float (*M)[ii+3]=new float [jj+kk+3][ii+3]; 
   
  for(int j=1;j<=jj+kk+2;j++) 
 
 for (int i=1;i<=ii+2;i++) 
 
  { 
    M[j][i]=M_2[j][i]-M_1[j][i]; 
 
     sum+=M[j][i]; 
  } 
 
return fabs(sum)/((jj+kk)*ii); 
} 
 
//beginning of the main program 
 
int main() 
{ 
 
//Initialization 
 
int jj=1; //number of control volumes in the y direction 
float (*Tj)[ii+3]=new float [jj+kk+3][ii+3]; 
float L=0.5;//length of the surface  
float R=0.08;// height of the roughness 
float H_ini=0.1; 
float H=H_ini;//initial value of H  
float k_bulk=405.46;//bulk conductivity (W/m.K) 
float x[ii+3]={0}; 
float y_step=H_ini/4;//constant step size in the y-direction. 
 
//the step size being constant in the y-direction, when R increases 
//the number of control volume jj increases also. This keeps the size of the control volumes 
//constant 
 
for( int step=1;step<=10;step++)// this loop set the number of values of H 
{       //that will be considered, R being constant. 
 
H+=0.2;              //increment of H 
jj=H/y_step;   //new number of control volumes in the y-direction 
float total_heat=0.0;  //initial value of the total heat flux 
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float (*k)[ii+3]=new float [jj+kk+3][ii+3];//thermal conductivity matrix 
 
for (int j=1;j<=jj+1;j++) 

for (int i=1;i<=ii+2;i++) 
k[j][i]=k_bulk; 

 
for (j=jj+2;j<=jj+kk+2;j++) 
   for (int i=1;i<=ii+2;i++) 
      { 
 if (i%2= =0)       // specifying this high value for the thermal conductivity   
        k[j][i]=pow(10,19); // sets the temperature of those control volumes equals 
 else                // to the surface temperature and models the geometry in Figure 18. 
           k[j][i]=k_bulk;  // the remaining control volumes are assigned the bulk conductivity. 
      } 
 
 
float dx[ii+3]={0}; 
for (int i=2;i<=ii+1;i++) //step size in the x-direction 
     dx[i]=L/ii; 
 
float *dy=new float [jj+kk+3];   //initialization of the step size in the y direction 
dy[0]=0, dy[1]=0, dy[jj+kk+3]=0; 
 
 
for ( j=2;j<=jj+1;j++) 
     dy[j]=H/jj;  
  
for ( j=jj+2;j<=jj+kk+1;j++) 
     dy[j]=R/kk; 
 
------------------------------------------------------------------------------------------------------------------------ 
//creation vectors of the coordinates of the control volumes 
//x_coordinates 
 for (i=2;i<=ii+2;i++) 
        x[i]=x[i-1]+0.5*(dx[i-1]+dx[i]); 
 
 
//y_coordinates 
 float (*y)=new float[jj+kk+3]; 
 for (j=1;j<=jj+kk+2;j++) 
  y[j]=y[j-1]+0.5*(dy[j-1]+dy[j]); 
   
 //--------------------------------------------------------------------------------------------------------------------- 
//Initialization of the matrices  
//These matrices are defined by Vick [1998]. 
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float (*aE)[ii+3]=new float[jj+kk+3][ii+3]; 
float (*aW)[ii+3]=new float[jj+kk+3][ii+3]; 
float (*aN)[ii+3]=new float[jj+kk+3][ii+3]; 
float (*aS)[ii+3]=new float[jj+kk+3][ii+3]; 
float (*a)[ii+3]=new float[jj+kk+3][ii+3]; 
float (*b)[ii+3]=new float[jj+kk+3][ii+3]; 
float (*p)[ii+3]=new float[jj+kk+3][ii+3]; 
float (*q)[ii+3]=new float[jj+kk+3][ii+3]; 
//---------------------------------------------------------------------------------------------------------------------- 
//Boundary conditions 
 
// at  x=0   //insulated 
for(j=1;j<=jj+kk+2;j++) 
{ 
  aE[j][1]=2*k[j][2]/dx[2]; 
  a[j][1]=aE[j][1];  
  b[j][1]=0; 
} 
 
 
// at  x=L   //insulated 
for(j=1;j<=jj+kk+2;j++) 
{ 
  aW[j][ii+2]=2*k[j][ii+1]/dx[ii+1]; 
  a[j][ii+2]=aW[j][ii+2]; 
  b[j][ii+2]=0.0; 
} 
 
 
 
 
// at y=0   //specified temperature 
for(i=1;i<=ii+2;i++) 
{ 
  aN[1][i]=0; 
   a[1][i]=1; 
   b[1][i]=0.0;   //temperature specified is 0 
} 
 
 
// at y=H   //specified temperature 
for(i=1;i<=ii+2;i++) 
{ 
 aS[jj+kk+2][i]=0; 
 a[jj+kk+2][i]=1; 
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 b[jj+kk+2][i]=100;   //specified temperature 100 K 
} 
//--------------------------------------------------------------------- 
// Computation of the different coefficients aE,aN,aW,aO,a,b      
 
for (i=2;i<=ii+1;i++) 
{ 
 for(j=2;j<=jj+kk+1;j++) 
 { 
  aW[j][i]=2*k[j][i-1]*k[j][i]*dy[j]/(dx[i-1]*k[j][i]+dx[i]*k[j][i-1]); 
    aE[j][i]=2*k[j][i]*k[j][i+1]*dy[j]/(dx[i]*k[j][i+1]+dx[i+1]*k[j][i]); 
  aS[j][i]=2*k[j-1][i]*k[j][i]*dx[i]/(dy[j-1]*k[j][i]+dy[j]*k[j-1][i]); 
  aN[j][i]=2*k[j][i]*k[j+1][i]*dx[i]/(dy[j]*k[j+1][i]+dy[j+1]*k[j][i]); 
  b[j][i]=0;//no source term 
  a[j][i]=aW[j][i]+aE[j][i]+aS[j][i]+aN[j][i]; 
 } 
} 
 
//---------------------------------------------------------------------------------------------------------------------- 
 
//initialization of the temperature at all the nodes 
 
float (*T_guess)[ii+3]=new float[jj+kk+3][ii+3]; 
 
for(j=1;j<=jj+kk+2;j++) 
    for (int i=1;i<=ii+2;i++) 
 T_guess[j][i]=0.0; 
 
float (*T)[ii+3]=new float[jj+kk+3][ii+3]; 
 
for(j=1;j<=jj+kk+2;j++) 
    for (int i=1;i<=ii+2;i++) 
 T[j][i]=T_guess[j][i]; 
 
float (*Ti)[ii+3]=new float[jj+kk+3][ii+3];  
float (*bi)[ii+3]=new float[jj+kk+3][ii+3]; 
float (*bj)[ii+3]=new float[jj+kk+3][ii+3]; 
 
for (j=2;j<=jj+kk+1;j++) 
 for (int i=1;i<=ii+2;i++) 
  bi[j][i]=b[j][i]+aS[j][i]*T[j-1][i]+aN[j][i]*T[j+1][i]; 
 
float conv_crit=1; //initialization of the convergence criteria 
 
// determination of the temperature by iterations in the x and the y direction by using the properties 
// of tridiagonal matrices 
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while (conv_crit>pow(10,-4)) 
{ 
  //sweep in the y_direction 
 
   for (j=2;j<=jj+kk+1;j++) 
     { 
 p[j][1]=aE[j][1]/a[j][1]; 
 q[j][1]=b[j][1]/a[j][1]; 
  
 for (i=2;i<=ii+2;i++) 
    {     
     p[j][i]=aE[j][i]/(a[j][i]-aW[j][i]*p[j][i-1]); 
     q[j][i]=(bi[j][i]+aW[j][i]*q[j][i-1])/(a[j][i]-aW[j][i]*p[j][i-1]); 
    } 
 
 T[j][ii+2]=q[j][ii+2]; 
  
 for (i=ii+1;i>=1;i=i-1) 
    T[j][i]=p[j][i]*T[j][i+1]+q[j][i]; 
 
 for (int u=2;u<=jj+kk+1;u++) 
     for (i=1;i<=ii+2;i++) 
  bi[u][i]=b[u][i]+aS[u][i]*T[u-1][i]+aN[u][i]*T[u+1][i]; 
      } 
 
 
   for(j=1;j<=jj+kk+2;j++) 
 {for(i=1;i<=ii+2;i++) 
  {Ti[j][i]=T[j][i];}} 
 
 
   //sweep in the x_direction 
 
   for (i=2;i<=ii+1;i++) 
 for(j=1;j<=jj+kk+2;j++) 
  bj[j][i]=b[j][i]+aW[j][i]*T[j][i-1]+aE[j][i]*T[j][i+1]; 
 
 
   for (i=2;i<=ii+1;i++) 
     { 
 p[1][i]=aN[1][i]/a[1][i]; 
 q[1][i]=b[1][i]/a[1][i]; 
 
 for (j=2;j<=jj+kk+2;j++) 
    { 
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  p[j][i]=aN[j][i]/(a[j][i]-aS[j][i]*p[j-1][i]); 
  q[j][i]=(bj[j][i]+aS[j][i]*q[j-1][i])/(a[j][i]-aS[j][i]*p[j-1][i]); 
 
    } 
 T[jj+kk+2][i]=q[jj+kk+2][i]; 
  
 for(j=jj+kk+1;j>=1;j=j-1) 
     T[j][i]=p[j][i]*T[j+1][i]+q[j][i]; 
  
 for(j=1;j<=jj+kk+2;j++) 
     for (int v=2;v<=ii+1;v++) 
       bj[j][v]=b[j][v]+aW[j][v]*T[j][v-1]+aE[j][v]*T[j][v+1]; 
      } 
    for(j=1;j<=jj+kk+2;j++) 
 for(i=1;i<=ii+2;i++) 
  Tj[j][i]=T[j][i]; 
 
conv_crit=convergence (Tj,Ti,jj); //compute the convergence value 
} 
 
 Tj[jj+kk+2][1]=100; 
 Tj[jj+kk+2][ii+2]=100; 
 
for(j=1;j<=jj+kk+2;j++) 
 {     
   for(i=1;i<=ii+2;i++) 
   Point1_file<<Tj[j][i]<<"  "; 
           Point1_file<<"\n"; 
 } 
for (i=1;i<=ii+2;i++)  
  Point2_file<<x[i]<<"\n";// write the value of x in a file 
 
for (j=1;j<=jj+kk+2;j++)  
  Point3_file<<y[j]<<"\n";// write the value of y in a file 
 
for (i=2;i<=ii+1;i++) 
 total_heat+=k_bulk*dx[i]*2/dy[2]*(Tj[2][i]-Tj[1][i]); 
 
//computation of ratio = k_eff/k_bulk 
 
float ratio=total_heat*(H+ampl/2)/(L*k_bulk*(b[jj+kk+2][i]-b[1][i])); 
Point4_file<<R/(R+H)<<" "<<ratio<<"\n"; // write the values of R/(R+H) and ratio in a file. 
} 
return 0; 
} 
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Appendix D: heterog.cpp 

 
******************************************************************************** 
The program heterog.cpp is adapted from Vick and Scott [1998]. It computes the one-dimensional 
transient temperature distribution of the thermal radiation detector with doped thermal impedance, 
using the two-step process as developed in Section 4-1. 
******************************************************************************** 
 
//Formulation 

------------------------------------------------------------------------------------------------------------------------ 
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------------------------------------------------------------------------------------------------------------------------ 

//C++ headers 

#include<math.h> 
#include<iostream.h> 
#include<fstream.h> 
#include<stdio.h> 
#define coef pow(10,-6) 
 
//creation of data files 
 
ofstream Point1_file("Matrix_temp.dat"); //matrix temperature file 
ofstream Point2_file("Particles_temp.dat");// particles temperature file 
ofstream Point3_file("y.dat");   //location  
ofstream Point4_file("Temp_act_junct.dat"); //active junction temperature file 
 
const int t_cvy=60;//total cv in the y_direction=sum of ny 
 
//main program 
 
int main() 
{ 
//initialization 
 
double density=0.01;//volume fraction of the particles 
double dp=pow(10,-7);//diameter of the particles, m 
double rocp=1860.2*pow(10,3);//heat capacity  the particles 
double vp=3.14*pow(dp,3)/6.0;//volume of a particle 
double Np=density/vp;//number of particles in the thermal impedance layer per 

volume; 
double h=10; contact conductance, W/m2.K 
double Ap=3.14*dp*dp; //surface area of the particles, m2 
float Q=pow(10,6);//heat flux, W/m2 
double tmax=0.1;// time maxi, s 
int n_time=100; // number of time steps 
int count=1;    
double dt=tmax/n_time;// time step, s  
double t=0; //time 
double kp=1.59;//thermal conductivity of the particles, W/m,K 
double H[7]={0,coef,coef,25.4*coef,coef,coef,10*coef};//thickness of the layers 
double conduct[7]={0,71.6,60,0.084,71.6,60,0.209};//  layers conductivity 
(W/m.K) 
double ny[7]={0,10,10,10,10,10,10};//number of control volumes of each layer  
double np[7]={0,0,0,Np,0,0,0};//number of particles 
double Specific_heat[7]={0,133.0,200.0,712.0,133.0,200.0,669.0};//specific 
heat(J/kg.K) 
double Mass_density[7]={0,21450.0,6880.0,1289.0,21450.0,6880.0,1400.0};//Mass 
density of the layers(kg/m^3) 
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int jj[7]={0}; 
double bio=h*dp/(6*kp);//computes the Biot number 
double roc[7]={0};//heat capacity of the layers 
for (int i=1;i<=6;i++) 
  { 
   roc[i]=Mass_density[i]*Specific_heat[i]; 
   jj[i]=jj[i-1]+ny[i]; 
  } 
 
double km[t_cvy+3]={0.0}; 
double Rocm[t_cvy+3]={0.0}; 
double K[t_cvy+3]={0.0}; 
double Cm[t_cvy+3]={0.0}; 
double Cp[t_cvy+3]={0.0}; 
 
int c=1; 
for (int m=1;m<=6;m++) 
{ 
   for (int j=c;j<=(jj[m]+2);j++) //effectives properties of the layers of the 

//thermal detector 
       { 
  km[j]=conduct[m]; 
  Rocm[j]=roc[m]; 
  K[j]=(1-np[m]*vp)*km[j]; 
  Cm[j]=(1-np[m]*vp)*Rocm[j]; 
  Cp[j]=np[m]*vp*rocp; 
       } 
   c=jj[m]+2; 
} 
 
double dy[t_cvy+3]={0.0}; //step size vector, m 
double y[t_cvy+3]={0.0};  //location vector, m 
 
int d=2; 
for(m=1;m<=6;m++) 
   { 
       for (int j=d;j<=jj[m]+1;j++) 
     dy[j]=H[m]/ny[m]; 
      d=jj[m]+2; 
    } 
 
for (int j=2;j<=t_cvy+2;j++) 
  y[j]=y[j-1]+0.5*(dy[j-1]+dy[j]); 
 
for (j=1;j<=t_cvy+2;j++) 
   Point3_file<<y[j]<<"\n"; 
 
//Initial temperature 
double Tmprev[t_cvy+3]={0.0};//matrix 
double Tpprev[t_cvy+3]={0.0};//particles; 
 
Point4_file<<0<<" "<<0<<"\n";//initial value of the active junction temperature. 
 
double aN[t_cvy+3]={0.0}; 
double aS[t_cvy+3]={0.0}; 
double a[t_cvy+3]={0.0}; 
double b[t_cvy+3]={0.0}; 
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double p[t_cvy+3]={0.0}; 
double q[t_cvy+3]={0.0}; 
double amO[t_cvy+3]={0.0}; 
double apO[t_cvy+3]={0.0}; 
double Tm[t_cvy+3]={0.0}; 
double Tp[t_cvy+3]={0.0}; 
-------------------------------------------------------------------------------- 
//Boundary conditions 
 
// @ y=0  specified temperature, 0 K 
 aN[1]=0; 
 a[1]=1; 
 b[1]=0; 
 
// @ y=H  specified heat flux Q 
 aS[t_cvy+2]=2*km[t_cvy+1]/dy[t_cvy+1]; 
 a[t_cvy+2]=aS[t_cvy+2]; 
 b[t_cvy+2]=Q; 
-------------------------------------------------------------------------------- 
 
//Computation of the different coefficients aN,aS,amO,apOa,b  
 
for(j=2;j<=t_cvy+1;j++) 
 { 
  aS[j]=2*K[j-1]*K[j]/(dy[j-1]*K[j]+dy[j]*K[j-1]); 
  aN[j]=2*K[j]*K[j+1]/(dy[j]*K[j+1]+dy[j+1]*K[j]); 
  amO[j]=Cm[j]*dy[j]/dt; 
  apO[j]=Cp[j]*h*Np*Ap*dy[j]/(Cp[j]+h*Np*Ap*dt); 
  a[j]=amO[j]+apO[j]+aS[j]+aN[j]; 
 } 
-------------------------------------------------------------------------------- 
 
//computation of the matrix and particle temperature by solving the coupled 
//Equations 3 and 4. Equation 4 is solved by using the tridiagonal matrix 
properties.  
 
for (count=1;count<=n_time;count++) 
{ 
t+=dt; 
 
 for(j=2;j<=t_cvy+1;j++) 
    b[j]=amO[j]*Tmprev[j]+apO[j]*Tpprev[j]; 
  
     p[1]=aN[1]/a[1]; 
     q[1]=b[1]/a[1]; 
 
 
for (j=2;j<=t_cvy+2;j++) 
    { 
 p[j]=aN[j]/(a[j]-aS[j]*p[j-1]); 
 q[j]=(b[j]+aS[j]*q[j-1])/(a[j]-aS[j]*p[j-1]); 
    } 
 
Tm[t_cvy+2]=q[t_cvy+2]; 
 
for(j=t_cvy+1;j>=1;j=j-1) 
      Tm[j]=p[j]*Tm[j+1]+q[j]; 
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for (j=1;j<=t_cvy+2;j++) 
     {  
       Tmprev[j]=Tm[j]; 
       Point1_file<<t*pow(10,3)<<" "<<Tm[j]<<"\n"; 
      } 
//write the temperature of the active junction in a file 
Point4_file<<t*pow(10,3)<<" "<<Tm[jj[4]+1]<<"\n"; 
 
 
for (j=jj[2]+2;j<=jj[3]+1;j++) 
      { 
      Tp[j]=(h*Np*Ap*dt*Tm[j]+Cp[j]*Tpprev[j])/(Cp[j]+h*Np*Ap*dt); 
 //write the temperature of the particles in a file 
 Point2_file<<t<<" "<<Tp[j]<<"\n"; 
      } 
 
Point5_file<<t*pow(10,3)<<" "<<Tm[jj[2]+4]<<" "<<Tp[jj[2]+4]<<"\n"; 
 
 
for (j=1;j<=t_cvy+2;j++) 
       Tpprev[j]=Tp[j];   
 
} 
 
return 0; 
} 
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