Acknowledgment

I would like to express my deepest gratitude to my advisor, Dr. George J. Flick, for his support and guidance throughout the research. His continued support led me to the right way.

I would also like to extend my appreciation to my committee members: Dr. Joseph E. Marcy; and Dr. William N. Eigel for their advice during my research.

My sincere appreciation is extended to Dr. Gene H. Haugh for his invaluable support and advise on the physical properties evaluation, Dr. Daniel Kauffman at the L.D. Amory Seafood Company, and Neptune Fisheries Seafood Company who initiated this project.

Special thanks to Joe Boling, Harriet Williams, and Mark Tolbert for their assistance in the laboratory experiment.

I would also like to extend my deepest gratitude to my family. Without their encouragement, I would not have a chance to be at Virginia Tech. Also my best friend, Mr. Yuthasak Urathamakul, who was always with me during the project.
Table of contents

Abstract ... ii
Acknowledgment ... iv
List of figures .. vii
List of tables ... ix

Section I: Literature Review... 1
1. Squid .. 1
 1.1 North Atlantic long-finned squid (*Loligo pealei*) 1
 1.2 North Atlantic short-finned squid (*Illex illecebrosus*) 3
 1.3 The structure of squid .. 3
 1.4 The chemical composition of squid .. 4
2. Engineered foods .. 9
 2.1 Definition of engineered foods ... 9
 2.2 History/Background ... 10
3. Hydrocolloids and gums .. 12
 3.1 Starch ... 12
 3.1.1 The structure of starch ... 12
 3.1.2 Functional properties of starch... 15
 3.1.3 Modification of starch.. 15
 3.1.4 Applications... 17
 3.2 Seaweed extracts: alginates .. 18
 3.2.1 Chemistry of alginates ... 18
 3.2.2 Functional properties of alginates 21
 3.2.3 The setting of algin/calcium gel... 24
 3.2.4 Applications... 26
4. Proteins .. 27
 4.1 Egg white albumin ... 28
 4.1.1 Composition of egg white... 28
 4.1.2 Gelation .. 29
 4.1.3 Applications.. 29
 4.2 Fish protein .. 30
 4.2.1 Chemistry of fish protein .. 30
 4.2.2 Applications.. 31
5. Transglutaminase ... 32
 5.1 Characteristics of transglutaminase .. 32
 5.2 Sources of transglutaminase ... 33
 5.3 Measuring transglutaminase activity ... 36
 5.4 Substrate specificity .. 37
 5.5 Applications.. 39

References ... 41
List of figures

Figure 1: The structure and internal organ of squid (Loligo sp. and Illex sp.) 2
Figure 2: The tissue structure of fish (T. japonica) ... 5
Figure 3: The tissue composition in the squid mantle (Loligo paelei) 6
Figure 4: The tissue structure of squid mantle (T. pacificus) 7
Figure 5: The structure of starch .. 14
Figure 6: The gel formation of starch .. 16
Figure 7: The monomer of alginic acid ... 19
Figure 8: The configuration of alginate block types .. 20
Figure 9: The production of commercial alginates by incorporating different salts
 into alginic acids .. 22
Figure 10: The “egg-box” structure .. 23
Figure 11: The transglutaminase-catalyzed reactions .. 34
Figure 12: The process for squid meat preparation ... 50
Figure 13: The flowchart of restructure squid patty preparation 53
Figure 14: The schematic of typical Texture Profile Analysis curves using an Instron
 Universal Testing Machine .. 92
Figure 15: The effect of 2, 4, 6, 8, and 10% starch on hardness, cohesiveness, and
 springiness of deep-fat fried restructured squid ... 94
Figure 16: The effect of 2, 4, 6, 8, and 10% egg white albumin on hardness,
 cohesiveness, and springiness of deep-fat fried restructured squid 95
Figure 17: The effect of 2, 4, 6, 8, and 10% fish sarcoplastic protein on hardness, cohesiveness, and springiness of deep-fat fried restructured squid 96

Figure 18: The effect of starch : egg white albumin (%) at 0:10, 2:8, 4:6, 5:5, 6:4, 8:2, and 10:0 level combination on hardness, cohesiveness, and springiness of deep-fat fried restructured squid .. 97

Figure 19: The effect of starch : fish sarcoplastic protein (%) at 0:10, 2:8, 4:6, 5:5, 6:4, 8:2, and 10:0 level on hardness, cohesiveness, and springiness of deep-fat fried restructured squid .. 98

Figure 20: The effect of 2, 4, 6, 8, and 10% starch, egg white albumin, and fish sarcoplastic protein on the cooking losses of deep-fat fried restructured squid .. 99

Figure 21: The effect of combination between starch and egg white albumin and starch and fish sarcoplastic protein at the combined level of 10% (0:10, 2:8, 4:6, 5:5, 6:4, 8:2, and 10:0) on the cooking losses of deep-fat fried restructured squid .. 100

Figure 22: The stress-strain curve of restructured scallops with 1% alginate set at 5 °C for 2 hr derived from compression test using MTS Universal Testing Machine at the crosshead speed of 100 mm/min .. 102

Figure 23: The apparent modulus of elasticity (kPa) of restructured scallops bound with 1% alginate and 1% microbial transglutaminase (MTGase) at various setting times at 5 °C .. 104
List of tables

Table 1: The protein and non-protein nitrogen in squid meat.. 8
Table 2: The classification of common edible hydrocolloids ... 13
Table 3: Ca$^{2+}$-dependency of microorganism transglutaminase and guinea pig liver

<table>
<thead>
<tr>
<th>Transglutaminase</th>
<th>... 35</th>
</tr>
</thead>
</table>
Table 4: Reactivity of microorganism transglutaminase for various proteins 38
Table 5: The effect of 2, 4, 6, 8, and 10% starch on the hardness, cohesiveness, and

| springiness of deep-fat frying restructured squid... 66 |
|-------------------------------|--|
Table 6: The effect of 2, 4, 6, 8, and 10% egg white albumin on the hardness,

| cohesiveness, and springiness of deep-fat frying restructured squid 67 |
|--------------------------------|--|
Table 7: The effect of 2, 4, 6, 8, and 10% fish sarcoplasmic protein on the hardness,

| cohesiveness, and springiness of deep-fat frying restructured squid 68 |
|--------------------------------|--|
Table 8: The effect of starch : egg white (%) at 0:10, 2:8, 4:6, 5:5, 6:4, 8:2, and 10:0

| level on the hardness, cohesiveness, and springiness of deep-fat frying restructured squid ... 69 |
|--------------------------------|--|
Table 9: The effect of starch : fish sarcoplasmic protein (%) at 0:10, 2:8, 4:6, 5:5, 6:4,

| 8:2, and 10:0 level on the hardness, cohesiveness, and springiness of deep-fat frying restructured squid .. 70 |
|--------------------------------|--|
Table 10: The cooking losses of deep-fat frying restructured squid with starch,

| egg white albumin, and fish sarcoplasmic protein... 71 |
Table 11: The cooking losses of deep-fat frying restructured squid with the combination of starch and egg white albumin and starch and fish sarcoplasmic protein..... 72

Table 12: The effect of setting times at 5 °C on the physical properties: apparent modulus of elasticity, 5% secant modulus, 10% secant modulus, and 20% secant modulus of restructured scallops made from 1% (w/w) alginate ... 87

Table 13: The effect of setting times at 5 °C on the physical properties: apparent modulus of elasticity, 5% secant modulus, 10% secant modulus, and 20% secant modulus of restructured scallops made from 1% (w/w) microbial transglutaminase (MTGase)................................. 88