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 5.1 Introduction 

As discussed in the previous chapters, the pinhole corrosion leak in home plumbing has 

emerged as a significant issue. In the major water distribution system managed by 

municipalities and water utilities the costs are distributed among all subscribers. However, the 

home plumbing repair/replacement cost and possible water damage cost must be addressed by 

the home owner. For most homeowners, the home is their most valuable asset. The possibility 

of falling home value, losing home insurance, water damage, frequent repairs, taste and odor, 

and health concerns are some key issues involved in home plumbing maintenance. The 

homeowner has to decide at the time of pinhole leak whether to repair or replace the system. 

If the owner decides to replace the system, another decision on which material to use should 

be made. Local regulations may not permit use of certain materials. In new homes, the 

plumbing contractor may decide the material.  

The replacement decision depends on three factors: (1) financial affordability, (2) hydraulics 

of flow within the plumbing pipes, and (3) quality of water. Figure 5.1 shows the effect of 

financial viability. The accelerated replacement refers to replacing the plumbing system well 

in advance of the optimal replacement time. Delayed replacement ideally includes all the 

consequences of neglecting repairs or just performing repairs amounting to paying penalties 

to compensate for high replacement cost.  

Hydraulics related to plumbing pipes addresses velocity, pressure and flow through numerous 

appurtenances along with temperature for hot water. The wall thickness of plumbing pipes 

rarely exceeds 2mm and diameter varies between 0.5 inches to 1 inch. The street level 

pressure of the major system is the key determinant in designing a plumbing system. If the 

pressure is high, it must be dissipated by frictional and minor losses with a maximum velocity 

range of 4-8 ft/sec (Nielsen, 1990). The velocity limitations are chosen to protect against 
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corrosion and cavitation and pressure rise due to stoppage of flow (water hammer). The time 

between leaks depends on the flow behavior but not well understood. From the Washington 

Suburban Sanitary Commission (WSSC) pinhole leak data (see chapter 4), it’s found that 

leaks tend to cluster near treatment plants. High pressure and chlorine regions typically 

surround treatment plants and it’s anticipated that high pressures and chlorine might play a 

role in pinhole leaks. It’s also observed that if a corrosion pit is initiated due to high stress or 

water quality, velocity can aggravate and dominate pit growth.  

Water quality poses two kinds of threats: initiation of corrosion and possible further 

degradation of quality from interaction with corroded elements. Copper reacts with 

oxygenated water to form a thin corroded layer of copper oxide which inhibits further 

corrosion and protects the metal underneath. If the water velocity is greater than 4 ft/sec, the 

oxide layer may be destroyed and the metal can corrode. (Taber, G. “corrosion in open and 

closed systems” PM engineer 2000; available at 

http://www.pmengineer.com/CDA/ArticleInformation/features/BNP_Features_Item/0,2732,87

83,00.html). Taber (2000) cites amount of oxygen, chemicals present in water, presence of 

dissimilar metals, temperature, pressure, and flow rate to be the key factors in corrosion.  

 

Rushing et al. (2004) report that the combination of pH greater than 8.2, aluminum deposits 

greater than 50 ppb and chlorine concentrate of 2 mg/l will result in copper pipe corrosion. A 

90 degree bend in the pipe will accelerate corrosion due to this recipe. As shown in Figure 5.2, 

both hydraulic and water quality effects determine the nature of leak arrival times. In this 

thesis the net effect of these two causal phenomena in the form of the failure time data is 

considered. Unfortunately, the only available data is as shown in Figure 5.3, the leak rate data. 

The homeowner data is obtained from WSSC. It does not contain leak arrival times which are 

crucial in a decision model. In this chapter, we present a model that can yield leak arrival 

times from specified leak rates.  
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The repair/ replacement process is visualized as follows. The pinhole leaks arrive randomly. 

The leaks occur at random locations and at random time intervals. From a cost analysis point 

of view the random locations may not be that critical than the expenditure incurred. Therefore, 

at a broader level in minimizing the cost, the arrival times of pinhole leaks will dictate the 

repair/ replacement decision. It is also possible that the arrival of the first leak serves as a 

harbinger of subsequent, immediate leaks. However, present data suggest that such a uniform 

corrosion behavior is not evident. Another point of view is based on time; whether the leak 

occurs at an early stage of installation perhaps indicating installation flaws or occurring at a 

late stage indicating a deteriorating system; or within the anticipated normal design life. The 

early, normal, late stage of a plumbing system, possibility of clustering of leak occurrences in 

time, point to leak arrival patterns in time. The leak rate itself is a time dependent function. 

The rather high leak rates shown in Figure 5.3 suggest late stage behavior. In this chapter, 

several models that fit this late stage break rate are formulated. These models are used to infer 

the early and normal stage leak rate behavior.  

A non-homogeneous poisson process (NHPP) model is considered for modeling the leak 

arrivals. This construct enables the development of a minimum cost model in terms of when 

the expenditures are incurred. The minimum cost model is based on the following notion. A 

risk-averse homeowner may decide to replace the plumbing system at a time well ahead of the 

optimal replacement called an accelerated replacement with the convenience of avoiding any 

major damages. It is not prudent to wait beyond the optimal replacement time called delayed 

replacement. Clearly, the advantage lies in exercising the replacement at the optimal time. 

Such an optimal replacement time is dictated by the arrival pattern of the leaks. In the 

following section 5.2, a minimum cost model is adopted from Loganathan, Park, and Sherali 

(2002). In section 5.3, several models for the observed leak rate are fitted. From these models, 

the complete leak rate behavior is synthesized. It’s pointed out that only a subset of these 

fitted models is suitable for a plumbing system. In section 5.4, the NHPP model is presented 
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in detail. Section 5.5 contains an example application that displays the variability in the leak 

arrival patterns.  

 

5.2 Repair/Replacement analysis 

At the time of the nth leak, a decision has to be made whether to replace the plumbing system 

at a cost of Fn or to repair it at a cost of Cn. The scenario also implies that for the previous (n - 

1) leaks only repairs have been performed. If we assume that the plumbing will be replaced 

(Cn included in the sum should be adjusted for Fn when necessary) at the time of nth leak, tn, 

we can write the present worth of the total cost of the pipe as: 
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in which: R = discount rate, ti = time of ith leak measured from the installation year (year), Ci 

= repair cost of ith break, Fn = replacement cost at time, tn, Tn = total cost at time ‘0’ (present 

worth).  

When the system is new, it tends to experience very few leaks. An old system experiences 

more leaks under the same conditions. Therefore, the combination of varying time interval 

between leaks (accelerated leak arrivals towards the end), relatively smaller repair cost, and a 

generally large replacement cost leads to the existence of a “U” shaped present worth of the 

total cost curve over time (Figure 5.1).  

The derivation of the threshold break rate seeks the time of the minimum present worth total 

cost. Loganathan et al. (2002) have presented the following threshold break rate (Brkth) 

equation 
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in which: Cn+1 = repair cost at (n+1)th leak and Fn = replacement cost. 

 

From the observed data for any given system we can derive a current leak rate. Whenever the 
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current leak rate, Brkcur equals or exceeds Brkth for the first time, the plumbing system should 

be replaced. Figure 5.3 shows the observed behavior for leak rate as a function of plumbing 

system installation period (WSSC data). 

 

5.3 Leak rate models 

5.3.1 Shamir and Howard’s model 

Note that for the optimal replacement time, the earliest time at which Eq. (5-2) is satisfied 

must be chosen. From the optimal time onwards for any time, t, Eq. (5-2) will be satisfied. In 

order to infer the earliest time at which Eq. (5-2) holds it is necessary to generate leak arrival 

times. To mimic the actual occurrence of leaks, we adopt the following model due to Shamir 

and Howard (1979) given by 

0( )
0( ) ( ) A t tN t N t e −=  (5-3) 

Where N (t) = number of leaks in year t; t = time in years; t0= base year for the analysis (pipe 

installation year, or the first year for which leak data are available); and A= growth rate 

coefficient (1/year).  

 

Problem 1 

Setting the leak rate N (t) to be equal to the Brkth given in the previous section, we obtain the 

optimal time of replacement  
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(5-4) 

For suitably chosen values of t* of replacement time, initial values for N (t0), A, and t0 can be 

obtained. From Eq. (5-4), t* is assumed to be 25 and 35 years which could be optimal 

replacement times. The parameters R, Fn, Cn+1, and t0 are constants. For each t* value, the N 

(t0) and A can have different pairs of values. 
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Another procedure is to optimally select the parameters N (t0), A, and to for a suitably chosen 

objective function. We choose to minimize the sum of the absolute deviations between the 

calculated and observed leak rates shown in Figure 5.3. That is, 

 

Problem 2 

Minimize  t t
t

e e+ −+∑

Subject to;     At + b +  = ln [observed break rate] for all t. te e− − t
+

where  b = ln [N(t0)] and t0 =0 

       and  or slack (convert less than or equal to type constraints into an equation) 

 and surplus (convert greater than or equal to type constraints into an equation) 

 variables 

te−
te+

      For non-negativity restrictions we write A= A+- A-, b= b+- b-,  

      and A+, A-, b+, b-,  t te ,e 0+ − ≥

Problem P2 is a linear program. From the optimal values for N (t0) and A, we can determine N 

(t) for any t.  

In the WSSC data it’s not clear when the plumbing systems were installed. Therefore, it was 

arbitrarily decided that the WSSC leak rates apply for houses that are 30 years and older.  

When the on going survey from MUSES project in Virginia Tech is incorporated, more 

satisfactory results can be expected.  

 

5.3.2 Neural network model 

Our discussion on neural network modeling closely follows the discussion in Winston and 

Venkataramanan (2003). Consider Figure 5.4. Each square in Figure 5.4 is a cell of the 

network also called a neuron.  

 77



The first column of cells is the input layer and the cells are set at the input values. The 

network in Figure 5.4 is a feed forward network in the sense that the results go to only the 

higher layers; there are no feed back loops called “recurrent networks”. Cell 0 is called the 

bias that constitutes a constant input to the next layer. Cell 10 in the last column is the output 

cell and the last layer is the output layer. All other columns between the input and output 

columns are called the hidden layers. For any cell j not in the input layer, its input INP(j) is 

given by 

ij
i

INP( j) w=∑ (output from cell i) (5-5) 

The output of j (not in the input layer) is obtained by the use of a transfer function f. the 

output of j, OUT(j) is given as  

OUT( j) f[INP( j)]=  (5-6) 

The optimal weights wij are determined by minimizing the sum of squared differences 

between the calculated outputs at cell 10 (see Figure 5.4) OUTk(10) and the corresponding 

observed values Ok(10) given by 2
k k

k
[OUT (10) O (10)]−∑ for the output layer. While the 

above description clearly parallels regression analysis, it is the ability to introduce hidden 

layers that enables neural networks to solve complicated problems. Also, standard functions 

such as the logistic sigmoidal function given by  
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and the tan h function given by  
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are used as the transfer functions. In this chapter, the software PREDICT (produced by 

NEURALWARE) is used to fit the neural network model.  
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NeuralWorks PREDICT Software 

As mentioned above, neural networks are useful when an unknown relationship exists 

between a set of input data and output data. They can detect trends in data, generalize the data, 

and predict the outcome. To build a model with PREDICT software involves 3 steps: (1) 

collection of data and pre-processing, (2) building and training (to learn the structure of the 

data) the network, (3) testing and validating the network. Based on the input and the 

corresponding output provided, PREDICT automatically selects, trains, tests, and validates 

the model. A tutorial on using PREDICT is given in the Appendix B.   

 

5.4 Simulation of leak occurrences 

In section 5.2, repair/replacement analysis Eq. (5-2) yields optimal replacement as the earliest 

time at which the condition is satisfied (i.e. satisfied for the first time). Unfortunately, the leak 

rates given in Figure 5.3 for the WSSC display a late stage behavior (bathtub curve is 

composed of early, stable, and late stage behavior). In section 5.3, we develop two types of 

leak rate models namely, an optimization model, Problem P2, and a neural network model. 

The purpose of these models is to provide an ability to backtrack through leak rate behavior to 

identify the potential early and normal stage leak rates. These two models provide leak rates 

throughout the life of a home plumbing system. Potentially, one can assess the leak rates at 

various times from these two models to use in Eq. (5-2). However, we find generating 

possible sequences of leak occurrence times has value in terms of ranges (descriptive 

statistics) for the leak times generated. Also, certain cost details such as total cost can be 

obtained. Moreover, it presents a comprehensive analysis of leak occurrence behavior. 

 

5.4.1 Non-homogeneous poisson process (NHPP) 

In the non-homogeneous poisson process, we permit the poisson parameter λ  to be a 

function of time, λ (t). Because leak rates vary with the age of the plumbing system, such a 
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model is necessary. The NHPP also known as non-stationary poisson process is given by (Law 

and Kelton, 2000).  

P[ N( t+s ) – N(t) = k ] = 
b(t ,s) ke [b(t,s)]

k!

−

 (5-9) 

 (for k=0,1,2.. and t,s  0, and b(t,s) = ) ≥
t s
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in which (t)θ is called the expectation function and (t)λ is the rate or intensity function. 

Using the leak rate models developed in section 5.3 for (t)λ , we present the following 

procedure for generating the leak occurrence times.  

 

5.4.2 Simulation of Non-Homogeneous Poisson Processes (Thinning process) 

1. Let max{ ( )}tλ λ=  be finite.  

2. Generate a stationary Poisson process with constant rate λ  and arrival times {t }. For 

the Poisson process with parameter

i

λ , the inter-arrival times are exponentially 

distributed with parameterλ .  

To generate exponentially distributed inter-arrival times randomly, we observe the 

following ( ) 1 xF x e λ−= − . From uniform random number generator obtain U ~ U (0, 

1) for F(x). For 1 xU e λ−= − , we obtain 1 ln(1 )X U
λ

= − − . Because (1-U) ~ U (0, 1), 

we also have 1 lnx U
λ

= − . Because x represents the inter-arrival times only, we set 

the arrival time ti = ti-1 +xi in which ti is the arrival time of the ith arrival and xi is the 

inter-arrival time between the (i-1)st and ith arrivals.  

3. Following Ross (1996), we make the following observation. Consider a 

 homogeneous  Poisson process with parameter λ , we count an event that 

 occurs at time t from the homogeneous process with probability ( )tλ
λ

. The 

 counted events then follow a non-homogeneous process with parameter ( )tλ . Using 
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 the above results, for each arrival time ti, we generate a  Ui ~ U (0, 1). If ( )i
i

tU λ
λ

≤ , 

 we consider the event at ti as counted. Note we have ti from step 2. More formally let 

 

 Ii =      1  if ( )i
i

tU λ
λ

≤  

          0  if otherwise 

 Let the counted indices be denoted by the set J = {i: Ii =1} 

 The events at times ti for i , constitute the non-homogeneous Poisson  arrivals. 

 Following Law and Kelton (2000), the above steps can be implemented as:  

J∈

 Assume that ti-1 has been validly generated and want to generate the next arrival 

 time ti:  

1. Let t0 = 0. 

2. Set t = ti-1 

3. Generate U1 and U2 as IID (Independent Identically Distributed)  U(0,1) 

 independent of any previous random variates. 

4. Replace t by 1(1/ ) lnλ−t U . 

5. If 2 ( ) / ,λ λ≤U t  return ti = t. Otherwise, go back to step 2.  

  

 If the evaluation of ( )tλ  is slow, ( ( )tλ  is a complicated function involving 

 exponential and trigonometric calculations), computation time might be saved in 

 step 4 by adding an acceptance pretest; i.e., the current value for t is 

 automatically accepted  as the next arrival time if 2 * /λ λ≤U , 

 where * min{ ( )}tλ λ= and max{ ( )}λ λ= t . This would be useful especially 

 when ( )tλ  is fairly flat.  
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5.5 Application to WSSC data 

The methodology described in this chapter is applied to the observed data from Washington 

Suburban Sanitary Commission (WSSC). The leak rates are shown in Figure 5.3. 

Unfortunately, it is not clear at what ages of a plumbing system the leak rates shown apply. 

Therefore, we have chosen to apply various lag periods starting at 30 years for the leak rate 

behavior. Assuming a design life of 50 years for copper plumbing systems, we assume lags of 

30, 35… years would capture late stage deterioration behavior. Problem P2, optimization 

formulation in terms of WSSC data is given in Tables 5.1 and 5.2. The results along with the 

observed data are shown in Table 5.1. Clearly, the match is very good. 

Next we apply the neural network methodology. Unfortunately with very few data points we 

cannot fit a neural network model. Therefore, we append data points arbitrarily that are very 

close to the observed data. These points are obtained by interpolation between the observed 

data. Linear optimization results along with these data are shown in Table 5.2. Using the 

expanded data set, we fit both the optimization model and the neural network model. The 

model results are shown in Figure 5.5. As the LP results shows, it is seen that 30 year lagged 

observed values and Shamir and Howard’s graph match well. For the expanded data set, as 

the Shamir and Howard’s equation is exponential, it fits earlier parts, but does not fit well the 

normal and late stages. On the contrary, neural network fit the data well. It’s showing an S-

shape curve and mimics all stages very well. Various curves are fitted in Figure 5.5 with the 

neural network model performing the best.  

Possible leak scenarios are generated as shown in Table 5.3 using Table 5.4 neural network 

leak rates. In Table 5.3 the first, second, and third leak arrival times are 2, 8, and 16 years 

respectively. The thinning process is simulated 1,000 times and the mean, median, maximum, 

minimum, and standard deviation statistics for each leak arrival time are computed in Table 

5.5. This is done with MATLAB and the source code is given in the Appendix C. For the 

rejection probabilities, (t)λ values are obtained from the neural network model as shown in 
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Table 5.4. The results of 1,000 simulations are summarized in Table 5.5. The distributions of 

leak arrival times are shown in Figure 5.6. From the shape of the distribution, each leak 

occurrence appears to fit a gamma distribution.  

From the simulated possible leak scenarios, economic analysis is performed to obtain the 

optimal replacement time. Following Loganathan et al. (2002), 

n 1 n 1

n n
n 1 n

C Fln( )
F Ft t

ln(1 R)

+ +

+

+
− <

+
 is 

the time when replacement should be considered. For home plumbing system using the data 

from a Plumber Survey we set, Cn+1 (repair cost) = $500, Fn = Fn+1 = $ 3,500, and R = 0.065. 

Then the right hand side value is 2.12. This can be interpreted as, when the inter-arrival time 

becomes smaller than 2.12 year, the system should be replaced.  

Using the mean arrival times given in Table 5.5, the replacement should take place after 4th 

leak. The modal value also agrees. For the fitted leak rate model this optimal year of 

replacement is about 23 years. This result is from the assumptions that the WSSC data follows 

late stage behavior and some data is appended for training the neural network.  
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Figure 5.1 Plot of Present worth cost 

 

 

 

 

 

Figure 5.2 Hybrid methods 
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Figure 5.3 Observed leak rate 

 
 

 
Figure 5.4 Feed forward back propagation neural network with two hidden layers 
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Figure 5.5 Prediction comparison 
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Figure 5.6 Distribution of leak occurrences
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Table 5.1 Results of Shamir- Howard Model (1979) (observed data only) 

Age of  
Plumbing Average 

ln(Leak 
Rate) 

Leak 
Rate     

System 
Leak 
Rate   calc     

35 0.480  -0.7340 0.480     

40 0.510  -0.6733 0.502     

45 0.530  -0.6349 0.525     

50 0.540  -0.6162 0.549     

55 0.570  -0.5621 0.574     

60 0.600  -0.5108 0.600     

65 0.640  -0.4463 0.627     

            

            

Ap 0.009  An 0.000 A 0.00893 

bp 0.000  bn 1.046 N(to) 0.35121 

C1p 0.000  C1n 0.000     

C2p 0.000  C2n 0.016     

C3p 0.000  C3n 0.010     

C4p 0.016  C4n 0.000     

C5p 0.007  C5n 0.000     

C6p 0.000  C6n 0.000     

C7p 0.000  C7n 0.020     

            

            

Con1 0.000    0.000     

Con2 0.000    -0.016     

Con3 0.000    -0.010     

Con4 0.000    0.016     

Con5 0.000    0.007     

Con6 0.000    0.000     

Con7 0.000    -0.020     

            

OBJ 0.069          
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Table 5.2 Results of Shamir-Howard Model (1979) (Modified data) 

Age of  
Plumbing Average 

ln(Leak 
Rate) Leak Rate   

System Leak Rate   calc   

5 0.089  -2.419 0.091    

12 0.110  -2.207 0.123    

15 0.140  -1.966 0.140    

31 0.471  -0.753 0.279    

32 0.460  -0.777 0.292    

35 0.480  -0.734 0.332    

37 0.500  -0.693 0.362    

40 0.510  -0.673 0.412    

42 0.520  -0.654 0.449    

45 0.530  -0.635 0.511    

46 0.534  -0.627 0.534    

47 0.540  -0.616 0.558    

50 0.540  -0.616 0.635    

51 0.541  -0.614 0.663    

52 0.545  -0.607 0.692    

      

Ap 0.04318559 An 0 OBJ 2.83192 
bp 0 bn 2.61389677 A 0.04319 
C1p 0.02115011 C1n 0 N(to) 0.07325 
C2p 0.11160527 C2n 0     
C3p 0 C3n 0 Con1 -5E-16 
C4p 0 C4n 0.52224617 Con2 -9E-16 
C5p 0 C5n 0.45542897 Con3 -2E-16 
C6p 0 C6n 0.3684318 Con4 -1E-15 
C7p 0 C7n 0.32288261 Con5 -1E-15 
C8p 0 C8n 0.21312845 Con6 -1E-15 
C9p 0 C9n 0.14617535 Con7 -1E-15 
C10p 0 C10n 0.03566676 Con8 -2E-15 
C11p 0 C11n 0 Con9 -2E-15 
C12p 0.03201229 C12n 0 Con10 -2E-15 
C13p 0.16156908 C13n 0 Con11 -2E-15 
C14p 0.20290453 C14n 0 Con12 -2E-15 
C15p 0.23872361 C15n 0 Con13 -2E-15 
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        Con14 -2E-15 
        Con15 -2E-15 

 
 

Table 5.3 Thinning procedure (1 iteration) 

U(0,1) 
1-

U(0,1) 
HP_ 
exp-x LeakTime U(0,1) LeakRate

lambda(t)/ 
lambda NHPP 

0.517  0.483  1.514  1.514  0.019 0.097  0.201  1.514  
0.947  0.053  6.113  7.627  0.036 0.104  0.216  7.627  
0.982  0.018  8.345  15.973 0.552 0.214  0.444  -999.000 
0.213  0.787  0.499  16.472 0.079 0.214  0.444  16.472  
0.045  0.955  0.095  16.567 0.204 0.214  0.444  16.567  
0.646  0.354  2.164  18.731 0.587 0.214  0.444  -999.000 
0.106  0.894  0.235  18.966 0.440 0.214  0.444  18.966  
0.323  0.677  0.813  19.778 0.119 0.214  0.444  19.778  
0.794  0.206  3.288  23.066 0.701 0.356  0.739  23.066  
0.508  0.492  1.476  24.542 0.987 0.356  0.739  -999.000 
0.852  0.148  3.977  28.520 0.265 0.458  0.950  28.520  
0.011  0.989  0.023  28.542 0.921 0.458  0.950  28.542  
0.710  0.290  2.580  31.123 0.111 0.482  1.000  31.123  
0.659  0.341  2.243  33.366 0.521 0.482  1.000  33.366  
0.707  0.293  2.555  35.921 0.987 0.483  1.002  35.921  
0.423  0.577  1.145  37.067 0.462 0.483  1.002  37.067  

 
 
 

Table 5.4 Predicted leak rate from Neural Networks 

Age 
Leak 
Rate 

5 0.097 
10 0.104 
15 0.131 
20 0.214 
25 0.356 
30 0.458 
35 0.482 
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Table 5.5 Possible leak scenario  

Leak 
Number

Mean 
(1)  

Median
(2) 

Min 
(3) 

Max 
(4) 

Stdev
(5) 

Mode 
(6) 

1st 8.77  6.84 0.01 31.69 6.57 0 

2nd 15.08  14.91 0.52 35.41 6.67 15 

3rd 19.30  19.58 1.95 39.35 6.22 20 

4th 22.65  22.59 3.38 46.65 5.70 25 

5th 25.37  25.08 5.44 49.75 5.53 26 

6th 27.92  27.22 10.21 50.38 5.53 25 

7th 30.23  29.62 13.70 51.20 5.72 27 

8th 32.33  31.84 14.18 61.05 5.99 32 

9th 34.59  33.93 15.93 63.04 6.24 31 

10th 36.54  36.22 19.17 67.71 6.46 32 

11th 38.64  38.36 20.66 71.88 6.74 36 

12th  40.78  40.18 22.13 72.10 7.10 39 
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