Dedication

This thesis is dedicated to my mother, my brother, and my fiancée.
Acknowledgements

The author would like to express his gratitude to the chairman of his committee, Dr. Gerardo W. Flintsch, for his support and encouragement. Thanks are also due to the co-chairman, Dr. Imad L. Al-Qadi, for giving his time and expertise to help in the completion of this work. Thanks are also given to Dr. David A. Dillard for his helpful comments.

The author extends his heartfelt appreciation to his mother, Dr. Aicha Deff, his brother, Dr. Mohamed Elseifi, and his fiancée, Miss Marwa Hassan, for their unending support and understanding. Additionally, the assistance of the author's colleagues, especially Amara, Walid and Samer greatly contributed to the author's knowledge. Also, the assistance of Alex, Brian, Erin, Ramzi, Robin and Stacey contributed to the progress of this research.
Table of Contents

List of Figures

vii

List of Tables

xv

Chapter 1: Introduction

1. **Background**
2. **Historical Developments**
3. **Problem Statement**
4. **Objectives**
5. **Scope**

Chapter 2: State of Knowledge

1. **Asphalt Cements**
 1.1. Production
 1.2. Structure and Chemistry of Asphalt Binders
 1.3. Asphalt Models
2. **Conventional Asphalt Binder Tests**
3. **SuperPave™ Asphalt Binder Tests and Specifications**
 3.1. SuperPave™ Physical tests for Asphalt Binders
4. **Polymer Modified Binder**
 4.1. Polymer Modifiers
 4.2. Polymer-Binder Mixing Process
5. **Linear Viscoelastic Theory**
 5.1. Constitutive Models
 5.1.1. The Basic Elements: Spring and Dashpot
 5.1.2. The Governing Differential Equation (GDE)
 5.1.3. The Harmonic Response Functions
2.5.1.4. Relations between Standard Response Functions Associated with Creep and Relaxation 33
2.5.1.5. Electromechanical Analogies 34
2.5.1.6. The Maxwell and Voigt Units 34
2.5.2. Continuous Time Spectra 36

2.6. Complex Shear Modulus Master Curves 39

2.7. Viscoelastic Response Models of Asphalt Binders 41
 2.7.1. Van der Poel's Nomograph 42
 2.7.2. Jongepier and Kuilman's Model 42
 2.7.3. Dobson's Model 43
 2.7.4. Dickinson and Witt's Model 44
 2.7.5. Christensen and Anderson's Model 45
 2.7.6. Gahvari's Model 46
 2.7.7. Stastna and Zanzotto's Model 47
 2.7.8. Marasteanu and Anderson's Model 48

2.8. Model Applicability to Polymer Modified Binders 49

Chapter 3: Experimental Program 51
3.1. Selection of Materials 51
3.2. Instruments Used in This Study 55
 3.2.1. Dynamic Shear Rheometer 55
 3.2.2. Rolling Thin Film Oven 58
 3.2.3. Pressure Aging Vessel 59
3.3. Modified-Asphalt Preparation 61
3.4. Designation of Binders 62
3.5. Dynamic Mechanical Analysis 62
 3.5.1. Strain Sweeps 62
 3.5.2. Frequency Sweeps 65
3.6. Master Curve Construction 65
Appendix B: Model Fitting for Proposed Complex Shear Modulus Equation 133

Appendix C: Model Fitting for Proposed Phase Angle Equation 148

Vitae 163
List of Figures

Figure 2.1. Composition of Crude Petroleum From Three Different Sources (after Roberts et al., 1991) 8

Figure 2.2. A Schematic of Micellar Model for Asphalt Binders (after Lewandowski, 1994) 11

Figure 2.3. Penetration Test 12

Figure 2.4. Rolling Thin Film Oven 17

Figure 2.5. Pressure Aging Vessel 18

Figure 2.6. Operation Principle of the Dynamic Shear Rheometer 19

Figure 2.7. Dynamic Shear Rheometer 20

Figure 2.8. Repeatability of the Results for Sample Preparation (after Maccarrone et al., 1995) 21

Figure 2.9. Bending Beam Rheometer 22

Figure 2.10. Loading System in the BBR 22

Figure 2.11. Lithium Alkyl Polymerization (after Bull et al., 1988) 26

Figure 2.12. The Basic Elements Used to Explain Elastic and Viscous Behavior: (a) Spring and (b) Dashpot 30

Figure 2.13. The Maxwell (a) and Voigt (b) Units 35

Figure 2.14. Generalized Maxwell Model Describing Arrheodictic Behavior 37
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.15</td>
<td>The Making of a Master Curve</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Principal Components of the CS Rheometer (after Bohlin, 1990)</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>PAV Repeatability (APD3)</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Maximum Shear Strain Sweep of 3% Unaged SBS Modifier (AUD3) at High Temperatures (1.5Hz)</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Maximum Shear Strain Sweep of 3% Unaged SBS Modifier (AUD3) at Intermediate Temperatures (1.5Hz)</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>Master Curve Construction Based on Complex Shear Modulus Along With its Two Components (AUD3)</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>Master Curve Construction Based on Phase Angle (AUD3)</td>
<td>67</td>
</tr>
<tr>
<td>3.7</td>
<td>Master Curve Construction Based on Average Shift Factor (AUD3)</td>
<td>68</td>
</tr>
<tr>
<td>3.8</td>
<td>Average Shift Factors (AUD3)</td>
<td>69</td>
</tr>
<tr>
<td>4.1</td>
<td>The Modeling Process (after Trani, 1999)</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Causal Diagram for the Binder Viscoelastic System</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>The Havriliak and Negami Model</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Poor Matching of the First Proposed Model</td>
<td>78</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison between the Measured Complex Shear Modulus for PG 76-22P and Results of the Proposed Model</td>
<td>80</td>
</tr>
</tbody>
</table>
Figure 4.6. Comparison between the Measured Phase Angle for PG 64-22U and the Proposed Model 82

Figure 4.7. Black Diagram for PG-64-22U and Results of the Proposed Models 83

Figure 5.1. Parameter v Trend with Aging for AD 94

Figure 5.2. Parameter v Trend with Aging for AX 94

Figure 5.3. Comparison between the Measured Complex Shear Modulus for APX5 and Results of the Proposed Model 95

Figure 5.4. Comparison between the Measured Phase Angle for AUD4 and Results of the Proposed and the Marasteanu-Anderson Model 96

Figure 5.5. Percentage Difference between the Measured Phase Angle and the Results of the Proposed Model (AUD4) 97

Figure 5.6. Comparison between the Measured Loss Shear Modulus for AUX3 and Predicted Values of the Proposed Models 98

Figure 5.7. Comparison between the Measured Storage Shear Modulus for AUX3 and Predicted Values of the Proposed Models 98

Figure 5.8. Black Diagram for AUX3 99

Figure 5.9. Black Diagram for AUX5 100

Figure 5.10. Comparison between the Relaxation Spectrum Obtained from the Experimental Data and from the Proposed Models for AUX3 101

Figure 5.11. Comparison between the Relaxation Spectrum Obtained from the Experimental Data and from the Proposed Models for AUX5 102
Figure b.1. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 64-22U 134

Figure b.2. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 64-22R 134

Figure b.3. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 64-22P 135

Figure b.4. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 70-22U 135

Figure b.5. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 70-22R 136

Figure b.6. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 70-22P 136

Figure b.7. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 76-22U 137

Figure b.8. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 76-22R 137

Figure b.9. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 76-22P 138

Figure b.10. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUD3 138

Figure b.11. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUD4 139
Figure b.12. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUD5

Figure b.13. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARD3

Figure b.14. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARD4

Figure b.15. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARD5

Figure b.16. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APD3

Figure b.17. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APD4

Figure b.18. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APD5

Figure b.19. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUX3

Figure b.20. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUX4

Figure b.21. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUX5

Figure b.22. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARX3
Figure b.23. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARX4

Figure b.24. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARX5

Figure b.25. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APX3

Figure b.26. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APX4

Figure b.27. Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APX5

Figure c.1. Comparison between the Measured Phase Angle and Results of the Proposed Model for 64-22U

Figure c.2. Comparison between the Measured Phase Angle and Results of the Proposed Model for 64-22R

Figure c.3. Comparison between the Measured Phase Angle and Results of the Proposed Model for 64-22P

Figure c.4. Comparison between the Measured Phase Angle and Results of the Proposed Model for 70-22U

Figure c.5. Comparison between the Measured Phase Angle and Results of the Proposed Model for 70-22R

Figure c.6. Comparison between the Measured Phase Angle and Results of the Proposed Model for 70-22P
Figure c.7. Comparison between the Measured Phase Angle and Results of the Proposed Model for 76-22U 152

Figure c.8. Comparison between the Measured Phase Angle and Results of the Proposed Model for 76-22R 152

Figure c.9. Comparison between the Measured Phase Angle and Results of the Proposed Model for 76-22P 153

Figure c.10. Comparison between the Measured Phase Angle and Results of the Proposed Model for AUD3 153

Figure c.11. Comparison between the Measured Phase Angle and Results of the Proposed Model for AUD4 154

Figure c.12. Comparison between the Measured Phase Angle and Results of the Proposed Model for AUD5 154

Figure c.13. Comparison between the Measured Phase Angle and Results of the Proposed Model for ARD3 155

Figure c.14. Comparison between the Measured Phase Angle and Results of the Proposed Model for ARD4 155

Figure c.15. Comparison between the Measured Phase Angle and Results of the Proposed Model for ARD5 156

Figure c.16. Comparison between the Measured Phase Angle and Results of the Proposed Model for APD3 156

Figure c.17. Comparison between the Measured Phase Angle and Results of the Proposed Model for APD4 157
Figure c.18. Comparison between the Measured Phase Angle and Results of the Proposed Model for APD5 157

Figure c.19. Comparison between the Measured Phase Angle and Results of the Proposed Model for AUX3 158

Figure c.20. Comparison between the Measured Phase Angle and Results of the Proposed Model for AUX4 158

Figure c.21. Comparison between the Measured Phase Angle and Results of the Proposed Model for AUX5 159

Figure c.22. Comparison between the Measured Phase Angle and Results of the Proposed Model for ARX3 159

Figure c.23. Comparison between the Measured Phase Angle and Results of the Proposed Model for ARX4 160

Figure c.24. Comparison between the Measured Phase Angle and Results of the Proposed Model for ARX5 160

Figure c.25. Comparison between the Measured Phase Angle and Results of the Proposed Model for APX3 161

Figure c.26. Comparison between the Measured Phase Angle and Results of the Proposed Model for APX4 161

Figure c.27. Comparison between the Measured Phase Angle and Results of the Proposed Model for APX5 162
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1.</td>
<td>Element Analysis of Four Different Asphalt Binders (after Lewandowski, 1994)</td>
<td>9</td>
</tr>
<tr>
<td>Table 2.2.</td>
<td>Properties in National Specifications for Asphalt Binder (after Nicholls, 1998)</td>
<td>14</td>
</tr>
<tr>
<td>Table 2.3.</td>
<td>Equipment Used by the SuperPave<sup>TM</sup> Binder Specification</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.4.</td>
<td>Response to the Standard Stimuli (after Tschoegl, 1989)</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.5.</td>
<td>Models for Describing Time Dependency of Asphalt Binder (after Marasteanu, 1996)</td>
<td>50</td>
</tr>
<tr>
<td>Table 3.1.</td>
<td>Conventional Test Results on AC-20 Asphalt Binder</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.2.</td>
<td>Results of Corbett Analysis on AC-20</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.3.</td>
<td>Reported Effects of Elastomeric Modification (after Bahia, 1997)</td>
<td>54</td>
</tr>
<tr>
<td>Table 3.4.</td>
<td>Typical Properties of Thermoplastic Block Copolymers at 23°C (after Shell Chemical Company, 1992)</td>
<td>54</td>
</tr>
<tr>
<td>Table 3.5.</td>
<td>Offset Required at the Target Temperatures</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.1.</td>
<td>Matching Functions of the Z-type</td>
<td>75</td>
</tr>
<tr>
<td>Table 5.1.</td>
<td>Estimated Parameters for the Complex Shear Modulus from Least Square Analysis</td>
<td>90</td>
</tr>
<tr>
<td>Table 5.2.</td>
<td>Estimated Parameters for the Phase Angle Model from Least Square Analysis</td>
<td>92</td>
</tr>
</tbody>
</table>