Dedication

This thesis is dedicated to my mother, my brother, and my fiancée.

Acknowledgements

The author would like to express his gratitude to the chairman of his committee, Dr. Gerardo W. Flintsch, for his support and encouragement. Thanks are also due to the co-chairman, Dr. Imad L. Al-Qadi, for giving his time and expertise to help in the completion of this work. Thanks are also given to Dr. David A. Dillard for his helpful comments.

The author extends his heartfelt appreciation to his mother, Dr. Aicha Deff, his brother, Dr. Mohamed Elseifi, and his fiancée, Miss Marwa Hassan, for their unending support and understanding. Additionally, the assistance of the author's colleagues, especially Amara, Walid and Samer greatly contributed to the author's knowledge. Also, the assistance of Alex, Brian, Erin, Ramzi, Robin and Stacey contributed to the progress of this research.

Table of Contents

List	of Figure	es.		vii
List	of Tables	5		xv
Cha	pter 1: In	troductior	ı	1
1.1.	Backgro	ound		1
1.2.	Historic	al Developn	nents	2
1.3.	Problem	Statement		5
1.4.	Objectiv	ves		5
1.5.	Scope			5
Cha	pter 2: St	ate of Kno	owledge	7
2.1.	Asphalt Cements			7
	2.1.1.	Producti	on	7
	2.1.2.	Structur	e and Chemistry of Asphalt Binders	8
	2.1.3.	Asphalt	Models	10
2.2.	Convent	tional Asphalt Binder Tests		12
2.3.	SuperPave [™] Asphalt Binder Tests and Specifications		13	
	2.3.1.	SuperPa	ave [™] Physical tests for Asphalt Binders	15
2.4.	Polymer Modified Binder			23
	2.4.1.	Polymer	Modifiers	24
	2.4.2.	Polymer	-Binder Mixing Process	27
2.5.	Linear V	Linear Viscoelastic Theory		
	2.5.1. Constitutive Models		29	
		2.5.1.1.	The Basic Elements: Spring and Dashpot	29
		2.5.1.2.	The Governing Differential Equation (GDE)	30
		2.5.1.3.	The Harmonic Response Functions	32

		2.5.1.4.	Relations between Standard Response	
			Functions Associated with Creep and	
			Relaxation	33
		2.5.1.5.	Electromechanical Analogies	34
		2.5.1.6.	The Maxwell and Voigt Units	34
	2.5.2.	Continuc	ous Time Spectra	36
2.6.	Comple	x Shear Mo	dulus Master Curves	39
2.7.	Viscoela	astic Respo	nse Models of Asphalt Binders	41
	2.7.1.	Van der	Poel's Nomograph	42
	2.7.2.	Jongepie	er and Kuilman's Model	42
	2.7.3.	Dobson's	s Model	43
	2.7.4.	Dickinso	n and Witt's Model	44
	2.7.5.	Christen	sen and Anderson's Model	45
	2.7.6.	Gahvari's	s Model	46
	2.7.7.	Stastna a	and Zanzotto's Model	47
	2.7.8	Marastea	anu and Anderson's Model	48
2.8.	Model A	pplicability	to Polymer Modified Binders	49
Chaj	pter 3: E	xperiment	al Program	51
3.1.	Selectio	on of Materia	als	51
3.2.	Instrum	ents Used i	n This Study	55
	3.2.1.	Dynamic	Shear Rheometer	55
	3.2.2.	Rolling T	hin Film Oven	58
	3.2.3.	Pressure	e Aging Vessel	59
3.3.	Modified	d-Asphalt P	reparation	61
3.4.	Designa	ation of Bind	ders	62
3.5.	Dynami	c Mechanica	al Analysis	62
	3.5.1.	Strain Sv	veeps	62
	3.5.2.	Frequen	cy Sweeps	65
3.6.	Master	Curve Cons	truction	65

Chap	ter 4: De	evelopment of Mathematical Models for	
	Fr	equency Dependency	70
4.1.	Introduc	tion	70
4.2.	System	Modeling	71
4.3.	Development of a Mathematical Model for the Complex Shear		
	Modulus	i	73
4.4.	Develop	ment of a Mathematical Model for the Phase Angle	80
4.5.	Non-Line	ear Regression Procedure	83
	4.5.1.	The Marquardt Method	85
Chap	ter 5: Ev	valuation and Validation of Proposed Models	87
5.1.	Introduc	tion	87
5.2.	Estimati	on of Models Coefficients Using Non-Linear Regression	88
5.3.	Validatio	on of the Proposed Models	95
	5.3.1.	Master Curves Comparison	95
	5.3.2.	Black Diagram Comparison	99
	5.3.3.	Relaxation Spectrum	100
Chap	ter 6: Su	ummary, Findings, Conclusions and	
Reco	mmond	ations	100

Recommendations	
Summary	103
Findings	105
Conclusions	107
Recommendations	108
	mmendations Summary Findings Conclusions Recommendations

109

Appendix A: SAS Input and Output Data Files for Non-Linear	
Least Squares Fit of APD5 to the Proposed	
Complex Shear Modulus and Phase Angle	
Models	118

References

Appendix B	: Model Fitting for Proposed Complex Shear	
	Modulus Equation	133
Appendix C	: Model Fitting for Proposed Phase Angle	
	Equation	148
Vitae		163

List of Figures

Figure 2.1.	Composition of Crude Petroleum From Three Different Sources (after Roberts <i>et al.</i> , 1991)	8
Figure 2.2.	A Schematic of Micellular Model for Asphalt Binders (after Lewandowski, 1994)	11
Figure 2.3.	Penetration Test	12
Figure 2.4.	Rolling Thin Film Oven	17
Figure 2.5.	Pressure Aging Vessel	18
Figure 2.6.	Operation Principle of the Dynamic Shear Rheometer	19
Figure 2.7.	Dynamic Shear Rheometer	20
Figure 2.8.	Repeatability of the Results for Sample Preparation (after Maccarrone <i>et al.</i> , 1995)	21
Figure 2.9.	Bending Beam Rheometer	22
Figure 2.10.	Loading System in the BBR	22
Figure 2.11.	Lithium Alkyl Polymerization (after Bull et al., 1988)	26
Figure 2.12.	The Basic Elements Used to Explain Elastic and Viscous Behavior: (a) Spring and (b) Dashpot	30
Figure 2.13.	The Maxwell (a) and Voigt (b) Units	35
Figure 2.14.	Generalized Maxwell Model Describing Arrheodictic Behavior	37

Figure 2.15.	The Making of a Master Curve	41
Figure 3.1.	Principal Components of the CS Rheometer (after Bohlin, 1990)	56
Figure 3.2.	PAV Repeatability (APD3)	60
Figure 3.3.	Maximum Shear Strain Sweep of 3% Unaged SBS Modifier (AUD3) at High Temperatures (1.5Hz)	63
Figure 3.4.	Maximum Shear Strain Sweep of 3% Unaged SBS Modifier (AUD3) at Intermediate Temperatures (1.5Hz)	64
Figure 3.5.	Master Curve Construction Based on Complex Shear Modulus Along With its Two Components (AUD3)	66
Figure 3.6.	Master Curve Construction Based on Phase Angle (AUD3)	67
Figure 3.7.	Master Curve Construction Based on Average Shift Factor (AUD3)	68
Figure 3.8.	Average Shift Factors (AUD3)	69
Figure 4.1.	The Modeling Process (after Trani, 1999)	71
Figure 4.2.	Causal Diagram for the Binder Viscoelastic System	72
Figure 4.3.	The Havriliak and Negami Model	76
Figure 4.4.	Poor Matching of the First Proposed Model	78
Figure 4.5.	Comparison between the Measured Complex Shear Modulus for PG 76-22P and Results of the Proposed Model	80

Figure 4.6.	Comparison between the Measured Phase Angle for PG 64- 22U and the Proposed Model	82
Figure 4.7.	Black Diagram for PG-64-22U and Results of the Proposed Models	83
Figure 5.1.	Parameter v Trend with Aging for AD	94
Figure 5.2.	Parameter v Trend with Aging for AX	94
Figure 5.3.	Comparison between the Measured Complex Shear Modulus for APX5 and Results of the Proposed Model	95
Figure 5.4.	Comparison between the Measured Phase Angle for AUD4 and Results of the Proposed and the Marasteanu-Anderson Model	96
Figure 5.5.	Percentage Difference between the Measured Phase Angle and the Results of the Proposed Model (AUD4)	97
Figure 5.6.	Comparison between the Measured Loss Shear Modulus for AUX3 and Predicted Values of the Proposed Models	98
Figure 5.7.	Comparison between the Measured Storage Shear Modulus for AUX3 and Predicted Values of the Proposed Models	98
Figure 5.8.	Black Diagram for AUX3	99
Figure 5.9.	Black Diagram for AUX5	100
Figure 5.10.	Comparison between the Relaxation Spectrum Obtained from the Experimental Data and from the Proposed Models for AUX3	101
Figure 5.11.	Comparison between the Relaxation Spectrum Obtained from the Experimental Data and from the Proposed Models for AUX5	102

Figure b.1.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 64-22U	134
Figure b.2.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 64-22R	134
Figure b.3.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 64-22P	135
Figure b.4.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 70-22U	135
Figure b.5.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 70-22R	136
Figure b.6.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 70-22P	136
Figure b.7.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 76-22U	137
Figure b.8.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 76-22R	137
Figure b.9.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for 76-22P	138
Figure b.10.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUD3	138
Figure b.11.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUD4	139

Figure b.12.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUD5	139
Figure b.13.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARD3	140
Figure b.14.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARD4	140
Figure b.15.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARD5	141
Figure b.16.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APD3	141
Figure b.17.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APD4	142
Figure b.18.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APD5	142
Figure b.19.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUX3	143
Figure b.20.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUX4	143
Figure b.21.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for AUX5	144
Figure b.22.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARX3	144

Figure b.23.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARX4	145
Figure b.24.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for ARX5	145
Figure b.25.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APX3	146
Figure b.26.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APX4	146
Figure b.27.	Comparison between the Measured Complex Shear Modulus and Results of the Proposed Model for APX5	147
Figure c.1.	Comparison between the Measured Phase Angle and Results of the Proposed Model for 64-22U	149
Figure c.2.	Comparison between the Measured Phase Angle and Results of the Proposed Model for 64-22R	149
Figure c.3.	Comparison between the Measured Phase Angle and Results of the Proposed Model for 64-22P	150
Figure c.4.	Comparison between the Measured Phase Angle and Results of the Proposed Model for 70-22U	150
Figure c.5.	Comparison between the Measured Phase Angle and Results of the Proposed Model for 70-22R	151
Figure c.6.	Comparison between the Measured Phase Angle and Results of the Proposed Model for 70-22P	151

Figure c.7.	Comparison between the Measured Phase Angle and Results of the Proposed Model for 76-22U	152
Figure c.8.	Comparison between the Measured Phase Angle and Results of the Proposed Model for 76-22R	152
Figure c.9.	Comparison between the Measured Phase Angle and Results of the Proposed Model for 76-22P	153
Figure c.10.	Comparison between the Measured Phase Angle and Results of the Proposed Model for AUD3	153
Figure c.11.	Comparison between the Measured Phase Angle and Results of the Proposed Model for AUD4	154
Figure c.12.	Comparison between the Measured Phase Angle and Results of the Proposed Model for AUD5	154
Figure c.13.	Comparison between the Measured Phase Angle and Results of the Proposed Model for ARD3	155
Figure c.14.	Comparison between the Measured Phase Angle and Results of the Proposed Model for ARD4	155
Figure c.15.	Comparison between the Measured Phase Angle and Results of the Proposed Model for ARD5	156
Figure c.16.	Comparison between the Measured Phase Angle and Results of the Proposed Model for APD3	156
Figure c.17.	Comparison between the Measured Phase Angle and Results of the Proposed Model for APD4	157

Figure c.18.	Comparison between the Measured Phase Angle and Results of the Proposed Model for APD5	157
Figure c.19.	Comparison between the Measured Phase Angle and Results of the Proposed Model for AUX3	158
Figure c.20.	Comparison between the Measured Phase Angle and Results of the Proposed Model for AUX4	158
Figure c.21.	Comparison between the Measured Phase Angle and Results of the Proposed Model for AUX5	159
Figure c.22.	Comparison between the Measured Phase Angle and Results of the Proposed Model for ARX3	159
Figure c.23.	Comparison between the Measured Phase Angle and Results of the Proposed Model for ARX4	160
Figure c.24.	Comparison between the Measured Phase Angle and Results of the Proposed Model for ARX5	160
Figure c.25.	Comparison between the Measured Phase Angle and Results of the Proposed Model for APX3	161
Figure c.26.	Comparison between the Measured Phase Angle and Results of the Proposed Model for APX4	161
Figure c.27.	Comparison between the Measured Phase Angle and Results of the Proposed Model for APX5	162

LIST OF TABLES

Table 2.1.	Element Analysis of Four Different Asphalt Binders (after Lewandowski, 1994)	9
Table 2.2.	Properties in National Specifications for Asphalt Binder (after Nicholls, 1998)	14
Table 2.3.	Equipment Used by the SuperPave TM Binder Specification	16
Table 2.4.	Response to the Standard Stimuli (after Tschoegl, 1989)	33
Table 2.5.	Models for Describing Time Dependency of Asphalt Binder (after Marasteanu, 1996)	50
Table 3.1.	Conventional Test Results on AC-20 Asphalt Binder	52
Table 3.2.	Results of Corbett Analysis on AC-20	52
Table 3.3.	Reported Effects of Elastomeric Modification (after Bahia, 1997)	54
Table 3.4.	Typical Properties of Thermoplastic Block Copolymers at 23°C (after Shell Chemical Company, 1992)	54
Table 3.5.	Offset Required at the Target Temperatures	58
Table 4.1.	Matching Functions of the Z-type	75
Table 5.1.	Estimated Parameters for the Complex Shear Modulus from Least Square Analysis	90
Table 5.2.	Estimated Parameters for the Phase Angle Model from Least Square Analysis	92