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MODELING AND CONTROL OF A SYNCHRONOUS GENERATOR WITH

ELECTRONIC LOAD

Ivan Jadric

(ABSTRACT)

Design and analysis of a system consisting of a variable-speed synchronous

generator that supplies an active dc load (inverter) through a three-phase diode rectifier

requires adequate modeling in both time and frequency domain. In particular, the

system’s control-loops, responsible for stability and proper impedance matching between

generator and load, are difficult to design without an accurate small-signal model. A

particularity of the described system is strong non-ideal operation of the diode rectifier, a

consequence of the large value of generator’s synchronous impedance. This non-ideal

behavior influences both steady state and transient performance. This thesis presents a

new, average model of the system. The average model accounts, in a detailed manner, for

dynamics of generator and load, and for effects of the non-ideal operation of diode

rectifier. The model is non-linear, but time continuous, and can be used for large- and

small-signal analysis.

The developed model was verified on a 150 kW generator set with inverter output,

whose dc-link voltage control-loop design was successfully carried out based on the

average model.
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Chapter 1. Introduction

1.1. Motivation for this work and state of the art

This work was motivated by the need to study dynamics and control design of the

system whose block diagram is shown in Fig. 1.1. It is a 150 kW generator set with

inverter output, in which a natural gas engine drives a synchronous generator (which,

throughout this text, will also be referred to as main generator). Field voltage is provided

to the main generator by means of a separate, smaller synchronous machine, an exciter.

The exciter is constructed with field winding on the stator and armature winding on the

rotor; that makes it possible to rectify the exciter’s armature ac voltages by a rotating

diode bridge, and connect the rectifier’s output directly to the field winding of the main

generator.

EXCITER GENERATOR

RECTIFIER vdc

INVERTER

vfd

ENGINE LOAD

Modeled Subsystem

Fig. 1.1. Block diagram of the studied system.
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The main generator’s output is rectified by another diode bridge, in order to form a

dc-link that feeds an inverter. Balanced three-phase voltages are supplied to the load by

this inverter. Since the inverter also determines load frequency, it is not necessary to

operate the generator at constant speed corresponding to 60 Hz.

In order to make engine operation as efficient as possible, speed is varied from

1800 rpm to 4000 rpm according to a load-versus-speed relationship considered optimal

for the engine. Such variable speed operation affects generator design in several ways, of

which the most important for our study is the effect it has on the value of main

generator’s synchronous inductance. With standard generator design, at minimum speed a

relatively large main generator’s field current would be required in order to achieve the

rated generator output voltage. That would result in large exciter’s armature currents, and

overheating of the exciter. The minimum amount of cooling (due to minimum speed)

would make this problem even more serious. In order to avoid this, generator designers

increased the number of turns of the main generator’s armature windings. That resulted in

a smaller field current required to obtain the rated output voltage but, at the same time, it

significantly increased main generator’s synchronous inductance.

A peculiarity of the system shown in Fig. 1.1 is the fact that both synchronous

machines, the exciter and main generator, have electronic load: they feed reactive dc

loads through diode rectifiers. If a synchronous machine were an ideal voltage source,

Fig. 1.2 would represent its simplified circuit diagram with a diode bridge and a dc

current source load. It is a textbook example of how non-linear, switching elements

(diodes) cause non-sinusoidal ac waveforms [1]. In Fig. 1.2, va, vb and vc are sinusoidal

voltages with amplitude Vp and a phase shift of 120o one with respect to another. Idc is a

constant dc current representing dc load. Average value of the dc voltage at the rectifier’s

output can be calculated as

pdc Vv
π

33=�
.

(1.1)
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Idc

va

vc

vb

+

+

+ ia

Fig. 1.2. Ideal three-phase voltage source feeding a dc current source load through a
diode rectifier.

-1.2

-0.6

0

0.6

1.2

0 45 90 135 180 225 270 315 360

Electrical degrees

Phase voltage (p.u.)

Phase current (p.u.)

Phase current's first harmonic (p.u.)

Fig. 1.3. Ac waveforms of the system shown in Fig. 1.2.

Fig. 1.3 shows qualitative waveforms of phase voltage va and phase current ia. It

can be seen that, due to diode rectification and current-source dc load, the phase current

has a quasi-square waveform. First harmonic of ia, ia1, is also shown. Its amplitude can be

calculated as

dca II
π

32
1 = .

(1.2)

It is important to notice in Fig. 1.3 that voltage is in phase with current’s first

harmonic. Therefore, from the point of view of the ac input’s fundamental voltage and
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current harmonics, an ideal diode rectifier with a current source dc load behaves like a

nonlinear resistor.

Idc

va

vc

vb

+

+

+ ia

Ll

Ll

Ll

B

A

C

Fig. 1.4. Non-ideal voltage source feeding a current source dc load through a diode
rectifier.

The situation is somewhat more complicated if ac side’s parasitic inductances Ll are

considered [1]. These inductances normally represent transformer or power line leakage

inductance, and need to be placed in series with ideal voltage sources va, vb and vc, as

shown in Fig. 1.4. They cause non-ideal operation of the diode bridge, i.e. they cause

diode commutations to be non-instantaneous; the time required for commutation is

usually expressed in terms of commutation angle u, which is a function of parasitic input

inductance Ll, line frequency ω and output current Idc [1]:











−= −

p

dcl

V

IL
u

3

2
1cos1 ω

.

(1.3)

Non-instantaneous diode commutations cause distortion in diode bridge input

voltage waveforms, vAB, vBC and vCA, while edges of the current waveform have some

finite slope. Also, the average value of the output dc voltage is somewhat reduced

compared to the ideal case, and it can be expressed as [1]:











−=

p

dcl
pdc

V

IL
Vv

3
1

33 ω
π

�
.

(1.4)
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Expression (1.4) is valid only if 
3

π<u ; for cases in which 
3

π≥u , expressions

similar to (1.4) can be found [1].

It needs to be understood that (1.1) and (1.2) describe an ideal operation of the

diode rectifier in an average sense: they express average dc output voltage by means of

input ac peak voltage, and fundamental harmonic of input ac current by means of the

output dc current. These expressions do not contain any information about the voltage

ripple at the dc side and the current’s higher harmonics at the ac side.

A synchronous generator is never an ideal voltage source, and it is even less so if it

is characterized by a large value of synchronous inductance. If it is connected to a diode

rectifier, inductance Ll from Fig. 1.4 is of the order of magnitude of the generator’s

synchronous inductance. Therefore, it can be expected that the exciter’s and the main

generator’s ac terminal voltage and current waveforms will be heavily distorted [2]-[7].

Fig. 1.5 shows measured waveforms of the system from Fig. 1.1 and can serve as an

example of such distortion. It can be seen that the main generator’s line-to-line voltage is

a quasi-square wave, and the current is also far from being sinusoidal.

Voltage
(500V/div)

Current
(50A/div)

Fig. 1.5. Main generator’s line-to-line voltage and phase current with a 100 kW resistive
load connected to the dc-link (time scale: 2 ms/div).

Similarly, a dc load is never an ideal dc current source. For a heavily inductive dc

load, like the main generator’s field winding that loads the exciter in Fig. 1.1, the current
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source approximation is very close to the actual situation. For the main generator, which

has a large dc-link capacitor and an inverter as a load, that is not the case.

For the above reasons, operation of the system shown in Fig. 1.1 cannot be

described with analytical expressions such as (1.1) (or (1.3)) and (1.2). Moreover, even

though it is not obvious from Fig. 1.5, there is a phase-shift between the first harmonics

of the phase voltage and the phase current. Therefore, as a result of the non-ideal

operation of the diode-bridge, the generator will behave as if some reactive load were

connected to its terminals.

Some design aspects relative to the system shown in Fig. 1.1 (e.g., design of

protection measures at the dc-link) require large-signal, time-domain simulation results.

Simulation of the system’s switching model can provide these results, but is extremely

time- and memory consuming (time-constants of the system are of the order of magnitude

of hundreds of milliseconds, and the maximum simulation time-step needs to be kept well

below the switching ripple period, i.e. on the order of millisecond). Therefore, from the

point of view of large signal analysis, the need for an ‘average’ model of the system can

be anticipated. Such a model would describe dynamic behavior of the system without

including any switching elements.

EXCITER GENERATOR

RECTIFIER vdc

COMPENSATOR

BUCK
POWER
SUPPLY

vdcref+-

INVERTER

vfd

ENGINE LOAD

Fig. 1.6. Block diagram of the studied system in closed loop.

The system shown in Fig. 1.1 cannot work in open loop: dc-link voltage, vdc, needs

to be regulated at a constant value (800 V) for the inverter to operate properly. Since

diode rectification provides no means of regulation, constant dc-link voltage can be

achieved only by adjusting the exciter’s field voltage vfd. That can be done by closing the

dc-link voltage feedback control-loop, as shown in Fig. 1.6. This control-loop provides
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regulation of the inverter’s input voltage, but also plays an important role in impedance

matching between the generator and inverter, thus assuring system stability.

In order to design the compensator in Fig. 1.6, it is necessary to have a good small-

signal model representing the system’s dynamic behavior. A three-phase, salient pole,

wound field synchronous generator is characterized by relatively complex dynamics. In

order to describe properly its electrical behavior, it is necessary to deal with at least a

third order system, which becomes fifth (or higher) order if there are damper windings

present in the machine [8], [9]. These high-order models contain complete information

about the generator’s dynamics, but are often quite demanding to use, both from

parameters identification and computational burden point of view. In particular, for the

generator’s control-loop design, it is a common practice to model a generator as a first-

order system [11], [12]. For that simplification to be legitimate, two assumptions need to

be true. First, the generator has to behave as a good voltage source; i.e. its synchronous

impedance needs to be small. Second, the generator must operate at constant speed. Both

assumptions are normally true for large generators used in power generation plants.

However, the system shown in Fig. 1.1 is characterized by variable speed and the large

main generator’s synchronous impedance. Also, if the exciter’s field voltage is

considered input, and the dc-link voltage output variable, the overall order of the system

is eight. Therefore, it can be suspected that the above-mentioned, single-pole generator

model would hardly be appropriate. The presence of diode rectifiers makes modeling of

the system even more difficult. The diode’s switching behavior causes the system to be

time-discontinuous, and therefore impossible to linearize. Moreover, it is not clear how to

model the effect of the distorted generator’s ac waveforms.

The above–mentioned, design–related requirements for transient and small–signal

representation of the system’s behavior define the goal of this work. It consists of

developing a model of the system with the following properties:

• Accurate dynamic representation of the generator, load and effects of non-ideal

operation of diode rectifier;
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• Suitability for time domain simulations, with emphasis on efficient use of CPU

time and computer memory; and

• Suitability for small-signal analysis and application to control design.

The following section is a short overview of the topics covered in the body of the

text.

1.2. Thesis outline

Chapter 2, Synchronous Generator Dynamic Modeling, starts with a summary of

synchronous machine’s dynamic model development. This model has been known for

more than half a century, and that is why its development is not carried out in a detailed

manner; only the main assumptions and results are presented. During the work that

resulted in this thesis, a considerable amount of time and effort was spent on the

parameter identification problem, particularly for the exciter. That is why this chapter

also contains a brief description of the parameter identification process. Following that is

a section dedicated to the review of the generator’s steady state operation, and a short

section on how the generator’s model can be implemented in a simulation software like

PSpice.

In Chapter 3, results obtained by simulating the “modeled subsystem” from Fig. 1.1

are presented and compared to the measurement results. This is referred to as the

“switching model” of the system, since it includes switching elements (diodes), and

therefore describes the system as it actually operates. Results obtained with the switching

model simulations are discussed, and the basis is set for the development of the average

model.

Chapter 4, Average Model, is the most innovative part of this work. Based on

conclusions regarding the switching model of the system, this chapter shows how a

system, consisting of a synchronous generator, a diode bridge rectifier and some reactive
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dc load, can be modeled in a simplified way. This is referred to as the “average model” of

the system. The average model preserves all of the system’s relevant dynamic

information, but it does not include any switching elements. That makes it particularly

useful for linearization and control-loop design. Assumptions for the development of the

average model are presented, and derivation of the model’s equations is carried out. The

average model is then verified through comparison with the switching model and

measurement results. Since the average model equations are non-linear, it is shown how

they can be linearized and how the corresponding state-space representation of the system

can be found. Finally, a discussion on model’s validity is included.

Chapter 5 contains dc-link voltage control-loop design procedure. It is based on the

exciter’s field voltage-to-dc-link voltage transfer function obtained with the average

model developed in Chapter 4. A design procedure for a PI compensator is given, and

transient simulation and measurement results with resistive load at the dc-link are shown.

Unstable operation of this compensator with an inverter load due to poor impedance

matching between different parts of the system is discussed, and the need for a higher-

order dynamic compensator is justified. A five-pole, three-zero compensator is found to

be satisfactory, and its design process is carried out. Validity of this compensator is

confirmed through simulation and measurement results of transient operation with

resistive and inverter load at the dc-link.

Chapter 6 concludes the thesis by summarizing its most important results.
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Chapter 2. Synchronous

Generator Dynamic Modeling

2.1. Synchronous generator model in rotor reference

frame

It was explained in the introductory chapter why a first-order synchronous machine

model would not be appropriate for the application that motivated the work presented in

this thesis. The purpose of this section is to introduce a detailed synchronous generator

model, which takes into account all relevant dynamic phenomena occurring in the

machine. Since this model has been widely known since 1930s, only the main

assumptions and results will be presented.
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2.1.1. Assumptions for model development

A three-phase, wound-field synchronous generator has three identical armature

windings symmetrically distributed around the air-gap, and one field winding. One or

more damper windings can also be present and, for our convenience in this section, we

will assume that one damper winding is present in each machine’s axis. Normally,

armature windings are placed on the stator, and field and damper windings on the rotor.

However, there are cases, such as the exciter in Fig. 1.1, when armature windings are

placed on the rotor and field winding on the stator (the exciter has no damper windings).

This does not affect the machine modeling approach at all, since only relative motion

between the stator and rotor windings is important. Therefore, throughout this text, when

we refer to ‘rotor windings’, we will always imply the field (and damper, if existent)

winding placed at the opposite side of the air gap with respect to the three-phase armature

windings.

Several assumptions are needed in order to simplify the actual synchronous

machine and make the model development less tedious [9]:

1. It is assumed that every winding present in the machine produces a sinusoidal

MMF along the air gap, which, for phase a, can be expressed as






Θ= saa

Pγθ
2

sin , where P represents the machine’s number of poles, and γs

stands for the stator’s angular coordinate;

2. Iron permeability in the machine is assumed to be infinite. This is equivalent to

neglecting all effects due to magnetic saturation, and flux fringing;

3. Rotor construction is assumed to be the only factor contributing to magnetic

asymmetry in the machine. Effects of the stator or rotor slots can be taken into

account by Carter’s factor. This assumption results in approximating the

magnetic conductivity function as )cos(20 sPγλλλ −= , where λ0 and λ2

depend on the geometry of the air gap; and
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4. Local value of magnetic flux density B is obtained by multiplying local values

of MMF and magnetic conductivity. The third harmonic of the magnetic flux

density resulting from this multiplication is neglected, in accordance with

assumption 1.

Errors introduced by these assumptions are normally small enough to be negligible,

particularly from the point of view of the machine’s dynamic performance.

2.1.2. Development of the model’s equations and equivalent

circuit

A synchronous machine can be described by a system of n+1 equations, n of which

are electrical and one of which is mechanical. The number n of electrical equations is

equal to the number of independent electrical variables necessary to describe the

machine. These variables can be either currents or flux linkages. Currents are chosen to

be the independent variables in this thesis.

Electrical equations are obtained by writing Kirchoff’s voltage law for every

winding, i.e. by equating the voltage at the winding’s terminal to the sum of resistive and

inductive voltage drops across the winding [8], [9]. Note that damper windings, if

present, are always short circuited. Therefore, their terminal voltage is equal to zero.

In order to correctly calculate the inductive voltage drop across a winding, total

magnetic flux linked with the winding needs to be evaluated. That is achieved by means

of an inductance matrix, which relates all windings’ flux linkages to all windings’

currents. When that is done for a salient-pole synchronous machine, an inductance matrix

dependent on the rotor position is obtained. This dependence is due to the magnetic

asymmetry of the rotor: because of the way the rotor of a salient pole machine is shaped,

there exists a preferable magnetic direction. This direction coincides with the direction of

the flux produced by the field winding, and is defined as machine’s d axis. The machine’s

q axis is placed at 90 electrical degrees (in a counterclockwise direction) with respect to
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the machine’s d axis. Then, the rotor position can be expressed by means of an angle,

named θ, between the magnetic axis of the armature’s phase a and the rotor’s q axis.

Dependence of the inductance matrix on the rotor position represents the main

difficulty in modeling the synchronous machine. A solution to this problem is to change

the reference system, or frame, in which the machine’s electrical and magnetic variables

are expressed. So far, the reference frame intuitively used was the so-called stationary, or

stator, or abc reference frame. In it, variables are expressed as they can actually be

measured in the machine, but the machine parameters are time variant (since θ is a

function of time). It can be shown that the only reference frame that provides constant

machine parameters is the rotor, or dq, reference frame. In it, all variables are expressed

in a form in which a hypothetical observer placed on the rotor would measure them.

Transformation from the abc to the dq reference frame is given by the following

transformation matrix:
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 −
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(2.1)

Inverse transformation (from the dq to the abc reference frame) is then given by






























 +





 +






 −





 −=

3

2
cos

3

2
sin

3

2
cos

3

2
sin

cossin

3

2

πθπθ

πθπθ
θθ

invT .

(2.2)

In (2.1) and (2.2), θ is calculated as

0

0

)()( θξξωθ += ∫
t

dt ,

(2.3)
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where ω represents the rotor’s (electrical) speed.

Therefore, any set of three-phase variables fa, fb and fc expressed in the abc

reference frame can be transformed in dq reference frame variables fd and fq by

multiplying them by T:
















=









c

b

a

q

d

f

f

f

f

f
T .

(2.4)

Vice versa:
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inv
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f

f

f

f

f

T .

(2.5)

Note that transformation of the variables, as defined by (2.1) and (2.2), preserves

total system power: in every time instant, power in the abc reference frame is equal to the

power in the dq reference frame.

Another comment needs to be made regarding zero variables, which generally must

be taken into account when variables are transformed into the rotor reference frame. In

our case, with a Y-connected generator without neutral connection, zero variables are

always equal to zero, and are therefore excluded from representation.

When the machine’s electrical equations are transformed from the abc to the dq

reference frame, they assume the following form:

• Armature equations

dt

di

dt

di

dt

di
iv kdfdd

qdd mdmdmdlss LL)LL(R +++−−−= ωλ ,

(2.6)

dt

di

dt

di
iv kqq

dqq mqmqlss L)LL(R ++−+−= ωλ ,

(2.7)
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where

)(L)LL( mdmdls kdfddd iii +++−=λ ,

(2.8)

kqqq ii mqmqls L)LL( ++−=λ ;

(2.9)

• Field equation

dt

di

dt

di

dt

di
iv kdfdd

fdfd mdmdlfdmdfd L)LL(LR +++−= ;

(2.10)

• Damper winding equations

dt

di

dt

di

dt

di
i kdfdd
kd )LL(LLR0 mdlkdmdmdkd +++−= ,

(2.11)

dt

di

dt

di
i kqq

mqkq )LL(LR0 mqlkqkq ++−= .

(2.12)

Parameters and variables in the above equations have the following meanings:

• ω: rotor speed;

• vd: armature d axis terminal voltage;

• vq: armature q axis terminal voltage;

• id: armature d axis terminal current;

• iq: armature q axis terminal current;

• vfd: field winding terminal voltage (reflected to the stator);

• i fd: field winding terminal current (reflected to the stator);

• ikd: d axis damper winding current (reflected to the stator);

• ikq: q axis damper winding current (reflected to the stator);



16

• λd: total armature flux in d axis;

• λq: total armature flux in q axis;

• Rs: armature phase resistance;

• Lls: armature phase leakage inductance;

• Lmd: d axis coupling inductance;

• Rfd: field winding resistance (reflected to the stator);

• Llfd: field winding leakage inductance (reflected to the stator);

• Rkd: d axis damper wining resistance (reflected to the stator);

• Llkd: d axis damper winding leakage inductance (reflected to the stator);

• Lmq: q axis coupling inductance;

• Rkq: q axis damper winding resistance (reflected to the stator);

• Llkq: q axis damper winding leakage inductance (reflected to the stator).

Equations (2.6)-(2.12) describe the synchronous generator’s equivalent circuit in

the rotor reference frame shown in Fig. 2.1.

Several comments can be made regarding this equivalent circuit:

• D and q axis equivalent circuits are similar to a transformer equivalent circuit: in

each of them, several windings, each characterized by some resistance and

leakage inductance, are coupled through a mutual coupling inductance. The

difference, compared to the transformer case, is that, while a transformer

equivalent circuit is an ac circuit, here, when the generator is operating in

sinusoidal steady state, all voltages, currents and flux linkages are dc.

• Even though armature windings are now represented in the rotor reference frame,

and there are no time-variant inductances, the fact that armature windings are

magnetically coupled is taken into account by presence of cross-coupling terms in

the d and q axis’s equivalent circuit’s armature branch. For each axis, that term is
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equal to the product of rotor speed and total flux linked with armature winding of

the other axis.

vd

id Rs
Lls

Lmd

Rfd

Llfd

Rkd

Llkd

vfd

+
ωλ

q

+

vq

iq Rs Lls

Lmq

Rkq

Llkq

+
ωλ

d

+

+

Fig. 2.1. Synchronous generator’s equivalent circuit in rotor reference frame.

• If a machine (such as the exciter) has no damper windings, the equivalent circuit

can be easily adapted by removing from it the branches representing damper

windings. The rest of the circuit remains unchanged.

• All rotor parameters are reflected to armature. Therefore, when this circuit is used

for simulation, and actual values of rotor variables are of interest, the turns ratio

between the rotor and armature needs to be taken into account.

This equivalent circuit describes a synchronous generator electrically. The

mechanical variable is represented by rotor speed ω, and the mechanical equation of the

system is needed in order to complete the model. This equation relates the external torque

applied to the generator’s shaft to the electromagnetic torque that the machine develops

internally. However, for the purpose of this thesis, the mechanical equation of the system

is not considered, i.e. rotor speed is assumed to be known. The reason for that is the fact
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that our interest consists primarily in describing electrical behavior of the generator

loaded with a diode rectifier and a dc reactive load. To do that, it is legitimate to assume

constant speed, since electrical transients in the machine can be considered much faster

than mechanical transients (which involve the engine’s dynamics and inertia and the

generator’s inertia). However, the main results of this work (the average model described

in Chapter 4) will be verified at different values of rotor speed, in order to assure their

validity.

With the above considerations, rotor speed ω is not a variable, but a parameter of

the system. That causes (2.6)-(2.12) to be a set of linear differential equations.

2.1.3. Sinusoidal steady state operation

If a generator operates in sinusoidal steady state, phase voltages can be written in

the abc reference frame as

vpa Vv θcos= ,

(2.13)






 −=

3

2
cos

πθvpb Vv ,

(2.14)






 +=

3

2
cos

πθvpc Vv ,

(2.15)

where

0vvv t θωθ += .

(2.16)

In steady state, obviously, ωv=ω. However, in order to reach a steady state, the

generator must go through a transient during which the rotor electrical speed can be
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different from the terminal voltage’s angular frequency. That is the transient which

allows the machine to reach the steady state value of rotor angle δ, defined as the

displacement of the rotor referenced to the maximum positive value of the fundamental

component of the terminal voltage of phase a. It can be expressed, in radians, as

∫ −+−=−=
t

vvv d
0

)0()0())()(( θθξξωξωθθδ .

(2.17)

Then, after applying (2.1) to (2.13)-(2.15), in the dq reference frame we have

δθθ sin
2

3
)sin(

2

3
pvpd VVv =−= ,

(2.18)

δθθ cos
2

3
)cos(

2

3
pvpq VVv =−= .

(2.19)

Expressions (2.18) and (2.19) suggest that, in order to be able to represent dq

reference frame variables and ac space vectors in the same diagram, a complex

(Gaussian) plane be associated with the machine’s ‘physical’ dq plane. The Gaussian

plane’s real axis is aligned with the machine’s q axis, and the Gaussian plane’s imaginary

axis is aligned with machine’s d axis. It can then be written

)(
3

1
dq vjvV += .

(2.20)

In (2.20), V  represents the space vector associated to voltages va, vb and vc defined

by (2.13)-(2.15), and j  represents the unity vector in the direction of imaginary axis.

Remember that the length of a space vector is assumed to be equal to the variable’s rms

value. Fig. 2.2 shows the position of the dq reference frame and space vector V3  at

time t=0. Space vector V3 and dq reference frame rotate at constant speed ω in a
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counterclockwise direction, and the instantaneous values of va, vb and vc are obtained as

projections of V2  onto axes a, b and c, which are still.

a

c

b

V3

δ

d

q

vd

vq

j

I3

iq

id

φ

Fig. 2.2. Generator’s space vector diagram for sinusoidal steady state operation.

Space vector I3 , representing phase currents, is shifted by load angle φ with

respect to V . The instantaneous values of phase currents in the abc reference frame are

obtained as projections of I2  onto axes a, b and c, and (constant) values of phase

currents in the rotor reference frame are obtained as projections of the current space

vector onto the d and q axis, which yields

)sin(
2

3 φδ += pd Ii ,

(2.21)

)cos(
2

3 φδ += pq Ii ,

(2.22)

where Ip stands for peak phase current.
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2.1.4. Model implementation in a simulation software

Synchronous generator equivalent circuit in the rotor reference frame, shown in

Fig. 2.1, is very convenient to simulate with any software that allows schematic

descriptions of electric circuits, since only resistors, inductors and current dependent

voltage sources need to be implemented. PSpice [10] was used for all simulation results

in this thesis. Implementation of the circuit is straightforward, and only a few details will

be given some attention in this section

Cross-coupling terms in armature branches contain total armature flux in d and q

axis, given by (2.8) and (2.9). It is evident that these terms can be implemented using

current-dependent voltage sources.

The generator model is implemented in the dq reference frame, but it is usually of

practical interest to a have three-phase generator’s output terminals available in a

simulation process. That can be done by implementing the generator’s output with three

current-dependent current sources (Fig. 2.3), which generate currents in the abc reference

frame by calculating them from armature currents in the dq reference frame as
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vb

vc

Fig. 2.3. Implementation of generator’s three-phase output.

From the principle of duality, the generator model in the rotor reference frame is

loaded with two voltage-dependent voltage sources (Fig. 2.3), representing the
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generator’s armature voltages in dq reference frame, and calculated from the generator’s

armature voltages in the abc reference frame as
















=









c

b

a

q

d

v

v

v

v

v
T .

(2.24)

In order to be able to implement (2.23) and (2.24), rotor angle θ needs to be known.

It can be calculated from (2.3), with the rotor speed represented by a current source

charging a 1 F capacitor. Voltage across this capacitor is numerically equal to the rotor

angle θ. The initial angle θ0, if needed, can be implemented by an ideal dc voltage source

in series with the capacitor.

One last comment regarding the generator’s field voltage value. All rotor

parameters and variables in model equations are referred to armature. However, for

purposes of easy comparison of simulation with measurement results, it is convenient to

implement the field voltage source in the simulation process as it actually exists in a real

machine. To be able to do that, field-to-armature equivalent turns ratio t needs to be

known. The following relationships exist between the actual field winding variables and

field winding variables referred to armature (index ‘act’ denotes an actual field winding

variable, i.e. the variable as it can be measured at field winding terminals):

fdactfd tvv = ,

(2.25)

fdfdact tii = .

(2.26)

These relationships can be implemented as shown in Fig. 2.4.
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GENERATOR
MODEL IN DQ
REFERENCE

FRAME

+
tvfdact

ifd

+
ti fdvfdact

Fig. 2.4. Implementation of generator’s field voltage.

2.2. Parameter identification

The synchronous generator equivalent circuit from Fig. 2.1 requires a large number

of machine’s parameters to be known. These parameters can be obtained from either the

generator’s design data or through measurements.

The two most common ways to measure a synchronous machine’s parameters are

short-circuit characteristics and standstill frequency response characteristics [8], [9], [13]-

[19]. Both of these methods are based on determining the machine’s parameters from the

following standard inductances and time-constants:

• D axis synchronous inductance Ld

mdlsd LLL += ;

(2.27)

• D axis transient inductance Ld
’

lfdmd

lfdmd
ls

'
d LL

LL
LL

+
+= ;

(2.28)

• D axis subtransient inductance Ld
’’
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lkdlfdlkdmdlfdmd

lkdlfdmd
ls

''
d LLLLLL

LLL
LL

++
+= ;

(2.29)

• Q axis synchronous inductance Lq

mqlsq LLL += ;

(2.30)

• Q axis subtransient inductance Lq
’’

lkqmq

lkqmq
ls

''
q LL

LL
LL

+
+= ;

(2.31)

• D axis open circuit transient time constant T’
do

fd

mdlfd'
do R

LL
T

+= ;

(2.32)

• D axis short circuit transient time constant T’
d

fd

lsmd

lsmd
lfd

'
d R

LL
LL

L

T
+

+
= ;

(2.33)

• D axis open circuit subtransient time constant T’’
do

kd

lfdmd

lfdmd
lkd

''
do R

LL
LL

L

T
+

+
= ;

(2.34)

• D axis short circuit subtransient time constant T’’
d

kd

lslfdlsmdlfdmd

lslfdmd
lkd

''
d R

LLLLLL
LLL

L

T
++

+
= ;

(2.35)
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• Q axis open circuit subtransient time constant T’’
qo

kq

mqlkq''
qo R

LL
T

+
= ;

(2.36)

• Q axis short circuit subtransient time constant T’’
q

kq

lsmq

lsmq
lkq

''
q R

LL

LL
L

T
+

+
= .

(2.37)

Measurement of short-circuit characteristics requires measurement of the waveform

of the armature current immediately after a three-phase short circuit is performed at the

armature terminals. During the transient, the machine is rotating at a constant speed, and

field voltage is kept constant. From the measured armature current waveform, it is

possible to extract the values of Ld, Ld
’’ , Td

’ and Td
’’ , and from them to calculate the d

axis parameters. This method does not allow calculation of the parameters of the q axis.

Measurement of frequency response characteristics requires blocking the rotor in a

position in which its d (or q) axis is aligned with the flux produced by the armature

windings. With field winding shorted, frequency response is measured from the armature

terminals. The obtained Bode plots allow to determine Ld, Ld
’’ , Lq, Lq

’’ , Td
’, Tdo

’, Td
’’ ,

Tdo
’’ , Tq

’’ , Tqo
’’  and, from them, all parameters of the d and q axes.

In a system like the one shown in Fig. 1.1, it is difficult to perform any of these

measurements. The reason for thist is that the exciter’s armature terminals and main

generator’s field terminals are not accessible (they rotate with the shaft). Since detailed

design data sheets were available for the main generator, all the main generator’s

parameters were extracted from these data sheets. In the exciter’s case, no reliable design

data sheets were available. Therefore, an exciter’s stator and rotor (without a shaft) were

obtained from the manufacturer, and some measurements, conceptually similar to

standstill frequency response measurements, were done.



26

2.2.1. Main generator

Design data sheets resulted in the following values of the main generator’s

parameters at 145oC:

• P= 4 poles;

• Rs=0.137 Ω;

• Lls=0.897 mH;

• Lmd=43.2 mH;

• Rfd=0.0266 Ω;

• Llfd=3.37 mH;

• Rkd=0.120 Ω;

• Llkd=0.164 mH;

• Lmq=20.8 mH;

• Rkq=0.120 Ω;

• Llkq=0.347 mH;

• t=0.098.

2.2.2. Exciter

The exciter is a machine without damper windings, and that makes measurements

of its parameters relatively easy. The parameters to be determined are Rs, Lls, Lmd, Lmq,

Rfd, Llfd and t. While Rs and Rfdact can be measured directly at the winding’s terminals,

Lls, Lmd, Lmq, Llfd and Rfd can be calculated using (2.27)-(2.33), once Ld, Ld
’, T’

do, T
’
d and

Lq are measured.
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Measurement of Ld and Ld
’

Consider the exciter with the rotor blocked and windings positioned as

schematically shown in Fig. 2.5. With θ=0o, ω=0 rad/s, the transformation matrix is
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(2.38)

while the inverse transformation matrix is
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(2.39)
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qq

ii

vv

++

Fig. 2.5. Circuit for measurement of Ld and Ld
’.

From Fig. 2.5, armature currents in the abc reference frame can be expressed as

ia=0, ib=i , ic=-i . Armature currents in the dq reference frame are easily calculated by

applying (2.4), which yields iid 2−= , iq=0. Then, if field winding terminals f1 and f2

are left open (ifd=0), equations (2.6)-(2.12) are reduced to
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 ++=+−−=

dt

di
i

dt

di
iv s

d
dsd )LL(R2)LL(R mdlsmdls ,

(2.40)

0=qv ,

(2.41)

dt

di
v d

fd mdL−= .

(2.42)

Once vd and vq are known, va, vb and vc can be found from (2.5), yielding

0=av ,

(2.43)

dt

di
ivv scb )LL(R mdls +−−=−= .

(2.44)

Finally, supply voltage v can be expressed from vb and vc:






 ++=−=

dt

di
ivvv sbc )LL(R2 mdls .

(2.45)

If v is a sinusoidal voltage source of frequency ωs, (2.45) can be rewritten in terms

of phasors as

[ ] [ ]dsmdlss LR2)LL(R2 ss jj
I

V ωω +=++= ,

(2.46)

where Ld stands for the exciter’s d axis synchronous inductance. It is clear now that, by

measuring V , I  and Rs, it is possible to determine the value of Ld.

It can be shown that, in the same conditions as above, except for field winding

terminals f1 and f2 being shorted instead of open (vfd=0), the following is valid if

Rfd<< ωsLlfd:
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[ ]'
ds

lfdmd

lfdmd
lss LR2)

LL

LL
L(R2 ss jj

I

V ωω +=







+

++≈ .

(2.47)

In this way, d axis transient inductance Ld
’ can be found.

Measurement of T’
do and T’

d

D axis time constants Tdo
’ and Td

’ can be found from measurements performed at

the field winding terminals. The configuration shown in Fig. 2.6 is used. Remember that

time constants do not depend on whether they are referred to the rotor or to the armature.

Therefore, it is allowable to draw conclusions from the machine’s equations referred to

the armature, but to perform measurements at the actual field winding terminals.

ccbb

aa

f1f1

f2f2

dd

qq

ii

vv
++

Fig. 2.6. Circuit for measurement of Tdo
’ and Td

’.

If the armature windings are left open, (2.10) immediately yields

dt

di
iv )LL(R mdlfdfd ++= ,

(2.48)

or, written with phasors,

fdos Zj
I

V =++= )LL(R mdlfdfd ω .

(2.49)
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Then, as (2.32) suggests, the d-axis open-circuit transient time constant can be

found from the resistive and inductive part of fdoZ .

If the armature terminals are shorted, the assumption that Rs<<ωsLls needs to be

made in order to measure Td
’. With va=vb=vc=vd=vq=0, and stator resistance Rs

neglected, (2.6)-(2.10) yield

fdd ii
mdls

md

LL
L

+
= ,

(2.50)

0=qi ,

(2.51)

dt

di
iv fd

fdfd 





+

++=
lsmd

lsmd
lfdfd LL

LL
LR .

(2.52)

When (2.52) is written in terms of phasors, we obtain

fds Zj
I

V =





+

++=
lsmd

lsmd
lfdfd LL

LL
LR ω .

(2.53)

Then, as (2.33) suggests, d axis short-circuit transient time constant can be found

from the resistive and inductive part of fdZ .

Measurement of Lq

For measurement of the q axis parameters, the windings can still be positioned as in

Fig. 2.5, but the armature terminals need to be connected as shown in Fig. 2.7. It has no

importance, in this case, whether the field winding is left open or shorted, since no flux

produced by the armature links the field winding.



31

cc
bb

aa

f1f1
f2f2 dd

qq

ii

vv
++

Fig. 2.7. Circuit for measurement of q axis parameters.

With the connection as in Fig. 2.7, abc reference frame armature currents are

iia −= , iib 2
1= , iic 2

1= , which, by virtue of (2.4), yields id=0, iiq 2

3−= . Then, from

(2.6) and (2.7), armature voltages in rotor reference frame can be found as

0=dv ,

(2.54)





 ++=+−−=

dt

di
i

dt

di
iv q
qq )LL(R

2

3
)LL(R mqlssmqlss .

(2.55)

From (2.54) and (2.55), by using (2.5), the armature voltages in the abc reference

frame are

dt

di
iva )LL(R mqlss ++= ,

(2.56)





 ++−==

dt

di
ivv cb )LL(R

2

1
mqlss .

(2.57)

Since v=va-vb, it can be written (in phasor terms)

[ ] )LR(
2
3

)LL(R
2
3

qsmqlss ss jj
I

V ωω +=++= ,

(2.58)
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which makes it clear that Lq can be found after IV  , and Rs are measured.

Note that where a factor of two was present in (2.46), expression (2.58) has a factor

of 3/2. That can be intuitively explained by the way the armature phases are connected in

Fig. 2.5 and Fig. 2.7.

The above-described measurements were performed at the available exciter’s stator

and rotor. Since there were no shaft and bearings, uniformity of the air gap was assured

by inserting transformer paper between stator and rotor. Resistances were measured at dc

and 25ºC, and ac measurements were performed at three different frequencies, in order to

check for the effects of iron eddy currents. Since there is no standard way of dividing Ld

into its two components, Lls and Lmd, it is assumed that Lls represents 5% of the value of

Ld. Table 2.1 summarizes the measurement results. It was found that eddy currents had

no influence, since the measurements at all three frequencies gave very similar values.

Table 2.1. Measured exciter’s parameters.

Parameter

measured

Measured at dc Measured at 60

Hz

Measured at

200 Hz

Measured at

400 Hz

Rs (Ω) 0.218

Rfdact (Ω) 30.6

Ld (mH) 2.43 2.43 2.42

Ld
’ (mH) 0.677 0.672 0.669

Tdo
’ (s) 0.026 0.026 0.026

Td
’ (s) 0.0086 0.0077 0.0076

Lq (mH) 2.38 2.37 2.37

The following parameter values (at 145ºC) were used when exciter operation was

simulated:
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• P= 8 poles;

• Rs=0.218 Ω;

• Lls=0.122 mH;

• Lmd=2.31 mH;

• Rfd=0.123 Ω;

• Llfd=0.845 mH;

• Lmq=2.25 mH;

• t=0.063.
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Chapter 3. Switching Model

3.1. Introduction

The switching model of a diode bridge-loaded synchronous generator (which will

also be referred to as a generator/rectifier switching model) is obtained when a three-

phase diode bridge is connected to the generator’s three-phase output implemented in a

simulation software, as shown in Fig. 3.1. The main purpose of time-domain simulations

of the switching model is to see how an electronic (diode-rectifier) load affects the

generator’s ac waveforms; the model’s switching nature makes it unsuitable for

linearization and control-purpose applications. Also, because of the need to keep the

maximum simulation time-step well below the switching period, these simulations are

time- and memory consuming.

Fig. 3.2 shows the block diagram of the system whose switching model was

simulated. It differs from the one shown in Fig. 1.1 in the fact that the engine is excluded

from the model, the generator speed is set as a model parameter, and the main generator’s

dc load is represented by a resistor (instead of an inverter). Since our primary interest is

to show the exciter’s and main generator’s ac waveforms, these simplifications are

legitimate.
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Fig. 3.1. Generator/rectifier switching model.
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Fig. 3.2. Block diagram of the simulated system.

3.2. Simulation and experimental results

It is convenient to simulate the system shown in Fig. 3.2 under different operating

conditions (values of speed ω and load Rl) in order to see how the main generator’s ac

waveforms are affected by diode-rectifier load. Two cases are shown in Fig. 3.3 and Fig.

3.4. They represent the main generator’s line-to-line voltage and phase current at two

different speeds (2280 rpm and 3340 rpm) and different resistive dc loads (34 kW and

100 kW). In both cases, the exciter’s field voltage was set to an appropriate value in order

to obtain 800 V at the dc-link.

The simulation results shown in Fig. 3.3 and Fig. 3.4 are to be compared with the

measurement results, shown in Fig. 3.5 and Fig. 3.6, respectively. It can be seen that the

measured waveforms closely match the simulation results.
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Fig. 3.3. Switching model simulation: the main generator’s line voltage and phase
current (n=2280 rpm, Rl=19 Ω,  vfd=16 V).
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Fig. 3.4. Switching model simulation: the main generator’s line voltage and phase
current (n=3340 rpm, Rl=6.4 Ω,  vfd=33 V).
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Voltage (500 V/div)

Current (20 A/div)
Time: 2 ms/div

Fig. 3.5. Measurement: the main generator’s line voltage and phase current (n=2280
rpm, Rl=19 Ω,  vfd=15.2 V).

Voltage
(500 V/div)

Current (50 A/div)
Time: 2 ms/div

Fig. 3.6. Measurement: the main generator’s line voltage and phase current (n=3340
rpm, Rl=6.4 Ω,  vfd=31 V).

Several remarks can be made regarding the waveforms shown in Fig. 3.3, Fig. 3.4,

Fig. 3.5 and Fig. 3.6. Line-to-line voltage waveforms in these pictures have a ‘flat’ top,

due to the simultaneous conduction of three diodes, and the presence of a large capacitor

connected across the dc-link. The generator’s inductance causes diode commutation to

last for a considerable portion of the ac period. During commutation, three diodes are

conducting in the diode bridge, which means that one of the generator’s line-to-line

voltages is equal to zero; the other two are equal to vdc and –vdc, where vdc is the voltage
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across the dc-link capacitor. That voltage does not practically change over an ac period,

which results in the line-to-line voltage waveform’s flat top. Therefore, the main

generator’s line voltages are shaped by its dc load, dominated by a large capacitor. Note

that as generator speed increases (ac period decreases) and dc load current increases, the

duration of commutation becomes relatively longer with respect to the ac period. That

continues until diode commutation requires 60 electrical degrees, and line-to-line voltage

shows no more sinusoidal portions, but is a quasi-square waveform (Fig. 3.4 and Fig.

3.6). If the ac period were further reduced, and/or the load current were further increased,

it could be expected that the commutation angle would exceed 60°. However, no such

conditions were experienced with the studied system. The phase current waveform shown

in Fig. 3.3, Fig. 3.4, Fig. 3.5 and Fig. 3.6 is a consequence of applied voltage conditions,

and no immediate intuitive explanation can be associated with it.
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Fig. 3.7. Switching model simulation: the exciter’s line-to-line voltage and phase current
(n=3340 rpm, Rl=6.4 Ω,  vfd=33 V).

The exciter’s voltage and the current waveforms obtained with the switching model

simulation are shown in Fig. 3.7. It was not possible to measure the exciter’s armature

voltage and current waveforms because of the inaccessibility of the exciter’s armature

windings. In Fig. 3.7, the exciter’s diode bridge already operates with the 60°

commutation angle, but the waveforms are very different from the ones relative to the
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main generator, due to the nature of the exciter’s dc load. It is a heavily inductive load

(the main generator’s field winding), which causes the output dc current to be practically

constant over one exciter’s ac period. Because of that, and because of the 60° diode

commutation angle, the exciter’s phase currents have a trapezoidal form as shown in Fig.

3.7. The line-to-line voltage waveform is a consequence of such currents, and it is not

subject to an intuitive explanation. Dually to main generator’s case, the exciter’s phase

currents are shaped by its primarily inductive dc load.
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Fig. 3.8. Switching model simulation: the main generator’s field voltage at exciter’s field
voltage step from 0 V to 47.5 V (n=4000 rpm, Rl=4.27 Ω).

All figures in this section show the machine’s ac variables in steady state. In order

to reach a steady state of interest, a long initial transient needs to be simulated. It is

illustrative to consider one of the system’s dc variables during such a transient. Fig. 3.8

shows the main generator’s field voltage (output voltage of exciter’s diode bridge) during

transient caused by a step in exciter’s field voltage. Note that the waveform consists of an

average component on which is superimposed a large amount of the switching ripple. It

will be argued in the following section that only the average component of such a

waveform has importance regarding power transfer and the system’s dynamic behavior;

the ripple is a consequence of the exchange of reactive power between various parts of

the system. Therefore, a representation of a system that accounts for the average

component of a dc waveform, but excludes the ripple, would be valid and meaningful for
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the system’s analysis. It would also save simulation time, and offer some possibilities

(linearization) that are not inherent to the switching model. Such ‘ripple-free’

representation will be made possible by the average model presented in the following

chapter. It is necessary, however, for the average model to take into account the effects of

non-ideal operation of the system. In order to identify and correctly quantify these

effects, an analysis of the switching model simulation results need to be conducted.

3.3. Analysis of switching model results

It was mentioned in the introductory chapter that, with a generator operating in

conditions such as those shown in Fig. 3.5 and Fig. 3.6, a phase-shift exists between the

fundamental harmonic of the generator’s phase voltage and phase current. In the system

studied, it was not possible to measure the generator’s phase voltage waveform because

of the absence of a neutral connection. In such a case, switching model simulation offers

a precise means of obtaining phase voltage waveforms, shown (together with phase

current) in Fig. 3.9 and Fig. 3.10 for the main generator and in Fig. 3.11 for the exciter. It

is evident from these figures that there is a considerable phase shift between the

fundamental harmonic of the two waveforms; however it is also evident that, due to the

complexity of the waveforms, it is practically impossible to evaluate the phase shift

analytically. Numerical evaluation is made possible by using the results of the switching

model simulations and the generator’s space vector diagram. Prior to explaining how this

numerical evaluation can be carried out, it is useful to discuss the role of the current’s and

voltage’s higher harmonics (harmonics other than fundamental) in the power transfer

occurring from the generator to the dc output of the diode rectifier.

On the ac side of the rectifier, higher current harmonics are caused by diode non-

linearity. Higher voltage harmonics are due to the voltage drop, caused by the higher

harmonics of the current, across generator’s impedance. Since this impedance is

primarily inductive, for each harmonic other than the fundamental, the voltage will be
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shifted by practically 90° with respect to the current. Therefore, active power associated

with higher harmonics at the rectifier’s ac side can be considered negligible.
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Fig. 3.9. Switching model simulation: the main generator’s phase voltage and phase
current (n=2280 rpm, Rl=19 Ω,  vfd=16 V).

-600

-400

-200

0

200

400

600

0.959 0.964 0.969 0.974 0.979
Time (s)

P
ha

se
 v

ol
ta

ge
 (

V
)

-150

-100

-50

0

50

100

150

P
hase current (A

)

Phase voltage

Phase current

Fig. 3.10. Switching model simulation: the main generator’s phase voltage and phase
current (n=3340 rpm, Rl=6.4 Ω,  vfd=33 V).
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Fig. 3.11. Switching model simulation: the exciter’s phase voltage and phase current
(n=3340 rpm, Rl=6.4 Ω,  vfd=33 V).

At the dc side of diode rectifier, the dc voltage and current consist of an average

value and a certain ripple superimposed on it. One of two dc variables, however, is

almost ripple-free: it is the dc current in the exciter’s case, due to the heavily inductive

main generator’s field winding; it is dc voltage in the case of the main generator, due to a

large dc-link capacitor. Therefore, power associated with ripple voltage and current at the

dc side of the rectifier can be neglected, compared to the power associated with the

output variables’ average values.

It is possible now to proceed with an explanation of how the generator’s space

vector diagram can be drawn when steady state ac waveforms consist of a fundamental

and higher harmonics. Because of higher harmonics present in ac waveforms, steady state

currents and voltages in the dq reference frame are not constants, but dc variables

consisting of an average value to which a ripple (at a frequency equal to six times the

generator terminal frequency) is added. For example, the main generator’s d axis

armature voltage and current are shown in Fig. 3.12. In these conditions, and according to

the above discussion regarding the importance of higher harmonics for power transfer,

the generator’s space vector diagram can still be drawn, but d and q axis armature

variables are represented by their average values, i.e. ac variables are represented by their
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fundamental harmonics. That is shown in Fig. 3.13, where x
�

 denotes the steady state

average value of variable x, and index ‘1’ refers to the fundamental harmonic of an ac

variable. From Fig. 3.13, phase shift φ between the fundamental harmonics of generator’s

voltage and current can be evaluated as

q

d

q

d

v

v

i

i
�

�

�

�

arctanarctan −=φ .

(3.1)

The operating point of the system is defined by the main generator’s load and

engine speed. These two, however, are related through a linear dependence as shown in

Fig. 3.14. That kind of relationship is considered optimal for the engine, and will be used

in this section whenever the dependence of a certain parameter on the operating point is

investigated.

Fig. 3.15 shows how φ varies with system’s operating point. In order to obtain

these results, the switching model was simulated and the steady state average values of id,

iq, vd and vq were found, after which φ was computed from (3.1). The dependence of φ on

the operating point will be important for the development of the generator/rectifier

average model, carried out in the following chapter.
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Fig. 3.12. Switching model simulation: the main generator’s steady state armature d-axis
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For the development of the generator/rectifier average model, it is also interesting

to study how the average value of the rectifier’s output dc voltage and current can be

related to the average values of the armature voltages and currents in the dq reference

frame. If the generator were an ideal voltage source, by combining (1.1) with (2.18) and

(2.19), the following expression can be found:

222222 35.1
2323

qdqdqddc vvvvvvv
����� +≈+=+=

ππ
.

(3.2)

Similarly, with an ideal voltage source generator and a dc current source load, from

(1.2) and the space vector diagram in Fig. 3.13, a relationship for currents can be

obtained:

2222 74.0
23

qdqddc iiiiI
����

+≈+= π
.

(3.3)

In the actual case, when the generator is not ideal and the dc load is not a constant

current source, it can be assumed that these relationships preserve the same form;

however, the value of the constants that relate the rectifier’s output variables to the

generator’s average dq variables will have to be changed. The switching model
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simulation can be used in order to evaluate numerically these constants (named kv for

voltages and ki for currents) according to the following expressions:
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(3.4)
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(3.5)

Fig. 3.16 and Fig. 3.17 show the variation of kv and ki, respectively, with the

operating point, for the main generator and the exciter. It is interesting to note that, for

the main generator at light load, constant kv is practically equal to 1.35, which is its ideal

value. That is due to the fact that, at light load and low generator speed, distortion in the

main generator’s terminal voltage is minimal. The exciter’s kv, however, does not show

the same behavior at light load. That can be attributed to the forward voltage drop across

the diodes in the exciter’s rectifier bridge. At light load, the exciter needs to provide only

several volts of the main generator’s field voltage. In these conditions, the forward

voltage drop across two diodes (which are in serial connection with the exciter’s armature

windings) is a significant portion of the exciter’s phase voltage. Therefore, in order to

provide the needed main generator’s field voltage, the exciter’s phase voltages need to be

somewhat larger compared to the ideal case characterized by the zero diode forward

voltage drop. Consequently, when the exciter’s kv at low load is calculated from (3.4), the

resulting value is significantly smaller than in the ideal case. The difference between the

ideal and non-ideal value of kv gets relatively smaller as the load increases, because the

exciter’s phase voltage becomes much larger than the diode forward voltage drop. That is

also why the effect of the diode forward voltage drop is practically negligible in main

generator’s case.

Calculation of ki is not directly affected by diode non-ideality, and both the

exciter’s and main generator’s ki show the same type of load dependence. Their

discrepancy from the ideal value (equal to 0.74) can only be attributed to phase current

waveforms being different from the one shown in Fig. 1.3.
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The influence of the diode forward voltage drop will be addressed again in Section

4.4.2, when the validity of generator/rectifier average model will be discussed.

The above discussion on the meaning and load-dependence of φ, kv and ki

represents the basis for the development of the average model of a diode bridge-loaded

synchronous generator (also referred to as the generator/rectifier average model),

contained in Chapter 4.
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Chapter 4. Average Model

4.1. Concept of the average model

The higher harmonics present in the generator’s ac variables need to be taken into

account and studied in detail for certain purposes, such as, for example, evaluation of

additional generator losses caused by them. However, as was already mentioned in

section 3.3, they can be ignored from the point of view of the main power transfer from

the generator to the dc-link. The same statement can be made regarding their importance

for the generator’s dynamic performance, which is determined primarily by the

fundamental harmonic of ac voltage and current. For example, when the dc-link control-

loop of the system in Fig. 1.6 needs to be designed, the objective is to control the average

value of the dc-link voltage, i.e. the fundamental harmonic of the generator’s ac voltage.

The ripple present in dc (or dq reference frame) variables, and harmonics other than

fundamental in ac variables, are characterized by frequencies too high to affect the

machine’s dynamic behavior and to be dealt with by the field control-loop.

For the above reasons, it would be useful to have an ‘average’ model of a diode

bridge-loaded synchronous generator, i.e. a model that would take into account only

fundamental harmonic of the ac variables, and the average value of dc (or rotor reference
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frame) variables [20], [21]. The model should also take into account the effects that the

non-ideal operation of the diode bridge has on fundamental harmonic and average values.

Before proceeding, a clarification regarding the meaning of the term ‘average’ in

this text is necessary. A more appropriate term to describe what is intended here would be

‘moving average’ [1] which, for a generic periodic variable x of period T, can be defined

as

ξξ∫
−

=
t

Tt

dx
T

tx )(
1

)(
�

.

(4.1)

Applied to the case dealt with in this text, (4.1) means that the process of averaging

removes the ripple from all dc or rotor reference frame variables. What remains is a

‘smooth’ variable that assumes the role of instantaneous value of the actual variable, and

can be affected by any transient characterized by frequencies smaller than 1/(2T), where

T=1/(6f), f being the generator’s ac frequency. Transients occurring at frequencies larger

than 1/(2T) are lost in the process of averaging. However, the synchronous generator’s

dominant characteristic frequencies are, as a rule, well below 3f. Therefore, it can be

expected that all important dynamic characteristics of the synchronous generator will be

preserved in the averaging process.

It can be noticed that the symbol used in (4.1) for moving average is the same one

used in (3.1)-(3.5) for steady state average. It was chosen because the steady state

average can be considered only a special case of the more generic moving average.

It is possible now to proceed with presenting the approach that is going to be used

to develop the generator/rectifier average model. In [21], an average model of a system

consisting of a three-phase voltage source, rectifier, inverter and synchronous motor is

presented. It involves describing the rectifier and inverter in a reference frame rotating

synchronously with source voltages, while the synchronous motor is desribed in a

reference frame rotating synchronously with its rotor. Transformation from one to

another reference frame is then established by means of rotor angle δ.
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A similar method will be applied here in order to develop an average model of a

diode-bridge loaded synchronous generator: the rectifier’s dc output will be expressed in

a reference frame rotating synchronously with the generator’s terminal voltages. Rotor

displacement angle δ will then be used to relate it to the generator’s variables in rotor

reference frame.

In development of the average model, switching model simulation results from

Section 3.3 are used. The main conclusions from this section, indispensable for

development of the average model, are repeated here for convenience:

• Power transfer and the system’s dynamic behavior are determined primarily by

the fundamental harmonic of ac variables and the average component of dc

variables.

• Due to the reactive nature of the generator’s impedance and dc load, there exists

a phase shift φ between the fundamental harmonics of the generator’s phase

voltage and phase current. The amount of phase shift can be determined from

the switching model simulation results.

• In spite of non-ideal operation of the rectifier, it can be assumed that average

values of rectifier’s output voltage and current are proportional to the

fundamental harmonic of the generator’s phase voltage and current through

constants kv and ki, respectively. Values of these constants need to be

determined numerically from switching model simulation results.

Based on the above conclusions, development of the average model is carried out

in two steps, which are discussed in the following section:

• The generator’s armature variables in rotor reference frame and the rectifier’s

output variables are represented together in the system’s space vector’s diagram

by means of kv, ki and φ.

• Appropriate equations (following from the geometry of the system’s space-

vector diagram) are selected as the average model’s equations.
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4.2. Formulation of average model equations

4.2.1. System space-vector diagram

It was shown in Fig. 3.13 how the generator’s space vector diagram can be drawn

by taking into account the average values of variables in the rotor reference frame, and

the fundamental harmonic of ac variables. It is possible now to move one step further,

and to include vectors representing the average values of the diode bridge’s output

variables in the same diagram. According to (3.4) and (3.5), that is possible by simply

replacing space vectors 13V  and 13I  in Fig. 3.13 with vectors whose lengths are

vdc kv /
�

 and idc ki /
�

, respectively. The resulting generator/rectifier space vector diagram is

shown in Fig. 4.1. Axes a, b and c were omitted from representation in Fig. 4.1, since no

three-phase variables are shown.

The following expressions can be obtained from Fig. 4.1:
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��� += ,
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Fig. 4.1. Generator/rectifier space vector diagram.
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Strictly speaking, Fig. 4.1 and (4.2)-(4.7) describe, in an average sense, a certain

steady state operating point, because the values of φ, kv and ki change as the operating

point changes. However, from Fig. 3.15, Fig. 3.16 and Fig. 3.17, it can be seen that their

variation with the operating point is not significant. It can, therefore, be assumed that

(4.2)-(4.7) will be valid during transients, too, as long as values of φ, kv and ki

corresponding to a ‘medium’ operating point (for example, 50% of rated load) are

selected. If it is known in advance that transient will occur in the proximity of a particular

operating point, it is possible to select more appropriate values of φ, kv and ki relative to

it, thus making (4.2)-(4.7) a more accurate representation of the system.

4.2.2. Average model equations

It is possible now to select appropriate expressions among (4.2)-(4.7) in order to

implement the average generator/rectifier model, whose block diagram is shown in Fig.
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4.2. The dc source can be either a voltage or a current source, and its expression is

obtained from (4.2) or (4.3), respectively. The d and q axis load can be given by either

current or voltage sources, and their expressions are calculated from (4.6)-(4.7), or (4.4)-

(4.5), respectively. This results in two dual sets of average model equations:

• Set 1
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Fig. 4.2. Block diagram of the average model.

• Set 2
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It can be seen that, both in Set 1 and Set 2, an equation for calculation of rotor

angle δ was included among the average model’s equations. More generally, if the

generator’s mechanical transients were modeled, angle δ should be calculated according

to (2.17). In our case, rotor speed is set as a model parameter, and δ can change only due

to electrical transients; therefore, it can be calculated directly from the armature voltages

in the dq reference frame.

It can be seen that the average model’s equations establish a ‘transformer-like’

relationship between the generator’s output in the dq reference frame, and the rectifier’s

dc output. For example, if Set 1 is considered, dc output voltage is calculated from

armature d and q axis voltages, and the generator’s armature currents in the dq reference

frame are calculated from the dc output current. However, the presence of angle δ in (4.9)

and (4.10) causes the armature currents in the dq reference frame to be dependent also on

the armature voltages in the dq reference frame. That is a consequence of the fact that the

generator is not an ideal voltage source.

An analogous conclusion can be reached if Set 2 of the average model equations is

considered.

Set 1 of the average model equations can be written in a somewhat different form if

the equation for calculation of angle δ is incorporated into other equations. That can be

done by expanding sin(δ+φ) and cos(δ+φ), and replacing sinδ with dcdv vvk
��

/ , and cosδ

with dcqv vvk
��

/ . That results in:

• Set 1a
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Mathematically, Set 1, Set 2 and Set 1a are completely equivalent to each other.

However, when simulation of the average model is performed, sometimes one set of

equations is more convenient than another, as far as the calculation of the steady state

operating point and convergence problems are regarded. It is useful, therefore, to use

them interchangeably in order to obtain the best simulation results.

4.3. Verification of the average model

In order to verify the average model, the simulation results obtained with it can be

compared to the simulation results obtained with the switching model, and to

measurement results. Between these two choices, comparison with the switching model

results are more meaningful for verification of the average model, because they are not
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influenced by possible errors in machine parameter values, which can cause discrepancies

between simulation and measurement. However, as this section will show, good matching

of the results was obtained in both cases.

Two types of transients were simulated and measured: the step in the exciter’s field

voltage and the step in the main generator’s resistive dc load. The measured variables

included the exciter’s field current and the main generator’s dc-link voltage.

Measurements were performed at various generator speeds, and at reduced voltage and

power levels (compared to the system’s rated power), because of the limitations of

measuring instruments. All average model simulations were done with values of φ, kv and

ki corresponding to 50% load on Fig. 3.15, Fig. 3.16 and Fig. 3.17, that are summarized

in Table 4.1.

Table 4.1. Values of kv, ki and φ used for verification of the average model.

φ (rad/s) kv ki

Main generator 0.24 1.29 0.75

Exciter 0.13 1.22 0.78

Fig. 4.3 shows the main generator’s field voltage (i.e. the output voltage of the

exciter’s diode bridge) during transient caused by stepping the exciter’s field voltage

from 0 to 47.5 V. The generator is rotating at maximum speed (4000 rpm), and the steady

state operating point, reached after the transient is finished, corresponds to the maximum

(150 kW) power output of the system. Fig. 4.4 shows the same waveform, but is obtained

with the average model. It can be seen that it resembles very closely the waveform

obtained with the switching model, except for the ripple. It is interesting to point out that

the simulation whose results are shown in Fig. 4.3 required 207 s to be completed, while

the one showed in Fig. 4.4 required 2.55 s. That makes it easy to understand how much

simulation time the average model can save.
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Fig. 4.3. Switching model simulation: the main generator’s field voltage at the exciter’s
field voltage step from 0 V to 47.5 V (n=4000 rpm, Rl=4.27 Ω).
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Fig. 4.4. Average model simulation: the main generator’s field voltage at the exciter’s
field voltage step from 0 V to 47.5 V (n=4000 rpm, Rl=4.27 Ω).

Fig. 4.5 shows the measured waveforms of the exciter’s field current and main dc-

link voltage during transient caused by a 0 to 8.5 V step in the exciter’s field voltage. The

generator is rotating at 3050 rpm, and the load resistance is 18.75 Ω, which corresponds

to a steady state power output of approximately 12 kW. Fig. 4.6 shows the same
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waveforms obtained with the switching model simulation, and Fig. 4.7 shows average

model simulation results. Even though the waveforms in Fig. 4.5, Fig. 4.6 and Fig. 4.7

are very similar, there are some differences among them that require a comment. First,

the measurement shows some dc-link voltage even at zero exciter’s field voltage. That is

due to remnant magnetism in the real machine, which is not taken into account by the

generator model. Second, when the switching model simulation was done, the exciter’s

field voltage needed to be lower (7 V), compared to the measured case (8.5 V), in order

to achieve the same steady state dc-link voltage. That can be attributed to errors in the

exciter’s and main generator’s parameters. Third, the value of steady state dc-link voltage

obtained with the average model is slightly lower than the value obtained with the

switching model. That can be attributed to the fact that, when the average model

simulation was done, values of φ, kv and ki corresponding to 50% load in Fig. 3.15, Fig.

3.16 and Fig. 3.17 were chosen, even though actual output power was less than 10% of

rated power. The speed, also, was not such that it would correspond to the power

according to Fig. 3.14.

Exciter’s field current (0.2 A/div)

Dc link voltage (100 V/div)

0 A

0 V

Fig. 4.5. Measurement: dc-link voltage and the exciter’s field current at the exciter’s field
voltage step from 0 V to 8.5 V (n=3050 rpm, Rl=18.75 Ω).
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Fig. 4.6. Switching model simulation: dc-link voltage and the exciter’s field current at the
exciter’s field voltage step from 0 V to 7 V (n=3050 rpm, Rl=18.75 Ω).
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Fig. 4.7. Average model simulation: dc-link voltage and the exciter’s field current at the
exciter’s field voltage step from 0 V to 7 V (n=3050 rpm, Rl=18.75 Ω).

Measured and simulated waveforms during transient caused by interruption of the

exciter field current are shown in Fig. 4.8, Fig. 4.9 and Fig. 4.10. Regarding the small

differences in waveforms, the same comments can be applied as in the previous case.
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0V  

0A  

Dc link voltage (100 V/div)

Exciter’s field current (0.2 A/div)

Fig. 4.8. Measurement: dc-link voltage and the exciter’s field current at the exciter’s field
current step from 0.34 A to 0 A (n=3050 rpm, Rl=18.75 Ω.).
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Fig. 4.9. Switching model simulation: dc-link voltage and the exciter’s field current at the
exciter’s field current step from 0.38 A to 0 A (n=3050 rpm, Rl=18.75 Ω).
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Fig. 4.10. Average model simulation: dc-link voltage and the exciter’s field current at the
exciter’s field current step from 0.38 A to 0 A (n=3050 rpm, Rl=18.75 Ω).

The transient caused by stepping the main generator’s resistive dc load is shown in

Fig. 4.11, Fig. 4.12 and Fig. 4.13 (measurement, switching model simulation and average

model simulation, respectively). A slight undershoot, not registered during the

measurement, can be noticed in the simulated waveform of the dc-link voltage; it can be

attributed to errors in machine parameters. Also, for the same reason as before, the steady

state dc-link voltage is somewhat larger when obtained with the average model than with

the switching model.

It is also interesting to notice the effect of the large generator’s synchronous

reactance on Fig. 4.11: when load resistance drops by a factor of two, the output voltage

drops by a large amount (approximately a factor of two in this case). The same effect can

be observed in Fig. 4.14 and Fig. 4.15, which show dc-link voltage during the transient

due to the disconnection of 19 Ω (2 kW) resistive dc load, at two different speeds (2000

rpm and 3700 rpm). It can be seen how the difference in dc-link voltage before and after

the transient depends on generator speed (i.e. the generator’s synchronous reactance).
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Exciter’s field current (0.2 A/div)

Dc link voltage (100 V/div)

0 V

0 A

Fig. 4.11. Measurement: dc-link voltage and the exciter’s field current at resistive load
step from 12.5 Ω to 6.25 Ω (n=3100 rpm, vfd=11.6 V).
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Fig. 4.12. Switching model simulation: dc-link voltage and the exciter’s field current at
resistive load step from 12.5 Ω to 6.25 Ω (n=3100 rpm, vfd=11.6 V).
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Fig. 4.13. Average model simulation: dc-link voltage and the exciter’s field current at
resistive load step from 12.5 Ω to 6.25 Ω (n=3100 rpm, vfd=11.6 V).

(b)

-50

0

50

100

150

20 0

250

30 0

350

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Dc link voltage

1 s/div, 50 V/div
0V

(a)

Fig. 4.14. (a) measurement, (b) average model simulation: dc-link voltage in transient
following disconnection of 19 Ω resistive dc load (n=2000 rpm, vfd=3.4 V in (a), vfd=1.85

V in (b)).
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Fig. 4.15. (a) measurement, (b) average model simulation: dc-link voltage in transient
following disconnection of 19 Ω resistive dc load (n=3700 rpm, vfd=2.8 V in (a), vfd=2.03

V in (b)).

The results presented in this section lead to the following conclusions:

1. Transient waveforms obtained with average model match extremely well, in the

moving average sense, transient waveforms obtained with the switching model.

Slight discrepancies (about 5%) in steady state values can be attributed to the

fact that the same values of φ, kv and kI, relative to 50% load in Fig. 3.15, Fig.

3.16 and Fig. 3.17, were used for all average model simulation, regardless of

the operating point. Differences in dynamic waveforms characteristics

(overshoot, undershoot, settling time) are practically invisible between the

switching and average model results.

2. All simulation results (switching and average model) match reasonably well

with measurement results. The differences can be explained by either the

generator model’s inherent drawbacks (absence of modeling of magnetic

saturation and remnant magnetism), or by errors in the main generator’s and

exciter’s parameters.

3. Based on the above conclusions, the average model presented in Section 4.2.2

can be used in order to predict dynamic behavior of the system shown in Fig.

3.2. Validity of the model will be discussed more generally in the following

section.
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4.4. Validity of the average model

4.4.1. Discussion of first harmonic assumption

Based on the discussion regarding the importance of higher harmonics for

operation of a diode bridge loaded synchronous generator (Section 3.3), the following

conditions must be satisfied so that the average model represents the actual system’s

behavior with sufficient accuracy:

1. The generator’s harmonics other than fundamental deliver negligible active

power;

2. The diode rectifier output is well filtered (large L, or C, or both).

In most practical applications, both of these conditions will be true. Almost any

synchronous machine (or, more generally, any non-ideal electrical source) will have the

reactive part of its internal impedance dominant when compared to the resistive part. That

will cause the active power associated with higher harmonics at the rectifier’s input to be

negligible. Similarly, there is always some kind of filter at the output of the diode bridge.

Because of that, either dc voltage or dc current at the rectifier’s output will have a

negligible ripple.

Therefore, it can be expected that the above requirements will not limit the

possibility of practical applications of the developed average model.

4.4.2. Average model and diode rectifier losses

It was explained in Section 3.3 how the diode’s forward voltage drop influences

calculation of the exciter’s kv at light load. It is the purpose of this section to discuss, in a
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somewhat more detailed manner, how diode rectifier losses can be related to parameters

of the average model.

It needs to be made clear, at the very beginning of this discussion, that all switching

model simulation results presented in previous sections of this work were obtained with

the default diode model available in PSpice. That model accounts for forward voltage

drop, i.e. diodes used in switching model simulations were characterized by a forward

voltage drop larger than zero. However, no attempts were made to accurately model real

diodes used in the actual generator set that is the object of this study. Therefore, all

results regarding relationships between diode losses and average model parameters need

to be interpreted from only the conceptual point of view, without attributing to them any

practical meaning relative to the actual studied system.

The average model’s parameters (φ, kv and ki) were obtained based on switching

model simulations. Therefore, the average model contains information about diode

forward voltage drop and losses. That can be quantified if the diode rectifier input power

is expressed as

qqddin ivivp
����� += .

(4.21)

When d and q axis voltages are substituted according to (4.13) and (4.14), and

currents according to (4.9) and (4.10), input power can be written as

dcdc
iv

in iv
kk

p
��� φcos= .

(4.22)

The product of dc voltage and current in (4.22) can be recognized as output power

of the diode rectifier

dcdcout ivp
��� = .

(4.23)

Therefore, efficiency of the diode rectifier can be expressed as
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This last expression relates efficiency of the diode rectifier directly to the

parameters of the generator/rectifier average model. Fig. 4.16 shows variation of the

exciter’s and the main generator’s rectifier efficiency with load, when speed versus load

relationship is the one shown in Fig. 3.14. The main generator’s rectified output dc

voltage is kept at 800 V at any operating point, which makes the main generator’s diode

rectifier’s output power proportional to the output current. At the same time, diode losses

are approximately proportional to the diode current. Consequently, the main generator’s

rectifier efficiency does not change with load variations.
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Fig. 4.16. Diode rectifier’s efficiency variation with load.

The exciter’s case is different. The exciter’s rectifier needs to provide variable dc

voltage for the main generator’s field winding. At low output power, this voltage is low

enough to decrease significantly the exciter’s diode rectifier’s efficiency.

Fig. 4.16 also allows for discussion, from a power balance point of view, the

legitimacy of the use of φ, kv and ki values relative to 50% load for any operating point.

(They were used in Section 4.3, when the average model was verified through

comparison with switching model simulation and measurements.) It can be seen that, for
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the main generator, rectifier efficiency at 50% load is practically equal to efficiency at

any other load; therefore, use of φ, kv and ki relative to 50% load does not introduce any

error, as far as power balance is concerned. For the exciter, however, efficiency at 50%

load is considerably different from efficiency at a lower or higher load. However, power

processed by the exciter is very small compared to the power processed by the main

generator. Consequently, it can be said that error introduced by the use of ‘wrong’ values

of exciter’s φ, kv and ki does not affect significantly the power balance of the whole

system.

The ideal case, (lossless diodes and no reactive components on either side of diode

rectifier) is characterized by η=1, φ=0, π/23=vk , )23/(π=ik , i.e.

v
i k

k
1= ,

(4.25)

which recalls the relationship characterizing an ideal transformer.

If the diode rectifier is lossless (η=1), but reactive components are present at both

sides of diode rectifier (φ>0), (4.24) yields

φcos=ivkk .

(4.26)

In this case, product kvki can be interpreted as describing the reactive nature of source and

load impedances. When losses in the diode rectifier are negligible (1≈η ), such as in the

main generator’s case, expression (4.26) can be considered alternative to (3.1) for

calculation of φ, once kv and ki are calculated.

The real case (η<1, φ>0) is described by

η
φcos=ivkk ,

(4.27)

which means that product kvki reflects both the reactive nature of source and load

impedances, and losses in the system.
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4.4.3. Use of the average model with different loads and sources

The average model’s equations were developed based on the switching model

results obtained with resistive load at the main generator’s dc-link. Consequently, the

validity of the average model can be questioned if a different dc load (e.g., an inverter) is

applied, as in the practical system shown in Fig. 1.1. In order to justify the use of the

average model with such a dc load, it needs to be remembered that the average model’s

parameters (φ, kv and ki) were obtained from the switching model steady state waveforms.

If the dc-link capacitor is large enough to provide the high-frequency current component

required by the inverter, there is no reason why the generator’s voltage and current steady

state waveforms should be different with the inverter dc load, as opposed to the resistive

dc load. Essentially, the main generator still has a dc voltage source connected to its

rectifier’s output, and the average model can still be considered valid.

The above justification of the use of the average model does not mean, however,

that the actual inverter can be approximated by a resistor. An inverter operating in closed

loop is a constant power load in the sense that, if the dc-link voltage rises for any reason,

the closed loop inverter will decrease its duty cycle, which will result in smaller current

being drawn from the dc-link. That, small-signal-wise, can be represented by a negative

resistor [22] or, less accurately but easier to apply to control design, a current source. A

dc current source connected to the dc-link provides the desired steady state operating

point, but does not introduce any damping at the output (damping does not exist with the

actual closed-loop inverter, but it would be introduced if the inverter were represented by

a resistor). Therefore, it can be expected that it will be more difficult to stabilize the

closed loop system with current source load than with resistive load.

The average model was developed for the case in which an independent

synchronous generator feeds a diode rectifier. However, it can be generalized to any case

in which a diode rectifier is fed by a three-phase voltage source with complex source

impedance; it suffices to write equations of the particular voltage source of interest, and

transform them to the dq reference frame. The average model is then directly applicable.
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The model’s strength, however, consists in taking into account the effects of the non-

ideal operation of the diode rectifier. Therefore, the use of the model is meaningful

primarily in cases in which the source’s impedance causes the rectifier’s strongly non-

ideal operation.

4.5. Linearized average model

4.5.1. Linearization of model equations

The average model’s equations, presented in Section 4.2.2, are non-linear because

they contain products of variables, as well as trigonometric functions. For some purposes,

such as control-loop design, it is necessary to study the linearized system. In many cases,

software used for simulation of the average model is capable of linearizing system

equations, after it determines the steady-state operating point. However, it is useful to

find analytically the linearized version of average model equations. That makes it

possible to easily simulate cases that would cause numerical problems in determining the

steady state operating point, as well as to find the linearized state space representation of

the system.

In this section, linearized versions of (4.8)-(4.11) (Set 1) and (4.16)-(4.18) (Set 1a)

of average model equations will be presented. Linearizing an equation around a certain

steady state operating point is equivalent to finding Taylor’s expansion of the function

represented by that equation, and neglecting all terms other than the constant and the

linear term. The obtained linear expression is valid only for small perturbations around

the selected operating point.

In this and the following sections, the steady state value of an average variable x
�

will be denoted as X, while x~  will stand for small perturbation of the same variable. With

these conventions, the following linearized version of (4.8)-(4.11) can be obtained:
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δ~~~~
321 kvkvkv qddc ++= ,

(4.28)

δ~~~
54 kiki dcd += ,

(4.29)

δ~~~
76 kiki dcq += ,

(4.30)

qd vkvk ~~~
98 +=δ ,

(4.31)

where

k kv1 = sin∆ ,
(4.32)

k kv2 = cos∆ ,
(4.33)

)sincos(3 ∆−∆= qdv VVkk ,

(4.34)

k
ki

4 =
+sin( )∆ ϕ

,

(4.35)

k
I

k
dc

i
5 =

+cos( )∆ ϕ
,

(4.36)

k
ki

6 =
+cos( )∆ ϕ

,

(4.37)

k
I

k
dc

i
7 = −

+sin( )∆ ϕ
,

(4.38)
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∆+∆
∆=

sincos

cos
8

dq VV
k ,

(4.39)

∆+∆
∆−=

sincos

sin
9

dq VV
k .

(4.40)

Linearization of (4.16)-(4.18) yields

qddc vcvcv ~~~
21 += ,

(4.41)

qddcdcd vcvcvcici ~~~~~
6543 +++= ,

(4.42)

qddcdcq vcvcvcici ~~~~~
10987 +++= ,

(4.43)

where

221

qd

dv

VV

Vk
c

+
= ,

(4.44)

222

qd

qv

VV

Vk
c

+
= ,

(4.45)

dc

qd

V

VkVk
c sincos

3

+
= ,

(4.46)

dc

d

V

I
c −=4 ,

(4.47)
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dc

dc

V

Ik
c cos

5 = ,

(4.48)

dc

dc

V

Ik
c sin

6 = ,

(4.49)

dc

dq

V

VkVk
c sincos

7

−
= ,

(4.50)

dc

q

V

I
c −=8 ,

(4.51)

dc

dc

V

Ik
c sin

9 −= ,

(4.52)

dc

dc

V

Ik
c cos

10 = ,

(4.53)

4.5.2. Linearized state-space representation

The purpose of this section is to find a linear state space representation of the

system consisting of the exciter, main generator and a dc load. This is obtained by

combining the machine’s equations (2.6)-(2.12) with the linearized generator/rectifier

average model’s equations, and an equation describing the dc load. This is an

algebraically tedious process that does not introduce any new concepts. Some readers,

therefore, may wish not to pay particular attention to sections 4.5.2.1 and 4.5.2.2, in

which algebraic manipulations are carried out, but to use results given in section 4.5.2.3.
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If the generator’s speed is constant and treated as a parameter of the system, (2.6)-

(2.12) are linear differential equations, and they can be rewritten for small perturbations

by simply adding a tilde to all currents and voltages. Since both the exciter’s and the

main generator’s equations will be treated in this section, index ‘e’ will be added to all

parameters and variables relative to the exciter, and index ‘a’ to all those relative to the

main generator, in order to be able to distinguish between them. For example, Ras will

stand for the armature resistance of the main generator, ied will stand for exciter’s d axis

armature current, and so on.

4.5.2.1. Exciter’s equations

With the above conventions, the exciter’s equations can be written as

dt

id
L

dt

id
LLiLLiRv efd

emd
ed

emdelseqemqelseedesed

~~
)(

~
)(

~~ ++−++−= ω ,

(4.54)

dt

id
LLiLiLLiRv eq

emqelsefdemdeedemdelseeqeseq

~
)(

~~
)(

~~ +−++−−= ωω ,

(4.55)

dt

id
LL

dt

id
LiRv efd

emdelfd
ed

emdefdefdefd

~
)(

~
~~ ++−= .

(4.56)

These equations obviously suggest use of the exciter’s currents for state variables.

In equation (4.56), efdv~  is considered to be the input to the system, which means that

(4.56) is already in a form suitable for obtaining linear state space representation. What

remains to be done is to express edv~  and eqv~  as linear functions of currents and their

derivatives, and to substitute the found expressions in (4.54) and (4.55). That can be

achieved by combining linearized equations of the generator/rectifier average model
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(4.28)-(4.31) with the exciter’s dc load equation. By substituting (4.31) into (4.28), (4.29)

and (4.30), we get

eqededc vkvkv ~~~
239138 += ,

(4.57)

eqededced vkkvkkiki ~~~~
95854 ++= ,

(4.58)

eqededceq vkkvkkiki ~~~~
97876 ++= ,

(4.59)

where

831138 kkkk += ,

(4.60)

932239 kkkk += .

(4.61)

The exciter’s dc load is represented by the main generator’s field winding, whose

equation is

dt

id
L

dt

id
LL

dt

id
LiRv akd

amd
afd

amdalfd
ad

amdafdafdafd

~~
)(

~
~~ +++−= .

(4.62)

The main generator’s field voltage in (4.62) is referred to the armature, but it is

related to the exciter’s rectified output voltage by means of the main generator’s field-to-

armature turns ratio ta as

edcaafd vtv ~~ = .

(4.63)

Similarly, for currents

edc
a

afd i
t

i
~1~ = .

(4.64)
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When (4.62), (4.63) and (4.64) are combined, the following exciter’s load equation

is obtained:

dt

id

t

L

dt

id

t

LL

dt

id

t

L
i

t

R
v akd

a

amdedc

a

amdalfdad

a

amd
edc

a

afd
edc

~~~
~~

22 +
+

+−= .

(4.65)

It can be seen that (4.65) contains main generator’s d axis currents; that accounts

for dynamic coupling between the exciter and the main generator.

Now it is possible to find expressions for edv~  and eqv~  by eliminating edcv~  and edci
~

from the system of equations consisting of (4.57)-(4.59) and (4.65). That yields

dt

id
lk

dt

id
lk

dt

id
lir

dt

id
lirv akd

ae
ad

ae
eq

edqeqedq
ed

eddededded

~~~
~

~
~~

99 +−+++= ,

(4.66)

dt

id
lk

dt

id
lk

dt

id
lir

dt

id
lirv akd

ae
ad

ae
eq

eqqeqeqq
ed

eqdedeqdeq

~~~
~

~
~~

88 −++++= ,

(4.67)

where

)()( 13892398652398138974det kkkkkkkkkkkkk −+−=
(4.68)

det

2972396

k

t

R
kkkk

r a

afd

edd

+
= ,

(4.69)

det

2952394

k

t

R
kkkk

r a

afd

edq

+
−= ,

(4.70)

det
2

97 )(

kt

LLkk
l

a

amdalfd
edd

+
= ,

(4.71)
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det
2

95 )(

kt

LLkk
l

a

amdalfd
edq

+
−= ,

(4.72)

det

2871386

k

t

R
kkkk

r a

afd

eqd

+
−= ,

(4.73)

det

2851384

k

t

R
kkkk

r a

afd

eqq

+
−= ,

(4.74)

det
2

87 )(

kt

LLkk
l

a

amdalfd
eqd

+
−= ,

(4.75)

det
2

85 )(

kt

LLkk
l

a

amdalfd
eqq

+
= ,

(4.76)

amd
a

ae L
kt

kkkk
l

det

6574 −= ,

(4.77)

The same process allows us to find the following expression for the main

generator’s field current:

eqaeqedaedafd ihihi
~~~ += ,

(4.78)

where

det

8723997138

kt

kkkkkk
h

a
aed

−= ,

(4.79)
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det

9513885239

kt

kkkkkk
h

a
aeq

−= .

(4.80)

Expressions (4.66) and (4.67) will be substituted into (4.54) and (4.55),

respectively, in order to obtain linear state space representation. Expression (4.78) allows

us to replace the main generator’s field current by a linear combination of the exciter’s

armature currents; that eliminates the main generator’s field current as a state variable,

and reduces the order of the system by one.

4.5.2.2. Main generator’s equations

It is possible to proceed now with rewriting the main generator’s equations for

small perturbations. In doing so, the field winding equation is omitted, since it has

already been used as the exciter’s load equation, and the main generator’s field current is

substituted according to (4.78). That yields

,
)(

                   

)()(

dt

di
L

dt

ihihd
L

dt

di
LLiLiLLiRv

akd
amd

eqaeqedaed
amd

ad
amdalsakqamqaaqamqalsaadasad

+
+

+

++−−++−= ωω

(4.81)

,)(               

)()(

dt

di
L

dt

di
LLiL

ihihLiLLiRv

akq
amq

aq
amqalsakdamda

eqaeqedaedamdaadamdalsaaqasaq

++−+

++++−−=

ω

ωω

(4.82)

dt

di
LL

dt

ihihd
L

dt

di
LiR akd

amdalkd
eqaeqedaed

amd
ad

amdakdakd )(
)(

0 ++
+

+−= ,

(4.83)



79

dt

di
LL

dt

di
LiR akq

amqalkq
aq

amqakqakq )(0 ++−= .

(4.84)

It can be seen that (4.83) and (4.84) are already in a convenient form for state space

representation. As in the exciter’s case, it is necessary to find expressions which will

linearly relate adv~  and aqv~  to state variables and their derivatives. Again, that can be done

by combining linearized equations of generator/rectifier average model (this time, (4.41)-

(4.43) will be used) with the main generator’s load equation.

It can be assumed at this point, and in accordance with the discussion in Section

4.4.3, that the main generator’s load is represented by a current source loadi
~

. In that case,

the main generator’s load equation is given by

~
~

~i C
dv

dt
iadc

adc
load= + .

(4.85)

If the above expression is used to eliminate adci
~

 from (4.42) and (4.43), the

following expressions are obtained for adv~  and aqv~ :

loadadl
adc

addcadcaddcaqadqadaddad ir
dt

vd
cvhirirv

~~
~~~~ ++++= ,

(4.86)

loadaql
adc

aqdcadcaqdcaqaqqadaqdaq ir
dt

vd
cvhirirv

~~
~~~~ ++++= ,

(4.87)

where

96105
det

1

cccc
c

−
= ,

(4.88)

10detccradd = ,

(4.89)
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6detccradq −= ,

(4.90)

)( 10486det ccccchaddc −= ,

(4.91)

Cccccccaddc )( 10376det −= ,

(4.92)

)( 10376det cccccradl −= ,

(4.93)

9detccraqd −= ,

(4.94)

5detccraqq = ,

(4.95)

)( 8594det ccccchaqdc −= ,

(4.96)

Cccccccaqdc )( 7593det −= ,

(4.97)

)( 7593det cccccraql −= .

(4.98)

In (4.86) and (4.87), loadi
~

 needs to be treated as input to the system. These

expressions will be used to substitute for armature voltages in (4.81) and (4.82),

respectively.

4.5.2.3. State-space representation of the system

State-space representation of the system needs to have the following form:
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�x Ax Bu= + ,
(4.99)

where
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(4.100)

is the vector of state variables, and

u =










~
~
v

i
efd

load

(4.101)

is the vector of system’s inputs.

In order to find matrices A and B from (4.99), the system’s equations will be

written in the form

Ex Fx Gu� = + .
(4.102)

After that, matrices A and B can be calculated as

A E F= −1 ,
(4.103)

B E G= −1 .
(4.104)

In order to obtain the form given by (4.102), for each state variable, an equation is

written in the following way:
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• For the exciter’s armature d axis current, by combining (4.54) and (4.66);

• For the exciter’s armature q axis current, by combining (4.55) and (4.67);

• For the exciter’s field current, by using (4.56);

• For the main generator’s armature d axis current, by combining (4.81) and

(4.86);

• For the main generator’s armature q axis current, by combining (4.82) and

(4.87);

• For the main generator’s d axis damper winding current, by using (4.83);

• For the main generator’s q axis damper winding current, by using (4.84);

• For dc-link voltage, by combining (4.41) with (4.86) and (4.87).

When these eight equations are written in matrix form, the following matrices E, F

and G are gotten:
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(4.107)

If a resistive load were connected to the dc-link, equations which allow us to determine

matrices E, F and G can easily be modified by substituting

l

dc
load R

v
i

~~ =

(4.108)

where Rl is the load resistance. In that case, the only input to the system is represented by

exciter’s field voltage.

If dc-link voltage is considered to be system’s output, the output equation can be

written in the form

DuCx +=adcv~ ,

(4.109)

where

[ ]10000000=C ,
(4.110)

[ ]0=D .
(4.111)

4.5.3. Transfer functions

A linearized representation of the system allows to find system’s transfer functions.

For dc-link voltage controller design, it is necessary to have Bode plots of efdadc vv ~/~  (also
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referred to as control-to-output) transfer function. This transfer function can be found

from linearized state space representation as

DBAIC +−= −1)(~

~
s

v

v

efd

adc .

(4.112)

However, it is almost always faster to plot this transfer function by directly

performing frequency-domain simulation of the system’s average model. Fig. 4.17 and

Fig. 4.18 show thus obtained Bode plots of magnitude and phase of efdadc vv ~/~  at two

different operating points. In both cases, dc load is represented by a current source.
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Fig. 4.17. Magnitude of the exciter’s field voltage-to-dc-link voltage transfer function
with current source load, at two different operating points.
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Fig. 4.18. Phase of the exciter’s field voltage-to-dc-link voltage transfer function with
current source load, at two different operating points.

It can be seen from these figures that this system can hardly be approximated with a

first-, or even second-order transfer function. The phase, for example, reaches values well

below –180º (which would be the minimum phase reached by a second-order transfer

function). These facts become even more obvious if the transfer function’s poles and

zeros are found numerically (from numerator and denominator of (4.112)). They are

listed in Table 4.2 for the operating point characterized by 3340 rpm and 105 kW current

source load. It will be seen in the following chapter that all frequencies below 100 Hz are

of interest for dc-link voltage control-loop design. It is clear from Table 4.2 that there are

six poles and three zeros in that frequency range. Therefore, accurate Bode plots of this

transfer function, obtainable with the use of the generator/rectifier average model, are

essential for dc-link voltage control design.

Fig. 4.17 and Fig. 4.18 show that both magnitude and phase of control-to-output

transfer function change as operating point changes. Since the load is represented by a

current source, which does not contribute to damping of the system, this dependence can

be attributed mainly to changes in generator speed, i.e. to the fact that the generator’s

reactances increase proportionally to the speed. The question then arises, which operating

point to select as the basis for control-loop design. It can be argued that, at higher speed
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and load, magnitude of control-to-output transfer function is higher, and phase starts

decreasing sooner, than at lower speed and load. Therefore, the system seems to be ‘more

difficult’ to compensate at operating points corresponding to high speed and load.

However, it can also be seen from Fig. 4.18 that there is a frequency range (from

approximately 30 Hz to 130 Hz) in which phase of control-to-output transfer function is

lower at low speed and load than at high speed and load. It will be seen in the following

chapter that crossover frequency of the closed loop system will fall exactly in that range.

In spite of that, we will select the operating point corresponding to high speed and load as

the basis for dc-link voltage controller design. When the design is completed, operation

of closed loop system at low load and speed will be verified through transient simulation

and measurement.

Table 4.2. Poles and zeros of efdadc vv ~/~ transfer function at 3340 rpm, 105 kW current

source load.

Poles (rad/s) Zeros (rad/s)

-0.2010 -28.27

-13.08 -470.6

-22.24+20.19j -551.3

-22.24-20.19j -281.5+1489j

-209.4+280.5j -281.5+1489j

-209.4-280.5j -2275

1059 -8.336·1013

2732

It was mentioned in the introductory chapter that the generator (and inverter) was

designed for rated power of 150 kW. However, the engine (by which the generator was

driven) could only provide power somewhat higher than 100 kW. That is why 105 kW
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were selected as the maximum power of the system for control design purpose. The

corresponding speed was assumed to be 3340 rpm.

It was argued in Section 4.4.3 that current source load, as opposed to resistive load,

makes the system more difficult to stabilize in closed loop. Since the average model

allows us to find transfer functions with any kind of load, it is now possible to verify the

validity of that argument. For the sake of comparison, Fig. 4.19 and Fig. 4.20 show

magnitude and phase, respectively, of control-to-output transfer function at 3340 rpm,

105 kW, with current source load and resistive load. Table 4.3 lists poles and zeros of

control-to-output transfer function with resistive load. It can be seen that, with resistive

load, the lowest-frequency poles of the transfer function are at approximately two Hz, as

opposed to 0.03 Hz with current source load (Table 4.2). That makes the phase of

control-to-output transfer function with resistive load start decreasing at frequencies

higher than with the current source load. Also, the dc gain of the transfer function is

significantly lower with a resistive load. That is easily explained if it is remembered that,

with resistive load, an increase in the exciter’s field voltage by an amount x results in an

increase, by an amount y, in main generator’s armature voltage. Since the dc load is

resistive, the main generator’s armature current will also increase (by an amount

approximately equal to y/Rl), increasing the voltage drop at the main generator’s

synchronous reactance. With current source load, however, the main generator’s armature

current is kept constant. Therefore, an increase by x in the exciter’s field voltage will not

result in an increased voltage drop at the main generator’s synchronous reactance;

consequently, the main generator’s armature voltage will rise by an amount larger than y.

This is seen as a larger magnitude of control-to-output transfer function.

Because of the two above listed reasons (higher dc gain and poles at lower

frequencies), current source load definitely makes the system more difficult to stabilize in

closed loop at frequencies up to approximately three Hz. After that frequency, there is

almost no difference between transfer functions with current source or resistive load (that

can also be seen by comparing poles and zeros in Table 4.2 and Table 4.3), and both are

equally difficult, or easy, to compensate.
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Fig. 4.19. Magnitude of the exciter’s field voltage-to-dc-link voltage transfer function at
3340 rpm, 105 kW, with different kinds of load.
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Fig. 4.20. Phase of the exciter’s field voltage-to-dc-link voltage transfer function at 3340
rpm, 105 kW, with different kinds of load.

Current source load, as opposed to resistive load, can therefore be adopted as a

more conservative option from a closed loop control design point of view. Consequently,

transfer function relative to a speed of 3340 rpm and a current source load of 105 kW will

represent a starting point for dc-link controller design, which is the matter of discussion

of the following chapter.
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Table 4.3. Poles and zeros of efdadc vv ~/~ transfer function at 3340 rpm, 105 kW resistive

load.

Poles (rad/s) Zeros (rad/s)

-8.906+10.25j -30.83

-8.906-10.25j -500

-23.53+21.44j -802.3

-23.53-21.44j -281.6+1771j

-274.1+274.7j -281.6+1777j

-274.1-274.7j -2022

1140 -9.098·1013

2632

Before concluding this chapter, let it note that the average generator/rectifier model

can provide any other system’s transfer function that may be of interest for a particular

application. One such example is the system’s output impedance, which will be a topic of

discussion in the following chapter. Two other examples are given in Fig. 4.21 and Fig.

4.22, which show Bode plots of the exciter’s field voltage-to-exciter’s field current and

the exciter’s field voltage-to-main generator’s field current transfer functions. These

transfer functions would be interesting if the objective were to implement some kind of

field current control. That was not the case in the system under our study, due to the

following reasons. The main generator’s field current is rotating with the shaft, and is

therefore not available for sensing. The exciter’s field current is affected by a large

amount of ripple (visible in Fig. 4.5, Fig. 4.8 and Fig. 4.11), which should be filtered in

order to control the exciter field current’s average value. Filtering of that ripple would

introduce poles in the control-loop that would compromise the bandwidth of the closed

loop system.
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Fig. 4.21. The exciter’s field voltage-to-exciter’s field current transfer function at 3340
rpm, 105 kW current source load.
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Fig. 4.22. The exciter’s field voltage-to-main generator’s field current transfer function
at 3340 rpm, 105 kW current source load.
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Chapter 5. Dc-Link Control-

Loop Design

5.1. Introduction

It has already been stated that two major advantages of the developed average

generator/rectifier model consist in savings in transient simulation time and the

possibility to perform frequency-domain analysis. The latter was of crucial importance

for the practical application that motivated this entire work, i.e. for control design of the

generator set shown in Fig. 1.1. It is our intention in this final chapter to show, in detail

manner, how the dc-link voltage control-loop compensator was designed based on the

control-to-output transfer function shown in Fig. 4.17 and Fig. 4.18 and repeated, for

convenience, in Fig. 5.1. Apart from representing a good example of practical usefulness

of the developed model, this chapter will supply additional proofs of the model’s validity

through comparison of closed-loop transient simulation and measurement results.

Block diagram of the closed loop system drawn for small signal analysis is shown

in Fig. 5.2. In Fig. 5.2, G(s) represents the exciter’s field voltage-to-dc-link voltage

transfer function, p represents the gain of the dc-link voltage sensor, H(s) stands for
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dynamic compensator’s transfer function, M for modulator’s gain, and Vg for input

voltage of the buck dc-to-dc power supply used to provide the exciter’s field voltage.

Regarding signals’ notation, efdv~  and adcv~  have already been introduced, while sv~  stands

for dc-link voltage sensed signal, mv~  for voltage signal input to the modulator, and d
~

 for

the buck converter’s duty cycle.
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Fig. 5.1. The exciter’s field voltage-to-dc-link voltage transfer function at 3340 rpm and
105 kW current source load.
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adcv~efdv~

sv~
mv~

d
~

Fig. 5.2. Small-signal block diagram of the closed-loop system.

Stability and performance of the closed loop system can be expressed in terms of

system’s loop gain T(s) which, as indicated in Fig. 5.2, is the product of all blocks

forming the loop, i.e.
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gMVspHsGsT )()()( = .

(5.1)

Sensor gain p, modulator gain M and voltage Vg are constants which follow from a

particular choice of hardware components. In this application, they had the following

values:

• p=0.005;

• M=0.56;

• Vg=48 V.

With these parameters fixed, loop gain is shaped by selecting appropriate gain,

poles and zeros of the compensator’s transfer function H(s). Stability and performance

criteria, such as phase margin and crossover frequency, can be read directly from Bode

plots of the system’s loop gain. In this particular application, no specifications were

defined regarding these criteria. That means that any stable dc-link voltage control-loop

is acceptable, as long as it enables the inverter to operate according to its own

requirements. The first attempt in compensator design was made, therefore, with a simple

PI compensator. For reasons which will be discussed in the following sections, the

system’s operation with that compensator was found to be unsatisfactory, and a more

complex compensator, consisting of three zeros and five poles, needed to be designed and

implemented.

5.2. PI compensator

5.2.1. Design

The PI compensator is the simplest compensator that provides zero steady state

error, due to its pole in the origin. The compensator’s transfer function is
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(5.2)

Standard analog realization of this transfer function is shown in Fig. 5.3. After one

component’s value, say C2, is chosen, the other two can be calculated from the

compensator’s pole and zero as

2
1 C

1
R

k
= ,

(5.3)

2
2 C

1
R

zω
= .

(5.4)

R1

R2
C2

Vref

vout

vin -

+

Fig. 5.3. Analog realization of a PI compensator.

Zero at ωz has the role of compensating for the 90º phase lag introduced by the pole

in the origin. It can be seen from Fig. 5.1 that the zero needs to be placed between 0.1 Hz

and 1 Hz in order to have the desired phase-boosting effect. After the zero is placed, gain

k can be adjusted in order to have stable system with the acceptable phase margin.

With zero placed at 1 Hz, and the compensator’s gain of 1.25, the loop gain shown

in Fig. 5.4 is obtained. It is characterized by a crossover frequency of 1 Hz and a phase

margin of approximately 25º. A higher phase margin would have been preferred, but the

crossover frequency would have become unacceptably low in that case.
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Fig. 5.4. Loop gain with PI compensator (3340 rpm, 105 kW current source load).

5.2.2. Operation with resistive dc load

After the PI compensator was implemented as shown in Fig. 5.3, operation of the

system was tested with a resistive load connected to main generator’s dc-link. The power

level at which testing was done was significantly lower than the rated power of the

system, because of the unavailability of a dc load with appropriate voltage and power

rating. The buck converter’s input voltage Vg was also reduced, compared to the design

value of 48 V.

Fig. 5.5-Fig. 5.8 show average model simulation and measurement results relative

to resistive load step and two different speeds. Dc-link voltage is regulated at 400 V, and

the load is switched from 19.2 kW to 12.8 kW in both cases. Transient response is always

stable, but is characterized by large overshoot and settling time, due to poor bandwidth. It

can also be noticed that average model simulation results match well with measurement

results, which is another confirmation of the average model’s validity. Average model

simulation results can actually be considered somewhat conservative, since they predict

values of overshoot and settling time slightly larger than their measured values.
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Fig. 5.5. Average model simulation: dc-link voltage and the exciter’s field current at
resistive load step from 8.3 Ω to 12.5 Ω (n=2000 rpm, Vg=25 V).
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Fig. 5.6. Measurement: dc-link voltage and the exciter’s field current at resistive load
step from 8.3 Ω to 12.5 Ω (n=2000 rpm, Vg=25 V).
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Fig. 5.7. Average model simulation: dc-link voltage and the exciter’s field current at
resistive load step from 8.3 Ω to 12.5 Ω (n=3800 rpm, Vg=15 V).
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Fig. 5.8. Measurement: dc-link voltage and the exciter’s field current at resistive load
step from 8.3 Ω to 12.5 Ω (n=3800 rpm, Vg=15 V).



98

5.2.3. Operation with inverter load and instability problem

After testing with resistive dc load, testing the closed loop system with inverter

connected to the dc-link was attempted. When that was done, instability occurred in the

form of oscillations of the dc-link voltage. This instability is due to the nature of the

inverter load, and can be explained in terms of the generator’s output impedance and the

inverter’s input impedance [22], [23].

A regulated inverter (i.e. an inverter operating in closed voltage loop) behaves like

a constant power load which, from the small-signal point of view, can be modeled as a

negative resistor, characterized by a phase of -180º. If such a load is connected to a non-

ideal voltage source, as shown in Fig. 5.9, it can be shown that the system will be stable if

21 io ZZ < .

(5.5)

Otherwise, there may be instability in the cascaded system, depending on the phase of the

ratio Zo1/Zi2.

Non-ideal
voltage source

Constant
power load

Zo1 Zi2

Fig. 5.9. Illustration for instability problem.

Fig. 5.10 shows the generator’s output impedance (‘seen’ from the dc-link,

therefore including the dc-link capacitor) in open and closed loop. It can be seen that, at

frequencies up to the crossover frequency, closing the loop reduces the magnitude of the

generator’s output impedance by a factor approximately equal to the loop gain

magnitude. Around the crossover frequency, there is a certain peaking in closed loop

output impedance due to the small phase margin, which makes it somewhat higher than
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the open loop output impedance. At frequencies significantly higher than the crossover

frequency, closing the loop has no effect on the output impedance.
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Fig. 5.10. Magnitude of the generator’s output impedance (in open and closed loop) and
the inverter’s input impedance (3340 rpm, 105 kW current source load).

Fig. 5.10 also shows input impedance of the inverter operating in closed voltage

loop at 105 kW output power level. It can be seen that the inverter’s input impedance

intersects with the generator’s closed-loop output impedance. Therefore, instability is

present in the system.

A solution to the instability problem consists in increasing the bandwidth of the dc-

link voltage loop. It can be predicted from the generator’s open-loop output impedance

plot in Fig. 5.10 that, if the dc-link voltage control-loop’s crossover frequency were

between ten Hz and 100 Hz, the generator’s closed loop output impedance would have its

peak between zero dB and ten dB, and would not intersect with the inverter’s input

impedance. That would stabilize the overall system.

With the above discussion in mind, the new control goal becomes to design a dc-

link voltage loop compensator that would provide a crossover frequency large enough to

make the generator’s closed-loop output impedance smaller, at all frequencies, than the

inverter’s input impedance.
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5.3. Multiple-pole, multiple-zero compensators

5.3.1. Design

It can be seen from Fig. 5.1 that the phase of control-to-output transfer function is

the main cause of difficulties in achieving high crossover frequency. At 30 Hz (which is

approximately the frequency at which crossover is desired), the phase of control-to-

output transfer function is -270º. An additional phase lag of 90º will be introduced by the

compensator’s pole in the origin, necessary to have zero steady state error. That would

cause the loop gain’s phase to be -360º at the desired crossover frequency. In order to

stabilize the system, three zeros are needed in the compensator’s transfer function at

frequencies lower than the desired crossover. For the compensator to be a causal system,

there have to be at least as many poles as zeros in the compensator’s transfer function;

practical considerations, however, suggest that there be one more pole than zero, in order

to attenuate the high-frequency noise that may appear at the compensator’s input. That

finally results in a four-pole, three zero compensator. Poles (other than the one in origin)

need to be placed at frequencies as high as possible, in order to affect the loop gain’s

phase as little as possible below the crossover frequency. Zeros are placed between one

Hz and ten Hz by following a trial-and-error procedure, in order to obtain a loop gain’s

magnitude that decreases steadily with a slope of approximately 20 dB/decade, and a

phase which stays well above -180º up to the crossover frequency.

The simulation showed very good results with three compensator poles placed at 1

kHz, zeros at 1.5 Hz, 2 Hz and 10 Hz, and a gain of 584. The corresponding loop gain is

shown in Fig. 5.11, and the generator’s closed loop output impedance (together with the

inverter’s input impedance) in Fig. 5.12. It can be seen that crossover frequency is 100

Hz, with a phase margin of about 15 degrees. Such a low phase margin is acceptable

because the loop gain’s phase, right after the crossover, reaches a minimum of -167º and

then rises again. It eventually reaches -180º at a frequency higher than one kHz. Actually,
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if only the phase of the loop gain had been considered, crossover frequency could have

been extended above 100 Hz. However, that would not have had the desired effect on the

control-loop because of the shape of the loop gain’s magnitude in the range of 200 Hz–1

kHz. As it is known, the control-loop is effective only as long as the loop gain’s

magnitude is much larger than one; that would not have been the case in the 200 Hz–1

kHz range with the magnitude shaped as in Fig. 5.11.
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Fig. 5.11. Loop gain with four-pole, three-zero compensator (3340 rpm, 105 kW current
source load).

It can be seen from Fig. 5.12 that, with a four-pole, three-zero compensator, the

generator’s closed loop output impedance always stays well below the inverter’s input

impedance. It could have been expected, therefore, that this compensator would have

solved the instability problem.

An analog four-pole, three-zero compensator was implemented using three stages

(three compensated operational amplifiers) connected in cascade. The first stage had a

gain of one, one pole at one kHz and one zero at ten Hz; the second stage had a gain also

equal to one, pole at one kHz and zero at two Hz; finally, the third stage had a gain of

584, one pole in the origin, one at one kHz, and one zero at 1.5 Hz. When tested, this

compensator revealed itself to be extremely sensitive to noise. The reason for that was the

fact that the first two stages, having one pole and one zero only, also had high, flat gain at



102

high frequencies, thus amplifying any noise that would appear at the compensator’s input.

The noise problems were serious enough to compromise entirely the operation of the

closed loop system.
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Fig. 5.12. Generator’s closed loop output impedance with four-pole, three zero
compensator (3340 rpm, 105 kW current source load).

In order to solve the noise-related problems, implementation of the compensator,

and even the compensator itself, had to be changed. Instead of three stages, a two-stage

approach was tried. The first stage had gain of one, one zero and two poles, so that its

gain decreases at high frequencies. The second stage had two zeros and three poles (of

which one was in the origin). Therefore, one pole was added to the compensator to

reduce the high-frequency gain of the first stage. That resulted in a three-zero, five-pole

compensator. All poles that previously used to be at one kHz, had to be shifted at lower

frequencies, in order to decrease high-frequency gain of both stages. After several

attempts, it was found by trial-and-error that pole frequencies of 150 Hz, 150 Hz, 250 Hz

and 500 Hz made the noise effects tolerable. Frequencies at which compensator zeros

were placed remained unchanged. The highest-frequency zero (ten Hz) and lowest

frequency pole (150 Hz) were attributed to the first stage, in order to keep its gain as low

as possible at all frequencies. Decreasing pole frequencies required a decrease by a factor

of five (117 instead of 584) in the compensator’s gain (attributed entirely to the second
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stage), in order to keep the system stable. Fig. 5.13 compares magnitudes of the four-pole

three-zero and five-pole, three-zero compensator’s transfer functions. Note how much the

five-pole, three-zero compensator reduces the magnitude above 200 Hz, where the

frequency of the dc-link voltage ripple (240 Hz-798 Hz) and the inverter switching

frequency (4 kHz) lie.

0

20

40

60

80

100

120

140

0.01 0.1 1 10 100 1000 10000
Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

4-pole, 3-zero

5-pole, 3-zero

Fig. 5.13. Multiple-pole, multiple-zero compensators’ transfer function’s magnitudes.

The five-pole, three-zero compensator resulted in a somewhat lower crossover

frequency (40 Hz), as shown in Fig. 5.14. It can be seen that the phase characteristic at

frequencies above ten Hz was heavily influenced by moving compensator’s poles to

frequencies lower than one kHz, so that the phase actually reaches -180º soon after the

crossover, leaving the phase margin of only about 20º.

In spite of a somewhat lower crossover frequency compared to a four-pole, three-

zero compensator, the generator’s closed-loop output impedance is still lower than the

inverter’s input impedance, as Fig. 5.15 shows. It can therefore be expected that

operation with the inverter connected to the dc-link will be stable.
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Fig. 5.14. Loop gain with five-pole, three-zero compensator (3340 rpm, 105 kW current
source load).
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Fig. 5.15. Generator’s closed loop output impedance with five-pole, three zero
compensator (3340 rpm, 105 kW current source load).
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An analog five-pole, three-zero compensator, having the transfer function
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was implemented with the circuit shown in Fig. 5.16.

Ra1

Ra2

Ra3
Ca1

Ca4

Rb1 Rb2
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+
+

_

_
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Fig. 5.16. Analog realization of a five-pole, three-zero compensator.

After one component value for each stage, say Ra2 and Rb1, is chosen arbitrarily,

others can be calculated from the transfer function’s parameters as follows:

a2za
a1 R

1
=C

ω
,

(5.7)

a1pa1
a1 C

1
=R

ω
,

(5.8)

a2a3 RR ak= ,

(5.9)

a3pa2
a4 R

1
=C

ω
,

(5.10)
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b2zb1
b2 C

1
=R

ω
,
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b2pb1
b3 R

1
=C

ω
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(5.15)

For (5.10)-(5.14) to be valid, it needs to be Cb2>>C b3 and Rb3>>Rb1.

5.3.2. Operation with resistive dc load

The five-pole, three-zero compensator was first tested with a resistive dc load. The

same transients presented in Section 5.2.2 for a PI compensator were simulated and

measured with a five-pole, three-zero compensator. The results are shown in Fig. 5.17-

Fig. 5.20. The time scale in these figures is the same as in Fig. 5.5-Fig. 5.8, relative to the

PI compensator. It can be seen that the increased control-loop’s bandwidth results in

dramatically decreased overshoot and settling time.

Fig. 5.21-Fig. 5.24 show resistive load step of the same magnitude as the one

shown in Fig. 5.17-Fig. 5.20, but of the opposite sign. Time scale is also more detailed, in

order to highlight the close matching of simulated and measured results.
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Fig. 5.17. Average model simulation: the dc-link voltage and exciter’s field current for a
resistive load step from 8.3 Ω to 12.5 Ω (n=2000 rpm, Vg=25 V).
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Fig. 5.18. Measurement: the dc-link voltage and exciter’s field current for a resistive
load step from 8.3 Ω to 12.5 Ω (n=2000 rpm, Vg=25 V).
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Fig. 5.19. Average model simulation: the dc-link voltage and exciter’s field current for a
resistive load step from 8.3 Ω to 12.5 Ω (n=3800 rpm, Vg=15 V).
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Fig. 5.20. Measurement: the dc-link voltage and exciter’s field current for a resistive
load step from 8.3 Ω to 12.5 Ω (n=3800 rpm, Vg=15 V).
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Fig. 5.21. Average model simulation: the dc-link voltage and exciter’s field current for a
resistive load step from 12.5 Ω to 8.3 Ω (n=2000 rpm, Vg=25 V).
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Fig. 5.22. Measurement: the dc-link voltage and exciter’s field current for a resistive
load step from 12.5 Ω to 8.3 Ω (n=2000 rpm, Vg=25 V).
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Fig. 5.23. Average model simulation: the dc-link voltage and exciter’s field current for a
resistive load step from 12.5 Ω to 8.3 Ω (n=3800 rpm, Vg=15 V).
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Fig. 5.24. Measurement: the dc-link voltage and exciter’s field current for a resistive
load step from 12.5 Ω to 8.3 Ω (n=3800 rpm, Vg=15 V).
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5.3.3. Operation with inverter load

After the testing with a resistive load showed stable operation, fast transient

response and good matching of simulated and measured results, a five-pole, three zero

compensator was tested with the inverter connected to the dc-link. No instability was

detected in the system.

Fig. 5.25 and Fig. 5.26 show the dc-link voltage and exciter’s field current during

the transient caused by stepping the inverter’s resistive three-phase load from 12.8 kW to

18.8 kW. Due to the lack of damping at the dc-link, the response is slightly more

oscillatory than with resistive load; overshoot in dc-link voltage is, nevertheless, very

small.

It can be concluded, therefore, that a five-pole, three-zero compensator satisfies the

requirements regarding the system’s stability and the generator’s output impedance

damping.

Dc link voltage (100 V/div)

Exciter’s field current (0.5 A/div)

0V  0A  

Fig. 5.25. Measurement: the dc-link voltage and exciter’s field current at step in the
inverter’s resistive three-phase load from 18.8 kW to 12.8 kW (n=3000 rpm, Vg=35 V).
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Dc link voltage (100 V/div)

Exciter’s field current (0.5 A/div)

0V  0A  

Fig. 5.26. Measurement: the dc-link voltage and exciter’s field current at step in the
inverter’s resistive three-phase load from 12.8 kW to 18.8 kW (n=3800 rpm, Vg=35 V).
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Chapter 6. Conclusions

When a diode rectifier is supplied from a three-phase voltage source with large

internal impedance and/or is loaded with a reactive dc load, its operation cannot be

described with equations derived analytically assuming instantaneous commutations of

diodes. An example of a source which can cause extremely non-ideal operation of the

rectifier is a variable-speed stand-by synchronous generator, characterized by an

extremely large value of synchronous impedance as a consequence of variable-speed

design. This thesis presents an attempt to develop a simplified model of the system

consisting of a synchronous generator with large internal impedance feeding a diode

rectifier with a reactive dc load. The results obtained, however, go beyond this particular

application, and can be applied to any case in which the source’s impedance significantly

affects operation of the diode rectifier.

The basis for the development of the simplified, average generator/rectifier model

consists of the study of the generator’s ac waveforms affected by the non-ideal operation

of the diode bridge and reactive nature of the dc load. This study is carried out through

analysis of the switching model of the system. It can be concluded from such analysis

that there exists a phase shift between the fundamental harmonics of the generator’s

voltage and current. In the ideal case, when commutations of the rectifier’s diodes are

instantaneous, this phase shift is equal to zero. Also, average values of dc current and

voltage at the rectifier’s output are found to be different than in the ideal case. The

amount of phase shift and discrepancies in average values of the dc variables depend on
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the parameters of the three-phase source (in the studied case, the synchronous generator),

and the nature of the dc load (capacitive or inductive). They affect both transient and

steady state operation of the system, and need to be taken into account when, for

example, the system’s control-loops are designed.

The developed average model of the diode rectifier relies on the assumption that

fundamental harmonic of ac variables and average value of dc variables are of primary

importance for the system’s operation, as far as power transfer and dynamic behavior is

concerned. This assumption is true in most practical applications, due to the primarily

inductive character of the source’s impedance and presence of a filter at rectifier’s output.

The developed model allows us to relate the dynamics of the three-phase source

connected to the rectifier’s input, to dynamics of the reactive dc load at rectifier’s output.

In doing so, the non-ideal operation of the rectifier is taken into account by means of

three constants obtained from the switching model. These three constants model the

diode rectifier in an average sense, i.e. they make it possible to establish a relationship

between fundamental harmonics of ac voltage and current at the rectifier’s input to

average values of dc voltage and current at the rectifier’s output. The dependence of these

constants on the operating point is not highly pronounced, which results in the model’s

validity for both steady state and transient operation. This is verified to be true through

comparison of the average model simulation results with switching model simulation

results and measurement results, for both open- and closed-loop operation and different

operating points.

The way the average model is implemented takes into account losses in the diode

rectifier, and allows us to relate these losses directly to the average model’s parameters. If

diode losses are negligible, it can be shown that there are only two independent average

model’s parameters, from which the third one can be computed.

The main advantages of the average model, as opposed to the switching model, are

savings in computational time when time-domain simulations are performed, and the

possibility to perform frequency-domain analysis of the system. The latter is the result of

the average model’s equations’ being time-continuous and, therefore, easy to linearize.

From linearized equations, it is possible to obtain state-space representation and transfer
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functions of the system. In the studied case, practical interest was focused on the exciter’s

field voltage-to-dc-link voltage transfer function, which represents the system’s control-

to-output transfer function. Dependence of this transfer function on the operating point

and nature of dc load was discussed from the point of view of dc-link voltage control-

loop design.

Design of this control-loop is a good example of a practical application of the

developed model. Control-to-output transfer function, obtained with the average

generator/rectifier model, shows that the actual order of the system in this case is such

that the often-used, first-order generator model cannot be applied. That is particularly true

if a high-order (five pole, three-zero) dynamic compensator needs to be designed in order

to stabilize the cascaded generator-rectifier-inverter system, affected by instability due to

poor matching of output and input impedances of different parts of the system. In such a

design, the system’s dynamic response needs to be known, in a detailed manner, at

frequencies much higher than the frequency corresponding to the transfer function’s

dominant pole. The developed average generator/rectifier model represents a unique and

indispensable means to study and solve this and similar problems.
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