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An Introduction to the General Number Field Sieve

Matthew E. Briggs

(ABSTRACT)

With the proliferation of computers into homes and businesses and the explosive growth rate
of the Internet, the ability to conduct secure electronic communications and transactions has
become an issue of vital concern. One of the most prominent systems for securing electronic
information, known as RSA, relies upon the fact that it is computationally difficult to factor
a “large” integer into its component prime integers. If an efficient algorithm is developed
that can factor any arbitrarily large integer in a “reasonable” amount of time, the security
value of the RSA system would be nullified.

The General Number Field Sieve algorithm is the fastest known method for factoring large
integers. Research and development of this algorithm within the past five years has facili-
tated factorizations of integers that were once speculated to require thousands of years of
supercomputer time to accomplish. While this method has many unexplored features that
merit further research, the complexity of the algorithm prevents almost anyone but an expert
from investigating its behavior. We address this concern by first pulling together much of
the background information necessary to understand the concepts that are central in the
General Number Field Sieve. These concepts are woven together into a cohesive presenta-
tion that details each theory while clearly describing how a particular theory fits into the
algorithm. Formal proofs from existing literature are recast and illuminated to clarify their
inner-workings and the role they play in the whole process. We also present a complete,
detailed example of a factorization achieved with the General Number Field Sieve in order
to concretize the concepts that are outlined.
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Chapter 1

Introduction

The General Number Field Sieve (GNFS) is the fastest known method for factoring “large”
integers, where large is generally taken to mean over 110 digits. This makes it the best algo-
rithm for attempting to unscramble keys in the RSA [2, Chapter 4] public-key cryptography
system, one of the most prevalent methods for transmitting and receiving secret data. In
fact, GNFS was used recently to factor a 130-digit “challenge” number published by RSA,
the largest number of cryptographic significance ever factored.

A specialized version of GNFS, the so-called “special” Number Field Sieve (SNFS), also
exists; it is asymptotically faster than GNFS for factoring integers expressible in the form
re ± s with r, e, s ∈ Z and e > 0. This has made SNFS the method of choice for attacking
and successfully factoring the 155-digit ninth Fermat number [18], 229

+ 1, as well as for
factoring Mersenne “primes” and numbers on the Cunningham List [3], the latter being one
of the oldest gauges of factoring technology.

Beyond its practical value, GNFS is also academically interesting. The algorithm itself uses
ideas and results from diverse fields of mathematics and computer science. Algebraic number
theory, graph theory, finite fields, linear algebra, and even real and complex analysis all play
vital roles in GNFS.

The goal here is to describe the basic GNFS algorithm, explaining the relevant background
information and theory the reader will need in order to understand the various stages of
GNFS. We’ll spend considerable time on an extended example, worked out in full detail
so as to provide the reader a clear grasp of the previously outlined concepts. Once the
fundamentals have been laid, we’ll describe practical use of GNFS. This includes details on
tuning GNFS for specific situations, as well as some of the general enhancements made to
the base algorithm that improve its performance.

1
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1.1 Cryptography and Factoring

Most cryptography systems make use of “one-way” functions, which intuitively can be
thought of as mappings that are difficult to invert. In the RSA system [2, Chapter 4]
the one-way function is multiplication of large prime integers, where large usually means
over 110 digits. The key is that while multiplication of such integers can be done nearly
instantly, the inversion function of factoring back into primes is virtually impossible.

In many of these systems, including the RSA procedure, an individual who wants the ability
to receive encrypted messages that only he can read chooses a “public key” and a “private
key.” The public key is available to anyone and is used to encrypt messages that can only
be decrypted by someone who knows the corresponding private key. RSA facilitates this
concept by having the private key consist of a set of three integers p, q, and d. The integers
p and q are chosen to be large primes such that their product n = p · q is difficult to factor,
while d is chosen relatively prime to φ(n), where φ(n) denotes Euler’s totient function for
the number of integers less than or equal to n and relatively prime to n. The public key is
comprised of the integer n and the integer e for which d · e ≡ 1 (mod φ(n)).

To encrypt a message using the integers n and e for a public key, first encode the message [2,
Chapter 4] as an integer M relatively prime to n. Let E denote the encrypted version of the
message, where E is defined as

E = Me (mod n).

This integer E can be made available to anyone but it can only be decrypted back into the
original message M by someone knowing the corresponding private key.

To decrypt the message, recall Euler’s formula [24, Theorem 2.8] which says that for any
integers m and a with gcd(a,m) = 1 that aφ(m) ≡ 1 (mod m). Since M was chosen relatively
prime to n it follows then that Mφ(n) ≡ 1 (mod n). Using this information leads to a method
for decrypting E, since

Ed ≡ (Me)d ≡Med ≡M1+k·φ(n) ≡M · (Mφ(n))k ≡M (mod n)

where ed = 1 + k · φ(n) for some integer k since d · e ≡ 1 (mod φ(n)) by construction.
Note this computation recovers the original message M and makes use of information in the
private key set.

To make clear the importance of factoring n, note that to decrypt the message the private
key d was needed. Now e and n are in the public key set, and it is known that d · e ≡ 1
(mod φ(n)), so d can be computed by computing the multiplicative inverse of e modulo
φ(n). The latter is trivial, assuming φ(n) is known. Now from [24, Theorem 2.19]

φ(n) = φ(pq) = φ(p) · φ(q) = (p− 1) · (q − 1)

which is not immediately computable unless p and q are available. The latter is not a problem
for someone with knowledge of the private key set, but for anyone else it entails factoring
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n. Furthermore, if a method for computing φ(n) without knowing p or q is discovered, then
n can be factored immediately. So the problem of unearthing the private key d boils down
to computing φ(n), which in turn is equivalent to factoring n. If a method is discovered for
factoring arbitrary integers quickly, then any RSA private key could be discovered and the
system would become insecure.

1.2 Modern Methods of Factoring

The most straightforward method of factoring is trial division, where one simply tries to
divide by each prime up to the square root of the number to factor. This method is in-
deed guaranteed to find a factor of any composite integer, but it is also guaranteed to be
computationally infeasible for large enough integers.

To see why this is the case, suppose a 60-digit integer n is to be factored. Then one must check
if n is divisible by any of the primes of size up to about 1030. If the optimistic assumption is
made that only 0.1% of these integers are prime, that still means about 1027 divisions need
to take place. Again, being optimistic and assuming that enough computer resources are
available to do 1015 of these divisions every second, it would still take roughly 1012 seconds,
or over 31, 000 years to perform the computation. Of course, the algorithm might find a
factor of n without extending all the way to the square root of n, so it may very well take a
few thousand years less. On the other hand, the assumptions made were fairly optimistic to
begin with so the algorithm would probably take longer than this rough projection. In any
event, this obviously is not a practical method for factoring with run-times in the thousands
of years!

Many of the successful factoring methods of the past twenty years have used the same basic
technique, which itself dates back to the time of Fermat [26, 2]. The “difference of squares”
method relies upon the observation that if integers x and y are such that x 6≡ y (mod n)
and

x2 ≡ y2 (mod n) (1.1)

then gcd(x− y, n) and gcd(x+ y, n) are non-trivial factors of n.

If one is able to produce random integers x and y that satisfy (1.1), how likely is it that
gcd(x+ y, n) or gcd(x− y, n) is a non-trivial factor of n? In the case where n is the product
of two distinct primes p and q, such as when n is a modulus used in the RSA method of
§1.1, it turns out that a non-trivial factor of n is extracted in 2/3 of the cases, as seen in
Table 1.1.

The question then becomes one of devising a means for producing integers x and y satisfying
(1.1). The “random squares” algorithm of Dixon is one such method, which is not only of
historical interest, but is also useful because it introduces concepts employed in the GNFS.
Specifically, the notions of a factor base and being smooth over a factor base are introduced:
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Table 1.1: Scenarios for x2 ≡ y2 (mod n)
p|x+ y? p|x − y? q|x+ y? q|x− y? gcd(x+ y, n) gcd(x− y, n) Gives Factor?

Yes Yes Yes Yes n n
Yes Yes Yes No n p X
Yes Yes No Yes p n X
Yes No Yes Yes n q X
Yes No Yes No n 1
Yes No No Yes p q X
No Yes Yes Yes q n X
No Yes Yes No q p X
No Yes No Yes 1 n

Definition 1.2.1. A nonempty set F of positive prime integers is called a factor base. An
integer k is said to be smooth over the factor base F if all primes occurring in the unique
factorization of k into primes are members of F .

The method of Dixon [2, pages 102–104] begins by fixing a factor base F = {p1, p2, . . . , pm}
and then proceeds to compute a set of random integers ri with the property that f(ri) = r2

i

(mod n) is smooth over F . When more than m such integers are found, a subset U of the
integers in the sequence can be found such that∏

ri∈U
f(ri) = p2e1

1 p2e2
2 · · · p2em

m = (pe11 p
e2
2 · · · pemm )2

with ei ≥ 0. This set U is the key to producing a difference of squares, for if

x =
∏
ri∈U

ri and y = pe11 p
e2
2 · · · pemm

then a difference of squares follows from

x2 =
∏
ri∈U

r2
i ≡

∏
ri∈U

f(ri) ≡ y2 (mod n).

Finding the set U turns out to be a reasonably straightforward task. For each ri ∈ U one can
associate a vector vi ∈ Fm2 , where Fm2 denotes the m-dimensional vector space over the finite

field Z /2Z of 2 elements. The jth coordinate of vi is set to 0 if the prime pj divides f(ri) an
even number of times and is set to 1 otherwise. It’s a standard result from linear algebra [11,
Theorem 1.10] that if more than m such vectors are collected then there is a non-trivial linear
dependence among them. In this particular case, that means a nonempty set of vi vectors
can be produced whose sum yields the zero vector. But since these vectors represent the
parity of the exponents of the primes that occur in the factorization of the f(ri)’s, it follows
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that the product of the f(ri) values corresponding to the vi’s that occur in a dependency is
a perfect square. The set U can then be constructed from the ri whose vector vi occurs in a
dependency. Many well-studied and efficient techniques exist for finding dependencies among
vectors, such as Gaussian elimination [2, pages 114–115]. The real question then becomes
one of finding enough ri with f(ri) smooth over F , and doing so in a timely fashion..

1.3 The Quadratic Sieve

The Quadratic Sieve (QS) factoring algorithm of Carl Pomerance [26, 2] was the most ef-
fective general-purpose factoring algorithm of the 1980’s and the early 90’s, and is still the
method of choice for integers between 50 and 100 digits. At its heart the QS is essentially
Dixon’s algorithm, in the sense that it uses factor bases, smoothness, and dependencies
among vectors over Z /2Z to produce its squares. Through a slight modification of the
polynomials f(x) considered, however, QS sets itself apart from Dixon’s method by finding
smooth values in a remarkably fast manner.

As with Dixon’s method, QS begins by fixing a factor base F = {p1, p2, . . . , pm}. Instead of
searching for integers ri for which f(ri) = r2

i (mod n) is smooth over F , values of f(ri) =
r2
i − n are sought which are smooth over F . Again, as is the case in Dixon’s method, when

more than m such integers are found, a subset U can be produced with∏
ri∈U

f(ri) = p2e1
1 p2e2

2 · · · p2em
m = (pe11 p

e2
2 · · · pemm )2.

A difference of squares follows by letting

x =
∏
ri∈U

ri and y = pe11 p
e2
2 · · · pemm

since then

x2 =
∏
ri∈U

r2
i ≡

∏
ri∈U

(r2
i − n) ≡

∏
ri∈U

f(ri) ≡ y2 (mod n). (1.2)

At this point the QS does not look that much different from Dixon’s algorithm, and in reality
it is not. The only difference is in the polynomial f(ri) = r2

i − n used, and in fact it is the
special form of this polynomial that allows the dramatic increase in speed alluded to earlier.

The big improvement comes in how the different ri are chosen when considering whether
f(ri) is smooth over F . The straightforward approach is to pick a random integer ri and
then to trial-divide f(ri) by the primes in F . If f(ri) factors completely over F then ri is
added to the set of “useful” ri, otherwise it is discarded. In either case, a new random ri
is picked and the process continues until more than m integers exist in the set of useful ri
values.
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The problem with this approach is that a lot of time is wasted attempting to divide by primes
in F that don’t evenly divide a particular f(ri). A dramatic improvement can be made by
changing the focus of the operations. Instead of concentrating on a fixed f(ri) and finding
out which primes in the factor base divide it, fix a prime p ∈ F and determine which f(ri)
values are divisible by that p. If determining the f(ri) values that are divisible by a fixed
prime p ∈ F can be done in a reasonable manner, then one saves the time of attempting to
divide by primes that don’t divide into an f(ri).

To see how the special form of f(ri) = r2
i − n facilitates this, fix an ri and a prime p ∈ F

and suppose p divides f(ri). Then f(ri) ≡ 0 (mod p) and hence r2
i − n ≡ 0 (mod p) by the

definition of the function f . Then for any integer k it follows that

f(ri + kp) = r2
i + 2rikp+ k2p2 − n ≡ r2

i − n ≡ 0 (mod p)

and hence p divides f(ri + kp) as well. Thus, the real work in finding values of ri for which
f(ri) is divisible by p amounts to initially solving the quadratic congruence r2

i ≡ n (mod p),
for which there is an easy and efficient method [16, Section 9.2]. The rest of the ri values for
which f(ri) is divisible by p are then ri + pk for k ∈ Z . In order for this procedure to work,
n must be a quadratic residue modulo p, hence F shouldn’t contain any primes for which n
is a quadratic non-residue.

In practice one selects a bound −u < ri < u on the ri values for which it is expected more
than m of the possible values of f(ri) within this range will be smooth over F . An array of
computer memory is then initialized to the f(ri) values within this range. For each prime
p ∈ F , the quadratic congruence r2

i ≡ n (mod p) is solved. Then for all integers k for which
−u < ri + pk < u, the prime p is divided out of the corresponding f(ri + pk) value. Finally,
after this procedure has been performed for every prime p, the array of computer memory is
scanned for values of f(ri) for which f(ri) = 1. These correspond to values of ri whose f(ri)
factor completely over the factor base.

Using this sieving technique, every division by a prime p is “useful” in the sense that it is
always guaranteed to divide into the f(ri) value that is selected, which is not the case at all
with blind trial division. Since division is one of the most time-consuming operations in a
computer, this shift in focus leads to a dramatic speed-up.



Chapter 2

Motivation for the General Number
Field Sieve

Almost all difference of squares methods that produce integers x and y as in (1.1) use the
same basic concepts of a factor base, smoothness, and finding dependencies among vectors
over Z /2Z . Key breakthroughs occur when new methods are developed or older methods
enhanced to produce more smooth values over a factor base in a time dramatically less than
previous methods. For instance, Dixon’s method is improved upon by QS by adjusting the
polynomials that are used, and more importantly by changing the perspective on how smooth
values are searched for. This latter shift in perspective facilitates a fast sieving procedure
for finding smooth values, and hence a breakthrough in factoring technology.

The ideas leading to the GNFS algorithm are motivated by similar techniques that led to
the development of the QS from Dixon’s method. As expected, then, the notions of a factor
base, smoothness and dependency-finding are used in the GNFS, along with a perspective for
finding smooth values that supports a sieving procedure. A big break through comes by first
realizing that the quadratic polynomials of Dixon’s method and the QS don’t necessarily have
to be quadratic. Perhaps certain cubic, quartic, quintic, or even higher degree polynomials
could produce more smooth values than quadratics.

Another less obvious improvement stems from somehow allowing other rings besides Z and
Z /nZ into the algorithm. The idea here is that other rings could potentially have a notion
of smoothness imposed on them, similar to the notion over Z , with the hopes that more
smooth values exist in such rings than in Z . Furthermore, if some kind natural mapping
existed between such rings and Z /nZ , then a way of producing a difference of squares could
possibly be arrived at.

This idea of using other rings to produce a difference of squares is explored in §2.1 and then
tied in with higher degree polynomials in §2.2, §2.3, and §2.4.

7
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2.1 Generalizing the Quadratic Sieve

To see how rings other than Z and Z /nZ can come into play in a difference of squares
method, one only has to generalize the role the polynomial f(ri) = r2

i − n plays in the QS.
Recall from §1.3 that in the QS a set of integers U is found such that (1.2) holds. Then the
polynomial f(ri) = r2

i − n can be thought of as a ring homomorphism f : Z → Z /nZ . In
particular, f maps the product of all f(ri) for ri ∈ U , which is smooth over the factor base
F (by the choice of the ri) and a perfect square in Z (by the definition of U), to a perfect
square in Z /nZ . The important point is that f maps a square in the ring Z to a square in
the ring Z /nZ , which supplies the integers x and y for (1.1).

Suppose that there exists a ring R and a ring homomorphism φ : R→ Z /nZ . If β ∈ R with
φ(β2) = y2 (mod n) and x = φ(β) (mod n) then

x2 ≡ φ(β)2 ≡ φ(β2) ≡ y2 (mod n).

So if an element in R can be found that is a perfect square in R and which maps to a
perfect square in Z /nZ , then applying φ will yield a difference of squares. As will be seen in
the following sections, there is a natural way to construct such rings and the corresponding
homomorphisms to Z /nZ that will yield a difference of squares.

2.2 Fields and Roots of Irreducible Polynomials

Suppose a monic, irreducible polynomial f(x) of degree d with rational coefficients is known.
Then f(x) splits into distinct linear factors over the complex numbers [10, Section 13.4] as

f(x) = (x− θ1)(x− θ2) · · · (x− θd)

with θi ∈ C . One can choose any root θ = θi and form a ring in a manner that is easy to
verify [14, Chapter 5, Theorem 1.3]:

Proposition 2.2.1. If θ denotes a complex root of a monic, irreducible polynomial f(x) with
rational coefficients, then the set of all polynomials in θ with rational coefficients, denoted
Q (θ), forms a ring.

In fact, much more is true of Q (θ) because of the monic, irreducible nature of the defining
polynomial f(x):

Theorem 2.2.2. Given a monic, irreducible polynomial f(x) with rational coefficients, a
root θ ∈ C of f(x), and the associated ring Q (θ), the following hold:

1. Q (θ) ∼= Q [x]/(f(x)).
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2. Q (θ) is a field.

3. f(x) divides any polynomial g(x) for which g(θ) = 0.

4. The set {1, θ, θ2, . . . , θd−1} forms a basis for Q (θ) as a vector space over Q .

Proof. Proceeding along the lines of [14, Chapter 5, Theorem 1.6], let φ : Q [x] → Q (θ)
denote the natural map with φ(Q ) = Q and φ(x) = θ, which maps polynomials in x to
polynomials in θ. It is clear that this mapping is actually a surjective ring homomorphism.
Now f(x) maps to f(θ) = 0 under the mapping φ so that f(x) ∈ kerφ. In fact, since Q is a
field it follows that Q [x] is a principal ideal domain [14, Chapter 3, Theorem 3.9] and hence
kerφ = (g(x)) for some polynomial g(x). Now f(x) ∈ kerφ = (g(x)) implies that f(x) is a
multiple of g(x), and since f(x) is irreducible is follows that g(x) and f(x) must differ by at
most a scalar so that kerφ = (g(x)) = (f(x)). Now Q [x]/kerφ ∼= Imφ and since φ is onto it
follows that Q [x]/(f(x)) ∼= Q (θ) and the first part of the theorem follows.

To prove the second condition, note (0) $ (f(x)) $ Q [x] since f(x) is not identically 0 and
kerφ = (f(x)) is not the whole ring Q [x] because φ maps the non-zero rationals to non-zero
rationals. Since f(x) is irreducible it follows [29, Proposition 4.4] that (f(x)) is maximal
with respect to all proper principal ideals of Q [x]. But Q [x] is a principal ideal domain and
hence (f(x)) is a maximal ideal of Q [x]. Thus Q [x]/(f(x)) ∼= Q (θ) is a field [29, Lemma 5.1].

For the third part, consider a polynomial g(x) for which g(θ) = 0. Then φ(g(x)) = g(θ) = 0
implies that g(x) ∈ kerφ and since kerφ = (f(x)) it follows that g(x) is a multiple of f(x).

Finally, to prove the result about a representation for Q (θ) as a vector space over Q , let
g(θ) ∈ Q (θ) be any polynomial in θ and g(x) ∈ Q [x] its corresponding representation as a
polynomial in x. By the division algorithm, g(x) may be written as

g(x) = q(x) · f(x) + r(x)

where deg r(x) < deg f(x). Then

g(θ) = q(θ) · f(θ) + r(θ) = q(θ) · 0 + r(θ) = r(θ)

since θ is a root of f(x). It follows then that g(θ) may be written in the form

g(θ) = ad−1θ
d−1 + ad−2θ

d−2 + a1θ + a0

where the ai ∈ Q are the coefficients of r(x), since r(x) is a polynomial of degree strictly
less than d. Thus the set {1, θ, θ2, . . . , θd−1} spans Q (θ) as a vector space over Q . To show
linear independence, suppose that ad−1θd−1 + ad−2θd−2 + · · ·+ a1θ+ a0 = 0. Letting g(x) be
the polynomial

g(x) = ad−1x
d−1 + ad−2x

d−2 + · · ·+ a1x+ a0

it follows by construction that g(θ) = 0. Thus, g(x) ∈ kerφ = (f(x)) and hence f(x) must
divide g(x). But the degree of f(x) is strictly greater than g(x) so that g(x) must be the
zero polynomial and hence ai = 0 for all 0 ≤ i < d and linear independence follows.



Matthew E. Briggs Chapter 2. Motivation for the General Number Field Sieve 10

2.3 Rings of Algebraic Integers

At this point, to summarize the important developments, we have shown that a monic,
irreducible polynomial f(x) of arbitrary degree d and with rational coefficients gives rise to
a field Q (θ) where θ ∈ C is a root of f(x). Furthermore, elements of Q (θ) can be conveniently
represented as Q -linear combinations of the elements S = {1, θ, θ2, . . . , θd−1}. Although the
latter representation is convenient, working with Z -linear combinations of the elements of S
would be easier since then denominators could be discounted. Further analysis of the field
Q (θ) turns up a ring whose elements can be represented in just such a manner.

Definition 2.3.1. A complex number α is called an algebraic integer if it is the root of a
monic polynomial with integer coefficients.

Thus, if f(x) is an irreducible, monic polynomial of degree d with integer coefficients and
θ ∈ C is a root of f(x), it follows that θ is an algebraic integer according to this definition.
The following is a standard result from algebraic number theory that justifies the definition:

Proposition 2.3.1. Given a monic, irreducible polynomial f(x) of degree d with rational
coefficients and a root θ ∈ C of f(x), the set of all algebraic integers in Q (θ), denoted O,
forms a subring of the field Q (θ).

The actual ring that will be used in the GNFS is subring of the ring of algebraic integers O of
Q (θ) which possesses the convenient representation mentioned in the beginning paragraph:

Proposition 2.3.2. Given a monic, irreducible polynomial f(x) of degree d with integer
coefficients and a root θ ∈ C of f(x), the set of all Z -linear combinations of the elements
{1, θ, θ2, . . . , θd−1}, denoted Z [θ], forms a subring of the ring of algebraic integers O of Q (θ).

Before going further, it should be pointed out that the subring Z [θ] can indeed be a proper
subring of O. For instance, the polynomial x2− 5 is easily seen to be irreducible and monic
so that Q

(√
5
)

forms a field, which is a vector space over Q with basis S =
{

1,
√

5
}

. If

α =
(
1 +
√

5
)
/2 then α ∈ Q

(√
5
)

since α is a Q -linear combination of the elements of S.
Furthermore α satisfies the polynomial g(x) = x2 − x− 1 and is hence an algebraic integer,
but clearly α 6∈ Z [θ]. Hence, Q

(√
5
)

possesses an algebraic integer which is not contained

in Z
[√

5
]

and so

Z
[√

5
]
$ O $ Q

(√
5
)
.

2.4 Producing a Difference of Squares

Having demonstrated that for any monic, irreducible polynomial an associated ring can be
constructed that has a natural representation as Z -linear combinations of elements from
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a finite set, the natural question is how to map that ring onto Z /nZ so as to produce a
difference of squares. The next proposition [5, page 53] addresses this issue:

Proposition 2.4.1. Given a monic, irreducible polynomial f(x) with integer coefficients, a
root θ ∈ C of f(x), and an integer m ∈ Z /nZ for which f(m) ≡ 0 (mod n), the mapping
φ : Z [θ] → Z /nZ with φ(1) = 1 (mod n) and which sends θ to m is a surjective ring
homomorphism.

To see how this can result in a difference of squares, suppose a set U of pairs of integers
(a, b) can be found such that∏

(a,b)∈U

(a+ bθ) = β2 and
∏

(a,b)∈U

(a+ bm) = y2

with β ∈ Z [θ] and y ∈ Z . Then applying the natural homomorphism φ from Proposition 2.4.1
and letting φ(β) = x ∈ Z /nZ , it follows that

x2 ≡ φ(β)2 ≡ φ(β2) ≡ φ

 ∏
(a,b)∈U

(a+ bθ)


≡

∏
(a,b)∈U

φ(a+ bθ) ≡
∏

(a,b)∈U

(a+ bm) ≡ y2 (mod n)

and a difference of squares results.

Note 2.4.1. The condition that the product of the elements a+ bθ corresponding to pairs in
U be a perfect square in Z [θ] is imposed because the ring homomorphism φ is only defined
on elements of Z [θ]. In practice the condition is relaxed to allow for the product being a
perfect square in Q (θ), which is less restrictive and hence more likely to be satisfied. Now if∏

(a,b)∈U

(a+ bθ) = α2 (2.1)

for some α ∈ Q (θ), it follows [5, pages 60–61] that α ∈ O and in fact f ′(θ) · α ∈ Z [θ]. A
difference of squares can still be produced, for if∏

(a,b)∈U

(a+ bθ) = α2 and
∏

(a,b)∈U

(a+ bm) = z2 (2.2)

with α ∈ O and z ∈ Z , then letting β = f ′(θ) ·α ∈ Z [θ], y = f ′(m) ·z, and x = φ(β) ∈ Z /nZ ,
it follows that

x2 ≡ φ(β)2 ≡ φ(β2) ≡ φ

f ′(θ)2 ·
∏

(a,b)∈U

(a+ bθ)


≡ φ (f ′(θ))2 ·

∏
(a,b)∈U

φ(a+ bθ) ≡ f ′(m)2 ·
∏

(a,b)∈U

(a+ bm) ≡ y2 (mod n)

and another difference of squares has been produced.



Chapter 3

The General Number Field Sieve
Algorithm

In the quadratic sieve detailed in §1.3, a factor base F of prime integers is selected and a set
U of integers is then found such that all ri ∈ U have f(ri) smooth over F and∏

ri∈U
f(ri) = y2

for some y ∈ Z . Because of the special form of the polynomial f(ri) = r2
i − n it follows

immediately that a perfect square in Z /nZ is also produced since

∏
ri∈U

f(ri) ≡
∏
ri∈U

(r2
i − n) ≡

∏
ri∈U

r2
i ≡

(∏
ri∈U

ri

)2

(mod n)

and as shown in Table 1.1 there is a better than 50-50 chance that this will produce a non-
trivial factor of n. The important point to notice is that the square in Z /nZ comes for
“free”, in that for any set T of arbitrary integers, the product of the corresponding f(ri) for
all ri ∈ T is a perfect square in Z /nZ because of the form of f(ri) = r2

i −n. When producing
the squares in the QS then, finding one square essentially requires no work, while the other
square is found through sieving and linear algebra.

The GNFS algorithm extends beyond quadratic polynomials to allow for any higher degree,
so that a square is not automatically produced in Z /nZ as it is in the QS. A natural technique
for finding (a, b) pairs that satisfy (2.2) is to to combine a notion of smoothness in Z [θ] with
smoothness in Z and to search for (a, b) pairs with a+ bθ smooth over an “algebraic” factor
base for Z [θ] and a+ bm smooth over a “rational” factor base for Z . As in QS, when enough
pairs are found that are “simultaneously smooth” over the two factor bases, then hopefully
a square in both Z [θ] and Z can be produced according to (2.2). Indeed, this is exactly how
the GNFS algorithm proceeds.

12
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Generalizing the notion of a factor base to Z [θ] and defining what it means to be smooth
over such a factor base is discussed in §3.1. Producing squares in Z [θ] using smoothness over
a factor base is discussed in §3.1, §3.2, and §3.3. Sieving in Z and Z [θ] is outlined in §3.4,
§3.5, §3.6, §3.7, and §3.8.

3.1 Smoothness And The Algebraic Factor Base

Since a factor base over Z is simply a set of prime integers, the immediate analog for Z [θ]
would seem to be a set of distinct irreducible elements of the ring Z [θ]. Early implemen-
tations of the Special Number Field Sieve [19], a predecessor of the GNFS, actually did
use such factor bases, but they also made the assumptions that Z [θ] = O and Z [θ] is a
unique factorization domain, neither of which is true in general. Furthermore, even when
these latter two assumptions were true, the resulting implementations were awkward and
unwieldy because units of Z [θ] had to also be added to the factor base and then figured into
computations at later stages of the algorithm.

The solution turns out to be to maintain a factor base not of prime elements of Z [θ] but
rather of ideals of Z [θ] of a special form (the special form eases the development of a sieving
procedure). The following recalls a well-known fact [29, Theorem 5.3] from algebraic number
theory that justifies the use of ideals in a factor base:

Proposition 3.1.1. Given a monic, irreducible polynomial f(x) of degree d with integers
coefficients and a root θ ∈ C of f(x), then the ring of algebraic integers O forms a Dedekind
domain. In particular, this implies:

1. The ring O is noetherian.

2. Prime ideals of O are maximal ideals of O, and vice versa.

3. Using the canonical notion of ideal multiplication, ideals of O can be uniquely factored,
up to order, into prime ideals of O.

The high-level idea then is to choose a set I of prime ideals of O, which will be called an
algebraic factor base, and to find (a, b) pairs for which the element a+bθ has a principal ideal
〈a+ bθ〉 that factors completely into prime ideals of I . Such an element is said to be smooth
over the algebraic factor base I . By collecting more (a, b) pairs than ideals in I , hopefully
some of the a+ bθ values corresponding these pairs can be multiplied together to produce a
perfect square in Z [θ], in a manner analogous to the QS.

To begin fleshing out this strategy, it is essential that the concept of the “norm” function
be developed. This function, as it will turn out, allows for questions about factorization of
elements in Z [θ] and ideals of O to be answered by addressing similar questions in Z . Begin
then with the following observation:
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Theorem 3.1.2. Given a monic, irreducible polynomial f(x) of degree d with rational co-
efficients and a root θ ∈ C of f(x), there are exactly d ring monomorphisms (embeddings)
from the field Q (θ) into the field C . These embeddings are given by σi(Q ) = Q and σi(θ) = θi
for 1 ≤ i ≤ d, assuming f(x) splits over C as

f(x) = (x− θ1)(x− θ2) · · · (x− θd).

Proof. Note that the canonical mapping σi : Q (θ)→ Q (θi) which sends θ to θi for 1 ≤ i ≤ d
is an isomorphism of fields [14, Chapter 5, Corollary 1.9], so that each σi determines a
distinct isomorphic copy of Q (θ) in C . Thus, there are at least d embeddings from Q (θ) into
C .

To show that these σi are the only such embeddings, suppose σ : Q (θ) → C is a ring
monomorphism. Then in particular σ(Q ) = Q . Now if σ(θ) = α ∈ C and f(x) = xd +
ad−1xd−1 + · · ·+ a1x+ a0 then

f(α) = αd + ad−1α
d−1 + · · ·+ a1α+ a0 = φ(θ)d + ad−1φ(θ)d−1 + · · · + a1φ(θ) + a0

= φ(θd + ad−1θ
d−1 + · · ·+ a1θ + a0) = φ(0) = 0

and hence α = θi and σ = σi for some 1 ≤ i ≤ d. Thus, the σi are the only embeddings of
Q (θ) into C and there exactly d of them.

The embeddings of Theorem 3.1.2 allow for the definition of the norm function which maps
elements of Q (θ) to elements of C :

Definition 3.1.1. Given a monic, irreducible polynomial f(x) of degree d with rational
coefficients, a root θ ∈ C of f(x) and an element α ∈ Q (θ), the norm of the element α,
denoted by N(α), is defined as

N(α) = σ1(α)σ2(α) · · · σd(α) (3.1)

where the σi are in the distinct embeddings of Q (θ) into C as detailed in Theorem 3.1.2.

The real power of the norm function, as it is used in the GNFS, stems from the following
standard result [29, pages 54–56] from algebraic number theory:

Proposition 3.1.3. Given a monic, irreducible polynomial f(x) of degree d with rational
coefficients and a root θ ∈ C of f(x), the norm map of Definition 3.1.1 is a multiplicative
function that maps elements of Q (θ) to Q ⊂ C . Furthermore, algebraic integers in Q (θ) are
mapped to elements of Z .

Corollary. Given a monic, irreducible polynomial f(x) of degree d with integers coefficients
and a root θ ∈ C of f(x), then the norm function of Definition 3.1.1 is a multiplicative
function that sends elements of Z [θ] to elements of Z .
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Though Proposition 3.1.3 and its corollary are initially useful because they allow for recasting
of questions about factorizations of elements of Z [θ] to factorization in Z , the full power of
these results comes when the concept of the norm of an element is tied in with the norm of
an ideal. Begin with the definition of the norm of an ideal:

Definition 3.1.2. Given a ring R and an ideal I of R, the norm of I is defined to be [R : I],
the number of cosets of I in R.

The following results recalls elementary properties of the norm function on ideals of O, and
explicitly relates the norm of an element of O to the norm of the principal ideal generated
by that element:

Proposition 3.1.4. Let f(x) be a monic, irreducible polynomial of degree d with rational
coefficients and θ ∈ C a root of f(x). Then the norm function of Definition 3.1.2 is a
multiplicative function that maps ideals of O to positive integers. Moreover, if α ∈ O then
N(〈α〉) = |N(α)|.

A final result [29, Theorem 5.11] from algebraic number theory clarifies how prime ideals of
O and prime integers are related:

Proposition 3.1.5. Let D be a Dedekind domain. If p is an ideal of D with N(p) = p for
some prime integer p, then p is a prime ideal of D. Conversely, if p is a prime ideal of D
then N(p) = pe for some prime integer p and positive integer e.

Given any element β ∈ O it follows from Proposition 3.1.1 that the principal ideal 〈β〉 of O
factors uniquely as

〈β〉 = p
e1
1 p

e2
2 · · · p

ek
k

for distinct prime ideals pi of O and positive integers ei with 1 ≤ i ≤ k. Furthermore,
Proposition 3.1.4 and Proposition 3.1.5 indicate that

|N(β)| = N(〈β〉) = N(pe11 p
e2
2 · · · pekk ) = N(p1)e1 N(p2)e2 · · ·N(pk)

ek

= (pf1
1 )e1(pf2

2 )e2 · · · (pfkk )ek = pe1+f1
1 pe2+f2

2 · · · pek+fk
k

(3.2)

for (not necessarily distinct) primes pi and positive integers ei and fi with 1 ≤ i ≤ k. It is
(3.2) that becomes the key tool for determining when an ideal 〈a + bθ〉 factors completely
over an algebraic factor base of prime ideals.

One very practical problem that presents itself is coming up with a representation for prime
ideals that can easily be stored in a computer, and more importantly, that facilitates a sieving
procedure for finding smooth a+ bθ values. This is accomplished in GNFS by restricting the
algebraic factor base to prime ideals of Z [θ] of a special form instead of prime ideals of O,
and then generalizing (3.2) to these ideals. With this in mind, begin by defining the special
prime ideals of Z [θ] that will be used in the algebraic factor base:
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Definition 3.1.3. A first degree prime ideal p of a Dedekind domain D is a prime ideal of
D such that N(p) = p for some prime integer p.

Note 3.1.1. It should be observed that any ideal p of a ring R with N(p) = p for some
prime integer p is necessarily a prime ideal of R. This follows since [R : p] = p implies
that R/p ∼= Z /pZ is a field and hence p is a maximal ideal of R [29, Lemma 5.1]. But any
maximal ideal of R is also a prime ideal of R [29, Lemma 5.1].

Before proceeding to determine a good representation for the first degree prime ideals of
Z [θ], a technical lemma is in order:

Lemma 3.1.6. If R is a commutative ring with identity 1R, S is a commutative ring with
identity 1S, and φ : R→ S is a ring epimorphism, then φ(1R) = 1S

Proof. Let y ∈ S. Since φ is a ring epimorphism there exists x ∈ R such that φ(x) = y.
Then y · φ(1R) = φ(1R) · y = φ(1R) · φ(x) = φ(1R · x) = φ(x) = y, hence φ(1R) = 1S .

The following result gives the convenient representation for the first degree prime ideals:

Theorem 3.1.7. Let f(x) be a monic, irreducible polynomial with integer coefficients and
θ ∈ C a root of f(x). The set of pairs (r, p) where p is a prime integer and r ∈ Z /pZ with
f(r) ≡ 0 (mod p) is in bijective correspondence with the set of all first degree prime ideals
of Z [θ].

Proof. Let p be a first degree prime ideal of Z [θ]. Then [Z [θ] : p] = p for some prime integer
p, so that Z [θ]/p ∼= Z /pZ . There is a canonical epimorphism [10, Chapter 7, Theorem 7]
of rings φ : Z [θ] → Z [θ]/p such that kerφ = p. Since Z [θ]/p ∼= Z /pZ it follows that φ can
also be thought of as an epimorphism of rings φ : Z [θ] → Z /pZ with kerφ = p, that is, the
elements in p map to integers that are divisible by p, and any such integer is the image of an
element in p. Furthermore φ(1) = 1 by Lemma 3.1.6 and hence φ(a) ≡ a (mod p) for any
integer a.

Let r = φ(θ) ∈ Z /pZ . If f(x) = xd + ad−1xd−1 + · · · + a1x + a0 with ai ∈ Z for 0 ≤ i < d,
then φ(f(θ)) ≡ 0 (mod p) since f(θ) = 0 and hence

0 ≡ φ(f(θ)) ≡ φ(θd + ad−1θ
d−1 + · · ·+ a1θ + a0)

≡ φ(θ)d + ad−1φ(θ)d−1 + · · ·+ a1φ(θ) + a0

≡ rd + ad−1r
d−1 + · · ·+ a1r + a0

≡ f(r) (mod p)

so that r is a root of f(x) (mod p) and the ideal p determines the unique pair (r, p).

Conversely, let p be a prime integer and r ∈ Z /pZ with f(r) ≡ 0 (mod p). Then there is
a natural ring epimorphism (analogous to the one discussed in Theorem 2.2.2) that maps
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polynomials in θ to polynomials in r. In particular, φ(a) ≡ a (mod p) for all a ∈ Z and
φ(θ) = r (mod p). Let p = kerφ so that p is an ideal of Z [θ]. Since φ is onto and kerφ = p

it follows that Z [θ]/p ∼= Z /pZ and hence [Z [θ] : p] = p and p is therefore a first degree prime
ideal of Z [θ]. Thus the pair (r, p) determines a unique first degree prime ideal p, which in
turn determines the unique pair (r, p) consistent with the first part of this proof. This gives
the result.

The next step is to generalize (3.2) to prime ideals of Z [θ] and to determine how this formula
can be used in testing smoothness of an element a+ bθ over an algebraic factor base. As it
turns out, some of the properties of the exponents ei in (3.2) can be generalized to exponents
of first degree prime ideals of Z [θ] occurring in the ideal factorization of 〈β〉 for β ∈ O.
This is done by first observing that an exponent ei in (3.2) can be thought of as a group
homomorphism epi : Q (θ)∗ → Z , where Q (θ)∗ denotes the multiplicative group of non-zero
elements in the field Q (θ), for a fixed prime ideal pi. This homomorphism has the following
properties:

1. epi(β) ≥ 0 for all β ∈ Q (θ)∗.

2. epi(β) > 0 if and only if the ideal pi divides the principal ideal 〈β〉.

3. epi(β) = 0 for all but a finite number of prime ideals pi of O, and |N(β)| =
∏

N(pi)epi

for all prime ideals pi of D.

A non-trivial result [5, Proposition 5.4] using the Jordan-Hölder theorem establishes a group
homomorphism possessing the properties outlined above, but defined for the prime ideals of
Z [θ] instead of the ideals of O:

Proposition 3.1.8. For every prime ideal pi of Z [θ], there exists a group homomorphism
lpi : Q (θ)∗ → Z that possesses the following properties:

1. lpi(β) ≥ 0 for all β ∈ Q (θ)∗.

2. lpi(β) > 0 if and only if the ideal pi divides the principal ideal 〈β〉.

3. lpi(β) = 0 for all but a finite number of prime ideals pi of Z [θ], and |N(β)| =
∏

N(pi)lpi

for all prime ideals pi of Z [θ].

In the GNFS, the only ideals Z [θ] of concern are the principal ideals of the form 〈a + bθ〉
for integers a and b, and because of this restriction the only homomorphisms of (3.1.8) that
need to be considered are those corresponding to first degree prime ideals of Z [θ], as the next
result shows:
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Theorem 3.1.9. Given an element β ∈ Z [θ] of the form β = a + bθ for coprime integers
a and b and a prime ideal p of Z [θ], then the homomorphism lp of Proposition 3.1.8 corre-
sponding to p has lp(β) = 0 if p is not a first degree prime ideal of Z [θ]. Furthermore, if p is
a first degree prime ideal of Z [θ] corresponding to the pair (r, p) as in Theorem 3.1.7, then

lp(β) =

{
ordp(N(β)) if a ≡ −br (mod p)

0 otherwise

where ordp(N(β)) denotes the exponent of the prime integer p occurring in the unique fac-
torization of the integer N(β) into distinct primes.

Proof. Let p be a prime ideal of Z [θ] with lp(a + bθ) > 0. Then p serves as the kernel of
the canonical epimorphism φ : Z [θ] → Z [θ]/p. Now by Proposition 3.1.5 it follows that
Z [θ]/p ∼= F pe , where p is a prime integer, e is a positive integer, and F pe denotes the finite
field with pe elements. In particular, Z [θ]/p must contain an isomorphic copy of the field
Z /pZ . The strategy is to show Imφ = Z /pZ , for it then follows from Z [θ]/kerφ ∼= Imφ and
kerφ = p that Z [θ]/p ∼= Z /pZ and p is a first degree prime ideal of Z [θ].

Begin by noting that since φ is an epimorphism of rings, it follows from Lemma 3.1.6 that
φ(1) = 1 ∈ Z /pZ and hence φ(m) ≡ m (mod p) for any integer m. Furthermore, note that
the condition lp(a + bθ) > 0 implies that p divides 〈a+ bθ〉 by Proposition 3.1.8 and hence
a+ bθ ∈ p. But since kerφ = p it follows that φ(a+ bθ) ≡ 0 (mod p).

Now suppose b ∈ Z is divisible by p. It then follows from φ(a + bθ) ≡ 0 (mod p) and
φ(b) ≡ b ≡ 0 (mod p) that

0 ≡ φ(a+ bθ) ≡ a+ b · φ(θ) ≡ a (mod p) (3.3)

and hence a is also divisible by p, contradictory to a and b being coprime. Thus b can’t
be divisible by p. Since b is not divisible by p it follows that b has a multiplicative inverse
modulo p, denoted b−1. Then (3.3) indicates that a + b · φ(θ) ≡ 0 (mod p) and hence
φ(θ) ≡ −ab−1 (mod p). The significance of the latter is that φ(θ) ∈ Z /pZ and hence
Z /pZ ⊆ φ(Z [θ]) ⊆ Z /pZ and thus Imφ = Z /pZ and the first part of the result is proved.

To prove the second portion of this result, begin by proving that lp(a + bθ) > 0 for a first
degree prime ideal p with pair (r, p) if and only if a ≡ −br (mod p). Suppose then that
lp(a+ bθ) > 0. By Proposition 3.1.8 it follows that p divides 〈a+ bθ〉 and hence a+ bθ ∈ p.
Now p = kerφ where φ is the canonical epimorphism of Theorem 3.1.7 with φ : Z [θ]→ Z /pZ
that sends φ(θ) = r (mod p) and φ(a) ≡ a (mod p) for a ∈ Z . Then a + bθ ∈ p = kerφ
implies that φ(a + bθ) ≡ 0 (mod p). But then 0 ≡ φ(a + bθ) ≡ a + br (mod p) and hence
a ≡ −br (mod p) as desired. Conversely, suppose a ≡ −br (mod p) for the first degree prime
ideal p with pair (r, p). Then 0 ≡ a+ br (mod p) ≡ φ(a+ bθ) and hence a+ bθ ∈ kerφ = p.
But the latter implies that p divides 〈a+ bθ〉 and hence lp(a+ bθ) > 0 by Proposition 3.1.8.
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It should be noted that the result of the proceeding paragraph can also be stated such that
if p is a first degree prime ideal of Z [θ] with pair (r, p), then lp(a + bθ) = 0 if and only if
a 6≡ −br (mod p).

Next, it will be shown that for a first degree prime ideal p of Z [θ] with pair (r, p) that
N(a+ bθ) is divisible by p if and only if a ≡ −br (mod p). Combining this with earlier work
yields lp(a + bθ) > 0 if and only if p divides N(a + bθ), which justifies using the norm as a
smoothness test for an algebraic factor base of first degree prime ideals.

Recalling the definition of the norm from (3.1) and the embeddings of Theorem 3.1.2 that
comprise it, the following explicit computation of the norm for an element of the form a+ bθ
sheds light on when a prime p divides N(a+ bθ):

N(a+ bθ) = σ1(a+ bθ) · σ2(a+ bθ) · · · σd(a+ bθ)

= (a+ bθ1) · (a+ bθ2) · · · (a+ bθd)

= bd
[(a
b

+ θ1

)
·
(a
b

+ θ2

)
· · ·
(a
b

+ θd
)]

= (−b)d
[(
−a
b
− θ1

)
·
(
−a
b
− θ2

)
· · ·
(
−a
b
− θd

)]
= (−b)df

(
−a
b

)
(3.4)

From (3.4) it follows that a prime p divides N(a + bθ) if and only if p divides either (−b)d
or f(−a/b). But since p does not divide b it follows that f(−a/b) ≡ 0 (mod p) and hence
a ≡ −br (mod p) for some root r of f(x) (mod p). The value for r, taken together with p,
determines a first degree prime ideal pair for which lp(a+ bθ) > 0, and vice versa.

To complete the result, suppose lp(a+bθ) > 0 for some first degree prime ideal p of Z [θ] with
pair (r, p). Further suppose that another first degree prime ideal p2 exists with pair (r2, p)
such that lp2(a + bθ) > 0. Then it follows that a ≡ −br (mod p) and a ≡ −br2 (mod p).
But the latter implies that r ≡ r2 (mod p) and hence p and p2 correspond to the same pair
and hence represent the same ideal. Thus, for any prime p there can be at most one first
degree prime ideal p which has p in its pair (r, p) and that has lp(a+ bθ) > 0 for fixed a and
b. In particular, if such an ideal exists, it must account for all the powers of p in N(a+ bθ)
by Proposition 3.1.8 and hence lp(a+ bθ) = ordp(N(a+ bθ)).

Theorem 3.1.9 is important for two reasons. First, it proves that the only prime ideals of
Z [θ] occurring in the ideal factorization of a principal ideal of the form 〈a+ bθ〉 for coprime
integers a and b are the first degree prime ideals of Z [θ]. Secondly, and probably even
more important, this result gives a condition for determining whether a first degree prime
ideal occurs in the ideal factorization of 〈a + bθ〉. Specifically, a first degree prime ideal
corresponding to the pair (r, p) as in Theorem 3.1.7 occurs as a non-trivial factor in the ideal
factorization of 〈a + bθ〉 if and only if a ≡ −br (mod p). This is a fairly easy condition to
check, and indeed gives rise to sieving a sieving procedure outlined in §3.7. To summarize,
finding an element a+ bθ ∈ Z [θ] that is smooth over an algebraic factor base of first degree
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prime ideals of Z [θ] amounts to finding an element a + bθ such that the integer N(a + bθ)
factors completely over the primes occurring in the (r, p) pairs corresponding to the first
degree prime ideals in the algebraic factor base.

To begin to see how Theorem 3.1.9 can be used to produce a square in Q (θ), and hence a
square in O by [5, pages 60–61]), note the following result:

Theorem 3.1.10. If U is a set of pairs of integers (a, b) such that the product of all elements
a+ bθ ∈ Z [θ] is a perfect square α2 ∈ Q (θ), then∑

(a,b)∈U

lpi(a+ bθ) ≡ 0 (mod 2) (3.5)

for all prime ideals pi of Z [θ].

Proof. Let pi be any prime ideal of Z [θ]. By Proposition 3.1.8 lpi is a homomorphism from
the multiplicative group of nonzero elements Q (θ)∗ to the additive group of integers Z and
hence:

∑
(a,b)∈U

lpi(a+ bθ) = lpi

 ∏
(a,b)∈U

(a+ bθ)

 = lpi
(
α2
)

= 2lpi(α) ≡ 0 (mod 2)

Note that this result gives a necessary condition for a product of elements of the form a+ bθ
to be a square in Q (θ), but not a sufficient one. More explicitly, when a number of (a, b) pairs
with a + bθ smooth over an algebraic factor base is found exceeding the number of ideals
in the algebraic factor base, linear algebra may be applied as outlined in §1.3 to produce a
subset U of (a, b) pairs such that∑

(a,b)∈U

lpi(a+ bθ) ≡ 0 (mod 2)

for all ideals pi of Z [θ]. This does not necessarily mean that the product of the elements
a+ bθ in U is a square in Z [θ], though. This condition can be made sufficient with a little
bit of extra work, as will be seen in §3.2

3.2 Quadratic Characters

When a set U of pairs of integers (a, b) has been found such that (3.5) holds, a further test
is needed to determine whether or not the product of the corresponding elements a + bθ ∈
Z [θ] is a perfect square in Z [θ]. This problem is solved in a straight-forward and efficient
manner [1, 5] through the use of “quadratic characters.” To motivate the discussion of
quadratic characters, a simple scheme for squareness testing in Z is illustrated.
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Begin by noting that if x is an integer in Z such that x = y2 for some integer y, then x is
also a perfect square modulo p for every prime p. This is the case since for any odd prime p(

x

p

)
≡ x

p−1
2 ≡ y

2(p−1)
2 ≡ yp−1 ≡ 1 (mod p)

by Euler’s Criterion [24, Corollary 2.38] and the fact that the non-zero elements of Z /pZ
form a multiplicative group of order p − 1 [14, Chapter 5, Theorem 5.3]. Note that any
integer is a perfect square modulo 2.

Thus, given any finite set of primes it follows that if an integer x is a perfect square then it is
also a perfect square modulo those primes. Although the converse is not true, one idea that
may work well on very lose probabilistic grounds is that if an integer x is a perfect square
modulo a number of primes p, then x itself is a perfect square. The certainty of the method
can be increased, in some sense, by increasing the number of primes that x is tested against.

To illustrate with the integer 79 and the set {2, 3, 5, 7} of primes, it is easily seen that 79 ≡ 12

(mod 2), 79 ≡ 12 (mod 3), 79 ≡ 22 (mod 5), and 79 ≡ 42 (mod 7). Thus, 79 is a perfect
square modulo all the primes in the aforementioned set, yet is not a perfect square itself. If
11 is added to the set of test primes, it is seen that 795 ≡ −1 (mod 11) and hence 79 is not
a perfect square modulo 11 by Euler’s Criterion and therefore 79 is not a perfect square in
Z . Thus, one more prime in the set of test primes in this example would have prevented the
misidentification of 79 as a perfect square when using the smaller test set.

The following result generalizes this test for perfect squares in Z to Q (θ):

Theorem 3.2.1. Let U be a set of (a, b) pairs such that∏
(a,b)∈U

(a+ bθ) = α2

for some α ∈ Q (θ). Given a first degree prime ideal q corresponding to the pair (s, q) that
does not divide 〈a+ bθ〉 for any pair (a, b) and for which f ′(s) 6≡ 0 (mod q), it follows that∏

(a,b)∈U

(
a+ bs

q

)
= 1 (3.6)

Proof. Let φ : Z [θ] → Z /qZ with φ(θ) = s (mod q) be the canonical ring epimorphism of
Theorem 3.1.7. Then q = kerφ is the first degree prime ideal corresponding to the pair (s, q).
Note that restricting φ to the members of Z [θ] which are not in q maps onto the non-zero
elements of Z /qZ , which allows for the definition of the map χq : Z [θ]− q→ {1,−1} given
by

χq(γ) =

(
φ(γ)

q

)
.



Matthew E. Briggs Chapter 3. The General Number Field Sieve Algorithm 22

From the remarks made in Note 2.4.1 it follows that exists a β = f ′(θ) · α ∈ Z [θ] satisfies

f ′(θ)2 ·
∏

(a,b)∈U

(a+ bθ) = β2

By the hypothesis that 〈a + bθ〉 is not divisible by the ideal q it follows that a + bθ 6∈ q.
Similarly, since f ′(s) is assumed to not be divisible by q then f ′(θ)2 6∈ q. Thus 〈β2〉 is not
divisible by q and neither is 〈β〉 and hence χq is defined at β2 and β.

Using the elementary properties of the Legendre symbol it is seen that

χq(β
2) =

(
φ(β2)

q

)
=

(
φ(β) · φ(β)

q

)
=

(
φ(β)

q

)2

= 1

and similarly χq(f ′(θ)2) = 1. But then

1 = χq(β
2) = χq

f ′(θ)2 ·
∏

(a,b)∈U

(a+ bθ)

 =

φ
(
f ′(θ)2 ·

∏
(a,b)∈U(a+ bθ)

)
q


=

(
φ (f ′(θ)2) ·

∏
(a,b)∈U φ(a+ bθ)

q

)
=

(
φ (f ′(θ)2)

q

)
·
(∏

(a,b)∈U φ(a+ bθ)

q

)

= χq

(
f ′(θ)2

)
·
(∏

(a,b)∈U(a+ bs)

q

)
= 1 ·

∏
(a,b)∈U

(
a+ bs

q

)

and the result follows.

Just like Theorem 3.1.10, this result gives a necessary condition for squareness in Q (θ) but
not a sufficient one. But given a set U of (a, b) pairs and a set Q of first degree prime ideals
of Z [θ] that satisfy both (3.5) and Theorem 3.6, it follows [5, page 70] that the product of
all the elements a+ bθ corresponding to (a, b) pairs in U is very likely to be a perfect square
in Q (θ). As in the analogous test for square in Z , increasing the number of ideals in Q also
increases the likelihood of identifying squares correctly.

In further discussions a set Q of first degree prime ideals of Z [θ] satisfying the hypothesis of
Theorem 3.2.1 is referred to as a quadratic character base, and the corresponding maps χq

are called quadratic characters.

3.3 Summary of Finding Squares in Z [θ]

To pull together the material that has been developed so far, a primary goal of the GNFS is
to find a set U of pairs of integers (a, b) such that (2.1) holds. This is done by first selecting
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an algebraic factor base I consisting of a finite number of first degree prime ideals of Z [θ].
A quadratic character base Q of first degree prime ideals whose corresponding (s, q) pairs
satisfy the hypothesis of Theorem 3.2.1 is also chosen.

Next, (a, b) pairs are found for which the principal ideals 〈a+bθ〉 factor completely into ideals
in I , using a sieving procedure detailed in §3.7. When the number of (a, b) pairs exceeds the
number of ideals in the algebraic factor base and the quadratic character base, linear algebra
may be used to find a subset U of those pairs that satisfy (3.5) for all pi ∈ I and (3.6) for all
q ∈ Q. These latter two conditions ensure that (2.1) holds and hence a square in Z [θ] can
be found by Note 2.4.1.

3.4 The Rational Factor Base and Sieving

Besides finding a perfect square in Z [θ], the GNFS algorithm simultaneously requires a square
in Z be found. Just as a sieving procedure was naturally constructed in §1.3 because of the
special form of the polynomial f(ri) = r2

i − n, a sieve can be used to find pairs of integers
(a, b) with a + bm smooth over a “rational” factor base F because of the special form of
a+ bm. Note the term “rational” is applied to the factor base F to distinguish it from the
algebraic factor base I of first degree prime ideals of Z [θ] defined in §3.1.

The first obstacle to get around involves the fact that there are two free variables a and b
that can be adjusted when looking for a smooth a + bm whereas in the QS there was just
the single ri that was variable in f(ri) = r2

i −n. Most implementations of the GNFS simply
fix a value for b and then scan the a values within a range u < a < u for values of a + bm
that are smooth, just as values of ri are scanned within some range u < ri < u in the QS.
Note that the value of b usually starts at 1 and is incremented until enough (a, b) pairs have
been found with a+ bm smooth in order to facilitate the linear algebra step for producing
squares in Z [θ] and Z .

To see how a sieving procedure can be used, let p be a fixed prime in the rational factor base
F and b a fixed, positive integer. Then for any a ∈ Z the prime p divides a+ bm if and only
if a + bm ≡ 0 (mod p). This implies that a ≡ −bm (mod p) and hence a must be of the
form a = −bm + kp for some k ∈ Z . This observation gives a clean representation for the
possible (a, b) pairs that have a+ bm divisible by p for a fixed prime p and positive integer
b.

Sieving over F in the GNFS then begins with a “sieve array” of computer memory with a
single position allocated for each −u < a < u. For a fixed value of b, each position in the
sieve array is initialized with the appropriate value of a+bm for that position. For each prime
p ∈ F , one computes the finite set of values a = −bm+ kp for k ∈ Z with −u < a < u, and
for each such a divides the prime p out of the number stored in the position corresponding
to a in the sieve array. After this has been performed for all primes in F , the sieve array is
scanned for values of 1. Any such position in the sieve array yields a value for a for which
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a + bm is smooth over F . This procedure is then continued for the next value of b until
enough pairs (a, b) have been found with a+ bm smooth to allow for the linear algebra step.

3.5 Speeding Up The Sieve

The sieve outlined in §3.4 is a reasonably fast procedure because it greatly reduces the
number of divisions that must be performed. Specifically, instead of blindly dividing values
of a + bm by every prime in F , this sieving procedure will only divide by a prime p when
it is guaranteed that a + bm is divisible by p. It still often happens that a + bm is not
smooth over F , though, and when that is the case the divisions represent wasted time. A
clever rearrangement of the sieving procedure keeps the number of time-consuming divisions
to a minimum by effectively replacing the common division operations with faster additions.
Instead of using division to facilitate the smoothness test over F , additions will be used to
rule out most a+ bm values that are not smooth, and trial division will be performed only
on values which are almost certain to be smooth. Note that trial division is still used in
order to guarantee that an a+ bm really is smooth over F .

This basic idea leads to storing approximations to ln(a+bm) in the sieve array instead of the
actual value a+ bm. From the elementary theory of logarithms, dividing a+ bm by a prime
p is equivalent to subtracting ln(p) from ln(a + bm). Thus, for a fixed b and prime p, one
subtracts ln(p) from the array location for a = −bm+ kp for k ∈ Z with −u < a < u. After
processing all primes in F for a fixed b, the sieve array is then scanned for values ≤ 0 = ln(1)
instead of 1. Such a position yields a value for a with the value a+ bm very “likely” to be
smooth. Smoothness is then tested on such a+ bm by performing trial division over F . The
term “likely” is used because in some cases, due to the round-off errors in approximating
logarithms, some a + bm values will turn out to not be smooth over F . These occurrences
are infrequent in practice, and in any event are negligible compared to the savings in time
brought about by not performing divisions on a large number of a+ bm values.

3.6 Implementation Techniques For Speeding Up The

Sieve

When actually implementing the sieving technique described in §3.5, there are a few im-
provements which lead to performance gain in practice, without dramatically altering the
basic method.

The most common adjustment made is to initialize the sieve array with − ln(a+bm) instead
of ln(a+ bm), and the values of ln(p) are added to the sieve array positions instead of being
subtracted. When scanning the sieve array for a+ bm values that are probably smooth, one
can then perform a non-negativity test on the sieve array positions to determine the values
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that will be further tested with trial division. On many architectures this operation is faster
than determining if a sieve array position is less than or equal to zero as is required in §3.5.
Furthermore, it is usually the case that the approximations to ln(a + bm) can fit within a
single byte (8 bits) of computer memory, and so the non-negativity test can be done four
positions at a time if the architecture has 32 bit words, 8 positions at a time if there are 64
bit words, and so on. This can lead to a slight performance gain.

Another practical improvement comes from the fact that in most cases where GNFS is
applied, the integer m is significantly larger than a and b. As such, m is the dominant
component of ln(a+ bm), so instead of computing ln(a+ bm) for every (a, b) pair, one can
simply compute ln(bm) for a fixed b and initialize the sieve array to − ln(bm). This saves the
time of computing a large number of logarithms, but should be used with discretion since it
further adds to the round-off error already present in the approximations to the logarithms.
The consequences of the latter are that some smooth a + bm values may be missed, and
conversely more non-smooth a + bm values may be trial-divided than would ordinarily be
the case.

While on the topic of the errors in using approximations − ln(bm), another inaccuracy is
introduced by using logarithms when a + bm values exist that are divisible by powers of
primes p in F . Specifically, if a+ bm is divisible by pe with p ∈ F and e > 1, then e · ln(p)
should be added to the sieve array position for that (a, b) pair, not just ln(p). Not doing
this can cause the sieve array position for this (a, b) pair to “come up short” and be deemed
unlikely to be smooth, even if it actually is. Thus a+ bm values which are not square-free
could be missed by this procedure.

In an attempt to account for these inaccuracies that arise when using logarithms and not
sieving with prime powers, most implementations of GNFS initialize the sieve array with
− ln(bm) + B instead of − ln(bm) for some “fudge factor” B. The purpose of the constant
B is to decrease both the number of smooth a+ bm values that are missed and the number
of non-smooth a + bm values that are trial divided. Selecting a good value for B is very
implementation and situation specific and hence requires some degree of experimentation at
the initial stages of a factorization attempt with GNFS.

3.7 Sieving with the Algebraic Factor Base

Sieving with the algebraic factor base I proceeds in exactly the same manner as outlined
in §3.4 because of the convenient representation of first degree prime ideals of Z [θ] as pairs
of integers (r, p) according to Theorem 3.1.7. Recall from the proof of Theorem 3.1.9 that
a first degree prime ideal p represented by the pair (r, p) divides 〈a + bθ〉 if and only if p
divides N(a+ bθ), which occurs if and only if a ≡ −br (mod p). Thus, for a fixed b and first
degree prime ideal p ∈ I represented by the pair (r, p), it follows that the (a, b) pairs with
〈a+ bθ〉 divisible by p must have a of the form a = −br + kp for some k ∈ Z .



Matthew E. Briggs Chapter 3. The General Number Field Sieve Algorithm 26

These observations lead to the same sieving procedure in §3.4, with some minor modifications.
First, each sieve array position is initialized with the value for N(a+ bθ) instead of a+ bm,
since the norm is used to test for smoothness of a+ bθ. Secondly, when logarithms are used
as in §3.5, no single initializer can be used like ln(−bm) was because of the high degree of
variability [19, pages 26–28] of N(a+ bθ) for different values of a. The immediate alternative
is computing ln(N(a+bθ)) for each sieve array position, which can waste a great deal of time
on (a, b) pairs for which a+ bθ is not smooth. By using a “fudge factor” similar to B in §3.6,
though, one can avoid explicitly computing ln(N(a + bθ)) when a + bθ is not smooth [19,
pages 26–28].

3.8 An Implementation Note

As a practical matter, since the elements of the algebraic factor base and quadratic character
base can be stored as integer pairs by Theorem 3.1.7, the rational factor base can be stored in
a similar manner as pairs (m (mod p), p). This is possible since for a fixed b, the values for of
a for which a+bm is divisible by a prime p are of the form a = −bm+kp for k ∈ Z from §3.4,
just as the values of a for which 〈a+bθ〉 is divisible by the first degree prime ideal represented
by the pair (r, p) are of the form a = −br+kp for k ∈ Z from §3.7. The importance of this is
that the same basic sieving code in an implementation of the GNFS can be used both with
the rational factor base and the algebraic factor base since the representation and treatment
of the elements are the same.



Chapter 4

Filling in the Details

In this section, we will attempt to explain some of the issues not addressed by the GNFS
algorithm detailed in Chapter 3. This includes finding suitable choices for the degree d of
the polynomial f(x), the polynomial f(x) itself, and an integer m with f(m) ≡ 0 (mod n),
all addressed in §4.1. Computing the algebraic factor base and the quadratic character base
is discussed in §4.2. The linear algebra step is explained in §4.3, §4.4, and §4.5.

One of the more difficult problems not addressed by the basic GNFS algorithm is computing
the value of φ(β) = x ∈ Z /nZ for the β ∈ Z [θ] of Note 2.4.1, given that only the value
δ = β2 ∈ Z [θ] is initially known. This at first seems like a straightforward task since δ may
be considered as a polynomial δ(θ) in θ of degree less than d, and similarly for β. Computing
β is then a matter of applying any one of a number of techniques for factoring polynomials,
specifically factoring the polynomial x2 − δ(x). Recalling that the natural homomorphism
φ : Z [θ] → Z /nZ is defined by φ(θ) = m (mod n), it follows that x can be found by
substituting m for θ in β(θ) and reducing modulo n.

The difficulty that prevents any of the standard, straightforward approaches from being
feasible is the size of the coefficients of the polynomial δ(θ). Specifically, δ is computed as
the product of the a+ bθ values corresponding to the (a, b) pairs found in the linear algebra
step of the algorithm. In the cases where the GNFS algorithm is applied, factor bases with
hundreds of thousands of elements are used, with the consequence being that δ could be the
product of tens of thousands of a+ bθ values. This leads to obvious coefficient explosion of
δ(θ) and makes doing even the simplest arithmetical operations on δ intractable.

One way around the problem of computing β in Z [θ] is to work in related fields where the
computations are feasible. As will be seen in §4.6, finite fields F pd with pd elements corre-
sponding to Q (θ) can be introduced and β computed in these restricted domains. Through
a clever use of the Chinese Remainder Theorem, the resulting φ(β) = x ∈ Z /nZ can be
computed easily and efficiently.

This square root method does introduce two subproblems of its own, namely finding appli-

27
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cable finite fields for Q (θ) and computing square roots in those fields. In §4.6 it will be seen
that finding the required finite fields amounts to testing the polynomial f(x) for irreducibility
modulo p for various primes p, which is a well-known problem whose solution is addressed
in §4.9. Finding square roots in these finite fields also turns out to be easily accomplished
through an adaptation of the Shanks method [16, Section 9.2] for finding square roots of
integers modulo primes, explained in §4.8.

4.1 Finding a Polynomial

The basic GNFS algorithm outlined in Chapter 3 requires a monic, irreducible polynomial
f(x) of degree d with integer coefficients and which has a root m modulo n, where n denotes
the integer to factor. However, no method is given for finding the optimal degree d, the
polynomial f(x), or the root m. The algorithm itself functions the same regardless of the
the selections for these parameters, so it does make sense to leave methods for making these
choices unspecified. In practice a number of techniques are used in the search for “good”
initial parameters, because with careful experimentation and parameter adjustment, the time
required to factor an integer n can be dramatically reduced. Finding choices for d, m and
the polynomial f(x) that lead to many (a, b) pairs for which a+ bm and a+ bθ are smooth
is very much an underdeveloped subject, and is currently one of the most active areas in
GNFS research.

In most implementations of the GNFS, parameter selection begins with a choice for d. Ex-
perimentation and experience [8] have dictated that for factoring an integer with more than
110 digits, the degree d be set to 5. For integers between 50 and 80 digits a value of 3 for d
is used. A degree value of 4 has faired well for integers with between 80 and 110 digits, but
for reasons discussed in §4.6, early implementations of GNFS restricted d to an odd integer.
In this case, d = 5 is usually substituted for d = 4.

Having selected a value for d, the choice of f(x) and m is usually made simultaneously. First
m is chosen with m ≈ n1/d and such that the quotient of n divided by md is exactly one. A
“base-m” expansion [5, Section 3] of n then gives

n = md + ad−1m
d−1 + · · ·+ a1m+ a0

with coefficients 0 ≤ ai < m for 0 ≤ i < d. These coefficients may then be used to construct

f(x) = xd + ad−1x
d−1 + · · ·+ a1x+ a0

which is monic of degree d. By construction f(m) = n ≡ 0 (mod n) so that m is a root
modulo n of f(x). Furthermore, if f(x) is reducible then f(x) = g(x) ·h(x) for non-constant
polynomials g(x) and h(x) and it follows that

n = f(m) = g(m) · h(m)
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is likely [5, page 54] to yield a non-trivial factorization of n. Thus, if f(x) is reducible then
n is likely is to be factored and the whole procedure can terminate, or f(x) is irreducible
and the sieving procedures of the GNFS can commence.

As will be seen in Chapter 6, this basic procedure can be expanded upon to give a range of
different values for m and f(x) to experiment with. In practice, because the high degree of
variability of smoothness associated with (a, b) pairs for different polynomials, it is beneficial
to experiment with different candidate values for f(x) and m before committing to particular
selection of parameters.

4.2 Finding First Degree Prime Ideals of Z [θ]

Finding first degree prime ideals of Z [θ] for the algebraic factor base I and the quadratic
character base Q amounts to finding integer pairs (r, p) with p a prime and r satisfying
f(r) ≡ 0 (mod p) according to Theorem 3.1.7. In other words, finding first degree prime
ideals is equivalent to finding roots of f(x) modulo p for various prime integers p. Fortunately,
this happens to be a well-studied problem which can be solved in a natural and efficient
way [21, Chapter 4, Section 3].

A naive approach to finding roots of the polynomial f(x) (mod p) is to simply “plug in” all
the integers from 0 to p− 1 and determine which values are mapped to 0 by f(x). As with
most brute-force approaches, this works well for a small number of cases, specifically when
p is “small”, but becomes quite impractical for the larger values of p used in the GNFS.

A dramatic improvement over this brute-force method can be made using the following result
in a clever way:

Theorem 4.2.1. When considered as a polynomial in Z /pZ [x], the polynomial xp−x factors
as

xp − x =

p−1∏
i=0

(x− i) (4.1)

Proof. It’s an elementary result [14, Chapter 5, Theorem 5.3] from abstract algebra that the
non-zero elements of a field form a group under multiplication. In this case, that means the
p − 1 non-zero elements of Z /pZ form a finite group of order p − 1 under multiplication.
Then for any 0 < a < p it follows that ap−1 ≡ 1 (mod p) and therefore ap ≡ a (mod p)
for all a with 0 ≤ a < p. Rearranging the last congruence yields ap − a ≡ 0 (mod p) and
therefore a is seen to be a root of xp− x (mod p) for 0 ≤ a < p. This determines p roots for
xp − x (mod p). But xp − x (mod p) has at most p roots and hence has exactly the roots
enumerated. Each root of xp − x determines a monic, linear factor of xp − x (mod p) and
vice versa so (4.1) follows.
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Since finding roots of f(x) (mod p) is equivalent to finding monic, linear factors of f(x)
(mod p), and xp−x (mod p) is the product of all the monic, linear polynomials over Z /pZ

by (4.1), a natural idea is to somehow use xp − x (mod p) in the root finding procedure.
With this in mind, the first realization is that finding roots of f(x) (mod p) is equivalent to
finding roots of g(x) = gcd(f(x), xp−x). The effect of computing g(x) (mod p) is to isolate
the portion of f(x) (mod p) which is the product of monic, linear polynomials over Z /pZ ,
since this is the portion where the roots of f(x) (mod p) are to be found. Another way of
thinking of this computation is as a way to “strip out” of f(x) (mod p) any quadratic or
higher degree polynomials that occur in its canonical factorization into irreducibles, since
such polynomials have nothing to do with the roots of f(x) (mod p).

Now let b be any random integer with 0 ≤ b < p. Since g(x) (mod p) divides xp−x (mod p)
it must be a product of distinct, monic, linear polynomials, and therefore so is g(x − b)
(mod p). If x is a factor of g(x− b) (mod p) then g(−b) ≡ 0 (mod p) so a root −b of g(x)
(mod p) and hence of f(x) (mod p) has been found. On the other hand, if x is not a factor

of g(x− b) (mod p) then

g(x− b) |xp − x = x(xp−1 − 1) = x
(
x(p−1)/2 + 1

)(
x(p−1)/2 − 1

)
and the factors of g(x − b) (mod p) fall between (x(p−1)/2 + 1) (mod p) and (x(p−1)/2 − 1)
(mod p). If not all of the factors of g(x − b) (mod p) divide into either of these latter

polynomials, i.e. if x(p−1)/2 6≡ ±1 (mod g(x − b)), then g(x − b) (mod p) can be split non-
trivially into the polynomials g1(x) = gcd(g(x − b), x(p−1)/2 + 1) and g2(x) = gcd(g(x −
b), x(p−1)/2 − 1), with the degree of each polynomial strictly less than the degree of g(x)
(mod p).

If gi(x) (mod p) is a monic polynomial then a root of g(x) (mod p) has been found. Other-
wise, the same procedure outlined above is applied to each gi(x) (mod p) to split them into
lesser degree polynomials. The algorithm continues on in this manner until it terminates,
having found all the roots of f(x) (mod p). This procedure is guaranteed to terminate since
polynomials are produced at each stage with degrees strictly less than the degrees of the
polynomials of the previous stage.

Note 4.2.1. In the event that x(p−1)/2 ≡ ±1 (mod g(x−b)), other values for b are substituted
until this condition no longer holds. Also note that a root r of g(x− b) (mod p) gives rise to
the root r − b of g(x) (mod p), and that r itself is not a root of g(x) (mod p) unless b = 0.

4.3 Matrices and Dependencies

In the QS detailed in §1.3, each value of f(ri) = r2
i − n that is smooth over the factor base

F is equated with a binary vector determined by the parity of the exponents of the primes
p ∈ F occurring in the factorization of f(ri) = r2

i − n. Binary vectors e(a,b) for the (a, b)
pairs occurring in the GNFS for which a+ bm and a+ bθ are smooth over the rational and
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algebraic factor bases, respectively, are determined [5, pages 69–70] from the factorizations
of a+ bm into prime integers and a+ bθ into first degree prime ideals of Z [θ]. Each binary
vector e(a,b) is also augmented with information relating a particular a+ bθ to the quadratic
character base, detailed in §3.2, that will ensure a product of a+bθ values that is a square in
O. If there are k primes in the rational factor base, l first degree prime ideals of Z [θ] in the
algebraic factor base, and m first degree prime ideals in the quadratic character base, then
each e(a,b) will be comprised of 1 + k + l +m binary bits, determined by the sign of a+ bm
and the respective bases. When these binary vectors are grouped together as columns in a
matrix B, the binary vector resulting from the addition of the two columns for pairs (a, b)
and (c, d) represents (a+ bm) · (c+ dm) and 〈a+ bθ〉 · 〈c+ dθ〉 factored over the rational and
algebraic factor bases, respectively, and the quadratic characters for (a+ bθ) · (c+ dθ). The
goal of §4.4 is to find a non-trivial dependency among the columns of the matrix B, which
yields a product of different a+ bm, 〈a+ bθ〉, and a+ bθ values that gives a square in Z and
Z [θ] by Theorem 3.1.10 and Theorem 3.2.1.

The first bit of e(a,b) is 0 if a+ bm is positive and 1 if it is negative, in which case addition
modulo 2 of binary vectors e(a,b) and e(c,d) correctly reflects the sign of (a+ bm) · (c+ dm).
The next k bits of e(a,b) are determined by the exponents modulo 2 of every prime in the
rational factor base F , when a+ bm is factored over F . Similarly, the next l bits of e(a,b) are
determined by the exponents modulo 2 of the primes p in first degree prime ideal pairs (r, p)
in the algebraic factor base when N(a+ bθ) is factored over these primes.

Note that if p divides N(a + bθ) then there is exactly one (r, p) pair in the algebraic factor
base for which a ≡ −br (mod p), and that is the (r, p) which is deemed “responsible” for the
exponent of the prime p occurring in the factorization of N(a+ bθ). It’s clear that addition
modulo 2 of binary vectors e(a,b) and e(c,d) corresponds to the binary vector represented by
(a + bm) · (c + dm) and 〈a + bθ〉 · 〈c + dθ〉 since the latter two multiplications essentially
involve addition of exponents.

The final l bits of the vector e(a,b) are determined by each (s, q) pair in the quadratic char-
acter base. For a fixed (s, q) pair the corresponding bit in e(a,b) is set to 0 if the Legendre

symbol
(
a+bs
q

)
has value 1 and is set to 1 otherwise. This last representation preserves the

multiplicative nature of the Legendre symbol in the exact same way the sign of a + bm is
preserved during multiplication by the first bit of e(a,b).

A non-trivial dependence among the column vectors of B represents a set U of (a, b) pairs
for which the product of the corresponding a + bm values is a square in Z and for which
(3.5) and (3.6) hold. Thus a square has also been produced in Z [θ] by §3.2 and Note 2.4.1.
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4.4 The Lanczos Algorithm

Given an n × n matrix A and a column vector y, a standard problem in linear algebra is
to find another column vector x such that Ax = y. Gaussian elimination is a simple and
straightforward method for addressing this problem, but presents difficulties in run-time
and storage requirements when n is large. If A possesses the additional properties of being
symmetric, positive-definite, and sparse, then the Lanczos method [23] can be employed
with dramatic results. The Lanczos algorithm is an iterative method, developed within the
context of numerical analysis, for solving the problem of finding the eigensystem of a matrix
over R . This method is easily adapted to solving Ax = y, and with a little bit of effort can
be made to work over the field F 2 of two elements.

To facilitate the exposition, instead of writing the matrix A with coefficients over the field
F , the self-adjoint linear operator T : F n → F n associated with A will be used. Note that T
is self-adjoint since A is assumed to be symmetric. The problem will then be to find a vector
x ∈ F n such that T (x) = y for a given vector y ∈ F n. In the rest of this exposition the inner
product and adjoint operator notation will follow [11, Chapter 6].

In order to motivate the use of a particular subspace in the Lanczos method, recall that if
the vector y occurs in the span of an orthogonal set, then a canonical representation for y
in terms of the vectors of that set is available:

Theorem 4.4.1. If S = {x0, x1, . . . , xn−1} is an orthogonal set and y ∈ span(S), then

y =
〈y, x0〉
〈x0, x0〉

xo +
〈y, x1〉
〈x1, x1〉

x1 + · · · + 〈y, xn−1〉
〈xn−1, xn−1〉

xn−1

Proof. Since y ∈ span(S) it follows that y = a0x0 + a1x1 + · · ·+ an−1xn−1 with ai ∈ F . Then

〈y, xi〉 = 〈a0x0 + · · ·+ aixi + · · ·+ an−1xn−1, xi〉
= a0 〈x0, xi〉+ · · ·+ ai 〈xi, xi〉 + · · ·+ an−1 〈xn−1, xi〉
= ai 〈xi, xi〉

by the orthogonality of S. Rewriting this equality as

ai =
〈y, xi〉
〈xi, xi〉

gives the result.

At the heart of the Lanczos algorithm is the subspace W = span({y, T (y), T 2(y), T 3(y), . . .}).
In linear algebra circles this is known as the T -cyclic subspace generated by y, while in the
realm of numerical analysis it is called the Krylov subspace generated by y. The latter term
will be used in this exposition.
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Now if a basis W ′ = {w0, w1, . . . , wm−1} for W exists with the property that 〈wi, T (wj)〉 = 0
for i 6= j, a condition similar to orthogonality, then a canonical representation for a vector
corresponding to y can be found, relative to the elements in W ′, similar to the result given
by Theorem 4.4.1. In this case the vector x produced by the representation will not be equal
to y but will rather have T (x) = y.

Theorem 4.4.2. If W ′ = {w0, w1, . . . , wm−1} is a basis for the Krylov subspace W generated
by y such that 〈wi, T (wj)〉 = 0 for i 6= j and 〈wi, T (wi)〉 6= 0 for all 0 ≤ i < m, then the
vector

x =
〈w0, y〉

〈w0, T (w0)〉
w0 +

〈w1, y〉
〈w1, T (w1)〉

w1 + · · · + 〈wm−1, y〉
〈wm−1, T (wm−1)〉wm−1 (4.2)

satisfies T (x) = y.

Proof. First we prove that 〈w, T (x)− y〉 = 0 for all w ∈W . Then

〈wj, T (x)〉 =

〈
wj, T

(
〈w0, y〉

〈w0, T (w0)〉
w0 + · · ·+ 〈wm−1, y〉

〈wm−1, T (wm−1)〉wm−1

)〉
=

〈w0, y〉
〈w0, T (w0)〉

〈wj, T (w0)〉+ · · ·+ 〈wj, y〉
〈wj , T (wj)〉

〈wj, T (wj)〉

+ · · ·+ 〈wm−1, y〉
〈wm−1, T (wm−1)〉

〈wj, T (wm−1)〉

= 〈wj, y〉

for all wj ∈ W ′. Then 〈wj, T (x)〉 = 〈wj, y〉 gives 〈wj, T (x)〉 − 〈wj , y〉 = 0 and hence 0 =
〈wj, T (x)− y〉 for all wj ∈W ′. But since W ′ is a basis for W it follows that 〈w, T (x)− y〉 = 0
for all w ∈W .

Given any wi ∈ W ′ it follows that 〈wi, T (T (x)− y)〉 = 〈T (wi), T (x)− y〉 since T is self-
adjoint. But T (wi) ∈ W since W is T -invariant and 0 = 〈T (wi), T (x)− y〉 since it was just
shown that 〈w, T (x)− y〉 = 0 for any w ∈W . Thus 0 = 〈wi, T (T (x)− y)〉 .

Now since W is T -invariant and x ∈W and y ∈W , it follows that T (x)− y ∈W and hence
T (x)− y = c0w0 + · · · cm−1wm−1 for some ci ∈ F . Then given any wi ∈W ′

0 = 〈wi, T (T (x)− y)〉 = 〈wi, T (c0w0 + · · · + cm−1wm−1)〉
= c0 〈wi, T (w0)〉+ · · ·+ ci 〈wi, T (wi)〉+ · · · + cm−1 〈wi, T (wm−1)〉
= ci 〈wi, T (wi)〉

and hence ci = 0 since 〈wi, T (wi)〉 6= 0 by the choice of W ′. But i was arbitrary so that
ci = 0 for all i with 0 ≤ i < m, and hence T (x)− y = 0 and T (x) = y.

As can be seen, the coefficients for the vector x occurring in Theorem 4.4.2 are almost exactly
the same as the coefficients occurring in Theorem 4.4.1, except they are adjusted so that the
vector x satisfies T (x) = y instead of x = y.



Matthew E. Briggs Chapter 4. Filling in the Details 34

This observation leads into the next obvious question, which is exactly how to determine the
set W ′ of basis elements for the Krylov subspace W with the constraint that 〈wj , T (wi)〉 = 0
for i 6= j. It turns out that this is entirely analogous to the Gram-Schmidt procedure [11,
Theorem 6.4] for turning a set of linearly independent vectors into an orthogonal set of
(independent) vectors. As will be seen, only slight modification of the coefficients occurring
in the Gram-Schmidt process will be needed to produce a basis W ′ with the aforementioned
constraints. But first recall the Gram-Schmidt procedure:

Theorem 4.4.3. Given a set of linearly independent vectors S = {y0, y1, · · · , ym−1}, con-
struct the set S ′ = {x0, x1, . . . , xm−1} defined by x0 = y0 and

xk = yk −
〈yk, x0〉
〈x0, x0〉

x0 − · · · −
〈yk, xk−1〉
〈xk−1, xk−1〉

xk−1

for 0 < k < m. Then S ′ is an orthogonal set and span(S) = span(S′).

Proof. Let Sl = {y0, y1, . . . , yl−1} and S ′l = {x0, x1, . . . xl−1} for 0 < l ≤ m. Show S ′l is
orthogonal and span(Sl) = span(S ′l) using induction on l. The result will then hold for
l = m.

For l = 1 the result is trivially true, so assume 1 ≤ l < m and the result is true for l.
Constructing S ′l+1 begins with

xl = yl −
〈yl, x0〉
〈x0, x0〉

x0 − · · · −
〈yl, xl−1〉
〈xl−1, xl−1〉

xl−1

First, note that if xl = 0 then yl ∈ span(S ′l) = span(Sl) which contradicts that S is linearly
independent. Hence xl 6= 0. Then for any xj ∈ S ′l :

〈xl, xj〉 =

〈
yl −

〈yl, x0〉
〈x0, x0〉

x0 − · · · −
〈yl, xj〉
〈xj, xj〉

xj − · · · −
〈yl, xl−1〉
〈xl−1, xl−1〉

xl−1, xj

〉
= 〈yl, xj〉 −

〈yl, x0〉
〈x0, x0〉

〈x0, xj〉 − · · · −
〈yl, xj〉
〈xj, xj〉

〈xj, xj〉 − · · · −
〈yl, xl−1〉
〈xl−1, xl−1〉

〈xl−1, xj〉

= 〈yl, xj〉 − 〈yl, xj〉 = 0

and the orthogonality condition on S′l+1 is satisfied. Furthermore xl ∈ span(Sl+1) and hence
span(S ′l+1) ⊆ span(Sl+1). But dim(span(Sl+1)) = dim(span(S ′l+1)) and hence span(Sl+1) =
span(S ′l+1) and the result holds by induction.

Intuitively, one can think of this process as taking a vector yi ∈ S and “orthogonalizing” it
against the existing vectors in S′ which already orthogonal to one another. This new, orthog-
onalized vector, is a linear combination of yi and the existing vectors in S′, the latter being
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linear combinations of previous yi vectors. With a little bit of adjustment, this procedure
can be adapted so as to produce a basis W ′ satisfying the conditions of Theorem 4.4.2.

At a high level, the process begins with the canonical basis {y, T (y), T 2(y), . . . , Tm−1(y)} for
the Krylov subspace W generated by y. The Gram-Schmidt procedure of Theorem 4.4.3 is
then applied to this basis, except with the coefficients adjusted to produce a basis W ′ which
satisfies the hypothesis of Theorem 4.4.2 instead of being orthogonal.

The following result details this sketch and justifies its correctness:

Theorem 4.4.4. Let W = span({y, T (y), T 2(y), . . . , Tm−1(y)}) be the Krylov subspace gen-
erated by y of dimension m, and construct the set W ′ = {w0, w1, . . . , wm−1} with w0 = y
and

wi = T (wi−1)− 〈T (w0), T (wi−1)〉
〈T (w0), w0〉

w0 − · · · −
〈T (wi−1), T (wi−1)〉
〈T (wi−1), wi−1〉

wi−1 (4.3)

Then W ′ is a basis for W such that 〈wi, T (wi)〉 6= 0 and 〈wi, T (wj)〉 = 0 if i 6= j.

Proof. First, let W ′
l = {w0, w1, . . . , wl−1} be the set with wi constructed as in (4.3) for

0 ≤ i ≤ l− 1 and assume the condition that 〈wi, T (wj)〉 = 0 for i 6= j. It can then be shown
that any such set must be linearly independent. To see this, assume a0w0+· · ·+al−1wl−1 = 0
for with ai ∈ F for 0 ≤ i ≤ l − 1. Then T (a0w0 + · · · + al−1wl−1) = 0 and hence for any j
with 0 ≤ j ≤ l − 1 it is seen that

0 = 〈wj, 0〉 = 〈wj, T (a0w0 + · · ·+ al−1wl−1)〉 = 〈wj, a0T (w0) + · · ·+ al−1T (wl−1)〉
= a0 〈wj, T (w0)〉 + · · ·+ aj 〈wj, T (wj)〉+ · · ·+ al−1 〈wj, T (wl−1)〉 = aj 〈wj , T (wj)〉

and hence aj = 0 since 〈wj, T (wj)〉 6= 0 and 〈wi, T (wj)〉 = 0 for all i 6= j with 0 ≤ j ≤ l − 1.
But since j was arbitrary it follows that the set W ′

l must be linearly independent.

As in the proof of Gram-Schmidt, induction will be used on subsets of W and W ′. Let
Wl = {y, T (y), . . . , T l−1(y)} and W ′

l = {w0, w1, . . . , wl−1}. The result is trivially true when
l = 1 so assume the result true for 1 ≤ l < m and show it holds for l + 1. First

wl = T (wl−1)−
〈T (w0), T (wl−1)〉
〈T (w0), w0〉

w0 − · · · −
〈T (wl−1), T (wl−1)〉
〈T (wl−1), wl−1〉

wl−1.
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Now for any wj ∈W ′
l

〈T (wj), wl)〉 =

〈
T (wj), T (wl−1)−

〈T (w0), T (wl−1)〉
〈T (w0), w0〉

w0 − · · · −
〈T (wl−1), T (wl−1)〉
〈T (wl−1), wl−1〉

wl−1

〉
= 〈T (wj), T (wl−1)〉 −

〈T (w0), T (wl−1)〉
〈T (w0), w0〉

〈T (wj), w0〉 − · · ·

− 〈T (wj), T (wl−1)〉
〈T (wj), wj〉

〈T (wj), wj〉 − · · · −
〈T (wl−1), T (wl−1)〉
〈T (wl−1), wl−1〉

〈T (wj), wl−1〉

= 〈T (wj), T (wl−1)〉 − 〈T (wj), T (wl−1)〉
= 0

and the condition that 〈wi, T (wj)〉 = 0 when i 6= j holds for W ′
l+1.

The next step is to verify that Wl+1 and W ′
l+1 span the same set. Begin by observing that

for any wi ∈ W ′ that T (wi) ∈ span({w0, w1, . . . , wi+1}). Now show by induction on k that
wk = T k(y) +

∑k−1
i=0 aiwi for ai ∈ F . For k = 1 then

w1 = T (y)− 〈T (w0), T (w0)〉
〈T (w0), w0〉

w0

since w0 = y and this assertion holds. Assuming the result for k, then

wk+1 = T (wk)−
k∑
j=0

bjwj

= T

(
T k(y) +

k−1∑
i=0

aiwi

)
−

k∑
j=0

bjwj

= T k+1(y) +
k−1∑
i=0

aiT (wi)−
k∑
j=0

bjwj

with all ai and bj in the base field F . The induction follows from the beginning observation
about T (wi) ∈ span({w0, w1, . . . , wi+1}) since the middle terms in the final summation are
all in the span of W ′

k+1.

All this boils down to showing that wl = T l(y)+
∑l−1

i=0 aiwi for some ai ∈ F . Now T l(y) ∈Wl+1

and wi ∈ Wl+1 for 0 ≤ i ≤ l − 1 since span(Wl) = span(W ′
l ) by the inductive assumption.

But then wl ∈ Wl+1 and it follows that span(W ′
l+1) ⊆ span(Wl+1). But dim(span(W ′

l+1)) =
dim(span(Wl+1)) so that span(W ′

l+1) = span(Wl+1) and the result is proved by induction.

Note that this procedure differs somewhat from the common Gram-Schmidt, in that the
vector being orthogonalized is not taken directly from the set S but is rather the vector
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generated by the previous step of the algorithm. This alteration does not change the validity
of the procedure, and in actuality makes the procedure somewhat easier because of the
following recurrence relation:

Theorem 4.4.5. The Lanczos vectors W ′ = {w0, w1, . . . , wm−1} in Theorem 4.4.4 may be
computed by the recurrence

wi = T (wi−1)− 〈T (wi−1), T (wi−1)〉
〈T (wi−1), wi−1〉

wi−1 −
〈T (wi−2), T (wi−1)〉
〈T (wi−2), wi−2〉

wi−2

for i ≥ 2.

Proof. Let j be an integer such that j < i− 2. If it can be shown that 〈T (wj), T (wi−1)〉 = 0
for such j then the result follows. It is immediate that

T (wj) = wj+1 +
〈T (w0), T (wj)〉
〈T (w0), w0〉

w0 +
〈T (w1), T (wj)〉
〈T (w1), w1〉

w1 + · · · + 〈T (wj), T (wj)〉
〈T (wj), wj〉

wj

by the form of wj+1 in Theorem 4.4.4. It follows that

〈T (wj), T (wi−1)〉 =

〈
wj+1 +

〈T (w0), T (wj)〉
〈T (w0), w0〉

w0 + · · ·+ 〈T (wj), T (wj)〉
〈T (wj), wj〉

wj, T (wi−1)

〉
= 〈wj+1, T (wi−1)〉 +

〈T (w0), T (wj)〉
〈T (w0), w0〉

〈w0, T (wi−1)〉

+ · · ·+ 〈T (wj), T (wj)〉
〈T (wj), wj〉

〈wj, T (wi−1)〉

= 0

since j < i − 2 implies that j + 1 < i − 1 and the condition that 〈wi, T (wj)〉 6= 0 in the
hypothesis of Theorem 4.4.4.

In summary, the Lanczos algorithm iteratively constructs a basis W ′ for the Krylov subspace
generated by y that satisfies the hypothesis of Theorem 4.4.2. This allows for the easy
computation of a vector x such that T (x) = y. In practice, this Lanczos procedure is ideal
for large, sparse matrices because the initial matrix is only multiplied by intermediate vectors
during each iteration. Among other things, this prevents the performance degradation of
methods such as Gaussian elimination which suffer from fill-in of the sparse matrix as the
method continues to execute.

4.5 Lanczos in Practice

The ideas described in §4.4 describe how the general Lanczos procedure works, in particular
over the field of real numbers R . When this method is adapted to matrices over the field
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Z /2Z , however, other issues must be addressed [23] before a working algorithm can be
developed.

The first problem is that the matrix A in §4.4 is assumed to be symmetric, whereas the
matrix B of §4.3 is not guaranteed to possess this property. This is remedied by letting
A = BTB. Note that if BT represents an injective linear transformation then a non-trivial
vector x which satisfies A·x = 0 serves as a non-trivial solution to B·x = 0 since BT (B·x) = 0
implies that B · x = 0 since BT is assumed one-to-one. If BT is not one-to-one, however,
the problem still remains as to how to find a non-trivial solution to B · x = 0. Fortunately
this problem is addressed by a solution to another problem that crops up when adapting the
Lanczos method for use in GNFS, outlined below.

As described in §4.3, the goal is to find a dependency among the columns of the matrix
B, which amounts to finding a non-trivial vector x such that B · x = 0. Unfortunately the
method of §4.4 will go absolutely nowhere since the vector y of §4.4 is the zero vector in this
case. More specifically, the Krylov subspace generated by the zero vector is the trivial vector
space consisting of only the zero vector, and hence the only vector x that will produced by
the methods in §4.4 is the trivial vector x = 0.

One further problem is that the condition 〈wi, T (wj)〉 = 0 for all i 6= j of Theorem 4.4.4 can
fail with binary vectors.

To alleviate these difficulties, and to take advantage of the binary nature of the matrix
B, in practice the Lanczos method of §4.4 is adapted to a “block” scheme that works with
subspaces of vectors instead of individual vectors. First, the matrix A is formed as A = BTB
as alluded to earlier. Next, a random set of vectors represented as columns in a matrix Y
is produced and the product AY computed such that AY is not the zero matrix. The set
of vectors AY is analogous to y in §4.4. Next, a sequence of subspaces Wi analogous to
the wi vectors in ordinary Lanczos is produced such that there is no vector wi ∈ Wi with
〈wi, T (wj)〉 = 0 for all wj ∈ Wj where i 6= j. This latter condition alleviates the difficulty
with 〈wi, T (wj)〉 = 0 failing. The subspaces Wi are produced with a three-term recurrence
similar to the one in Theorem 4.4.5. After enough subspaces have been produced, a set of
vectors represented by the matrix X can be found using a formula similar to (4.2) such that
AX = AY . In this case A(X − Y ) = 0 and linear combinations of the columns of X − Y
may then be computed which produce solutions to B · x = 0.

In this block method, all sets and subspaces of vectors are taken to have at most N vectors,
where N is the word size of the computer, typically 32 or 64 bits. The native operations of
an architecture, such as exclusive or, can in many cases be used to operate on N vectors at
a time and hence speed up the algorithm in practice.
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4.6 Computing φ(β) When β2 ∈ Z [θ] is Known

Let β ∈ Z [θ] be as in Note 2.4.1 and represented as β = ad−1θd−1 + ad−2θd−2 + · · ·+ a1θ+ a0.
Since the natural homomorphism φ : Z [θ] → Z /nZ maps φ(θ) = m and φ(a) ≡ a (mod n)
for a ∈ Z , let

x = ad−1m
d−1 + ad−2m

d−2 + · · ·+ a1m+ a0 (4.4)

so that x (mod n) produces the difference of squares in Note 2.4.1.

Although it is not practical to compute x directly, x can be computed modulo prime integers p
in an easy and efficient manner using finite fields and the techniques of §4.8. The importance
of this is justified by the following well-known result [24, Theorem 2.18] of number theory:

Theorem 4.6.1. Let p1, p2, . . . , pk be distinct, prime integers and x1, x2, . . . , xk any sequence
of integers. If P =

∏k
i=1 pi, Pi = P/pi, and ai = P−1

i (mod pi), then the integer z =∑k
i=1 aixiPi satisfies the congruences

z ≡ x1 (mod p1)

z ≡ x2 (mod p2)

z ≡ x3 (mod p3)

...

z ≡ xk (mod pk)

simultaneously. Furthermore, z is unique modulo P .

Proof. For each i with 1 ≤ i ≤ k, the integer pi is prime by assumption and hence is relatively
prime to Pi since the latter is a product of primes distinct from pi. This implies that Pi
has a multiplicative inverse ai modulo pi so that aiPi ≡ 1 (mod p). But then aixiPi ≡ xi
(mod pi). Furthermore, if j 6= i it follows that aixiPi ≡ 0 (mod pj) since pj divides Pi. It

follows immediately that z satisfies the system of congruences as claimed.

To show uniqueness modulo P of z, suppose there is an integer y satisfying this same system
of congruences as z. Then z ≡ y (mod pi) for 1 ≤ i ≤ k implies that z− y is divisible by all
such pi. Since each pi is assumed to be prime it follows that the product P of all these primes
must also divide z − y and hence z ≡ y (mod P ) and uniqueness modulo P follows.

Applying Theorem 4.6.1 to the situation with x, it is seen that the system of congruences in
Theorem 4.6.1 is immediately provided by xi = x (mod pi) since x can be computed modulo
primes pi easily. If an estimate is available [7, Section 2.2] for the size of x, then enough
primes may be chosen such that their product P is larger than x. In that case it follows
from the uniqueness of z in Theorem 4.6.1 that x ≡ z (mod P ) and the value of x becomes
evident.
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This strategy does avoid the problem of extracting a square root of a polynomials with
extremely large coefficients, but it still can encounter insurmountable difficulties. Specifi-
cally, each ai in (4.4) is likely to be enormous by the reasons discussed at the beginning of
Chapter 4, so it follows that x itself will be even larger. Even worse is the integer z used
in Theorem 4.6.1 to compute x, which will be several orders of magnitude larger than x.
Fortunately the problems with the sizes of x and z can be avoided by taking advantage of
the fact that x ≡ z (mod P ) and noting that it is only necessary to compute x modulo n.
In fact, these latter two observations allow x to be computed modulo n without ever using
any intermediate steps that produce integers of size larger than n.

Begin by noticing that since Theorem 4.6.1 produces an integer z that is much larger than
x and such that x ≡ z (mod P ), it follows that x may be written as x = z − rP where r is
the integer

r =

⌊
1

2
+
z

P

⌋
.

The integer r can be though of as the nearest integer to the quotient of z divided by P .

Computing x (mod n) is then a matter of computing

x (mod n) = z (mod n)− rP (mod n)

=
k∑
i=1

aixiPi (mod n)− rP (mod n).

Furthermore, r can be found in an efficient manner by noting

z

P
=

∑k
i=1 aixiPi
P

=

∑k
i=1 aixi

P
pi

P
=

k∑
i=1

aixi
pi

and r is computed by rounding the latter expression to the nearest integer.

4.7 Finite Fields and Q (θ)

Through the use of finite fields, one can easily compute the value xi = x (mod pi) for prime
integers pi that is necessary for the techniques of §4.6. Begin with the following result which
gives a general characterization of all finite fields:

Theorem 4.7.1. Finite fields F q with q elements satisfy the following properties:

1. q = pd for some prime integer p.
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2. A finite field with q = pd elements exists for every prime integer p and positive integer
d.

3. The finite field F q is unique.

4. The polynomial xq − x factors as

xq − x = x · (x− α1) · (x− α2) · · · (x− αq−1) (4.5)

in the finite field F q for all αi ∈ F ∗q.

Proof. Let F q be a finite field with q elements. F q can not have characteristic 0 since that
would imply F q is infinite. Hence F q must have characteristic p for some prime p and the
prime subfield of F q must then be Z /pZ [10, Chapter 13, Proposition 1]. Since a field forms
a vector space in a natural way over any subfield with the subfield taken as the field of
scalars [10, page 424], it follows that F q is a finite dimensional vector space with field of
scalars Z /pZ , so that

F q ∼=
d︷ ︸︸ ︷

Z /pZ ⊕ · · · ⊕ Z /pZ

and F q has precisely pd elements.

It’s an elementary result from abstract algebra that the non-zero elements of a field form a
group under multiplication. In this case, that means the q−1 non-zero elements of F ∗q form a
finite group of order q−1 under multiplication. Then for any α ∈ F ∗q it follows that αq−1 = 1
and therefore αq = α for all α ∈ F q. Rearranging the last equation yields αq − α = 0 and
therefore α is seen to be a root of xq−x for all α ∈ F q . This determines q roots of xq−x and
since xq − x has at most q roots it follows that F q consists of exactly the roots of xq − x. It
follows that F q is the splitting field for xq−x. From the existence and uniqueness of splitting
fields [10, Chapter 13, Theorem 25 and Corollary 28] it follows that finite fields exist and
are unique.

Now since the roots of xq−x are determined precisely by the elements α ∈ F q , it follows that
the linear factors of xq−x are determined precisely by linear polynomials (x−α) associated
with each α ∈ F q . Then (4.5) follows immediately.

The next result serves as an analog of Theorem 2.2.2 when a polynomial is available that is
irreducible over Z /pZ instead of Q , and also provides for a convenient representation for a
finite field:

Theorem 4.7.2. Let f(x) be monic polynomial of degree d with integer coefficients which is
irreducible over Z /pZ for some prime integer p. If θp denotes a root of f(x) in the splitting
field for f(x) over Z /pZ then
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1. F p[x]/(f(x)) is the finite field F q with q = pd elements

2. f(x) divides any polynomial g(x) over Z /pZ for which g(θp) ≡ 0 (mod p).

3. Every element of F q may be expressed as Z /pZ -linear combinations of the elements

{1, θp, θ2
p, . . . , θ

d−1
p }

and hence F q ∼= F p(θp) where F p(θp) denotes the ring of all polynomials in θp with
coefficients modulo p.

Proof. The proof of Theorem 2.2.2 applies here with the field Z /pZ substituted for the field
Q . Note that no special properties of Q or any field of characteristic 0 is used in the proof
of Theorem 2.2.2, only the assumption that Q is a field is essential.

For the purposes of the GNFS, the importance of Theorem 4.7.2 is that it provides a natural
correspondence between the finite field with pd elements (for some prime p) and the field
Q (θ) when the polynomial f(x) is irreducible over both Z /pZ and Q . More specifically there
is a natural ring epimorphism τp : Z [θ] → F p(θp) with τp(θ) = θp (mod p) and τp(a) ≡ a
(mod p) for all a ∈ Z , which simply reduces the coefficients of polynomials in Z [θ] modulo
p.

Now if β2 = δ ∈ Z [θ] as in §4.6 then

δp = τp(δ) = τp(β
2) = (τp(β))2 = β2

p

in F p(θp). Thus, a square root in F p(θp) of δ is equivalent to±β in F p(θp), so that in particular
βp can be thought of as β with its coefficients reduced modulo p. But since reducing the
coefficients of β modulo p does not effect the computation of x in (4.4) modulo p, it follows
that x can be computed modulo p by substituting m in for θp in the representation of βp as
a polynomial in θp and reducing modulo p. Thus, values xi = x (mod pi) may be computed
easily assuming that βp may be calculated from δp in F p(θp), which turns the problem into
one of extracting square roots in a finite field efficiently. The latter issue is addressed in §4.8.

It could so happen that for primes pi and pj for which f(x) is irreducible that different square
roots of δ are computed in the fields F pi(θpi) and F pi(θpj). More explicitly, it could be that
βpi is computed in one field and −βpj and the other, both of which are valid square roots
of δ in the respective fields. The consequence of this happening is that xi = x (mod pi)
and xj = −x (mod pj), but the latter is treated as xj = x (mod pj) by the methods of
§4.6. Then z will be computed with z ≡ xj (mod pj) when it should be that z ≡ −xj
(mod pj) and hence z 6≡ x (mod P ) and the method breaks down. To avoid this scenario

when computing square roots of δ in different finite fields, care should be taken that the
square roots are all simultaneously equivalent to either β or −β.

At this point, the assumption that the degree of the defining polynomial f(x) be odd comes
into play:
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Theorem 4.7.3. Let f(x) be a monic, irreducible polynomial of odd degree d with integer
coefficients. Then for any α ∈ Q (θ) it follows that N(−α) = −N(α).

Proof. Using the embeddings σi : Q (θ)→ C from Theorem 3.1.2 it follows that

N(−α) = σ1(−α) · σ2(−α) · · · σd(−α) = (−1)dσ1(α) · σ2(α) · · · σd(α) = −N(α)

since d is odd.

From Theorem 4.7.3 it follows that either β or −β has positive norm, so without loss of
generality assume β does.

One can ensure then that for every finite field F p(θp) in which a square root βp is computed
that βp is equivalent to β and not −β by determining the norm of the element that βp
is equivalent to. If −βp happened to be computed then negating the coefficients in its
representation as a polynomial in F p(θp) will yield the desired βp.

The remaining question then is how to determine the norm of the element that a particular
square root in F p(θp) represents. The answer is that the norm function of N of Definition 3.1.1
has a counterpart Np for the finite field F p(θp) such that N(α) ≡ Np(α) (mod p) for all
α ∈ Z [θ]. This is adequate for the GNFS, because the actual value of the norm is not
important, only its sign.

As in the proof of Theorem 4.7.2, if the polynomial f(x) is irreducible over Z /pZ then f(x)
divides any polynomial g(x), modulo p, which shares a root with f(x). From Theorem 4.7.2
the finite field F q with q = pd elements can be represented as elements of F p(θp) where θp is
a root of f(x) in the splitting field of f(x) over Z /pZ . Then θp ∈ F q implies that θp is a root
of xq−x by Theorem 4.7.1. Hence f(x) divides xq−x and since xq−x factors into distinct,
linear factors by Theorem 4.7.1 it follows that f(x) does as well. Hence f(x) has d distinct
roots in the splitting field of f(x) over Z /pZ . Furthermore, the splitting field F q of xq − x
contains all these roots of f(x). Thus, the embeddings of Theorem 3.1.2 carry over to the
finite F q, in that there are exactly d automorphisms defined on F q , each of which sends θp
to a distinct root of f(x) in F q. This allows for the concept of a norm function in F q to be
defined:

Definition 4.7.1. Let f(x) be a monic polynomial of degree d with integer coefficients that
is irreducible modulo p for some prime integer p. If θp is a root of f(x) in the splitting field
of f(x) over Z /pZ , then the norm of an element α in the finite field F q ∼= F p(θp) for q = pd

is defined to be

Np(α) = σ1(α)σ2(α) · · · σd(α) (4.6)

where the σi are the distinct automorphisms of F q which map θp to the d distinct roots of
f(x) in F q .
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Because of the special structure of the finite field F q , the embeddings σi of Definition 4.7.1
have a natural representation that allows for easy calculation of (4.6). Specifically:

Theorem 4.7.4. The group of automorphisms of the finite field F q where q = pd forms a
cyclic group, generated by the Frobenius automorphism σp, where σp(α) = αp for α ∈ F q.

Proof. First, show that σp is an automorphism of F q . Let α ∈ F q and β ∈ F q. Then

σp(α · β) = (α · β)p = αp · βp = σp(α) · σp(β)

so the multiplicative structure of F q is preserved by σp. Also,

σp(α+ β) = (α+ β)p = αp +

(
p

1

)
αp−1β +

(
p

2

)
αp−2β2

+ · · ·+
(
p

i

)
αp−iβi + · · ·+

(
p

p− 1

)
αβp−1 + βp

= αp + βp = σp(α) + σp(β)

since the binomial coefficients occurring in the middle terms of the expansion of (α + β)p(
p

i

)
=

p!

(p− i)! i!

are a multiples of p and hence equivalent to 0 in F q , since i < p and p−i < p for 1 ≤ i ≤ p−1.

To show that σp is one-to-one, suppose σp(α) = αp = 0. Then αp
d

= 0. But αp
d

= α from

Theorem 4.7.1 and hence αp
d

= 0 implies that α = 0 and σp must be injective. Since σp is
injective and maps a finite set to itself it follows by the pigeon hole principal that σp is onto
and hence an isomorphism.

Since the automorphisms of F q form a group under composition, each σkp is also an auto-

morphism for any integer k. Now σ2
p(α) = σp(σp(α)) = σp(αp) = (αp)p = αp

2
, and similarly

σkp(α) = αp
k

for any integer k. From Theorem 4.7.1 it is known that αp
d

= α for all α ∈ F q,
hence σdp is the identity automorphism of F q. Suppose there is an integer k < d for which

σkp is the identity automorphism. Then αp
k

= α for all α ∈ F q . But this implies that the

polynomial xp
k − x has pd roots in F q , which can’t happen if k < d. Hence σp generates a

group of automorphisms of F q of order d, and since there are only d automorphism of F q , it
follows that the automorphism group of F q is cyclic and generated by σp.

Corollary. The norm of an element α in the finite field F q with q = pd may be computed as

Np(α) = α
pd−1
p−1 .
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Proof. From the main theorem and Definition 4.7.1 it follows that

Np(α) = σ1(α)σ2(α) · · · σd(α) = σp(α)σ2
p(α) · · · σdp(α) = αp · αp2 · · ·αpd

= α1+p+p2+···+pd−1

= α
pd−1
p−1

since every automorphism σi of F q is a power of the Frobenius automorphism σp(α) = αp.

4.8 Computing Square Roots in F pd

The method of Shanks and Tonelli [16, Section 9.2] for finding square roots of integers modulo
primes is immediately applicable to finite fields F q with q = pd elements, for p prime and
d positive. This follows because the basic assumptions and operations of that algorithm
apply to any cyclic group of even order, and the multiplicative group F ∗q of the q−1 nonzero
elements of any finite field with q odd satisfies those requirements.

Given a perfect square δ ∈ F ∗q and a generator γ for F ∗q , there are three basic methods for
finding ν ∈ F ∗q with ν2 = δ. Since F ∗q has a finite number of elements, the brute-force method
proceeds by examining every power of γ in the group F ∗q until the square is found. This could
take as many as (q − 1)/2 steps, which quickly grows unwieldy as the size of q increases.

A second method increases efficiency by narrowing down considerably the possible elements
of F ∗q whose square could be δ. First, the notions of quadratic residues and non-residues are
generalized from the integers to F ∗q :

Definition 4.8.1. Given a finite field F q with q = pd elements and p an odd, prime integer,
an element δ ∈ F ∗q is called a quadratic residue in F ∗q if there is an element ν ∈ F ∗q such that
ν2 = δ and is called a quadratic non-residue in F ∗q otherwise.

A version of Euler’s Criterion then follows cleanly:

Theorem 4.8.1. Let F q be a finite field with q = pd elements where p is an odd, prime
integer. An element δ ∈ F ∗q is a quadratic residue in F ∗q if and only if δ(q−1)/2 = 1 and is a

quadratic non-residue in F ∗q if and only if δ(q−1)/2 = −1

Proof. Let γ ∈ F ∗q be a generator for F ∗q , and suppose δ is a quadratic residue in F ∗q so that
δ = (γk)2 = γ2k for some integer k. Then

δ
(q−1)

2 = γ
2k(q−1)

2 = (γ(q−1))k = 1k = 1

since the order of F ∗q is q − 1.
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If instead δ is a quadratic non-residue in F ∗q then δ = γ2k+1 for some k (δ can’t be an even

power of γ for if it were it would be a quadratic residue in F ∗q). Note that γ(q−1)/2 = −1

since γ(q−1) = 1 and γ has order q − 1. Then

δ
(q−1)

2 = γ
(2k+1)(q−1)

2 = γ
2k(q−1)

2 · γ
(q−1)

2 = (γ(q−1))k · γ
(q−1)

2 = 1 · (−1) = −1

Note that δ(q−1)/2 = ±1 since the order of F ∗q is q− 1 and hence δ(q−1) = 1. This observation
forces the converses of the above two statements.

To begin to improve upon the brute-force method, let δ ∈ F ∗q be a quadratic residue in F ∗q
and factor q − 1 = 2r · s where s is odd (possibly 1) and r > 0 since q is assumed odd. Note
that if ω = δ(s+1)/2 then ω2 = δs · δ and hence δs is a quadratic residue in F ∗q . Thus there
exists ζ ∈ F ∗q such that ζ2 = δs. But then letting ν = ω · ζ−1 it follows that

ν2 = ω2 · ζ−2 = δs · δ · δ−s = δ

and a square root of δ has been produced.

The question then becomes one of finding the element ζ, which turns out to be much easier
than searching all of F ∗q by the following result:

Theorem 4.8.2. Let F q be a finite field with q = pd elements where p is an odd, prime
integer. If q − 1 = 2r · s and δ ∈ F ∗q is a quadratic residue in F ∗q, then the element δs ∈ F ∗q
has order dividing 2r−1 in F ∗q .

Proof. From basic group theory [14, Chapter 1, Theorem 3.4], the order of the element δ ∈ F ∗q
divides any power k of δ for which δk = 1. From the assumption that δ is a quadratic residue
in F ∗q and Theorem 4.8.1 it follows that δ(q−1)/2 = 1. Then

(δs)2r−1

= δ2r−1s = δ
2rs
2 = δ

q−1
2 = 1

and hence the order of δs must divide 2r−1 by the initial comment.

Corollary. If ζ ∈ F ∗q with z2 = δs, then ζ has order dividing 2r.

Proof. Let k denote the order of δs in F ∗q , so that k must divide 2r−1. Then k also denotes
the order of ζ2 so that 1 = (ζ2)k = ζ2k and hence the order of ζ must divide 2k, which in
turn must divide 2r since k divides 2r−1. Thus the order of z divides 2r by transitivity.

Given that every element of the Sylow 2-subgroup S2r of F ∗q has order dividing 2r, and
furthermore that any element of F ∗q having order dividing 2r is also an element of S2r , it
follows that ζ ∈ S2r . The problem of finding a square root of δ then has been reduced from
searching the q − 1 elements of F ∗q to only searching the 2r elements in S2r . In addition, a
very convenient representation for S2r is derived from the following result:
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Theorem 4.8.3. Let F q be a finite field with q = pd elements where p is an odd, prime
integer. If η ∈ F ∗q is a quadratic non-residue in F ∗q then ηs has order 2r. In particular, the
Sylow 2-subgroup S2r of F ∗q is given by

S2r = {1, ns, n2s, n3s, . . . , n(2r−1)s}.

Proof. Let k denote the order of ηs and note η(q−1)/2 = −1 by Theorem 4.8.1 since η is
assumed to be a quadratic non-residue in F ∗q . Then

−1 = η
(q−1)

2 = η
2rs
2 = η2r−1s = (ηs)2r−1

so that (ηs)2r = 1 and therefore k must divide 2r. Now (ηs)2m 6= 1 for 0 ≤ m < r − 1 since
otherwise

(ηs)2m+1

= (ηs)2m+2

= · · · (ηs)2r−1

= 1

and it is known that (ηs)2r−1
= −1. Since k must divide 2r and k 6= 2m for 0 ≤ m < r it

follows that k = 2r as desired.

Since ηs has order 2r it generates a subgroup of F ∗q of order 2r. But there is only one Sylow
2-subgroup S2r of F ∗q so ηs must generate S2r and the result follows.

The method of Shanks and Tonelli improves even further upon this, requiring at most r
steps instead of 2r. The idea is to produce a sequence of elements ωi and λi in F ∗q such that
ω2
i = λiδ, with the order oi+1 of λi+1 strictly less than the order oi of λi and oi dividing

2r−1 for all i in the sequence. If such a sequence could be found then eventually λj = 1 for
some j so ω2

j = a and a square root of δ has been found. Note in the worst case o0 = 2r−1,
o1 = 2r−2, . . . , or−1 = 1 and a total of r steps is required to find the square root, which is
significantly better than the 2r potential steps required when examining the elements of the
Sylow 2-subgroup S2r .

The overall technique then is to produce the sequence of λi’s whose order satisfies the men-
tioned conditions, then to derive the ωi’s from the equation ω2

i = λiδ. Begin by letting
λ0 = δs and ω0 = δ(s+1)/2. The following result then details how to choose the remaining λi:

Theorem 4.8.4. Let ζ be a generator for the Sylow-2 subgroup S2r . If λi has order oi = 2m

then λi+1 = λiζ2r−m has order oi+1 dividing 2m−1 and hence oi+1 < oi.

Proof. Since the order oi of λi is 2m then λ2m

i = 1 and using similar logic from the proof of
Theorem 4.8.3 it follows that λ2m−1

i = −1. Similarly, since ζ generates S2r and hence has
order 2r, it follows that ζ2r−1

= −1. Then

λ2m−1

i+1 = λ2m−1

i z2(r−m)+(m−1)

= λ2m−1

i ζ2r−1

= (−1)(−1) = 1

and hence oi+1 divides 2m−1.
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Note from Theorem 4.8.3 that ζ = ηs may be taken as a generator for S2r , where η is a
quadratic non-residue in F ∗q .

The following result completes the algorithm by describing how to compute the ωi corre-
sponding to λi:

Theorem 4.8.5. If ζ is a generator for the Sylow-2 subgroup S2r , λi has order 2m, and ωi
satisfies ω2

i = λiδ then ωi+1 = ωiζ2r−m−1
satisfies ω2

i+1 = λi+1δ where λi+1 is chosen as in
Theorem 4.8.4.

Proof. From Theorem 4.8.4 it follows that λi+1 is of the form λi+1 = λiζ2r−m . Then

ω2
i+1 = ω2

i · (ζ2r−m−1

)2 = ω2
i · ζ2r−m = λi · δ · ζ2r−m = λ2

i+1δ

and the result holds.

4.9 Irreducibility Testing of Polynomials Modulo p

In order to develop an efficient method for determining if a monic polynomial of degree d
is irreducible over Z /pZ for a prime integer p, we consider some theory about the subfield
structure of the finite field F pd. Understanding this structure will lead immediately to an
understanding of the monic irreducible polynomials over Z /pZ and hence to a method for
testing irreducibility.

Lemma 4.9.1. Let a and b be positive integers such that a divides b. Then the polynomial
xa − 1 divides the polynomial xb − 1.

Proof. Since a and b are positive integers with a dividing b, it follows that b may be written
as b = ak for some integer k ≥ 1. Then

(xa − 1) · (xa(k−1) + xa(k−2) + xa(k−3) + · · · + xa + 1) = xak + xa(k−1) + xa(k−2)

+ · · ·+ x2a + xa − xa(k−1) − xa(k−2) − · · · − x2a − xa − 1 = xak − 1 = xb − 1

so indeed xa − 1 divides xb − 1.

Theorem 4.9.2. Given a prime integer p and a positive integer d, let F pd denote the finite
field containing pd elements. Any subfield of F pd contains pe elements where e is a divisor
of d. Conversely, if e is a divisor of d then there is exactly one subfield of F pd containing pe

elements.

Proof. Suppose E is a subfield of F pd . Then d = [F pd : F p] = [F pd : E][E : F p] and hence E
is a finite dimensional extension of F p and must therefore have pe elements for some positive
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integer e. But this equation also implies that F pd is a finite dimensional extension of E
and hence F pd must contain (pe)k elements for some positive integer k. But F pd contains pd

elements so pd = pek and therefore d is a multiple of e.

Conversely, suppose e divides d. Then applying Lemma 4.9.1 with a = e, b = d, and x = p
it follows that pe − 1 divides pd − 1. Since pe − 1 divides pd − 1 Lemma 4.9.1 can be applied
again with a = pe − 1 and b = pd − 1 to see that xp

e−1 − 1 divides xp
d−1 − 1 and hence

xp
e − x divides xp

d − x. The latter result implies that every root of xp
e − x is also a root

of xp
d − x and hence the splitting field for the latter polynomial contains as a subfield the

splitting field for the former. By Theorem 4.7.1 the splitting field for xp
d − x is F pd and the

splitting field for xp
e − x is F pe and hence F pd has F pe as a subfield, the latter containing pe

elements. Now if F pd contained more than one subfield with pe elements then there would
be more than pe elements in F pd that satisfy the polynomial xp

e−x. The latter is impossible
so that F pd is seen to have exactly one subfield with pe elements.

The following result about irreducibles justifies the concern about the subfield structure of
F pd:

Theorem 4.9.3. Let f(x) be a monic, irreducible polynomial of degree e over Z /pZ . Then
f(x) divides xp

d − x if and only if e divides d.

Proof. Suppose f(x) divides xp
d − x. If α is a root of f(x) in the splitting field of f(x) over

Z /pZ then f(α) = 0 implies that αp
d −α = 0 and hence α ∈ F pd . Thus F p(α) is a subfield of

F pd which contains pe elements by Theorem 4.7.2 since f(x) is irreducible over Z /pZ . From
Theorem 4.9.2 it follows that e must divide d.

Conversely, suppose e divides d. Then by Theorem 4.9.2 F pd contains a subfield with pe

elements. But F p(α) is just such a field by Theorem 4.7.2. Then α ∈ F pd so that αp
d −α = 0

and hence α is a root of xp
d − x. But f(x) divides any polynomial that has α as a root by

Theorem 4.7.2, so in particular f(x) must divide xp
d − x.

One final result encapsulates all the information needed about irreducibles to develop a good
test for irreducibility:

Theorem 4.9.4. The polynomial xp
d − x is the product of all distinct, monic, irreducible

polynomials over Z /pZ whose degree divides d.

Proof. From Theorem 4.9.3 it follows that when xp
d−x is factored into irreducibles over Z /pZ

that each of these irreducibles has degree dividing d, and every irreducible of such degree
occurs as a factor of xp

d − x. Now the derivative of xp
d − x is −1 modulo p, so that xp

d − x
and its derivative share no roots. Hence xp

d − x is separable [14, page 261] and therefore
none of the irreducibles in its unique factorization into irreducibles are repeated.
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A procedure for determining irreducibility [6, Algorithm 1.3.14] is summarized in the follow-
ing result:

Theorem 4.9.5. A monic polynomial f(x) over Z /pZ of degree d is irreducible if and only
if f(x) divides xp

d − x and gcd(xd/pi − x, f(x)) = 1 for all primes pi dividing d.

Proof. Suppose f(x) is irreducible. Then f(x) must divide xp
d − x by Theorem 4.9.3. Since

f(x) is irreducible it has no non-trivial factors and the gcd condition follows.

Conversely, assume gcd(xd/pi − x, f(x)) = 1 for all primes pi dividing d. Suppose that f(x)
is reducible. Then f(x) has some non-trivial, irreducible factor g(x) of degree e such that
0 < e < d. Since g(x) divides f(x) and f(x) divides xp

d − x it follows that g(x) must
divide xp

d − x and hence e divides d by Theorem 4.9.3. If d = pa1
1 · · · pakk denotes the unique

factorization of d into distinct primes pi, then e = pb11 · · · pbkk and 0 ≤ bi ≤ ai for 1 ≤ i ≤ k.
But there exists at least one bj < aj since e < d and hence e divides pa1

1 · · · paj−1 · · · pakk = d/pi.

But then g(x) must divide xp
d/pi −x by Theorem 4.9.3 and since g(x) divides f(x) it follows

that gcd(xd/pi − x, f(x)) 6= 1, a contradiction. Thus, f(x) has no non-trivial factors and is
hence irreducible.



Chapter 5

An Extended Example

In order to concretize the concepts of the GNFS outlined in the earlier sections, it is helpful
to see an example that illustrates the different stages of the algorithm. This goal will
be achieved by working through the factorization of the integer 45, 113 using the GNFS.
Although numbers of such magnitude would never be factored with GNFS in practice, this
particular integer serves as a useful example since the sizes of the factor bases can be kept
small and intermediate computations can be detailed without becoming unwieldy.

The choice of d, m, and the polynomial f(x) for 45, 113 are detailed in §5.1. A word about
a representation for the rational factor base is given in §5.2, while the algebraic factor base,
quadratic character base and finding roots of f(x) modulo p for various primes p is detailed
in §5.3 and §5.4. Some examples of the sieving process are given in §5.5, as well as the (a, b)
pairs that produce smooth values for a+ bm and a+ bθ. Having enough of the latter (a, b)
pairs leads to the linear algebra step discussed in §5.6 and §5.7.

Since the integer 45, 113 is relatively small, an explicit square root in Z [θ] is computed in
§5.8, although this is never done in practice. It is useful in this example, though, to check
the validity of the techniques in §5.9, §5.10, and §5.11.

The final difference of squares produced for this example is detailed in §5.12 and a non-trivial
factorization of 45, 113 is revealed.

5.1 Selecting the Polynomial

The first parameter to decide upon for factoring n = 45, 113 is the degree d of the polynomial
f(x) that will drive the rest of the algorithm. From the remarks made in §4.1 and the
requirement that d be odd it is decided that d = 3 will be used for this particular n.
Next, m should be chosen with m ≈ n1/d, which in this case indicates m should be around
45, 1131/3 ≈ 35. Although m = 35 would yield a monic polynomial following the base-m

51
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method of §4.1, the value m = 31 serves equally well and is used in this example. The
base-m expansion of n:

45, 113 = 313 + 15 · 312 + 29 · 31 + 8

yields the polynomial f(x) = x3 + 15x2 + 29x + 8 for which f(m) ≡ 0 (mod n) since f(x)
was constructed with f(31) = 45, 113.

The only concern now is that f(x) be irreducible over Q , which amounts to verifying that
f(x) does not have any roots over Q since f(x) is a cubic. The only possible roots are ±1,
±2, ±4, and ±8. The positive portions of these possibilities can be immediately dispensed
with so only four possibilities for roots need be considered. Now f(−1) = −7, f(−2) = 2,
f(−4) = 68, and f(−8) = 224 so that f(x) has no rational roots and hence is irreducible
over Q .

5.2 The Rational Factor Base

The rational factor base consists of prime integers 2, 3, 5, 7, and so on up to a particular
bound which is usually determined by experimenting with the smoothness of a + bm for
different (a, b) pairs. In this example, all the primes up to 29 are used.

In practice, the rational factor base is stored as pairs (m (mod p), p) for the reasons discussed
in §3.8. The only work involved then is computing m modulo various prime integers p up to
the desired bound. Table 5.1 details the rational factor base used in this example.

Table 5.1: Rational Factor Base For n = 45, 113

(m (mod p), p) (m (mod p), p) (m (mod p), p)
(1, 2) (9, 11) (8, 23)
(1, 3) (5, 13) (2, 29)
(1, 5) (14, 17)
(3, 7) (12, 19)

5.3 The Algebraic Factor Base

From §3.1 the algebraic factor base consists of first degree prime ideals of Z [θ], which are
represented as pairs (r, p) where p is a prime integer and r is a root of f(x) = x3+15x2+29x+8
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considered as a polynomial with coefficients in Z /pZ . Computing the algebraic factor base
then amounts to finding roots of f(x) modulo 2, 3, 5, 7 and so on.

Using the methods of §4.2 and the prime 67 as an example, start by computing the polynomial
g(x) = gcd(f(x), x67−x) where g(x) serves to isolate the linear factors of f(x). In this case,
g(x) ≡ f(x) (mod 67) so that f(x) consists of all linear factors and hence must have three
roots over Z /67Z .

Now g(0) ≡ 8 (mod 67) so that 0 is not a root of g(x). Since g(x) divides x67 − x =
x(x33 + 1)(x33 − 1) it follows that g(x) must divide (x33 + 1)(x33 − 1) and in fact

g(x) ≡ gcd(x33 + 1, g(x)) · gcd(x33 − 1, g(x)) ≡ (x2 + 21x + 21) · (x+ 61) (mod 67).
(5.1)

Hence, 6 ≡ −61 (mod 67) is a root of g(x) in Z /67Z and the pair (6, 67) represents a first
degree prime ideal of Z [θ] that may be added to the algebraic factor base.

The same process can be used to determine the linear factors of g1(x) = x2 + 21x+ 21. Now
g1(−1) ≡ 1 (mod 67) so that −1 is not a root of g1(x) and hence g1(x − 1) must divide
(x33 + 1)(x33 − 1) for the same reason g(x) does. However, gcd(x33 − 1, g1(x − 1)) ≡ 1
(mod 67) so that g1(x− 1) can’t be immediately split into non-trivial factors as was done

with g(x) in (5.1).

Continuing on with g1(−2) ≡ 50 (mod 67) it is seen that −2 is not a root of g1(x) and hence
g1(x− 2) must then divide (x33 + 1)(x33 − 1). This time luck prevails and

g1(x− 2) ≡ gcd(x33 + 1, g1(x− 2)) · gcd(x33 − 1, g1(x− 2))

≡ (x+ 21) · (x+ 63) (mod 67).

The latter yields 46 ≡ −21 (mod 67) and 4 ≡ −63 (mod 67) as roots of g1(x− 2), so that
44 and 2 are roots of g1(x) over Z /67Z and hence the pairs (2, 67) and (44, 67) represent first
degree prime ideals of Z [θ] which may be used in the algebraic factor base.

Root finding with primes other than 67 is performed in the exact same manner to determine
the rest of the algebraic factor base shown in Table 5.2.

5.4 The Quadratic Character Base

Since the quadratic character base of §3.2 is simply a small set of first degree prime ideals of
Z [θ] that don’t occur in the algebraic factor base, in practice one begins searching for roots
of f(x) modulo primes q with q strictly greater than the largest prime p occurring in a (r, p)
pair in the algebraic factor base. The worked example of §5.3 serves as ample illustration of
how the quadratic character base seen in Table 5.3 is computed.
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Table 5.2: Algebraic Factor Base For n = 45, 113

(r, p) pair (r, p) pair (r, p) pair (r, p) pair
(0, 2) (19, 41) (44, 67) (62, 89)
(6, 7) (13, 43) (50, 73) (73, 89)

(13, 17) (1, 53) (23, 79) (28, 97)
(11, 23) (46, 61) (47, 79) (87, 101)
(26, 29) (2, 67) (73, 79) (47, 103)
(18, 31) (6, 67) (28, 89)

Table 5.3: Quadratic Character Base For n = 45, 113

(r, p) pair (r, p) pair (r, p) pair
(4, 107) (80, 107) (99, 109)
(8, 107) (52, 109)

5.5 Sieving

For this example, the sieving interval is chosen such that −1000 < a < 1000 for b starting at
1 and proceeding through 2, 3, 4, and so on until more than 39 (a, b) pairs are found with
a+ bm and a+ bθ smooth. Finding more than 39 pairs will guarantee a linear dependence
among the binary vectors associated with those pairs, which leads to perfect squares in Z
and Z [θ] as explained in §4.3.

A straight forward implementation technique is to have two sieve arrays in memory, one for
a + bm and the other for N(a + bθ), each with 2000 entries for all the possible a values for
a fixed b. Sieving for smooth values of a+ bm proceeds exactly as in §3.5. For instance, the
values of a for which a+bm is divisible by the prime 5 for b = 7 are of the form a = −7m+5k
for k ∈ Z such that −1000 < a < 1000. From Table 5.1 it is seen that m ≡ 1 (mod 5) and
hence a is of the form a = −7 + 5k for k ∈ Z . The positions in the sieve array for a + bm
corresponding to an a value of −997, −992, . . . , −12, −7, −2, 3, 8, 13, . . . , 993, 998 then
have ln(5) added to their value. This procedure is repeated for all the pairs of Table 5.1.
A similar procedure is followed with the (r, p) pairs of Table 5.2 and the sieve array for
N(a+ bθ). Each sieve array is then scanned for positions with positive value in accordance
with §3.6 and for such values a+ bm and N(a+ bθ) are trial divided to test for smoothness.
The whole procedure is then repeated for the next value of b.

After enough sieving, 40 (a, b) pairs are found with a + bm and a + bθ smooth, as seen in
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Table 5.4: (a, b) Pairs Found During Sieving

(a, b) pair (a, b) pair (a, b) pair (a, b) pair (a, b) pair (a, b) pair (a, b) pair
(−73, 1) (−2, 1) (−1, 1) (2, 1) (3, 1) (4, 1) (8, 1)
(13, 1) (14, 1) (15, 1) (32, 1) (56, 1) (61, 1) (104, 1)
(116, 1) (−5, 2) (3, 2) (25, 2) (33, 2) (−8, 3) (2, 3)
(17, 3) (19, 4) (48, 5) (54, 5) (313, 5) (−43, 6) (−8, 7)
(11, 7) (38, 7) (44, 9) (4, 11) (119, 11) (856, 11) (536, 15)
(5, 17) (5, 31) (9, 32) (−202, 43) (24, 55)

Table 5.4.

5.6 Forming the Matrix

To find the set U in Note 2.4.1, first a binary matrix B is constructed as in §4.3, where a
single column of the matrix corresponds to an (a, b) pair found in §5.5 with a+bm and a+bθ
smooth. Since there are 10 primes in the rational factor base, 23 first degree prime ideals
in the algebraic factor base, and 5 first degree prime ideals in the quadratic character base,
each column of the matrix will have 39 entries, or 39 total rows for the matrix (one bit is
added for the sign of a+ bm).

To show explicitly how the matrix is formed, the column entry for the pair (−8, 3) found
in §5.5 will be calculated. The first entry is set to 0 since a + bm = −8 + 3 · 31 = 85 is
positive. The next 10 entries in this column vector are determined from the factorization of
a+ bm = 85 over the rational factor base:

85 = 20 · 30 · 51 · 70 · 110 · 130 · 171 · 190 · 230 · 290

where all the primes in the rational factor base have been shown for clarity. The column
vector for (−8, 3) then has 10 entries formed by taking the above 10 exponent vectors modulo
2:

(0, 0, 1, 0, 0, 0, 1, 0, 0, 0)

Next, the norm of (−8, 3) is computed and factored over the primes occurring in first de-
gree prime ideal pairs in the algebraic factor base. Recalling from (3.4) that N(a + bθ) =
(−b)df(−a/b) it follows that the norm of an element a + bθ with d = 3 and f(x) =
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x3 + 15x2 + 29x+ 8 can be computed as

N(a+ bθ) = (−b)3 ·
(
−a3

b3
+ 15

a2

b2
− 29

a

b
+ 8

)
= a3 − 15a2b+ 29ab2 − 8b3.

The norm of −8 + 3θ is then N(−8 + 3θ) = −83 − 15 · (−8)2 · 3− 29 · 8 · 32 − 8 · 33 = −5696
and −5696 = −1 · 26 · 891 gives the factorization of that norm over the primes p occurring in
the (r, p) pairs of the algebraic factor base.

Note that there can be up to d pairs (r, p) in the algebraic factor base that share the same
prime p, but only one such pair can have a ≡ −br (mod p). Such an (r, p) pair is the one
that will be “responsible” for counting the number of times p divides N(a+ bθ). In the case
for −8+3θ, there are three first degree prime ideals in Table 5.2 that have 89 as the prime in
their pair representation, specifically (28, 89), (62, 89), and (73, 89). But −8 ≡ 81 ≡ −3 · 62
(mod 89) so the first degree prime ideal pair (62, 89) is responsible for the exponent of 89.

Combining this with the first degree prime ideal having pair (0, 2) yields the next 23 bits in
the column vector for (-8, 3):

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

From §3.2 it follows that to compute a quadratic character for −8 + 3θ corresponding to

the first degree prime ideal represented by the pair (s, q) that the Legendre symbol
(
−8+3s
q

)
must be calculated. Using (80, 107) from the quadratic character base as an example yields(

−8 + 3 · 80

107

)
= −1.

In this case, the vector coordinate for (80, 107) is stored as 1 and would have been stored as
0 had the Legendre symbol been 1, according to §4.3.

Performing the same operations for the remainder of the quadratic character base yields the
final 5 bits in the column vector for (−8, 3):

(1, 0, 0, 1, 0).

The complete 39-bit column vector for (−8, 3) then is seen to be

(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0)T

This same procedure is used on the rest of the (a, b) pairs found in §5.5 to produce the 39×40
binary matrix B.
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Table 5.5: (a, b) Pairs Occurring In a Dependency

(a, b) pair (a, b) pair (a, b) pair (a, b) pair (a, b) pair
(−1, 1) (104, 1) (−8, 3) (−43, 6) (856, 11)
(3, 1) (3, 2) (48, 5) (−8, 7)
(13, 1) (25, 2) (54, 5) (11, 7)

5.7 Finding Dependencies

The block Lanczos procedure sketched in §4.5 can be applied to the matrix B constructed
in §5.6 to find a dependency among the binary vectors corresponding to the (a, b) pairs of
Table 5.4. The resulting (a, b) pairs whose binary vectors occur in a dependency are listed
in Table 5.5.

5.8 Computing An Explicit Square Root in Z [θ]

To reemphasize the statements at the beginning of Chapter 5, it should be noted that the
computations performed in this section for determining an explicit value of β ∈ Z [θ] for the
β of Note 2.4.1 are never actually performed in practice. Since the value n = 45, 113 in this
running example is small, however, the value for β may be computed to check the methods
of §5.9, §5.10, and §5.11.

Begin by finding an explicit representation for the product of the a+bθ values corresponding
to the (a, b) pairs found in Table 5.5:

δ = 2051543129764485 · θ2 + 15388377355799440 · θ + 24765692886531904

= (−1 + θ) · (3 + θ) · (13 + θ) · (104 + θ) · (3 + 2θ) · (25 + 2θ) · (−8 + 3θ)

· (48 + 5θ) · (54 + 5θ) · (−43 + 6θ) · (−8 + 7θ) · (11 + 7θ) · (856 + 11θ)

(5.2)

where all the computations in (5.2) are treated as multiplication of polynomials modulo
f(x) = x3 + 15x2 + 29x+ 8 with θ substituted for x. Next, the value f ′(θ)2 = 138 · θ2 + 363 ·
θ + 481 ∈ Z [θ] is computed and multiplied by (5.2) to yield

f ′(θ)2 · δ = 22455983949710645412 · θ2

+ 54100105785512562427 · θ + 22939402657683071224

which is the square of an element β ∈ Z [θ]. Indeed, without too much more effort it is seen
that

β = 599923511 · θ2 + 3686043120 · θ + 3889976768
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satisfies β2 = f ′(θ)2 · δ in Z [θ].

Applying the ring homomorphism φ : Z [θ]→ Z /45113Z of Proposition 2.4.1 to β gives

x = 43922 ≡ 694683807559 ≡
599923511 · 312 + 3686043120 · 31 + 3889976768 ≡ φ(β) (mod 45331)

and it is this value x = 43, 922 that should result from the square root techniques of §5.9,
§5.10, and §5.11.

5.9 Determining Applicable Finite Fields

The first stage in computing x = φ(β) (mod p) using the methods outlined in §4.6, §4.7,
and §4.8 is to find a number of finite fields that are “compatible” with Q (θ), which boils
down to finding prime integers p for which f(x) remains irreducible modulo p. First, f(x) =
x3 + 15x2 + 29x + 8 will be tested for irreducibility modulo the prime p = 9929 using the
techniques of §4.9.

Begin by computing xp − x modulo f(x)

x9929− x ≡ 7449x2 + 4697x + 5984 (mod f(x))

and then taking the greatest common divisor with f(x) gives

gcd(7449x2 + 4697x + 5984, x3 + 15x2 + 29x+ 8) = 1

when considered modulo 9929. Thus, f(x) is irreducible over Z /9929Z by Theorem 4.9.5
and the finite field F 99293 may be used in the methods of §4.6, §4.7, and §4.8.

As an example of a value for p for which f(x) does not turn out to be irreducible, if p = 9923
then

x9923− x ≡ 7726x2 + 1477x + 7301 (mod f(x))

and the greatest common divisor turns out to be

gcd(7726x2 + 1477x + 7301, x3 + 15x2 + 29x + 8) = x− 847

modulo 9923. Hence 847 is a root of f(x) modulo 9923 and therefore f(x) is not irreducible
over Z /9923Z .

Table 5.6 lists the three primes pi for which the finite field F p3
i

will be used in §5.10 and
§5.11 for computing x in §5.8.
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Table 5.6: Primes Determining Finite Fields F p3
i

p0 p1 p2

9851 9907 9929

5.10 Square Roots in a Finite Field

The techniques of §4.8 will be illustrated for the prime p = 9929 and the finite field F p3,
where the elements of the latter field may be represented as polynomials in θp where θp is a
root of f(x) in the splitting field of f(x) = x3 + 15x2 + 29x+ 8 over Z /pZ by Theorem 4.7.2.
Denote F p3 by F p(θp) as well.

Begin by letting q = p3 so that q − 1 = 2r · s where r = 3 and s = 122356359011. The first
task is to find a quadratic non-residue in F p(θp), which is very easy since exactly half the
elements satisfy this property. A direct search immediately yields θp + 1 as a non-residue by
Theorem 4.8.1 since

(θp + 1)
99293−1

2 ≡ −1 (mod 9929).

From Theorem 4.8.3 it follows that the Sylow 2-subgroup S8 of F p(θp) can then be represented
by the set

S8 =
{

1, (θp + 1)s, (θp + 1)2s, (θp + 1)3s, . . . , (θp + 1)7s
}
.

Next, the element δ of §5.8 is computed in F p(θp) as

δp = 2027θ2
p + 3891θp + 6659 ≡ f ′(θp)

2 · (−1 + θp) · (3 + θp) · (13 + θp)·
(104 + θp) · (3 + 2θp) · (25 + 2θp) · (−8 + 3θp) · (48 + 5θp) ·
(54 + 5θp) · (−43 + 6θp) · (−8 + 7θp) · (11 + 7θp) · (856 + 11θp)

The immediate goal is then to find an element ζ ∈ S8 with ζ2 ≡ δs. By direct computation
in F p(θp) it is seen that δs ≡ 9928 (mod 9929) and from Table 5.7 it follows that ζ =
(θp + 1)2s ≡ 2102 (mod 9929) is an element with the desired property.

If ω = δ(s+1)/2 then ν = ω · ζ−1 is a square root of δ since

ν2 ≡ ω2 · ζ−2 ≡ δs · δ · δ−s ≡ δ

since ζ was found such that ζ2 ≡ δs. Computing out ν explicitly involves computing the
multiplicative inverse 7827 of ζ = 2102 modulo 9929 and then multiplying out

ν = ω · ζ−1 ≡ 7827 · δ s+1
2 ≡ 3402θ2

p + 1160θp + 3077.
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Table 5.7: Members of S8 and Their Squares

i (θp + 1)is (θp + 1)2is i (θp + 1)is (θp + 1)2is

0 1 1 4 9928 1
1 1273 2102 5 8656 2102
2 2102 9928 6 7827 9928
3 4945 7827 7 4984 7827

Note that the other square root of δ is simply −ν in F p(θp), which is seen to be 6527θ2
p +

8769θp + 6852

In the above description, the element ζ was found from the list of all its possible values in
Table 5.7. The actual square root algorithm employed in §4.8 uses an iterative approach to
avoid the explicit computation of all elements in S8. First, λ0 is initialized as λ0 = −1 ≡ δs
(mod 9929) and ω0 is initialized as ω0 = 2124θ2

p + 5175θp + 4075 ≡ δ(s+1)/2. Finally, the
variable m is set to 1 since the order of λ0 in F ∗p3 is seen to be 2.

The iterative process begins by calculating λ1 and ω1 from λ0 and ω0. Letting ζ = (θp+1)s ≡
1273 (mod 9929) then

λ1 ≡ λ0ζ
2r−m ≡ −1 · 127323−1 ≡ −1 · 12734 ≡ 1 (mod 9929)

and

ω1 = ω0ζ
2r−m−1 ≡ ω0 · 127323−1−1 ≡ ω0 · 12732 ≡ 6527θ2

p + 8769θp + 6852.

Since λ1 = 1 it follows that ω1 is a square root of δ, which is verified from the earlier
calculation using Table 5.7.

5.11 Using the Chinese Remainder Theorem

From §5.8 it is known that the value of x is 694683807559 and hence x (mod 45113) = 43922.
The goal of this section is to show that this value can be computed once square roots of
δ from §5.8 in the finite fields of Table 5.6 are known, as is done in §5.10. The relevant
values from the computation of square roots in the finite fields of Table 5.6 are summarized
in Table 5.8.

For the sake of explanation, the value of z from §4.6 is computed as

z =
2∑
i=0

aixiPi = 7261482164111988.
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Table 5.8: Square Roots of δ in Finite Fields

i = 0 i = 1 i = 2
root 7462 · θ2

pi
+ 5126 · θ2

pi
+ 3402 · θ2

pi
+

5791 · θpi + 4037 5072 · θpi + 3125 1160 · θpi + 3077
xi 5694 4152 2002
ai 7174 3691 8928
pi 9851 9907 9929
Pi 98366603 97810579 97593857

The value of P can also be computed as P = 9851 · 9907 · 9929 = 969009406153. Then it is
easily verified that z ≡ x (mod P ) and in fact 694683807559 = 7261482164111988 − 7493 ·
969009406153 gives the value r = 7493 in x = z − rP . Note that these computations are
never carried out in practice and are done here only to verify the results of the remaining
portions of the example. In the rest of this section it should be noted that all calculations
take place modulo n, which avoids the problems of unbounded integers when using direct
computations.

Begin by computing the value of r using

z

P
=

2∑
i=0

aixi
pi

=
7174 · 5694

9851
+

3691 · 4152

9907
+

8928 · 2002

9929
= 7493.72.

Rounding the last result yields r = 7493, which is indeed the correct value for r found by
direct calculation. In this computation it should be noted that neither x nor z needs to be
calculated explicitly; only relatively small floating point numbers are required.

The value for x (mod n) can now be computed as

x (mod n) ≡
2∑
i=0

aixiPi (mod n) − rP (mod n)

≡ (a0x0p1p2) (mod n) + (a1x1p0p2) (mod n)

+ (a2x2p0p1) (mod n)− (rp0p1p2) (mod n)

≡ 7174 · 5694 · 9907 · 9929 (mod 45113)

+ 3691 · 4152 · 9851 · 9929 (mod 45113)

+ 8928 · 2002 · 9851 · 9907 (mod 45113)

− 7493 · 9851 · 9907 · 9929 (mod 45113)

≡ (41457 + 26833 + 42022 − 21277) (mod 45113)

≡ 43922 (mod 45113)
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and the result is achieved. Again it it stressed that at no point in the above computation
are explicit values for x or z needed, and no intermediate result ever exceeds the size of n.

5.12 Putting It All Together

Multiplying out the values of a + bm for the (a, b) pairs of Table 5.5 yields the following
square in Z :

317465033886002 = 1007840477402391282609960000 =

(−1 + 31) · (3 + 31) · (13 + 31) · (104 + 31) · (3 + 2 · 31) ·
(25 + 2 · 31) · (−8 + 3 · 31) · (48 + 5 · 31) · (54 + 5 · 31) ·

(−43 + 6 · 31) · (−8 + 7 · 31) · (11 + 7 · 31) · (856 + 11 · 31) (5.3)

From Note 2.4.1 it follows that (5.3) must also be multiplied by f ′(m)2 = (3 · 312 + 30 · 31 +
29)2 = 38242. Then set

y = 15160 ≡ 3824 · 31746503388600 (mod 45113).

From the calculations in §5.11 it was found that x = 43922 (mod 45113), and furthermore
x2 and y2 are equivalent modulo n by the ring epimorphism φ of Proposition 2.4.1. Thus

151602 ≡ 439222 (mod 45113).

Then 45, 113 divides 151602−439222 = (15160−43922)·(15160+43922) and this difference of
squares in turn yields a non-trivial factorization of 45, 113 since gcd(15160−43922, 45113) =
197 and gcd(15160 + 43922, 45113) = 229. Note that these values for x and y yield a non-
trivial factorization since each of x− y and x+ y contains exactly one non-trivial factor of
n:

43922 − 15160 = 2 · 73 · 197 and 43922 + 15160 = 2 · 3 · 43 · 229.



Chapter 6

Polynomial Selection and Parameter
Tuning

The first step of GNFS, selecting a polynomial, also happens to also be most important step.
For any given integer n that is to be factored, there can literally be billions of choices for the
polynomial f(x) and the integer m with f(m) ≡ 0 (mod n). From real-world experiments
with the GNFS it has been seen that in many cases some polynomials are remarkably better
than others, where a polynomial f(x) is considered “better” than another polynomial g(x) if
more (a, b) pairs with a+ bm and 〈a+ bθ〉 smooth are found with f(x) than with g(x) using
the same sieve interval, factor base sizes, and quadratic character base sizes. Although a
crucial stage of the GNFS, polynomial selection still remains an ad-hoc and underdeveloped
area. Success relies upon some basic heuristic reasoning, lots of experimentation, and often
times just blind luck.

The goal here, then, is to explain how the experimentation phase of the GNFS proceeds,
starting with an initial n to factor, proceeding on to trials of various candidate polynomials,
and concluding with tuning the sieve for a particular selection of polynomial, factor base,
and sieve interval.

6.1 Tweaking the Base-m Method

One begins polynomial selection by choosing an integer m close to n1/d such that

n = cd ·md + cd−1 ·md−1 + · · · + c1 ·m+ c0

and cd = 1. Then f(x) is defined to be f(x) = xd + cd−1xd−1 + · · · + c1x + c0 and by
construction then f(m) = n ≡ 0 (mod n). If f(x) turns out to be reducible, then a non-
trivial factorization of n is likely to be available immediately, in which case the process
terminates successfully.

63
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One prominent strategy for producing “better” polynomials has been to reduce the sizes of
the coefficients ci in f(x), with the idea being that the smaller these coefficients are, the
more likely N(a+ bθ) is to be small. If N(a+ bθ) is relatively small it stands to reason that
it is more likely to factor over a small set of primes, and hence the more likely 〈a+ bθ〉 is to
factor over the algebraic factor base.

With this in mind, begin by noting that the base-m method produces an f(x) such that
|ci| < m for 0 ≤ i < d. It turns out that this can be improved to |ci| < m/2, as follows. For
any ci > m/2 then m− ci < m/2. If 0 ≤ i < d− 1 then

(ci+1 + 1) ·mi+1 − (m− ci) ·mi = ci+1 ·mi+1 +mi+1 −mi+1 + ci ·mi = ci+1 ·mi+1 + cimi.

Hence, one can obtain an equivalent base-m expansion for n by replacing ci+1 with ci+1 + 1
and ci with −(m− ci) for any ci > m/2. This expansion has the benefit that all coefficients
then have absolute value less than m/2, if negative coefficients are allowed. Note i is chosen
less than d− 1 so that the polynomial stays monic.

6.2 Using Polynomials of the Formf (x) + g(x)

The technique outlined in §6.1 of adjusting an existing polynomial f(x) with f(m) ≡ 0
(mod n) can be expanded upon by adding another polynomial g(x) for which g(m) = 0.

Such polynomials are not too difficult to come up with, and in fact if

g(x) =
d−1∑
i=1

ci · (xi −mxi−1) (6.1)

then it is easily seen that g(m) = 0 since

g(m) =
d−1∑
i=1

ci · (mi −m ·mi−1) =
d−1∑
i=1

ci · (mi −mi) = 0.

To summarize, polynomial selection begins with an integer m ≈ n1/d and proceeds by ex-
panding n base-m. The polynomial generated by this method can be further “tweaked”
to insure that all coefficients have absolute value less than m/2. With or without this ad-
justment, the polynomials of the base-m method can lead to other polynomials by adding
polynomials of the form shown in (6.1). Note polynomials of the form seen in (6.1) are
produced simply by choosing different values for c1, c2, . . . , cd−1.

6.3 Finding a Good Polynomial

Having chosen candidate polynomials for GNFS, the next step is to choose a few different
sizes for factor bases and sieve intervals, and then simply to sieve each polynomial using
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these different parameter choices. For the sake of brevity, the term “smooth” is applied here
to an (a, b) pair if that pair has a + bm and 〈a + bθ〉 smooth over their respective factor
bases. The idea here is to find a polynomial that produces the most smooth (a+ b) pairs in
the shortest amount of time. For any given polynomial and factor base, the sieve interval is
varied and for each interval the number of smooth values found and the time it took to find
them is recorded. An estimate for the ratio of time taken to smooth (a, b) pairs can then be
made and compared with other ratios for the same polynomial and factor base. The interval
with the smallest ratio is then selected and multiplied by an estimate for the total number
of pairs needed (rational primes + algebraic primes + quadratic characters will suffice) to
estimate the shortest amount of time it will take to produce enough pairs, for the given
polynomial and factor base. This latter statistic is recorded, and then the same procedure
for different factor bases with the same polynomial is performed. Once “enough” factor bases
have been examined, the factor base with the shortest time estimate for producing (a, b) pairs
is chosen. This last figure represents the best performance for a particular polynomial, over
a variety of factor bases and sieve intervals. The whole procedure can then be done again
for other polynomials, with the polynomial being selected for the GNFS being the one with
the shortest estimated time to produce enough (a, b) pairs.

6.4 Example Polynomial Selection

As an example of the different polynomial selection procedures and the aforementioned
strategy for selecting factor bases and sieve intervals, these techniques will be applied to the
number

n = 556158012756522140970101270050308458769458529626977

where n is seen to be a 51 digit integer. Polynomials of degree d = 3 are generally used in
the GNFS for numbers of this size.

Begin by noting that

n1/3 ≈ 82236774153802891

so set m = 82236774153802891 and perform a base-m expansion on n to get

n = (82236774153802891)3 + 27709956990112403 ·
(82236774153802891) + 45334438077235933

and hence f1(x) = x3 +27709956990112403x+45334438077235933 is a candidate polynomial
for n.

One can adjust the polynomial f1(x) by adding a polynomial g1(x) of the form g1(x) =
c1 ·(x−m)+c2 ·(x2−m ·x), where c1 and c2 are usually chosen small to keep the coefficients
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of g1(x) small. Letting c1 = 1 and c2 = −1 gives g1(x) = −x2 + 82236774153802892x −
82236774153802891 and a new candidate polynomial f2(x) is produced as

f2(x) = f1(x) + g1(x) = x3 − x2 + 109946731143915295x − 36902336076566958.

Another candidate f3(x) can be produced simply by altering the value of m by a “small”
amount and re-running the base-m algorithm with this new value of m. In fact, the value
of m can vary a great deal because of the magnitude of the integers involved. Subtracting
107 from the original value for m used above yields a new value of m = 82236774153802784,
and the base-m method applied here produces

f3(x) = x3 + 321x2 + 27709956990146786x + 49775966483587873.

In this case, m/2 = 41118387076901392 and the constant term coefficient in f3(x) happens
to be larger than this value. One can then form a new polynomial f4(x) from f3(x) by
replacing the constant term coefficient of f3(x) with the value of m subtracted from it, and
incrementing the monic term coefficient by one, yielding

f4(x) = x3 + 321x2 + 27709956990146787x − 32460807670214911.

Note that for all these polynomials, fi(m) ≡ 0 (mod n) and fi(x) is irreducible. The next
stage is to see which of the polynomials can produce the most smooth (a, b) pairs in the
shortest amount of time.

6.5 Testing the Example Polynomials

Using the ideas outlined in §6.3 each polynomial has a sieve run with three different sizes
for factor bases, and each of these choices is sieved over five different sieve intervals. The
relevant performance data is summarized in Appendix A.

Begin the analysis of the performance data by using Table A.12 as an example. Note that
as the length of the sieve interval increases the number of smooth (a, b) pairs found also
increases. This seems natural, as one would expect the number of smooth pairs to increase
as the number of pairs examined increases. It should also be noted that the amount of time
required for finding these pairs also increases as the interval size increases, so steadily in
fact that it seems the best policy is to stay with the smallest sieving interval. At this point,
it should be noted that smooth (a, b) pairs are difficult to find, and as shown in practical
experience, the number of smooth pairs steadily decreases as a and b increase. Thus, it
is sound advice to choose a sieving interval that yields a healthy number of smooth pairs,
without compromising speed too much. If one uses the timing statistics for the third sieving
interval to estimate the length of time required to find enough smooth (a, b) pairs, it works
out to

0.89055 × 22, 175 seconds ≈ 5.5 hours,
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which is only 48 minutes more expensive than the shortest sieving interval. In practice, since
the third sieving interval produced over one and a half times as many smooth (a, b) pairs as
the shortest sieving interval, it is probably the best one to use for this choice of polynomial
and factor base.

After examining the data, the polynomial f4(x) stands out. Its performance ratio is better
than all other polynomials for almost every choice of factor base sizes and sieve interval.

6.6 The Guessing Game

In should be noted how unpredictable the number of smooth (a, b) pairs produced is for any
given selection of a polynomial, factor base, and sieving interval, even with this small data
set. For example, it appears as if the time required for finding smooth pairs increases as
the sieve interval increases for all the data examined, however that is not the case. There is
actually a slight decrease in time when moving from the shortest interval to the next shortest
interval in Table A.1. However, that is not the case for the same polynomial and the same
intervals with larger factor bases, as seen in Table A.2 and Table A.3. Thus, a sieve interval
may be extremely good for a polynomial with one factor base but produce terrible results for
the same polynomial with a different factor base. Another trend that seems evident is that
increasing the sizes of the factor bases seems to decrease the overall estimated time for finding
enough smooth (a, b) pairs. However as the factor base sizes increase this will not always be
true, since the larger primes in the larger factor bases occur in fewer a+ bm and N(a+ bθ)
and hence are sieved with unnecessarily. Something of this sort is evidenced in Table A.4
and Table A.5, where unlike any of the other polynomials, the estimated time increases from
the smaller factor base to the larger. The inexplicable part comes from Table A.6, where the
estimated time actually decreases from Table A.5.

To further debunk any kind of first glance intuition, one might initially guess that the
polynomial f1(x) would produce the most smooth pairs, since it has a coefficient of 0 for its
quadratic term. Indeed, it is the second-best performing polynomial, but as seen in the data,
the best polynomial f4(x) also has the largest quadratic coefficient of all the polynomials
tested. On the other hand, the worst-performing polynomial f3(x) has the same value as
f4(x) for its quadratic term.

Even with a very small set of test cases, one can see that polynomial selection is still very
much a “black” art that defies any sort of common sense intuition. There are billions
of candidate polynomials for large integers n and potentially a great deal of unexploited
structure relating these polynomials and their probability of smoothness that needs to be
investigated.
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6.7 An Alternate Strategy

A variation on the strategy detailed above cuts down dramatically on the amount of work that
goes into screening candidate polynomials, with the end result being that more candidate
polynomials can be examined in a shorter amount of time. Upon examining the performance
data in Appendix A it is generally seen that when one polynomial performs better than
another for particular choices of factor base sizes and sieve interval, that polynomial will
perform better than the other for all choices of factor base sizes and sieve intervals. The
basic idea then is to judge all polynomials against one choice of factor base sizes and sieve
interval, stopping when a polynomial with dramatically better performance than any other
is found. That polynomial is then further optimized by running sieves with different factor
base sizes and sieve intervals as in §6.3. By using only a single selection of factor base sizes
and sieve interval, the number of polynomials that can be examined in a given amount of
time is greatly increased.

More specifically, choose a polynomial and run multiple tests of factor base sizes and sieve
intervals, as detailed in §6.3. When a mid-range parameter choice that balances the number
of smooth (a, b) pairs produced with the time required is found, that choice of factor base
sizes and sieve interval will be be used as the test parameters for the remaining candidate
polynomials. All polynomials then run through a single test with the same factor base sizes
and sieve interval, and the one with the least expected run time to find enough smooth pairs
is kept. The original test with multiple factor base sizes and sieve intervals can then be run
on the selected polynomial to further hone its performance. In fact, once the selection of
factor base sizes and sieve interval are made, an automated tool can generate polynomials by
varying values for m, adjusting the coefficients of the base-m method, and substituting small
values for c1, c2, . . . , cd−1. The tool can further keep performance data while sieving with
the polynomials it generated. An end-user can then analyze the performance data for the
various candidate polynomials when the tool is finished and choose the one that performs
best.



Appendix A

Example Performance Data

Table A.1: f1(x) with small factor base

Rational Primes Algebraic Primes Quadratic Characters Total
4, 203 10, 000 50 14, 253

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 30 1 min 16 sec 2.53333 sec/pair
400, 000 38 1 min 36 sec 2.52632 sec/pair
500, 000 47 2 min 24 sec 3.06383 sec/pair

1, 000, 000 88 4 min 3 sec 2.76136 sec/pair
1, 500, 000 124 7 min 22 sec 3.56452 sec/pair

Using best ratio would take 2.52632 × 14, 253 sec ≈ 10 hours to get enough relations

Table A.2: f1(x) with medium factor base

Rational Primes Algebraic Primes Quadratic Characters Total
4, 203 14, 286 50 18, 539

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 54 1 min 23 sec 1.53704 sec/pair
400, 000 65 1 min 57 sec 1.80000 sec/pair
500, 000 79 2 min 32 sec 1.92405 sec/pair

1, 000, 000 139 4 min 50 sec 2.08633 sec/pair
1, 500, 000 202 7 min 2 sec 2.08911 sec/pair

Using best ratio would take 1.53704 × 18, 539 sec ≈ 8 hours to get enough relations
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Table A.3: f1(x) with large factor base

Rational Primes Algebraic Primes Quadratic Characters Total
7, 837 14, 286 50 22, 173

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 102 1 min 28 sec 0.86275 sec/pair
400, 000 127 1 min 50 sec 0.86614 sec/pair
500, 000 153 2 min 38 sec 1.03268 sec/pair

1, 000, 000 249 5 min 10 sec 1.24498 sec/pair
1, 500, 000 336 7 min 59 sec 1.42560 sec/pair

Using best ratio would take 0.86275 × 22, 173 sec ≈ 5.3 hours to get enough relations

Table A.4: f2(x) with small factor base

Rational Primes Algebraic Primes Quadratic Characters Total
4, 203 10, 132 50 14, 385

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 45 1 min 26 sec 1.91111 sec/pair
400, 000 54 2 min 1 sec 2.24074 sec/pair
500, 000 65 2 min 32 sec 2.33846 sec/pair

1, 000, 000 106 5 min 11 sec 2.93396 sec/pair
1, 500, 000 141 7 min 32 sec 3.20567 sec/pair

Using best ratio would take 1.91111 × 14, 385 sec ≈ 7.6 hours to get enough relations

Table A.5: f2(x) with medium factor base

Rational Primes Algebraic Primes Quadratic Characters Total
4, 203 14, 296 52 18, 551

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 59 1 min 31 sec 1.54237 sec/pair
400, 000 75 2 min 6 sec 1.68000 sec/pair
500, 000 90 2 min 43 sec 1.81111 sec/pair

1, 000, 000 147 5 min 29 sec 2.23810 sec/pair
1, 500, 000 198 7 min 53 sec 2.38889 sec/pair

Using best ratio would take 1.54237 × 18, 551 sec ≈ 7.9 hours to get enough relations



Matthew E. Briggs Appendix A. Example Performance Data 71

Table A.6: f2(x) with large factor base

Rational Primes Algebraic Primes Quadratic Characters Total
7, 837 14, 296 52 22, 185

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 100 1 min 37 sec 0.97000 sec/pair
400, 000 124 2 min 15 sec 1.08871 sec/pair
500, 000 149 2 min 52 sec 1.15436 sec/pair

1, 000, 000 246 5 min 45 sec 1.40244 sec/pair
1, 500, 000 338 8 min 26 sec 1.49704 sec/pair

Using best ratio would take 0.97× 22, 185 sec ≈ 6 hours to get enough relations

Table A.7: f3(x) with small factor base

Rational Primes Algebraic Primes Quadratic Characters Total
4, 203 10, 037 50 14, 290

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 27 1 min 18 sec 2.88889 sec/pair
400, 000 37 1 min 51 sec 3.00000 sec/pair
500, 000 44 2 min 22 sec 3.22727 sec/pair

1, 000, 000 74 4 min 35 sec 3.71622 sec/pair
1, 500, 000 100 6 min 39 sec 3.99000 sec/pair

Using best ratio would take 2.88889 × 14, 290 sec ≈ 11.5 hours to get enough relations

Table A.8: f3(x) with medium factor base

Rational Primes Algebraic Primes Quadratic Characters Total
4, 203 14, 296 50 18, 550

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 41 1 min 22 sec 2.14634 sec/pair
400, 000 57 1 min 57 sec 2.05263 sec/pair
500, 000 69 2 min 28 sec 2.14493 sec/pair

1, 000, 000 118 4 min 37 sec 2.34746 sec/pair
1, 500, 000 161 7 min 4 sec 2.63354 sec/pair

Using best ratio would take 2.05263 × 18, 550 sec ≈ 10.6 hours to get enough relations
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Table A.9: f3(x) with large factor base

Rational Primes Algebraic Primes Quadratic Characters Total
7, 837 14, 296 50 22, 184

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 87 1 min 30 sec 1.03448 sec/pair
400, 000 115 2 min 7 sec 1.10435 sec/pair
500, 000 136 2 min 40 sec 1.17647 sec/pair

1, 000, 000 220 5 min 23 sec 1.46818 sec/pair
1, 500, 000 298 7 min 51 sec 1.58054 sec/pair

Using best ratio would take 1.03448 × 22, 184 sec ≈ 6.4 hours to get enough relations

Table A.10: f4(x) with small factor base

Rational Primes Algebraic Primes Quadratic Characters Total
4, 203 10, 113 50 14, 366

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 50 1 min 29 sec 1.78000 sec/pair
400, 000 64 2 min 4 sec 1.93750 sec/pair
500, 000 74 2 min 38 sec 2.13514 sec/pair

1, 000, 000 109 5 min 18 sec 2.91743 sec/pair
1, 500, 000 145 7 min 46 sec 3.21379 sec/pair

Using best ratio would take 1.78× 14, 366 sec ≈ 7.1 hours to get enough relations

Table A.11: f4(x) with medium factor base

Rational Primes Algebraic Primes Quadratic Characters Total
4, 203 14, 288 50 18, 541

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 83 1 min 34 sec 1.13253 sec/pair
400, 000 102 2 min 12 sec 1.29412 sec/pair
500, 000 117 2 min 44 sec 1.40171 sec/pair

1, 000, 000 187 5 min 33 sec 1.78075 sec/pair
1, 500, 000 241 8 min 7 sec 2.02075 sec/pair

Using best ratio would take 1.13253 × 18, 541 sec ≈ 5.8 hours to get enough relations
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Table A.12: f4(x) with large factor base

Rational Primes Algebraic Primes Quadratic Characters Total
7, 837 14, 288 50 22, 175

Sieve Interval Pairs Found Total Time Time per Pair
300, 000 130 1 min 40 sec 0.76923 sec/pair
400, 000 168 2 min 21 sec 0.83929 sec/pair
500, 000 201 2 min 59 sec 0.89055 sec/pair

1, 000, 000 320 5 min 56 sec 1.11250 sec/pair
1, 500, 000 428 8 min 43 sec 1.22196 sec/pair

Using best ratio would take 0.76923 × 22, 175 sec ≈ 4.7 hours to get enough relations
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