

Figure 4.5: 2-D and 3-D Contours of $\mathrm{I} / \operatorname{Imax}(\mathrm{z})=0.5$ for $\mathrm{MR}=0.18,10 \mathrm{~Hz}$ Pulsation
2-D contours: $\mathrm{z} / \mathrm{D}=15$; 3-D contours: $0 \leq \mathrm{z} / \mathrm{D} \leq 15$
A. No Pulsation
B. $m=0$ C. $m=1$
D. $m=0.5$ E. $m= \pm 1$ F. $m= \pm 0.5$

Figure 4.5: 2-D and 3-D Contours of $\mathrm{I} / \operatorname{Imax}(\mathrm{z})=0.5$ for $\mathrm{MR}=0.18,10 \mathrm{~Hz}$ Pulsation 2-D contours: z/D = 15; 3-D contours: $0 \leq \mathrm{z} / \mathrm{D} \leq 15$
A. No Pulsation
B. $\mathrm{m}=0$
C. $\mathrm{m}=1$
D. $m=0.5$
E. $m= \pm 1$ F. $m= \pm 0.5$

Figure 4.5: 2-D and 3-D Contours of $\mathrm{I} / \operatorname{Imax}(\mathrm{z})=0.5$ for $\mathrm{MR}=0.18,10 \mathrm{~Hz}$ Pulsation
2-D contours: $\mathrm{z} / \mathrm{D}=15$; 3-D contours: $0 \leq \mathrm{z} / \mathrm{D} \leq 15$
A. No Pulsation B. $m=0$ C. $m=1$ D. $m=0.5$ E. $m= \pm 1$ F. $m= \pm 0.5$

