BLEND OF BIODEGRADABLE THERMOPLASTICS WITH LIGNIN ESTERS

by

Indrajit Ghosh

Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Wood Science & Forest Products

APPROVED:

Wolfgang G. Glasser, Chairman
Richey M. Davis
Charles E. Frazier

22nd April, 1998
Blacksburg, VA, U.S.A.
BLEND OF BIOGRADABLE THERMOPLASTICS WITH LIGNIN ESTERS

Indrajit Ghosh
Prof. Wolfgang G. Glasser (Chairman)

ABSTRACT

Thermoplastic blends of several biodegradable polymers with lignin (L) and lignin esters were prepared by solvent casting and melt processing. Among the biodegradable thermoplastics were cellulose acetate butyrate (CAB), poly-hydroxybutyrate (PHB), poly-hydroxybutyrate-co-valerate (PHBV), and a starch-caprolactone blend (SCL). Lignin esters included acetate (LA), butyrate (LB), hexanoate (LH), and laurate (LL). Blend characteristics were analyzed in terms of thermal and mechanical properties. The results indicate widely different levels of interaction between two polymer constituents. Melt blended samples of CAB/LA and CAB/LB were compatible on a 15-30 nm scale when probed by dynamic mechanical thermal analysis, and the glass transition temperatures of the blends followed Fox equation, whereas those of CAB/LH and CAB/LL showed distinct broad transitions on the same scale. Melt blending produced well dispersed phases whereas large phase separation evolved out of solvent casting. Crystallinity and melting points of PHB and PHBV were affected by the incorporation of lignin component, revealing some interaction between the blend constituents. Blends of SCL with L and LB revealed significant effect on crystallinity and melting temperatures of poly-caprolactone component, revealing polymer-polymer interaction between SCL and lignin components. An increased degree of crystallinity was observed in the case of higher-T_g L compared to lower T_g LB. Improvement in modulus (and in some cases strength also) was observed in almost all blends types due to the glassy reinforcing behavior of lignin.
Learning is such a process that it is not possible to tell exactly how one acquired a given body of knowledge. This thesis is dedicated to all those who taught me and helped me to acquire that knowledge over the years.
ACKNOWLEDGEMENTS

I acknowledge my foremost indebtedness to Prof. Wolfgang G. Glasser for his invaluable guidance and support, and for providing me the opportunity to pursue my graduate studies at Virginia Tech. I would also like to extend my gratitude to Prof. Herve' Marand and my committee members, Dr. Charles E. Frazier and Dr. Richey M. Davis, for their comments and suggestions. I like to acknowledge the help from Prof. D. G. Baird and Dr. Mike McLeod for the viscosity measurements.

I am thankful to Eastman Chemical Company (Kingsport TN, U.S.A.) and Prof. Ramani Narayan (Michigan State University) for the supply of materials for the research.

I express many thanks to all the members in our group for their technical, scientific and administrative help and the pleasant working atmosphere. In particular, I would like to thank Dr. Rajesh K. Jain for his help at each step of my research work. I am also thankful to Ulli Becker and Jason Todd for many valuable discussions and helpful suggestions. Without their help, it would have been difficult for me to complete my work.

I also like to acknowledge the assistance provided by Jody Jervis with the molecular weight determinations and Kathy with the electron microscope.

Last, but not the least, I wish to thank my parents, my brother, and sister-in-law for all their motivation, inspiration and cooperation all through my life.
PREFACE

Recently, there is great interest and awareness in ‘environmentally friendly’ polymers for various applications ranging from packaging materials to automobile interiors. This research is aimed particularly towards developing materials for biodegradable composites and related applications by modifying existing biodegradable polymers. This study deals with: a) an investigation of the possible factors affecting miscibility/compatibility of polymer blends of biodegradable polymers such as cellulose ester (CAB), polyhydroxy-alkanoates (PHA’s), and a starch-caprolactone blend (SCL, tradename “Envar”) with lignin esters having varying lengths of side groups; b) the influence of the lignin component in the blend; c) effect of lignin ester component on crystallization of PHA’s and SCL.

Concepts of biodegradation and compatibility are introduced along with other relevant theories in chapter-I. Chapter-II deals with the synthetic and analytical details of lignin esters used as blend components with the biodegradable polymers. Chapters-III, IV and V are concerned with the detailed studies of blends of CAB, PHA’s and SCL respectively. Each chapter of the thesis (except chapter-I) has its own abstract, experimental sections, discussions and references followed by illustrations. Due to similarity in the topics covered in each chapter, some repetition of material could not be avoided. Apologies are made for these inconveniences and other mistakes that might have avoided my sight.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>PREFACE</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Biodegradable Polymer</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Lignin</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Polymer Blend</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Compatibility</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Polymeric Plasticizer</td>
<td>6</td>
</tr>
<tr>
<td>1.7 Objectives</td>
<td>6</td>
</tr>
<tr>
<td>1.8 References</td>
<td>8</td>
</tr>
<tr>
<td>1.9 Illustration</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER II. ESTERIFICATION OF ORGANOSOLV LIGNIN</td>
<td>11</td>
</tr>
<tr>
<td>2.1. Abstract</td>
<td>12</td>
</tr>
<tr>
<td>2.2. Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.3. Experimental</td>
<td>15</td>
</tr>
<tr>
<td>2.4. Results and Discussion</td>
<td>18</td>
</tr>
<tr>
<td>2.5. Conclusions</td>
<td>20</td>
</tr>
<tr>
<td>2.6. References</td>
<td>21</td>
</tr>
<tr>
<td>2.7 Illustrations</td>
<td>22</td>
</tr>
<tr>
<td>CHAPTER III. MORPHOLOGY & PROPERTIES OF BLENDS OF CELLULOSE ESTER AND LIGNIN DERIVATIVES</td>
<td>35</td>
</tr>
<tr>
<td>3.1. Abstract</td>
<td>36</td>
</tr>
<tr>
<td>3.2. Introduction</td>
<td>37</td>
</tr>
<tr>
<td>3.3. Experimental</td>
<td>39</td>
</tr>
<tr>
<td>3.4. Results</td>
<td>41</td>
</tr>
<tr>
<td>3.5. Discussion</td>
<td>45</td>
</tr>
</tbody>
</table>
GLOSSARY

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP_n</td>
<td>Degree of polymerization</td>
</tr>
<tr>
<td>DS</td>
<td>Degree of substitution</td>
</tr>
<tr>
<td>ΔH_m</td>
<td>Enthalpy of fusion (J/gm)</td>
</tr>
<tr>
<td>ΔH_c</td>
<td>Enthalpy of crystallization (J/gm)</td>
</tr>
<tr>
<td>M_n</td>
<td>Number average molecular weight (Daltons)</td>
</tr>
<tr>
<td>M_w</td>
<td>Weight average molecular weight (Daltons)</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass Transition Temperature ($^\circ$C)</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting Temperature ($^\circ$C)</td>
</tr>
<tr>
<td>T_c</td>
<td>Crystallization Temperature ($^\circ$C)</td>
</tr>
<tr>
<td>X_c</td>
<td>Degree of Crystallinity (%)</td>
</tr>
</tbody>
</table>
LIST OF TABLES

CHAPTER II

| Table 2.1 | Chemical structure analysis of lignin esters. | ... 22 |
| Table 2.2 | Molecular weights and glass transition temperatures for different lignin esters. | ... 23 |

CHAPTER III

Table 3.1	Molecular weights and glass transition temperatures for CAB and lignin esters.	... 51
Table 3.2	Comparison of glass transition temperatures obtained from DSC and DMTA analysis for CAB/lignin ester blends.	... 52
Table 3.3	Comparison of glass transition relaxations for CAB/lignin ester blends obtained by various instrumental techniques.	... 53

CHAPTER IV

| Table 4.1 | Thermal characteristics of blends of PHB. | ... 100 |
| Table 4.2 | Thermal characteristics of blends of PHBV and LB. | ... 101 |

CHAPTER V

| Table 5.1 | Thermal properties of SCL blends with L and LB from DSC. | ... 127 |
LIST OF FIGURES

CHAPTER I

| Fig. 1.1 | Schematic diagram of electron micrographs of two-phase systems and the corresponding dynamic mechanical spectra. | 10 |

CHAPTER II

Fig. 2.1	FTIR results of lignin esters.	24
Fig. 2.2	Representative FTIR plot for lignin butyrate depicting the various peaks used for calculations in the study.	25
Fig. 2.3	Ratio of 1765 to 1740 cm\(^{-1}\) peak heights…	26
Fig. 2.4	Ratio of 2960 to 1510 cm\(^{-1}\) peak heights…	26
Fig. 2.5	\(^1\)H-NMR spectra of organosolv lignin in D-CHCl\(_3\)	27
Fig. 2.6	\(^1\)H-NMR spectra of organosolv lignin acetate in D-CHCl\(_3\)	28
Fig. 2.7	\(^1\)H-NMR spectra of organosolv lignin butyrate in D-CHCl\(_3\)	29
Fig. 2.8	\(^1\)H-NMR spectra of organosolv lignin hexanoate in D-CHCl\(_3\)	30
Fig. 2.9	\(^1\)H-NMR spectra of organosolv lignin laurate in D-CHCl\(_3\)	31
Fig. 2.10	Plot of number average molecular weights for lignin esters	32
Fig. 2.11	Plot of molecular weight distribution for each lignin ester	32
Fig. 2.12	DSC thermograms of different lignin derivatives.	33
Fig. 2.13	Variation of glass transition temperature of different lignin ester derivatives as a function of carbon atoms in the ester group substituent.	34

CHAPTER III

Fig. 3.1	Strain sweep for pure CAB 381-20 at 200\(^0\)C for determining the linear viscoelastic region for the polymer.	54
Fig. 3.2	DSC thermograms of solvent (CHCl\(_3\)) cast samples of CAB and LA.	55
Fig. 3.3	Fox equation fit for blends of CAB and LA or LB.	56
Fig. 3.4	DSC thermograms of solvent (CHCl\(_3\)) cast samples of CAB and LB.	57
Fig. 3.5 DSC thermograms of solvent (CHCl₃) cast samples of CAB and LH from first heating scans. 58
Fig. 3.6 DSC thermograms of solvent (CHCl₃) cast samples of CAB and LH from second heating scans. 59
Fig. 3.7 DSC thermograms of melt blended samples of CAB and LH from first heating scans. 60
Fig. 3.8 Fox equation fit for blends of CAB and LH. 61
Fig. 3.9 Fox equation fit for blends of CAB and LL. 62
Fig. 3.10 Storage modulus vs. temperature curves for blends of CAB and LA obtained from DMTA experiments at 1 Hz. 63
Fig. 3.11 Loss modulus vs. temperature curves for blends of CAB and LA obtained from DMTA experiments at 1 Hz. 64
Fig. 3.12 tan δ vs. temperature curves for blends of CAB and LA obtained from DMTA experiments at 1 Hz 65
Fig. 3.13 Storage modulus vs. temperature curves for blends of CAB and LB obtained from DMTA experiments at 1 Hz. 66
Fig. 3.14 Loss modulus vs. temperature curves for blends of CAB and LB obtained from DMTA experiments at 1 Hz. 67
Fig. 3.15 tan δ vs. temperature curves for blends of CAB and LB obtained from DMTA experiments at 1 Hz. 68
Fig. 3.16 Loss modulus vs. temperature curves for blends of CAB and LH obtained from DMTA experiments at 1 Hz. 69
Fig. 3.17 tan δ vs. temperature curves for blends of CAB and LH obtained from DMTA experiments at 1 Hz. 70
Fig. 3.18 Storage modulus vs. temperature curves for blends of CAB and LH obtained from DMTA experiments at 1 Hz. 71
Fig. 3.19 Storage modulus vs. temperature curves for solvent cast blends of CAB and LH obtained from DMTA experiments at 1 Hz in shear mode. 72
Fig. 3.20 tan δ vs. temperature curves for solvent cast blends of CAB and LH obtained from DMTA experiments at 1 Hz in shear mode. 73
Fig. 3.21 Loss modulus vs. temperature curves for solvent cast blends of CAB and LH obtained from DMTA experiments at 1 Hz in shear mode. 74
Fig. 3.22 Storage modulus vs. temperature curves for solvent cast blends of CAB and LL obtained from DMTA experiments at 1 Hz in shear mode. 75
Fig. 3.23
$\tan \delta$ vs. temperature curves for solvent cast blends of CAB and LL obtained from DMTA experiments at 1 Hz in shear mode.
Fig. 3.24
Loss modulus vs. temperature curves for solvent cast blends of CAB and LL obtained from DMTA experiments at 1 Hz in shear mode.
Fig. 3.25
Transmission electron micrographs of solvent cast samples of CAB blends with (a) 20% LH and (b) 50% LH content by weight.
Fig. 3.26
Transmission electron micrographs of (a) solvent cast and (b) melt blended samples of CAB with 20% LH by weight.
Fig. 3.27
Transmission electron micrographs of melt blended CAB samples with (a) 20% LH and (b) 20% LA content.
Fig. 3.28
Tensile stress vs. lignin ester content for melt blended samples of CAB/lignin ester.
Fig. 3.29
Strain vs. lignin ester content for melt blended samples of CAB/lignin ester.
Fig. 3.30
Modulus vs. lignin ester content for melt blended samples of CAB/lignin ester.
Fig. 3.31
Viscosity data for different blends of CAB/LA at 200°C.
Fig. 3.32
Viscosity data for different blends of CAB/LA at 220°C.
Fig. 3.33
Viscosity data for different blends of CAB/LA at 240°C.
Fig. 3.34
Comparison between the dimensions of the lignin ester phases and the corresponding difference in the observed glass transition relaxations of CAB and lignin ester blends.

CHAPTER IV

Fig. 4.1 Effect of processing and crystallization times on PHB.
Fig. 4.2 DSC thermograms of melt blended samples of PHB and L.
Fig. 4.3 DSC thermograms of melt blended samples of PHB and L.
Fig. 4.4 DSC thermograms of melt blended samples of PHB and LB.
Fig. 4.5 Glass transition temperatures of PHB and L or LB blends.
Fig. 4.6 Normalized values of heat of fusion (ΔH_m) for PHB and L or LB blends.
Fig. 4.7 Temperature dependence of E', E'' and $\tan \delta$ of blends of PHB and L.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4.8</td>
<td>Temperature dependence of E', E'' and $\tan \delta$ of blends of PHB and LB.</td>
<td>109</td>
</tr>
<tr>
<td>Fig. 4.9</td>
<td>Tensile strength, strain at break, and Young’s modulus of blends of PHB and L or LB.</td>
<td>110</td>
</tr>
<tr>
<td>Fig. 4.10</td>
<td>DSC thermograms of solvent (CHCl$_3$) cast samples of PHBV and LB (quenched from melt).</td>
<td>111</td>
</tr>
<tr>
<td>Fig. 4.11</td>
<td>DSC thermograms of solvent (CHCl$_3$) cast samples of PHBV and LB (slow cooling).</td>
<td>112</td>
</tr>
<tr>
<td>Fig. 4.12</td>
<td>DSC thermograms of melt blended samples of PHBV and LB.</td>
<td>113</td>
</tr>
<tr>
<td>Fig. 4.13</td>
<td>Temperature dependence of E', E'' and $\tan \delta$ of blends of PHBV and LB.</td>
<td>114</td>
</tr>
<tr>
<td>Fig. 4.14</td>
<td>Transmission electron micrographs of solvent cast samples of PHBV / 20% LB blends.</td>
<td>115</td>
</tr>
<tr>
<td>Fig. 4.15</td>
<td>Tensile strength, strain at break, and Young’s modulus of blends of PHBV and LB.</td>
<td>116</td>
</tr>
</tbody>
</table>

CHAPTER V

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 5.1</td>
<td>DSC thermograms of melt blended samples of SCL and L.</td>
<td>128</td>
</tr>
<tr>
<td>Fig. 5.2</td>
<td>DSC thermograms of solvent (CHCl$_3$) cast samples of SCL and LB.</td>
<td>129</td>
</tr>
<tr>
<td>Fig. 5.3</td>
<td>DSC thermograms of melt blended samples of SCL and LB.</td>
<td>130</td>
</tr>
<tr>
<td>Fig. 5.4</td>
<td>Crystallization temperatures vs. weight percent of lignin component.</td>
<td>131</td>
</tr>
<tr>
<td>Fig. 5.5</td>
<td>Heat of crystallization normalized to the amount of PCL in blend vs. weight percent of lignin component.</td>
<td>132</td>
</tr>
<tr>
<td>Fig. 5.6</td>
<td>Melting temperatures vs. weight percent of lignin component.</td>
<td>133</td>
</tr>
<tr>
<td>Fig. 5.7</td>
<td>Heat of fusion normalized to the amount of PCL in blend vs. weight percent of lignin component.</td>
<td>134</td>
</tr>
<tr>
<td>Fig. 5.8</td>
<td>Temperature dependence of E', E'' and $\tan \delta$ of blends of SCL and L.</td>
<td>135</td>
</tr>
<tr>
<td>Fig. 5.9</td>
<td>Temperature dependence of $\tan \delta$ (a) and E'' (b) of blends of SCL and LB.</td>
<td>136</td>
</tr>
<tr>
<td>Fig. 5.10</td>
<td>Tensile stress vs. strain curves for SCL/L and SCL/LB blends.</td>
<td>137</td>
</tr>
<tr>
<td>Fig. 5.11</td>
<td>Yield stress and Young’s modulus of blends of SCL and L or LB plotted versus weight fraction of lignin component.</td>
<td>138</td>
</tr>
</tbody>
</table>