CHAPTER 3. Test Bench development

3.1 Introduction

When modeling systems with VHDL, a comprehensive method of testing must be
developed which will test the aspects of the design completely. VHDL models are tested using an
enclosing model called a Test Bench. A VHDL test bench can be defined as an executable
VHDL model which instantiates a model under test (MUT) and provides the capability to drive
the MUT with a set of test vectors and compare the response with the expected response. The test
bench is at the top level in the model hierarchy. It is the entity that is smulated when testing a
model [5]. Test benches provide the user with the capability to test the MUT thoroughly through
simulation.

The VHDL test bench developed must serve the following purposes :

» Simulate the MUT under a variety of test conditions including correct and faulty test inputs,
VHDL configurations, maximum/minimum delays and fault conditions.

* Automatically verify that the MUT meets the specifications and log all the errors if it does
not meet the specifications. This could be achieved by comparing the output response of the
MUT with that of a GOLD model and report success or failure for each test. On-line
verification checks the performance of the MUT accurately and also consumes less time than
manual verification which is very tedious, cumbersome and inefficient. In addition to the
above mentioned advantages, automation also allows for a reduction in time for future
maintenance effort because it enables fast and reliable verification of the model when
changes are introduced.
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* The test bench should be capable of performing regression tests. These are tests used to
ensure that a design change in the system does not adversely effect the capabilities of the
current design. Regression testing combines the issues of completeness associated with
signoff testing and the assumption that there will be changes in the model under test implied
by tradeoff analysis.

At higher levels of abstraction, the primary purposes of simulation are to provide
executable specifications and to verify the functionality of the design. In addition, at lower levels
of abstraction, smulation is used to verify that a set of tests will detect common hardware faults.
This is accomplished by exercising the design using a number of stressing test cases. Because of
the complexity of the tests, it is a good practice to identify the goals of the verification before the
actual simulation activity and to devise a test plan which ensures that the test bench meets the
desired goals. The different characteristics of a general test plan have already been explained in
section 2.2.

A good set of test vectors must be developed. While exhaustive testing can be adopted to
test models of lesser complexity, this could be an impractical method for testing large systems.
Common strategies for testing the model at the behavioral level of abstraction are to select tests
that will exercise all control flow paths in the model. Paths involving nested control constructs,
wait statements and nested procedure calls should be specifically targeted by the test vectors.
Test sets developed to test the models at higher levels of abstraction could be reused for testing
the models at lower levels. However, additional test sets usually have to be developed to detect
specific faultsin the lower level models.

Tests should be developed to verify the functionality of the system completely. This
includes tests of components of a design as well as tests for the design as awhole. It isimportant
to test each component as it is created, and not to assume correct operation. As components are
brought together to form a new level of hierarchy, interdependencies between components may
also cause unexpected behavior and so simulations must be performed at this level. Finaly the
entire design is brought together and testing of the design as a whole may begin, with the
knowledge that most of the errors should have been found by testing individual components.

A VHDL test bench typically consists of an architecture body containing an instance of
the component to be tested and processes that generate sequences of values on signals connected
to the component instance. The architecture body may also contain processes that verify that the
component instance produces the expected values on the output signals. Alternatively, we may
use the monitoring facilities of the simulator to observe the outputs visually.

The Sobel edge detector was developed and tested at the Behavioral, RTL and Gate
levels. At the Behaviora level, a model is described in terms of its input/output response,
whereas at the RTL and Gate level the models are described in terms of the interconnected
registers and gates respectively.
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3.2 Test bench development for a behavioral model

3.2.1 Methodology
This section explains the methodology adopted for developing a test bench for an
executable specification.

As stated in the previous section, the main purpose of testing at the behavioral level isto
validate the functionality of the executable specification and also define the correct responses to
the test vectors, so that, while testing the MUT at the lower levels its response at that level can be
compared with the output response of the MUT at the behavioral level.

The test bench module (TBM) typically performs the following functions :

1. At the start of the ssmulation, the TBM reads the input image data from an external text file
into an internal frame buffer and sends it to the MUT in an “appropriate format “, i.e., the
input test vectors in the external file could be of tymeger, but the ports of the MUT may
be ofstd_logic data type, which requires the TBM to convert the input dasadtdogic data
type and then send it to the MUT.

2. Once the data has been processed by the MUT, its output responses are stored in internal
frame buffers in the TBM. The main function of the TBM here is to decide the time when the
output response is to be written into the frame buffers.

3. Finally, the output responses from the frame buffers are written into external text files which
are then read by the comparators to compare the output response of the MUT with the
expected response and generate a PASS/FAIL indication.

Having identified the basic functions of the TBM, the sub-components needed to
implement them are then chosen :

* Clock component : This component is required to drive the entire system.

e MUT : This is the model under test

» Comparator : This component is used to compare the output response of the MUT with the
expected response.

3.2.2 Implementation
To illustrate the methodology in section 3.2.1, a test bench model has been developed for
the behavioral implementation of tebel Edge Detector. This chip implements the Sobel edge

detection algorithm which is commonly used in the image segmentation phase of image
processing systems. Details of the Sobel algorithm can be found in section 2.3 of this thesis.
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3.2.2.1 Test Setup

Figure 3.1 represents the diagram of the test bench module (TBM) used for testing the
Sobel Edge Detector component. It includes the MUT, a Clock generator to provide the clock for
the entire system, and two comparators to verify the correctness of the outputs.

The stimulus values or test vectors used to test the MUT have been provided in a file,
specified as the INPUT_FILE in Figure 3.1.The test bench module reads the input image data
from theimage file and stores it in an internal frame buffer.

Three signals are sent out from TBM to the MUT. The first signal is, INPUT which
carries the image data obtained from the input image file, the second signal is EDGE_START
which triggers the MUT to start processing the image data and the third signal is THRESHOLD
which is used to detect if the output pixel is an edge. The TBM drives the Clock by means of a
signal RUN and the output of the Clock generator which is CLOCK is mapped to the input port
CLOCK of the MUT. The comparators are triggered by means of asignal COMP_START.

TEST BENCH MODULE

DATA MAG_GOLD
I_. EILE
RUN—> run CLOCK cLoc
CLOCK
CLOCK GENERATOR COMP_START|Comp START | PASSFAIL,,
% -
| comp_mAG
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MUT Femmm oo .
Ty ! - MEMZLPROCESS -
- MEM1:PROCESS o _-__ 1
! ! CLOCK 1 ¢ ock oUTPUT [QUTRUT i:  FRAME 1; DATA [MAG_OUTPUT
DATA == =-=—- ! _EDGE START,, | EDGE_START ;1o - BURFER _ _ FILE
Input |+ 3, FrRAME 11N INPUT . |
file |, 1_BUFEER_T] THREsHOLD, | 'NPUT Pmmm o s o - ! DATA
X X | THRESHOLD DIR | DIR 1s  FRAME L' |DIR_OUTPUT [
! ! 7 V- - BURFER _ _ .7 EILE
L 1 S et
DATA
CLOCK

cLOCK
COMP_START | PASSEAIL .

»| COMP_START

| COMP_DIR
DIR_GOLD

DATA EILE

Figure 3.1 Test bench module for Sobel Edge detector

The MUT has two output signals namely OUTPUT and DIR which carry the magnitude
and direction outputs respectively. These data are sent to the test bench module where they are
stored in internal frame buffers and subsequently in separate text filess MAG_OUTPUT_FILE and
MAG_DIR_FILE. These outputs are then compared with the magnitude and direction outputs of
the GOLD modd in the two separate comparators each of which generates a PASS/FAIL
indication.
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3.2.2.2 Clock Generator component
Figure 3.2 shows the block diagram and the input and output waveforms for the Clock
generator component used to provide the clock pulses for the entire system.

The Clock generator model has one input namely RUN and one output CLOCK. From the
waveforms we can see that as soon as the input signal RUN rises, the clock output is scheduled,
and it remains high for the time period specified by HI_TIME and low for the time period
specified by LO_TIME. Thesum of HI_TIME and LO_TIME isthe clock period.

RUN —>| CLOCK —> cLock
GENERATOR

RUN —

CLOCK —  HI_TIME L
LO_TIME

Figure 3.2 Block diagram and input and output wavefor ms of the Clock
Generator component.

Figure 3.3 shows the entity declaration and behavioral architecture body of the Clock
Generator .

library IEEE;

use |[EEE.STD_LOGIC 1164.all;

———————————————————— interface declaration --------------------
entity CLOCK_GENERATORIs

generic(HI_TIME: TIME; -- the time period when CLOCK is’1’
LO TIME: TIME); -- the time period when CLOCK is’ O’
port (RUN: in STD_LOGIC; -- the start signal
CLOCK: out STD_LOGIC); -- system CLOCK

end CLOCK_GENERATOR;
———————————————————— behavioral description --------------------
architecture BEHAVIOR of CLOCK_GENERATOR s
begin
process
begin
—————— when RUN="1", generate clock signal ------
wait until RUN="1";
while RUN="1" loop
CLOCK<="1";
wait for HI_TIME;
CLOCK<="0;
wait for LO_TIME;
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end loop;
end process,
end BEHAVIOR,

Figure 3.3 Entity and ar chitecture of the Clock generator component.

The entity has two generic constants that are used to specify the shape of the clock
waveforms. HI_TIME specifies the pulse width and LO_TIME specifies the pulse separation.
Instead of hard-coding the timing values in the architecture of the Clock Generator we make use
of generics since they promote code reusability and increase the usefulness and lifetime of a
design. By providing the actua values of the constants much later in the design cycle, for
examplein a configuration file, the model can adapt to a variety of environments.

The architecture body contains a process to generate the clock signal. When the signal
RUN is ‘1’ the clock generator remains high for time period specifieHlbyIME and low for
time period specified byO_TIME.

3.2.2.3 Sobel Edge Detector component

CLOCK —
SOBEL L — outpuT
EDGE

EDGE_START — | DETECTOR

THRESHOLD —>

INPUT —>
—> DIR

Figure 3.4 Block diagram of the Sobel Edge Detector

Figure 3.4 represents the block diagram of the Sobel Edge detector component. It has four
input signals namelZLOCK, INPUT, EDGE_START and THRESHOLD. The output signals are
OUTPUT andDIR which are the magnitude and direction outputs of the Edge detector and these
are sent to the test bench module. Details of the Sobel Edge detector model can be found in [16].

3.2.2.4 Test Bench Module ( TBM)

The source code of the test bench module of the Sobel Edge detector model was divided
into several sections for easier readability. The section of the code in Figure 3.5 shows the entity
declaration and part of the architecture body. The entity declaration has no port list, since the test
bench is self-contained. Various generic constants are used within the entity to define the input
and output text files. These are explained in the source code. Apart from defining the input and
output files, we also use two generlggM_ROWS and NUM_COLS to define the size of the
input image and use the generic cons¥sAtT _CYCLES to specify the additional time we need
to wait before writing the output values of the Edge detector into the output frame buffer. This is
necessary so as to avoid writing the initial invalid data into the frame buffer. This value is
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defined as a generic as opposed to a constant, since the number of clock cycles we need to
specify varies with the abstraction level. For e.g. when we simulate the model at the behavioral
level we specify wait_cycles as 5; however when simulating the model at the RTL level we need
to include an additional 7 clock cycles.

Inside the architecture body, two array types namely FRAME_IMAGE and
FRAME_DIRECTION have been defined. This can be seen in the portion of the source code
labeled as (ARCHITECTURE BODY). FRAME IMAGE represents the input and output frame
buffers of integer data type. FRAME_DIRECTION represents the output frame buffer of
bit_vector data type.

The architecture body further includes the component declarations corresponding to the
clock generator, edge detector and comparators. The component Clock generator, Edge detector
and the comparators are instantiated and their port signals are mapped with port map statements
as shown in Figure 3.5.The local signalsin the architecture body are the same as the ports of the
components edge detector, clock generator and the comparators. An additional signal START has
been included to trigger the test bench module.

library |EEE;
useieee.STD_LOGIC 1164.all;
use STD.TEXTIO.all;

library BEH_INT;

use BEH_INT.IMAGE_PROCESSNG.all;
interface declaration

entity TEST is
generic( IN_FILE :STRING(1 to 11); -- INPUT image file
OUT_FILE :STRING(1 to 11); -- OUTPUT file for storing magnitude Outputs
DIR FILE :STRING(1 to 11); -- OUTPUT file which stores Dir ection Outputs of BIT_VECTOR type
NUM_ROWS  :NATURAL; -- number of rows in the INPUT image
NUM_COLS ‘NATURAL; -- number of columnsin the INPUT image
WAIT_CYCLES :NATURAL); -- time required before Outputs are written into frame buffers.
end TEST;

architecture description
architecture BENCH of TEST is
type FRAME_IMAGE isarray(1to NUM_ROWS1to NUM_COLS) of INTEGER,
type FRAME_DIRECTION isarray(1 to NUM_ROWS1 to NUM_COLS) of BIT_VECTOR(2 downto 0);
component instantiations-
component CLOCK_GENERATOR1
port( RUN: in STD_LOGIC;
CLOCK: out STD_LOGIC);
end component ;

component EDGE_DETECTOR1
port ( CLOCK: in STD_LOGIC;
EDGE_START : in STD_LOGIC;
INPUT: in PIXEL;
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THRESHOLD: in FILTER OUT;
OUTPUT: inout PIXEL;
DIR: inout DIRECTION);

end component;

component COMP_MAG1
port(CLOCK : in STD_LOGIC;
COMP_START : in STD_LOGIC:="'0');
end component;

component COMP_DIR1
port(CLOCK : in STD_LOGIC;
COMP_START : in STD_LOGIC:='0");
end component;

Sgnal declarations
signal RUN : STD_LOGIC:='0’;
signal CLOCK : STD_LOGIC:='0’;
signal START : STD_LOGIC:='0’;
signal INPUT, OUTPUT: PIXEL:=0;

signal THRESHOLD: FILTER OUT:=0;
signal DIR - DIRECTION;

signal EDGE_START: STD_LOGIC:='0’;
signal COMP_START : STD_LOGIC:="0;

begin

START<="0" after Ons,’1' after 5ns,’0" after 105 ns;
THRESHOLD <= 110 after Ons;

RUN<=transport '1" after O ns,’O’ after 100000 ns,

P1: CLOCK_GENERATOR1
port map(RUN,CLOCK);

P2: COMP_MAG1
port map(CLOCK,COMP_START);

P3: COMP_DIR1
port map(CLOCK,COMP_START);

P4 : EDGE_DETECTOR1
port map(CLOCK,EDGE_START,INPUT, THRESHOLD,OUTPUT,DIR);

Processes

MEMORYL1 : process

-- DETAILSIN FIGURE 3.6 & 3.9
end process;

end BENCH,;

Figure 3.5 Entity and Architectur e declar ations of thetest bench
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The architecture body contains a process. MEMORY1. MEMORY1 process is for
implementing the functions of the test bench detailed in section 3.2.1.

Figure 3.6 shows the first section for the source code of the MEMORY1 process. At the
rising edge of the clock, if signal START is ‘1’ then we initialize some internal variables as seen
from the code. We then have a case statement for the internal vatisgMevhich decides the
section of the test bench to be executed. If the conditiorBt¢®YE 1) is satisfied then the data
from the input image filkMAGEIN is read into a frame buffer namedPUT_IMAGE. A sample
iInput image data file is shown in Figure 3.7. Another two frame buffigiPUT_MAG_IMAGE
and OUTPUT_DIR_IMAGE are also created which store the magnitude and direction outputs
respectively. The frame bufferOUTPUT_MAG IMAGE and OUTPUT_DIR_IMAGE are
initialized to0 and“000” respectively. As soon as the input image file is completely read into the
frame buffer, BUSY is set to 2. In order to check if the entire image file has been read, we have an
assertion statement which generates a report ensuring that the image file has been read into the
frame buffer successfully. When BUSY=2 ,the image data from the frame buffer INPUT_IMAGE is
transferred to the edge detector component viaasigna INPUT. Also the signal EDGE_START is
set to ‘1’ for one clock cycle at the beginning of the data transfer to the MUT.

MEMORY1: process

Declaration of internal variables

variable VLINELVLINE2:LINE; -- for reading and writing from the INPUT and OUTPUT text files
variable BUSY:INTEGERrange0to 3; -- internal variableto trigger the different parts of the test bench
variable INPUT_IMAGE : FRAME_IMAGE; -- frame buffer to store INPUT image data
variable OUTPUT_MAG_IMAGE:FRAME_IMAGE;-- frame buffer to store magnitude outputs
variable OUTPUT_DIR_IMAGE:FRAME_DIRECTION;-- frame buffer to store the Direction outputs
variable Z:INTEGER; -- used for reading the input files

variable I,J:NATURAL:=1;-- used for indexing the frame buffers

variable X,Y:NATURAL:=2; -- used for indexing the frame buffers

variable COUNT:INTEGER: =0;-- used to specify when the outputs can be -- written into the buffers

--FILES-

fileIMAGEIN  :TEXTisinIN_FILE; --INPUT imagefile

file IMAGEOUT :TEXT isout OUT_FILE; --OUTPUT file for storing magnitude Outputs
file DIROUT :TEXT isout DIR_FILE; --OUTPUT file which stores Direction Outputs

begin

wait until rising_edge(CLOCK);

-- set theinternal BUSY signal
if START = "1’ then

BUSY :=1;
COUNT:=0;
I:=1;

J.=1;

X:=2;

Y:=2;

endif;
case BUSY is
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when 1 =>
load the image data file to the internal frame buffer
for iin1to NUM_ROWSIoop
readline(IMAGEIN,VLINED);
for jin1to NUM_COLSIloop
read(VLINEL,2);
INPUT_IMAGE(i j):= Z;
OUTPUT_MAG_IMAGK(i,)):=0;
OUTPUT_DIR_IMAGE(i,j):="000";
end loop;

end loop;
BUSY.=2;
———————— assert message after loading all the data:
assert (false) report "array read in";
when 2 =>

COUNT:=COUNT+1;
INPUT <= (INPUT_IMAGE(i,)));
if (I=1) and (J=1) then
EDGE_START<='1';
else
EDGE_START<='0’;
endif;
if I=NUM_ROWS) and (J=NUM_COLYS) then
1:=1;
J.=1;
elsif I=NUM_COLSthen
J.=1,;
l:=1+1;
else
Ji=J+1;
endif;

Figure 3.6 Section of the code of the Memory Process where theinput fileisread

100 100 100 10010000000
100 100 100 10010000000
100 100 100 10010000000
100 100 100 10010000000
100 100 100 10010000000
100 100 100 10010000000
100 100 100 10010000000
100 100 100 10010000000
100 100 100 10010000000
100 100 100 10010000000

Figure 3.7 Format of input imagefile
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Figure 3.9 shows the section of the code where the outputs of the MUT are written into
text files. We have an internal variable COUNT which determines when the output data should be
written into the output frame buffers. The variable COUNT is used here to ensure that only valid
data is written into the output frame buffers. As soon as the condition specified for count is
satisfied, the magnitude as well as the direction outputs of the Edge detector are written into
output frame buffers OUTPUT_MAG_IMAGE and OUTPUT_DIR_IMAGE respectively.

X - REPRESENTSINPUT IMAGE DATA

Figure 3.8 Portion of theimage data required by the MUT to start the edge detection
process.

As seen from Figure 3.8, the MUT can produce valid output data only after
(2*NUM_COLS + 3) data have been transferred to it from the test bench. In order to avoid invalid
output data being produced before this condition is satisfied, we have defined the condition of
(COUNT >=2*NUMCOLS + WAIT_CYCLES) in the source code. Apart from this fact, since we
also needed a few additional clock cycles to alow for delays in the MUT, we have specified
WAIT_CYCLES as 5 in the configuration declaration in Figure 3.12 for the MUT at the
behavioral level.

Once the data is written into the frame buffers, an internal variable BUSY is set to 3. Now
the magnitude and direction outputs are written into output text files IMAGEOUT and DIROUT
respectively. Assertion statements are used to indicate that the outputs have been written
successfully to the text files. After the outputs have been written, COMP_START is set high
which triggers the two comparators.

--This code is a continuation of the “when 2=>" from Figure 3.6--
------------ write the magnitude and direction outputs into internal frame buffers
if COUNT>=(2*NUM_COLS+WAIT_CYCLES) then --ready to write valid data--
if not(Y=1) and not(Y=NUM_COLS) then
OUTPUT_MAG_IMAGE(X,Y):= OUTPUT;
OUTPUT_DIR_IMAGE(X,Y) := STDLOGIC_TO_BIT(DIR);
end if;
Y:=Y+1,
if Y=NUM_COLS+1 then --start new row--
Y.=1,
X =X+1,
endif;
if (X=NUM_ROWS-1) and Y=NUM_COLSthen --entire image has been processed--
BUSY:=3;
end if;
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end if;
--Write the outputs to External text files—-
when 3 =>
RD_START<="0’;
for i in1to NUM_ROWSIoop
for jin 1to NUM_COLSIloop
write(VLINEL,OUTPUT_MAG_IMAGE(i,)));
write(VLINEL, ');
write(VLINE2,0OUTPUT_DIR_image(i,j));
write(VLINE2, ');
end loop;
writeline(IMAGEOUT,VLINEL);
writeline(DIROUT,VLINE2);
end loop;
———————— assert message after loading all the data:
assert (false) report "magnitude and direction outputs written to file";
COMP_START<="1"; --Trigger the Comparators
BUSY:=0;
when others=> null;
end case;
end process MEMORYZ;
end BENCH;

Figure 3.9 Section of the code for the memory process wher e the magnitude and
direction outputsarewritten into files.

3.2.2.5 Comparators
Figure 3.10 shows the block diagram of the Comparator component used to compare the

outputs of the MUT with the expected response and generate a PASS/FAIL indication. The
model has two inputs CLOCK and START . The START signal is used to trigger the comparator.

CLQCH =

STaRT =—/J
COMFARATOR

Figure 3.10 Block diagram of the Comparator component.

Figure 3.11 shows a portion of the source code for the Comparator component used to compare
the magnitude outputs. When an internal variable BUSY is set high, the data from the text files of
the GOLD model aswell asthe MUT, GOLD_MAGNITUDE and TEST_MAGNITUDE are read
into two frame buffers named GOLD_MAG_IMAGE and TEST_MAG_IMAGE.
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wait until rising_edge(CLOCK);
--Set theinternal BUSY signal high to start comparison--
if START =1’ then

if END_COMP_MAG ='0’ then

BUSY:="1";
endif;
endif;
if BUSY="1" then

---Read the files and compare the contents

foriin 1to NUM_ROWSIloop
readline(TEST_MAGNITUDE,VLINELY);
readline(GOLD_MAGNITUDE,VLINE2);
for jin1to NUM_COLSIloop
read(VLINEL,A);
read(VLINE2,B);
TEST_MAG_IMAGE(i j):=A;
GOLD_MAG_IMAGE(i j):=B;
if FLAG1="0" then
if TEST_MAG_IMAGE(i,j) /= GOLD_MAG_IMAGE(i,j) then

--set flag high--
FLAGL.="1";
endif;
endif;
end loop;
end loop;

if FLAG1="1" then
-- assert message after comparing all the data
assert (false) report "MAGNITUDE VALUES DO NOT MATCH -- FAIL";
else
assert (false) report "MAGNITUDE VALUESMATCH -- PASS';
endif;
END_COMP_MAG<="1";
endif;
BUSY:='0;
end process;
end COMPARE;

Figure 3.11 Portion of the source code for the Comparator component.

We then compare the magnitude outputs of the MUT with that of the GOLD model one
pixel a atime and if thereis an error, we set an internal variable FLAG1 to ‘1'. If FLAGL is set
high, we generate a report indicating that the outputs of the MUT don’t match the outputs of the
GOLD model, or else the comparator provides a PASS indication. The Comparator for the
direction outputs was developed along similar lines.
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3.2.2.6 Configuration declarations

VHDL allows a great deal of flexibility in configuring a specific model for simulation.
Configurations allow selection of different architecture bodies for components and also alow
generic constants to be specified in them rather than in the component instance and this makes
the simulation repeatable. Another use of configurations is to define port maps, particularly to
specify type conversion functions. The combination of the selection of architecture bodies and
the choice of type conversion functions is a key part of the construction of a mixed-level-of-
abstraction model using components from a design database in which components are modeled at
multiple levels. Effective use of configuration declarations can provide significant assistance in
the configuration management of models. However, care must be taken to centralize the late
binding decisions in the configuration declaration rather than distribute this information
throughout the different compilation units. For example, if the same test bench can be used with
different external data files, the names of the data files should be defined in the configuration
declaration rather than in the architecture body of the design entity that reads the file. An
example configuration fileis shown in Figure 3.12.

--declaration of an empty top level component--
entity TB_CONFIG is
end TB_CONFIG;

architecture TEST BENCH of TB_CONFIG is
component TEST1
end component;

begin

con: TEST],;

end TEST_BENCH;

CONFIGURATION DECLARATION

library IEEE;
useieee.STD_LOGIC 1164.all;

library BEH_INT;

use BEH_INT.IMAGE_PROCESSNG.all;
use BEH_INT.all;

use STD.TEXTIO.all;

configuration CONFIG_B_INT of TB_CONFIG is
for TEST_BENCH

for con: TEST1 use entity WORK.TEST(BENCH)
generic map("tesv_i2.dat","test_ol.dat","test_dl.dat",10,10,5);

for BENCH
for P1:CLOCK_GENERATORI use entity BEH_INT.CLOCK_GENERATOR(BEHAVIOR)

generic map(HI_TIME=>75 ns,LO_TIME=>25 ns);
end for;
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for P2: COMP_MAGT1 use entity WORK.COMP_MAG(COMPARE)
generic map(“test_ol.dat","test_gm.dat",10,10);
end for;

for P3: COMP_DIRL1 use entity WORK.COMP_DIR(COMPARE)
generic map(“test_dl.dat","test_gd.dat",10,10);
end for;

for PA:EDGE_DETECTORL use entity BEH_INT.EDGE_DETECTOR(BEHAVIOR)
generic map(NUM_ROWS=>10,NUM_COLS=>10);
end for;
end for;
end for;
end for;

Figure 3.12 Configuration declaration for Sobel Edge detector

The configuration declaration in Figure 3.12 configures the test bench for testing the
behavioral architecture of the Sobel Edge detector. In order to declare the input and output text
files as generics in the configuration file, we have declared an entity TB_CONFIG with an
architecture containing one component, TEST1. The configuration declaration CONFIG_B_INT
then associates the CON instance of TB_CONFIG with the test bench entity (WORK.TEST
(BENCH)), instance P1 with the Clock generator(BEH_INT.CLOCK_GENERATOR (BEHAVIOR)),
instance P2 with the component COMP_MAG (WORK.COMP_MAG(COMPARE)) for comparing
the magnitude outputs, instance P3 with COMP_DIR(WORK.COMP_DIR(COMPARE)) for
comparing the direction outputs and instance P4 with that of the Sobel Edge Detector
(BEH_INT.EDGE_DETECTOR(BEHAVIOR)). When we need to test the Edge detector model at
lower levels of abstraction then we just need to change the name of the architecture and library in
the configuration without having to change anything else in the model. Thisis explained in detail
in section 3.3.3. Generic constants have aso been declared in the configuration. For the top level
entity TEST the various input and output file names have been specified. Apart from the file
names NUM_ROWS and NUM_COLS have been specified as 10 and WAIT_CYCLES has been
specified as 5 since the model being smulated is at the behavioral level. For the Clock Generator
HI_TIME and LO_TIME have been specified as 75 ns and 25 ns respectively.

3.2.3 Example Test results

The functionality of the edge detector model was verified effectively by developing a test
plan as shown in Table 3.1. The test plan clearly lists the various test goals, stimuli source, gold
data source, acceptable outcome and the desired coverage value for each test.

To illustrate the use of the test plan, we will show how to obtain test results for test numbers

1.1A and 1.1B. These two test goals ensure that the MUT detects horizontal and vertical edges
and that appropriate direction values are assigned to each edge. In the test plan table, the
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Table3.1 Test Plan

Test Test | MUT Stimuli Gold Data | Acceptable Coverage | Expected

Number | Goal | Configuration/ Source Source Outcome Measure | Coverage
L evel of Abstraction Value

11A 11 Executable tesv_il.dat | test gl.dat | All H edgesdetected with | Statement | 100%
Specification correct direction

11B 12 Executable tesv_il.dat | test gl.dat | All V edgesdetected with | Statement | 100%
Specification correct direction

11C 13 Executable tesv_i2.dat | test g2.dat | All L edgesdetected with | Statement | 100%
Specification correct direction

11D 14 Executable tesv_i2.dat | test g2.dat | All R edgesdetected with | Statement | 100%
Specification correct direction

11E 15 Executable tesv_il.dat | test gl.dat | All cornersdetected with Statement | 100%
Specification correct direction

11F 16 Executable tesv_i3.dat | test g3.dat | Single pixel holes should Statement | 100%
Specification be filled

11G 1.7 Executable tesv_id.dat | test gd4.dat | Multi-pixel holesremain Statement | 100%
Specification unfilled

1.1H 1.8 Executable tesv_ib.dat | test gb.dat | Single pixel corner holes Statement | 100%
Specification filled

111 19 Executable tesv_i6.dat | test g6.dat | Multi pixel corner holes Statement | 100%
Specification remain unfilled

117 1.10 | Executable tesv_i7.dat | test g7.dat | Singlepixel holesignored | Statement | 100%
Specification

11K 1.11 | Executable tesv_i8.dat | test g8.dat | Noisefiltered Statement | 100%
Specification appropriately and ignored

The Test Goal Hierarchy

Functional Verification Tests
1.1 A. Horizontal Edges Detected and Given Appropriate Direction
1.1 B. Vertical Edges Detected and Given Appropriate Direction

1.1 C. Left Diagona Edges Detected and Given Appropriate Direction

1.1 D. Right Diagonal Edges Detected and Given Appropriate Direction

1.1 E. Corners Detected and Given Appropriate Direction
1.1 F. Single pixel “holes” in edges are filled
1.1 G. Multi-pixel “holes” are unfilled
1.1 H. Single pixel corner “holes” are filled

1.11.

1.1 J. Single pixel spots are ignored
1.1 K. Appropriate handling of “rough” edges (effects of aliasing on edge detection for varying edge angles)

Multi-pixel corner “holes” are unfilled
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first column, test number corresponds to the test goals defined below the table. The input test

Image shown in Figure 3.13(a) is a synthetically generated image that contains horizontal and

vertical edges. This image is placed in file “tesv_il.dat” as indicated in cof@tmmuli
source”. The expected response for the input image is shown in Figure 3.13(b). This image is

placed in file “tesv_gl.dat” as indicated in colunt®ofd data source”. The output response of

the MUT after simulation is compared with this image(tesv_gl.dat) to verify its correctness. The
edge detected output image produced by simulation is shown in Figure 3.13(c). Both the
horizontal and vertical edges for the image have been detected correctly.

(@) (b) (©)

Figure3.13 a)lnput image, b)Expected response, ¢) Edge detected output image.

The direction values for the horizontal and the vertical edges that were output by the
simulation are as follows :

HORIZONTAL EDGES VERTICAL EDGES
1 “110” - TOP EDGE “000” - LEFT EDGE
2 “110” - MIDDLE EDGE “000” - MIDDLE EDGE
3 “010"- BOTTOM EDGE “100” - RIGHT EDGE

These directions were computed according to Figure 2.4. The results are in line with the
acceptable outcome listed in the table. The coverage of the MUT was verified by the Synopsys
simulator which indicated that 100% coverage was obtained. This value was in agreement with
the goal specified in the colum@overage value’of the Test plan table.

After testing the MUT completely for all its functions with synthetically generated

images, it was finally tested with a real world image. The input image along with its edge
detected output are shown in Figure 3.14(a) and 3.14(b) respectively.
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Figure 3.14(a) Input image of M1A1 tank

Figure 3.14 (b) Edge detected output image of the M 1A1 tank.
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3.3 Test bench development for a structural model

3.3.1 Methodology

This section explains the methodology adopted for testing a model at the structural level
of abstraction.

The test bench model for the behavioral model can be reused to test the MUT at the
structural level. This would simply involve replacing the architecture and the library name in the
configuration declaration. We could then simulate the test bench and compare the results of the
MUT with the output response of the MUT at the behaviora level. The procedure adopted for
testing is detailed below :

1. First we test each sub-component in the MUT separately with its own test bench. Henceiit is
necessary that test benches be developed for each sub-module that forms a part of the entire
system.

2. After testing al the lower level modules, these are integrated by a higher level structura
design entity and the resulting model is tested with its test bench. In this way, we work our
way up the hierarchy of structural models.

3. All the models are finally integrated together into the top-most level and this model is tested
with the test bench developed for the behavioral model.

4. The outputs of the MUT are then compared with the output response of the executable
specification in a comparator which verifies the response.

This hierarchy of test benches provides a mechanism for the bottom-up validation of the
model and facilitates debugging.

3.3.2 Testing Procedure

In order to illustrate the methodology in Section 3.3.1 let us consider Figure 3.15 which
shows the hierarchy of a structural model for the Sobel edge detector. This model is a mixed
abstraction model since it does not have the same level of detail at each leaf node. As seen from
the figure, the edge detector consists of three interconnected components : a memory system
(MEM_PROCESSOR), a window processor (WIN_PROCESSOR) and a direction and magnitude
processor (MAG_PROCESSOR). The memory system consists of two components : an Address
Generator (ADDR_GEN) and the Memory (MEMORY) component. It stores the input image pixel
values and sends out three pixels each clock cycle to the window processor. The window
processor as seen from Figure 3.15 consists of four interconnected components. horizontal filter
(HOR_FILTER), vertical Filter (VERT_FILTER), left diagona filter (LEFT_FILTER) and right
diagonal filter (RIGHT_FILTER).
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Figure 3.15 Hierarchy of a Structural model of the Sobel edge detector

The four components compute the horizontal, vertical, and left and right diagonal filter
outputs respectively. The four filter outputs are passed to the direction and magnitude processor
which computes the direction and magnitude output.

The testing procedure adopted for testing the edge detector is based on the methodology
illustrated in Section 3.3.1. Once the behavioral models for al the sub-components were
developed, each of the components were tested individually to verify their functionality and then
these modules were integrated to form the upper level module which was then tested with its own
test bench. For the case of the Window processor, we first tested the four filters individually and
then tested the Window processor as a whole. The source code for al the test benches can be
found in Appendix A. Apart from checking for functionality of all the sub-components, extensive
testing was done to check for faults in the memory system. The process of memory testing is
explained in detail in section 4.2 of thisthesis.

3.3.3 Configuration Example

Let us consider the source code shown in Figure 3.16 which is for a structural model of
the window processor. As aready mentioned, the window processor has four components: a
horizontal filter, a vertical filter, a left diagonal filter and a right diagonal filter. The structural
model shown in Figure 3.16 is just a skeleton that only includes component and instance
declarations. The port maps and generic maps for the structural model have been deferred to the
configuration declaration which is shown later in Figure 3.18.
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library |EEE;
use IEEE.STD_LOGIC_1164.all;
library BEH_INT;
use BEH_INT.IMAGE_PROCESSNG.all;
library STRUC_INT;
use STRUC INT.all;
----------- interface declaration
entity WINDOW_PROCESSOR s
generic(HORIZ_DELAY,VERT DELAY,LEFT DIAG_DELAY,RIGHT DIAG DELAY,
WAIT_TIME: TIME);

port( CLOCK: instd_logic:="0"; -- system CLOCK
P1,P2,P3: in PIXEL:=0; -- input Pixels
W_H: inout FILTER_OUT:=0;  -- Horizontal filter output
W_V: inout FILTER_OUT:=0;  -- vertical filter output
W_DL: inout FILTER_OUT:=0;  -- left diagonal filter output

W_DR: inout FILTER OUT:=0); -- right diagonal filter output

end WINDOW_PROCESSOR,;
——————————— structural description
architecture STRUCTURE of WMINDOW_PROCESSORis
----------- empty horizontal filter component
component HORIZONTAL_FILTER1
end component;

——————————— empty vertical filter component
component VERTICAL_FILTERL

end component;

——————————— empty left diagonal filter component
component LEFT_DIAG_FILTERL

end component;

——————————— empty right diagonal filter component
component RIGHT_DIAG_FILTER1

end component;

begin

————————————— empty components instantiation
HP: HORIZONTAL_FILTERY,;
VP: VERTICAL_FILTERY,

LDP: LEFT_DIAG_FILTERL,

RDP: RIGHT_DIAG_FILTERY,

end STRUCTURE;

Figure 3.16 Structural model for Window pr ocessor
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Figure 3.17 Diagram of the Window Processor with empty sockets.

A block diagram for the model in Figure 3.16 is shown in Figure 3.17. The block diagram
includes external signals Clock, P1, P2, P3, W _H, W_V, W_DL and W_DR which correspond to
the port names of the window processor entity shown in Figure 3.16. Empty (floating) sockets
represent the four components: horizontal, vertical, left diagonal and right diagonal filter. The
component names appear inside the empty sockets. The instance names appear outside the
sockets. As seen from Figure 3.17, there are no connections between the external signals and the
sockets. The empty sockets represent the unbound instance of a component. All the connections
between the external signals and the internal signals of the components in the sockets are
deferred for the configuration.

--CONFIGURATION SPECIFICATION FOR WINDOW PROCESSOR
for WINP: WINDOW_PROCESSOR1 use entity STRUC_INT.WINDOW_PROCESSOR(STRUCTURE)
generic map(HORIZ_DELAY=> 3 ns, VERT_DELAY=> 3 nsLEFT_DIAG_DELAY=> 3ns,

RIGHT DIAG_DELAY=> 3 ns, WAIT_TIME =>100 ns)
port map(CLOCK,MEM_OUT1,MEM_OUT2,MEM_OUT3,E_H,E_V,E_DL,E_DR);

for STRUCTURE

for HP:HORIZONTAL_FILTER1 use entity STRUC_STD.HORIZONTAL_FILTER(BEHAVIOR)

generic map(HORIZ_DELAY => HORIZ DELAY,WAIT_TIME=>WAIT_TIME)

port map (CLOCK=> CLOCK,P1_H=>INT_TO_STDLOGIC8(P1), P3_ H=>INT_TO_STDLOGIC8(P3),
STDLOGIC TO_INT(H)=>INT_TO_STDLOGIC12(W_H));

end for;
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for VP:VERTICAL_FILTER1 use entity STRUC_INT.VERTICAL_FILTER(BEHAVIOR)
generic map(VERT_DELAY => VERT_DELAY,WAIT_TIME=>WAIT_TIME)

port map (CLOCK=> CLOCK,P1_V=>P1, P2 V=>P2,P3 V=>P3, V=>W_V);

end for;

for LDP: LEFT_DIAG_FILTER1 use entity STRUC_INT.LEFT_DIAG_FILTER(BEHAVIOR)
generic map(LEFT_DIAG_DELAY => LEFT_DIAG_DELAY, WAIT_TIME => WAIT_TIME)
port map (CLOCK=>CLOCK,P1 L =>P1,P2 L=>P2,P3 L=>P3,DL=>W DL);

end for;

for RDP: RIGHT_DIAG_FILTER1 use entity STRUC_INT.RIGHT_DIAG_FILTER(BEHAVIOR)
generic map(RIGHT_DIAG_DELAY => RIGHT DIAG_DELAY, WAIT_TIME => WAIT_TIME)
port map (CLOCK=>CLOCK,P1 R=>P1,P2 R=>P2,P3 R=>P3DR=>W DR);

end for;

end for;
end for;

Figure 3.18 Portion of the sour ce code for the configuration for structural model of the
MUT.
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Figure 3.19 Diagram for Window Processor with the chipsinserted in the sockets.
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Let us consider Figure 3.18. It shows the source code of the configuration declaration for
the structural model shown in Figure 3.16. The effect of the configuration is shown in Figure
3.19. Note that the configuration specifies interconnections to the component instances and
specifies the names of library “chips” that are to be inserted into the floating sockets. As seen
from Figure 3.18, the generic maps and port maps for the sub-components of the window
processor have been moved to the configuration declaration. This is done mainly to facilitate the
implementation of mixed data type models.

In the configuration example shown in Figure 3.18, the horizontal filter is of std_logic
data type whereas the rest of the components of the window processor are of integer data type.
Hence, the inputs to the horizontal filter have to be converted to std_logic data type before they
can be connected to the input ports of the component. This is shown in the block diagram in
Figure 3.19 as well as in the source code in Figure 3.18 by the following statements :

P1_H=>INT_TO_STDLOGIC8(P1);
P3_H=>INT_TO_STDLOGIC8(P3);

Here the external signals P1 and P3 are first converted from integer to std_logic data type
and then connected to the input ports of the Horizontal filter P1_H and P3_H respectively.
Similarly the output H of the Horizontal filter is converted back to integer data type from
std_logic data type by the following statement :

STDLOGIC_TO_INT(H)=>INT_TO_STDLOGIC12(W_H);

For the other sub-components of the window processor , the external signals are simply
connected to the input ports of each component. This can be seen clearly from both the block
diagram in Figure 3.19 and the source code in Figure 3.18. In this manner we can easily
implement mixed data type models.

3.4 Test Bench development of Register Transfer L evel model

The test bench for the behavioral model can be reused to test the function of the RTL
model. In order to achieve this we had to replace only the architecture and library names for all of
the filters in the Window Processor and the Magnitude and Direction processor in the
configuration declaration fromSTRUC_INT to STRUC RTL. Also the generic constant
WAIT_CYCLES in the component TEST in the configuration declaration must be altered to 13
since an additional five clock cycles are required for the register delays in comparison with the
MUT at the structural level of abstraction. The testing methodology was similar to the one
adopted for testing structural level models. Each of the sub-components were first tested with
their individual test benches and then these were integrated into the upper level models which
were tested with their own test bench model.
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3.5 Test Bench development for gate level models

Having synthesized the MUT at the RTL level into a netlist, it is important to verify the
functionality of the synthesized netlist to ensure it still matches the intended functionality. This
step is important since a synthesized tool may make certain assumptions or interpretations of the
VHDL code that may not match those intended by the modeler.

The RTL models which were synthesized were the four filters in the Window Processor
and the Magnitude Processor.

3.5.1 Methodology
The methodology adopted for testing synthesized circuits is explained below.

The test bench model developed for the behavioral model of the MUT can be reused to
test the model at the gate level. One additional feature is required, namely a comparison process
which compares the output of the model at the behavioral level with that at the gate level and
generates a PASS/FAIL indication must be added.

The procedure adopted for testing is detailed below :

1. Thecircuits ( at the gate as well asthe behaviora level) arefirst instantiated in the test bench
along with the Clock Generator component.

2. A comparison process is then developed, which compares the outputs of the two models, one
bit at atime and generates a PASS/ FAIL indication.

3. In order to specify the generic values a configuration needs to be developed for the test
bench. Initially some arbitrary values are specified for all the generic constants of the
executable specification of the model and the models are simulated. The delay time between
the models at the behavioral and gate level can be extracted by observing the simulator
outputs.

4. This extracted value can be then be back annotated into the generic constants of the
executable specification, and the test vectors can be re-applied to compare the outputs of the
two models.

3.5.2 Implementation

In order to illustrate the above methodology, we will use the horizontal filter circuit.

Figure 3.20 shows a portion of the source code for the test bench used to test this model. The test
bench developed compares the outputs of the behavioral and the gate level model of the
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horizontal filter. We simulate the behaviora as well as the gate level models simultaneously and
compare the resultant outputs to ensure that the outputs match.

The test bench developed compares the outputs of the models. The architecture body
includes component declarations corresponding to the Clock generator (CLOCK1), Horizontal
filter component at the behavioral level (HORIZONTAL_FILTER1) and the synthesized model of
the Horizontal filter component (HORIZONTAL_FILTER2). The COMPARE process shown in
Figure 3.20 is now explained in detail. In this process, the outputs of HORIZONTAL_FILTER1 and
HORIZONTAL_FILTER2 are compared and if they are not equal, an internal variable FLAG is set
to high else the FLAG is set to low. We then have two assertion statements which alert the user if
the outputs of the two components match depending on the value of the flag variable.

--COMPONENT INSTANTIATIONS—
component CLOCK_GENERATOR1
port (RUN :in STD_LOGIC;
CLOCK: out STD_LOGIC);
end component;
component HORIZONTAL_FILTER1
port (CLOCK: in STD_LOGIC:='0";
P1,P3:in STD_LOGIC_VECTOR(7 downto 0):="00000000";
H: out STD_LOGIC_VECTOR(11 downto 0):="000000000000");
end component;

component horizontal_filter2
port (CLOCK: in std_logic:='0";
P1,P3:in STD_LOGIC_VECTOR(7 downto 0):="00000000";
H: out STD_LOGIC_VECTOR(11 downto 0):="000000000000");
end component;

Begin

L1: CLOCK_GENERATOR1
PORT MAP(RUN,CLOCK);

L2: HORIZONTAL_FILTER1
PORT MAP(CLOCK,P1,P3,H);

L3: HORIZONTAL_FILTER?2
PORT MAP(CLOCK,P1,P3,H1);

--PROCESSES--
COMPARE : process
variable FLAG : STD_LOGIC :='0";

begin
wait until rising_edge(CLOCK);
if H/=H1 then
FLAG :='1";
else
FLAG :='0"

41



end if;

if FLAG ="1' then

-- assert message after comparing all the data
assert (not FLAG = '1") report 'OUTPUTS DO NOT MATCH -- FAIL"
severity WARNING ;

else
assert (not (not FLAG = "1") )report 'OUTPUTS MATCH -- PASS"
severity WARNING ;

end if;

end process;

end COMPARE;

Figure 3.20 Portion of the sour ce code of the test bench model to compar e the outputs of
the Horizontal filter at the behavioral and gate level.

The configuration for testing the horizontal filter componentsis shown in figure 3.21.

configuration CONFIG_HOR of TBis
for compare

for L1:CLOCK_GENERATOR1 use entity BEH_STD.CLOCK_GENERATOR(BEHAVIOR)
generic map(HI_TIME=>75ns,LO_TIME=>25 ns);
end for;

for L2ZHORIZONTAL_FILTERL1 use entity BEH_STD.HORIZONTAL_FILTER(BEHAVIOR)
generic map(HORIZ DELAY=>1 NSWAIT_TIME=>100 NS);
end for;

for L3;: HORIZONTAL_FILTER2 use entity STRUC_GATE.HORIZONTAL_FILTER(SYN_ SYN);
end for;

end for;

end;

Figure 3.21 Configuration for the Horizontal filter

The configuration shown in Figure 3.21 is similar to the source code of Figure 3.12. In the
configuration specification statements, we choose the component instances of Clock generator,
behavioral model of the Horizontal filter and the synthesized model of the Horizonta filter from
the BEH_INT, BEH_STD and STRUC_GATE libraries respectively. Initially we define the generic
value (WAIT_TIME) for the executable specification of the horizontal filter as 0 ns and apply the
test bench in Figure 3.20.The simulation output and the report generated for thistest are shown in
Figures 3.22 and 3.23. From Figure 3.22 we can see that signal H1 which is the output of the
synthesized model is delayed by 100 ns compared to the signal H, the output of the behavioral
model. Hence we now have the exact time delay associated with the gate level model. We can
back-annotate this value of 100 ns into the behavioral model by specifying WAIT_TIME as 100 ns
as shown in Figure 3.21. The resultant simulation output and the report is shown in Figures 3.24
and 3.25. As seen from Figure 3.24, the two outputs H and H1 match perfectly. In the reports
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shown in Figures 3.23 and 3.25 we have shown the results only after 605 ns, because this is the
earliest time for which valid data is generated from the horizontal filters.
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Figure 3.22 Simulation Output with generic constant wait_time = 0 nsfor the behavioral
model of the Horizontal filter

Assertion WARNING at 605 nsin design unit TB(COMPARE) from process /TB/COMPARE:
“OUTPUTS DO NOT MATCH — FAIL”
Assertion WARNING at 705 nsin design unit TB(COMPARE) from process /TB/COMPARE:
“OUTPUTS DO NOT MATCH - FAIL"
Assertion WARNING at 805 nsin design unit TB(COMPARE) from process /TB/COMPARE:
“OUTPUTS DO NOT MATCH — FAIL”
Assertion WARNING at 905 nsin design unit TB(COMPARE) from process /TB/COMPARE:
“OUTPUTS DO NOT MATCH - FAIL"

Figure 3.23 Report generated for the Simulation shown in figure 3.22.
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Figure 3.24 Simulation Output with generic constant wait_time = 100 nsfor the behavioral
model of the Horizontal filter

Assertion WARNING at 605 nsin design unit TB(COMPARE) from process /TB/COMPARE:
“OUTPUTS MATCH — PASS”
Assertion WARNING at 705 nsin design unit TB(COMPARE) from process /TB/COMPARE:
“OUTPUTS MATCH - PASS”
Assertion WARNING at 805 nsin design unit TB(COMPARE) from process /TB/COMPARE:
“OUTPUTS MATCH — PASS”
Assertion WARNING at 905 nsin design unit TB(COMPARE) from process /TB/COMPARE:
“OUTPUTS MATCH - PASS”

Figure 3.25 Report generated for the Simulation shown in figure 3.24.



