
Fu-hua Huang Chapter 2. Convolutional Codes 4

Chapter 2. Convolutional Codes

This chapter describes the encoder and decoder structures for convolutional codes.
The encoder will be represented in many different but equivalent ways. Also, the main
decoding strategy for convolutional codes, based on the Viterbi Algorithm, will be
described. A firm understanding of convolutional codes is an important prerequisite to
the understanding of turbo codes.

2.1 Encoder Structure

A convolutional code introduces redundant bits into the data stream through the
use of linear shift registers as shown in Figure 2.1.

+

+

DD

+DDD
x(1)

x(2)

c(1)

c(2)

c(3)

Figure 2.1: Example convolutional encoder where x(i) is an input information bit
 stream and c(i) is an output encoded bit stream [Wic95].

The information bits are input into shift registers and the output encoded bits are obtained
by modulo-2 addition of the input information bits and the contents of the shift registers.
The connections to the modulo-2 adders were developed heuristically with no algebraic or
combinatorial foundation.

The code rate r for a convolutional code is defined as

r
k

n
= (2.1)

Fu-hua Huang Chapter 2. Convolutional Codes 5

where k is the number of parallel input information bits and n is the number of parallel
output encoded bits at one time interval. The constraint length K for a convolutional code
is defined as

K m= + 1 (2.2)
where m is the maximum number of stages (memory size) in any shift register. The shift
registers store the state information of the convolutional encoder and the constraint length
relates the number of bits upon which the output depends. For the convolutional encoder
shown in Figure 2.1, the code rate r=2/3, the maximum memory size m=3, and the
constraint length K=4.

A convolutional code can become very complicated with various code rates and
constraint lengths. As a result, a simple convolutional code will be used to describe the
code properties as shown in Figure 2.2.

DD

+

+

c(2)

c(1)

x(1)

Figure 2.2: Convolutional encoder with k=1, n=2, r=1/2, m=2, and K=3.

2.2 Encoder Representations

The encoder can be represented in several different but equivalent ways. They are
1. Generator Representation
2. Tree Diagram Representation
3. State Diagram Representation
4. Trellis Diagram Representation

Fu-hua Huang Chapter 2. Convolutional Codes 6

2.2.1 Generator Representation

Generator representation shows the hardware connection of the shift register taps
to the modulo-2 adders. A generator vector represents the position of the taps for an
output. A “1” represents a connection and a “0” represents no connection. For example,
the two generator vectors for the encoder in Figure 2.2 are g1 = [111] and g2 = [101]
where the subscripts 1 and 2 denote the corresponding output terminals.

2.2.2 Tree Diagram Representation

The tree diagram representation shows all possible information and encoded
sequences for the convolutional encoder. Figure 2.3 shows the tree diagram for the
encoder in Figure 2.2 for four input bit intervals.

0

1

0 0

1 1

0 0

0 0
0 0

1 1

1 1

1 1

1 0

1 0

1 0

0 1

0 1

0 1

1 1

0 0

0 1

1 0

0 0

1 1

1 0

0 1

1 1

0 0

0 1

1 0
1 0

0 1

0 0

1 1

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 2.3: Tree diagram representation of the encoder in Figure 2.2 for four input
 bit intervals.

In the tree diagram, a solid line represents input information bit 0 and a dashed line
represents input information bit 1. The corresponding output encoded bits are shown on
the branches of the tree. An input information sequence defines a specific path through
the tree diagram from left to right. For example, the input information sequence

Fu-hua Huang Chapter 2. Convolutional Codes 7

x={1011} produces the output encoded sequence c={11, 10, 00, 01}. Each input
information bit corresponds to branching either upward (for input information bit 0) or
downward (for input information bit 1) at a tree node.

2.2.3 State Diagram Representation

The state diagram shows the state information of a convolutional encoder. The
state information of a convolutional encoder is stored in the shift registers. Figure 2.4
shows the state diagram of the encoder in Figure 2.2.

1 0

0 1

0 0 1 1

0/00

1/11

0/10

1/01

1/10

0/01

1/00

0/11

Figure 2.4: State diagram representation of the encoder in Figure 2.2.

In the state diagram, the state information of the encoder is shown in the circles. Each
new input information bit causes a transition from one state to another. The path
information between the states, denoted as x/c, represents input information bit x and
output encoded bits c. It is customary to begin convolutional encoding from the all zero
state. For example, the input information sequence x={1011} (begin from the all zero
state) leads to the state transition sequence s={10, 01, 10, 11} and produces the output
encoded sequence c={11, 10, 00, 01}. Figure 2.5 shows the path taken through the state
diagram for the given example.

Fu-hua Huang Chapter 2. Convolutional Codes 8

1 0

0 1

0 0 1 1

0/00

1/11

0/10

1/01

1/10

0/01

1/00

0/11

Figure 2.5: The state transitions (path) for input information sequence {1011}.

2.2.4 Trellis Diagram Representation

The trellis diagram is basically a redrawing of the state diagram. It shows all
possible state transitions at each time step. Frequently, a legend accompanies the trellis
diagram to show the state transitions and the corresponding input and output bit mappings
(x/c). This compact representation is very helpful for decoding convolutional codes as
discussed later. Figure 2.6 shows the trellis diagram for the encoder in Figure 2.2.

Fu-hua Huang Chapter 2. Convolutional Codes 9

States

0 0

0 1

1 0

1 1

Time0 1 2 3 4

TRELLIS DIAGRAMStates

0 0

0 1

1 0

1 1

Time

i i+1

0/00

1/11 0/11

1/00

0/10

1/01 0/01

1/10

LEGEND

States

0 0

0 1

1 0

1 1

Figure 2.6: Trellis diagram representation of the encoder in Figure 2.2 for four
 input bit intervals.

Figure 2.7 shows the trellis path for the state transitions in Figure 2.5.

States

0 0

0 1

1 0

1 1

Time0 1 2 3 4

TRELLIS DIAGRAM

1/11

0/10
1/00

1/01

Figure 2.7: Trellis path for the state transitions in Figure 2.5.

Fu-hua Huang Chapter 2. Convolutional Codes 10

2.3 Catastrophic Convolutional Code

Catastrophic convolutional code causes a large number of bit errors when only a
small number of channel bit errors is received. This type of code needs to be avoided and
can be identified by the state diagram. A state diagram having a loop in which a nonzero
information sequence corresponds to an all-zero output sequence identifies a catastrophic
convolutional code. Figure 2.8 shows two examples of such code.

1/00

Si

Si

Sk

Sj

0/00

1/00

1/00

Figure 2.8: Examples of catastrophic convolutional code.

2.4 Hard-Decision and Soft-Decision Decoding

Hard-decision and soft-decision decoding refer to the type of quantization used on
the received bits. Hard-decision decoding uses 1-bit quantization on the received channel
values. Soft-decision decoding uses multi-bit quantization on the received channel
values. For the ideal soft-decision decoding (infinite-bit quantization), the received
channel values are directly used in the channel decoder. Figure 2.9 shows hard- and soft-
decision decoding.

Fu-hua Huang Chapter 2. Convolutional Codes 11

Convolutional
Encoder

BPSK
Modulator

c=0 -> send -1
c=1 -> send +1

Channel

BPSK
Demodulator

Convolutional
Decoder Hard-Decision

rin<=0 -> rout=0
rin>0 -> rout=1

Noise

x c

y
Soft-Decisionr

r=r out rin

Figure 2.9: Hard- and Soft-decision decoding [Woe94].

2.5 Hard-Decision Viterbi Algorithm

For a convolutional code, the input sequence x is “convoluted” to the encoded
sequence c. Sequence c is transmitted across a noisy channel and the received sequence r
is obtained. The Viterbi algorithm computes a maximum likelihood (ML) estimate on the
estimated code sequence y from the received sequence r such that it maximizes the
probability p(r |y) that sequence r is received conditioned on the estimated code sequence
y. Sequence y must be one of the allowable code sequences and cannot be any arbitrary
sequence. Figure 2.10 shows the described system structure.

Convolutional
Encoder

Channel
Viterbi
Decoder

x c r y

Noise

Figure 2.10: Convolutional code system.

For a rate r convolutional code, the encoder inputs k bits in parallel and outputs n
bits in parallel at each time step. The input sequence is denoted as
x=(x0(1), x0(2), ..., x0(k), x1(1), ..., x1(k), xL+m-1(1), ..., xL+m-1(k)) (2.3)
and the coded sequence is denoted as
c=(c0(1), c0(2), ..., c0(n), c1(1), ..., c1(n), cL+m-1(1), ..., cL+m-1(n)) (2.4)
where L denotes the length of input information sequence and m denotes the maximum
length of the shift registers. Additional m zero bits are required at the tail of the

Fu-hua Huang Chapter 2. Convolutional Codes 12

information sequence to take the convolutional encoder back to the all-zero state. It is
required that the encoder start and end at the all-zero state. The subscript denotes the
time index while the superscript denotes the bit within a particular input k-bit or output n-
bit block. The received and estimated sequences r and y can be described similarly as
r=(r0(1), r0(2), ..., r0(n), r1(1), ..., r1(n), rL+m-1(1), ..., rL+m-1(n)) (2.5)
and
y=(y0(1), y0(2), ..., y0(n), y1(1), ..., y1(n), yL+m-1(1), ..., yL+m-1(n)). (2.6)

For ML decoding, the Viterbi algorithm selects y to maximize p(r |y). The
channel is assumed to be memoryless, and thus the noise process affecting a received bit
is independent from the noise process affecting all of the other received bits [Wic95].
From probability theory, the probability of joint, independent events is equivalent to the
product of the probabilities of the individual events. Thus,

p p r y p r y p r yi i i i i
n

i
n

i

L m

(|) [(|) (|) (|)]() () () () () ()r y =
=

+ −

∏ 1 1 2 2

0

1

� [Wic95] (2.7)

 =










==

+ −

∏∏ p r yi
j

i
j

j

n

i

L m

(|)() ()

10

1

 [Wic95] (2.8)

This equation is called the likelihood function of y given that r is received [Vit71]. The
estimate that maximizes p(r |y) also maximizes log p(r |y) because logarithms are
monotonically increasing functions. Thus, a log likelihood function can be defined as

log (|) log (|)() ()p p r yi
j

i
j

j

n

i

L m

r y =










==

+ −

∑∑
10

1

 [Wic95] (2.9)

For an easier manipulation of the summations over the log function, a bit metric is
defined. The bit metric is defined as
M r y a p r y bi

j
i

j
i

j
i

j(|) [log (|)]() () () ()= + [Wic95] (2.10)
where a and b are chosen such that the bit metric is a small positive integer [Wic95].
The values a and b are defined for binary symmetric channel (BSC) or hard-decision
decoding. Figure 2.11 shows a BSC.

Fu-hua Huang Chapter 2. Convolutional Codes 13

0 0

1 1

1-p

p

p

1-p

Transmitted
Bit

Received
Bit

Figure 2.11: The binary symmetric channel model, where p is the crossover
 probability.

For BSC, a and b can be chosen in two distinct ways. For the conventional way,
they can be chosen as

a
p p

=
− −

1

1log log()
 [Wic95] (2.11)

and
b p= − −log()1 [Wic95] (2.12)
The resulting bit metric is then

M r y
p p

p r y pi
j

i
j

i
j

i
j(|)

[log log()]
[log (|) log()]() () () ()=

− −
− −1

1
1 (2.13)

From the BSC model, it is clear that p r yi
j

i
j(|)() () can only take on values p and 1-p.

Table 2.1 shows the resulting bit metric.

Table 2.1: Conventional Bit Metric Values

M r yi
j

i
j(|)() () Received Bit

ri
j() = 0

Received Bit
ri

j() = 1

Decoded Bit
yi

j() = 0
0 1

Decoded Bit
yi

j() = 1
1 0

This bit metric shows the cost of receiving and decoding bits. For example, if the
decoded bit yi

j() = 0 and the received bit ri
j() = 0 , then the cost M r yi

j
i

j(|)() () = 0.

However, if the decoded bit yi
j() = 0 and the received bit ri

j() = 1, then the cost

M r yi
j

i
j(|)() () = 1. As it can be seen, this is related to the Hamming distance and is

known as the Hamming distance metric. Thus, the Viterbi algorithm chooses the code

Fu-hua Huang Chapter 2. Convolutional Codes 14

sequence y through the trellis that has the smallest cost/Hamming distance relative to the
received sequence r .

Alternatively, a and b can be chosen as

a
p p

=
− −

1

1log() log
 [Wic95] (2.14)

and
b p= − log [Wic95] (2.15)
The resulting alternative bit metric is then

M r y
p p

p r y pi
j

i
j

i
j

i
j(|)

[log() log]
[log (|) log]() () () ()=

− −
−1

1
 (2.16)

Table 2.2 shows the resulting alternative bit metric.

Table 2.2: Alternative Bit Metric Values

M r yi
j

i
j(|)() () Received Bit

ri
j() = 0

Received Bit
ri

j() = 1

Decoded Bit
yi

j() = 0
1 0

Decoded Bit
yi

j() = 1
0 1

For this case, the Viterbi algorithm chooses the code sequence y through the trellis that
has the largest cost/Hamming distance relative to the received sequence r . Furthermore,
for an arbitrary channel (not necessarily BSC), the values a and b are found on a trial-and-
error basis to obtain an acceptable bit metric.

From the bit metric, a path metric is defined. The path metric is defined as

M M r yi
j

i
j

j

n

i

L m

(|) (|)() ()r y =










==

+ −

∑∑
10

1

 [Wic95] (2.17)

and indicates the total cost of estimating the received bit sequence r with the decoded bit
sequence y in the trellis diagram. Furthermore, the kth branch metric is defined as

M M r yk k k
j

k
j

j

n

(|) (|)() ()r y =
=

∑
1

 [Wic95] (2.18)

and the kth partial path metric is defined as

M Mk
i i

i

k

(|) (|)r y r y=
=
∑

0

 [Wic95] (2.19)

 =










==
∑∑ M r yi

j
i

j

j

n

i

k

(|)() ()

10

 [Wic95] (2.20)

Fu-hua Huang Chapter 2. Convolutional Codes 15

The kth branch metric indicates the cost of choosing a branch from the trellis diagram.
The kth partial path metric indicates the cost of choosing a partially decoded bit sequence
y up to time index k.

The Viterbi algorithm utilizes the trellis diagram to compute the path metrics.
Each state (node) in the trellis diagram is assigned a value, the partial path metric. The
partial path metric is determined from state s = 0 at time t = 0 to a particular state s = k at
time t ≥ 0. At each state, the “best” partial path metric is chosen from the paths
terminated at that state [Wic95]. The “best” partial path metric may be either the larger
or smaller metric, depending whether a and b are chosen conventionally or alternatively.
The selected metric represents the survivor path and the remaining metrics represent the
nonsurvivor paths. The survivor paths are stored while the nonsurvivor paths are
discarded in the trellis diagram. The Viterbi algorithm selects the single survivor path
left at the end of the process as the ML path. Trace-back of the ML path on the trellis
diagram would then provide the ML decoded sequence.

The hard-decision Viterbi algorithm (HDVA) can be implemented as follows
[Rap96], [Wic95]:

Sk,t is the state in the trellis diagram that corresponds to state Sk at time t. Every
state in the trellis is assigned a value denoted V(Sk,t).
1. (a) Initialize time t = 0.

(b) Initialize V(S0,0) = 0 and all other V(Sk,t) = +∞.
2. (a) Set time t = t+1.

(b) Compute the partial path metrics for all paths going to state Sk at time t.

First, find the tth branch metric M M r yt t t
j

t
j

j

n

(|) (|)() ()r y =
=

∑
1

. This is calculated

from the Hamming distance r yt
j

t
j

j

n
() ()−

=
∑

1

. Second, compute the tth partial path

metric M Mt
i i

i

t

(|) (|)r y r y=
=
∑

0

. This is calculated from V(Sk,t-1) (|)+ M t tr y .

3. (a) Set V(Sk,t) to the “best” partial path metric going to state Sk at time t.
Conventionally, the “best” partial path metric is the partial path metric with the
smallest value.
(b) If there is a tie for the “best” partial path metric, then any one of the tied
partial path metric may be chosen.

4. Store the “best” partial path metric and its associated survivor bit and state paths.
5. If t < L+m-1, return to Step 2.
The result of the Viterbi algorithm is a unique trellis path that corresponds to the ML
codeword.

Fu-hua Huang Chapter 2. Convolutional Codes 16

A simple HDVA decoding example is shown below. The convolutional encoder
used is shown in Figure 2.2. The input sequence is x={1010100}, where the last two bits
are used to return the encoder to the all-zero state. The coded sequence is c={11, 10, 00,
10, 00, 10, 11}. However, the received sequence r={10, 10, 00, 10, 00, 10, 11} has a bit
error (underlined). Figure 2.12 shows the state transition diagram (trellis legend) of the
example convolutional encoder.

S t a t e s

0 0

0 1

1 0

1 1

T im e

i i + 1

0 /0 0

1 /1 1 0 /1 1

1 /0 0

0 /1 0

1 /0 1 0 /0 1

1 /1 0

L E G E N D

S t a t e s

0 0

0 1

1 0

1 1

Figure 2.12: The state transition diagram (trellis legend) of the example
 convolutional encoder.

The state transition diagram shows the estimated information and coded bits along the
branches (needed for the decoding process). HDVA decoding chooses the ML path
through the trellis as shown in Figure 2.13. The chosen partial path (accumulated) metric
for this example is the smallest Hamming distance and are shown in the figure for every
node. The bold partial path metrics correspond to the ML path. Survivor paths are
represented by bold solid lines and competing paths are represented by simple solid lines.
For metric “ties”, the first branch is always chosen.

Fu-hua Huang Chapter 2. Convolutional Codes 17

States

0 0

0 1

1 0

1 1

Time

0 1 2 3 4

TRELLIS DIAGRAM

5 6 7

0 1

1

2

2

1

3

2

3

1

3

3

1

3

3
TIE

TIE

3

4TIE

1

4
TIE

4

1

1

Figure 2.13: HDVA decoding of the example.

From the trellis diagram in Figure 2.13, the estimated code sequence is y={11, 10, 00, 10,
00, 10, 11} which is the code sequence c. Utilizing the state transition diagram in
Figure 2.12, the estimated information sequence is x’={1010100}.

2.6 Soft-Decision Viterbi Algorithm

There are two general methods of implementing a soft-decision Viterbi algorithm.
The first method (Method 1) uses Euclidean distance metric instead of Hamming distance
metric. The received bits used in the Euclidean distance metric are processed by multi-bit
quantization. The second method (Method 2) uses a correlation metric where its received
bits used in this metric are also processed by multi-bit quantization.

2.6.1 Soft-Decision Viterbi Algorithm (Method 1)

In soft-decision decoding, the receiver does not assign a zero or a one (single-bit
quantization) to each received bit but uses multi-bit or infinite-bit quantized values
[Wic95]. Ideally, the received sequence r is infinite-bit quantized and is used directly in
the soft-decision Viterbi decoder. The soft-decision Viterbi algorithm is similar to its
hard-decision algorithm except that squared Euclidean distance is used in the metric
instead of Hamming distance.

Fu-hua Huang Chapter 2. Convolutional Codes 18

The soft-decision Viterbi algorithm (SDVA1) can be implemented as follows:
Sk,t is the state in the trellis diagram that corresponds to state Sk at time t. Every

state in the trellis is assigned a value denoted V(Sk,t).
1. (a) Initialize time t = 0.

(b) Initialize V(S0,0) = 0 and all other V(Sk,t) = +∞.
2. (a) Set time t = t+1.

(b) Compute the partial path metrics for all paths going to state Sk at time t. First,

find the tth branch metric M M r yt t t
j

t
j

j

n

(|) (|)() ()r y =
=

∑
1

. This is calculated from

the squared Euclidean distance ()() ()r yt
j

t
j

j

n

−
=

∑ 2

1

. Second, compute the tth partial

path metric M Mt
i i

i

t

(|) (|)r y r y=
=
∑

0

. This is calculated from V(Sk,t-1) (|)+ M t tr y .

3. (a) Set V(Sk,t) to the “best” partial path metric going to state Sk at time t.
Conventionally, the “best” partial path metric is the partial path metric with the
smallest value.
(b) If there is a tie for the “best” partial path metric, then any one of the tied
partial path metric may be chosen.

4. Store the “best” partial path metric and its associated survivor bit and state paths.
5. If t < L+m-1, return to Step 2.

2.6.2 Soft-Decision Viterbi Algorithm (Method 2)

The second soft-decision Viterbi algorithm (SDVA2) is developed below. The
likelihood function is represented by a Gaussian probability density function

p r y
N

ei
j

i
j

o

r y E Ni
j

i
j

b o(|)() () () /() ()

= − −1 2

π
(2.21)

where Eb is the received energy per code-word bit and No is the one-sided noise spectral

density [Wic95]. The received bit is a Gaussian random variable with mean y Ei
j

b
()

and variance No/2. The log likelihood function can be defined as [Wic95]

log (|) log (|)() ()p p r yi
j

i
j

j

n

i

L m

r y =










==

+ −

∑∑
10

1

(2.22)

 = −
−

−






















==

+ −

∑∑ ()
log

() ()r y E

N
Ni

j
i

j
b

o
o

j

n

i

L m 2

10

1

π (2.23)

 = − −








 − +

==

+ −

∑∑1

2
2

10

1

N
r y E

L m n
N

o
i

j
i

j
b

j

n

i

L m

o()
()

log() () π (2.24)

Fu-hua Huang Chapter 2. Convolutional Codes 19

 = − − +








− +
==

+ −

∑∑1
2

2
2 2

10

1

N
r r y E y E

L m n
N

o
i

j
i

j
i

j
b i

j
b

j

n

i

L m

o[]
()

log() () () () π (2.25)

where yi
j()2 1=

 =








 +

==

+ −

∑∑C r y Ci
j

i
j

j

n

i

L m

1
1

2
0

1
() () (2.26)

where C1 and C2 are all terms not a function of y
 = • +C C1 2()r y (2.27)

From this, it is seen that the bit metric can be defined as
M r y r yi

j
i

j
i

j
i

j(|)() () () ()= (2.28)
The soft-decision Viterbi algorithm (SDVA2) can be implemented as follows:
Sk,t is the state in the trellis diagram that corresponds to state Sk at time t. Every

state in the trellis is assigned a value denoted V(Sk,t).
1. (a) Initialize time t = 0.

(b) Initial V(S0,0) = 0 and all other V(Sk,t) = -∞.
2. (a) Set time t = t+1.

(b) Compute the partial path metrics for all paths going to state Sk at time t.

First, find the tth branch metric M M r yt t t
j

t
j

j

n

(|) (|)() ()r y =
=

∑
1

. This is calculated

from the correlation of ri
j() and yi

j() , r yi
j

i
j

j

n
() ()

=
∑

1

. Second, compute the tth partial

path metric M Mt
i i

i

t

(|) (|)r y r y=
=
∑

0

. This is calculated from

V(Sk,t-1) (|)+ M t tr y .

3. (a) Set V(Sk,t) to the “best” partial path metric going to state Sk at time t. The
“best” partial path metric is the partial path metric with the largest value.
(b) If there is a tie for the “best” partial path metric, then any one of the tied
partial path metric may be chosen.

4. Store the “best” partial path metric and its associated survivor bit and state paths.
5. If t < L+m-1, return to Step 2.
Generally with soft-decision decoding, approximately 2 dB of coding gain over hard-
decision decoding can be obtained in Gaussian channels.

2.7 Performance Analysis of Convolutional Code

The performance of convolutional codes can be quantified through analytical
means or by computer simulation. The analytical approach is based on the transfer
function of the convolutional code which is obtained from the state diagram. The process

Fu-hua Huang Chapter 2. Convolutional Codes 20

of obtaining the transfer function and other related performance measures are described
below.

2.7.1 Transfer Function of Convolutional Code

The analysis of convolutional codes is generally difficult to perform because
traditional algebraic and combinatorial techniques cannot be applied. These heuristically
constructed codes can be analyzed through their transfer functions. By utilizing the state
diagram, the transfer function can be obtained. With the transfer function, code
properties such as distance properties and the error rate performance can be easily
calculated. To obtain the transfer function, the following rules are applied:
1. Break the all-zero (initial) state of the state diagram into a start state and an end

state. This will be called the modified state diagram.
2. For every branch of the modified state diagram, assign the symbol D with its

exponent equal to the Hamming weight of the output bits.
3. For every branch of the modified state diagram, assign the symbol J.
4. Assign the symbol N to the branch of the modified state diagram, if the branch

transition is caused by an input bit 1.
For the state diagram in Figure 2.4, the modified state diagram is shown in Figure 2.14.

Sd 11

Sa 00 Sb 10 Sc 01 Se 00
1/11=NJD2

1/00=NJ

0/10=JD

0/01=JD

0/11=JD2

1/01=NJD

1/10=NJD

Figure 2.14: The modified state diagram of Figure 2.4 where Sa is the start state and
 Se is the end state.

Nodal equations are obtained for all the states except for the start state in Figure 2.14.
These results are
S NJD S NJSb a c= +2

S JDS JDSc b d= +
S NJDS NJDSd b d= +
S JD Se c= 2

Fu-hua Huang Chapter 2. Convolutional Codes 21

The transfer function is defined to be

T D N J
S D N J

S D N J
end

start

(, ,)
(, ,)

(, ,)
= (2.29)

and for Figure 2.14,

T D N J
S

S
e

a

(, ,) =

By substituting and rearranging,

T D N J
NJ D

NJ NJ D
(, ,)

()
=

− +

3 5

21
 (closed form)

 = + + + + + +NJ D N J N J D N J N J N J D3 5 2 4 2 5 6 3 5 3 6 3 7 72() () �

(expanded polynomial form)

2.7.1.1 Distance Properties

The free distance between a pair of convolutional codewords is the Hamming
distance between the pair of codewords. The minimum free distance, dfree, is the
minimum Hamming distance between all pairs of complete convolutional codewords and
is defined as
d dfree = ≠min{ (,)| }y y y y1 2 1 2 [Wic95] (2.30)

 = ≠min{ ()| }w y y 0 [Wic95] (2.31)

where d(•,•) is the Hamming distance between a pair of convolutional codewords and
w(•) is the Hamming distance between a convolutional codeword and the all-zero
codeword (the weight of the codeword). The minimum free distance corresponds to the
ability of the convolutional code to estimate the best decoded bit sequence. As dfree

increases, the performance of the convolutional code also increases. This characteristic is
similar to the minimum distance for block codes. From the transfer function, the
minimum free distance is identified as the lowest exponent of D. From the above transfer
function for Figure 2.14, dfree = 5. Also, if N and J are set to 1, the coefficients of Di’s
represent the number of paths through the trellis with weight Di. More information about
the codeword is obtained from observing the exponents of N and J. For a codeword, the
exponent of N indicates the number of 1s in the input sequence, and the exponent of J
indicates the length of the path that merges with the all-zero path for the first time
[Pro95].

2.7.1.2 Error Probabilities

There are two error probabilities associated with convolutional codes, namely first
event and bit error probabilities. The first event error probability, Pe, is the probability
that an error begins at a particular time. The bit error probability, Pb, is the average

Fu-hua Huang Chapter 2. Convolutional Codes 22

number of bit errors in the decoded sequence. Usually, these error probabilities are
defined using the Chernoff Bounds and are derived in [Pro95], [Rhe89], [Wic95].

For hard-decision decoding, the first event error and bit error probabilities are
defined as
P T D N Je D p p N J

< = − = =(, ,)|
() , ,4 1 1 1

 (2.32)

and

P
dT D N J

dNb
D p p N J

<
= − = =

(, ,)

() , ,4 1 1 1

(2.33)

where

p Q
rE

N
b

o

=










2
(2.34)

and

Q x e duu

x

() /= −
∞

∫
1

2

2 2

π
(2.35)

For soft-decision decoding, the first event error and bit error probabilities are
defined as
P T D N Je D e N JrEb No< = = =−(, ,)| / , ,1 1

(2.36)

and

P
dT D N J

dNb
D e N JrEb No

<
= = =−

(, ,)
/ , ,1 1

 (2.37)

Two other factors also determine the performance of the Viterbi decoder. They
are commonly referred to as the decoding depth and the degree of quantization of the
received signal.

2.7.2 Decoding Depth

The decoding depth is a window in time that makes a decision on the bits at the
beginning of the window and accepts bits at the end of the window for metric
computations. This scheme gives up the optimum ML decoding at the expense of using
less memory and smaller decoding delay. It has been experimentally found that if the
decoding depth is 5 times greater than the constraint length K then the error introduced by
the decoding depth is negligible [Pro95].

Fu-hua Huang Chapter 2. Convolutional Codes 23

2.7.3 Degree of Quantization

For soft-decision Viterbi decoding, the degree of the quantization on the received
signal can affect the decoder performance. The performance of the Viterbi decoder
improves with higher bit quantization. It has been found that an eight-level quantizer
degrades the performance only slightly with respect to the infinite bit quantized case
[Wic95].

2.7.4 Decoding Complexity for Convolutional Codes

For a general convolutional code, the input information sequence contains k*L
bits where k is the number of parallel information bits at one time interval and L is the
number of time intervals. This results in L+m stages in the trellis diagram. There are
exactly 2k*L distinct paths in the trellis diagram, and as a result, an exhaustive search for
the ML sequence would have a computational complexity on the order of O[2k*L]. The
Viterbi algorithm reduces this complexity by performing the ML search one stage at a
time in the trellis. At each node (state) of the trellis, there are 2k calculations. The
number of nodes per stage in the trellis is 2m. Therefore, the complexity of the Viterbi
algorithm is on the order of O[(2k)(2m)(L+m)]. This significantly reduces the number of
calculations required to implement the ML decoding because the number of time intervals
L is now a linear factor and not an exponent factor in the complexity. However, there
will be an exponential increase in complexity if either k or m increases.

