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POLSYS PLP: A PARTITIONED LINEAR PRODUCT HOMOTOPY CODE

FOR SOLVING POLYNOMIAL SYSTEMS OF EQUATIONS

by

Steven M. Wise

(ABSTRACT)

Globally convergent, probability-one homotopy methods have proven to be very effective

for finding all the isolated solutions to polynomial systems of equations. After many years

of development, homotopy path trackers based on probability-one homotopy methods are

reliable and fast. Now, theoretical advances reducing the number of homotopy paths that

must be tracked, and in the handling of singular solutions, have made probability-one

homotopy methods even more practical. This thesis describes the theory behind and

performance of the new code POLSYS PLP, which consists of Fortran 90 modules for

finding all isolated solutions of a complex coefficient polynomial system of equations by

a probability-one homotopy method. The package is intended to be used in conjunction

with HOMPACK90, and makes extensive use of Fortran 90 derived data types to support

a partitioned linear product (PLP) polynomial system structure. PLP structure is a

generalization ofm-homogeneous structure, whereby each component of the system can have

a different m-homogeneous structure. POLSYS PLP employs a sophisticated power series

end game for handling singular solutions, and provides support for problem definition both

at a high level and via hand-crafted code. Different PLP structures and their corresponding

Bezout numbers can be systematically explored before committing to root finding.
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Chapter 1: INTRODUCTION

Polynomial systems of equations arise in many applications: robotics, computer vision, kine-

matics, chemical kinetics, truss design, geometric modeling, and many others (see [Morgan

1987] and [Verschelde 1996]). In applications where all the solutions, or a significant number

of solutions, must be found, or when locally convergent methods fail, globally convergent,

probability-one homotopy methods are preferred. Homotopy methods for polynomial sys-

tems were first proposed by Garcia and Zangwill [1977] and Drexler [1977]. While the

method in [Garcia and Zangwill 1977] was easily demonstrated by topological techniques

and the start system was easily solved, the homotopy produced many more paths than

the total degree of the system. Drexler used the powerful results of algebraic geometry

to prove his method. Two years later, using differential geometry, Chow, Mallet-Paret,

and Yorke [1979] improved on the results of Garcia and Zangwill with a general homotopy

which produced the same number of paths as the number of solutions (provided there

are a finite number of them), counting multiplicities and solutions at infinity. The start

system of this homotopy was difficult to solve. Morgan [1983] solved this problem with

a much simpler start system, which had trivially obtained roots, and could be used in a

general homotopy. The suggestion by Wright [1985] and Morgan [1986a], [1986b] to track

the homotopy zero curves in complex projective space, rather than in Euclidean space, was

another fundamental breakthrough—in complex projective space certain paths would no

longer diverge to infinity (have infinite arc length), and paths in general were made shorter.

Other notable publications, which appear around the end of the first decade of research, are

by Meintjes and Morgan [1985], Tsai and Morgan [1985], and Watson, Billups, and Morgan

[1987].

In roughly the past decade, since the development of robust, efficient homotopy path

tracking algorithms, work has shifted towards lowering the number of paths which must

be tracked. In essence, all the methods try to construct a start system for the homotopy

map that better models the structure of the given polynomial system, the target system for

the homotopy map. Early work includes m-homogeneous theory by Morgan and Sommese

[1987a]. In m-homogeneous theory the powerful connection of probability-one homotopy

methods for polynomials with the field of algebraic geometry is reestablished (see [Drexler

1977]) with the generalization of the classical theorem of Bezout. Generalizations of m-

homogeneous theory appeared in [Verschelde and Haegemans 1993] with the GBQ method,

and in [Verschelde and Cools 1993] with set-structure analysis. The methods in both

[Verschelde and Haegemans 1993] and [Verschelde and Cools 1993] are derived by modifying

slightly the main theorem in [Morgan and Sommese 1987a], but are nonetheless important.

The most recent definitive theoretical work is that of Morgan, Sommese, and Wampler

[1995]. Though the theorems of [Morgan, Sommese, and Wampler 1995] are very powerful,

used in their full generality, they suggest more an approach for exploiting structure than
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an algorithm. The method used here in POLSYS PLP for constructing the start system

is essentially the same as that in [Verschelde and Haegemans 1993], but is based on the

results of [Morgan, Sommese, and Wampler 1995].

Attention has also been paid to the problem of calculating singular solutions of polynomial

systems using homotopy methods. Approaches have been proposed based on Newton’s

method (see for example [Griewank 1985]), and based on complex analysis as in the work of

Morgan, Sommese, and Wampler [1991], [1992a], [1992b]. The most useful approach of those

mentioned is found in [Morgan, Sommese, and Wampler 1992b], where the foundation of a

reasonable end game is laid. Other work has come from Sosonkina, Stewart, and Watson

[1996]. Their approach, which is used in the polynomial system routine POLSYS1H of

HOMPACK90 [Watson et al. 1996], is moderately successful on low, odd order singularities.

To accurately compute a singular solution of order 30, say, requires a very sophisticated end

game as that in [Morgan, Sommese, and Wampler 1992b], which POLSYS PLP incorporates.

Publically available codes for solving polynomial systems of equations using globally

convergent, probability-one homotopy methods do exist: HOMPACK [Watson, Billups, and

Morgan 1987], written in FORTRAN 77, and HOMPACK90 [Watson et al. 1996], written

in Fortran 90, both have polynomial system solvers. CONSOL in the book by Morgan

[1987] is also written in FORTRAN 77. However, neither HOMPACK[90] nor CONSOL

have a sophisticated start system that can lower the number of homotopy paths that must

be tracked below the total degree. The package PHCPACK by Verschelde [1997], written

in Ada, allows a great variety of choices for the start system, and uses an end game like

the one proposed in [Morgan, Sommese, and Wampler 1992b]. PHCPACK, based on BKK

theory, has a distinctly combinatorial flavor, and tends to be rather slow on large scale

production problems.

Polynomial structure is a complicated subject, attacked variously by the combinatorial

BKK theory [Verschelde and Cools 1993] and algebraic geometry [Morgan, Sommese, and

Wampler 1995]. A design choice of POLSYS PLP is to strike a balance between the most

general structural descriptions (yielding minimal numbers of paths to track, but extremely

difficult algorithmically) and no structure at all (where the total degree number of paths

must be tracked, algorithmically trivial). The trade-off is moot, because a search for

structure may very well cost more than simply tracking the paths a fancier structure would

have eliminated. Further, for many industrial problems, an m-homogeneous structure is

perfectly adequate, and often even optimal. The structure supported by POLSYS PLP is

called partitioned linear product, which in generality lies between m-homogeneous and the

arbitrary set-structure supported by PHCPACK.
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Chapter 2: POLYNOMIAL SYSTEMS OF EQUATIONS

Let F (z) = 0 be a polynomial system of n equations in n unknowns. In symbols

Fi(z) =

ni∑
j=1

[
cij

n∏
k=1

zk
dijk

]
= 0, i = 1, . . . , n, (1)

where the cij are complex (and usually assumed to be different from zero) and the dijk are

nonnegative integers. The degree of Fi(z) is

di = max
1≤j≤ni

n∑
k=1

dijk,

and the total degree of the system (1) is

d =

n∏
i=1

di.

Define F ′(w) to be the homogenization of F (z):

F ′i (w) = wn+1
di Fi(w1/wn+1, . . . , wn/wn+1), i = 1, . . . , n. (2)

Note that, if F ′(w0) = 0, then F ′(αw0) = 0 for any complex scalar α. Therefore, “so-

lutions” of F ′(w) = 0 are (complex) lines through the origin in Cn+1. The set of all

lines through the origin in Cn+1 is called complex projective n-space, denoted Pn, and

is a compact n-dimensional complex manifold. (Note that we are using complex dimen-

sion: Pn is 2n-dimensional as a real manifold). The solutions of F ′(w) = 0 in Pn

are identified with the solutions and solutions at infinity of F (z) = 0 as follows: If

L ∈ Pn is a solution to F ′(w) = 0 with w = (w1, w2, . . . , wn+1) ∈ L and wn+1 6= 0,

then z = (w1/wn+1, w2/wn+1, . . . , wn/wn+1) ∈ Cn is a solution to F (z) = 0. On the other

hand, if z ∈ Cn is a solution to F (z) = 0, then the line through w = (z, 1) is a solution to

F ′(w) = 0 with wn+1 = 1 6= 0. The standard definition of solutions to F (z) = 0 at infinity

is simply solutions to F ′(w) = 0 (in Pn) generated by w with wn+1 = 0.

A solution ŵ ∈ Pn is called geometrically isolated if there exists an open ball B ⊂ Pn,

with ŵ ∈ B and no other solutions in B. If no such ball exists, then the solution ŵ is

said to exist on a positive dimensional solution set. Suppose ŵ is a geometrically isolated

solution to (2), and suppose B is a ball which contains it. For almost all perturbations of

the coefficients of the polynomial, the perturbed polynomial has only nonsingular solutions.

For all such sufficiently small perturbations of the coefficients, there exists a finite number

m of solutions inside B to the perturbed system of equations. m is the multiplicity of the

solution ŵ to (2). ẑ ∈ Cn is a singular solution to (1) if the Jacobian matrix at ẑ, DzF (ẑ), is
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singular, and nonsingular otherwise. Singular solutions at infinity are defined analogously

in terms of coordinate patches [Morgan 1987]. A solution has multiplicity greater than one

precisely when it is singular [Morgan 1987].

The solution set having been described, the following beautiful result can be stated

[van der Waerden 1953]:

Bezout’s Theorem. There are no more than d isolated solutions to F ′(w) in Pn. If

F ′(w) = 0 has only a finite number of solutions in Pn, it has exactly d solutions, counting

multiplicity.

In practical problems finite, nonsingular, geometrically isolated solutions are of great

importance and interest; they are also the easiest to deal with in the homotopy setting.

However, since it is not possible to a priori separate the nonsingular solutions from the

singular solutions and solutions at infinity, homotopy algorithms are forced to deal with the

latter. Solutions that are singular or at infinity can cause serious numerical difficulties and

inefficiency—these two types of solutions are discussed in later chapters. More importantly,

the problem of handling these “bad” solutions pales in comparison to the potentially huge

number of solutions (and homotopy zero curves that must be tracked). d, called the Bezout

number or more precisely the 1-homogeneous Bezout number [Morgan and Sommese 1987a],

can be overwhelming even for tame-looking problems. For example, 20 cubic equations

would have d = 320 ≈ 3.5 × 109. Consequently, recent research has looked for methods

which shrink (in a rigorous sense) the number of solutions that must be computed, while

still retaining all the finite isolated solutions. Reduction, which seeks to lower the dimension

of the system, is one approach which will work, but is not discussed here (see Chapter 7 of

[Morgan 1987]). Sophisticated mathematical approaches, generally speaking, seek to “factor

out” a significant portion of the nonphysical solutions (typically, including many solutions

at infinity and multiplicities). For many important practical problems this is possible, since

often systems which arise from physical models have symmetries and redundancies (which

spawn solutions at infinity and multiple solutions), yet only a small number (compared to d)

of finite, nonsingular solutions [Morgan and Sommese 1987b], [Verschelde 1996], [Verschelde

and Cools 1993]. The next section discusses one such approach to reducing the number of

homotopy zero curves that must be tracked: the partitioned linear product (PLP) homotopy.
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Chapter 3: HOMOTOPIES FOR POLYNOMIAL SYSTEMS

Define a homotopy map ρ : [0, 1)×Cn → Cn by

ρ(λ, z) = (1− λ)G(z) + λ F (z). (3)

λ ∈ [0, 1) is the homotopy parameter, G(z) = 0 is the start system, and F (z) = 0 is the

target system. The goal is to find a start system with the same structure as the target

system, while possessing the property that G(z) = 0 is easily solved. In this chapter a start

system with a partitioned linear product (PLP) structure will be constructed.

Let P = (P1, P2, . . . , Pn) be an n-tuple of partitions Pi of the set {z1, z2, . . . , zn}.
That is, for i = 1, 2, . . . , n, Pi = {Si1, Si2, . . . , Simi}, where Sij has cardinality nij 6= 0,⋃mi
j=1 Sij = {z1, z2, . . . , zn}, and Sij1 ∩ Sij2 = ∅ for j1 6= j2. For clarity, P is called

the system partition, and the Pi are the component partitions. For i = 1, 2, . . . , n and

j = 1, 2, . . . , mi define dij to be the degree of the component Fi in only the variables of

the set Sij , that is, considering the variables of {z1, z2, . . . , zn}\Sij as constants. Thus if

F2(z1, z2, z3) = z2
2 + z3z

3
2 − z1, S21 = {z3}, and S22 = {z1, z2}, then d21 = 1, d22 = 3. It

is convenient, though only for the definition of the start system, to rename the variables

component-by-component. Let Sij = {zij1, zij2, . . . , zijnij}. With all this said, the start

system is represented mathematically by Gi(z) =

mi∏
j=1

Gij, where

Gij =


(
nij∑
k=1

cijkzijk

)dij
− 1, if dij > 0;

1, if dij = 0,

i = 1, 2, . . . , n, (4)

where the numbers cijk ∈ C0 = C\{0} are chosen at random. The structure defined by the

system partition P and manifested in (4) is called the partitioned linear product structure.

The degree of Gi(z) is

deg(Gi) =

mi∑
j=1

dij .

Note that di ≤ deg(Gi) always holds—this fact will be important later, when the projective

transformation of the homotopy map is defined.

This start system is modeled after the one in [Wampler 1994], and, like its model, is

desirable because it is computationally efficient and its solutions, all of which are obtained

by the solution of a complex linear system, are nonsingular. To be precise, the linear

subsystems into which G(z) = 0 decomposes, whether solvable or unsolvable, can be

uniquely characterized by two lexicographic vectors. The first, Φ = (Φ1, Φ2, . . ., Φn), is

called the factor lexicographic vector, and the second, ∆ = (∆1, ∆2, . . ., ∆n), is called the

degree lexicographic vector, where (1, 1, . . ., 1) ≤ Φ ≤ (m1, m2, . . ., mn), and where, given
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Φ and all djΦj 6= 0, (0, 0, . . ., 0) ≤ ∆ ≤ (d1Φ1
− 1, d2Φ2

− 1, . . ., dnΦn − 1). For example,

suppose that the lexicographic pair (Φ,∆) with all djΦj 6= 0 is given. Then the linear system

this pair uniquely represents is

AΦz =



n1Φ1∑
k=1

c1Φ1kz1Φ1k

n2Φ2∑
k=1

c2Φ2kz2Φ2k

...
nnΦn∑
k=1

cnΦnkznΦnk


=


ei(∆1/d1Φ1)

ei(∆2/d2Φ2)
...

ei(∆n/dnΦn)

 ≡ b∆, (5)

where the zijk are as defined above. Either AΦ is generically nonsingular, that is, nonsingular

for almost all choices of the cijk from C0, or structurally singular. If AΦ is structurally

singular, then it contributes no solutions to G(z) = 0 and may be ignored. If AΦ is

generically nonsingular, then AΦz = b∆ has a unique solution for each ∆ such that (0, 0,

. . ., 0) ≤ ∆ ≤ (d1Φ1
−1, d2Φ2

−1, . . ., dnΦn −1). If some djΦj = 0, then the factor GjΦj = 1

cannot be zero and AΦ need not even be considered.

In order to count the number of solutions of G(z) = 0, it must be determined for each

Φ whether or not AΦ is generically nonsingular. If AΦ is nonsingular then

n∏
i=1

diΦi is added

to the “root count.” The final root count is the total number of solutions BPLP to G(z) = 0

and is called the PLP Bezout number. There is a combinatorial formula for determining

whether or not AΦ is generically invertible [Verschelde and Cools 1993]. For large problems,

however, this rule is expensive. POLSYS PLP uses numerical linear algebra with random

real matrices to determine the generic invertibility of AΦ. The issues of how to choose the

cijk for such a method, and the likelihood of a generically invertible AΦ being numerically

singular, are discussed in detail in Chapter 8. The numerical algorithm, based on updated

Householder reflections, used by POLSYS PLP for calculating BPLP follows:

begin index(1 : n) : = 0; BPLP : = 0;

for Φ(1 : n) : = (1, . . . , 1) step lexicographically until (m1, . . . , mn) do

Suppose that index and Φ agree in the first k− 1 components and disagree in the

k-th component.

for j : = k step 1 until n do

if djΦj = 0 then

Φ(j + 1 : n) : = (mj+1, . . . , mn); exit do

endif

Form the jth row of AΦ.
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ATΦ(1 : n, 1 : j − 1) has been triangularized from Householder reflections that

are saved. Apply the saved Householder reflections in order (from the 1st to

the (j − 1)st) to ATΦ(1 : n, j).

Calculate and save the Householder reflection for ATΦ(j : n, j) and apply it to

ATΦ(1 : n, j), thus continuing the triangulation of ATΦ.

if ATΦ(j, j)≈ 0 then

Declare AΦ structurally singular.

Φ(j + 1 : n) : = (mj+1, . . . , mn); exit do

endif

if j = n then

Declare AΦ generically nonsingular.

BPLP : = BPLP +
n∏
i=1

diΦi

endif

enddo

index(1 : n) : = Φ(1 : n)

enddo

The importance of the number BPLP derives from the next two theorems.

Theorem 3.1 ([Morgan, Sommese, and Wampler 1995]). Let f : Cn → Cn be a

system of polynomials and U ⊂ Cn be open. Define N (f, U) to be the number of nonsingular

solutions to f = 0 that are in U . Assume that there are positive integers r1, . . . , rn and

m1, . . . , mn and finitely generated complex vector spaces Vij of polynomials for i = 1, . . . , n

and j = 1, . . . , mi, such that

fi =

ri∑
k=1

mi∏
j=1

pijk, (6)

where pijk ∈ Vij for i = 1, . . . , n, j = 1, . . . , mi and k = 1, . . . , ri. Let a system g be defined

by gi =

mi∏
j=1

gij, with each gij a generic choice from Vij. Then

N (f, U) ≤ N (g, U), (7)

and (7) is equality if, for each i with 1 ≤ i ≤ n, there is a positive integer ki such that

the pijki ∈ Vij are generic for j = 1, . . . , mi. Also, g(z) = 0 is a suitable start system for

the polynomial homotopy h(t, z) = (1 − t)f(z) + tg(z) to find all nonsingular solutions to

f(z) = 0.

Remark 3.1. The reader will have noted that the homotopy of Theorem 3.1 is different

from the one given in (3), but this difference is only a cosmetic change of variables t = 1−λ.

Moreover, the last line of Theorem 3.1 will be made precise in Chapter 4.
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Remark 3.2. The subsystems of g = 0 are the systems ĝ = (g1j1 , . . ., gnjn) = 0 with

1 ≤ ji ≤ mi and i = 1, . . . , n (see Remark 1.1 from [Morgan, Sommese, and Wampler

1995]). In practice, one chooses g so that the subsystems ĝ = 0 are easy to solve, e.g., so

that solving ĝ = 0 reduces to solving a linear system.

Let {eijl | l = 1, . . . , `ij} denote a basis of the vector space Vij . For i = 1, . . ., n and

j = 1, . . ., mi define

Bij = {z | eijl(z) = 0 for l = 1, . . . , `ij}.

Following [Morgan, Sommese, and Wampler 1995], the bases have no pairwise intersection

with U if for any choice of j ′ and j ′′ with 1 ≤ j ′ < j ′′ ≤ mi,

Bij′ ∩Bij′′ ∩ U = ∅.

This next theorem relates the nonsingular solutions of g(z) = 0 with those of its subsystems.

Theorem 3.2 ([Morgan, Sommese, and Wampler 1995]). Let g and Vij be as in

Theorem 3.1. Then

1. z0 ∈ U is a nonsingular solution to g(z) = 0 if and only if z0 is a solution to exactly

one subsystem of g(z) = 0 and it is a nonsingular solution to this subsystem.

2. Assume that the bases for the Vij have no pairwise intersection with U . Then, if z0 ∈ U
is a nonsingular solution to some subsystem of g(z) = 0, it is a solution to exactly one

subsystem of g(z) = 0.

Remark 3.3. It follows from Theorem 3.2 that

N (g, U)≤
∑

1≤j1≤m1
1≤j2≤m2

...
1≤jn≤mn

N
(
(g1j1, g2j2, . . . , gnjn), U

)
, (8)

with equality if the bases have no pairwise intersection with U . (This is Remark 2.2 from

[Morgan, Sommese, and Wampler 1995].)

Suppose that P is a system partition as before. The vector spaces of polynomials Vij

will be constructed using P : consider both Sij and dij for j = 1, 2, . . ., mi and i = 1,

2, . . ., n, and define Vij to be the complex vector space of polynomials generated by the

monomials in the variables from Sij up to degree dij and the constant 1. For example,

suppose that f(z) = 0 is a polynomial system in five variables for which P2 = {S21, S22},
S21 = {z2, z5, z1}, S22 = {z3, z4}, d21 = 2, and d22 = 3. Then

V21 = C
〈
z2

2 , z
2
5 , z

2
1 , z2z5, z2z1, z5z1, z2, z5, z1, 1

〉
,

V22 = C
〈
z3

3 , z
3
4 , z

2
3z4, z3z

2
4 , z

2
3, z

2
4 , z3z4, z3, z4, 1

〉
.
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Choosing the Vij , albeit implicitly, from P , with U = Cn, ensures that the bases have no

pairwise intersection with U . Since Gij ∈ Vij is generic,

N (F,Cn) ≤ N (G,Cn) =
∑

1≤j1≤m1
1≤j2≤m2

...
1≤jn≤mn

N
(
(G1j1 , G2j2, . . . , Gnjn),Cn

)
= BPLP . (9)

This entire discussion would be moot if BPLP were not in many cases smaller than the total

degree d. In fact, for many practical problems for well chosen Vij, BPLP is much smaller

than the total degree d. The computational implications for the homotopy map (3) with

the start system G(z) = 0 are clear—only BPLP homotopy zero curves must be tracked.

Since the start system of Theorem 3.1 can result in a lower number of paths to be tracked,

while guaranteeing that paths will reach all nonsingular solutions of f(z) = 0, the number

N (g,Cn) is commonly referred to as a generalized Bezout number. The PLP method just

explained is but one way of arriving at such a number. m-homogeneous theory and the m-

homogeneous Bezout number correspond to the special case when each component partition

is the same. Morgan, Sommese, and Wampler [1995] show how the m-homogeneous Bezout

number is easily derived from Theorem 3.1. The name partitioned linear product (PLP)

is essentially a description of the structure of the start system G(z) = 0. A generalization

of PLP is the linear product decomposition (LPD), where the start system reduces to a

product of linear systems, but need not correspond to a system partition (Sij1 ∩ Sij2 6= ∅
possibly). LPD, which is exactly equivalent to set-structure analysis [Verschelde and Cools

1993], generalizes PLP because it allows for groupings of variables more general than system

partitions. The method of greatest generality is the general product decomposition (GPD).

GPD is any method which utilizes Theorem 3.1 in more generality than LPD, so the start

system does not reduce to a product of linear systems. There is thus a hierarchy of methods,

based on start system complexity:

• 1-homogeneous,

• m-homogeneous,

• partitioned linear product,

• linear product decomposition,

• general product decomposition.

As with the the name “m-homogeneous Bezout number,” the values of N (f,Cn) using

the the PLP method are called PLP Bezout numbers, and so on for the other methods.

Finding the lowest possible PLP Bezout number is a challenging problem. There is no way,

short of an exhaustive search through all possible system partitions, of knowing which P will

give the lowest value of BPLP . It is possible to construct a heuristic algorithm for picking P .

Verschelde [1996] describe one such algorithm for obtaining an m-homogeneous partition,

but as pointed out in [Verschelde 1996], the heuristic does not always work. Even if BPLP
is not minimized, it may still be small enough so that the path tracking is computationally

tractable.
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Chapter 4: THE PROBABILITY ONE ASPECT

Suppose that P is a system partition for (1) corresponding to the PLP Bezout number

BPLP . The following theorem demonstrates the probability-one aspect of the homotopy

method in POLSYS PLP.

Theorem 4.1. For almost all choices of cijk in the start system defined by (4), ρ−1(0)

consists of BPLP smooth curves emanating from {0}×Cn, which either diverge to infinity as

λ approaches 1 or converge to solutions of F (z) = 0. Each nonsingular solution of F (z) = 0

will have a curve converging to it.

Theorem 4.1 is essentially a restatement of the last line of Theorem 3.1, but deserves

emphasis; its proof can be found in Section A.5 in the appendix of [Morgan, Sommese, and

Wampler 1995]. A noteworthy observation is that since the homotopy map ρ is complex

analytic, the homotopy parameter λ is monotonically increasing as a function of arc length

along the homotopy zero curves starting at λ = 0 [Morgan 1987]. Thus, the homotopy zero

curves never have turning points with respect to λ.

Though BPLP may be much smaller than the total degree, the possibility of tracking

paths of (3) which diverge to infinity still exists. These paths pose significant computational

challenges, since time is wasted on divergent paths, and large magnitude solutions may

not be found if a path is terminated prematurely. Tracking paths in complex projective

space, which was originally proposed in [Morgan 1986a, 1986b], eliminates these concerns.

With a suitable “projective transformation” no paths diverge to infinity as λ approaches 1.

Moreover, though not guaranteed, paths tend be shorter in projective space.

Constructing the projective transformation is straightforward [Morgan 1986a, 1986b],

[Watson, Billups, and Morgan 1987]. As with the homogenization of F (z), define the

homogenization of ρ(λ, z) to be

ρ′i(λ, w) = w
deg(Gi)
n+1 ρi

(
λ,

w1

wn+1
, . . . ,

wn
wn+1

)
, i = 1, . . . , n.

Define the linear function

u(w1, . . . , wn+1) = ξ1w1 + ξ2w2 + . . . , ξn+1wn+1,

where the numbers ξi ∈ C0 are chosen at random. The projective transformation of ρ(λ, z)

is

ρ′′(λ, w) =


ρ′1(λ, w)
ρ′2(λ, w)

...
ρ′n(λ, w)
u(w)− 1

 .
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That the projective transformation can be applied to the homotopy map ρ, without changing

the essence of Theorem 4.1, follows from Remark 1.4 of [Morgan, Sommese, and Wampler

1995]. Thus

Theorem 4.2. For almost all choices of the cijk in the start system defined by (4)

and almost all choices of the ξ in the linear function u(w), (ρ′′)−1(0) consists of BPLP

smooth curves emanating from {0}×Cn+1, which converge to solutions of F ′(w) = 0. Each

nonsingular solution of F ′(w) = 0 will have a curve converging to it.

Henceforth, Theorem 4.2 will tacitly be the operative theorem, and references to ρ

tacitly assume that the computer implementation actually works with ρ′′.
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Chapter 5: HOMOTOPY PATH TRACKING

Theorem 4.1 says that in order to reach the nonsingular solutions of F (z) = 0, “smooth”

(nonintersecting, nonbifurcating) paths in ρ−1(0) must be tracked. There are fast, reliable

ways of doing this numerically. Three different path tracking algorithms (ordinary differential

equation based, normal flow, and augmented Jacobian matrix) are described in [Watson,

Billups, and Morgan 1987] and [Watson et al. 1996]. Simple linear-predictor, Newton-

corrector methods are described in [Morgan 1987]and [Verschelde 1997]. There is compelling

evidence favoring higher order methods and the normal flow algorithm over simpler schemes

[Lundberg and Poore 1991], [Morgan, Sommese, and Watson 1989], [Watson, Billups, and

Morgan 1987], [Watson et al. 1996]. POLSYS PLP uses the sophisticated homotopy zero

curve tracking routine STEPNX from HOMPACK90.

The normal flow algorithm has essentially three phases: prediction, correction and step

size estimation. Once a curve in ρ−1(0) has been tracked to a point for which λ > 1 − ε,
where 0 < ε� 1, the algorithm enters an “end game,” discussed in the next chapter. For

λ ∈ [0, 1 − ε], based on Theorem 4.1, it can be assumed that the path being tracked is

smooth and that the Jacobian matrix Dρ(λ, z) has full rank.

Let γ(s) denote a path under consideration, where s is the arc length of the path, and

s = 0 at λ = 0. For the prediction phase, assume that several points P (1) = (λ(s1), z(s1)),

P (2) = (λ(s2), z(s2)) on γ with corresponding tangent vectors (dλ/ds(s1), dz/ds(s1)),

(dλ/ds(s2), dz/ds(s2)) have been found, and h is an estimate of the optimal step (in arc

length) to take along γ. The prediction of the next point on γ is

Z(0) = p(s2 + h), (10)

where p(s) is the Hermite cubic interpolating (λ(s), z(s)) at s1 and s2. Precisely,

p(s1) = (λ(s1), z(s1)),

p(s2) = (λ(s2), z(s2)),

p′(s1) = (dλ/ds(s1), dz/ds(s1)),

p′(s2) = (dλ/ds(s2), dz/ds(s2)),

and each component of p(s) is a polynomial in s of degree less than or equal to 3.

Starting at the predicted point Z(0), the corrector iteration mathematically is

Z(k+1) = Z(k) −
[
Dρ
(
Z(k)

)]†
ρ
(
Z(k)

)
, k = 0, 1, . . . , (11)

where
[
Dρ(Z(k))

]†
is the Moore-Penrose pseudoinverse of the n× (n+ 1) Jacobian matrix

Dρ. Computationally the corrector step ∆Z = Z(k+1) −Z(k) is the unique minimum norm

solution of the equation [
Dρ
]
∆Z = −ρ. (12)
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Small perturbations of the cijk in G(z) produce small changes in the trajectory γ. Geo-

metrically, the iterates given by (11) return to the zero curve γ along the flow normal to

the Davidenko flow (the family of trajectories γ for varying cijk), hence the name “normal

flow algorithm.” Robust and accurate numerical linear algebra procedures for solving (12)

and for computing the kernel of
[
Dρ
]

(tangent vectors required for (10)) are described in

detail in [Watson, Billups, and Morgan 1987].

When the iteration (11) converges, the final iterate Z(k+1) is accepted as the next

point on γ, and the tangent vector to the integral curve through Z(k) is used for the

tangent—this saves a Jacobian matrix evaluation and factorization at Z(k+1). The next

phase, step size estimation, attempts to balance progress along γ with the effort expended on

the iteration (11), and is a sophisticated blend of mathematics, computational experience,

and mathematical software principles. Complete details are given in [Watson et al. 1996].
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Chapter 6: THE END GAME

The projective transformation eliminates diverging paths, but in doing so may give paths

leading to highly singular solutions at infinity. When the curve being tracked converges to

a multiple solution or a positive dimensional solution set of F (z) = 0 at λ = 1, necessarily

rank Dρ(λ, z) < n, which affects both numerical stability and the rate of convergence of

the corrector iteration (11). Newton-type algorithms may do very well with nonsingular

solutions, but incur a significant expense at singular solutions, an order of magnitude worse

than at nonsingular solutions. This chapter describes one way that reasonably accurate

estimates of a singular solution may be obtained at a fairly low computational cost (compared

to Newton-type algorithms). The algorithm proposed here is based on that in [Morgan,

Sommese, and Wampler 1992b], but differs in several important aspects.

Define h : D0 × D → Cn by h(t, z) = (1 − t)f(z) + tg(z), where f(z) and g(z) are

polynomial systems, with D0 ×D ⊂ C×Cn open and D0 ⊃ [0, 1]. Assume

1. z∗,z̄ ∈ D with h(0, z∗) = f(z∗) = 0 and h(1, z̄) = g(z̄) = 0,

2. h−1(0) contains a connected complex curve K ⊂ D0 ×D containing z∗ and z̄, so that

there is a smooth path z(t) with t ∈ [0, 1] and z([0, 1])⊂ K such that z(1) = z̄, z(0) = z∗,

and Dh(t, z(t)) has rank n for t ∈ (0, 1].

Theorem 6.1 ([Morgan, Sommese, and Wampler 1992b]). There is a δ > 0, a

smallest positive integer c, and a power series

Z(σ) =
∞∑
k=0

akσ
k

convergent for |σ| < δ such that

Z(σ) = z(σc) (13)

for σ ∈ [0, δ).

Remark 6.1.1. The integer c is called the cycle number of the curve z(t) and is defined

in [Morgan, Sommese, and Wampler 1991]. If z∗ is a geometrically isolated solution to

f(z) = 0 that has multiplicity m, then c ≤ m.

Remark 6.1.2. As in Theorem 3.1, the change of variables λ = 1 − t recasts the

theorem into the notation of this paper.

Remark 6.1.3. The following definition is useful [Morgan, Sommese, and Wampler

1992b]: σ is said to be in the operating range if |σ| is small enough so that Theorem 6.1

holds and large enough so that the numerical process described below is not overwhelmed

by ill conditioning. In many cases this annulus is large enough to work in. It is, however,

possible that it will be empty. The size of the operating range annulus depends on the

machine precision.
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Remark 6.1.4. It is important to note that even though z(σc) from Theorem 6.1 is

defined only for real values of σ, Z(σ) is defined and analytic for all σ ∈ C, |σ| < δ. Thus,

as is pointed out in [Morgan, Sommese, and Wampler 1992b], the analyticity of h and Z

give

h(σc, Z(σ)) = 0

for all σ such that |σ| < δ. This fact suggests that samples of the homotopy zero path

Z(σ) can be taken at both positive and negative real values of σ, or even at complex σ in a

neighborhood of σ = 0. Morgan, Sommese, and Wampler [1992b] use the latter for an end

game based on complex contour integration.

The following example from [Morgan, Sommese, and Wampler 1995] nicely illustrates

the theorem: Let f(z) = zm, so that the solution z∗ = 0 has multiplicity m. Let

h(t, z) = t(zm − 1) + (1− t)zm.

Then the zero paths of the homotopy map h are given by (here i =
√
−1)

z(t) = ei(j/m) m
√
t,

for j = 0, 1, 2, . . . , m− 1. Here c = m, a0 = 0, a1 = ei(j/m), and σm = t, that is,

Z(σ) = ei(j/m)σ.

When speaking of Z(σ) it is tacitly assumed that the change of variables t = σc has taken

place. Practical computation with Z(σ) is complicated, since neither the value of c nor the

size and location of the operating range will be immediately apparent.

The algorithm in POLSYS PLP is to track a zero curve γ of ρ (using the normal flow

algorithm) to λ > 1− ε, where 0 < ε� 1, and then enter the end game. Since neither the

value of c nor the location of the operating range are known, they must be determined.

Once these are found, samples of Z(σ) using (13) can be taken at real positive and negative

values of σ. Then an interpolant to Z(σ) can be used to approximate z∗ = Z(0). Morgan,

Sommese, and Wampler [1992b] interpolate the even function A(σ) =
(
Z(σ) + Z(−σ)

)
/2,

and then approximate the root by estimating z∗ = A(0) = Z(0); this requires more Jacobian

matrix evaluations than using just Z(σ) (because Z must be evaluated at exactly σ and −σ),

and typically only reduces the error slightly. The algorithm, inspired by one in [Morgan,

Sommese, and Wampler 1992b], follows:
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Given ĉmax, tol1, tol2, big � 1, a point (λ1, z(λ1)) on γ with λ1 ≤ 1− ε, and a point

(λ0, z(λ0)) on γ with 1− ε < λ0 < 1.

begin hold : = big ;

main loop: do

do

The points P
(i)
λ = (λi, z(λi)) for i = 1, 0 and the corresponding derivatives

dP
(i)
λ = dz/dλ(λi), where λ1 < λ0, have been found.

P
(2)
λ : = P

(1)
λ ; dP

(2)
λ : = dP

(1)
λ ; P

(1)
λ : = P

(0)
λ ; dP

(1)
λ : = dP

(0)
λ ; λ2 : = λ1;

λ1 : = λ0;

Using the curve tracker, get one more point P
(0)
λ and derivative dP

(0)
λ at λ0,

where λ1 < λ0 ≈ λ1 + .75(1− λ1) < 1.

if Dzρ
(
P

(0)
λ

)
numerically singular then

Flag convergence failure.

exit main loop

endif

for ĉ : = 1 step 1 until ĉmax do

Change variables from λ to σ via

P
(i)
σ = (σi, Z(σi)) = ((1− λi)1/ĉ, z(λi)) and

dP
(i)
σ = dZ/dσ(σi) = −ĉσĉ−1dz/dλ(λi).

Construct a fourth order Hermite interpolant (in σ) using P
(i)
σ and dP

(i)
σ

for i = 2, 1, and a sixth order Hermite interpolant using P
(i)
σ and dP

(i)
σ for

i = 2, 1, 0, obtaining the respective approximations z∗ and z∗∗ at σ = 0.

test(ĉ) : = ‖z∗ − z∗∗‖∞ /(1 + ‖z∗∗‖∞);

enddo

err1 : = minval(test(1 : ĉmax));

c : = minloc(test(1 : ĉmax));

if err1 ≤ tol1 ∗ 10c/2 then exit

enddo

Convert path samples to variable σ, presuming that c is the correct cycle number,

and that the samples are taken from the operating range.

for j : = 1 step 1 until 3 do

Use the samples (of Z(σ)) P
(i)
σ and dP

(i)
σ for i = 2, . . . , 1− j to construct a

2(2 + j)-th order Hermite interpolant. Use this interpolant to approximate

Z(σ) at σ = −σj−1.
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Apply the corrector iteration (11) yielding σ−j , P
(−j)
σ , and dP

(−j)
σ (after

appropriate changes of variables).

if Dzρ
(
P

(−j)
λ

)
numerically singular then

Flag convergence failure.

exit main loop

endif

enddo

Construct a twelfth order interpolantH12(σ) using P
(i)
σ and dP

(i)
σ for i = 2, . . . ,−3,

construct a tenth order interpolant H10(σ) using P
(i)
σ and dP

(i)
σ for i = 2, . . . ,−2,

construct an eighth order interpolant H8(σ) using P
(i)
σ and dP

(i)
σ for i = 1, . . . ,−2,

construct a sixth order interpolant H6(σ) using P
(i)
σ and dP

(i)
σ for i = 1, . . . ,−1,

and obtain an approximation z∗ = H12(0) of the power series at σ = 0.

gm : =
√

(tol1 ∗ 10c/2) ∗ (tol2 ∗ 10c−1);

err2 : = ‖H10(0)−H12(0)‖∞ /(1 + ‖z∗‖∞);

if

(‖H8(0)−H6(0)‖∞
1 + ‖H12(0)‖∞

≤ tol1 ∗ 10c/2 and
‖H10(0)−H8(0)‖∞

1 + ‖H12(0)‖∞
≤ gm

and
‖H12 −H10(0)‖∞

1 + ‖H12(0)‖∞
≤ tol2 ∗ 10c−1

)
then

exit main loop

else

if err2 ≤ 1.01 ∗ hold then

hold : = err2

else

Flag convergence failure and exit main loop if second occurrence

endif

endif

enddo

The above pseudo code captures the spirit of the algorithm—continue iterating as long as

progress is being made—but not the precise details. Difficulty portending failure is measured

in several ways: failure of corrector iteration to converge, predicted λ value inconsistent with

parity of c, change in predicted c after sampling Z(σ) for σ < 0, increase in err2 after main

loop iteration. These failures are counted, and any two consecutive failures (not separated by

a successful, logically consistent iteration) cause the whole algorithmto abort. POLSYS PLP

uses the parameter values ĉmax = 8, ε = 0.97, tol1 = 10−6, and tol2 = FINALTOL, an input

parameter indicating the final accuracy desired. For any given machine precision there

are theoretical limitations, which Morgan, Sommese, and Wampler [1992b] discuss, on the
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maximum cycle number for which the algorithm is still useful. POLSYS PLP with 64-bit

IEEE Standard 754 arithmetic has had success computing solutions with cycle numbers up

to 6 and multiplicity 30. As Morgan, Sommese, and Wampler [1992b] demonstrate, the

true cycle number c will be evident provided ĉmax ≥ c. ε and tol1 are chosen based solely

on computational experience. ε should not be so small that the path tracker encounters

numerical instability from the singularity, and it should not be so large that the end game

requires a large number of iterations before reaching the operating range. tol1 must be small

enough that the correct cycle number will be chosen—time would be wasted by computing

points P
(j)
σ for σ < 0 with an incorrect cycle number prediction—but not so stringent that

the process leaves the operating range because err1 < tol1 ∗ 10c/2 is never satisfied. tol2 is

the desired accuracy of the solution. For solutions with large cycle numbers, say for c > 3,

err2 < tol2 ∗ 10c−1 may not be achievable. In such cases, the algorithm simply returns with

the last best estimate of z∗, which is often still very reasonable. Chapter 8 discusses the

numerical performance of the end game in POLSYS PLP.
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Chapter 7: ORGANIZATION AND USAGE

The package POLSYS PLP consists of two Fortran 90 modules (GLOBAL PLP, POLSYS).

GLOBAL PLP contains the Fortran 90 derived data types which define the target system, the

start system, and the system partition. As its name suggests, GLOBAL PLP provides data

globally to the routines in POLSYS PLP. The module POLSYS contains three subroutines:

POLSYS PLP, BEZOUT PLP, and SINGSYS PLP. POLSYS PLP finds the root count (the Bezout

number BPLP for a given system partition P ) and the roots of a polynomial system,

BEZOUT PLP finds only the root count. SINGSYS PLP checks the singularity of a given start

subsystem, and is of interest only to expert users. The package uses the HOMPACK90

modules REAL PRECISION, HOMPACK90 GLOBAL, and HOMOTOPY [Watson et al. 1996], the

HOMPACK90 subroutine STEPNX, and numerous LAPACK and BLAS subroutines [Anderson

et al. 1995]. The physical organization of POLSYS PLP into files is described in a README

file that comes with the distribution.

Arguments to POLSYS PLP include an input tracking tolerance TRACKTOL, an input

final solution error tolerance FINALTOL, an input singularity tolerance SINGTOL for the root

counting algorithm, input parameters for curve tracking, various output solution statistics,

and four Fortran 90 optional arguments: NUMRR, RECALL, NO SCALING, and USER F DF. NUMRR

is an integer which specifies the number of iterations times 1000 that the path tracker is

allowed; if not specified, the default value is 1. The logical variable RECALL should be

included if, after the first call, POLSYS PLP is being called again to retrack a selected set

of curves. The presence of the logical variable NO SCALING (regardless of value) causes

POLSYS PLP to not scale the target polynomial system. The logical optional argument

USER F DF specifies that the user is supplying hand-crafted code for function and Jacobian

matrix evaluation—this option is recommended if efficiency is a concern, or if the original

formulation of the system is other than a linear combination of monomials.

POLSYS PLP takes full advantage of Fortran 90 features. For example, all real and

complex type declarations use the KIND specification; derived data types are used for

storage flexibility and simplicity; array sections, automatic arrays, and allocatable arrays

are fully utilized; interface blocks are used consistently; where appropriate, modules, rather

than subroutine argument lists, are used for data association; low-level linear algebra is

done with Fortran 90 syntax rather than with BLAS routines; internal subroutines are used

extensively with most arguments available via host association. POLSYS PLP is easy to

use, with a short argument list, and the target system F (z) defined with a simple tableau

format (unless the optional argument USER F DF is present). The calling program requires

the statement

USE POLSYS
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The typical use of POLSYS PLP is to either call BEZOUT PLP to obtain the root count

BPLP of a polynomial system of equations for a specified system partition P , or to call

POLSYS PLP to obtain all the roots of the polynomial (and the root count as a byproduct). It

is advisable to explore several system partitions with BEZOUT PLP before committing to one

and calling POLSYS PLP. Along with the distribution of POLSYS PLP comes a sample main

program MAIN TEMPLATE, which demonstrates how to use POLSYS PLP as just described.

MAIN TEMPLATE uses NAMELIST input for the target system and partition definitions, and

allows the user to solve multiple polynomial systems in a single run.

The template TARGET SYSTEM USER (an external subroutine) is also included with the

distribution. This subroutine would contain hand-crafted code for function and Jacobian

matrix evaluation if the optional argument USER F DF to POLSYS PLP were used.

7.1 AN EXAMPLE

The Boon problem [Verschelde 1997] from the field of neurophysiology demonstrates the

value of exploiting structure and the applicability of POLSYS PLP. Define F : C6 → C6

by

F (z) =


z2

1 + z2
3 − 1.0

z2
2 + z2

4 − 1.0
z5z

3
3 + z6z

3
4 − 1.2

z5z
3
1 + z6z

3
2 − 1.2

z5z
2
3z1 + z6z

2
4z2 − 0.7

z5z3z
2
1 + z6z4z

2
2 − 0.7

 .

Thus the total degree of F is d = 1024. Consider the following system partition for F :

P =
{{
{1, 3}, {2, 4, 5, 6}

}
,
{
{1, 3, 5, 6}, {2, 4}

}
,
{
{1, 2}, {3, 4}, {5, 6}

}4}
,

which would be input for POLSYS PLP along with the coefficients and degrees of the variables

for each term in each component of F (z). The subroutine POLSYS PLP then computes the

degree structure

d11 = 2, d12 = 0;

d21 = 0, d22 = 2;

d31 = 0, d32 = 3, d33 = 1;

d41 = 3, d42 = 0, d43 = 1;

d51 = 1, d52 = 2, d53 = 1;

d61 = 2, d62 = 1, d63 = 1.

These degrees are used with P to compute the start system G(z) = 0 defined in (4), which

has exactly 216 nonsingular solutions (the PLP Bezout number BPLP ). Then F (z) has at

most 216 isolated solutions, found by tracking 216 homotopy zero curves starting at the

roots of G. For comparison, the best m-homogeneous Bezout number, derived from the

partition
{
{1, 2}, {3, 4}, {5, 6}

}
, is 344.
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Chapter 8: PERFORMANCE

This chapter discusses implementation issues and numerical performance of the root counting

algorithm of Chapter 3, and of the end game algorithm in Chapter 6. In POLSYS PLP

root counting is done in the subroutines BEZOUT PLP and SINGSYS PLP, the former calling

the latter. The end game is housed in an internal subroutine ROOT PLP.

8.1 ROOT COUNTING

The danger in implementing a root counting algorithm with floating point arithmetic, rather

than as an exact integer computation, is that a generically nonsingular AΦ may be classified

singular, and vice versa. Structurally singular AΦ will always be ill conditioned, so the issue

reduces to the likelihood that a generically invertible AΦ will also be ill conditioned, and

hence misclassified. Different ways for choosing the start system coefficients cijk have been

tested by accumulating statistics on cond AΦ.

Observe that the literature on random dense matrices is not directly applicable here,

because the matrices AΦ are typically very sparse and very structured (which of course is the

whole point of the PLP structure). Thus rather than generating random sparse matrices,

a better test is to take a few nontrivial PLP structures, generate large numbers of AΦ for

those structures, and observe the distribution of cond AΦ. Results for three representative

target polynomial systems F (1), F (2), F (3) are reported here; two of these are cyclic4 and

cyclic8 from Björk and Fröberg [1991]. Relevant data for these three systems follows. For

F (1): n = 8,

P =
{{
{1, 2}, {3, 4}, {5, 6}, {7, 8}

}8}
;

for F (2) (cyclic4): n = 4,

P =
{{
{1, 2, 3, 4}

}
,
{
{1, 3}, {2, 4}

}
,
{
{1}, {2}, {3}, {4}

}2}
;

for F (3) (cyclic8): n = 8,

P =
{{
{1, 2, 3, 4, 5, 6, 7, 8}

}
,
{
{1, 3, 5, 7}, {2, 4, 6, 8}

}
,{

{1, 5}, {2, 6}, {3, 7}, {4, 8}
}2
,
{
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}

}4}
;

Random cijk were chosen from the unit square in C and [−1,−1/2] ∪ [1/2, 1] ⊂ R.

Using only real cijk yielded the same qualitative results as complex cijk, and of course

is considerably cheaper. From a PLU factorization of each AΦ, µ = min1≤i≤n |Uii| was

computed. Let r = dlog10 µe for µ 6= 0 and r = −100 for µ = 0. r = −7 corresponds to

µ being the square root of machine precision for 64-bit IEEE arithmetic. Declaring AΦ

21



100 200 300 400

<- 16

- 4

- 3

- 2

- 1

0

[a]

0.1 0.2 0.3 0.4 0.5

<- 18
- 18
- 17
- 16
- 15

- 5
- 3
- 2
- 1

0
[b]

100 200 300 400

<- 20
- 20
- 19
- 18
- 17
- 16
- 15
- 14
- 13
- 5
- 4
- 3
- 2
- 1

0

[c]

Fig. 1. Histograms of r frequencies. (a) F (1) , 48 matrices; (b) F (2) , 32 matrices (frequencies

averaged over 1000 runs); (c) F (3) , 131072 matrices.

singular if r < −7, AΦ was correctly identified as either structurally singular or generically

nonsingular in every single instance.

Figure 1 shows histograms for r for F (1), F (2), F (3). The point made emphatically by

Figure 1 is that the invertible and singular AΦ are clearly separated, with only a handful of

matrices even approaching the cutoff value. Though not guaranteed, it is extremely unlikely

that POLSYS PLP will misclassify a matrix AΦ.

For consistency with HOMPACK90, and because for poorly scaled systems accuracy

is important, POLSYS PLP uses QR factorizations for both the root count algorithm

(BEZOUT PLP) and the solution of the start subsystems to get the start points for the

homotopy map (internal subroutine START POINTS PLP). Since both of these calculations
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Table I. Path Tracking Statistics

Path Average number of function evaluations ROOTNX

Characteristics Tracking ROOT PLP ROOTNX failures

PB601 42 paths, ĉ = 6 88 154 102 26

3 paths, ĉ = 3 39 98 36 0

15 paths, ĉ = 1 68 93 50 0

PB801 113 paths, ĉ = 2 117 48 2191 82

15 paths, ĉ = 1 85 47 19 0

PB803 32 paths, ĉ = 2 114 35 59 32

64 paths, ĉ = 1 121 22 14 16

proceed in lexicographic order, the QR factorization for one lexicographic vector can be

efficiently updated for the next lexicographic vector. Here updating means simply replacing

the tail of a sequence of Householder reflections with different reflections. Using QR rather

than PLU to classify AΦ can only improve the classification algorithm. The pseudo code

if ATΦ(j, j) ≈ 0 then

in the root counting algorithm is actually the test

IF (ABS(A PHI(J,J)) <= SINGTOL) THEN

where SINGTOL is an argument to SINGSYS PLP, and is set to the square root of machine

precision by default.

8.2 END GAME

This section discusses the performance of the internal subroutine ROOT PLP, the end game

algorithm of Chapter 6. Three problems having singular solutions are considered: PB601

[Morgan and Watson 1989] is very hard, and PB801 and PB803 [Morgan, Sommese, and

Wampler 1992b] are of moderate difficulty. Performance of the end game subroutine ROOTNX

of HOMPACK90 [Watson et al. 1996] is compared to that of ROOT PLP (cf. Table I). For

problems PB601, PB801, and PB803, TRACKTOL was 10−4, 10−4, 10−3 respectively, and

FINALTOL was 10−14, 10−12, 10−12 respectively. Scaling was enabled for all problems, and

the polynomials were evaluated from their coefficient tableaus rather than hand-written

code. Recall for the ensuing discussion that there is no way to know a priori which curves

will lead to nonsingular solutions.

There are three possibilities: use ROOTNX always, use a hybrid scheme applying ROOTNX

to nonsingular solutions and ROOT PLP to singular solutions, or use ROOT PLP always. ROOTNX

performs better at nonsingular solutions thanROOT PLP. Used alone, ROOTNX can be much more

expensive overall than ROOT PLP, its good performance at nonsingular solutions overshadowed

by its extremely poor performance at singular solutions. ROOT PLP handles singular solutions

23



much better than ROOTNX. The cost of ROOTNX can be much higher than ROOT PLP at singular

solutions (PB801 in Table I). Moreover, whereas ROOTNX could rarely find even a poor

approximation of a singular root, ROOT PLP obtained good approximations, even for the

multiplicity 30 solution of PB601. ROOTNX failed completely on many paths (even on some

paths for which ĉ = 1), but ROOT PLP never failed. Data for PB803 and PB801 show that

the overall cost of using ROOT PLP alone can be far less than the cost of using ROOTNX alone.

Thus using ROOTNX alone (as POLSYS1H of HOMPACK90 does) is not viable.

Early versions of POLSYS PLP used a hybrid end game: if a curve appeared to be going

to a singular solution, ROOT PLP was chosen, otherwise ROOTNX was used, with reversion

to ROOT PLP if ROOTNX failed. Various criteria such as condition number estimates and

step size reduction were tried. The hybrid schemes proved unsuccessful since curves were

frequently misdiagnosed: ROOTNX would be called but would then fail because the curve was

actually going to a singular solution, and ROOT PLP was sometimes called when a curve was

converging to a nonsingular solution. Essentially, any failure of ROOTNX is more costly than

using ROOT PLP alone on that root. Despite the appeal of hybrid methods, the evidence

seems to support using ROOT PLP only on all roots.
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Appendix A: Fortran 90 Source Code

The Fortran 90 modules REAL PRECISION, GLOBAL PLP and POLSYS which are discussed

in Chapter 7 are listed here.

MODULE REAL_PRECISION

! This is for 64-bit arithmetic.

INTEGER, PARAMETER:: R8=SELECTED_REAL_KIND(13)

END MODULE REAL_PRECISION

MODULE GLOBAL_PLP

!

! The module GLOBAL_PLP contains derived data types, arrays, and

! functions used in POLSYS_PLP and related subroutines. GLOBAL_PLP uses

! the HOMPACK90 module REAL_PRECISION for 64-bit arithmetic.

USE REAL_PRECISION, ONLY: R8

INTEGER, PARAMETER:: LARGE=SELECTED_INT_KIND(15)

REAL (KIND=R8), PARAMETER:: PI=3.1415926535897932384626433_R8

!

!

! TARGET SYSTEM: Let X be a complex N-dimensional vector. POLSYS_PLP

! is used to solve the polynomial system, called the target system,

! F(X)=0, where F is represented by the following derived data types:

!

TYPE TERM_TYPE

COMPLEX (KIND=R8):: COEF

INTEGER, DIMENSION(:), POINTER:: DEG

END TYPE TERM_TYPE

TYPE POLYNOMIAL_TYPE

TYPE(TERM_TYPE), DIMENSION(:), POINTER:: TERM

INTEGER:: NUM_TERMS

END TYPE POLYNOMIAL_TYPE

TYPE(POLYNOMIAL_TYPE), DIMENSION(:), ALLOCATABLE:: POLYNOMIAL

!

! The mathematical representation of the target system F is, for I=1,...,N,

!

! F_I(X) = SUM_J=1^POLYNOMIAL(I)%NUM_TERMS

! POLYNOMIAL(I)%TERM(J)%COEF *

! PRODUCT_K=1^N X(K)**POLYNOMIAL(I)%TERM(J)%DEG(K).

!

! Any program calling POLSYS_PLP (such as the sample main program

! MAIN_TEMPLATE) must aquire data and allocate storage for the target

! system as illustrated below:

!

! ALLOCATE(POLYNOMIAL(N))

! DO I=1,N

! READ (*,*) POLYNOMIAL(I)%NUM_TERMS

! ALLOCATE(POLYNOMIAL(I)%TERM(POLYNOMIAL(I)%NUM_TERMS))

! DO J=1,POLYNOMIAL(I)%NUM_TERMS

! ALLOCATE(POLYNOMIAL(I)%TERM(J)%DEG(N+1))

! READ (*,*) POLYNOMIAL(I)%TERM(J)%COEF,POLYNOMIAL(I)%TERM(J)%DEG(1:N)

! END DO

! END DO

!

! START SYSTEM/PARTITION: In a partitioned linear product (PLP)

! formulation the start system G(X)=0 and the variable partition
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! P have the same structure. G and P are represented by the derived data

! types:

!

INTEGER, DIMENSION(:), ALLOCATABLE:: PARTITION_SIZES

TYPE SET_TYPE

INTEGER, DIMENSION(:), POINTER:: INDEX

INTEGER:: NUM_INDICES

INTEGER:: SET_DEG

COMPLEX (KIND=R8), DIMENSION(:), POINTER:: START_COEF

END TYPE SET_TYPE

TYPE PARTITION_TYPE

TYPE(SET_TYPE), DIMENSION(:), POINTER:: SET

END TYPE PARTITION_TYPE

TYPE(PARTITION_TYPE), DIMENSION(:), ALLOCATABLE:: PARTITION

!

! The mathematical representation of the start system G is, for I=1,...,N,

!

! G_I(X) = PRODUCT_J=1^PARTITION_SIZES(I)

! ( L(I,J)**PARTITION(I)SET(J)%SET_DEG - 1.0 ),

!

! where the linear factors L(I,J) are

!

! L(I,J) = SUM_K=1^PARTITION(I)%SET(J)%NUM_INDICES

! PARTITION(I)%SET(J)%START_COEF(K) * X(PARTITION(I)%SET(J)%INDEX(K)).

!

! The system partition P=(P(1),...,P(N)) is comprised of the component

! partitions P(I) = S(I,1),...S(I, PARTITION_SIZES(I)), where the sets

! of variables S(I,J) are defined by

!

! S(I,J) = UNION_K=1^PARTITION(I)%SET(J)%NUM_INDICES

! X(PARTITION(I)%SET(J)%INDEX(K)) .

!

! The calling program must acquire data and allocate storage as

! illustrated below:

!

! ALLOCATE(PARTITION_SIZES(N))

! READ (*,*) PARTITION_SIZES(1:N)

! ALLOCATE(PARTITION(N))

! DO I=1,N

! ALLOCATE(PARTITION(I)%SET(PARTITION_SIZES(I))

! DO J=1, PARTITION_SIZES(I)

! READ (*,*) PARTITION(I)%SET(J)%NUM_INDICES

! ALLOCATE(PARTITION(I)%SET(J)%INDEX(PARTITION(I)%SET(J)%NUM_INDICES))

! READ (*,*) PARTITION(I)%SET(J)%INDEX

! END DO

! END DO

!

! SET_DEG and START_COEF are calculated by POLSYS_PLP.

!

!

!

CONTAINS

! INDEXING FUNCTIONS FOR THE TARGET SYSTEM:

!

! C(I,J) retrieves the coefficient of the Jth term of the Ith polynomial

! component of the target system.
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COMPLEX (KIND=R8) FUNCTION C(I,J)

INTEGER:: I,J

C=POLYNOMIAL(I)%TERM(J)%COEF

END FUNCTION C

!

! D(I,J,K) retrieves the degree of the Kth variable in the Jth term of

! the Ith polynomial component of the target system.

INTEGER FUNCTION D(I,J,K)

INTEGER:: I,J,K

D=POLYNOMIAL(I)%TERM(J)%DEG(K)

END FUNCTION D

!

! NUMT(I) retrieves the number of terms in the Ith polynomial component of

! the target system F(X).

INTEGER FUNCTION NUMT(I)

INTEGER:: I

NUMT=POLYNOMIAL(I)%NUM_TERMS

END FUNCTION NUMT

!

! The target system is succinctly specified with the retrieval functions:

!

! F_I(X) = SUM_J=1^NUMT(I) C(I,J) * PRODUCT_K=1^N X(K)**D(I,J,K).

!

! INDEXING FUNCTIONS FOR THE START SYSTEM/PARTITION:

!

! PAR(I,J,K) retrieves the index of the Kth variable in the Jth set

! S(I,J) of the Ith partition P(I).

INTEGER FUNCTION PAR(I,J,K)

INTEGER:: I,J,K

PAR=PARTITION(I)%SET(J)%INDEX(K)

END FUNCTION PAR

!

! SC(I,J,K) retrieves the coefficient of the variable with index

! PAR(I,J,K) in the Jth factor of the Ith component of the start system

! G(X).

COMPLEX (KIND=R8) FUNCTION SC(I,J,K)

INTEGER:: I,J,K

SC=PARTITION(I)%SET(J)%START_COEF(K)

END FUNCTION SC

!

! SD(I,J) retrieves the set degree of the Jth set S(I,J) in the Ith

! partition P(I).

INTEGER FUNCTION SD(I,J)

INTEGER:: I,J

SD=PARTITION(I)%SET(J)%SET_DEG

END FUNCTION SD

!

! NUMV(I,J) retrieves the number of variables in the Jth set S(I,J) of

! the Ith partition P(I).

INTEGER FUNCTION NUMV(I,J)

INTEGER:: I,J

NUMV=PARTITION(I)%SET(J)%NUM_INDICES

END FUNCTION NUMV

!

! Both the start system and the partition are succinctly specified with

! retrieval functions:
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!

! G_I(X) = PRODUCT_J=1^PARTITION_SIZES(I)

! ( [ SUM_K=1^NUMV(I,J) SC(I,J,K)*X(PAR(I,J,K)) ]**SD(I,J) - 1.0 ),

!

! and P(I) = S(I,1),...,S(I,PARTITION_SIZES(I)) , where

!

! S(I,J) = UNION_K=1^NUMV(I,J) X(PAR(I,J,K)) .

!

END MODULE GLOBAL_PLP

MODULE POLSYS

! This module contains the subroutines POLSYS_PLP (finds all or some of

! the roots of a polynomial system defined in the module GLOBAL_PLP),

! BEZOUT_PLP (computes the generalized Bezout number), and SINGSYS_PLP

! (checks the nonsingularity of a generic start point). Typically a

! user would only call POLSYS_PLP, and thus include in their main

! program the statements:

! USE GLOBAL_PLP

! USE POLSYS, ONLY: POLSYS_PLP

! An expert user might want to call BEZOUT_PLP or SINGSYS_PLP

! separately, and thus these routines are also provided as module

! procedures.

!

USE GLOBAL_PLP

CONTAINS

SUBROUTINE POLSYS_PLP(N,TRACKTOL,FINALTOL,SINGTOL,SSPAR,BPLP,IFLAG1, &

IFLAG2,ARCLEN,LAMBDA,ROOTS,NFE,SCALE_FACTORS, &

NUMRR,RECALL,NO_SCALING,USER_F_DF)

!

! Using a probability-one globally convergent homotopy method,

! POLSYS_PLP finds all finite isolated complex solutions to a system

! F(X) = 0 of N polynomial equations in N unknowns with complex

! coefficients. A partitioned linear product (PLP) formulation is used

! for the start system of the homotopy map.

!

! POLSYS_PLP uses the module GLOBAL_PLP, which contains the definition

! of the polynomial system to be solved, and also defines the notation

! used below. The user may also find it beneficial at some point to

! refer to the documentation for STEPNX in the HOMPACK90 package.

!

! The representation of F(X) is stored in the module GLOBAL_PLP. Using

! the same notation as GLOBAL_PLP, F(X) is defined mathematically by

!

! F_I(X)=SUM_J=1^NUMT(I) C(I,J) * PRODUCT_K=1^N X(K)**D(I,J,K),

!

! for I=1,...,N.

!

! POLSYS_PLP features target system scaling, a projective

! transformation so that the homotopy zero curves are tracked in complex

! projective space, and a partitioned linear product (PLP) formulation of

! the start system. Scaling may be disabled by the optional argument

! NO_SCALING. Whatever the case, the roots of F(X) are always returned

! unscaled and untransformed. The PLP partition (an m-homogeneous

! partition of the variables, possibly different for each component

! F_I(X)) is defined in the module GLOBAL_PLP.

!

! Scaling is carried out in the internal subroutine SCALE_PLP, and is
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! an independent preprocessing step. SCALE_PLP modifies the polynomial

! coefficients and creates and stores unscaling factors SCALE_FACTORS

! for the variables X(I). The problem is solved with the scaled

! coefficients and scaled variables. The coefficients of the target

! polynomial system, which are contained in the global structure

! POLYNOMIAL, remain in modified form on return from POLSYS_PLP.

!

! With the projective transformation, the system is essentially recast in

! homogeneous coordinates, Z(1),...,Z(N+1), and solved in complex

! projective space. The resulting solutions are untransformed via

! X(I) = Z(I)/Z(N+1), I=1,...N, unless this division would cause

! overflow, in which case Re(X(I)) = Im(X(I)) = HUGE(1.0_R8).

! On return, for the Jth path, ROOTS(I,J) = X(I) for I=1,...,N, and

! ROOTS(N+1,J) = Z(N+1), the homogeneous variable.

!

! In the PLP scheme the number of paths that must be tracked can be

! less, and commonly far less, than the "total degree" because of the

! specialized start system G(X) = 0. The structure of the start system

! is determined by the system partition P. The representations of both

! are stored in the module GLOBAL_PLP, and following the comments there,

! are defined mathematically as follows:

!

! The system partition P=(P(1),...,P(N)) is comprised of the component

! partitions P(I)=S(I,1),...,S(I,PARTITION_SIZES(I)), where the sets of

! variables S(I,J) are defined by

!

! S(I,J) = UNION_K=1^NUMV(I,J) X(PAR(I,J,K)).

!

! The only restriction on the system partition P is that each component

! partition P(I) should be a partition of the set X(1),...,X(N), that

! is, the three following properties should hold for each I=1,...,N:

!

! i) each set S(I,J) has cardinality NUMV(I,J) > 0,

!

! ii) S(I,J1) INTERSECTION S(I,J2) = , for J1 /= J2, and

!

! iii) UNION_J=1^PARTITION_SIZES(I) S(I,J) = X(1),...,X(N).

!

! The start system is defined mathematically, for I=1,...,N, by

!

! G_I(X) = PRODUCT_J=1^PARTITION_SIZES(I) ( L(I,J)**SD(I,J)-1.0 ),

!

! where the linear factors L(I,J) are

!

! L(I,J) = SUMK=1^NUMV(I,J) SC(I,J,K)*X(PAR(I,J,K)).

!

! Contained in this module (POLSYS) is the routine BEZOUT_PLP. This

! routine calculates the generalized PLP Bezout number, based on the

! system partition P provided by the user, by counting the number of

! solutions to the start system. The user is encouraged to explore

! several system partitions with BEZOUT_PLP before calling POLSYS_PLP.

! See the sample calling program MAIN_TEMPLATE and the comments in

! BEZOUT_PLP.

!

! Internal routines: INIT_PLP, INTERP, OUTPUT_PLP, RHO, ROOT_OF_UNITY,

! ROOT_PLP, SCALE_PLP, START_POINTS_PLP, START_SYSTEM, TANGENT_PLP,
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! TARGET_SYSTEM.

!

! External routines called: BEZOUT_PLP, SINGSYS_PLP, STEPNX.

!

!

! On input:

!

! N is the dimension of the target polynomial system.

!

! TRACKTOL is the local error tolerance allowed the path tracker along

! the path. ABSERR and RELERR (of STEPNX) are set to TRACKTOL.

!

! FINALTOL is the accuracy desired for the final solution. It is used

! for both the absolute and relative errors in a mixed error criterion.

!

! SINGTOL is the singularity test threshold used by SINGSYS_PLP. If

! SINGTOL <= 0.0 on input, then SINGTOL is reset to a default value.

!

! SSPAR(1:8) = (LIDEAL, RIDEAL, DIDEAL, HMIN, HMAX, BMIN, BMAX, P) is a

! vector of parameters used for the optimal step size estimation. If

! SSPAR(I) <= 0.0 on input, it is reset to a default value by STEPNX.

! See the comments in STEPNX for more information.

!

! Optional arguments:

!

! NUMRR is the number of multiples of 1000 steps that will be tried before

! abandoning a path. If absent, NUMRR is taken as 1.

!

! RECALL is used to retrack certain homotopy paths. It’s use assumes

! BPLP contains the Bezout number (which is not recalculated),

! SCALE_FACTORS contains the variable unscaling factors, and that

! IFLAG2(1:BPLP) exists. The Ith homotopy path is retracked if

! IFLAG2(I) = -2, and skipped otherwise.

!

! NO_SCALING indicates that the target polynomial is not to be scaled.

! Scaling is done by default when NO_SCALING is absent.

!

! USER_F_DF indicates (when present) that the user is providing a subroutine

! TARGET_SYSTEM_USER to evaluate the (complex) target system F(XC) and

! its (complex) N x N Jacobian matrix DF(XC). XC(1:N+1) is in

! complex projective coordinates, and the homogeneous coordinate XC(N+1)

! is explicitly eliminated from F(XC) and DF(XC) using the projective

! transformation (cf. the comments in START_POINTS_PLP).

!

!

! The following objects must be allocated and defined as described in

! GLOBAL_PLP:

!

! POLYNOMIAL(I)%NUM_TERMS is the number of terms in the Ith component

! F_I(X) of the target polynomial system, for I=1,...,N.

!

! POLYNOMIAL(I)%TERM(J)%COEF is the coefficient of the Jth term in the Ith

! component of the target polynomial system, for J=1,...,NUMT(I), and

! I=1,...,N.

!

! POLYNOMIAL(I)%TERM(J)%DEG(K) is the degree of the Kth variable in the
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! Jth term of the Ith component of the target polynomial system, for

! K=1,...,N, J=1,...NUMT(I), and I=1,...,N.

!

! PARTITION_SIZES(I) is the number of sets in the Ith component

! partition P(I), for I=1,...,N.

!

! PARTITION(I)%SET(J)%NUM_INDICES is the number of indices stored in the

! Jth set S(I,J) of the Ith component partition P(I), for

! J=1,...,PARTITION_SIZES(I), and I=1,...,N.

!

! PARTITION(I)SET(J)%INDEX(K) is the index of the Kth variable stored

! in the Jth set S(I,J) of the Ith component partition P(I).

!

!

! On output:

!

! BPLP is the generalized Bezout number corresponding to the

! partitioned linear product (PLP) formulation defined by the system

! partition P. This is the number of paths tracked and the number of

! roots returned (counting multiplicity).

!

! IFLAG1

! = 0 for a normal return.

!

! = -1 if either POLYNOMIAL or PARTITION was improperly allocated.

!

! = -2 if any POLYNOMIAL(I)%TERM(J)%DEG(K) is less than zero.

!

! = -3 if F_I(X) = CONSTANT for some I.

!

! = -4 if SUM_J=1^PARTITION_SIZES(I)

! PARTITION(I)SET(J)%NUM_INDICES /= N, for some I.

!

! = -5 if UNION_J=1^PARTITION_SIZES

! S(I,J) /= 1,2,...,N-1,N, for some I.

!

! = -6 if the optional argument RECALL was present but any of BPLP

! or the arrays ARCLEN, IFLAG2, LAMBDA, NFE, ROOTS are

! inconsistent with the previous call to POLSYS_PLP.

!

! = -7 if the array SCALE_FACTORS is too small.

!

! IFLAG2(1:BPLP) is an integer array which returns information about

! each path tracked. Precisely, for each path I that was tracked,

! IFLAG2(I):

! = 1 + 10*C, where C is the cycle number of the path, for a normal return.

!

! = 2 if the specified error tolerance could not be met. Increase

! TRACKTOL and rerun.

!

! = 3 if the maximum number of steps allowed was exceeded. To track

! the path further, increase NUMRR and rerun the path.

!

! = 4 if the Jacobian matrix does not have full rank. The algorithm has

! failed (the zero curve of the homotopy map cannot be followed any

! further).
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!

! = 5 if the tracking algorithm has lost the zero curve of the homotopy

! map and is not making progress. The error tolerances TRACKTOL and

! FINALTOL were too lenient. The problem should be restarted with

! smaller error tolerances.

!

! = 6 if the normal flow Newton iteration in STEPNX or ROOT_PLP failed

! to converge. The error error tolerances TRACKTOL or FINALTOL may

! be too stringent.

!

! = 7 if ROOT_PLP failed to find a root in 10*NUMRR iterations.

!

! ARCLEN(I) is the approximate arc length of the Ith path, for I=1,...,BPLP.

!

! LAMBDA(I), if MOD(IFLAG2(I),10) = 1, contains an error estimate of

! the normalized residual of the scaled, transformed polynomial

! system of equations at the scaled, transformed root for the Ith path

! (LAMBDA for this path is assumed to be 1). Otherwise LAMBDA(I) is the

! final value of the homotopy parameter lambda on the Ith path, for

! I=1,...,BPLP.

!

! ROOTS(1:N,I) are the complex roots (untransformed and unscaled) of

! the target polynomial corresonding to the Ith path, for I=1,...,BPLP.

!

! ROOTS(N+1,I) is the homogeneous variable of the target polynomial

! system in complex projective space corresponding to ROOTS(1:N,I).

!

! NFE(I) is the number of Jacobian matrix evaluations required to track

! the Ith path, for I=1,...,BPLP.

!

! SCALE_FACTORS(1:N) contains the unscaling factors for the variables X(I).

! These are needed only on a recall when scaling was done on the original

! call to POLSYS_PLP (NO_SCALING was absent).

!

!

USE GLOBAL_PLP

INTEGER, INTENT(IN):: N

REAL (KIND=R8), INTENT(IN):: TRACKTOL, FINALTOL

REAL (KIND=R8), INTENT(IN OUT):: SINGTOL

REAL (KIND=R8), DIMENSION(8), INTENT(IN OUT):: SSPAR

INTEGER, INTENT(IN OUT):: BPLP, IFLAG1

INTEGER, DIMENSION(:), POINTER:: IFLAG2

REAL (KIND=R8), DIMENSION(:), POINTER:: ARCLEN, LAMBDA

COMPLEX (KIND=R8), DIMENSION(:,:), POINTER:: ROOTS

INTEGER, DIMENSION(:), POINTER:: NFE

REAL (KIND=R8), DIMENSION(:), INTENT(IN OUT):: SCALE_FACTORS

INTEGER, OPTIONAL, INTENT(IN):: NUMRR

LOGICAL, OPTIONAL, INTENT(IN):: RECALL, NO_SCALING, USER_F_DF

!

INTERFACE

SUBROUTINE STEPNX(N,NFE,IFLAG,START,CRASH,HOLD,H,RELERR, &

ABSERR,S,Y,YP,YOLD,YPOLD,A,TZ,W,WP,RHOLEN,SSPAR)

USE REAL_PRECISION

INTEGER, INTENT(IN):: N

INTEGER, INTENT(IN OUT):: NFE,IFLAG

LOGICAL, INTENT(IN OUT):: START,CRASH
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REAL (KIND=R8), INTENT(IN OUT):: HOLD,H,RELERR,ABSERR,S,RHOLEN, &

SSPAR(8)

REAL (KIND=R8), DIMENSION(:), INTENT(IN):: A

REAL (KIND=R8), DIMENSION(:), INTENT(IN OUT):: Y,YP,YOLD,YPOLD, &

TZ,W,WP

REAL (KIND=R8), DIMENSION(:), ALLOCATABLE, SAVE:: Z0,Z1

END SUBROUTINE STEPNX

END INTERFACE

!

! Local variables.

INTEGER:: BTEMP, I, IFLAG, II, ITER, J, JJ, K, KK, L, LIMIT, M, MAXPS, &

MAXT, NNFE, NUM_RERUNS, ROOT_COUNT

INTEGER, SAVE:: BPLP_SAVE

INTEGER, DIMENSION(N):: CHECK_PAR, DLEX_NUM, DLEX_SAVE, FLEX_NUM, FLEX_SAVE

INTEGER, DIMENSION(2*N+1):: PIVOT

REAL (KIND=R8):: ABSERR, H, HOLD, RELERR, RHOLEN, S

REAL (KIND=R8), DIMENSION(2*N):: A, DRHOL, RHOV, Z

REAL (KIND=R8), DIMENSION(2*N+1):: Y, YP, YOLD, YOLDS, YPOLD, TZ, W, WP

REAL (KIND=R8), DIMENSION(3*(2*N+1)):: ALPHA

REAL (KIND=R8), DIMENSION(2*N+1,12):: YS

REAL (KIND=R8), DIMENSION(N,N):: RAND_MAT

REAL, DIMENSION(N,N):: RANDNUMS

REAL (KIND=R8), DIMENSION(N+1,N):: MAT

REAL (KIND=R8), DIMENSION(2*N,2*N):: DRHOX

REAL (KIND=R8), DIMENSION(2*N,2*N+2):: QR

COMPLEX (KIND=R8), DIMENSION(N-1):: TAU

COMPLEX (KIND=R8), DIMENSION(N):: B, F, G, V

COMPLEX (KIND=R8), DIMENSION(N+1):: PROJ_COEF, XC

COMPLEX (KIND=R8), DIMENSION(N,N):: AA

COMPLEX (KIND=R8), DIMENSION(N,N+1):: DF, DG

COMPLEX (KIND=R8), DIMENSION(:,:), ALLOCATABLE:: TEMP1G, TEMP2G

LOGICAL:: CRASH, NONSING, START

!

! Begin input data check.

!

IFLAG1=0 ! Normal return.

! Check that dimensions are valid.

IF ((N <= 0) .OR. (SIZE(POLYNOMIAL) /= N) &

.OR. ANY((/(NUMT(I),I=1,N)/) <= 0) &

.OR. (SIZE(PARTITION) /= N) &

.OR. ANY(PARTITION_SIZES <=0)) THEN

IFLAG1=-1

RETURN

END IF

DO I=1,N

IF ((SIZE(POLYNOMIAL(I)%TERM) /= NUMT(I)) &

.OR. (SIZE(PARTITION(I)%SET) /= PARTITION_SIZES(I)) &

.OR. ANY((/(NUMV(I,J),J=1,PARTITION_SIZES(I))/) <= 0)) THEN

IFLAG1=-1

RETURN

END IF

END DO

DO I=1,N

DO J=1,NUMT(I)

IF (SIZE(POLYNOMIAL(I)%TERM(J)%DEG) /= N+1) THEN

IFLAG1=-1
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RETURN

END IF

END DO

DO J=1,PARTITION_SIZES(I)

IF (SIZE(PARTITION(I)%SET(J)%INDEX) /= NUMV(I,J)) THEN

IFLAG1=-1

RETURN

END IF

END DO

END DO

! Check that the target system has no negative powers.

DO I=1,N

DO J=1,NUMT(I)

IF (ANY(POLYNOMIAL(I)%TERM(J)%DEG(1:N) < 0)) THEN

IFLAG1=-2

RETURN

END IF

END DO

END DO

! Check that the target system has no constant-valued components.

DO I=1,N

IF (ALL( (/( SUM(POLYNOMIAL(I)%TERM(J)%DEG(1:N)), &

J=1,NUMT(I) )/) == 0)) THEN

IFLAG1=-3

RETURN

END IF

END DO

! Check that the system partition is valid.

DO I=1,N

IF (SUM( (/(NUMV(I,J),J=1,PARTITION_SIZES(I))/) ) /= N) THEN

IFLAG1=-4

RETURN

END IF

CHECK_PAR(1:N)=0

DO J=1,PARTITION_SIZES(I)

DO K=1,NUMV(I,J)

CHECK_PAR(PAR(I,J,K))=CHECK_PAR(PAR(I,J,K))+1

END DO

END DO

IF (ANY(CHECK_PAR /= 1)) THEN

IFLAG1=-5

RETURN

END IF

END DO

! Check consistency on a recall.

IF (PRESENT(RECALL)) THEN

IF ( (BPLP /= BPLP_SAVE) .OR. (SIZE(ARCLEN) < BPLP) &

.OR. (SIZE(IFLAG2) < BPLP) &

.OR. (SIZE(LAMBDA) < BPLP) &

.OR. (SIZE(NFE) < BPLP) &

.OR. (SIZE(ROOTS,DIM=2) < BPLP) ) THEN

IFLAG1=-6

RETURN

END IF

END IF

! Check SCALE_FACTORS array size.
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IF (SIZE(SCALE_FACTORS) < N) THEN

IFLAG1=-7

RETURN

END IF

!

! End input data check.

!

! Initialize the POINTER aguments of POLSYS_PLP.

MAXT=MAXVAL((/(NUMT(I),I=1,N)/))

IF ( .NOT. PRESENT(RECALL)) THEN

CALL BEZOUT_PLP(N,MAXT,SINGTOL,BPLP)

BPLP_SAVE=BPLP ! Save Bezout number for recall check.

IF (ASSOCIATED(ARCLEN)) THEN

IF (SIZE(ARCLEN) < BPLP) THEN

DEALLOCATE(ARCLEN); ALLOCATE(ARCLEN(BPLP))

END IF

ELSE

ALLOCATE(ARCLEN(BPLP))

END IF

IF (ASSOCIATED(IFLAG2)) THEN

IF (SIZE(IFLAG2) < BPLP) THEN

DEALLOCATE(IFLAG2); ALLOCATE(IFLAG2(BPLP))

END IF

ELSE

ALLOCATE(IFLAG2(BPLP))

END IF

IFLAG2=-2

IF (ASSOCIATED(NFE)) THEN

IF (SIZE(NFE) < BPLP) THEN

DEALLOCATE(NFE); ALLOCATE(NFE(BPLP))

END IF

ELSE

ALLOCATE(NFE(BPLP))

END IF

IF (ASSOCIATED(LAMBDA)) THEN

IF (SIZE(LAMBDA) < BPLP) THEN

DEALLOCATE(LAMBDA); ALLOCATE(LAMBDA(BPLP))

END IF

ELSE

ALLOCATE(LAMBDA(BPLP))

END IF

IF (ASSOCIATED(ROOTS)) THEN

IF (SIZE(ROOTS,DIM=2) < BPLP .OR. SIZE(ROOTS,DIM=1) < N+1) THEN

DEALLOCATE(ROOTS); ALLOCATE(ROOTS(N+1,BPLP))

END IF

ELSE

ALLOCATE(ROOTS(N+1,BPLP))

END IF

END IF

!

! Allocate storage for the start system.

DO I=1,N

DO J=1,PARTITION_SIZES(I)

ALLOCATE(PARTITION(I)%SET(J)%START_COEF(NUMV(I,J)))

END DO

END DO
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!

! Allocate working space for homotopy map derivative calculation.

MAXPS=MAXVAL(PARTITION_SIZES)

ALLOCATE(TEMP1G(N,MAXPS), TEMP2G(N,MAXPS))

!

! Get real random numbers uniformly distributed in [-1,-1/2] union

! [1/2,1] for RAND_MAT, which is used in SINGSYS_PLP.

CALL RANDOM_NUMBER(HARVEST=RANDNUMS)

RANDNUMS=RANDNUMS-0.5+SIGN(0.5,RANDNUMS-0.5)

RAND_MAT=REAL(RANDNUMS,KIND=R8)

!

! Set default value for singularity threshold SINGTOL in SINGSYS_PLP.

IF (SINGTOL <= REAL(N,KIND=R8)*EPSILON(1.0_R8)) &

SINGTOL=SQRT(EPSILON(1.0_R8))

!

! Scale the target polynomial system as requested.

IF (PRESENT(NO_SCALING)) THEN

SCALE_FACTORS=0.0_R8

ELSE IF (.NOT. PRESENT(RECALL)) THEN

CALL SCALE_PLP

END IF

!

! Initialize the start system for the homotopy map.

CALL INIT_PLP

!

! Set main loop initial values.

FLEX_NUM(1:N-1)=1

FLEX_NUM(N)=0

FLEX_SAVE=0

ROOT_COUNT=0

IF (PRESENT(NUMRR)) THEN

NUM_RERUNS=MAX(NUMRR,1)

ELSE

NUM_RERUNS=1

END IF

!

! Main loop over all possible lexicographic vectors FLEX_NUM(1:N)

! corresponding to linear factors.

MAIN_LOOP: DO

DO J=N,1,-1

IF(FLEX_NUM(J) < PARTITION_SIZES(J)) THEN

K=J

EXIT

END IF

END DO

FLEX_NUM(K)=FLEX_NUM(K)+1

IF(K+1 <= N) FLEX_NUM(K+1:N)=1

!

! Check if the subsystem of the start system defined by the

! lexicographic vector FLEX_NUM is singular.

CALL SINGSYS_PLP(N,FLEX_NUM,FLEX_SAVE,SINGTOL,RAND_MAT,MAT,NONSING)

!

! If the subsystem is nonsingular, track a path.

NONSING_START_POINT: IF (NONSING) THEN

BTEMP=PRODUCT( (/(SD(I,FLEX_NUM(I)),I=1,N)/) )

DLEX_NUM(1:N-1)=1

38



DLEX_NUM(N)=0

DLEX_SAVE=0

!

! Cycle through all lexicographic vectors DLEX_NUM(1:N) corresponding

! to roots of unity, defined by the set degrees specified in

! (/(SD(I,FLEX_NUM(I)),I=1,N)/).

SD_LEX_LOOP: DO II=1,BTEMP

DO JJ=N,1,-1

IF(DLEX_NUM(JJ) < SD(JJ,FLEX_NUM(JJ))) THEN

KK=JJ

EXIT

END IF

END DO

DLEX_NUM(KK)=DLEX_NUM(KK)+1

IF(KK+1 <= N) DLEX_NUM(KK+1:N)=1

ROOT_COUNT=ROOT_COUNT+1

IF (IFLAG2(ROOT_COUNT) /= -2) CYCLE SD_LEX_LOOP

!

! Get the start point for the homotopy path defined by FLEX_NUM and

! DLEX_NUM.

CALL START_POINTS_PLP

!

NNFE=0

IFLAG=-2

Y(1)=0.0_R8; Y(2:2*N+1)=Z(1:2*N)

YP(1)=1.0_R8; YP(2:2*N+1)=0.0_R8

YOLD=Y; YPOLD=YP

HOLD=1.0_R8; H=0.1_R8

S=0.0_R8

LIMIT=1000*NUM_RERUNS

START=.TRUE.

CRASH=.FALSE.

!

! Track the homotopy path.

TRACKER: DO ITER=1,LIMIT

IF (Y(1) < 0.0_R8) THEN

IFLAG=5

EXIT TRACKER

END IF

!

! Set different error tolerance if the trajectory Y(S) has any high

! curvature components.

RELERR=TRACKTOL

ABSERR=TRACKTOL

IF (ANY(ABS(YP-YPOLD) > 10.0_R8*HOLD)) THEN

RELERR=FINALTOL

ABSERR=FINALTOL

END IF

!

! Take a step along the homotopy zero curve.

CALL STEP_PLP

IF (IFLAG > 0) EXIT TRACKER

IF (Y(1) >= .97_R8) THEN

RELERR = FINALTOL

ABSERR = FINALTOL

! Enter end game.
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CALL ROOT_PLP

EXIT TRACKER

END IF

!

! D LAMBDA/DS >= 0 necessarily. This condition is forced here.

IF (YP(1) < 0.0_R8) THEN

! Reverse the tangent direction so D LAMBDA/DS = YP(1) > 0.

YP=-YP

YPOLD=YP

! Force STEPNX to use the linear predictor for the next step only.

START=.TRUE.

END IF

END DO TRACKER

!

! Set error flag if limit on number of steps exceeded.

IF (ITER >= LIMIT) IFLAG=3

!

ARCLEN(ROOT_COUNT)=S

NFE(ROOT_COUNT)=NNFE

IFLAG2(ROOT_COUNT)=IFLAG

LAMBDA(ROOT_COUNT)=Y(1)

!

! Convert from real to complex arithmetic.

XC(1:N)=CMPLX(Y(2:2*N:2),Y(3:2*N+1:2),KIND=R8)

!

! Untransform and unscale solutions.

CALL OUTPUT_PLP

ROOTS(1:N,ROOT_COUNT)=XC(1:N)

ROOTS(N+1,ROOT_COUNT)=XC(N+1)

END DO SD_LEX_LOOP

END IF NONSING_START_POINT

!

IF(ALL(FLEX_NUM == PARTITION_SIZES)) EXIT MAIN_LOOP

END DO MAIN_LOOP

!

! Clean up working storage in STEPNX.

IFLAG=-42

CALL STEPNX (2*N,NNFE,IFLAG,START,CRASH,HOLD,H,RELERR, &

ABSERR,S,Y,YP,YOLD,YPOLD,A,TZ,W,WP,RHOLEN,SSPAR)

!

! Deallocate the storage for the start system and working storage.

DO I=1,N

DO J=1,PARTITION_SIZES(I)

DEALLOCATE(PARTITION(I)%SET(J)%START_COEF)

END DO

END DO

DEALLOCATE(TEMP1G,TEMP2G)

RETURN

!

CONTAINS

!

!

SUBROUTINE SCALE_PLP

! SCALE_PLP scales the complex coefficients of a polynomial system of N

! equations in N unknowns, F(X)=0, where the Jth term of the Ith equation

! looks like
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!

! C(I,J) * X(1)**D(I,J,1) ... X(N)**D(I,J,N).

!

! The Ith equation is scaled by 10**FACE(I). The Kth variable is scaled

! by 10**FACV(K). In other words, X(K)=10**FACV(K)*Y(K), where Y solves

! the scaled equation. The scaled equation has the same form as the

! original, except that CSCL(I,J) replaces POLYNOMIAL(I)%TERM(J)%COEF,

! where

!

! CSCL(I,J)=C(I,J)*10**(FACE(I)+FACV(1)*D(I,J,1)+...+FACV(N)*D(I,J,N)).

!

! The criterion for generating FACE and FACV is that of minimizing the

! sum of squares of the exponents of the scaled coefficients. It turns

! out that this criterion reduces to solving a single linear system,

! ALPHA*X=BETA, as defined in the code below. See Meintjas and Morgan,

! "A methodology for solving chemical equilibrium problems," General

! Motors Research Laboratories Technical Report GMR-4971.

!

! Calls the LAPACK routines DGEQRF, DORMQR, and the BLAS routines

! DTRSV and IDAMAX.

!

! On exit:

!

! SCALE_FACTORS(K) = FACV(K) is the scale factor for X(K), K=1,...,N.

! Precisely, the unscaled solution

! X(K) = 10**FACV(K) * (computed scaled solution).

!

! POLYNOMIAL(I)%TERM(J)%COEF = CSCL(I,J) is the scaled complex

! coefficient, for J=1,...,NUMT(I), and I=1,...,N.

!

! Local variables.

INTEGER:: COUNT, I, ICMAX, IRMAX, J, K, L, LENR

INTEGER, DIMENSION(N):: NNUMT

INTEGER, DIMENSION(N,MAXT,N):: DDEG

REAL (KIND=R8):: DUM, RTOL, TUM

REAL (KIND=R8), DIMENSION(:), POINTER:: FACE, FACV

REAL (KIND=R8), DIMENSION(2*N), TARGET:: BETA, RWORK, XWORK

REAL (KIND=R8), DIMENSION(2*N,2*N):: ALPHA

REAL (KIND=R8), DIMENSION(N,MAXT):: CMAG

INTERFACE

INTEGER FUNCTION IDAMAX(N,X,STRIDE)

USE REAL_PRECISION

INTEGER:: N,STRIDE

REAL (KIND=R8), DIMENSION(N):: X

END FUNCTION IDAMAX

END INTERFACE

!

LENR=N*(N+1)/2

SCALE_FACTORS(1:N)=0.0_R8 ! This corresponds to no scaling.

!

! Delete exact zero coefficients, just for scaling.

NNUMT = 0

DO I=1,N

COUNT=0

DO J=1,NUMT(I)

IF (ABS(C(I,J)) > 0.0_R8) THEN
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COUNT=COUNT+1

NNUMT(I)=NNUMT(I)+1

CMAG(I,COUNT)=LOG10(ABS(C(I,J)))

DDEG(I,COUNT,1:N)=(/(D(I,J,K),K=1,N)/)

END IF

END DO

END DO

!

! Generate the matrix ALPHA.

ALPHA(1:N,1:N)=0.0_R8

DO I=1,N

ALPHA(I,I)=REAL(NNUMT(I),KIND=R8)

END DO

DO I=1,N

ALPHA(N+1:2*N,I)=REAL(SUM(DDEG(I,1:NNUMT(I),1:N),DIM=1),KIND=R8)

END DO

DO L=1,N

DO K=1,L

ICMAX=0

DO I=1,N

ICMAX=ICMAX+DOT_PRODUCT(DDEG(I,1:NNUMT(I),L),DDEG(I,1:NNUMT(I),K))

END DO

ALPHA(N+L,N+K)=REAL(ICMAX,KIND=R8)

ALPHA(N+K,N+L)=ALPHA(N+L,N+K)

END DO

END DO

ALPHA(1:N,N+1:2*N)=TRANSPOSE(ALPHA(N+1:2*N,1:N))

!

! Compute the QR-factorization of the matrix ALPHA.

CALL DGEQRF(2*N,2*N,ALPHA,2*N,XWORK,BETA,2*N,I)

!

! Check for ill-conditioned scaling matrix.

IRMAX=1

ICMAX=1

DO J=2,N

I=IDAMAX(J,ALPHA(1,J),1)

IF (ABS(ALPHA(I,J)) > ABS(ALPHA(IRMAX,ICMAX))) THEN

IRMAX=I

ICMAX=J

END IF

END DO

RTOL=ABS(ALPHA(IRMAX,ICMAX))*EPSILON(1.0_R8)*REAL(N,KIND=R8)

DO I=1,N

IF (ABS(ALPHA(I,I)) < RTOL) THEN ! ALPHA is ill conditioned.

RETURN ! Default to no scaling at all.

END IF

END DO

!

! Generate the column BETA.

DO K=1,N

BETA(K)=-SUM(CMAG(K,1:NNUMT(K)))

TUM=0.0_R8

DO I=1,N

TUM=TUM+SUM(CMAG(I,1:NNUMT(I))*REAL(DDEG(I,1:NNUMT(I),K),KIND=R8))

END DO

BETA(N+K)=-TUM
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END DO

!

! Solve the linear system ALPHA*X=BETA.

CALL DORMQR(’L’,’T’,2*N,1,2*N-1,ALPHA,2*N,XWORK,BETA,2*N,RWORK,2*N,I)

CALL DTRSV(’U’,’N’,’N’,2*N,ALPHA,2*N,BETA,1)

!

! Generate FACE, FACV, and the scaled coefficients CSCL(I,J).

FACE => BETA(1:N)

FACV => BETA(N+1:2*N)

DO I=1,N

DO J=1,NUMT(I)

DUM=ABS(C(I,J))

IF (DUM /= 0.0) THEN

TUM = FACE(I) + LOG10(DUM) + DOT_PRODUCT(FACV(1:N), &

POLYNOMIAL(I)%TERM(J)%DEG(1:N))

POLYNOMIAL(I)%TERM(J)%COEF = (10.0_R8**TUM) * (C(I,J)/DUM)

ENDIF

END DO

END DO

!

SCALE_FACTORS(1:N)=FACV(1:N)

RETURN

END SUBROUTINE SCALE_PLP

!

!

SUBROUTINE INIT_PLP

! INIT_PLP homogenizes the homotopy map, and harvests random complex

! numbers which define the start system and the projective transformation.

!

! On exit:

!

! POLYNOMIAL(I)%TERM(J)%DEG(N+1) is the degree of the homogeneous variable

! in the Jth term of the Ith component of the target system.

!

! PARTITION(I)%SET(J)%START_COEF(K) is the coefficient of X(PAR(I,J,K)) in

! the linear factor L(I,J). (L(I,J) is defined in GLOBAL_PLP.)

!

! PROJ_COEF(I) is the coefficient of X(I) in the projective transformation,

! when I=1,...,N, and the constant term in the projective transformation,

! when I=N+1.

!

! Local variables.

INTEGER:: COUNT, I, J, K, SEED_SIZE

INTEGER, DIMENSION(:), ALLOCATABLE:: SEED

REAL, DIMENSION(N*N+N+1,2):: RANDS

REAL (KIND=R8), DIMENSION(N*N+N+1,2):: RANDSR8

!

! Construct the homogenization of the homotopy map. Note:

! Homogenization of the start system is implicit.

DO I=1,N

DO J=1,NUMT(I)

POLYNOMIAL(I)%TERM(J)%DEG(N+1)=SUM((/(SD(I,K),K=1, &

PARTITION_SIZES(I))/)) - SUM(POLYNOMIAL(I)%TERM(J)%DEG(1:N))

END DO

END DO

!
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! Get the random coefficients START_COEF which define the start system

! and the random coefficients PROJ_COEF which define the projective

! transformation.

CALL RANDOM_SEED(SIZE=SEED_SIZE)

ALLOCATE(SEED(SEED_SIZE))

SEED(1:SEED_SIZE)=194917317

CALL RANDOM_SEED(PUT=SEED(1:SEED_SIZE))

CALL RANDOM_NUMBER(HARVEST=RANDS)

RANDS=2.0*RANDS-1.0

RANDSR8=REAL(RANDS,KIND=R8)

COUNT=1

DO I=1,N

DO J=1,PARTITION_SIZES(I)

DO K=1,NUMV(I,J)

PARTITION(I)%SET(J)%START_COEF(K)=CMPLX(RANDSR8(COUNT,1), &

RANDSR8(COUNT,2),KIND=R8)

COUNT=COUNT+1

END DO

END DO

END DO

PROJ_COEF(1:N+1)=CMPLX(RANDSR8(COUNT:COUNT+N,1), &

RANDSR8(COUNT:COUNT+N,2),KIND=R8)

!

DEALLOCATE(SEED)

RETURN

END SUBROUTINE INIT_PLP

!

!

SUBROUTINE START_POINTS_PLP

! START_POINTS_PLP finds a starting point for the homotopy map

! corresponding to the lexicographic vector FLEX_NUM (defining the

! variable sets) and the lexicographic vector DLEX_NUM (defining the

! particular start point among all those defined by FLEX_NUM). The

! (complex) start point z is the solution to a nonsingular linear system

! AA z = B, defined by (cf. the notation in the module GLOBAL_PLP)

!

! L(1,FLEX_NUM(1)) - R(DLEX_NUM(1)-1,SD(1,FLEX_NUM(1))) * X(N+1) = 0,

! .

! .

! .

! L(N,FLEX_NUM(N)) - R(DLEX_NUM(N)-1,SD(N,FLEX_NUM(N))) * X(N+1) = 0,

! X(N+1) = SUM_J=1^N PROJ_COEF(J)*X(J) + PROJ_COEF(N+1),

!

! where the last equation is the projective transformation, X(N+1) is

! the homogeneous coordinate, and R(K,M)=e**(i*2*PI*K/M) is an Mth root

! of unity. The homogeneous variable X(N+1) is explicitly eliminated,

! resulting in an N x N complex linear system for z=(X(1),...,X(N)).

!

! START_POINTS_PLP calculates a start point in an efficient way: For each

! fixed lexicographic number LEX_NUM, the routine reuses, if possible,

! previous Householder reflections in the LQ decomposition of AA.

!

! Calls the LAPACK routines ZLARFG, ZLARFX, the BLAS routine ZTRSV, and the

! internal function ROOT_OF_UNITY.

!

! On exit:
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!

! Z(1:2N) is a real vector representing the (complex) start point z.

!

! Local variables.

INTEGER:: I, INFO, J, K

COMPLEX (KIND=R8):: ROOT, WORK

!

! (Re)set the coefficient matrix AA, and set B.

DO I=1,N

IF (DLEX_SAVE(I) /= DLEX_NUM(I)) THEN

DLEX_SAVE(I+1:N)=0

DO J=1,N

ROOT=ROOT_OF_UNITY(DLEX_NUM(J)-1,SD(J,FLEX_NUM(J)))

B(J) = ROOT * PROJ_COEF(N+1)

IF (J >= I) THEN

AA(J,1:N)=(0.0_R8,0.0_R8)

K=NUMV(J,FLEX_NUM(J))

AA(J,PARTITION(J)%SET(FLEX_NUM(J))%INDEX(1:K)) = &

PARTITION(J)%SET(FLEX_NUM(J))%START_COEF(1:K)

AA(J,1:N) = AA(J,1:N) - PROJ_COEF(1:N) * ROOT

END IF

END DO

EXIT

END IF

END DO

!

! Special code for the case N=1.

IF (N == 1) THEN

WORK = B(1)/AA(1,1)

Z(1) = REAL(WORK)

Z(2) = AIMAG(WORK)

DLEX_SAVE=DLEX_NUM

RETURN

END IF

!

! Update the LQ factorization of AA.

IF (DLEX_SAVE(1) /= DLEX_NUM(1)) THEN

AA(1,1:N)=CONJG(AA(1,1:N))

CALL ZLARFG(N,AA(1,1),AA(1,2:N),1,TAU(1))

END IF

DO I=2,N

IF (DLEX_SAVE(I) /= DLEX_NUM(I)) THEN

DO J=1,I-1

V(J)=(1.0_R8,0.0_R8)

V(J+1:N)=AA(J,J+1:N)

CALL ZLARFX(’R’,1,N-J+1,V(J:N),TAU(J),AA(I,J:N),1,WORK)

END DO

IF (I < N) THEN

AA(I,I:N)=CONJG(AA(I,I:N))

CALL ZLARFG(N-I+1,AA(I,I),AA(I,I+1:N),1,TAU(I))

END IF

END IF

END DO

DLEX_SAVE=DLEX_NUM

!

! Solve the linear system AA Z = B, by solving L Q Z = B.
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! L W = B.

CALL ZTRSV(’L’,’N’,’N’,N,AA(1:N,1:N),N,B(1:N),1)

! Z = CONJG(Q’) W.

DO I=N-1,1,-1

V(I)=(1.0_R8,0.0_R8)

V(I+1:N)=AA(I,I+1:N)

CALL ZLARFX(’L’,N-I+1,1,V(I:N),TAU(I),B(I:N),N,WORK)

END DO

!

! Convert the complex start point to a real vector.

Z(1:2*N:2) = REAL(B)

Z(2:2*N:2) = AIMAG(B)

RETURN

END SUBROUTINE START_POINTS_PLP

!

!

COMPLEX (KIND=R8) FUNCTION ROOT_OF_UNITY(K,N) RESULT(RU)

! RU = e**(i*2*PI*K/N).

INTEGER:: K, N

REAL (KIND=R8):: ANGLE

ANGLE=2.0_R8*PI*(REAL(K,KIND=R8)/REAL(N,KIND=R8))

RU=CMPLX(COS(ANGLE),SIN(ANGLE),KIND=R8)

RETURN

END FUNCTION ROOT_OF_UNITY

!

!

SUBROUTINE STEP_PLP

! Driver for reverse call external subroutine STEPNX from HOMPACK90.

INTEGER:: FAIL=0,IFLAGS

STEP: DO

CALL STEPNX(2*N,NNFE,IFLAG,START,CRASH,HOLD,H,RELERR, &

ABSERR,S,Y,YP,YOLD,YPOLD,A,TZ,W,WP,RHOLEN,SSPAR)

IF (CRASH) THEN

IFLAG = 2

EXIT

END IF

IFLAGS = IFLAG

SELECT CASE (IFLAGS)

CASE (-2) ! Successful step.

EXIT

CASE (-12) ! Compute tangent vector.

RHOLEN = 0.0_R8

CALL TANGENT_PLP

IF (IFLAG == 4) THEN

IFLAG = IFLAGS - 100

FAIL = FAIL + 1

ENDIF

CASE (-32,-22) ! Compute tangent vector and Newton step.

RHOLEN = -1.0_R8

CALL TANGENT_PLP(NEWTON_STEP=.TRUE.)

IF (IFLAG == 4) THEN

IFLAG = IFLAGS - 100

FAIL = FAIL + 1

ENDIF

CASE (4,6) ! STEPNX failed.

EXIT
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END SELECT

IF (FAIL == 2) THEN

IFLAG = 4; RETURN

ENDIF

END DO STEP

RETURN

END SUBROUTINE STEP_PLP

!

!

SUBROUTINE TANGENT_PLP(NEWTON_STEP)

! This subroutine builds the Jacobian matrix of the homotopy map,

! computes a QR decomposition of that matrix, and then calculates the

! (unit) tangent vector and (if NEWTON_STEP is present) the Newton

! step.

!

! On input:

!

! NEWTON_STEP is a logical optional argument which, if present,

! indicates that the Newton step is also to be calculated.

!

! RHOLEN < 0 if the norm of the homotopy map evaluated at

! (LAMBDA, X) is to be computed. If RHOLEN >= 0 the norm is not

! computed and RHOLEN is not changed.

!

! W(1:2*N+1) = current point (LAMBDA(S), X(S)).

!

! YPOLD(1:2*N+1) = unit tangent vector at previous point on the zero

! curve of the homotopy map.

!

! On output:

!

! RHOLEN = ||RHO(LAMBDA(S), X(S))|| if RHOLEN < 0 on input.

! Otherwise RHOLEN is unchanged.

!

! WP(1:2*N+1) = dW/dS = unit tangent vector to integral curve of

! d(homotopy map)/dS = 0 at W(S) = (LAMBDA(S), X(S)) .

!

! TZ = the Newton step = -(pseudo inverse of (d RHO(W(S))/d LAMBDA ,

! d RHO(W(S))/dX)) * RHO(W(S)) .

!

! IFLAG is unchanged, unless the QR factorization detects a rank < N,

! in which case the tangent and Newton step vectors are not computed

! and TANGENT_PLP returns with IFLAG = 4 .

!

!

! Calls DGEQPF, DNRM2, DORMQR, RHO.

!

LOGICAL, INTENT(IN), OPTIONAL:: NEWTON_STEP

REAL (KIND=R8):: LAMBDA, SIGMA, WPNORM

INTEGER:: I, J, K

INTERFACE

FUNCTION DNRM2(N,X,STRIDE)

USE REAL_PRECISION

INTEGER:: N,STRIDE

REAL (KIND=R8):: DNRM2,X(N)

END FUNCTION DNRM2
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END INTERFACE

!

! Compute the Jacobian matrix, store it and homotopy map in QR.

!

! QR = ( D RHO(LAMBDA,X)/D LAMBDA , D RHO(LAMBDA,X)/DX ,

! RHO(LAMBDA,X) ) .

!

! Force LAMBDA >= 0 for tangent calculation.

IF (W(1) < 0.0_R8) THEN

LAMBDA = 0.0_R8

ELSE

LAMBDA = W(1)

END IF

!

! RHO(W) evaluates the homotopy map and its Jacobian matrix at W,

! leaving the results in the arrays RHOV, DRHOL, and DRHOX.

CALL RHO(LAMBDA,W(2:2*N+1))

QR(1:2*N,1) = DRHOL(1:2*N)

QR(1:2*N,2:2*N+1) = DRHOX(1:2*N,1:2*N)

QR(1:2*N,2*N+2) = RHOV(1:2*N)

!

! Compute the norm of the homotopy map if it was requested.

IF (RHOLEN < 0.0_R8) RHOLEN=DNRM2(2*N,QR(:,2*N+2),1)

!

! Reduce the Jacobian matrix to upper triangular form.

PIVOT = 0

CALL DGEQPF(2*N,2*N+1,QR,2*N,PIVOT,WP,ALPHA,K)

IF (ABS(QR(2*N,2*N)) <= ABS(QR(1,1))*EPSILON(1.0_R8)) THEN

IFLAG=4

RETURN

ENDIF

!

! Apply Householder reflections to last column of QR (which contains

! RHO(A,W)).

CALL DORMQR(’L’,’T’,2*N,1,2*N-1,QR,2*N,WP,QR(:,2*N+2),2*N, &

ALPHA, 3*(2*N+1),K)

!

! Compute kernel of Jacobian matrix, yielding WP=dW/dS.

TZ(2*N+1)=1.0_R8

DO I=2*N,1,-1

J=I+1

TZ(I)= -DOT_PRODUCT(QR(I,J:2*N+1),TZ(J:2*N+1))/QR(I,I)

END DO

WPNORM=DNRM2(2*N+1,TZ,1)

WP(PIVOT)=TZ/WPNORM

IF (DOT_PRODUCT(WP,YPOLD) < 0.0_R8) WP = -WP

!

! WP is the unit tangent vector in the correct direction.

IF (.NOT. PRESENT(NEWTON_STEP)) RETURN

!

! Compute the minimum norm solution of [d RHO(W(S))] V = -RHO(W(S)).

! V is given by P - (P,Q)Q , where P is any solution of

! [d RHO] V = -RHO and Q is a unit vector in the kernel of [d RHO].

!

ALPHA(2*N+1)=1.0_R8

DO I=2*N,1,-1
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J=I+1

ALPHA(I)= -(DOT_PRODUCT(QR(I,J:2*N+1),ALPHA(J:2*N+1)) + QR(I,2*N+2)) &

/QR(I,I)

END DO

TZ(PIVOT)=ALPHA(1:2*N+1)

!

! TZ now contains a particular solution P, and WP contains a vector Q

! in the kernel (the unit tangent).

SIGMA=DOT_PRODUCT(TZ,WP)

TZ = TZ - SIGMA*WP

! TZ is the Newton step from the current point W(S) = (LAMBDA(S), X(S)).

RETURN

END SUBROUTINE TANGENT_PLP

!

!

SUBROUTINE ROOT_PLP

! In a deleted neighborhood of a solution (1,X(SBAR)), the homotopy zero

! curve (LAMBDA(S),X(S)) is assumed to safisfy X = X(LAMBDA), a consequence

! of the Implicit Function Theorem and the fact that the Jacobian matrix

! D RHO(A,LAMBDA(S),X(S))/DX is nonsingular in a sufficiently small

! deleted neighborhood of an isolated solution. Let

! TAU = 1 - LAMBDA = SIGMA**C,

! where the positive integer C is the cycle number of the root. Then

! X(LAMBDA) = X(1 - TAU) = X(1 - SIGMA**C) = Z(SIGMA)

! is an analytic function of SIGMA in a neighborhood of SIGMA=0. This fact

! is exploited by guessing C and interpolating Z(SIGMA) within its

! Maclaurin series’ radius of convergence, but far enough away from 0 to

! avoid numerical instability. This annulus is called the "operating

! range" of the algorithm. The interpolant to analytic Z(SIGMA) is then

! evaluated at SIGMA=0 to estimate the root X(1)=Z(0).

!

! Local variables.

INTEGER, PARAMETER:: CHAT_MAX=8, LITFH = 7

INTEGER:: C, CHAT(1), CHAT_BEST, CHAT_OLD, GOING_BAD, I, &

II, J, ML_ITER, N2P1, RETRY

REAL (KIND=R8):: ACCURACY, FV(12), GM, H_SAVE, HC, HQ, HQ_BEST, &

HQMHC(CHAT_MAX), L(-3:2), S_SAVE, SIGMA(-3:2), SHRINK, T, TOL_1, &

TOL_2, V(12)

LOGICAL:: EVEN, FIRST_JUMP, REUSE

INTERFACE

FUNCTION DNRM2(N,X,STRIDE)

USE REAL_PRECISION

INTEGER:: N, STRIDE

REAL (KIND=R8):: DNRM2, X(N)

END FUNCTION DNRM2

END INTERFACE

!

N2P1 = 2*N + 1

ACCURACY = MAX(FINALTOL,SQRT(EPSILON(1.0_R8))*10.0_R8**2)

HQ_BEST = 10.0_R8*ACCURACY

CHAT_BEST = 0 ; CHAT_OLD = 0 ; GOING_BAD = 0

FIRST_JUMP = .TRUE. ; REUSE = .FALSE.

YOLDS = 0.0_R8

!

! Save the first point.

H_SAVE = HOLD
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S_SAVE = S - HOLD

YS(:,1) = YOLD ; YS(:,2) = YPOLD

!

! If Y(1) >= 1 or if YP(1) <= 0 back up to YOLD and generate another point.

REFINE_Y: DO

IF ((Y(1) >= 1.0_R8) .OR. (YP(1) <= 0.0_R8)) THEN

SHRINK = 1.0_R8

! Try 3 times to get a point.

DO I=1,3

SHRINK = SHRINK*.75_R8

S = S_SAVE

H = MIN(H_SAVE,SHRINK*(1.0_R8-YS(1,1))/YS(1,2))

! If Y(1)>=1 increase RELERR and ABSERR to prevent STEPNX from making

! the stepsize too small.

IF (Y(1) >= 1.0_R8) THEN

RELERR = TRACKTOL ; ABSERR = TRACKTOL

END IF

Y = YS(:,1) ; YP = YS(:,2)

START = .TRUE.

CALL STEP_PLP

RELERR = FINALTOL ; ABSERR = FINALTOL

IF (IFLAG > 0) THEN

IFLAG = 4 ; RETURN

ELSE IF ((Y(1) < 1.0_R8) .AND. (YP(1) > 0.0_R8)) THEN

ITER = ITER + 1

EXIT REFINE_Y

ELSE IF (I == 3) THEN

IFLAG = 4 ; RETURN

END IF

END DO

ELSE

! Refine the second point Y to FINALTOL accuracy. If the refinement

! fails, back up and get another point.

W = Y

RHOLEN = 0.0_R8

DO J=1,LITFH

CALL TANGENT_PLP(NEWTON_STEP=.TRUE.)

NNFE = NNFE + 1

IF (IFLAG > 0) THEN

IFLAG = -2

YP(1) = -1.0_R8 ; CYCLE REFINE_Y

END IF

W = W + TZ

! Test for erratic LAMBDA.

IF (W(1) >= 1.0_R8 .OR. WP(1) <= 0.0_R8) THEN

YP(1) = -1.0_R8 ; CYCLE REFINE_Y

END IF

IF (DNRM2(N2P1,TZ,1) <= FINALTOL*(DNRM2(N2P1,W,1) + 1.0_R8)) EXIT

! Test for lack of convergence.

IF (J == LITFH) THEN

YP(1) = -1.0_R8 ; CYCLE REFINE_Y

END IF

END DO

Y = W ; YP = WP

S = S - HOLD

W = Y - YOLD
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HOLD = DNRM2(N2P1,W,1)

S = S + HOLD

EXIT REFINE_Y

END IF

END DO REFINE_Y

!

! Save the second point.

YS(:,3) = Y ; YS(:,4) = YP

H_SAVE = H ; S_SAVE = S

!

! Try entire end game interpolation process RETRY=10*NUMRR times.

RETRY = 10*NUM_RERUNS

MAIN_LOOP: DO ML_ITER=1,RETRY

!

! Enforce LIMIT on the number of steps.

IF (ITER == LIMIT) THEN

IFLAG = 3 ; EXIT MAIN_LOOP

END IF

! Get close enough to SIGMA=0 (LAMBDA=1) so that a Hermite cubic

! interpolant is accurate to within TOL_1 (defined by CHAT).

OPERATING_RANGE: DO

SHRINK = 1.0_R8

DO J=1,3

SHRINK = .75_R8*SHRINK

! Get a third point Y with Y(1) < 1.

H = MIN(H_SAVE,SHRINK*(1.0_R8-Y(1))/YP(1))

CALL STEP_PLP

IF (IFLAG > 0) THEN

IFLAG = 4 ; EXIT MAIN_LOOP

ELSE IF ((Y(1) >= 1.0_R8) .OR. (YP(1) <= 0.0_R8)) THEN

! Back up and try again with a smaller step.

Y = YS(:,3) ; YP = YS(:,4) ; YOLD = YS(:,1) ; YPOLD = YS(:,2)

S = S_SAVE

ELSE

ITER=ITER+1

EXIT

END IF

IF (J == 3) THEN

IFLAG = 4 ; EXIT MAIN_LOOP

END IF

END DO

!

! Save the third point.

YS(:,5)=Y; YS(:,6)=YP

H_SAVE = H ; S_SAVE = S

! L(2) < L(1) < L(0) < 1.

L(2) = YS(1,1) ; L(1) = YS(1,3) ; L(0) = YS(1,5)

! Test approximation quality for each cycle number C = 1,...,CHAT_MAX.

SHRINK = 1.0_R8/(1.0_R8 + MAXVAL(ABS(YS(2:N2P1,5))))

DO C=1,CHAT_MAX

SIGMA(0:2) = (1.0_R8 - L(0:2))**(1.0_R8/REAL(C,KIND=R8))

! 0 < SIGMA(0) < SIGMA(1) < SIGMA(2).

! Compute difference between Hermite quintic HQ(SIGMA) interpolating at

! SIGMA(0:2) and Hermite cubic HC(SIGMA) interpolating at SIGMA(0:1).

! The interpolation points for the Newton form are (SIGMA(0), SIGMA(0),

! SIGMA(1), SIGMA(1), SIGMA(2), SIGMA(2)). The function values are in
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! YS(:,5:1:-2) and the derivatives YS(:,6:2:-2) = dX/dS have to be

! converted to dX/dSIGMA.

T = 0.0_R8

V(1:6) = (/ (SIGMA(J),SIGMA(J),J=0,2) /)

DO J=2,N2P1

FV(1:5:2) = YS(J,5:1:-2)

FV(2:6:2) = (YS(J,6:2:-2)/YS(1,6:2:-2))*(-REAL(C,KIND=R8))* &

SIGMA(0:2)**(C-1)

CALL INTERP(V(1:6),FV(1:6))

T = MAX(T,ABS(FV(5) - SIGMA(2)*FV(6)))

END DO

! T*(SIGMA(1)*SIGMA(0))**2 = ||HQ(0) - HC(0)||_infty.

HQMHC(C) = T*((SIGMA(1)*SIGMA(0))**2)*SHRINK

END DO

! Find best estimate CHAT of cycle number.

CHAT = MINLOC(HQMHC)

! If there has been one successful jump across the origin (with

! CHAT_BEST) and the cycle number prediction changes, then the process

! may be leaving the operating range.

IF (( .NOT. FIRST_JUMP) .AND. (CHAT(1) /= CHAT_BEST)) THEN

GOING_BAD = GOING_BAD + 1

IF (GOING_BAD == 2) EXIT MAIN_LOOP

END IF

TOL_1 = ACCURACY*10.0_R8**(REAL(CHAT(1),KIND=R8)/2.0_R8)

IF (HQMHC(CHAT(1)) <= TOL_1) THEN

EXIT OPERATING_RANGE

ELSE IF ( .NOT. FIRST_JUMP) THEN

GOING_BAD = GOING_BAD + 1

IF (GOING_BAD == 2) EXIT MAIN_LOOP

END IF

! Shift point history, and try to get closer to SIGMA=0.

YS(:,1:2) = YS(:,3:4) ; YS(:,3:4) = YS(:,5:6) ; REUSE = .FALSE.

END DO OPERATING_RANGE

!

! Add 3 new points past SIGMA=0 such that

! SIGMA(2) > SIGMA(1) > SIGMA(0) > 0 > SIGMA(-1) > SIGMA(-2) > SIGMA(-3).

! If CHAT is odd then the corresponding LAMBDA are such that

! L(2) < L(1) < L(0) < 1 < L(-1) < L(-2) < L(-3),

! and if CHAT is even then

! L(2) < L(1) < L(0) < 1

! 1 > L(-1) > L(-2) > L(-3).

!

SIGMA(0:2) = (1.0_R8 - L(0:2))**(1.0_R8/REAL(CHAT(1),KIND=R8))

DO I=1,3

V(1:4+2*I) = (/ (SIGMA(J),SIGMA(J),J=2,1-I,-1) /)

DO J=2,N2P1

FV(1:3+2*I:2) = YS(J,1:3+2*I:2)

FV(2:4+2*I:2) = (YS(J,2:4+2*I:2)/YS(1,2:4+2*I:2))* &

(-REAL(CHAT(1),KIND=R8))*SIGMA(2:1-I:-1)**(CHAT(1)-1)

CALL INTERP(V(1:4+2*I),FV(1:4+2*I))

CALL INTERP(V(1:4+2*I),FV(1:4+2*I),-SIGMA(I-1),W(J))

END DO

IF (MOD(CHAT(1),2) == 0) THEN

EVEN = .TRUE.

W(1) = L(I-1)

ELSE
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EVEN = .FALSE.

W(1) = 2.0_R8 - L(I-1)

END IF

! W now contains the (predicted) point symmetric to SIGMA(I-1) with

! respect to SIGMA=0.

RHOLEN = 0.0_R8

! Correct the prediction. If there has been one successful jump across

! the origin, correction failures may indicate that the process is

! leaving the operating range.

DO J=1,LITFH

CALL TANGENT_PLP(NEWTON_STEP=.TRUE.)

NNFE = NNFE + 1

! Test for singular Jacobian matrix.

IF (IFLAG > 0) EXIT MAIN_LOOP

W = W + TZ

! Test for erratic LAMBDA.

IF ((( .NOT. EVEN) .AND. (W(1) <= 1.0_R8)) .OR. &

(EVEN .AND. (W(1) >= 1.0_R8))) THEN

IF ( .NOT. FIRST_JUMP) THEN

GOING_BAD = GOING_BAD + 1

IF (GOING_BAD == 2) EXIT MAIN_LOOP

END IF

YS(:,1:2) = YS (:,3:4) ; YS(:,3:4) = YS(:,5:6)

REUSE = .FALSE. ; CYCLE MAIN_LOOP

END IF

IF (DNRM2(N2P1,TZ,1) <= FINALTOL*(DNRM2(N2P1,W,1) + 1.0_R8)) EXIT

! Test for lack of convergence.

IF (J == LITFH) THEN

IF ( .NOT. FIRST_JUMP) THEN

GOING_BAD = GOING_BAD + 1

IF (GOING_BAD == 2) EXIT MAIN_LOOP

END IF

YS(:,1:2) = YS (:,3:4) ; YS(:,3:4) = YS(:,5:6)

REUSE = .FALSE. ; CYCLE MAIN_LOOP

END IF

END DO

! Ensure that the tangent vector has the correct direction.

IF (EVEN) THEN

IF (WP(1) > 0.0_R8) WP = -WP

ELSE

IF (WP(1) < 0.0_R8) WP = -WP

END IF

! Update the lambda (L), sigma (SIGMA), and history (YS) arrays.

L(-I) = W(1)

SIGMA(-I) = -(ABS(L(-I)-1.0_R8))**(1.0_R8/REAL(CHAT(1),KIND=R8))

YS(:,5+2*I) = W ; YS(:,6+2*I) = WP

! Reuse old points if the cycle number estimation has not changed from the

! last iterration, and the origin was successfully jumped in the last

! iteration.

IF (REUSE .AND. (CHAT(1) == CHAT_OLD)) EXIT

END DO

!

! Construct 12th order interpolant and estimate the root at SIGMA=0.

HC = 0.0_R8 ; HQ = 0.0_R8 ; T = 0.0_R8

V(1:12) = (/ (SIGMA(J),SIGMA(J),J=-3,2) /)

DO J=2,N2P1
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FV(1:11:2) = YS(J,11:1:-2)

FV(2:12:2) = (YS(J,12:2:-2)/YS(1,12:2:-2))* &

(-REAL(CHAT(1),KIND=R8))*SIGMA(-3:2)**(CHAT(1)-1)

CALL INTERP(V(1:12),FV(1:12))

CALL INTERP(V(1:12),FV(1:12),0.0_R8,W(J))

! Difference between 8th and 6th order Hermite interpolants.

T = MAX(T ,ABS(FV( 7) - SIGMA(0)*FV( 8)))

! Difference between 10th and 8th order Hermite interpolants.

HC = MAX(HC,ABS(FV( 9) - SIGMA(1)*FV(10)))

! Difference between 12th and 10th order Hermite interpolants.

HQ = MAX(HQ,ABS(FV(11) - SIGMA(2)*FV(12)))

END DO

SHRINK = 1.0_R8/(1.0_R8 + MAXVAL(ABS(W(2:N2P1))))

T = T*((PRODUCT(SIGMA(-3:-1)))**2)*SHRINK ! ||H_7 - H_5||/(1+||W||)

HC = HC*((PRODUCT(SIGMA(-3: 0)))**2)*SHRINK ! ||H_9 - H_7||/(1+||W||)

HQ = HQ*((PRODUCT(SIGMA(-3: 1)))**2)*SHRINK ! ||H_11 - H_9||/(1+||W||)

!

! Check both accuracy and consistency of Hermite interpolants.

TOL_2 = FINALTOL*(10**(CHAT(1)-1))

GM = SQRT(TOL_1*TOL_2)

IF ((T <= TOL_1) .AND. (HC <= GM) .AND. (HQ <= TOL_2)) THEN

! Full convergence.

IF (FIRST_JUMP) FIRST_JUMP = .FALSE.

YOLDS(2:N2P1) = W(2:N2P1); HQ_BEST = HQ

CHAT_BEST = CHAT(1)

EXIT MAIN_LOOP

ELSE IF (HQ > 1.01_R8*HQ_BEST) THEN

IF ( .NOT. FIRST_JUMP) THEN

GOING_BAD = GOING_BAD + 1

IF (GOING_BAD == 2) EXIT MAIN_LOOP

END IF

ELSE

! Progress has been made.

IF (FIRST_JUMP) FIRST_JUMP = .FALSE.

GOING_BAD = 0

YOLDS(2:N2P1) = W(2:N2P1); HQ_BEST = HQ

CHAT_BEST = CHAT(1)

END IF

! Shift point history.

YS(:,1:2) = YS(:,3:4) ; YS(:,3:4) = YS(:,5:6)

! If the cycle number estimate does not change in the next iteration, the

! points found across the origin can be reused.

REUSE = .TRUE. ; CHAT_OLD = CHAT(1)

SIGMA(-3) = SIGMA(-2) ; SIGMA(-2) = SIGMA(-1)

YS(:,11:12) = YS(:,9:10) ; YS(:,9:10) = YS(:,7:8)

END DO MAIN_LOOP

!

IF (ML_ITER >= RETRY) IFLAG = 7

!

! Return final solution in Y.

IF ( .NOT. FIRST_JUMP) THEN

Y(1) = HQ_BEST; Y(2:N2P1) = YOLDS(2:N2P1)

IFLAG = 1 + 10*CHAT_BEST

END IF

RETURN

END SUBROUTINE ROOT_PLP
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!

!

SUBROUTINE INTERP(T,FT,X,FX)

! Given data points T(:) and function values FT(:)=f(T(:)), INTERP

! computes the Newton form of the interpolating polynomial to f at T(:).

! T is assumed to be sorted, and if

! T(I-1) < T(I) = T(I+1) = ... = T(I+K) < T(I+K+1) then

! FT(I)=f(T(I)), FT(I+1)=f’(T(I)), ..., FT(I+K)=f^(K)(T(I)).

! On return FT(K) contains the divided difference f[T(1),...,T(K)], and

! FX contains the interpolating polynomial evaluated at X. If X and FX

! are present, the divided differences are not calculated.

!

REAL (KIND=R8), DIMENSION(:):: T, FT

REAL (KIND=R8), OPTIONAL:: X, FX

! Local variables.

REAL (KIND=R8):: FOLD,SAVE

INTEGER:: I,K,N

!

N=SIZE(T)

IF (.NOT. PRESENT(X)) THEN ! Calculate divided differences.

DO K=1,N-1

FOLD = FT(K)

DO I=K+1,N

IF (T(I) == T(I-K)) THEN

FT(I) = FT(I)/REAL(K,KIND=R8)

ELSE

SAVE = FT(I)

FT(I) = (FT(I)-FOLD)/(T(I)-T(I-K))

FOLD = SAVE

END IF

END DO

END DO

RETURN

END IF

FX = FT(N) ! Evaluate Newton polynomial.

DO K=N-1,1,-1

FX = FX*(X -T(K)) + FT(K)

END DO

RETURN

END SUBROUTINE INTERP

!

!

SUBROUTINE RHO(LAMBDA,X)

! RHO evaluates the (complex) homotopy map

!

! RHO(A,LAMBDA,X) = LAMBDA*F(X) + (1 - LAMBDA)*GAMMA*G(X),

!

! where GAMMA is a random complex constant, and the Jacobian

! matrix [ D RHO(A,LAMBDA,X)/D LAMBDA, D RHO(A,LAMBDA,X)/DX ] at

! (A,LAMBDA,X), and updates the global arrays RHOV (the homotopy map),

! DRHOX (the derivative of the homotopy with repect to X) , and DRHOL

! (the derivative with respect to LAMBDA). The vector A corresponds

! mathematically to all the random coefficients in the start system, and

! is not explicitly referenced by RHO. X, on entry, is real, but since

! arithmetic in RHO is complex, X is converted to complex form. Before

! return RHO converts the homotopy map and the two derivatives back to
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! real. Precisely, suppose XC is the complexification of X, i.e.,

!

! XC(1:N)=CMPLX(X(1:2*N-1:2),X(2:2*N:2)).

!

! Let CRHOV(A,LAMBDA,XC) be the (complex) homotopy map. Then RHOV

! is just

!

! RHOV(1:2*N-1:2) = REAL( CRHOV(1:N)),

! RHOV(2:2*N :2) = AIMAG(CRHOV(1:N)).

!

! Let CDRHOXC = D CRHOV(A,LAMBDA,XC)/D XC denote the (complex) derivative

! of the homotopy map with respect to XC, evaluated at (A,LAMBDA,XC).

! DRHOX is obtained by

!

! DRHOX(2*I-1,2*J-1) = REAL(CDRHOXC(I,J)),

! DRHOX(2*I ,2*J ) = DRHOX(2*I-1,2*J-1),

! DRHOX(2*I ,2*J-1) = AIMAG(CDRHOXC(I,J)),

! DRHOX(2*I-1,2*J ) = -DRHOX(2*I ,2*J-1),

!

! for I, J = 1,...,N. Let CDRHOL = D CRHOV(A,LAMBDA,XC)/D LAMBDA denote

! the (complex) derivative of the homotopy map with respect to LAMBDA,

! evaluated at (A,LAMBDA,XC). Then DRHOL is obtained by

!

! DRHOL(1:2*N-1:2) = REAL( CDRHOL(1:N)),

! DRHOL(2:2*N :2) = AIMAG(CDRHOL(1:N)).

!

! (None of CRHOV, CDRHOXC, or CDRHOL are in the code.)

!

! Internal subroutines: START_SYSTEM, TARGET_SYSTEM.

! External (optional, user written) subroutine: TARGET_SYSTEM_USER.

!

! On input:

!

! LAMBDA is the continuation parameter.

!

! X(1:2*N) is the real 2*N-dimensional evaluation point.

!

! On exit:

!

! LAMBDA and X are unchanged.

!

! RHOV(1:2*N) is the real (2*N)-dimensional representation of the

! homotopy map RHO(A,LAMBDA,X).

!

! DRHOX(1:2*N,1:2*N) is the real (2*N)-by-(2*N)-dimensional

! representation of D RHO(A,LAMBDA,X)/DX evaluated at (A,LAMBDA,X).

!

! DRHOL(1:2*N) is the real (2*N)-dimensional representation of

! D RHO(A,LAMBDA,X)/D LAMBDA evaluated at (A,LAMBDA,X).

!

REAL (KIND=R8), INTENT(IN):: LAMBDA

REAL (KIND=R8), DIMENSION(2*N), INTENT(IN):: X

!

INTERFACE

SUBROUTINE TARGET_SYSTEM_USER(N,PROJ_COEF,XC,F,DF)

USE REAL_PRECISION
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INTEGER, INTENT(IN):: N

COMPLEX (KIND=R8), INTENT(IN), DIMENSION(N+1):: PROJ_COEF,XC

COMPLEX (KIND=R8), INTENT(OUT):: F(N), DF(N,N+1)

END SUBROUTINE TARGET_SYSTEM_USER

END INTERFACE

!

! Local variables.

INTEGER:: I, J

REAL (KIND=R8):: ONEML

COMPLEX (KIND=R8):: GAMMA

!

ONEML=1.0_R8-LAMBDA

GAMMA=(.0053292102547824_R8,.9793238462643383_R8)

!

! Convert the real-valued evaluation point X to a complex vector.

XC(1:N)=CMPLX(X(1:2*N-1:2),X(2:2*N:2),KIND=R8)

!

! Calculate the homogeneous variable.

XC(N+1)=SUM(PROJ_COEF(1:N)*XC(1:N))+PROJ_COEF(N+1)

!

CALL START_SYSTEM ! Returns G and DG.

IF (PRESENT(USER_F_DF)) THEN ! Returns F and DF.

CALL TARGET_SYSTEM_USER(N,PROJ_COEF,XC,F,DF) ! User written subroutine.

ELSE

CALL TARGET_SYSTEM ! Internal subroutine.

END IF

!

! Convert complex derivatives to real derivatives via the Cauchy-Riemann

! equations.

DO I=1,N

DO J=1,N

DRHOX(2*I-1,2*J-1) = LAMBDA*REAL(DF(I,J)) + ONEML*REAL(DG(I,J)*GAMMA)

DRHOX(2*I ,2*J ) = DRHOX(2*I-1,2*J-1)

DRHOX(2*I ,2*J-1) = LAMBDA*AIMAG(DF(I,J)) + ONEML*AIMAG(DG(I,J)*GAMMA)

DRHOX(2*I-1,2*J ) = -DRHOX(2*I,2*J-1)

END DO

END DO

DRHOL(1:2*N-1:2) = REAL(F) - REAL(G*GAMMA)

DRHOL(2:2*N:2 ) = AIMAG(F) - AIMAG(G*GAMMA)

RHOV(1:2*N-1:2) = LAMBDA*REAL(F) + ONEML*REAL(G*GAMMA)

RHOV(2:2*N:2 ) = LAMBDA*AIMAG(F) + ONEML*AIMAG(G*GAMMA)

RETURN

END SUBROUTINE RHO

!

!

SUBROUTINE START_SYSTEM

! START_SYSTEM evaluates the start system G(XC) and the Jacobian matrix

! DG(XC). Arithmetic is complex.

!

! On exit:

!

! G(:) contains the complex N-dimensional start system evaluated at XC(:).

!

! DG(:,:) contains the complex N-by-N-dimensional Jacobian matrix of

! the start system evaluted at XC(:).

!
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! Local variables.

INTEGER:: I, J, K, L, M

COMPLEX (KIND=R8):: TEMP

!

! TEMP1G AND TEMP2G are employed to reduce recalculation in G and DG.

! Note: If SD(I,J)=0, then the corresponding factor is 1, not 0.

TEMP1G=(0.0_R8,0.0_R8)

TEMP2G=(0.0_R8,0.0_R8)

DO I=1,N

DO J=1,PARTITION_SIZES(I)

IF (PARTITION(I)%SET(J)%SET_DEG == 0) THEN

TEMP2G(I,J)=(1.0_R8,0.0_R8)

ELSE

K=PARTITION(I)%SET(J)%NUM_INDICES

TEMP1G(I,J) = SUM( PARTITION(I)%SET(J)%START_COEF(1:K)* &

XC(PARTITION(I)%SET(J)%INDEX(1:K)) )

TEMP2G(I,J) = TEMP1G(I,J)**PARTITION(I)%SET(J)%SET_DEG - &

XC(N+1)**PARTITION(I)%SET(J)%SET_DEG

END IF

END DO

G(I)=PRODUCT(TEMP2G(I,1:PARTITION_SIZES(I)))

END DO

!

! Calculate the derivative of G with respect to XC(1),...,XC(N)

! in 3 steps.

! STEP 1: First treat XC(N+1) as an independent variable.

DG=(0.0_R8,0.0_R8)

DO I=1,N

DO J=1,PARTITION_SIZES(I)

IF (PARTITION(I)%SET(J)%SET_DEG == 0) CYCLE

K=PARTITION(I)%SET(J)%NUM_INDICES

DG(I,PARTITION(I)%SET(J)%INDEX(1:K)) = PARTITION(I)%SET(J)%SET_DEG * &

PARTITION(I)%SET(J)%START_COEF(1:K) * &

(TEMP1G(I,J)**(PARTITION(I)%SET(J)%SET_DEG - 1))

TEMP = (1.0_R8,0.0_R8)

DO L=1,PARTITION_SIZES(I)

IF (L == J) CYCLE

TEMP = TEMP * TEMP2G(I,L)

END DO

DG(I,PARTITION(I)%SET(J)%INDEX(1:K)) = &

DG(I,PARTITION(I)%SET(J)%INDEX(1:K)) * TEMP

END DO

END DO

!

! STEP 2: Now calculate the N-by-1 Jacobian matrix of G with

! respect to XC(N+1) using the product rule.

DO I=1,N

DO J=1,PARTITION_SIZES(I)

IF (PARTITION(I)%SET(J)%SET_DEG == 0) CYCLE

TEMP = -PARTITION(I)%SET(J)%SET_DEG * &

(XC(N+1)**(PARTITION(I)%SET(J)%SET_DEG - 1))

DO K=1,PARTITION_SIZES(I)

IF (K == J) CYCLE

TEMP=TEMP*TEMP2G(I,K)

END DO

DG(I,N+1)=DG(I,N+1)+TEMP
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END DO

END DO

!

! STEP 3: Use the chain rule with XC(N+1) considered as a function

! of XC(1),...,XC(N).

DO I=1,N

DG(I,1:N)=DG(I,1:N)+DG(I,N+1)*PROJ_COEF(1:N)

END DO

RETURN

END SUBROUTINE START_SYSTEM

!

!

SUBROUTINE TARGET_SYSTEM

! TARGET_SYSTEM calculates the target system F(XC) and the Jacobian matrix

! DF(XC). Arithmetic is complex.

!

! On exit:

!

! F(:) contains the complex N-dimensional target system evaluated

! at XC(:).

!

! DF(:,:) is the complex N-by-N-dimensional Jacobian matrix of the

! target system evaluated at XC(:).

!

! Local variables.

INTEGER:: I, J, K, L

COMPLEX (KIND=R8):: T, TS

!

! Evaluate F(XC). For efficiency, indexing functions and array sections

! are avoided.

DO I=1,N

TS = (0.0_R8, 0.0_R8)

DO J=1,POLYNOMIAL(I)%NUM_TERMS

T = POLYNOMIAL(I)%TERM(J)%COEF

DO K=1,N+1

IF (POLYNOMIAL(I)%TERM(J)%DEG(K) == 0) CYCLE

T = T * XC(K)**POLYNOMIAL(I)%TERM(J)%DEG(K)

END DO

TS = TS + T

END DO

F(I)=TS

END DO

!

! Calulate the Jacobian matrix DF(XC).

DF=(0.0_R8,0.0_R8)

DO I=1,N

DO J=1,N+1

TS = (0.0_R8,0.0_R8)

DO K=1,POLYNOMIAL(I)%NUM_TERMS

IF (POLYNOMIAL(I)%TERM(K)%DEG(J) == 0) CYCLE

T = POLYNOMIAL(I)%TERM(K)%COEF * POLYNOMIAL(I)%TERM(K)%DEG(J) * &

(XC(J)**(POLYNOMIAL(I)%TERM(K)%DEG(J) - 1))

DO L=1,N+1

IF ((L == J) .OR. (POLYNOMIAL(I)%TERM(K)%DEG(L) == 0)) CYCLE

T = T * (XC(L)**POLYNOMIAL(I)%TERM(K)%DEG(L))

END DO
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TS = TS + T

END DO

DF(I,J) = TS

END DO

END DO

!

! Convert DF to partials with respect to XC(1),...,XC(N) by

! applying the chain rule with XC(N+1) considered as a function

! of XC(1),...,XC(N).

DO I=1,N

DF(I,1:N) = DF(I,1:N) + PROJ_COEF(1:N) * DF(I,N+1)

END DO

RETURN

END SUBROUTINE TARGET_SYSTEM

!

!

SUBROUTINE OUTPUT_PLP

! OUTPUT_PLP first untransforms (converts from projective to affine

! coordinates) and then unscales a root.

!

! On entry:

!

! XC(1:N) contains a root in projective coordinates, with the (N+1)st

! projective coordinate XC(N+1) implicitly defined by the

! projective transformation.

!

! On exit:

!

! XC(1:N) contains the untransformed (affine), unscaled root.

!

! XC(N+1) is the homogeneous coordinate of the root of the scaled

! target system, if scaling was performed.

!

INTEGER:: I

REAL (KIND=R8), PARAMETER:: BIG=HUGE(1.0_R8)

!

! Calculate the homogeneous coordinate XC(N+1) using the vector XC(1:N)

! with the projective transformation, then untransform XC(1:N) (convert

! to affine coordinates).

XC(N+1)=SUM(PROJ_COEF(1:N)*XC(1:N))+PROJ_COEF(N+1)

!

! Deal carefully with solutions at infinity.

IF (ABS(XC(N+1)) < 1.0_R8) THEN

DO I=1,N

IF (ABS(XC(I)) >= BIG*ABS(XC(N+1))) THEN

XC(I)=CMPLX(BIG,BIG,KIND=R8) ! Solution at infinity.

ELSE

XC(I)=XC(I)/XC(N+1)

END IF

END DO

ELSE

XC(1:N)=XC(1:N)/XC(N+1)

END IF

!

! Unscale the variables.

IF (.NOT. PRESENT(NO_SCALING)) THEN
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DO I=1,N

IF (REAL(XC(I)) /= BIG) XC(I)=XC(I)*(10.0_R8**SCALE_FACTORS(I))

END DO

END IF

!

RETURN

END SUBROUTINE OUTPUT_PLP

END SUBROUTINE POLSYS_PLP

!

!

SUBROUTINE BEZOUT_PLP(N,MAXT,TOL,BPLP)

!

! BEZOUT_PLP calculates and returns only the generalized Bezout number

! BPLP of the target polynomial system, based on the variable partition

! P defined in the module GLOBAL_PLP. BEZOUT_PLP finds BPLP very

! quickly, which is useful for exploring alternative partitions.

!

! Calls SINGSYS_PLP.

!

! On input:

!

! N is the dimension of the target system.

!

! MAXT is the maximum number of terms in any component of the target

! system. MAXT = MAX((/(NUMT(I),I=1,N)/)).

!

! TOL is the singularity test threshold used by SINGSYS_PLP. If

! TOL <= 0.0 on input, TOL is reset to the default value

! SQRT(EPSILON(1.0_R8)).

!

! GLOBAL_PLP allocatable objects POLYNOMIAL, PARTITION_SIZES, and

! PARTITION (see GLOBAL_PLP documentation) must be allocated and

! defined in the calling program.

!

! On output:

!

! N and MAXT are unchanged, and TOL may have been changed as described

! above.

!

! BPLP is the generalized Bezout number for the target system based on

! the variable partition P defined in the module GLOBAL_PLP.

!

USE GLOBAL_PLP

INTEGER, INTENT(IN):: N, MAXT

REAL (KIND=R8), INTENT(IN OUT):: TOL

INTEGER, INTENT(OUT):: BPLP

!INTERFACE

! SUBROUTINE SINGSYS_PLP(N,LEX_NUM,LEX_SAVE,TOL,RAND_MAT,MAT,NONSING)

! USE GLOBAL_PLP

! INTEGER, INTENT(IN):: N

! INTEGER, DIMENSION(N), INTENT(IN OUT):: LEX_NUM,LEX_SAVE

! REAL (KIND=R8), INTENT(IN):: TOL

! REAL (KIND=R8), DIMENSION(N,N), INTENT(IN):: RAND_MAT

! REAL (KIND=R8), DIMENSION(N+1,N), INTENT(IN OUT):: MAT

! LOGICAL, INTENT(OUT):: NONSING

! END SUBROUTINE SINGSYS_PLP
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!END INTERFACE

!

! Local variables.

INTEGER:: I, J, K, L

INTEGER, DIMENSION(MAXT):: DHOLD

INTEGER, DIMENSION(N):: LEX_NUM, LEX_SAVE

REAL (KIND=R8), DIMENSION(N+1,N):: MAT

REAL (KIND=R8), DIMENSION(N,N):: RAND_MAT

REAL, DIMENSION(N,N):: RANDNUMS

LOGICAL:: NONSING

!

! Set default value for singularity threshold TOL.

IF (TOL <= REAL(N,KIND=R8)*EPSILON(1.0_R8)) TOL=SQRT(EPSILON(1.0_R8))

!

! Initialize RAND_MAT with random numbers uniformly distributed in

! [-1,-1/2] union [1/2,1].

CALL RANDOM_SEED

CALL RANDOM_NUMBER(HARVEST=RANDNUMS)

RANDNUMS=RANDNUMS - 0.5 + SIGN(0.5, RANDNUMS - 0.5)

RAND_MAT=REAL(RANDNUMS,KIND=R8)

!

! Calculate set degrees of the variable partition P.

DHOLD=0

DO I=1,N

DO J=1,PARTITION_SIZES(I)

DO K=1,NUMV(I,J)

DHOLD(1:NUMT(I))=(/(D(I,L,PAR(I,J,K)),L=1,NUMT(I))/)+DHOLD(1:NUMT(I))

END DO

PARTITION(I)%SET(J)%SET_DEG=MAXVAL(DHOLD(1:NUMT(I)))

DHOLD=0

END DO

END DO

!

! Compute Bezout number using lexicographic ordering.

!

BPLP=0

LEX_NUM(1:N-1)=1

LEX_NUM(N)=0

LEX_SAVE=0

MAIN_LOOP: DO

DO J=N,1,-1

IF (LEX_NUM(J) < PARTITION_SIZES(J)) THEN

L=J

EXIT

END IF

END DO

LEX_NUM(L)=LEX_NUM(L)+1

IF (L+1 <= N) LEX_NUM(L+1:N)=1

!

! Test singularity of start subsystem corresponding to lexicographic

! vector LEX_NUM.

CALL SINGSYS_PLP(N,LEX_NUM,LEX_SAVE,TOL,RAND_MAT,MAT,NONSING)

IF (NONSING) BPLP=BPLP+PRODUCT((/(SD(K,LEX_NUM(K)),K=1,N)/))

IF (ALL(LEX_NUM == PARTITION_SIZES)) EXIT

END DO MAIN_LOOP

!
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RETURN

END SUBROUTINE BEZOUT_PLP

!

!

SUBROUTINE SINGSYS_PLP(N,LEX_NUM,LEX_SAVE,TOL,RAND_MAT,MAT,NONSING)

!

! SINGSYS_PLP determines if the subsystem of the start system

! corresponding to the lexicographic vector LEX_NUM is nonsingular,

! or if a family of subsystems of the start system defined by

! LEX_NUM and LEX_SAVE is singular, by using Householder reflections and

! tree pruning. Using the notation defined in the module GLOBAL_PLP,

! the vector LEX_NUM defines a linear system of equations

! L(1,LEX_NUM(1)) = constant_1

! .

! .

! .

! L(N,LEX_NUM(N)) = constant_N

! which, if nonsingular for generic coefficients, defines

! PRODUCT((/ (SD(K,LEX_NUM(K)), K=1,N) /)) nonsingular starting points

! for homotopy paths. Nonsingularity of a generic coefficient matrix is

! checked by computing a QR decomposition of the transpose of the

! coefficient matrix. Observe that if the first J rows are rank

! deficient, then all lexicographic vectors (LEX_NUM(1:J), *) also

! correspond to singular systems, and thus the tree of all possible

! lexicographic orderings can be pruned.

!

! The QR factorization is maintained as a product of Householder

! reflections, and updated based on the difference between LEX_SAVE

! (the value of LEX_NUM returned from the previous call to SINGSYS_PLP)

! and the current input LEX_NUM. LEX_SAVE and LEX_NUM together

! implicitly define a family of subsystems, namely, all those

! corresponding to lexicographic orderings with head LEX_NUM(1:J),

! where J is the smallest index such that LEX_SAVE(J) /= LEX_NUM(J).

!

! Calls LAPACK subroutines DLARFX and DLARFG.

!

! On input:

!

! N is the dimension of the start and target systems.

!

! LEX_NUM(1:N) is a lexicographic vector which specifies a particular

! subsystem (and with LEX_SAVE a family of subsystems) of the start

! system.

!

! LEX_SAVE(1:N) holds the value of LEX_NUM returned from the previous

! call, and should not be changed between calls to SINGSYS_PLP. Set

! LEX_SAVE=0 on the first call to SINGSYS_PLP.

!

! TOL is the singularity test threshold. The family of subsystems

! corresponding to lexicographic vectors (LEX_NUM(1:J), *) is declared

! singular if ABS(R(J,J)) < TOL for the QR factorization of a generic

! start system coefficient matrix.

!

! RAND_MAT(N,N) is a random matrix with entries uniformly distributed

! in [-1,-1/2] union [1/2,1], used to seed the random generic

! coefficient matrix MAT. RAND_MAT should not change between calls to
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! SINGSYS_PLP.

!

! On output:

!

! LEX_NUM is unchanged if NONSING=.TRUE. If NONSING=.FALSE.,

! LEX_NUM(1:J) is unchanged, and

! LEX_NUM(J+1:N) = PARTITION_SIZES(J+1:N), where J is the smallest

! index such that ABS(R(J,J)) < TOL for the QR factorization of the

! generic start system coefficient matrix corresponding to LEX_NUM

! (on input).

!

! LEX_SAVE = LEX_NUM.

!

! NONSING = .TRUE. if the subsystem of the start system defined by

! LEX_NUM is nonsingular. NONSING = .FALSE. otherwise, which means that

! the entire family of subsystems corresponding to lexicographic vectors

! (LEX_NUM(1:J), *) is singular, where J is the smallest index such that

! ABS(R(J,J)) < TOL for the QR factorization of the generic start system

! coefficient matrix corresponding to LEX_NUM (on input).

!

! Working storage:

!

! MAT(N+1,N) is updated on successive calls to SINGSYS_PLP, and should

! not be changed by the calling program. MAT can be undefined on the

! first call to SINGSYS_PLP (when LEX_SAVE = 0). Define J as the

! smallest index where LEX_SAVE(J) /= LEX_NUM(J). Upon exit after a

! subsequent call, for some M >= J, MAT contains, in the first M columns,

! a partial QR factorization stored as a product of Householder

! reflections, and, in the last N-M columns, random numbers that define

! the subsystem of the start system corresponding to the lexicographic

! vector LEX_NUM. For 1<=K<=M, V(2:N+1-K)=MAT(K+1:N,K), V(1)=1, together

! with TAU=MAT(N+1,K), define a Householder reflection of dimension

! N+1-K.

!

USE GLOBAL_PLP

INTEGER, INTENT(IN):: N

INTEGER, DIMENSION(N), INTENT(IN OUT):: LEX_NUM, LEX_SAVE

REAL (KIND=R8), INTENT(IN):: TOL

REAL (KIND=R8), DIMENSION(N,N), INTENT(IN):: RAND_MAT

REAL (KIND=R8), DIMENSION(N+1,N), INTENT(IN OUT):: MAT

LOGICAL, INTENT(OUT):: NONSING

!

! Local variables.

INTEGER:: I, J, K

REAL (KIND=R8), DIMENSION(N):: V

REAL (KIND=R8):: WORK

IF (N == 1) THEN

LEX_SAVE=LEX_NUM

NONSING=.TRUE.

RETURN

END IF

!

! (Re)set MAT (in column form) from LEX_NUM.

DO I=1,N

IF (LEX_SAVE(I) /= LEX_NUM(I)) THEN

LEX_SAVE(I+1:N)=0
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DO K=I,N

MAT(1:N+1,K)=0.0_R8

DO J=1,NUMV(K,LEX_NUM(K))

MAT(PAR(K,LEX_NUM(K),J),K)=RAND_MAT(PAR(K,LEX_NUM(K),J),K)

END DO

END DO

EXIT

END IF

END DO

!

! Recompute QR factorization of MAT starting where first change in

! LEX_NUM occurred.

NONSING=.FALSE.

IF (LEX_SAVE(1) /= LEX_NUM(1)) THEN

! Skip QR factorization and prune tree if this set degree = 0.

IF (SD(1,LEX_NUM(1)) == 0) THEN

LEX_NUM(2:N)=PARTITION_SIZES(2:N)

LEX_SAVE=LEX_NUM

RETURN

ELSE

CALL DLARFG(N,MAT(1,1),MAT(2:N,1),1,MAT(N+1,1))

END IF

END IF

DO J=2,N

IF (LEX_SAVE(J) /= LEX_NUM(J)) THEN

! Skip rest of QR factorization and prune tree if this set degree = 0.

IF (SD(J,LEX_NUM(J)) == 0) THEN

IF (J < N) LEX_NUM(J+1:N)=PARTITION_SIZES(J+1:N)

EXIT

END IF

DO K=1,J-1

V(K)=1.0_R8

V(K+1:N)=MAT(K+1:N,K)

CALL DLARFX(’L’,N-K+1,1,V(K:N),MAT(N+1,K),MAT(K:N,J),N-K+1,WORK)

END DO

IF (J < N) CALL DLARFG(N-J+1,MAT(J,J),MAT(J+1:N,J),1,MAT(N+1,J))

! Check singularity of subsystem corresponding to lexicographic

! vector (LEX_NUM(1:J), *).

IF (ABS(MAT(J,J)) < TOL) THEN

IF (J < N) LEX_NUM(J+1:N)=PARTITION_SIZES(J+1:N)

EXIT

END IF

END IF

! Subsystem corresponding to LEX_NUM is nonsingular when J==N here.

IF (J == N) NONSING=.TRUE.

END DO

! Save updated LEX_NUM for next call.

LEX_SAVE=LEX_NUM

RETURN

END SUBROUTINE SINGSYS_PLP

!

!

END MODULE POLSYS
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Appendix B: The Sample Calling Program MAIN TEMPLATE

PROGRAM MAIN_TEMPLATE

!

! MAIN_TEMPLATE is a template for calling BEZOUT_PLP and POLSYS_PLP.

! There are two options provided by MAIN_TEMPLATE: (1) MAIN_TEMPLATE

! returns only the generalized PLP Bezout number ("root count") of the

! target polynomial system based on a system partition provided by the

! user (calls BEZOUT_PLP) or (2) MAIN_TEMPLATE returns the root count,

! homotopy path tracking statistics, error flags, and the roots (calls

! POLSYS_PLP). For the first option set the logical switch

! ROOT_COUNT_ONLY = .TRUE., and for the second option set ROOT_COUNT_ONLY

! = .FALSE..

!

! The file INPUT.DAT contains data for several sample target systems

! and system partitions. This main program illustrates how to find the

! root count for several different partitions for the same polynomial

! system, and also how to solve more than one polynomial system in the

! same run. The data is read in using NAMELISTs, which makes the data

! file INPUT.DAT self-explanatory. The problem definition is given in

! the NAMELIST /PROBLEM/ and the PLP system partition is defined in the

! NAMELIST /SYSPARTITION/. A new polynomial system definition is

! signalled by setting the variable NEW_PROBLEM=.TRUE. in the /PROBLEM/

! namelist. Thus a data file describing several different polynomial

! systems to solve, and exploring different system partitions for the

! same polynomial system, might look like

!

! &PROBLEM NEW_PROBLEM=.TRUE. data /

! &SYSPARTITION ROOT_COUNT_ONLY=.FALSE. data / finds roots

!

! &PROBLEM NEW_PROBLEM=.TRUE. data /

! &SYSPARTITION ROOT_COUNT_ONLY=.TRUE. data / finds root count only

! &PROBLEM NEW_PROBLEM=.FALSE. /

! &SYSPARTITION ROOT_COUNT_ONLY=.TRUE. data / a different root count

! &PROBLEM NEW_PROBLEM=.FALSE. /

! &SYSPARTITION ROOT_COUNT_ONLY=.TRUE. data / another root count

!

! Note that static arrays are used below only to support NAMELIST input;

! the actual storage of the polynomial system and partition information

! in the data structures in the module GLOBAL_PLP is very compact.

!

!

USE POLSYS

!

! Local variables.

INTEGER, PARAMETER:: NN=30, MMAXT=50

INTEGER:: BPLP, I, IFLAG1, J, K, M, MAXT, N, NUMRR=1

INTEGER, DIMENSION(NN):: NUM_TERMS, NUM_SETS

INTEGER, DIMENSION(NN,NN):: NUM_INDICES

INTEGER, DIMENSION(NN,NN,NN):: INDEX

INTEGER, DIMENSION(NN,MMAXT,NN):: DEG

INTEGER, DIMENSION(:), POINTER:: IFLAG2, NFE

REAL (KIND=R8):: TRACKTOL, FINALTOL, SINGTOL

REAL (KIND=R8), DIMENSION(8):: SSPAR

REAL (KIND=R8), DIMENSION(NN):: SCALE_FACTORS
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REAL (KIND=R8), DIMENSION(:), POINTER:: ARCLEN, LAMBDA

COMPLEX (KIND=R8), DIMENSION(NN,MMAXT):: COEF

COMPLEX (KIND=R8), DIMENSION(:,:), POINTER:: ROOTS

CHARACTER (LEN=80):: TITLE

CHARACTER (LEN=80), DIMENSION(NN):: P

LOGICAL:: NEW_PROBLEM, NO_SCALING, RECALL, ROOT_COUNT_ONLY

!

NAMELIST /PROBLEM/ COEF, DEG, FINALTOL, NEW_PROBLEM, N, NUMRR, NUM_TERMS, &

SINGTOL, SSPAR, TITLE, TRACKTOL

NAMELIST /SYSPARTITION/ INDEX, NUM_INDICES, NUM_SETS, P, ROOT_COUNT_ONLY

!

!

! MAIN_TEMPLATE reads the target polynomial system definition and the

! system partition specification from the file INPUT.DAT.

OPEN (UNIT=3,FILE=’INPUT.DAT’,ACTION=’READ’,POSITION=’REWIND’, &

DELIM=’APOSTROPHE’,STATUS=’OLD’)

!

! All output is to the file OUTPUT.DAT, which is overwritten.

OPEN (UNIT=7,FILE=’OUTPUT.DAT’,ACTION=’WRITE’,STATUS=’REPLACE’,DELIM=’NONE’)

!

SSPAR(1:8)=0.0_R8

DEG=0

COEF=(0.0_R8,0.0_R8)

MAIN_LOOP: DO

READ (3,NML=PROBLEM,END=500)

IF (NEW_PROBLEM) THEN

WRITE (7,190) TITLE,TRACKTOL,FINALTOL,SINGTOL,SSPAR(5),N

190 FORMAT(///A80//’TRACKTOL, FINALTOL =’,2ES22.14, &

/,’SINGTOL (0 SETS DEFAULT) =’,ES22.14, &

/,’SSPAR(5) (0 SETS DEFAULT) =’,ES22.14, &

/,’NUMBER OF EQUATIONS =’,I3)

WRITE (7,200)

200 FORMAT(/’****** COEFFICIENT TABLEAU ******’)

DO I=1,N

WRITE (7,210) I,NUM_TERMS(I)

210 FORMAT(/,’POLYNOMIAL(’,I2,’)%NUM_TERMS =’,I3)

DO J=1,NUM_TERMS(I)

WRITE (7,220) (I,J,K,DEG(I,J,K), K=1,N)

220 FORMAT(’POLYNOMIAL(’,I2,’)%TERM(’,I2,’)%DEG(’,I2,’) =’,I2)

WRITE (7,230) I,J,COEF(I,J)

230 FORMAT(’POLYNOMIAL(’,I2,’)%TERM(’,I2,’)%COEF = (’,ES22.14, &

’,’,ES22.14,’)’)

END DO

END DO

!

! Allocate storage for the target system in POLYNOMIAL.

CALL CLEANUP_POL

ALLOCATE(POLYNOMIAL(N))

DO I=1,N

POLYNOMIAL(I)%NUM_TERMS=NUM_TERMS(I)

ALLOCATE(POLYNOMIAL(I)%TERM(NUM_TERMS(I)))

DO J=1,NUM_TERMS(I)

ALLOCATE(POLYNOMIAL(I)%TERM(J)%DEG(N+1))

POLYNOMIAL(I)%TERM(J)%COEF=COEF(I,J)

POLYNOMIAL(I)%TERM(J)%DEG(1:N)=DEG(I,J,1:N)

END DO
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END DO

END IF

READ (3,NML=SYSPARTITION)

!

! Allocate storage for the system partition in PARTITION.

CALL CLEANUP_PAR

ALLOCATE(PARTITION_SIZES(N))

PARTITION_SIZES(1:N)=NUM_SETS(1:N)

ALLOCATE(PARTITION(N))

DO I=1,N

ALLOCATE(PARTITION(I)%SET(PARTITION_SIZES(I)))

DO J=1,PARTITION_SIZES(I)

PARTITION(I)%SET(J)%NUM_INDICES=NUM_INDICES(I,J)

ALLOCATE(PARTITION(I)%SET(J)%INDEX(NUM_INDICES(I,J)))

PARTITION(I)%SET(J)%INDEX(1:NUM_INDICES(I,J)) = &

INDEX(I,J,1:NUM_INDICES(I,J))

END DO

END DO

!

IF (ROOT_COUNT_ONLY) THEN

! Compute only the PLP Bezout number BPLP for this partition.

MAXT=MAXVAL(NUM_TERMS(1:N))

CALL BEZOUT_PLP(N,MAXT,SINGTOL,BPLP)

ELSE

! Compute all BPLP roots of the target polynomial system.

CALL POLSYS_PLP(N,TRACKTOL,FINALTOL,SINGTOL,SSPAR,BPLP,IFLAG1,IFLAG2, &

ARCLEN,LAMBDA,ROOTS,NFE,SCALE_FACTORS)

END IF

!

WRITE (7,240) BPLP, (K,TRIM(P(K)),K=1,N)

240 FORMAT(//,’GENERALIZED PLP BEZOUT NUMBER (BPLP) =’,I10, &

/’BASED ON THE FOLLOWING SYSTEM PARTITION:’,/(’P(’,I2,’) = ’,A))

!

IF (.NOT. ROOT_COUNT_ONLY) THEN

DO M=1,BPLP

WRITE (7,260) M,ARCLEN(M),NFE(M),IFLAG2(M)

260 FORMAT(/’PATH NUMBER =’,I10//’ARCLEN =’,ES22.14/’NFE =’,I5/ &

’IFLAG2 =’,I3)

!

! Designate solutions as "REAL" or "COMPLEX."

IF (ANY(ABS(AIMAG(ROOTS(1:N,M))) >= 1.0E-4_R8)) THEN

WRITE (7,270,ADVANCE=’NO’)

270 FORMAT(’COMPLEX, ’)

ELSE

WRITE (7,280,ADVANCE=’NO’)

280 FORMAT(’REAL, ’)

END IF

!

! Designate solutions as "FINITE" or "INFINITE."

IF (ABS(ROOTS(N+1,M)) < 1.0E-6_R8) THEN

WRITE (7,290)

290 FORMAT(’INFINITE SOLUTION’)

ELSE

WRITE (7,300)

300 FORMAT(’FINITE SOLUTION’)

END IF
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IF (MOD(IFLAG2(M),10) == 1) THEN

WRITE (7,310) 1.0_R8,LAMBDA(M)

310 FORMAT(’LAMBDA =’,ES22.14,’, ESTIMATED ERROR =’,ES22.14/)

ELSE

WRITE (7,315) LAMBDA(M)

315 FORMAT(’LAMBDA =’,ES22.14/)

END IF

WRITE (7,320) (J,ROOTS(J,M),J=1,N)

320 FORMAT((’X(’,I2,’) = (’,ES22.14,’,’,ES22.14,’)’))

WRITE (7,330) N+1,ROOTS(N+1,M)

330 FORMAT(/,’X(’,I2,’) = (’,ES22.14,’,’,ES22.14,’)’)

END DO

END IF

END DO MAIN_LOOP

500 CALL TEST_OPTIONS ! This tests various options, and is not part of a

! typical main program.

CLOSE (UNIT=3); CLOSE (UNIT=7)

CALL CLEANUP_POL

CALL CLEANUP_PAR

STOP

!

CONTAINS

SUBROUTINE CLEANUP_POL

! Deallocates structure POLYNOMIAL.

IF (.NOT. ALLOCATED(POLYNOMIAL)) RETURN

DO I=1,SIZE(POLYNOMIAL)

DO J=1,NUMT(I)

DEALLOCATE(POLYNOMIAL(I)%TERM(J)%DEG)

END DO

DEALLOCATE(POLYNOMIAL(I)%TERM)

END DO

DEALLOCATE(POLYNOMIAL)

RETURN

END SUBROUTINE CLEANUP_POL

!

SUBROUTINE CLEANUP_PAR

! Deallocates structure PARTITION.

IF (.NOT. ALLOCATED(PARTITION)) RETURN

DO I=1,SIZE(PARTITION)

DO J=1,PARTITION_SIZES(I)

DEALLOCATE(PARTITION(I)%SET(J)%INDEX)

END DO

DEALLOCATE(PARTITION(I)%SET)

END DO

DEALLOCATE(PARTITION)

DEALLOCATE(PARTITION_SIZES)

RETURN

END SUBROUTINE CLEANUP_PAR

!

SUBROUTINE TEST_OPTIONS

! Illustrate use of optional arguments NUMRR, NO_SCALING, USER_F_DF:

TRACKTOL=1.0E-6_R8; FINALTOL=1.0E-8_R8

CALL POLSYS_PLP(N,TRACKTOL,FINALTOL,SINGTOL,SSPAR,BPLP,IFLAG1,IFLAG2, &

ARCLEN,LAMBDA,ROOTS,NFE,SCALE_FACTORS, NUMRR=1, NO_SCALING=.TRUE., &

USER_F_DF=.TRUE.)

M = 3
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WRITE (7,FMT="(//’Testing optional arguments.’)")

WRITE (7,260) M,ARCLEN(M),NFE(M),IFLAG2(M)

IF (MOD(IFLAG2(M),10) == 1) THEN

WRITE (7,310) 1.0_R8,LAMBDA(M)

ELSE

WRITE (7,315) LAMBDA(M)

END IF

WRITE (7,320) (J,ROOTS(J,M),J=1,N)

WRITE (7,330) N+1,ROOTS(N+1,M)

!

! Now retrack one of these paths (#3) using the RECALL option:

IFLAG2(3) = -2

TRACKTOL=1.0E-10_R8; FINALTOL=1.0E-14_R8

CALL POLSYS_PLP(N,TRACKTOL,FINALTOL,SINGTOL,SSPAR,BPLP,IFLAG1,IFLAG2, &

ARCLEN,LAMBDA,ROOTS,NFE,SCALE_FACTORS, NUMRR=3, NO_SCALING=.TRUE., &

USER_F_DF=.TRUE., RECALL=.TRUE.)

M = 3

WRITE (7,FMT="(//’Statistics for retracked path.’)")

WRITE (7,260) M,ARCLEN(M),NFE(M),IFLAG2(M)

IF (MOD(IFLAG2(M),10) == 1) THEN

WRITE (7,310) 1.0_R8,LAMBDA(M)

ELSE

WRITE (7,315) LAMBDA(M)

END IF

WRITE (7,320) (J,ROOTS(J,M),J=1,N)

WRITE (7,330) N+1,ROOTS(N+1,M)

RETURN

260 FORMAT(/’PATH NUMBER =’,I10//’ARCLEN =’,ES22.14/’NFE =’,I5/ &

’IFLAG2 =’,I3)

310 FORMAT(’LAMBDA =’,ES22.14,’, ESTIMATED ERROR =’,ES22.14/)

315 FORMAT(’LAMBDA =’,ES22.14/)

320 FORMAT((’X(’,I2,’) = (’,ES22.14,’,’,ES22.14,’)’))

330 FORMAT(/,’X(’,I2,’) = (’,ES22.14,’,’,ES22.14,’)’)

END SUBROUTINE TEST_OPTIONS

!

END PROGRAM MAIN_TEMPLATE
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Appendix C: Sample Input for MAIN TEMPLATE

&PROBLEM NEW_PROBLEM=.TRUE.

TITLE=’TWO QUADRICS, NO SOLUTIONS AT INFINITY, TWO REAL SOLUTIONS.’

TRACKTOL = 1.0D-4 FINALTOL = 1.0D-14 SINGTOL = 0.0 SSPAR(5) = 1.0D0

NUMRR = 1

N = 2

NUM_TERMS(1) = 6

COEF(1,1) = (-9.80D-04,0.0) DEG(1,1,1) = 2

COEF(1,2) = ( 9.78D+05,0.0) DEG(1,2,2) = 2

COEF(1,3) = (-9.80D+00,0.0) DEG(1,3,1) = 1 DEG(1,3,2) = 1

COEF(1,4) = (-2.35D+02,0.0) DEG(1,4,1) = 1

COEF(1,5) = ( 8.89D+04,0.0) DEG(1,5,2) = 1

COEF(1,6) = (-1.00D+00,0.0)

NUM_TERMS(2) = 6

COEF(2,1) = (-1.00D-02,0.0) DEG(2,1,1) = 2

COEF(2,2) = (-9.84D-01,0.0) DEG(2,2,2) = 2

COEF(2,3) = (-2.97D+01,0.0) DEG(2,3,1) = 1 DEG(2,3,2) = 1

COEF(2,4) = ( 9.87D-03,0.0) DEG(2,4,1) = 1

COEF(2,5) = (-1.24D-01,0.0) DEG(2,5,2) = 1

COEF(2,6) = (-2.50D-01,0.0) /

&SYSPARTITION ROOT_COUNT_ONLY = .FALSE.

P(1) = ’{{x1,x2}}’
P(2) = ’{{x1,x2}}’
NUM_SETS(1) = 1 NUM_INDICES(1,1) = 2

INDEX(1,1,1) = 1 INDEX(1,1,2) = 2

NUM_SETS(2) = 1 NUM_INDICES(2,1) = 2

INDEX(2,1,1) = 1 INDEX(2,1,2) = 2 /
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Appendix D: Sample Output from MAIN TEMPLATE

TWO QUADRICS, NO SOLUTIONS AT INFINITY, TWO REAL SOLUTIONS.

TRACKTOL, FINALTOL = 1.00000000000000E-04 1.00000000000000E-14

SINGTOL (0 SETS DEFAULT) = 0.00000000000000E+00

SSPAR(5) (0 SETS DEFAULT) = 1.00000000000000E+00

NUMBER OF EQUATIONS = 2

****** COEFFICIENT TABLEAU ******

POLYNOMIAL( 1)%NUM_TERMS = 6

POLYNOMIAL( 1)%TERM( 1)%DEG( 1) = 2

POLYNOMIAL( 1)%TERM( 1)%DEG( 2) = 0

POLYNOMIAL( 1)%TERM( 1)%COEF = ( -9.80000000000000E-04, 0.00000000000000E+00)

POLYNOMIAL( 1)%TERM( 2)%DEG( 1) = 0

POLYNOMIAL( 1)%TERM( 2)%DEG( 2) = 2

POLYNOMIAL( 1)%TERM( 2)%COEF = ( 9.78000000000000E+05, 0.00000000000000E+00)

POLYNOMIAL( 1)%TERM( 3)%DEG( 1) = 1

POLYNOMIAL( 1)%TERM( 3)%DEG( 2) = 1

POLYNOMIAL( 1)%TERM( 3)%COEF = ( -9.80000000000000E+00, 0.00000000000000E+00)

POLYNOMIAL( 1)%TERM( 4)%DEG( 1) = 1

POLYNOMIAL( 1)%TERM( 4)%DEG( 2) = 0

POLYNOMIAL( 1)%TERM( 4)%COEF = ( -2.35000000000000E+02, 0.00000000000000E+00)

POLYNOMIAL( 1)%TERM( 5)%DEG( 1) = 0

POLYNOMIAL( 1)%TERM( 5)%DEG( 2) = 1

POLYNOMIAL( 1)%TERM( 5)%COEF = ( 8.89000000000000E+04, 0.00000000000000E+00)

POLYNOMIAL( 1)%TERM( 6)%DEG( 1) = 0

POLYNOMIAL( 1)%TERM( 6)%DEG( 2) = 0

POLYNOMIAL( 1)%TERM( 6)%COEF = ( -1.00000000000000E+00, 0.00000000000000E+00)

POLYNOMIAL( 2)%NUM_TERMS = 6

POLYNOMIAL( 2)%TERM( 1)%DEG( 1) = 2

POLYNOMIAL( 2)%TERM( 1)%DEG( 2) = 0

POLYNOMIAL( 2)%TERM( 1)%COEF = ( -1.00000000000000E-02, 0.00000000000000E+00)

POLYNOMIAL( 2)%TERM( 2)%DEG( 1) = 0

POLYNOMIAL( 2)%TERM( 2)%DEG( 2) = 2

POLYNOMIAL( 2)%TERM( 2)%COEF = ( -9.84000000000000E-01, 0.00000000000000E+00)

POLYNOMIAL( 2)%TERM( 3)%DEG( 1) = 1

POLYNOMIAL( 2)%TERM( 3)%DEG( 2) = 1

POLYNOMIAL( 2)%TERM( 3)%COEF = ( -2.97000000000000E+01, 0.00000000000000E+00)

POLYNOMIAL( 2)%TERM( 4)%DEG( 1) = 1

POLYNOMIAL( 2)%TERM( 4)%DEG( 2) = 0

POLYNOMIAL( 2)%TERM( 4)%COEF = ( 9.87000000000000E-03, 0.00000000000000E+00)

POLYNOMIAL( 2)%TERM( 5)%DEG( 1) = 0

POLYNOMIAL( 2)%TERM( 5)%DEG( 2) = 1

POLYNOMIAL( 2)%TERM( 5)%COEF = ( -1.24000000000000E-01, 0.00000000000000E+00)

POLYNOMIAL( 2)%TERM( 6)%DEG( 1) = 0

POLYNOMIAL( 2)%TERM( 6)%DEG( 2) = 0

POLYNOMIAL( 2)%TERM( 6)%COEF = ( -2.50000000000000E-01, 0.00000000000000E+00)

GENERALIZED PLP BEZOUT NUMBER (BPLP) = 4

BASED ON THE FOLLOWING SYSTEM PARTITION:

P( 1) = {{x1,x2}}
P( 2) = {{x1,x2}}
PATH NUMBER = 1

ARCLEN = 4.88774990521209E+00

NFE = 60

IFLAG2 = 11

REAL, FINITE SOLUTION
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LAMBDA = 1.00000000000000E+00, ESTIMATED ERROR = 3.38846533606060E-16

X( 1) = ( 2.34233851959124E+03, 1.65647002775734E-11)

X( 2) = ( -7.88344824094128E-01, -8.79747864489673E-15)

X( 3) = ( 1.46585064047300E-03, 3.95169260376393E-03)

PATH NUMBER = 2

ARCLEN = 1.05721592852627E+01

NFE = 86

IFLAG2 = 11

COMPLEX, FINITE SOLUTION

LAMBDA = 1.00000000000000E+00, ESTIMATED ERROR = 5.25603639602664E-19

X( 1) = ( 1.61478579234358E-02, 1.68496955498881E+00)

X( 2) = ( 2.67994739614461E-04, 4.42802993973661E-03)

X( 3) = ( 6.28839380529929E-01, -6.23770253460440E-01)

PATH NUMBER = 3

ARCLEN = 1.40888746921829E+00

NFE = 54

IFLAG2 = 11

REAL, FINITE SOLUTION

LAMBDA = 1.00000000000000E+00, ESTIMATED ERROR = 2.39884416065940E-18

X( 1) = ( 9.08921229615392E-02, -1.58321340069559E-16)

X( 2) = ( -9.11497098197500E-02, -6.00374957769670E-17)

X( 3) = ( 1.78804341487788E-01, -9.61729429034368E-02)

PATH NUMBER = 4

ARCLEN = 3.06763846239533E+00

NFE = 73

IFLAG2 = 11

COMPLEX, FINITE SOLUTION

LAMBDA = 1.00000000000000E+00, ESTIMATED ERROR = 2.32172816672818E-15

X( 1) = ( 1.61478579234664E-02, -1.68496955498883E+00)

X( 2) = ( 2.67994739614542E-04, -4.42802993973661E-03)

X( 3) = ( 2.52977008145125E-01, -8.41936532701388E-01)

Testing optional arguments.

PATH NUMBER = 3

ARCLEN = 1.37807382637515E+00

NFE = 50

IFLAG2 = 11

LAMBDA = 1.00000000000000E+00, ESTIMATED ERROR = 3.62025597748724E-12

X( 1) = ( 8.30518610084354E-03, -7.06597379977770E-12)

X( 2) = ( -3.06685914636607E+00, -2.10576255707730E-11)

X( 3) = ( 1.78804341485080E-01, -9.61729429030812E-02)

Statistics for retracked path.

PATH NUMBER = 3

ARCLEN = 1.39789758479940E+00

NFE = 77

IFLAG2 = 11

LAMBDA = 1.00000000000000E+00, ESTIMATED ERROR = 8.31859886381831E-18

X( 1) = ( 8.30518610365687E-03, 2.43299727056826E-17)

X( 2) = ( -3.06685914631600E+00, -6.73348433800512E-16)

X( 3) = ( 1.78804341487788E-01, -9.61729429034368E-02)
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Appendix E: The TARGET SYSTEM USER Template

SUBROUTINE TARGET_SYSTEM_USER(N,PROJ_COEF,XC,F,DF)

! Template for user written subroutine to evaluate the (complex) target

! system F(XC) and its (complex) N x N Jacobian matrix DF(XC). XC(1:N+1)

! is in complex projective coordinates, and the homogeneous coordinate

! XC(N+1) is explicitly eliminated from F(XC) and DF(XC) using the

! projective transformation (cf. the comments in START_POINTS_PLP). The

! comments in the internal subroutine TARGET_SYSTEM should be read before

! attempting to write this subroutine; pay particular attention to the

! handling of the homogeneous coordinate XC(N+1). DF(:,N+1) is not

! referenced by the calling program.

!

USE REAL_PRECISION

USE GLOBAL_PLP

INTEGER, INTENT(IN):: N

COMPLEX (KIND=R8), INTENT(IN), DIMENSION(N+1):: PROJ_COEF,XC

COMPLEX (KIND=R8), INTENT(OUT):: F(N), DF(N,N+1)

!

! For greater efficiency, replace the following code (which is just the

! internal POLSYS_PLP subroutine TARGET_SYSTEM) with hand-crafted code.

! # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

INTEGER:: I, J, K, L

COMPLEX (KIND=R8):: T, TS

DO I=1,N

TS = (0.0_R8, 0.0_R8)

DO J=1,POLYNOMIAL(I)%NUM_TERMS

T = POLYNOMIAL(I)%TERM(J)%COEF

DO K=1,N+1

IF (POLYNOMIAL(I)%TERM(J)%DEG(K) == 0) CYCLE

T = T * XC(K)**POLYNOMIAL(I)%TERM(J)%DEG(K)

END DO

TS = TS + T

END DO

F(I)=TS

END DO

DF=(0.0_R8,0.0_R8)

DO I=1,N

DO J=1,N+1

TS = (0.0_R8,0.0_R8)

DO K=1,POLYNOMIAL(I)%NUM_TERMS

IF (POLYNOMIAL(I)%TERM(K)%DEG(J) == 0) CYCLE

T = POLYNOMIAL(I)%TERM(K)%COEF * POLYNOMIAL(I)%TERM(K)%DEG(J) * &

(XC(J)**(POLYNOMIAL(I)%TERM(K)%DEG(J) - 1))

DO L=1,N+1

IF ((L == J) .OR. (POLYNOMIAL(I)%TERM(K)%DEG(L) == 0)) CYCLE

T = T * (XC(L)**POLYNOMIAL(I)%TERM(K)%DEG(L))

END DO

TS = TS + T

END DO

DF(I,J) = TS

END DO

END DO

DO I=1,N

DF(I,1:N) = DF(I,1:N) + PROJ_COEF(1:N) * DF(I,N+1)
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END DO

! # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

RETURN

END SUBROUTINE TARGET_SYSTEM_USER
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