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CHAPTER 4

ANALYSIS AND DESIGN OF THE DUAL INVERTED-F
ANTENNA

   4.1. Introduction

The previous chapter presented the Inverted-F Antenna (IFA) and its variations as

antenna designs suitable for use in hand-held devices. This chapter presents modeling,

construction, and measurements for the IFA and the Dual Inverted-F Antenna (DIFA).

Also, the effects of a size-limited ground plane are investigated by modeling and building

the antennas on conducting boxes of various dimensions. The antennas are classified

according to currents on the antenna structure, input impedance, far-field radiation

pattern, and polarization. In Section 4.2 an algorithm is developed that applies the Method

of Moments (MoM) to solve the Electric Field Integral Equation (EFIE) for wire radiators

in free space. In Section 4.3, the MoM algorithm developed in Section 4.2 is applied to

wire representations of the IFA and DIFA. The MoM algorithm is applied to the

conducting boxes using a wire grid representation. Section 4.4 discusses the construction

of the IFA and DIFA and the measurement of impedance, radiation pattern, and gain along

with comparison to the model calculations. Section 4.5 contains concluding remarks.
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4.2. Numerical Techniques

   4.2.1. The Method of Moments Applied to Wire Antennas

In Chapter 3, the input impedance and far-field radiation patterns of the Inverted-L

Antenna (ILA) were derived by assuming a current distribution over the antenna. In

practice, the current distribution on an antenna is rarely known. One method used to

model the currents on an arbitrarily shaped antenna is the Method of Moments (MoM).

For wire antennas, the MoM is used to implement a piecewise solution of the electric field

integral equation (EFIE) for cylindrical conductors of vanishing volume. [1] The magnetic

field integral equation (MFIE) fails for infinitesimal volume, and is used to solve the fields

due to surface currents on large, smooth, closed, and volumous perfectly conducting

objects. [1] This discussion involves the application of the EFIE to wire antennas.

The MoM is used to solve equations of the form

Lf = e (4.1)

where e is a known excitation, L is a linear operator, and f is an unknown response. [1]

Thus, the MoM is readily applied to integral equations of the form [2]

        I z K z z dz E zi( ' ) ( , ' ) ' ( )= −∫ (4.2)

This is the form of Pocklington’s Integral Equation derived in Section 3.3. The general

form of Pocklington’s Integral Equation using the thin wire approximation is
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where z is the observation point, z’ is the source location, Ψ is the free space Green’s

function, and k is the wave number. In (4.3), the known excitation is the incident or

impressed field, Ei(z). The linear operator is the integral operator
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and the unknown response is the current on the antenna, I(z’). The general form of

Pocklington’s Equation is one dimensional. A generalized three-dimensional geometry is

illustrated in Figure 4.1.
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Figure 4.1. A generalized three-dimensional geometry

For the geometry in Figure 4.1, the EFIE is
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and η is the complex impedance of free space. The time convention is ejωt. [1] For a

perfectly conducting body, (4.5) reduces to
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where Js is the surface current density and the observation point, r, must be off the surface

of the conductor to prevent a singularity. [1] The boundary condition when the

observation point approaches the surface of the conductor as a limit is

[ ]n(r) E (r) E (r)s i× + = 0 (4.7)

where n(r) is the unit normal vector to the surface at r and Es is the scattered field due to

the surface current Js. [1] Using this boundary condition and (4.6), an integral equation is

derived that gives the vector current density, Js, induced on an arbitrary surface S by an

incident or impressed field Ei. The generalized EFIE,

( )− × =
−

× ⋅ + ∇∇∫n(r) E (r) n(r) J (r') r,r' r,r'i
s

j
k

k g g dA
S

η
π4

2 ( ) ( ) ' (4.8)

applies to a surface of arbitrary shape. [1] Assuming that the surface is a thin, cylindrical

wire, (4.8) is reduced to a scalar equation by neglecting circumferential currents and

variations in longitudinal current around the circumference of the wire. [1] The current is

transformed into an equivalent filamentary line source at the axis of the wire. This allows

the boundary condition to be applied at the surface of the cylindrical wire while avoiding

singularities in the EFIE. Alternately, as discussed in Section 3.3, the current can be

assumed to exist at the surface of the wire with the boundary condition enforced at the

axis of the wire if the wire is cylindrical. [1] This method models charge discontinuities at

steps in wire radius more accurately. When a filamentary current is used, the solution

tends to converge with continuous charge distribution across the step in radius. However,

it is known that more charge should exist on the wire with larger radius. [1]

Representing the current on the surface of the cylindrical wire as a filament

separated by the wire radius, a, from the axis of the wire (see Figure 3.5(b)), (4.8) reduces

to an integration along the length of the effective line source. Thus, (4.8) is rewritten as
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which is a scalar equation where s is a unit vector tangent to the surface of the wire, and s’

is a unit vector tangent to the axis of the wire.

The EFIE in (4.9) is of the form in (4.2). Therefore, the MoM is used to determine

the unknown distribution I(s’). The process is widely known and is summarized here.

Complete discussions are found in [3], and [2].

To implement the MoM, the antenna is modeled by N current segments. The

current on the antenna is the sum of  j basis functions, fj on the jth segment. Thus,

I s fj j
j

N

( ' ) =
=

∑α
1

(4.10)

To solve for the unknown coefficients, αj, a set of linear equations is established by

taking the inner product of  (4.1) with a set of weighting functions, {wi}. [1] The number

of weighting functions is chosen to equal the number of basis functions. Thus, the number

of equations is equal to the number of unknown coefficients in (4.10), and (4.1) is

rewritten as

        α j i j
j

N

iw Lf w e, ,
=

∑ =
1

(4.11)

where

         f g f g dA
S

, ( ) ( )= ∫ r r

In matrix form, (4.11) becomes

    [G][A] = [E] (4.12)

where Gij = <wi, Lfj>, Aj = αj, and Ei = <wi, e>. The relation in (4.12) is solved using a

matrix inversion routine to yield the unknown coefficients in (4.11).
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   4.2.2. The Numerical Electromagnetics Code (NEC)

Several efficient codes are commercially available that perform the MoM. One

such code is the Numerical Electromagnetics Code (NEC) which was developed by the

government. The latest version of NEC is NEC4 which allows improved accuracy and fast

convergence for electrically small antennas. [1]

4.2.2.1. Current Basis and Weighting Functions

NEC4 implements the MoM algorithm developed in (4.10) through (4.12) using

the EFIE in (4.9). The weighting functions are a series of delta functions at the segment

centers. [1] This is a process called point matching that is point sampling of the integral

equation at the center of each segment. [1]

The basis function used by NEC4 is a three term sinusoidal current expansion

given by

( )[ ]I s A B k s s C k s s s sj j j s j j s j j
j( ) sin ( ) cos= + − + − − − <1

2

∆
(4.13)

where sj is the value of s at the center of segment j, and ∆j is the segment length. Such an

expansion was shown to provide rapid solution convergence, especially for long wires. [1]

The basis function used by NEC4 shows better results for electrically small wires than

previous versions of NEC. [1] Two of the coefficients in (4.13) are eliminated by imposing

continuity conditions at the segment ends. [1] At a junction between two wires, the

continuity condition is that the change in the current and charge be constant, or

dI s
ds

j q s
( )

( )= − ω (4.14)

where I(s) is the current, and q(s) is the charge at the junction. At a three or more wire

junction, the currents are solved using Kirchhoff’s Law that requires the currents into a

node to sum to zero. The charge distribution at a three or more wire junction is less

obvious, and a solution is available in the literature. [1] The current at a free wire end

must go to zero. The current segment at the free end of a wire is called an end cap. The
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NEC basis function is derived such that the current on a segment with no immediate

neighbor goes to zero at the center, not the end of the segment (i.e. Aj = 0). [1] Therefore,

a proportionality constant must be included in the basis function such that the current at

the free end of an end cap goes to zero. If there is not an end cap, the proportionality

constant is set to zero. [1] A rigorous derivation of the basis function used by NEC4 is

found in the literature. [1]

4.2.2.2. Feed Technique

It is very important to accurately model voltage sources in the MoM analysis since

errors are reflected in the input impedance calculation and therefore in the gain and other

related quantities. [1] The NEC4 models developed in this chapter use the applied field or

gap source model. For a source voltage Vi on segment i with length ∆i, the field at the

segment center (the match point) is defined as [1]

E
V

i
i

i

=
∆

(4.16)

The field at all match points without sources is set to zero. [1] The best results are

obtained when the length of the segments on either side of the source segment are equal to

∆i. The use of unequal segment lengths in the source region results in inaccurate input

impedance results. [1] The input impedance is calculated using the voltage, Vi, at the

center of the source segment, and the current at the center of the segment, Ii, as [1]

Z
V
Iin

i

i

= (4.17)

This assumes that the source segment is short enough that the current over its length is

relatively constant. [1]

4.2.2.3. Derivation of Antenna Fields
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The electric fields from each wire segment are a combination of the fields due to

each component function in (4.13). The fields due to the constant, sin kss, and cos kss

terms in the basis function are evaluated using the derived constants, Bj and Cj in (4.13).

[1] The current is assumed to exist on the cylindrical surface of a wire with its axis along

the z-axis of a cylindrical coordinate system. The currents are first integrated over z, and

then over φ. Terms due to point charges at the end of segments are dropped since current

continuity is enforced using Kirchhoff’s Law in the basis function. [1] For a filamental

current extending from z1 to z2 along the z-axis, the fields resulting from the current

distribution

I z I
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and from the constant current I0 are [1]

    E zρ ρ( , ) = 0 (4.21)

   E z
j I k e

Rz dzz

jkRz
( , ) 'ρ
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π

=
− −

∫0

14
2

(4.22)

where

[ ]R z z= + −ρ2 2 1/2
( ' ) (4.23)

Using (4.19) through (4.22), the fields due to a tubular current distribution are derived by

integrating over φ. Thus, the fields from each segment of wire are evaluated as [1]
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with

        ( )R a z a= + + −ρ ρ φ2 2 2 1/2
2 cos (4.33)

where a is the radius of the current tube, or cylindrical wire segment. The factors G1

through G4 are estimated as [1]
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where

      [ ]R a z zt = + + −ρ2 2 2 1/2
( ' ) (4.38)

The derivation of the approximation is available in the literature. [1] The expressions in

(4.24) through (4.26) are evaluated using the currents determined by the MoM analysis to

calculate the electric fields produced by each wire segment. A similar derivation is carried

out to produce an expression for the magnetic fields from each wire segment. Special

expressions are required at wire ends and for surface currents. [1] The electric and

magnetic fields from each current segment are combined to produce the fields of the

antenna.

4.2.2.4. Modeling Guidelines

The MoM algorithm used by NEC4 is subject to the thin wire and current

segmentation approximations. To ensure proper convergence of the numerical model, a

number of guidelines must be followed during development. The remainder of this section

defines guidelines to follow while developing models in NEC4.

First, the accuracy of the numerical current model depends on the resolution of the

MoM current segmentation. This limits the length of the segments, ∆. [4] In general, ∆

should be less than 0.1λ. Longer segments are acceptable on long straight wires. Much

shorter segments should be used at bends. NEC4 allows the use of very short segments.

However, a lower bound is placed on segment length by the thin wire approximation.

Errors occur due to instabilities in the current at wire ends if ∆/a is less than 0.5 where a is

the wire radius. Segments lengths much larger than this should be used if possible. [4]

The thin wire approximation also limits the radius of the wire. If the wire is thick

enough to allow circumferential currents or variation of the longitudinal current around

the circumference of the wire, the numerical solution is inaccurate. The NEC4 solution is

only valid if 2πa / λ is much less than one. [4] The guidelines for modeling wire antennas

using NEC are summarized in Table 4.1.
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Table 4.1. Summary of NEC Modeling Guidelines

# Guideline

1 The length of the segment, ∆, must be less than 0.1λ except on long straight wires

2 ∆/a must be greater than 0.5 where a is the wire radius and ∆ is the segment length

3 2πa / λ must be much less than one where a is the wire radius

This section has described the MoM algorithm used by NEC4 to model the

currents on antennas of arbitrary shape. In addition, modeling guidelines for wire antennas

were presented. These guidelines along with graphical convergence checks are used to

improve the accuracy and reliability of numerical results generated by NEC4. In the next

section, the validity of the MoM algorithm used by NEC4 is checked and a convergence

test is implemented to demonstrate the proper MoM segmentation for the Dual Inverted-F

Antenna.

   4.2.3. Validation of Modeling Techniques

The Method of Moments (MoM) algorithm described in the previous section used

the electric field integral equation (EFIE) to model the currents on arbitrarily shaped wire

antennas. In this section, the validity of the algorithm is tested.

4.2.3.1 Comparison to Published Data

In this subsection, the Radiation Coupled Dual-L Antenna (RCDLA) in Figure 4.2

is used to test the validity of the MoM algorithm developed in Section 4.2.1.  The RCDLA

described in [5] is similar to the DIFA except that the horizontal segments are narrow

plates.



88

Figure 4.2. The Radiation Coupled Dual-L Antenna and resonant dimensions for f = 1895 MHz.

Validation of the MoM algorithm in Section 4.2.1 is achieved by modeling the RCDLA

using NEC4 and comparing the computed results to those published in [5]. The EFIE used

by NEC4 was developed to model cylindrical wires of vanishing volume. Therefore, the

planar elements in the RCDLA are replaced with a wire mesh of equal dimensions. The

currents on the wire mesh are assumed to approximate the surface currents on the planar

elements. The wire mesh representation gives good results for far-field pattern and

polarization, but has been shown to cause error in near field quantities such as input

impedance. [1] The simulated and measured radiation patterns of the RCDLA at a

frequency of  1895 MHz are illustrated in Figure 4.3. [5] Figure 4.3 shows simulated

patterns, generated using an MoM algorithm, and measured patterns.
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Figure 4.3. Measured and simulated radiation patterns for the RCDLA in Figure 4.2. The

      simulated patterns were generated using the Method of Moments with a wire grid

      representation of the planar surfaces at f = 1895 MHz. [5]

In order to test the NEC4 algorithm, a model of the RCDLA in Figure 4.2 was developed

and implemented using NEC4. A square wire mesh constructed using wire segments of

length, l = 0.02λ was used to model the planar surfaces. The choice of mesh dimension

was arbitrary since the mesh size used in [5] was not specified. The resulting patterns,

calculated using NEC4, are illustrated in Figure 4.4.
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Figure 4.4. Radiation Patterns of the RCDLA modeled using NEC4 and wire gridding.

                   a) Pattern in the x-z plane. b) Pattern in the y-z plane. c) Pattern in the x-y plane.

          All patterns are 10 dB/div with a 10 dB reference level.

Comparison of Figures 4.4 and 4.3 shows that the RCDLA radiation patterns produced by

NEC4 closely match the simulated patterns in [5]. The patterns are in terms of gain. The

simulated gains in [5] were higher than modeled by NEC4. In both cases, a null was

formed in the x-z plane under the conducting box. The null was deeper in the published

data, but was formed at the same angle as predicted by NEC4. Overall, the pattern shapes
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predicted by NEC4 in all three principal planes matched the published patterns for the

RCDLA to an acceptable degree of accuracy.

Figure 4.5. The measured input impedance of the RCDLA compared with the prediction of

                   input impedance by NEC4. [5]

The input impedance for the RCDLA is shown in Figure 4.5 as calculated by

NEC4, and compared to measured data from [5]. As illustrated in Figure 4.5, NEC4 did

not accurately predict the input impedance of the RCDLA.  The measured RCDLA input

impedance contains two distinct resonant frequencies. NEC predicted a single resonant

frequency. The resonance predicted by NEC was at a higher frequency than either of the

measured resonances. The discrepancy between modeled and measured input impedance

data suggests that either the NEC4 algorithm is not modeling the currents correctly, or

there are slight differences between the numerical RCDLA models. Specifically, the wire

mesh used in the two models is different because the dimensions of the mesh used in [5]
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were not specified. In any case, special care is necessary to verify the accuracy of  antenna

input impedances modeled using NEC. 

In summary, the radiation patterns calculated by NEC4 for the RCDLA in Figure

4.4 matched the simulated results in Figure 4.3 published in [5] to an acceptable degree of

accuracy. However, Figure 4.5 showed that the RCDLA input impedance calculated using

NEC4 did not accurately match the results in [5]. Therefore, empirical measurement is

necessary to validate discussions involving NEC4 input impedance calculations. This

section has shown that the MoM algorithm developed in Section 4.2.1 accurately models

antennas of arbitrary geometry that include planar surfaces. In the next section, a general

MoM model of the Dual Inverted-F Antenna (DIFA) is established.

4.2.3.2 Application to the Dual Inverted-F Antenna

The Method of Moments (MoM) requires expansion of the current on an antenna

into N current subsections. The solution of the antenna current distribution is a sum of the

current expansions on the subsections. If the current is not expanded properly, or

assumptions regarding the form of the current are ignored, the sum of the current

expansions will not equal the current distribution on the antenna and the numeric result

will not converge to an accurate solution. Section 4.2.2.4 presented a number of

guidelines to follow when modeling wire antennas in NEC4. In this section, these

guidelines are used along with convergence tests to develop a numerical model of the Dual

Inverted-F Antenna (DIFA) that converges to a correct result. In other words, this section

develops a model of the DIFA such that the summation of the current expansions on the

subsections equals the actual current distribution on the DIFA within an acceptable margin

of error. This subsection does not address the design issues of the DIFA. Once the model

in this subsection is established, it is used in the next section to study the design issues of

the Inverted-F Antenna (IFA) and the DIFA. 

The DIFA is identical to the Radiation Coupled Dual-L Antenna presented in

Section 4.2.3.1 with the exception that the horizontal planar elements are replaced by

cylindrical wires of radius a. The DIFA in Figure 4.6 is operated against a ground plane
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that can be modeled as infinite or size constrained. In this section the ground plane is

considered infinite. The behavior of the DIFA over a size-limited ground plane is the

subject of Section 4.3.3.2.

t

l

Infinite Ground Plane

L  = fed element length = h + t + l  = about λ / 4
12 Gauge Wire, Coaxial Feed

h

s

l

f

p

Feed

L  = parasitic element length = h + l  = about λ / 4
f f

p p

Figure 4.6. The DIFA operated against an infinite ground plane with dimensions noted.

For reference, the geometry of the DIFA in Figure 4.6 is broken into six thin cylindrical

wires as noted in Figure 4.7.

1

2

3

4

5

6

Fed Element Parasitic Element

Figure 4.7. Wire divisions on the dual inverted-F antenna

The DIFA in Figure 4.6 was designed for use with the IVDS system described in Section

1.3. The DIFA was designed to resonate at 915 MHz and cover the ISM band between

902  and 928 MHZ. The resonant dimensions of the DIFA are listed in Table 4.2.
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Table 4.2. The resonant dimensions of the DIFA in Figure 4.6.

Wire Number Symbol Quantity

1 h 0.046λ

2 t 0.016λ

3 (feed probe) h 0.046λ

4 lf 0.204λ

5 h 0.046λ

6 lp 0.195λ

Wire Radius a 0.0024λ

Feed Probe Radius af 0.0015λ

Element Spacing s 0.022λ

To implement the MoM algorithm, the wires in Table 4.2 are subdivided into Nw

segments where the subscript refers to the wire number. The current basis and weighting

functions are applied over the subsections. Small values of Nw result in long segments that

limit the resolution and accuracy of the numerical results. Large values of Nw increase the

complexity of the model and require extensive computation time. The solution is to adjust

N Nw
w

= ∑ so that accurate results are achieved with minimal computation time. As N

increases, the amount of error in the numerical result decreases. To test for numerical

convergence, the DIFA specified in Table 4.2 is modeled using a gradually increasing

number of segments. Comparison of the results indicates the point of convergence. A

convergence test is performed by calculating the input impedance of the DIFA using

NEC4 and the segmentations listed in Table 4.3. The calculated input impedance for the

DIFA segmentations in Table 4.3 are compared in Figure 4.8.
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Table 4.3. Segmentation data for MoM DIFA convergence test

Number N1 N2 N3 N4 N5 N6 N

1 3 4 4 8 3 8 30

2 3 4 4 13 3 13 40

3 3 5 4 17 3 17 49

4 4 5 4 21 4 21 59

5 4 6 4 25 4 25 68

6 4 6 4 30 4 30 78

7 4 6 4 35 4 35 88

Figure 4.8. Impedance data from convergence test of DIFA in Table 4.3
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Since input reactance is a near-field quantity, it converges slower than far-field radiation

pattern and polarization. Therefore, convergence of the input impedance also indicates

convergence of radiation pattern and polarization. Figure 4.8 shows that the impedance

data converges when N = 78 segments are used to model the DIFA. If more than 78

segments are used, the improvement in accuracy is not worth the additional computation

time required. Therefore, design 6 in Table 4.3 is applied to the models in the remainder of

the chapter.

Guidelines for modeling wire antennas using NEC4 were presented in Table 4.1.

The solution calculated by NEC4 using N = 78 segments is only valid if Nw on each wire

satisfies all three of the guidelines in Table 4.1. Table 4.4 shows that the modeling

guidelines in Table 4.1 are satisfied when the DIFA is divided into 78 segments according

to design 6 in Table 4.3. This, along with the data shown in Figure 4.8, provides necessary

and sufficient proof that the numerical model of the DIFA converges to the correct

answer. In the next section, the MoM model developed in this section is applied to study

the design issues the Inverted-F Antenna (IFA) the DIFA over infinite and size-limited

ground planes.
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        Table 4.4. Validation of modeling guidelines for the DIFA in Figure 4.6.

Condition #1:   ∆ = Segment Length < 0.1λ

Condition #2:   ∆/a > 0.5        a = Radius of Wire

Condition #3:   2πa / λ << 1

Wire Number Quantity Value Meets Condition?

1 ∆ 0.0115λ 1: Yes

∆/a 14.38 2: Yes

2πa / λ 0.015 3: Yes

2 ∆ 0.0027λ 1: Yes

∆/a 3.38 2: Yes

2πa / λ 0.015 3: Yes

3 ∆ 0.0115λ 1: Yes

∆/a 23.00 2: Yes

2πa / λ 0.009 3: Yes

4 ∆ 0.0068λ 1: Yes

∆/a 8.50 2: Yes

2πa / λ 0.015 3: Yes

5 ∆ 0.0115λ 1: Yes

∆/a 14.38 2: Yes

2πa / λ 0.015 3: Yes

6 ∆ 0.0065λ 1: Yes

∆/a 8.13 2: Yes

2πa / λ 0.015 3: Yes


