
Chapter 5 - Computational Results 85

CHAPTER 5

COMPUTATIONAL PERFORMANCE TESTS FOR ALGORITHM

TD-kSP

5.1. List of Tests Carried Out

Algorithm TD-kSP was tested for various network sizes. In particular we study the

variation in computational time with respect to changes in the following network

characteristics.

1. Number of nodes in the network.

2. Number of arcs in the network.

3. Density of the network.

In addition to these tests, we study the variation in computational time with respect to the

following shortest path parameters.

1. The value of ‘k’.

2. The number of starting times (M).

The tests were conducted on a SUN-SPARC 1000 computer. The algorithms were

coded using the C programming language along with some specialized data structures. The

algorithm was run for various parameter values and the computational times for each run

was tabulated. Extensive statistical tests were then run to validate results. There has been

no other implementation scheme reported in the literature that uses these two types of

random networks in tandem to test the efficiency of TD-kSP algorithms.

5.2. The Random Network Generator Programs

5.2.1. The Random Connected Digraph

Problem Statement.

 Generate a digraph having m nodes and a density ρ, such that the arcs in the network

are of random length and connection (i.e., we should not be able to predict with 100%

Chapter 5 - Computational Results 86

certainty the existence or the length of an arc between any two given nodes in the

generated network) and such that at least one path exists between the origin and all other

nodes in the network. Note that the density of a network G(N, A) is defined as ratio of the

number of arcs in the network to the number of arcs in a dense (fully connected) network

having the same number of nodes. The number of arcs in a dense network can be

computed using the combinatorial expression mP2, i.e., the maximum possible

permutations (arrangements) of m objects, taking two of them at a time. This value is

equal to m(m-1) for digraphs. Using the definition for density, we can obtain the desired

number of arcs to be equal to ρm(m-1). The problem can be solved (in polynomial time)

using the following scheme.

1. Generate random edge lengths Lij for a dense network having m nodes.

2. Find the minimum spanning tree for this dense network, rooted at the origin node.

This can be achieved by an efficient implementation of the (static) LC or LS shortest path

algorithm. Note that the fully dense network corresponds to the maximum possible

network size for a given number of nodes. Usually, the computational time complexity is

of the order O(m2) for an LC algorithm or O(m log m) for an LS algorithm. Hence, for

large values of m, the computational times for O(m2) algorithms increases tremendously

(but not exponentially). Obviously, an O(m log m) LS algorithm would perform much

better for large values of m, whereas for small values of ρ and/or m, the LC algorithm

might be a better choice. In fact, the random network generator can itself be used to

compare performances of LC and LS algorithms.

The minimum spanning tree generated is a digraph having m nodes and (m-1) arcs,

with each of the nodes being accessible to the origin via an unique path. Until now we

have fulfilled the criterion of connectedness for the network. Now the task remains for us

to (randomly) generate the remaining ρm(m-1) - (m-1) arcs in the network.

3. To generate the remaining arcs, we use a (pseudo) random number generator.

Chapter 5 - Computational Results 87

We first calculate the density d, of the residual network as shown below, noting that the

maximum number of arcs available for addition is now m(m-1) - (m-1) = (m-1)2. Setting

d(m-1)2 + (m-1) = ρm(m-1),

we obtain

d = (ρm-1) / (m-1).

Hence, we generate (m-1)2 uniformly distributed random numbers (ui) between [0,1].

Compare each ui with a threshold value of d. If ui < d, generate a link having a length Lij

between the head node and tail node associated with link i. On the average, a network

having a density of d will be generated if the random number generator is well-behaved.

Note that the network has full connectedness and therefore it is a good basis to compare

the performance of LC and LS algorithms. Note that if there are some nodes that are

inaccessible from the origin, their labels would remain unaltered, while being considered a

potential candidate for future (LS) updates. This anomaly may bias the results favorably

towards algorithms that use an SEL (LC methods) when compared to LS algorithms,

which have to store the entire set of nodes with temporary labels.

5.2.2. The Random Layered Network

Another useful test graph that can be generated to test k-SP algorithms is the

layered random acyclic network. Here, the link lengths are random but the structure and

density of the network can be user-defined. The characteristics of a layered network can be

specified by the 2-tuple (p, r), where r represents the out-degree of a node, and the number

of layers in the network is (p+2). The origin O is situated at layer 0, and the destination D

is located at layer (p+1), and all the nodes at layer p are individually connected to the

destination node D. This (acyclic) network has an extremely large number of O-D paths

(rp), and therefore, one can measure the efficiency and verify the (strongly) polynomial-

time behavior of the LC or LS algorithm by increasing the number of O-D paths and

studying the corresponding increase in the computational time. Note that now, the

algorithm will now have to select the k best O-D paths from an exponential number of

such paths.

Chapter 5 - Computational Results 88

Consider a layered network with the 2-tuple (p, r) associated with it. We can

calculate the following network parameters.

Number of nodes in the network (m) = 2 + r(rp-1) / (r-1).

Number of arcs in the network (n) = rp + r(rp-1) / (r-1).

As the value of p increases (keeping r fixed), the number of O-D paths increase

exponentially in p, while the number of paths to any other intermediate node is always

limited to one.

5.3. Computational Results for Algorithm TD-kSP

The algorithm was tested for various network sizes and densities, and for various

values of k and starting times. The algorithm was also tested for specially constructed

acyclic layered networks. The CPU processing time (in seconds) of the computer (T) was

tabulated for each problem instance. Table 6 illustrates the results for various sizes of

randomly generated networks for a value of k = 10. In general, the networks in Table 6

correspond to sparse networks (networks having low density). An empirical expression for

T is derived. These results are shown in Table 7. Similarly, Table 8 illustrates the

computational results for networks having a large number of arcs (the density may

correspond to sparse or non-sparse networks). The variation of computational time with an

increase in the value of k, along with empirical equation fits, are illustrated in Tables 9 and

10. A similar test with increasing values of starting times (M) are shown in Tables 11 and

12. The computational performance characteristics of the algorithm for random layered

networks in presented in Tables 13, 14 and 15. In addition, some key observations are

made, based on computational experience, regarding the performance of the TD-kSP

algorithm (for which no computational results are shown). Empirically, the algorithmic

behavior resembles an “almost linear” O(nx) or a O(mρx) algorithm, where x ≈ 1.0 - 1.5.

Finally a multiple regression model is used to derive an empirical expression for the time-

complexity of the algorithm. These results are shown in Tables 16-18.

Chapter 5 - Computational Results 89

Table 6. Computational Times (in Seconds) for Extremely Sparse Random Networks

m = 100

n 100 200 300 400 500 600 700 800 900 1000

ρρ (%) 1.01 2.02 3.03 4.04 5.05 6.06 7.07 8.08 9.09 10.10

T 0.09 0.23 0.40 0.46 0.93 1.08 1.23 1.58 1.73 2.15

m = 200

n 200 300 400 500 600 700 800 900 1000

ρρ (%) 0.50 0.75 1.01 1.26 1.51 1.76 2.01 2.26 2.51

T 0.15 0.31 0.65 0.79 0.90 0.97 1.17 1.20 2.33

m = 300

n 300 400 500 600 700 800 900 1000

ρρ (%) 0.33 0.45 0.56 0.67 0.78 0.89 1.00 1.15

T 0.29 0.42 0.60 0.78 0.97 1.12 1.19 1.41

m = 400

n 400 500 600 700 800 900 1000

ρρ (%) 0.25 0.31 0.38 0.44 0.50 0.56 0.63

T 0.47 0.58 0.71 0.94 1.03 1.14 1.35

Chapter 5 - Computational Results 90

The computational times T obtained were tabulated for various (percentage)

density values (ρ (%)). Table 6 illustrates the effect of the density of the network (or arc-

to-node ratio) on computational times. To observe this feature consider the table shown

above to be a upper-triangular matrix of results. As we move across any row (increasing

the number of arcs, while holding the number of nodes at a constant level), there is an

increase in computational time with an increase in density, as expected. A more surprising

observation can be made my moving down any column (holding the number of arcs

constant and increasing the number of nodes). Here, as the size of the network increases,

the computational time actually decreases. Such a result is unlikely for LS algorithms. To

explain this result, let us make a second observation. As we move down a column, the

network density (or arc-to-node ratio) decreases, while the number of arcs remain

constant. These observations seem to indicate that the algorithm is primarily influenced by

the density of the network for small values of ρ. Now, if we look diagonally across the

matrix, holding the arc-to-node ratio (µ) constant and increasing the network size (number

of nodes), we observe an (almost proportional) increase in computational time. Initially,

for m = 100, an empirical expression for T can be obtained as a function of the number of

arcs as T ∝ n1.4. However, the exponent for n in this expression increases as m increases.

These results indicate that the density of the network is not the sole factor affecting

computational times (which is to be expected). On the basis of these results we can

tentatively postulate that the expression for computational time T can be written as

T ∝ mαρβ or

log (T) = c + αlog (m) + β log (ρ),

where c is a constant. Linear (or multiple) regression methods can used to determine the

parameters (α, β). In particular, we can use a linear regression model by setting α = 1 and

holding m constant. We can perform these calculations for various values of m and

tabulate these results. The expression for T was obtained for the values of m shown in

Table 1 using a log-log fit. The expressions are listed below in Table 7. The coefficient of

correlation γ, is indicated in each case.

Chapter 5 - Computational Results 91

Table 7. Empirical Expressions for T(ρ) and T(m)

m γγ log (T)

100 0.995 -1.065 + 1.377 log (100ρ)

200 0.971 -0.317 + 1.456 log (100ρ)

300 0.996 0.097 + 1.301 log (100ρ)

400 0.996 0.358 + 1.154 log (100ρ)

ρρ (%) γγ log (T)

1.0 0.996 -3.53 + 1.25 log (m)

0.75 0.999 -3.645 + 1.271 log (m)

0.5 0.993 -4.473 + 1.575 log (m)

The empirical results using the log-log fit indicate that we can use an approximate

value of 1.3 for α and β (only for sparse networks). These initial values of α and β can

then be fine-tuned to obtain an “exact” expression for the computational time of the

algorithm. We can also experiment with smaller values of α and β (or use multiple

regression) to obtain better fits. The next set of results demonstrate the extremely fast

performance of graph-theoretical methods such as Algorithm TD-kSP.

Computational times are listed below for networks with one thousand or more

links. It must be mentioned here that generating large random connected networks is an

extremely tedious procedure. A procedure to generate a network having 500 nodes and

1000 arcs takes approximately two days, and a similar procedure to generate a network

having 1000 nodes and 2000 arcs takes 14 days1. Computations involving larger network

sizes imposed a heavy burden on the computer resources that were available and could not

be generated. However, a real-life transportation network for the city of Seminole, Florida

1 Thus demonstrating that even an O(m2) algorithm can be expensive for large values of m. Usually, an O(n

log m) algorithm will perform much better for large values of m.

Chapter 5 - Computational Results 92

was obtained. This network contains more than 3000 nodes and 4000 arcs. The algorithm

was tested for this network and performed extremely well (see Table 3). In general, LC

algorithms can efficiently solve SP problems on extremely sparse networks. Typically,

road networks (obtained from digitized GIS coverage files) are extremely sparse (µ < 3),

having many disjoint components, and LC algorithms will most probably perform well on

such networks. Similarly, LS algorithms will perform better if the network has a denser

structure and connectivity. However, the path processing data structure (PPDS) used is a

crucial factor. In the random network generator programs, the LS algorithm out-performed

the LC algorithm for sparse networks when a linked-list was chosen as the PPDS.

Chapter 5 - Computational Results 93

Table 8. Computational Times (in seconds) for Large Random Networks

m = 100

n 1000 2000 3000 4000 5000 10000

T 2.15 4.09 5.74 7.40 8.96 17.49

m = 200

n 1000 2000 3000 4000 5000 10000

T 2.33 5.44 6.55 8.39 10.12 19.56

m = 300

n 1000 2000 3000 4000 5000 10000

T 1.41 4.85 7.09 9.33 11.71 20.83

m = 400

n 1000 2000 3000 4000 5000 10000

T 1.35 4.35 6.43 9.03 11.22 22.60

m = 500

n 1000 2000 3000 4000 5000 10000

T 1.72 3.32 7.76 10.08 14.52 26.07

m n Network Type T

1000 2000 random 25.34

3304 4526 real-life 4.36

Chapter 5 - Computational Results 94

A quick inspection of the results in Table 8 show that the computational times

increase almost linearly with an increase in the number of arcs. Hence, another expression

can be obtained for T as a function of n and m. Such a procedure would be similar to the

one used in Table 7.

Until now, we have considered the problem of finding a single shortest path. In

many cases, finding the k best paths becomes important. In constrained shortest path

problems, k shortest path algorithms can be used to obtain the k shortest paths (that have

the k lowest objective values). These k paths can then be processed to find the path that

best satisfies additional side constraints. One of the most important criteria for k shortest

paths is speed. The TD-kSP algorithm was tested for various values of k on large random

networks having 400 nodes and for different densities. The values of k are made to

increase exponentially, and the corresponding values of T are tabulated. These results are

illustrated in Table 9.

Chapter 5 - Computational Results 95

Table 9. Computational Times (in seconds) for Varying values of k

 m = 400, n = 1000

k 1 2 4 8 16 32 64 128 256

T 0.77 0.77 0.85 1.11 2.65 12.05 76.72 503.27 1082.76

 m = 400, n = 2000

k 1 2 4 8 16 32 64 128

T 1.46 1.51 1.72 3.03 12.59 77.57 506.27 931.91

m = 400, n = 3000

k 1 2 4 8 16 32 64 128

T 2.16 2.23 2.58 4.53 17.49 106.81 730.94

m =400, n = 4000

k 1 2 4 8 16 32 64 128

T 5.07 2.93 3.47 8.38 25.67 155.13 1043.32 1957.57

m = 400, n = 5000

k 1 2 4 8 16 32 64 128

T 3.73 3.68 4.58 7.91 32.06 198.49 1327.01

Chapter 5 - Computational Results 96

The empirical results indicate that the computational time increases at a rate

proportional to (approximately) k1.44 for an unit increase in k. The reason for this non-

linearity is that at each label-correcting step, as we update labels of nodes, O(k)

comparisons need to be performed (in the worst case) to obtain the k vector. These

computations need to be performed k times, to yield an overall worst-case time-

complexity of O(k2). Note that the empirical value of k1.44 represents an “average case”

complexity. Compare the expression for T in Table 10 (shown below) with the results in

Table 7, where an empirical expression for T is obtained as a function of the M (the

number of starting times). Tables 11 and 12 show that we can calculate the SPs for each

starting time much faster than computing the SPs for the same value of k. One way of

reducing the exponent value from 1.44 to a smaller value is to use efficient data structures.

For example, a binary heap can be used instead of the linked-list to improve the time-

complexity to O(k log2k).

Table 10. Empirical Expressions for T(k)

n γγ log (T)

1000 0.942 -0.746 + 1.440 log (k)

2000 0.950 -0.360 + 1.497 log (k)

3000 0.924 -0.136 + 1.398 log (k)

4000 0.938 0.056 + 1.436 log (k)

5000 0.926 0.093 + 1.419 log (k)

Chapter 5 - Computational Results 97

Table 11. Computational Times (in Seconds) for Varying Values of M

 m = 400, n = 1000

M 1 2 4 8 16 32 64 128 256 512 1024

T 0.72 0.75 0.77 0.80 0.87 1.01 1.27 1.83 2.89 5.09 9.52

 m = 400, n = 2000

M 1 2 4 8 16 32 64 128 256 512 1024

T 1.44 1.44 1.46 1.55 1.64 1.87 2.35 3.28 5.14 8.85 16.34

m = 400, n = 3000

M 1 2 4 8 16 32 64 128 256 512 1024

T 2.13 2.15 2.20 2.28 2.45 2.71 3.38 4.61 7.18 12.29 22.78

m = 400, n = 4000

M 1 2 4 8 16 32 64 128 256 512 1024

T 2.88 2.90 2.94 3.01 3.26 3.64 4.45 6.06 9.39 16.00 29.09

m = 400, n = 5000

M 1 2 4 8 16 32 64 128 256 512 1024

T 3.64 3.61 3.65 3.81 4.02 4.51 5.48 7.43 11.38 19.41 35.32

Chapter 5 - Computational Results 98

The results from Table 12 show that the algorithm computes the 10 best shortest

paths to all nodes in the network for more than 1000 starting times within a CPU time of

36 seconds for even the largest network size. A empirical relation between T and M was

obtained. As expected, an almost exact linear fit was obtained. A comparison with the

results in Table 12 indicates that in come instances, the algorithm is more than 200 times

faster for some values of M, when compared to the results in Table 11 for k = M. However,

in practice, the value of k is usually small compared to M. As a result the relatively poor

performance of Algorithm TD-kSP will not have a drastic impact in such situations.

Table 12. Empirical Expressions for T(M)

n γγ T

1000 1.0 0.725 + 8.572 (M/1000)

2000 1.0 1.413 + 14.567 (M/1000)

3000 1.0 2.085 + 20.138 (M/1000)

4000 1.0 2.824 + 25.660 (M/1000)

5000 1.0 3.523 + 31.023 (M/1000)

Until now we have considered connected random networks. In some shortest path

applications, acyclic networks are encountered. The next few sets of results illustrate the

computational efficiency of the algorithm when applied to such acyclic, layered test

networks.

Chapter 5 - Computational Results 99

Table 13. Computational Times for Layered Networks

r = 2, k = 20

p 2 3 4 5 6 7 8 9 10 11

O-D paths 4 8 16 32 64 128 256 512 1024 2048

m 8 16 32 64 128 256 512 1024 2048 4096

n 10 22 46 94 190 382 766 1534 3070 6142

T 0.02 0.03 0.05 0.09 0.21 0.49 1.27 3.91 13.40 49.41

 r = 3, k = 20

p 2 3 4 5 6 7 8

O-D Paths 9 27 81 243 729 2187 6561

m 14 41 122 365 1094 3281 9842

n 21 66 201 606 1821 5466 16401

T 0.03 0.07 0.22 0.83 4.82 35.24 308.72

 r = 4, k = 20

p 2 3 4 5 6

O-D paths 16 64 256 1024 4096

m 22 86 342 1366 5462

n 36 148 596 2388 9556

T 0.04 0.14 0.80 7.22 98.48

p = 4, k = 20

r 2 3 4 5 6 7 8 9 10

O-D paths 16 81 256 625 1296 2401 4096 6561 10000

m 32 122 342 782 1556 2802 4682 7382 11112

n 46 201 596 1405 2850 5201 8776 13941 21110

T 0.06 0.22 0.80 2.83 9.53 28.82 129.08 217.47 423.01

Chapter 5 - Computational Results 100

The results in Table 13 exhibit the variation in network parameters and

computational time with an increase in the number of layers (p). Also, the variation in

computational time with the out-degree (r) of a node is also shown as a comparative

statistic. Tentatively, let us hypothesize that T = T(m). The log-log fits for various values

of p are shown in Table14.

Table 14. Empirical Expressions for T(m)

r γγ log (T)

2 0.985 -3.139 + 1.256 log (m)

3 0.988 -3.438 + 1.413 log (m)

4 0.991 -3.498 + 1.418 log (m)

From the results of Table 14, we see that the empirical exponents for m marginally

increase with an increase in p. Hence, it is apparent that the computational time is a

multivariate function. We notice that as p increases the arc-to-node ratio (µ) also increases.

Hence, we can postulate that the computational time T can be expressed as

T ∝ mµx

where x is the exponent for α to be empirically determined. We can expect x to be close to

unity. Using a process of trial-and-error, let us use a value of x = 1.3.

Table 15. Empirical Expressions for T(m, α)

r γγ log (T)

2 0.981 -27.082 + 0.016 mµ1.3

3 0.976 -15.556 + 0.016 mµ1.3

4 0.974 -5.558 + 0.009 mµ1.3

We can see that except for r = 4, a value of 1.3 for x seems to be good. Note that

for r = 4, a good fit was obtained for T(m). Hence, a lower value of x may have been better

for this case. A value of x = 1.1 or 1.2 may yield better overall results. Based on these

Chapter 5 - Computational Results 101

results, T ∝ mµ1.2 can be tentatively used for layered networks. However, a more accurate

analysis of these results can be performed using a multiple (logarithmic) regression model.

These tests are described next.

5.4. Multiple Regression Analysis

The computational performance results for the algorithm was statistically analyzed

using the freeware (demo version) NCSS-JR 6.02. In particular, a multiple regression

model

Y = B0

 + B1X1+B2X2+ ..BpXp

where,

the vector {B} represents the set of regression coefficients that are to be ascertained using

a least-squares fit (Bo ≡ c, B1 ≡ α, B2 ≡ β),

Y represents the dependent variable (log T),

and the vector {X} represents the set of independent variables (log m, log 100ρ).

Note that until now, we tried to fit equations with p = 1 for various X variables.

This model was used to obtain an empirical relationship between T, m and ρ. All

the computational results presented in Tables 6-13 were used as input for the model. The

regression model was run for the three cases shown below.

1) ρ < 10%.

2) ρ unrestricted.

3) Layered Networks.

Standard statistical tests were carried out by the software and graphical plots can be

obtained for these test results. The confidence level of the regression-fit, correlation

coefficients, error estimates, etc., and other useful statistical estimates were also recorded.

The results for three cases are presented in Tables 16, 17, and 18 respectively. Complete

statistical results is presented in the appendix. Tables 16-18 show the statistical results for

2 Available for free download from the Internet web-site: http://www.ncss.com/donwload.html

Chapter 5 - Computational Results 102

the regression equation and regression coefficients. In all three cases, the results indicate a

high coefficient of correlation (R2) coefficient value of 0.98, which is close to 1. The

empirical regression coefficients were validated for a 95 % confidence level (C.L). The

main assumption for these tests is that the residuals (the difference in the actual and

predicted computational times) are normally distributed and variance is constant. The

normality and variance test results conducted justify this assumption. Selective definitions

that are useful in interpreting these tables are presented in the appendix. For a detailed

description of such tests, the reader is referred to user’s guide of the software package.

Complete results are shown only for the first case (random networks, ρ < 10%). For the

other two cases, only the tests for the coefficients obtained are shown.

For the first case, the empirical equation obtained for T is

T ∝ m2.4ρ1.2 or T ∝ n1.4µ1.2

 where µ (arc-to-node ratio) is substituted using the approximate equation

µ = mρ.

Similarly, for the second and third cases we obtain T∝n1.5µ1.4

 and T∝n1.5µ1.1, respectively. A

comparison of these results with the linear regression (single variable) confirm the trends

obtained in Tables 6-13. A comparison of the results in Table 11 and Table 12 show that

the algorithm performs relatively poorly for denser networks. The results for layered

networks (Table 13) show an almost linear variation of computation time with density.

Interestingly, the null hypothesis (no correlation with dependent variables) for the case of

layered networks is accepted at the given significance level indicating that a linear fit may

yield better results. Using the expressions obtained from Tables 1-13, we can postulate

that the empirical time-complexity for Algorithm TD-kSP is of the order O(k1.4M m12 µ1.2) or

equivalently, O(k1.4M m2.4 ρ1.2). The exponents for n and µ in this expression may increase

by 0.1 or 0.2 for dense networks (ρ > 10%) and possible decrease for extremely sparse

networks (ρ < 0.1%). Further, in the case of acyclic networks, the algorithm seems to

perform in a “almost” linear fashion.

Ziliaskopoulos and Mahmassani [1994] used a CRAY Y/MP-8 supercomputer

with parallel processing abilities to test the TDSP algorithm they devised for

Chapter 5 - Computational Results 103

DYNASMART. They obtain an empirical time-complexity of the order O(Mmµ1.4) or

equivalently, O(Mm2.4ρ1.4) for the case of k = 1 and M < 640 for extremely sparse networks

of similar magnitudes of density (ρ < 3 %) that are used in this study. Based on empirical

results, and noting that both algorithms essentially use the same PPDS (deque), Algorithm

TD-kSP seems to perform marginally better for (increasingly) denser networks, while

performing almost equally well for sparse networks. DYNASMART imposes the

consistency assumption on link-delays for their tests (which is naturally true in our case).

Hence, the algorithms must yield identical results, when they are used to find the shortest

path for a given O-D pair. Based on these observations, we can conclude that when simple

optimal paths are desirable, Algorithm TD-kSP can used to obtain the k shortest paths as

efficiently as the currently existing algorithm. However, conclusive evidence to confirm

these statements can be obtained only if Algorithm TD-kSP is also tested for larger

networks (m > 1000).

Chapter 5 - Computational Results 104

Table 16. Multiple Regression Results for Random Networks and ρ < 10%

Regression Equation Tests

Independent

Variable

Regression

Coefficient

Standard

Error

T-Value

(H0: B = 0)

Prob.

Level

Decision

(5%)

Power

(5%)

c -5.859053 0.1667649 -35.1336 0.0 Reject Ho 1.0

log m 2.418785 6.786013E-02 35.6437 0.0 Reject Ho 1.0

log 100ρρ 1.240923 2.684141E-02 46.2317 0.0 Reject Ho 1.0

R2 = 0.977257

Regression Coefficient Tests

Independent

Variable

Regression

Coefficient

Standard

 Error

Lower

95% CL

Upper

95% CL

c -5.859053 0.1667649 -6.19401 -5.524096

log m 2.418785 6.786013E-02 2.282484 2.555086

log 100ρρ 1.240923 2.684141E-02 1.18701 1.294835

T-Critical 2.008559 - - -

Chapter 5 - Computational Results 105

Table 16. cont’d.

Analysis of Variance (ANOVA) Results

Source DF Sum of

Squares

Mean

Square

F-Ratio Prob.

Level

Power

(5%)

c 1 3.777783 3.777783 - - -

Model 2 14.27011 7.135055 1074.26 0.0 1.0

Error 50 0.3320912 6.641824E-03 - - -

Total 52 14.6022 0.2808115 - - -

Root Mean Square Error 8.149739E-02

Mean of Dependent Variables 0.2669811

Coefficient of Variation 0.3052552

PRESS Value 0.3890393

 Normality Tests

Assumption Decision (5%)

Skewness Accepted

Kurtosis Accepted

Omnibus Accepted

Chapter 5 - Computational Results 106

Table 17. Multiple Regression Results for Random Networks and Unrestricted ρ

Regression Equation Tests

Independent Regression Standard T-Value Prob Decision Power

Variable Coefficient Error (H0: B = 0) Level (5%) (5%)

c -6.039011 0.12363 -48.8475 0.0 Reject Ho 1.0

log m 2.48936 5.027575E-02 49.5141 0.0 Reject Ho 1.0

log 100ρ 1.362969 2.596588E-02 52.4908 0.0 Reject Ho 1.0

R2 = 0.987129

Regression Coefficient Results

Independent Regression Standard Lower Upper

Variable Coefficient Error 95% C.L. 95% C.L.

c -6.039011 0.12363 -6.288507 -5.789516

log m 2.48936 5.027575E-02 2.387899 2.59082

log 100ρ 1.362969 2.596588E-02 1.310568 1.41537

Chapter 5 - Computational Results 107

Table 18. Multiple Regression Results for Layered Networks

Regression Equation Tests

Independent Regression Standard T-Value Prob Decision Power

Variable Coefficient Error (H0: B = 0) Level (5%) (5%)

c -5.949147 2.813731 -2.1143 0.043523 Reject Ho 0.532539

log m 2.543608 1.274068 1.9964 0.055692 Accept Ho 0.487224

log 100ρ 1.146678 1.302185 0.8806 0.386041 Accept Ho 0.136123

R2 = 0.973502

Regression Coefficient Tests

Independent Regression Standard Lower Upper

Variable Coefficient Error 95% C.L. 95% C.L.

c -5.949147 2.813731 -11.71281 -0.1854801

log m 2.543608 1.274068 -6.620239E-02 5.153418

log 100ρ 1.146678 1.302185 -1.520726 3.814083

We have finally reached a stage where the development of an interactive

environment for deployment of optimization algorithms such as TD-kSP for real-time

applications is complete. This concludes our work on the development, testing and

implementation of TDSP algorithms. The objectives of this study, i.e., the formulation,

analysis, computational testing, and implementation of dynamic routing algorithms, is

now complete. In conclusion, the next section presents a summary of important results

obtained. The future scope of this study and possible extensions to the work done is also

described.

