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Abstract

An Approach to Using Cognition in Wireless Networks

Lizdabel Morales Tirado

Third Generation (3G) wireless networks have been well studied and optimized with tra-

ditional radio resource management techniques, but still there is room for improvement.

Cognitive radio technology can bring significant network improvements by providing aware-

ness to the surrounding radio environment, exploiting previous network knowledge and op-

timizing the use of resources using machine learning and artificial intelligence techniques.

Cognitive radio can also co-exist with legacy equipment thus acting as a bridge among het-

erogeneous communication systems. In this work, an approach for applying cognition in

wireless networks is presented. Also, two machine learning techniques are used to create a

hybrid cognitive engine. Furthermore, the concept of cognitive radio resource management

along with some of the network applications are discussed. To evaluate the proposed ap-

proach cognition is applied to three typical wireless network problems: improving coverage,

handover management and determining recurring policy events. A cognitive engine, that

uses case-based reasoning and a decision tree algorithm is developed. The engine learns

the coverage of a cell solely from observations, predicts when a handover is necessary and

determines policy patterns, solely from environment observations.
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continued support. To Dr. Ramón Vázquez, Dean of Engineering at UPRM for giving me

iii



this opportunity and believing in me. To fellow faculty and to the department staff for their

continued support during the length of my studies.

I am extremely grateful to my in-laws Ana Maŕıa and Juane for their love, support, and
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Chapter 1

Introduction

With the rapid proliferation of wireless applications in recent years, there has been a greater

demand for the electromagnetic spectrum. Although the “feeling” is that there is no available

spectrum, the truth is that most of the spectrum remains under-utilized. Recent reports show

that the actual utilization can be as low as 1% in some areas, thus the recent interest in

techniques and technologies that allow for sharing of the spectrum [6–10]. This interest has

led to research in the efficient use of the electromagnetic spectrum, the focus primarily on

dynamic spectrum access (DSA) techniques that allow use of the spectrum more efficiently

and more effectively. Currently, spectrum rights are assigned very similarly to real-estate

rights. Primary users have “property” rights to their assigned spectrum, thus no sharing

is allowed. New spectrum sharing policies and technologies are being researched to use the

spectrum more effectively. Agencies such as the Federal Communications Commission (FCC)

have had the task of investigating technologies that improve utilization of the spectrum; one

such technology is the cognitive radio (CR).

The term cognitive radio was originally coined by Mitola back in 1999 [11], later it was the

subject of his dissertation work in 2000 [12]. Since then, it has received significant attention

from the research community, regulatory agencies and industry. Cognitive radio is a new

technology that promises a paradigm in wireless communications but it is still in the very

1
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early stages of development. Cognitive radio is expected to make significant improvements

not only in spectrum accessing techniques, but also in quality of service (QoS) optimizations,

radio resource management (RRM), emergency communications, communications bridging,

femtocell deployment and integration, broadband wireless networking, among others. While

Mitola’s vision of a “full-blown” cognitive radio will take many years to come, cognitive

radios with a simpler level of cognition can still provide ample improvements in current

networks [13,14].

The current research efforts in DSA techniques have inspired us to apply cognition to other

network resource problems. In this work, the path towards the development of a cognitive

engine is discussed. An approach to apply cognition to various wireless network problems is

presented. We discuss the concept of cognitive radio resource management and describe pos-

sible applications to current and future wireless networks. We apply the proposed approach

and develop a hybrid cognitive engine based on Case-based Reasoning (CBR) and Decision

Tree (DT) learning. The generic cognitive engine can be applied to any existing and future

wireless network, but in order to validate the engine we have decided to provide a definite

context for the engine. We selected 3G wireless networks for various reasons: these networks

have been well studied and optimized with traditional radio resource management methods,

we are very familiar with them, and there exists a variety of simulation tools that can aid

us quantifying the benefits of adding cognition to these networks.

Furthermore, with the addition of femtocells, also known as home base stations, 3G networks

will face new challenges that were not considered during the initial standardization process.

Femtocells can help operator achieve the goals outlined in 3G LTE1 specifications such

as: improving coverage and capacity, improving link reliability, reducing operator costs,

and reducing subscriber turnover [15]. However, these improvements will be possible when

optimal solutions to femtocells’ technical challenges are found. Femtocells need to adapt

1LTE stands for Long Term Evolution, and is the name given to the 3GPP project that is focusing
on improving the Universal Mobile Telecommunications System (UMTS) mobile phone standard to cope
with future technology evolutions. LTE specifications have been approved by 3GPP. It is expected to be
commercially available in 2010.
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to their surrounding environment and allocate spectrum in the presence of interference.

Femtocells also need to provide timing and synchronization with the network, in order to

ensure handover between macro-cell and femtocell environments. Furthermore, femtocells

need to provide acceptable QoS and reduce latency in the backhaul. Other issues such as

performing handovers, providing service to nearby subscribers, and providing 911 location

tracking also need to be considered. Cognitive radio can tackle these technical challenges in

femtocells by providing cognitive capabilities such as awareness, intelligence and learning.

Moreover, if we consider 4G wireless networks, cognitive radio will be an integral part of

this evolution. These networks are dubbed “cognitive networks”, thus cognitive capabilities

are already presumed in their design. The intelligence and awareness capabilities of CR are

necessary to support the amalgam of heterogeneous networks and ensure interoperability

among them [16–23].

There are many challenges in the evolution of wireless networks. Cognitive radio can be a

great tool addressing some of these challenges. In this work, we propose using cognition to

address improving coverage in a 3G network. The design is flexible enough that will allow

for other network problems such as: interference mitigation, link reliability improvement,

handover prediction to be solved. In this dissertation, we simulate the engine’s radio en-

vironment and validate the engine design by applying it to real-life problems: learning the

coverage of the cell by exploiting the network history, managing handover, and determining

policy patterns.

1.1 Applying Cognition to Wireless Networks

It is clear that cognitive radio technology will be of great benefit to current and future

networks. Literature published in recent years shows that adding basic CR techniques for

spectrum utilization improvement, radio resource management optimization and data mining

of user information can yield significant improvements in network performance. However, the
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end-user benefits have yet to be quantified. The costs versus benefits tradeoffs of cognitive

radio techniques remain unknown.

Currently, operators of 3G networks are hesitant to embrace this new technology, as cognitive

radio brings a radical change to current radio resource management approaches. On the

other hand, efforts to define the evolution of 3G networks are well on their way, the goal is

to further reduce operators costs and to improve service provisioning to the end-user [24].

In order to achieve this goal, operators and manufacturers are focusing in four key aspects:

increasing system coverage, increasing system capacity, increasing data rates, and reducing

latency.

Several solutions that address these issues have been proposed [3]. Researchers have sug-

gested new architectures, multi-antenna solutions and evolved QoS and link layer approaches,

among others [24]. From these solutions, only a few propose applying cognitive radio [25–31].

In this, work we explore adding cognition to wireless networks, we propose an approach to

applying machine learning techniques and formulating the problems. We propose a generic

cognitive engine architecture and give detailed descriptions of its components. We also sug-

gest engine architectures for femtocell deployments and Beyond 3G (B3G) wireless networks.

We apply the proposed approach and develop a cognitive engine that learns the coverage in

a cell and performs handover management using the learned knowledge.

1.2 Problem Statement

Third generation wireless networks have been well studied and optimized with traditional

radio resource management techniques, but still there is room for improvement. Cognitive

radio technology can bring significant network improvements by providing awareness to the

surrounding radio environment, exploiting previous network knowledge and optimizing the

use of resources by applying machine learning and artificial intelligence techniques. Cognitive
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radio can also co-exist with legacy equipment thus acting as a bridge among heterogenous

communication systems.

In this, work we address the design and implementation of a cognitive engine for wireless

networks. First, we define cognitive radio in the context of 3G networks, we then identify the

“knobs and meters” 2 for the wireless network. We implement the engine using a combination

of case-based reasoning and decision tree learning. We validate the engine by applying it to

real-life scenarios. The engine learns the coverage pattern of a cell purely by deriving rules

and creating a decision tree using solely previous cases. The new learned knowledge is used

to develop performance improving algorithms for handover management.

During this process we will also address broader cognitive engine development issues such

as:

• How much cognition is necessary? - Mitola’s vision of cognitive radio is an agent that is

autonomous and capable of understanding, planning, negotiating. His vision requires

extensive machine learning techniques. Some researchers [13, 14], have shown that

lower levels of cognition can bring significant improvements to the network. What

level of cognition can provide substantial network improvements without the added

complexity? What are the tradeoffs between cognition and complexity?

• Where does this cognition should reside? - Some suggests that cognition should be

dispersed in all the levels of the stack, while others suggest cognitive implementations

in the physical and data link layer only. How can we determine where cognition should

reside? Does adding cognition in all layers affect the overall latency in the cognitive

radio, and in the network?

• What Artificial Intelligence (AI) and machine learning techniques are suitable for the

engine’s design? - At this point, ten years after the term “cognitive radio” was coined

by Mitola, only a handful of AI and machine learning techniques have been investi-

2These terms have been used in the Software Defined Radio (SDR) community as described by Rieser [32].
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gated. The amalgam of techniques offered in the machine learning field is very vast.

There is a need to investigate these techniques and determine their suitability to cog-

nitive engine design. Furthermore, some techniques may be able to address different

network problems better than others. How can the engine employ different machine

learning techniques, to solve the network problems while minimizing processing time

and keeping complexity to a minimum?

• Which engine architecture is best? - Several engine architectures have been suggested,

which architecture results in a better engine. The trend in wireless networks is for

simpler architectures that reduce latency. Will the addition of cognition affect this

trend negatively?

• What kind of performance measurements should be used? - Currently, we expect cog-

nitive radio to bring significant improvements to wireless networks. But how can we

measure these improvements, what metrics should be used?

• How much previous information do we need? - Cognitive radio will use previous infor-

mation on the user, the network and the radio environment to predict future actions,

therefore how much previous information is really needed. Latency in the cognitive

engine increases as the amount of data to analyze also increases. How can we limit the

amount of previous information used and still produced a good prediction model?

• What are the tradeoffs between cognition and latency? - Latency has a major influence

on the user’s experience. Conversational applications such as voice calls, video confer-

encing and VoIP require very low latency. The trend in wireless networks has been to

further reduce latency. In GSM/EDGE networks the roundtrip time (RTT) is around

150 ms, in WCDMA/HSDPA the RTT has been reduced to 80 ms, the expected RTT

for the LTE standard is around 5 ms [33]; with these strict latency requirements there

is a need for cognitive algorithms that do not affect latency adversely.

• What is the impact of policy on the cognitive engine’s design? - In order to implement
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spectrum maximization solutions and optimize the use of radio resource management

major changes in regulatory policies must take place. As with any autonomous device,

there are concerns regarding a cognitive radio’s behavior. A CR may behave selfishly,

resulting in interference for non-cognitive or legacy users, and other cognitive devices.

To address this issue, regulatory policies must be developed to assure fair use of all the

network’s resources.

We attempt to address some of these issues in this document, and hope that this work will

further advance the adoption of cognitive radio technology in current and future wireless

networks.

1.3 Methodology

In this work, we discuss the path towards the development of a cognitive radio engine for

radio resource management in 3G wireless networks. The main approach used in this work is

system design by analysis, modeling and simulation. Also, this work builds upon experience

acquired while working on three Wireless@VT projects: the CR test-bed with Tektronix,

Artificial Intelligence Techniques survey with ARO and IEEE 802.22 WRAN research for

ETRI. We explore adding cognition to wireless networks, we propose an approach to applying

machine learning techniques and formulating the problems. We propose a generic cognitive

engine architecture and give detailed descriptions of its components. We also suggest engine

architectures for femtocell deployments and B3G wireless networks. We apply the proposed

approach to three case studies. First, a hybrid cognitive engine is designed to learn the

coverage of a cell. Then, the trained hybrid engine is used to manage handover in a wireless

network. We evaluate the performance of the engine in terms of the error rate, Receiver

Operating Characteristics (ROC) curves and computational complexity. As a third case

study, we use the hybrid engine to determine policy event patterns.



8

1.4 Contributions

To date, the original contributions of this research include:

1. Describing a methodology for adding cognition in wireless networks. The emphasis

of the approach is the application of cognition to network radio resource management

tasks.

2. Proposing a hybrid cognitive engine that uses case-based reasoning and decision tree

learning.

3. Providing an analytical framework that relates case-based reasoning and decision tree

learning to the engine’s learning objectives.

4. Design, development, and implementation via simulation of the proposed hybrid cog-

nitive engine.

5. Developing three cognitive radio resource management algorithms: coverage learning,

handover management and policy determination.

1.5 Outline

This document consists of nine chapters. The second chapter discusses the related work

that has laid the foundation for the research presented in this document. It provides an

overview of the cognitive radio and cognitive engine concepts. Also, provides a brief history

on previous cognitive engine implementations. Chapter 3 discusses the proposed approach

for applying machine learning techniques in the design of a cognitive engine. Chapter 4

describes the generic cognitive engine’s architecture and its components. Chapter 5 discusses

the concept of cognitive RRM and contrast this new concept with the traditional RRM

approaches. In Chapter 6, the first case study: using cognition to improve the coverage of
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the cell is presented. Chapter 7, discusses the second case study: using cognition in handover

management. Chapter 8 explores the concept of using cognition to determine policy event

patterns. Chapter 9 provides concluding remarks, presents the future direction of this work

and lists expected publications.

1.6 Notation

The notation used in this dissertation is included in Table 1.1.
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Table 1.1: Notation
Symbol Definition
p Problem case.
c Matched case.
a Attribute from the set A.
A Set of attributes.
x Position on the x axis.
y Position on the y axis.
θ Angle of the mobile w.r.t. the base station.
r Distance from the base station.
υ Velocity in kmph.
SINR Signal to interference and noise ratio.
PL Path loss.
fc Carrier frequency.
∆hb Antenna height measured above the rooftop level.
RSS Received signal strength.
S Set of objects.
C Set of classes.
T Set of tests.
O Set of outcomes.
ρ Positive example.
c Class of positive examples.
η Negative example.
ĉ Class of negative examples.
m Leaf nodes of the tree.
M Set of all possible network conditions.
e Event.
E(S) Entropy of S.
G(S, a) Information gain given attribute a.
ε Error rate.
β Probability of success.
γ Probability of error.
ζ Confidence.
δ Confidence limit.
TP Number of true positives.
TN Number of true negatives.
FP Number of false positives.
FN Number of false negatives.



Chapter 2

Related Work

In this chapter, the related work that precedes this research is presented. The work de-

scribed here serves as inspiration and guidance in this research. Cognitive radio is a multi-

disciplinary field, advancements in many areas of research are needed in order to achieve

a successful implementation. In this work, we focus on analyzing the impact of cognitive

radio from a system-level perspective. We explore cognitive radio and its impact on radio

resource management, focusing on how awareness of previous history and data mining of

user information can provide performance improvements in some real life scenarios.

First, the concept of cognitive radio is defined. Also, its advantages and limitations are

presented. We proceed by describing where cognitive radio will bring the most benefit. Then,

we discuss the concept of a cognitive engine and give a brief history of the various cognitive

engine (CE) implementations that have laid the foundation for this work. We continue with

a discussion of 3G wireless networks, as it is in this context that we examine the application

of cognitive radio. We list some of the potential applications for 3G cognitive networks, and

also identify the knobs and meters.The chapter concludes with a brief summary.

11
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2.1 Cognitive Radio

In this section, the concept of cognitive radio is discussed. Also, we provide a comparison

between the different levels of cognitive radios and discuss when these radios will become

available. We conclude the section by identifying the primary drivers for this technology and

the motivation for this research.

A cognitive radio, as defined by Mitola [11], is a software radio that is aware of its environ-

ment and its capabilities, it can alter its physical layer behavior, and is capable of following

complex adaptation strategies. Adding to this definition, a cognitive radio learns from pre-

vious experience and can deal with situations that were not planned at the radio’s initial

design time.

Another commonly used definition from S. Haykin [34] is: “An intelligent wireless com-

munication system that is aware of its surrounding environment (i.e. outside world), and

uses methodology of understanding-by-building to learn from the environment and adapt

its internal states to corresponding changes in certain operating parameters (e.g. transmit

power, carrier frequency, and modulation strategy) in real-time, with two primary objectives

in mind:

• Highly reliable communications whenever and wherever needed;

• Efficient utilization of the radio spectrum.”

The above definitions refer to what we know as “full cognitive radio”, a device that is au-

tonomous and makes its own decisions based on the radio environment observations, and can

evolve from its original design as it learns from new experiences. Other agencies such as the

FCC, Office of Communications, UK (OfCom), National Telecommunications and Informa-

tion Administration (NTIA), Institute of Electrical and Electronics Engineers (IEEE) and

the SDR forum have their own definitions of cognitive radio. These definitions may vary from

a simple adaptive radio, to radios that include intelligent signal processing and use game
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Figure 2.1: Cognition cycle

theoretic etiquettes to address the spectrum sharing problem. While various dissertations

can be written solely on defining the term “cognitive radio”, in this work we define it as a

software defined radio that is capable of :

• sensing its environment and drawing conclusions from the sensed information,

• adapting its physical layer parameters,

• optimizing over the use of the radio resources, and

• performing basic reasoning and learning by using artificial intelligence techniques.

Now, if we describe how a CR works, we can refer to figure 2.1 for a basic cycle adapted

from the one described in [35]. The CR first senses the radio environment and draws con-

clusions from the sensed information. The CR proceeds to analyze the current state and

the implications of the newly sensed information. If the new radio environment affects the

CR’s current state it will proceed by reacting to new radio environment state by adapting its

current configuration. While in the adaptation phase the CR will optimize the use of radio

resources given three distinct inputs: the CR user requirements, the radio environment and
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the current spectrum policy. In order to achieve the adaptation the CR will reason using AI

techniques and past experience in order to obtain an optimal solution. The CR reacts to the

environment with this new adaptation, the CR receives feedback from the environment, the

cycle begins again. In this cycle, the CR learns from previous experiences and applies what

has learned to new challenges.

In his dissertation, Joseph Mitola also describes the levels of cognition that characterize

various radio tasks [12]. These levels range from no cognition as in a “pre-programmed”

software defined radio, to a cognitive radio that can autonomously propose, negotiate and

adapt new protocols. While the latter is not attainable at the moment, researchers have

found that radios with cognition levels limited to awareness of the environment and planning

can yield significant network improvements [13, 14]. The higher levels of cognition require

extensive machine learning not supported by current technology. In this work, when we use

the term CR we refer to a radio with a cognition level that includes awareness, reasoning

and basic machine learning.

Cognitive radio constructed with higher levels of cognition may seem ideal, but perhaps a

lower level of cognition can adequately support the desired radio tasks. Higher levels of

cognition require intensive AI techniques and machine learning, this implies larger memory

requirements, greater processing power and thus, greater power consumption. If we consider

that one of the major limiting factors for wireless equipment is battery life, a higher level of

cognition inversely affects the life of the wireless device. Clearly, there is a trade-off between

the level of cognition, the complexity and useful life of the cognitive radio.

Anil Shukla et al. in their “Cognitive Radio Technology” report for OfCom [1], compare four

different levels of cognitive radios and the intelligence required for each one as seen in figure

2.2. At the top right corner lies a “full cognitive radio” or Mitola radio, if we consider the

current technology trends we can expect these type of radios to become available by 2030.

On the lower left corner of the diagram lie simple adaptive radios that are used today in

WiFi, WLAN, PBR, MBITR and Bluetooth enabled networks. A CR that is achievable in
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Figure 2.2: Matrix of CR technology available today, reprinted with permission from QinetiQ,
Ltd. [1].

the next 5 to 10 years is one that can use intelligence to adapt its physical layer parameters

using software radio techniques as mentioned in [1], and adding to this statement the CR

should also optimize these parameters to improve the use of the radio resources.

If we can expect a basic CR to be available in the next 5 to 10 years, the next question that we

need to address is, what are the key benefits that cognitive radio provides? First and probably

the most significant of the benefits is spectrum flexibility. The CR’s ability to be aware of

the spectrum allows for its opportunistic use, hence improving spectrum utilization. This

spectrum flexibility also allows for different approaches to spectrum sharing, thus creating

new markets that were previously not feasible due to spectrum costs or availability [1,11,36].

Shukla et al., list optimal diversity as the key benefit of cognitive radio [1]. CR offers di-

versity not only in frequency but also in power, modulation, coding, space, time, and so

on, but this flexibility is partly inherited from SDR. With this diversity CR will improve

the availability and reliability of wireless services, thus increasing QoS from the user’s per-
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spective. Another benefit of CR is that it is a “future-proof” technology. CR’s ability to

adapt to new regulations, services and protocols that were not thought-of at deployment can

save operators when upgrading systems or adding new services. Also, CR can minimize the

burden to regulatory agencies in their regulation efforts. If the regulations and policies are

included in a database they can be changed or updated quickly, CRs can then update their

own local databases (i.e. radio environment map) with the new regulations.

Cognitive radio will provide many benefits to the end user, to the operator, to the manufac-

turer and to the regulator. Along with these benefits there are issues that cognitive radio

raises. Probably the most significant issue is interference mainly due to the hidden node

problem [1, 6, 7]. The hidden node problem arises when a CR is unable to detect all of the

primary users in its sensing range. This situation occurs when the primary user is hidden

from the CR’s sensing range. As an example, let’s discuss a possible scenario: there is a

far-away non-cognitive transmitter, that is not in the sensing range of the CR. This non-

cognitive transmitter is communicating with a non-cognitive receiver that is in proximity

to the CR. The non-cognitive receiver may be at the edge of the cell. The CR will scan

the spectrum for transmissions, however since the transmitter is very far from the CR, it’s

signal may be lower than the noise floor, and the CR may be unable to detect it. The CR

may cause harmful interference to the transmitting primary user and affect its communica-

tions, without realizing it as it does not have any knowledge on the primary user. Several

suggestions on how to solve this problem have been published in the literature; they include

cooperative sensing, and adding a beacon signal to primary users or other non-cognitive

devices operating in the same spectrum as the CRs. Other key issues for cognitive radio

deployment include security and reliability. As with any autonomous device that can alter

its initial programming, there are lots of concerns on how CR will behave after it has been

deployed. Alternative etiquettes and protocols can be established in order to encourage

cooperation and sharing of the resources among CRs in a network.

In summary, cognitive radio is a new technology that promises a new paradigm in wireless

communications but it is still in the very early stages of development. Research and ad-
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vancements in many areas are needed in order to have a successful CR implementation. The

objective of this work is to further advance the cognitive radio field by researching cognitive

engine design and applying the design to improving coverage in 3G wireless networks.

2.2 Cognitive Engine: Intelligence for the Radio

In the previous section we discussed the concept of cognitive radio, before we continue further

into our discussion, it is necessary to describe what characterizes a radio as “cognitive”. A

radio has no cognition abilities; it is the cognitive engine (CE) that brings intelligence,

awareness, reasoning and learning to the radio. Without the CE the radio is merely a

programmable software radio at its best. Thus, we define a CE as an “intelligent” agent

that manages the cognition tasks in a cognitive radio.

This agent can be thought of as an independent entity that oversees the cognitive operations

of the radio. Given inputs from its user, regulatory agencies or the radio environment, the

cognitive engine analyzes the situation, performs calculations and proceeds by responding

or reacting to the stimulus. As an example, this response can be adapting parameters of the

radio such as modulation scheme, transmission frequency, reception frequency, etc., given

the user requirements and the current environment conditions.

Now, that we have defined what makes a radio cognitive we have to think about five inherent

questions:What is cognition?, How much cognition is necessary?, Where should this cognition

reside?, What is the benefit of adding cognition?, What is the cost of adding cognition?

First, what does cognition mean in the context of a radio. Cognition is defined as the

mental process of knowing, including aspects such as awareness, perception, reasoning, and

judgment, its Latin root is cognoscere which means to learn. When we characterize a radio

as cognitive we imply awareness of its capabilities and of the environment. This awareness

is achieved by means of sensing its surroundings, the use of radio environment maps (i.e.
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REM), the use of policy databases, and by performing the needed calculations to interpret

the data into information that can trigger actions in the radio.

In the context of machine learning, we imply the use of previous knowledge to create new

knowledge when we refer to “learning”. Learning can be achieved using AI and machine

learning techniques that allow the radio to create knew knowledge from previous experiences.

Learning also implies memory, and for a radio this means storing previous information or

events that have triggered actions. For example, if we apply it to the coverage problem,

the CR will deduct that a handover is necessary, if its moving to the cell boundary, and

in previous instances the previous actions performed in order to maintain the call were to

perform a handover.

Furthermore, there has been a lot of debate on the amount and location of cognition. A full

Mitola CR requires extensive cognitive processing, in all the Open Systems Interconnection

(OSI) layers of the stack, while some of the CRs proposed and tested by industry and

academia require limited cognition. Generally, this cognition resides in the first two layers of

the stack (Physical, Data Link). Recently, researchers at Virginia Tech proposed and defined

the term cognitive networks extending cognition to the Network layer [37, 38]. In order to

achieve a full CR implementation as proposed by Mitola and Haykin [11, 12, 34], cognition

must reside in all layers of the OSI stack.

In previous sections, the benefits and costs of cognitive radio have been discussed. It is

worth discussing the benefits and costs of adding cognition. By applying cognition to the

radio environment, we will be able to solve problems that we were not capable of solving

using traditional methods. We will use awareness and previous experience to predict future

problems and solutions to these problems. Although, these capabilities do not come without

a price. Adding cognition implies adding complexity to wireless networks. Wireless networks

by nature are very complex and difficult to analyze due to their dynamic nature. Thus, we

must consider the tradeoff between complexity and cognition.
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2.3 Early Cognitive Engine Designs

In the next paragraphs we discuss the evolution of cognitive engine design. Also we describe

various CE implementations and the level of cognition included in each design. Of partic-

ular interest are Wireless@VT’s cognitive engine implementations as these implementations

precede the work outlined in this document. The author built on her experience in these

projects to create the proposed solution outlined in this document.

The CE as originally conceived by Mitola in [11], was modeled as a context and location based

cognition cycle at the application layer. His research described the potential use of cognitive

radio technology to enable spectrum rental applications, and to create secondary wireless

access markets [12]. Since Mitola’s dissertation significant research has been conducted in

this area, not only by the military but also by commercial and educational institutions.

In 2002, the Defense Advanced Research Projects Agency (DARPA) recognized that the

electromagnetic spectrum was highly under-utilized and funded the neXt Generation (XG)

program [39,40]. DARPA’s XG project objective was to create an adaptive radio that sensed

and shared the use of the spectrum. DARPA termed this unused spectrum as spectrum

holes. They called their approach opportunistic spectrum access. In their vision [40], the

XG radio is implemented as a layer 2 process. The transceiver API may be enhanced to

include certain XG components to provide an XG enhanced Transceiver API. There is no

change in the network layer and above, and the legacy MAC layer may not be aware of the

XG enhancements. The idea behind the XG process is to coordinate with each other to

implement a dynamic spectrum sharing procedure among them, in a way that is designed

to control interference to existing primary users. The XG process then creates a “state” in

the physical layer for handling the packets consistent with the decisions made in the XG

process. The XG radio did not posses cognitive learning abilities and adaptable operation

capabilities like the ones proposed by Mitola.

In 2004, Virginia Tech’s Center for Wireless Telecommunications (CWT) group realized
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the implementation of a biologically inspired cognitive engine based on genetic algorithms.

The engine is capable of learning and intelligently evolving a radio’s PHY and MAC layers

when faced with unanticipated wireless and network situations [32]. In their approach CWT

researchers created a “stand-alone” cognitive engine that could be used with legacy radios.

The system focused on providing cognitive radio capabilities to the physical (PHY) and

medium access control (MAC) data link layers. It is structured such that the CE is scalable

with the capabilities of the host radio. The more flexible the radio is, the more powerful the

cognitive control [41].

Also in 2004, Berkeley Wireless Research Center and the Technical University in Berlin

proposed their cognitive approach for the usage of virtual unlicensed spectrum, CORVUS.

CORVUS used techniques to avoid interference to primary users (PU) [42,43]. Their design

covered the physical and link layers of the ISO/OSI stack. They identified six main functions

for the engine such as: spectrum sensing, channel estimation, data transmission, MAC, link

management and group management. Their design also relied on two control channels that

implemented the core functionality of the cognitive radio; the universal control channel

(UCC) and the group control channel (GCC).

In 2005, Mobile Portable Radio Group (MPRG) and Tektronix collaborated in the devel-

opment of Cognitive Radio Tektronix System (CoRTekS) [2]. The idea was to create a

test-bed to validate cognitive radio as a proven technology for efficient spectrum utilization

using Tektronix off-the-shelf components. CoRTekS was built on previous Virginia Tech and

Tektronix SDR efforts and utilized Virginia Tech’s open source Software Communications

Architecture (SCA) implementation (OSSIE) and test equipment software components [44].

Initially, the focus of the cognition abilities of the radio comprised the identification of par-

ticular frequency bands suitable for transmission. The cognitive radio made adjustments to

the center frequency, modulation and transmitted power according to the spectrum policy

delineated by the user and the performance goal (i.e. QoS). The cognitive engine in this CR

was implemented using artificial neural networks.
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Figure 2.3: CoRTekS Block Diagram [2]
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A block diagram of the test-bed is shown in Figure 2.3. The Arbitrary Waveform Generator

(AWG430) was used to create a multi-mode transmitter capable of generating a variety of

modulated signals. In scenarios where the operating center frequency was beyond the range

of the signal generator, the operating frequency was set by a second Arbitrary Waveform Gen-

erator (AWG710B). The radio frequency (RF) interface contained several RF components

such as filters and antennas in the operating frequency range. The Real Time Spectrum

Analyzer (RSA3408A) performed the signal demodulation. The cognitive engine adapted

the waveform parameters according to the results obtained after demodulating the signal,

in order to achieve a desired performance goal. This test-bed was successfully demonstrated

at the SDR Forum Conference in Orange County, California in November of 2005. More

information on this implementation can be found in [2].

From 2005 until 2007, MPRG also collaborated with ARO and ETRI in projects that re-

searched two important aspects of cognitive engine design:

• Artificial Intelligence Techniques for Cognitive Engine Design, and

• Cognitive Engine Algorithms for IEEE 802.22 Wireless Regional Area Networks (WRAN)

Networks.

The first project provided the necessary background on artificial intelligence and machine

learning theory to determine the techniques that were suitable for the various components of

the engine. In the second one, the identified AI techniques were applied in a CE design and

their performance evaluated. The initial cognitive engine consisted of a knowledge-based

reasoner and a genetic algorithm multi-objective optimizer, Figure 2.4 depicts the engine’s

basic diagram. It was designed using a modular approach, thus the reasoner and optimizer

modules could be used at any time during the algorithm adaptation procedure. One of the

main advantages of this approach was that adaptation time decreased when the CE used

knowledge to limit the search space of the GA optimizer. The results and conclusions drawn

from these experiments are included in references [45–47]. The author’s experience in these
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Figure 2.4: MPRG’s IEEE 802.22 Cognitive Engine

projects helped her gained insight and understanding in cognitive engine design issues, and

encouraged her to continue research in this area.

In 2006, Erich Stuntebeck et al. proposed a generic architecture for an open source cognitive

radio [48]. Their framework dubbed OSCR for open-source cognitive radio, facilitated the

integration of a cognitive engine with one or more SCA based radios using Virginia Tech’s

SCA’s implementation Open Source SCA Implementation-Embedded (OSSIE). The cogni-

tive engine was implemented using the SOAR concept [49]. SOAR is a cognitive architecture

based on the OPS5 production system. The authors followed with an implementation of the

CE and its application in two cases: maximizing capacity in an Additive White Gaussian

Noise (AWGN) channel and in a Non-AWGN channel. The authors found that the CE’s

adaptation time was in the order of tens of milliseconds for the AWGN channel case, and in

the order of hundreds of milliseconds for the Non-AWGN channel case [50].

Also in 2006, collaborative efforts between Rutgers University, the University of Kansas and

Carnegie Mellon University started a project to research architectural tradeoffs and protocol

design approaches for cognitive networks at both local network and the global internetwork
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levels. The initiative is investigating architectural issues including naming, addressing, and

routing, collaborative control and management protocols, and experimental system evalua-

tion using measurement and management overlays and cognitive wireless implementations.

This collaborative project focuses on the cognitive stack and it has two major thrusts: the

first is to identify broad architecture and protocol design approaches for cognitive radio net-

works at both local network and the global internetwork level. The second thrust is to apply

these architectural and protocol design results to prototype an open-source cognitive radio

protocol (the CogNet stack) and use it for experimental evaluations on emerging cognitive

radio platforms, more information on this effort is included in [51].

In the last year, several cognitive engine designs have been published in the literature. In

2007, Timothy Newman et. al, presented a genetic algorithm (GA) driven, cognitive radio

decision engine that determines the optimal radio transmission parameters for single and

multi-carrier systems. In their research, the authors also illustrated the trade-off between

the convergence time of the GA and the size of the GA search space [52]. In the same

year, Baldo and Zorzi propose the use of Fuzzy Decision theory for cognitive network access

decision making [53]. In 2008, Baldo and Zorzi proposed a learning and adaptation scheme

for IEEE 802.11 radios using neural networks [35].

It is evident that many research efforts are being devoted to designing cognitive engines for

various cognitive radio applications. As seen in this brief history of cognitive engine design,

the successful development of cognitive engines is a crucial aspect for the implementation of

cognitive radio. More research efforts are needed in this area in order to develop robust and

efficient engines capable of adequately managing the use of the electromagnetic spectrum

and optimizing on the radio resources. To this date, only a handful of AI techniques have

been proposed in the design of cognitive engines.
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2.4 Cognitive Radio Applications

In this section, we discuss three broad applications for cognitive radio. We begin by exploring

DSA techniques and provide a brief history on the subject. We proceed by exploring radio

resource management and how cognition can bring improvements in this area. Next, we

discuss how CR’s knowledge of current and past information and awareness of the radio

environment can help predict and adapt to future situations.

It is clear that cognitive radio technology will be of great benefit to current and future

networks [54]. Literature published in recent years shows that adding basic CR techniques for

spectrum utilization improvement, RRM optimization and data mining of user information

can yield significant improvements in network performance. However, the end-user benefits

have yet to be quantified. The costs versus benefits tradeoffs of cognitive radio techniques

remain unknown.

In recent years, there have been numerous reports about the alarming scarcity of the elec-

tromagnetic spectrum. Research performed by various entities such as the FCC in the US,

OfCom in the UK, and others, indicate that this assumption is far from reality; there is

available spectrum since most of the spectrum allocated sits under-utilized [6–10, 36]. The

current policies for allocating spectrum do not allow for sharing. Regulatory agencies grant

licenses that offer exclusive access to the spectrum. When the licensees are not transmitting

the spectrum remains idle, in other words under-utilized [36]. The under-utilization of the

spectrum has encouraged researchers in engineering, economics and regulatory agencies to

develop better spectrum management policies and techniques. Many ideas have been pro-

posed and several models have been developed [55, 56]. Zhao and Sadler give a detailed

description of these models in their recently published paper [55]. Research to validate the

proposed models and determine the best solution to dynamically accessing the spectrum is

still needed.

Although spectrum management is probably the most popular application for cognitive radio;
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applying cognition to radio resource management methods can bring significant network

performance improvements. Consider the particular case of 3G networks, these networks

have been greatly optimized in terms of their radio resource management. The methods and

techniques used are quite advanced; however these techniques are based on very network-

specific software, or on proprietary algorithms developed for the telecommunication standard

[57]. Generally, these techniques optimize over the Physical Layer (PHY) and Media Access

Control (MAC) layers, and neglect the optimization of resources in the layers above. Thus,

this current approach is not suitable for future heterogeneous networks, where a single base

station will need to optimize the use of radio resources over a variety of networks.

RRM techniques in 3G networks can be divided into five groups: power control, handover

control, admission control, load control and packet scheduling functionalities [58]. Power

control is achieved by implementing open loop and close loop power control algorithms in

the downlink and the uplink. It is necessary to perform power control since the capacity

of a cell in Wideband-Code Division Multiple Access (WCDMA) is limited by interference.

Also, power control is performed to avoid the near-far problem. Power control is the only

RRM technique located in the UE, Node B and the radio network controller (RNC). The

rest of the techniques are typically located in the RNC. Handover control is necessary in

order to handle the mobility of UEs across cell boundaries and to sustain the desired QoS.

Handovers can be intra-frequency, inter-frequency and intra-system (between WCDMA and

Global System for Mobile Communications (GSM)). The rest of the techniques are used to

guarantee QoS and to maximize the total throughput of the system. Usually, the system

will select the combination bit rate, services and quality that will maximize throughput for

the user and for the network.

Lastly, exploiting user and the network past information can aid in the decision making as we

can use past experiences to predict or select future actions. Decision makers are predictors,

they predict the best outcome given the experience and the past actions. Learning is defined

as the act of acquiring new knowledge, in CR we exploit past experiences to create new

knowledge, thus “learning”. In this work, we will focus on using past experience in terms
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of cases to predict the best outcome for our defined problem. As an example, using past

cases that describe the coverage of the cell, the algorithm will induce rules and predict at

a given location the probability that the call will be dropped. Chapter 6 describes the

implementation in greater details.

2.4.1 Cognitive Radio Applications for Wireless Networks

Cognitive radio can be a great tool for existing 3G wireless network, it can certainly help op-

erators and manufacturers achieve their evolution goals described above. What is uncertain

at this point is the cost of applying CR to 3G networks, the adoption of CR as a secondary

user and coexistence with the current (legacy) network architectures is probably the least

disruptive approach. CR can improve system coverage by allowing communications between

heterogeneous networks, also at the user level CR can exploit past information and current

spectrum measurements to prevent coverage problems. CR can increase system capacity

by managing the spectrum more efficiently and using non-contiguous bands of frequency.

CR can also increase end-user data rates by providing broader frequency bands, either by

underlaying techniques in the current spectrum or by using non-contiguous bands.

In summary, cognitive radio technology will enhance 3G wireless networks by:

• providing flexible spectrum management techniques,

• acting as a bridge between existing radio access technologies,

• enabling better quality of service to end-users,

• improving radio resource management methods with reasoning and learning,

• providing rapid service deployments, and

• optimizing networks using sensed data.
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As mentioned above, spectrum management is probably the most popular application for

cognitive radio; however applying cognition to radio resource management methods can bring

significant network performance improvements. Also, this application of cognitive radio does

not depend on approval of regulatory agencies, therefore it is a more attractive commercial

application. Some of the possible RRM applications for our proposed cognitive engine include

(but are not limited to):

• Scheduling : the CE can optimize packet scheduling based on 3G wireless networks

service classes.

• Managing handover : the CE can anticipate when a handover is needed using past

experienced.

• Fault detection and prevention: the CE can exploit previous data in the network’s fault

log and use them to tune the network.

• Mode/service selection: the CE changes from radio access network (i.e. GPRS, GSM,

WCDMA) depending on the application requirements and the available connection.

• Power amplifier optimization: the CE reduces peak-to-average radio through power

control, scheduling and handover.

• Interference management in femtocells : the CE can improve co-existence with the

cellular infrastructure by providing scheduling and channel allocations.

• Planning tool for layout : the CE determines ways to incorporate past experience into

cellular layout and tuning tools.

In the next section, the motivation for applying cognition to 3G wireless networks is pre-

sented.
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Table 2.1: 3G Technologies
[59]

Systems Service Comments
CDMA2000
WCDMA
ULTRA-TDD
TD-SCDMA

Packet-data and voice
services designed for high
speed multimedia data
and voice

• Defined by IMT-2000.

• Europe uses UMTS/WCDMA
and ULTRA-TDD.

• America use UMTS/CDMA2000
and ULTRA TDD.

• Asia use UMTS/CDMA2000, TD-
SCDMA and ULTRA TDD.

• Overlay approach for existing op-
erators of 2/2.5G networks.

2.4.2 3G Wireless Networks

Third generation (3G) wireless networks are defined by the International Telecommunications

Union in their specification International Mobile Telecommunications 2000 (IMT-2000) [3,

59]. The IMT-2000 specification comprises several radio and network access technologies

that meet the overall goals of the specification such as: unifying technologies, providing

high-speed data for the wireless markets, providing high speech quality similar to fixed

networks, worldwide common frequency band and roaming capabilities, enabling multimedia

applications services and terminals, and improving spectrum efficiency among others [59].

Table 2.1 presents a brief summary of the systems included in the 3G specification, the

general services and the regions where these systems have been deployed. For the sake of

generality, in this work when we refer to 3G wireless networks we refer to the Universal Mobile

Telecommunications Service (UMTS) and more specifically, to the WCDMA air interface in

the Frequency Division Duplex (FDD) mode.

Figure 2.5 shows the network architecture of the UMTS Release 99 system [3,59]. The radio

access network for UMTS is known as Universal Terrestrial Radio Access Network (UTRAN).
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Figure 2.5: UMTS R99 Architecture [3]

The UTRAN is a WCDMA base station capable of handling the Frequency Division Duplex

(FDD) and Time Division Duplex (TDD) modes. The core network is based on an evolution

of the GSM network. The core network supports both UMTS and GSM. Going forward in

3G’s long term evolution (LTE) the core network is expected to be an all IP-based network,

as described in Release 8 and beyond. Furthermore, Release 4 focused on changes to the

architecture and the core network, while Release 5 introduced a new call model thus changes

to the user equipment, access network and core network were expected [3]. Release 6,

integrated operation with wireless LAN networks and added HSUPA. Release 7 focused

on decreasing latency, improvements to QoS and real-time applications such as VoIP. This

specification also focused on HSPA (High Speed Packet Access Evolution). Release 9 is

focused on specifications for the evolution architecture and interoperability between Wi-

MAX and LTE/UMTS [3].

As noted earlier, UMTS most significant capability is the high data rate, up to 2 Mbps for

fixed environment. Table 2.2 lists the UMTS environments and the minimum data rates for

each of them. In order to distinguish among services and meet user’s requirements UMTS

defines four service classes [59]:
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Table 2.2: UMTS Data Rates
Environment Minimum Data Rate
Fixed Environment 2 Mbps
Pedestrian 384 kbps
Vehicular 144 kbps

• Conversational - this service class refers to voice and video conferencing. Voice requires

low data rates, low delay and low jitter. Video conferencing requires higher data rates,

low delay, low jitter and lower error rates.

• Interactive - These applications generally consists of request/response transactions.

These applications have a lower tolerance for errors and a greater tolerance for delay.

The data rate depends on the applications but usually is significant in only one direction

at a given time.

• Streaming - These applications are characterized by one-way services, the data rates

can vary. Streaming applications have very low tolerance for error but greater tolerance

for delay and jitter.

• Background - These applications do not have a tolerance for errors, but have almost

no delay constraints.

It is important to note that speech can still be a circuit-switched service. The user has access

to dedicated resources throughout the call. Also, UMTS uses an Adaptive Multirate (AMR)

speech coder. The AMR speech coder allows for the speech bit rate to change dynamically

during a call. This can be done on a frame by frame basis as described in the specification,

although in reality these rapid changes are unlikely. The PHY layer frames have a length of

10 ms. A speech frame is 20 ms, thus each speech frame requires two PHY frames.

Now, we shall focus on describing the UMTS air interface. It is relevant to describe the

UMTS system since this is the environment that our proposed engine is being tested. Table

2.3 list the platform’s specifications. In this work, we focus on the WCDMA FDD solution
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Table 2.3: WCDMA Technical Specifications
[59,60]

Parameter Specification
Multiple Access Scheme DS-CDMA
Duplexing Scheme FDD and TDD
Switching Design Circuit and packet
Nominal Bandwidth 5 MHz
Carrier Spacing 4.4 to 5 MHz
Frequency Reuse Factor 1
Chip Rate 3.84 Mcps
Channel Coding Convolutional and turbo code
Spreading Code OVSF
Data Modulation QPSK, 16QAM
Spreading Factors 4-256
Frame Length 10 ms
Speech Frame Length 20 ms
Spectrum Efficiency 0.4
Power Control Open/Close 1500Hz
Receiver Rake
Inter-BS timing Asynch./synch.
Handover Intra-mode (Soft, Softer), Inter-mode and Inter-system

(GSM)
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for the UMTS system. The air interface consists of a pair of 5 MHz carriers, one for the

uplink and one for the downlink. There is a 190 MHz separation between carriers in the US.

The spacing between carriers can be anywhere from 4.4 MHz to 5 MHz in increments of 200

kHz. The purpose of this additional spacing is to avoid interference.

In WCDMA, the user data is spread to a greater bandwidth than the user rate by using

a spreading code. The spreading code is a pseudorandom sequence of bits known as chips.

All users transmit at the same time, on the same frequency. At the receiver each user’s

signal is separated from others by using a despreading code. The ratio of the spreading rate

(number of chips per second) to the user data rate is known as the spreading factor. The

higher the spreading factor the easier it is to despread the desired user’s signal. The chip

rate for WCDMA is 3.84 Mcps, this rate corresponds to a carrier bandwidth between 4.4

and 5 MHz.

In terms of the network architecture, the UMTS network is an evolution of the GSM/General

Packet Radio Service (GPRS) network. There are many components in common such as the

Mobile Switching Center (MSC), the Home Location Register (HLR), the Serving GPRS

Support Node (SGSN) and the Gateway GPRS Support Node (GGSN). These network

components can be upgraded in order to support both GSM and UMTS. However, the

Radio Access Network (RAN) known as UTRAN, has been changed significantly, thus reuse

of the Base Transceiver Station (BTS) and the Base Station Controller (BSC) is limited.

In this section, we provided a brief overview of the 3G wireless network, more detailed

explanations can be found in Holma and Toskala’s book [58], WCDMA for UMTS.

2.4.3 Femtocells: An emerging technology in 3G Networks

Femtocells, also known as home base stations, are cellular data access points typically in-

stalled by users to improve voice and data coverage in their homes. Femtocells are low power,

fully-equipped base stations that can serve anywhere from 2 to 5 users. An UMTS femtocell
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Figure 2.6: Femtocell concept diagram, reprinted with permission from the Femto Forum [4].

includes the following components: Node B, RNC and GSN. The femtocell connects to the

backbone network by a broadband internet connection such as DSL or Cable. Femtocells in-

crease system capacity minimizing the distance between the transmitter and the receiver and

by increasing spatial reuse. Femtocell technology also offer some shortcomings: interference

from macrocells and nearby femtocells limit the capacity of the system, and the increased

strain on the backhaul may affect the system’s overall throughput. Figure 2.6 shows a basic

femtocell diagram.

Furthermore, according to the authors in [15], the deployment of femtocells can improve the

performance of 3G networks by :

• providing better coverage,

• increasing capacity,

• increasing spectrum efficiency,

• improving link reliability,

• reduce operating costs,
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• reduce subscriber turnover.

These key arguments in favor of the technology are also aligned with 3G operators LTE goals.

However, there are key technical challenges that need to be addressed in order to successfully

deploy the technology in current 3G markets. Femtocells need to adapt to their surrounding

environment and allocate spectrum in the presence of interference. Femtocells also need to

provide timing and synchronization with the network, in order to ensure handover between

macrocell and femtocell environments. Furthermore, femtocells need to provide acceptable

QoS and reduce latency in the backhaul. Other issues such as performing handovers, pro-

viding service to nearby subscribers, and providing 911 location tracking also need to be

considered. We believe that cognitive radio can address these technical challenges in fem-

tocells by providing cognitive capabilities such as awareness, intelligence and learning. The

focus should be on simple cognitive engine architectures that can be contained in a single

femtocell and exploited by all its components (Node B, RNC, GSN). Also, the algorithms

used should be robust, provide fast solutions that do not increase processing time.

2.4.4 CR in the Evolution of Wireless Networks: 3G, LTE and

B3G

Efforts to define the evolution of 3G networks are well on their way, the goal is to further

reduce operators costs and to improve service provisioning to the end-user [24]. In order to

achieve this goal operators and manufacturers are focusing in four key aspects:

• increasing system coverage,

• increasing system capacity,

• increasing data rates, and

• reducing latency.
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Several solutions that address these issues have been proposed [3]. Researchers have sug-

gested new architectures, multi-antenna solutions and evolved QoS and link layer approaches,

among others [24]. From these solutions, only a handful propose applying cognitive ra-

dio [25–31].

In 2004, Aazhang et al. proposed two protocols to manage spectrum sharing by redistributing

excess users to spectrum bands with excess user capacity. They simulated the protocols in

a realistic cellular environment and both of these protocols showed gains in performance

when base-stations shared spectrum resources versus just assigning spectrum to users on

their licensed bands [25].

In 2006, Burnic et al. presented synchronization and channel estimation techniques for

WCDMA systems based on cognitive radio. The focus was on the implementation of a

sliding correlation-based fast iterative tap amplitude and delay estimation for RAKE re-

ceivers required for the downlink. The authors created a “proof-of-concept” demonstrator

that performed the algorithm. It showed an improvement of approximately 3.7 times less in

computational effort in comparison with the minimum requirements [26].

Furthermore in 2006, Shah et al. proposed an architecture of a sensing probe for wideband

and distributed measurements method. They applied this architecture to the cellular band.

Also spectrum measurements of one of the major cellular operators in the North Jersey

area were conducted. The measurements showed that spectrum utilization peaked in the

mornings and in the evening, the rest of the time the spectrum was underutilized; thus

confirming that there is available spectrum to increase capacity in the cellular band [27].

In recent years, several papers that apply the cognitive radio concept to 3G networks have

been published. Khajeh et al. extend the concept of cognitive radio to optimize the overall

system power consumption for a WCDMA network, specifically for video transmission over

the wireless medium. The authors reported 20% savings in the overall system power while

maintaining the required quality of service [28].
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Moreover, Harada showed a software defined cognitive radio prototype that combined WCDMA

and IEEE 802.11a/b waveforms. The prototype senses the spectrum, chooses between the

available waveforms, and then loads the waveforms to the devices. The cycle begins again

after the time-to-sensing period completes. The prototype performed sensing and reconfigu-

ration of these waveforms in the 400 MHz to 6 GHz band. The average reconfiguration time

for each system was 1650 ms, and the actual sensing time was between 5-7 seconds [30,61,62].

In these paragraphs, we attempted to summarize some of the research that merges the cog-

nitive radio concept and 3G wireless networks. Overall, little has been done to apply the

CR concept to 3G networks.

Recently, research efforts have been focused on defining the architecture and capabilities of

B3G (Fourth Generation (4G) or ITU IMT-Advanced) networks. In these next generation

networks, wireless communication systems and the Internet will evolve into a new type of

converged network. These networks will provide mobile users voice, data and multimedia

streaming services anytime, anywhere. The design objectives include [16–23]:

• High spectral efficiency in terms of bits/Hz,

• high data rates (up to 100 Mbps in high mobility scenarios, 1 Gbps in low mobility

scenarios),

• high network capacity (in terms of users per cell),

• seamless handover among heterogenous systems,

• global roaming and seamless connectivity,

• high QoS that allow for the next generation multimedia applications (mobile TV, life

audio, teleconferencing, etc.),

• interoperability with existing wireless standards (2G, 3G, WLAN, etc.), and

• and all-IP packet switched network.
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To achieve these objectives regulators, operators, manufacturers and researchers are consid-

ering many developing technologies including: orthogonal access schemes such as OFDM,

smart antennas, mobile IPv6, software defined radio and cognitive radio. This converged

network has been envisioned by some researchers [16–23], as a heterogeneous network that

is reconfigurable, autonomous and has cognitive capabilities that allow the network to be

aware of its environment, and is able to use previous knowledge to solve network problems.

Others are looking into Self-Organizing Networks (SON)s as part of the solution for the

long-term evolution of 3G wireless networks. SONs have been defined by the Next Genera-

tion Mobile Networks Alliance (NGMN) and Third Generation Partnership Project (3GPP)

to have a standardized set of capabilities that include: self-configuration, self-operation and

self-optimization [63–65]. SONs will provide operators reduced operating expenses (OPEX),

while allowing for quick network deployment and technician-free configuration and optimiza-

tion. The work presented in this dissertation can bring a significant contribution into the

SON research area, by providing a low-computational complexity engine that can use history

and previous knowledge to self-configure and self-optimize the network.

2.4.5 Knobs and Meters

In this section, we describe the knobs and meters of cognitive radio for a 3G wireless network.

We define these terms in the context of cognitive radio as described by Rondeau in [66]. The

knobs are the adjustable parameters that when set define the cognitive radio waveform.

The meters are the metrics that we use to quantify the performance of the system. In 3G

networks, the knobs are precisely defined by the standard and by the capabilities of the

network components (Node B, RNC, etc.). The meters are also well defined, and depend

on the reporting schemes in the protocol. However, how to adjust the knobs based on the

meters is not specified in the standard, leaving opportunities for vendors to differentiate

themselves based on their respective algorithms.

Table 2.4 lists the available knobs in the 3G system and Table 2.5 lists the possible meters
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Table 2.4: Knobs
Knobs Possible Values
DL Max. Transmitted Power 4W (Micro), 20W (Macro)
UL Max. Transmitted Power 0.2W (Micro), 1W (Macro)
Spreading Factor UL: 4-256, DL:4-512
User Data Rate 480 kbps to 2.3 Mbps
Channel Coding Conv. (1/2, 1/3) Turbo (1/3)
Frame Size 10ms - 60ms
Handover Type Intra-mode (Soft, Softer), Inter-System (GSM)

Table 2.5: Meters
Meters

Received signal strength
Signal to Interference Ratio

Frame Error Rate
Bit Error Rate
User Priority
Time of day

Location
QoS Requirements

Traffic
Application
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that measure performance in the system. The knobs and meters are critical in the cognitive

radio design. The CR will optimize the allocation of resources and the performance of the

system by adjusting the available knobs and evaluating the meters as part of its cognition

cycle. As a result the CR will learn from these experiences and will identify combinations of

knobs to desired values for the meters. If we consider B3G networks, additional knobs may

include: Radio Access Technology (RAT) technology of choice, and other preferences such

as: handover, service, cost, among others.

2.5 Summary

In this chapter, the concepts of cognitive radio and cognitive engine were introduced. Also,

a brief history of previous cognitive engine implementations was presented. Moreover, fu-

ture cognitive engine designs were suggested. The chapter also discussed cognitive radio

applications for wireless networks, and its influence in their evolution. Finally, we listed the

knobs and meters of the system. In the next section, an approach for applying cognition to

wireless networks is presented. The proposed approach for combining case-based reasoning

and decision tree learning is described.



Chapter 3

Machine Learning in Cognitive

Engine Design

In this chapter, we propose a methodology for cognitive engine design. First, we discuss

the impact of adding intelligence to communications systems. Then, we discuss key con-

siderations in machine problem formulation. We proceed with a discussion of Case-based

Reasoning and Decision Tree Learning, these are the techniques used in the implementation

of the proposed cognitive engine. Next, we present an analytical framework that relates

the learning mechanism to the learning objectives of the cognitive engine. We conclude the

chapter with a brief summary.

3.1 Applying Machine Learning Techniques to Cogni-

tive Engine Design

The field of Machine Learning (ML) has seen tremendous growth in the last three decades

[67]. Meanwhile, wireless networks have also grown tremendously since their initial deploy-

ment in the 1980’s. The expectation is that cognitive radio will merge advancements in

41
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these two fields, by applying machine learning techniques to current and future wireless

networks. As discussed previously, cognitive radio can bring improvements in many areas

such as: spectrum management, radio resource management, exploiting historic data, among

others. Chapter 2 presented a brief history of specific machine learning implementations in

the development of cognitive radio. Previous work at Wireless@VT surveyed six machine

learning techniques and their applicability to cognitive radio [45]. Rather than discussing

all the machine learning techniques that are suitable for cognitive engine design, first we

would like to discuss the desired approach used for implementing these machine learning

techniques in a successful and robust design. In the next section, we will present guidelines

for the selection criteria of machine learning techniques.

In this research, we studied some of the published literature in the area [67–73] and found

the approach suggested by Langley and Simon in [69] the most influential in our work.

Also, Dietterich and Langley’s most recent work in machine learning and cognitive networks

provides an excellent survey of the machine learning techniques and the possible research

challenges in cognitive networks [67].

Machine learning, as explained by Dietterich and Langley, tries to understand the compu-

tational mechanisms by which experience can lead to improved performance [67]. In other

words, we say that “learning” has occurred if the system can perform an action that couldn’t

performed, or couldn’t performed as well, before that experience. Langley and Simon [69]

found that the application of learning methods followed a specific pattern as described in

the following steps:

• Formulate the problem - this is the first step, in order to solve a “real-world” problem,

we must formulate the problem in a way that can be handled or interpreted by a

computational learning method.

• Determine the representation - in this step the attributes or features used to represent

the problem are selected.
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• Collect training data - this step can be performed automatically in real systems, or by

simulation of accurate models. Another consideration is the accuracy and quality of

the training data.

• Evaluate the learned knowledge - before knowledge can be used the quality of the

knowledge must be verified.

• Fielding the knowledge base - once we acquired the knowledge, what is the best way

to use it.

Furthermore, there are several agreements [67] in the machine learning discipline that help

us narrow the approach:

• Experiments have shown that there is no mechanism that leads to better learning.

• Representational issues are integral to achieve the learning.

• Learning occurs in the context of a performance task.

Considering these general agreements, we must focus on how to formulate the problem, how

to represent the data, and how to define the desired performance task in order to facilitate

learning.

There are three general problem formulations for learning in the context of a performance

task: classification and regression, acting and planning, and interpretation and understand-

ing. Figure 3.1 summarizes how these formulations are related. If we focus on these three

formulations we can get a clearer idea on the representation of the data and the desired per-

formance task. The first formulation focuses on learning knowledge for the performance task

of classification and regression. An example, of the first formulation in 3G wireless networks

is classifying and predicting the coverage area of Node B, based on the number of dropped

calls observed in the training data. There are two performance tasks in the example: one

to classify the coverage area, the second to predict if the call will be dropped or not. In
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Figure 3.1: Relationship of Machine Learning Problem Formulations

this case, the problem has been formulated as a classification and regression problem. The

data is represented in cases, and the most important features (i.e. location of the UE, SINR,

velocity) of these cases have been extracted. Classification and regression is the simplest

formulation for a learning problem. Chapter 6 discusses this particular formulation of the

coverage learning problem in greater detail.

The second formulation focuses on learning for selecting actions or plans for an agent [67].

The process involves making cognitive choices about future actions. This formulation usually

employs a search through a space of possible outcomes, which can be constrained by the use

of knowledge. An example of this type of formulation in 3G networks, is for the cognitive

radio to plan for the lack in coverage, and decrease the probability of dropped calls in a

specific area of Node B, by modifying its actions such as increasing power, handing over to

another cell or to another system (i.e. GSM). This formulation can also be simplified to

the first formulation if the actions and plans are determined in a reactive way, ignoring past

information.

The third formulation addresses learning via interpreting and understanding the situation.



45

In this formulation the models and the data are contained in deeper structures, this process

is often referred as abduction. One example where this formulation is used extensively is in

natural language processing. The performance task in this case involves parsing sentences

using a context-free grammar [67]. For a 3G cognitive radio, the performance task can be

interpreting that the coverage gap in Node B is due to an obstruction, given the pattern of

the dropped calls. This is something that a human can interpret easily by looking at the

coverage map, the idea is for the cognitive radio to interpret this without the need of human

intervention. The cognitive radio uses past experience, and the reported dropped calls from

the User Equipment (UE)’s to figure out the coverage problem. This is Mitola’s vision of a

cognitive radio as discussed in the previous chapter.

In this work, we focus on the first formulation of learning for classification and regression.

We employ case-based reasoning and decision tree learning to address the coverage problem

in 3G wireless networks in Chapter 6. We extend this problem by providing an action for the

acquired knowledge. We design an engine that predicts the need for handover based on the

coverage map of the cell obtained from previous observations (past) and the user’s mobility

pattern (current), in Chapter 7.

In the next section, we discuss the machine learning techniques used in the implementation

of the cognitive engine and criteria used to select these algorithms. We present a typical

case for the case-based reasoner in the coverage problem.

3.2 Motivation for CBR and DT Algorithms in Wire-

less Networks

In previous research, we had the opportunity to survey a plethora of machine learning algo-

rithms and determine their applicability to the development of a cognitive radio engine [45].

We concluded from our research that no single machine learning technique will yield a ro-
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bust cognitive engine. It is rather the combination of algorithms according to the desired

optimization task or application that produces a better cognitive engine [45]. Also, it is im-

portant to note as stated by Dietterich and Langley [67], that the formulation of the problem

and the representation of the data, are keys in successful machine learning applications. In

the next paragraphs, we will discuss the process involved in each technique, how we represent

the data and discuss the merits and limitations of each technique.

3.2.1 Case-based Reasoning

Case-based reasoning (CBR) is an area of machine learning that focuses on using previ-

ous similar experiences, or in other words, cases to guide the problem solving process and

to achieve a solution [74]. CBR is based on a memory-centered cognitive model in which

previous experiences are recalled from memory and then adapted in order to solve the prob-

lem. In CBR, a solution to the problem is created by selecting the cases that are relevant

to the problem, and then the best match is chosen and adapted to fit the current case or

instance [5].

There are several types of CBR methods including: Exemplar-based reasoning, Instance-

based reasoning, Memory-based reasoning, Case-based reasoning and Analogy-based rea-

soning among others [75]. The main differences between these methods are the types of

problems that they solve, the algorithms used for indexing and retrieval, the type of cases

used (i.e. concrete versus open, etc.), the use of general knowledge for adaptation or guid-

ance in the CBR process, and whether the system interacts with the user or not. The CBR

approach that we propose in this work, can be considered an example of Instance-based

Reasoning (IBR), these systems are characterized by the lack of general knowledge, large

number of instances and a simple representation of cases (e.g. feature vectors).

CBR offers several advantages [5] that makes this machine learning technique suitable for

cognitive engine design. CBR systems are easy to implement if experience is rich, even

if there is not enough general knowledge about the problem, and rules cannot be derived.
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Another advantage of CBR, is that it provides a closer match to the actual human reasoning

process. Furthermore, CBR can provide efficient reasoning by allowing the user to focus on

the problem solving aspects that were important in previous cases; it can also help the user

to avoid incorrect directions that were not successful in previous instances. CBR also allows

for faster knowledge acquisition, given that the knowledge resides in a case memory. In some

domains (i.e. medicine, law, engineering, etc.) there are existing case bases that can be used.

In the case of 3G and B3G wireless networks, the operator can create a case memory by

mining network logs. Also, maintenance efforts can be reduced as the CBR system will learn

from the new cases and update the case library as new problems and solutions are tackled.

One of its limitations, is the system’s reliance solely on previous cases. If previous cases have

been solved incorrectly there is a likelihood of propagating those mistakes onto new cases.

Also, the system may require a large case memory. Collecting a large case memory may

be time consuming and in some instances difficult. As a solution, in 3G and B3G wireless

networks the use of the Radio Environment Map (REM) can shorten the process of collecting

the cases. Another solution is to integrate CBR with a knowledge-based reasoning system

to improve the performance of the system and reduce the time it takes to build a strong case

memory [76].

In this work, we investigate applying CBR to cognitive engine design since the technique

performs very well in dynamically changing environments such as the 3G wireless network

environment. This is most often true for wireless networks; models are very hard to de-

velop due to the time variance of the system. Network operators rely frequently on field

measurements. With the addition of cognition this process may be simplified as the user

equipment can provide measurements on the radio’s surrounding environment. Researchers

at the University of London have employed CBR successfully to learn traffic patterns during

periods of congestion and used them to control cooperating semi-smart antennas to optimize

radio coverage, thus minimizing congestion [77,78].

Figure 3.2 describes the general architecture of a case-based reasoner, while Table 3.1 de-
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Figure 3.2: Case-based Reasoning System Architecture

Table 3.1: The Case-based Reasoning Process [5]

Step Objective Details
1 Organize case memory Cases should be organized in a

manageable structure.
2 Accept a new case and

choose relevant ones
A new case is entered, retrieve rel-
evant cases.

3 Select best match The best match is selected, adapta-
tion may be necessary.

4 Construct a solution for
the new case

The system provides a solution to
the current problem.

5 Test the new solution The solution is tested, if the solu-
tion is optimal is implemented.

6 Add new knowledge to
the case memory

The new solution can be added to
the case memory for future problem
solving.
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scribes the steps involved in the case-based reasoning process. It is important to note that

steps 2 and 3 are very complex. There are many case retrieval techniques that can aid in the

decision process of selecting a case such as: fuzzy mathematical methods, nearest neighbor

search, statistical weighting methods, preference heuristics and many others. As we will

discuss in the next sections we have selected a DT search based algorithm to aid in the

classification cases.

One of the key components in case-based learning is the case memory. The case memory is

simply put a database of cases. Cases are detailed descriptions of activities, event, problems,

etc. usually derived from real-world experience [79]. According Carroll and Rosson good

cases have the following properties:

1. Cases are open-ended.

2. Cases unfold one at a time.

3. Cases involve specific actor and circumstances.

4. Cases can be used in many ways.

One important issue in cognitive engine design is how to define the “case” for the specific CR

application, and how to measure the similarity between different cases for the case matching

process. Typically a case includes the problem, which describes the state of the world at

the time the case occurred, the solution which states the solution to the problem and the

outcome which describes the state of the world after the case occurred [80]. The similarity

of cases can be determined by using a similarity function. The similarity function measures

the similarity between the problem case’s attributes and the matched case attributes.

Table 3.2 shows a sample case for the coverage problem in 3G wireless networks. In the case

we provide the position of the UE with respect to Node B, the velocity; and given knowledge

on the channel and the environment, the Signal-to-Interference and Noise Ratio (SINR)

observed by the UE is predicted. For the case retrieval step, there are many techniques
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Table 3.2: Sample case for improving coverage in 3G Networks

Attribute Variable
Position of UE in the x axis x
Position of UE in the y axis y
Angle of UE θ
Velocity of UE in kmph υ
Signal to Interference and Noise Ratio SINR

that can be used in the process case such as: fuzzy mathematical methods, nearest neighbor

search, statistical weighting methods, decision tree searches, preference heuristics and many

others. We have selected a decision tree algorithm to aid in case selection.

3.2.2 Decision Tree Learning

Decision Tree Learning (DTL), a technique used in data mining and machine learning,

employs a decision tree to represent a classification system or a predictive system [81]. The

resulting tree is a set of hierarchical rules that divide the data in groups, where a decision

is made for each group. The hierarchy is called a tree, each segment is called a node and

the initial segment is the root node of the tree. The terminal nodes are called leaves, they

return a decision which is the predicted output given the input. Decision trees can be

grouped in two general categories: classification trees (CT) and regression trees (RT). CT

use discrete-valued functions, while RT use continuous-valued functions.

DTL has several advantages [81–83] that lead us to consider the technique for the cognitive

engine design such as:

• Simplicity : DTs are easy to understand and interpret,

• Robustness : DTs manage large amounts of data quickly,

• Reliability : model can be validated using statistical methods.

• Flexibility : DTs can work successfully with discrete and continuous attributes.
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• Maturity : DTs have been well studied in literature. Also, there are efficient algorithms

(such as ID3 and C4.5) that reduce development time.

More formally, we can describe the procedure for generating decision trees as outlined by

Hunt and described by Quinlan [82] in his seminal paper on decision trees.

Let S be a set of objects, each belonging to one of the classes c1, c2, ..., ck, then the following

steps are performed:

1. If all the objects in the set S belong to the same class, ci, then the decision tree for S

has a single leaf labeled ci.

2. Otherwise, let T be some test with possible outcomes o1, o2, ...ow. Then, each object in

S has one outcome for T so the test partitions S into subsets S1, S2, ..., Sn, where each

object with outcome oi belongs to Si. T becomes the root of the decision tree and for

each outcome oi a subsidiary decision tree is built by performing the same procedure

recursively on Si.

The attributes are considered adequate if there are no two objects in the training set that

have the same value for every attribute and belong to different classes. Limitations of the

decision tree algorithm arise when dealing with noisy data; in other words when attribute

values contain errors, or there is lack of information for a proper classification of the objects

in set S.

Generally, there are two approaches to deal with noisy data one is to apply a stopping crite-

rion, the second is to let the tree grow without constraint and then eliminate unimportant

portions of it, the latter approach is known as pruning [82]. Other limitations arise when

the data is incomplete or when the classification of objects is not certain, say objects may

belong to more than one class. In this work, we use a simplified version of the decision tree

algorithm, where only two classes are used, c or ĉ.
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ID3 Algorithm: Iterative Dichotomiser 3

The ID3 algorithm was developed by J.R. Quinlan in the 1980’s. It was based on Occam’s

razor and it is iterative, therefore a heuristic. The idea was that if two decision trees produced

the same solution for the same training set, the simplest tree was the best option [84]. The

general process of tree induction in ID3 can be described as follows: the first step is to

generate a tree from a random subset of the training data called a window. Then, if all

the objects in the training set were classified properly, then the process terminates and the

resulting tree is the one created from the window. If not, a selection of the misclassified

objects is added to the window, and the process repeats [84]. The tree induction process in

ID3 decreases the amount of time needed to induce the tree, thus a preferred solution for

inducing trees even where the training sets are rather large (i.e. over 30,000 objects and over

50 attributes) [84].

Formally, we can describe the process of tree induction following Quinlan’s approach in one

of his seminal papers on ID3 [84]. The algorithm is carried out as described:

Let S be an arbitrary collection of objects. If S is empty or containing only objects belonging

to the same class, the resulting tree is a leaf labeled with that class. Otherwise, let T be any

test on an object with possible outcomes o1, o2, ...ow. Each object in S will result in one of

the outcomes for T , such that T produces the following partitions on S, S1, S2, ..., Sw, with

Si having the objects with outcome oi.

The key in this algorithm is to choose test T, such that the resulting tree is simple. The way

that ID3 chooses the test T is by determining the amount of information that each attribute

contains, and testing on the attributes with the highest amount of information at the root

of the tree.

Let S contain ρ objects from class c and η objects from the class ĉ. With the following

assumptions:

• Any correct decision tree, will classify objects in the same proportion as they appear
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in S. That is, a random object from S will belong to class c with probability ρ
ρ+η

, and

to class ĉ with a probability η
η+ρ

.

• A DT classifies an object, by returning the class the object belongs to. Therefore, a

DT can be viewed as source for the message ‘c’ or ‘ĉ’ with the expected information

needed to generate the message as:

I(ρ, η) = − ρ

ρ+ η
log2

ρ

ρ+ η
− η

ρ+ η
log2

η

ρ+ η
(3.1)

Then, if attribute a with values a1, a2, ..., av is used for the root of the DT, it will partition

S into s1, s2, ..., sv where Sl contains the objects in S that have the value al for attribute

a. Let Sl contain ρl objects of class c and ηl of class ĉ. The expected information required

for subtree Sl is I(ρl, ηl). The expected information required for the tree with attribute a as

root, is then obtained as the weighted average

E(S, a) =
v∑
l=1

ρl + ηl
ρ+ η

I(ρl, ηl) (3.2)

where the weight for each branch is proportional to the objects in S that belong to Si. The

entropy function versus the probability for a two-class variable problem is shown in Figure

3.3.

The information gain, G(a) is defined as:

G(S, a) = I(ρ, η)− E(S, a) (3.3)

the information needed to generate the message minus the expected information for the tree

with a as root. The idea is to branch on the attribute ai that maximizes the information gain.

The process is repeated recursively to form subtrees on the remaining sets. The pseudo code

for the algorithm is included in Algorithm 1 [85]. Where N is the set of training examples

and A is the set of attributes.
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Figure 3.3: Entropy Function versus Probability for a Two-class Variable

Algorithm 1 ID3 Algorithm

Create a Root node for the tree
if all objects are in the same class c then

the tree is a leaf, return leaf labeled c
end if
if all objects are in the same class ĉ then

the tree is a leaf, return leaf labeled ĉ
end if
if attributes set is empty then

Return single node tree Root, labeled with most common value of the target attribute
in N

else
Let ai be the attribute that best classifies N
The decision tree attribute for Root is equal to ai

end if
for each possible value fi of ai, do

Add a new tree branch below Root, corresponding to the test ai = fi
Let N(fi) be the subset of objects that have the value fi for Ai
if N(fi) is empty then

below this branch add a leaf node labeled with the most common target value in N
else

below this branch add the subtree with objects N(fi) and attributes equal to A− ai
end if

end for
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C4.5 Algorithm

The C4.5 algorithm, also developed by J.R. Quinlan in the 1990’s was designed to overcome

some of the limitations of the tree induction process and its predecessor, the ID3 algorithm.

The main benefits of using C4.5 are: the algorithm’s ability to handle discrete and continuous

data, the ability to handle data with missing information, and also C4.5 allows the tree to

grow without constraints and then prunes the irrelevant branches.

C4.5 builds a tree from a set of objects S, like ID3, it also applies the concept of information

entropy. Information entropy is an estimate of the amount of information contained in set

S, and the information gain is the change in entropy from one attribute to the next attribute

in the context of the set S. The information gain is used to determine the relevance of an

attribute when tested, thus if an attribute has a high information gain is desirable to test

that attribute closer to the root of the tree to minimize computation and latency.

C4.5 employs the fact that each attribute a of the set S can be used to make a decision that

splits the data into smaller subsets. Furthermore, C4.5 examines the normalized information

gain, or in other words the difference in entropy that results from choosing an attribute a for

splitting set S. Let ak be the attribute in A with the highest normalized information gain,

then this attribute is used to make the decision. The algorithm recurs on subsequent tests,

pseudo code for the algorithm in included in Algorithm 2.

Algorithm 2 C4.5 Algorithm

if all objects in S are in the same class c then
the tree is a leaf, return leaf labeled c

end if
for each attribute a ∈ A do

calculate G(S, a) from splitting on that attribute
end for
Let ak be the attribute with the highest G(S, ak)
Create decision node that splits on ak
Recur on the branches obtained from splitting on ak
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Table 3.3: Sample coverage data with numeric attributes

Day Outlook Temperature Wave Height Surfing
1 Sunny Hot 3 Yes
2 Sunny Warm 4 Yes
3 Rainy Cool 6 No
4 Sunny Hot 4 Yes
5 Overcast Cool 7 No
6 Rainy Cold 4 No
7 Overcast Cold 6 No
8 Overcast Cool 4 Yes
9 Sunny Warm 3 Yes
10 Overcast Cool 7 No

3.2.3 Decision Tree Example

As an illustrative example, let us examine a small set of the training data included in 3.3.

We want to predict the likelihood of going surfing on a future date, given previous weather

conditions that include attributes such as: Outlook, Temperature and Wave Height. After

classifying the data by testing on the attributes in the order that they appear, the resulting

tree from that induction process is shown Figure 3.4. In this example, there are 5 examples

from class c and 5 examples from class ĉ. Therefore, the entropy for this data sample is

1. From the set S of examples, there are 4 examples that are Sunny, 4 examples that are

Overcast and 2 examples that are Rainy. The Sunny set has 4 examples from class c (Yes,

gone surfing), and 0 examples from class ĉ (No surfing). The Overcast set has 1 example

from class c and 3 examples from class ĉ. The Rainy set has 2 examples from the class ĉ.

Thus, the information gain due to sorting the original 10 examples by the attribute Outlook

is as follows:

G(S,Outlook) = 1− 4

10
Entropy(Ssunny)−

4

10
Entropy(Sovercast)−

2

10
Entropy(Srainy) (3.4)
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Figure 3.4: Sample Decision Tree

The entropy of each subset is determined as follows:

Entropy(Ssunny) = −1 ∗ log2(1)− 0 ∗ log2(0) = 0 (3.5)

Entropy(Sovercast) = −1

4
∗ log2(

1

4
)− 3

4
∗ log2

3

4
= 0.8113 (3.6)

Entropy(Srainy) = 0 ∗ log2(0)− 1 ∗ log2(1) = 0 (3.7)

Thus, the resulting information gain from partitioning on the attribute Outlook is:

G(S,Outlook) = 1− 0− 4

10
∗ 0.8113− 0 = 0.67548 (3.8)

To follow the induction approach in the C4.5 algorithm, we must first evaluate all the at-

tribute sets’ entropies and place the attribute that maximizes the entropy at the root of the

tree, and perform this procedure recursively on each branch as described earlier in Algorithm

2. In this example, perhaps testing on the attributes Temperature or Wave Height results in
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a simpler tree structure. In the next section, we will focus on how case-based reasoning can

be improved with the addition of decision tree learning. Some of the literature published in

this area is discussed. Arguments on favor to this approach are made.

3.2.4 Improving Cased-based Reasoning with Decision Trees

Case-based reasoning and decision tree learning are machine learning techniques that focus

on analyzing existing data to develop some form of intelligent decision-support or decision

making tool [86]. In this work, we propose a cognitive engine for wireless networks that

employs both techniques.

Decision trees are great classifiers and predictors; while CBR systems focus on solving a

problem, based on past experiences. CBR systems also employ indexing and retrieving

algorithms in their problem solving process as discussed in previous sections. Decision trees

can be used to improve the performance of CBR systems by aiding in the classification of

cases and reducing the search space for relevant cases, by determining the features that

are more important in the problem solving or case retrieving, and by speeding knowledge

acquisition by the induction of generalized rules.

Now, let us review some of the literature in this area where improvements on CBR systems

by applying DTs have been documented. In 1993, Cardie proposed using decision trees to

improve case-based learning. The author employed decision trees to specify the features to be

included in the k-nearest neighbor case retrieval. Results showed that the hybrid approach

outperformed both single technique approaches (decision tree and case-based reasoning), and

also outperformed two case-based reasoners that employed knowledge into the case retrieval

algorithms [87]. Later in 1996, Richardson and Warren proposed using decision trees to

determine the weight (i.e. importance) of features for the classification and retrieval of cases

in a CBR system. The authors also assessed the tolerance of the technique to noise and

incomplete data. Results showed that the addition of decision trees for rule induction in the

CBR system improved the tolerance of the system to noisy and incomplete data, the noise



59

or missing data had little or no impact due to the proper classification of the decision tree

algorithm [86].

In 1997, Tsatsoulis et al. proposed using decision theory and CBR to aid chemists in the

design of pharmaceuticals. The authors employed decision theory to help in the decision

making process when uncertainty in the data was found, and when conflicting goals in the

design process of a pharmaceutical arose [88]. More recently in 2005, Hüllermeier introduced

a framework for experience-based decision making (EBDM) as an extension to case-based

decision making (CBDM) [89]. The author proposed using satisficing2 decision trees to

establish direct relationships between decisions and the actions in problem solving. In 2008,

Chang et al. proposed a hybrid approach using CBR and fuzzy DT to predict the stock

price movement in the Taiwan Stock Exchange Corporation. Experimental results showed

that their hybrid approach outperformed other approaches by predicting the stock movement

with 91% accuracy.

CBR allows for problem solving from experience, while DT can make indexing and clas-

sification of this experience (e.g. cases) more efficient, thus significantly improving the

performance of the case-based reasoner. After examining this brief sample of the literature,

we feel that further research in this hybrid approach, and its application to cognitive radio

engine design is worth pursuing.

3.3 Learning and Reasoning Model

In this section, we provide a detailed description of the learning and reasoning model used in

the cognitive engine’s design. Also, an analytical framework that relates case-based reasoning

and decision tree learning with the engine’s design is presented. It is important to note, that

the environment where our intelligent agent is learning is the wireless network environment.

Using Mitchell’s definition for learning [85] we have that:

2Satisfice = satisfy + sacrifice [89]



60

“A computer program is said to learn from experience Σ with respect to some class of tasks

Υ and performance measure Φ, if its performance at tasks in Υ, as measured by Φ, improves

with experience Σ.”

As an example, let’s examine the learning problem of handover management where the

computer program is the cognitive engine:

• Task Υ: handover management.

• Performance measure Φ : handover probability, rate of false handover, rate of handover,

and handover delay.

• Experience Σ: handover event observations in the wireless network.

Once the learning problem is formulated, we proceed to follow the methodology discussed in

earlier sections by: determining the knowledge needed, determining the representation of the

data, collecting the training data, evaluating the learned knowledge and finally fielding the

learning problem in an application. Also, to perform these steps we must select a learning

mechanism, in this work we will employ a combination of Decision Tree Learning and Case-

based Reasoning.

A key element in our cognitive engine’s design is the experience Σ. The engine’s experience

includes all of the previous observed conditions, as well as, the current network conditions.

The current network conditions can be defined as a vector a = (a1, a2, ..., am), where ai is the

value of the ith attribute. These attributes describe the current network conditions, such as:

time, location information, geographical information, user preferences, network preferences,

mobility information, power measurements, among others. Let M be the set of all possible

attribute vectors.

In general, the design objective of the cognitive engine is to forecast the occurrence of an

event at some future time, et+∆t, given the current observed conditions at time t, at ∈ M .

The cognitive engine will generate an estimate probability of the event occurring:



61

P (et+∆t|at) (3.9)

If this probability is reasonably close to 0 or to 1, the cognitive engine has successfully used

previous experience to get information about future events, thus enhancing the decision

process.

The event et+∆t is modeled as a Bernoulli trial, where the probability of success is a function

of at. To accomplish this, we model the event et+∆t as a mixture model as follows:

fet+∆t
(x) =

m∑
i=1

wi(at)fYi(x), x ∈ {0, 1} (3.10)

where 0 ≤ wi(at) ≤ 1,
∑m

i=1wi(at) = 1 and

Yi(x) = pxi (1− pi)(1−x) (3.11)

Decision tree learning and case-based reasoning are used to estimate the parameters for the

mixture model. Let m be the number of leaf nodes in the decision tree, such that the mixture

model contains one component for each leaf node. Define dt(at) as a function that indicates

the leaf node that at evaluates to, and:

wi(at) =

1, if dt(at) = i

0, o.w.

 (3.12)

which implies that if at evaluates to leaf node i, then the ith component of the mixture model

will have a non-zero weight.

Each case in the case library represents the current network conditions at some time t and

whether the event e occurred at time t + ∆t. Let H ⊂ M be a finite set which consists of

the cases in the case library and define Hi ⊂ H such that, for h ∈ H, if dt(h) = i then
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h ∈ Hi. This implies that all h ∈ Hi are sample observations of the ith component of the

mixture model. Let H+
i ⊆ Hi be the set of all h ∈ Hi where the event e occurred at time

t+ ∆t. We can estimate the parameter pi for the ith component in the mixture model with

the maximum likelihood estimator (MLE) for the probability in a Bernoulli trial as follows:

pi =
|H+

i |
|Hi|

(3.13)

Therefore, if dt(at) = i then

P (et+∆t|at) = pi (3.14)

Therefore, the decision tree is used to estimate the components of the mixture model, and

the case base library is used to estimate the parameter of each of the components.

3.4 Summary

In this chapter, we presented the motivation for using artificial intelligence and machine

learning techniques in wireless networks. More specifically, the use of these techniques in the

development and design of a cognitive radio engine. First, an approach to adding cognition

to wireless systems was presented. Case-based Reasoning and Decision Tree Learning, the

techniques used in the proposed cognitive engine implementation, were presented in greater

detail. Furthermore, an analytical framework that relates the learning and reasoning tech-

niques to the cognitive engine’s design objectives was presented. This analytical framework

is the major contribution of this chapter.



Chapter 4

Generic Cognitive Engine

4.1 Generic Cognitive Engine Model

In this section, we describe the cognitive engine model and its components. We discuss

the cognitive engine and the interactions of its components in the context of 3G wireless

networks, however these interactions can be translated to other networks (femtocells, B3G,

mobile ad-hoc networks, etc.). The location of the components within the network may

change as the intelligence and computational capabilities may be distributed differently.

4.1.1 Cognitive Process for the Engine

Figure 4.1 shows the basic diagram of the generic cognitive engine (CE). Figure 2.5 (see

Chapter 2) shows of the UMTS network architecture according to Release 99 [3], this di-

agram will aid identifying the location of the engine components. The cloud in figure 4.1

represents the cognitive radio’s surrounding environment, the 3G wireless network. Real-time

data from the surrounding environment is gathered by the Sensing module. The Sensing

module contains all the sensors and capabilities to sense the surrounding radio environment.

Generally, the Sensing module resides in the user equipment (UE), although in some cases

63



64

Figure 4.1: Generic Cognitive Engine

the radio access network (RAN) may have sensing capabilities as well. The Sensing module

is instructed by the Core Agent when, how often and how much of the spectrum to sense.

Since most of the intelligence in 3G networks resides in the radio network controller (RNC),

it is apparent that the Core Agent, which is the intelligent agent that oversees all of the

cognitive radio functions, it is also included in the RNC.

As seen in figure 4.1, the sensed data is passed from the Sensing module to the Environment

Analyzer module, this module synthesizes and abstracts relevant environment information

to the engine. This module generally also resides in the RNC, but in some cases it may

be advantageous for the user equipment (UE) to synthesize and minimize the amount of

transmitted data relevant to the current situation.

The newly sensed data is stored in the local Radio Environment Map (REM). The REM

is an integrated database that consists of comprehensive multi-domain information for the

cognitive radio, it includes geographical information, available services, spectral regulations,

location and activities of nearby radio devices, policies and past experiences [90–93]. The
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REM receives information from internal and external sources such as: the Sensing module,

other REMs in the same network, REMs in external networks (i.e. 2G wireless network),

policy databases, geographical information databases, the network management databases

(HLR, VLR, AuC, EIR, etc.) and many others. The REM resides in various locations

throughout the network, there is a local REM in the UE, another local REM in the RNC,

and the global REM which is generally located in the core network where other entities

such as the home location register (HLR), visitor location register (VLR), authentication

center (AuC) and the equipment identity register (EIR) are located. Data derived from

these databases is used in the REM, however, the information stored in the REM is more

longitudinal, and may have been fused or modified for the environment analyzer. The idea

is for the operator to be able to used stored information to identify patterns and specific

user behavior that can help in the allocation of resources, and improve QoS. This in turn,

is another way for operators to differentiate themselves in such a competitive market.

Once the sensed information is synthesized, the Core Agent proceeds to react to this infor-

mation. The Core Agent may use the synthesized sensed data along with radio environment

information stored in the REM, and the end-user requirements to create an abstraction of the

current situation. This process is one of the most significant ones in the CE design process,

since the machine learning technique and the approach used to derived a solution depends

significantly on the type of information available and how this information is classified or

organized. 3G networks are complex systems, the amount of variables that describe the

system at a given time is very large, hence we must reduce the number of variables in order

to reduce the amount of memory and the computation power needed. In order to achieve

this, we may perform feature extraction or use classification algorithms that can eliminate

redundant information.

The next step in the cognitive process is for the Core Agent to analyze the abstraction

and determine the best reaction to the current situation. The Core Agent may employ

the Reasoning module, the Learning module or the Optimization module. The Core Agent

may select a single module at a given time or any combination of the three, generally these
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processes occur sequentially not in parallel. The idea is to allow the most flexibility to the

Core Agent but at the same time minimize the convergence time to a solution. It is also

important to note, that most of the learning is meant to be off-line learning. The Core Agent

will employ data mining and machine learning techniques to acquire new knowledge about

the system, it does not necessarily has to be online.

As an example, let’s say the Core Agent determines that an action must be taken, and

proceeds with the Reasoning module, the Reasoning module provides a solution to the

Core Agent. The Core Agent proceeds to evaluate the solution, if the solution lies in the

acceptance range, the Core Agent stores the solution for future instances, and reacts to the

environment with the solution. If the solution does not lie in the acceptance range, the Core

Agent may modify the solution provided by the Reasoning module by further optimizing it

with the Learning or the Optimization modules. Once the Core Agent determines that an

optimal solution is found the Core Agent stores the solution, as well as the process used to

determine the solution. The Core Agent reacts to the environment with an action and then

validates the solution by doing performance evaluation. The Core Agent may instruct the

UE to sense the environment or send specific performance metrics, and the cognitive process

repeats with this new sensed information. In the next section we will focus on describing each

of the engine’s components and suggest machine learning techniques for the implementation.

We also specify the inputs and outputs of each module.

4.1.2 Cognitive Engine Components

In this section, we discuss the cognitive engine components in greater detail. We suggest pos-

sible implementations and suitable machine learning techniques. We also identify the inputs

and outputs for each component and describe how these components can be implemented in

our proposed cognitive engine.
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Figure 4.2: Sensing Module Input/Output

Sensing Module

Cognitive radio distinguishes itself from software defined radios and adaptive radios, by two

main capabilities: awareness and learning. The CR enhances its awareness of the radio

environment by sensing, analyzing, and then reacting with an appropriate adaptation that

will optimize the CR’s goal. In the next paragraphs, we will focus our attention in the

Sensing module, which is an integral part to the awareness capability. Recalling from the

CR’s cognition cycle in Figure 2.1, the Observation process begins the CR cycle, sensing of

the surrounding radio environment is one of the first steps in the Observation phase. Figure

4.2 shows the basic interactions of this module.

There are several signal processing techniques for spectrum sensing including: Matched

Filter Detection, Energy Detection and Cyclostationary Feature Detection [7]. Researchers

at Wireless@VT have focused on the last one, proposing detection of very low SNR signals

using the cycle frequency domain profile (CDP) and Hidden Markov Models (HMM) for the

preprocessing and classification of these signals [94–96].

In 3G wireless networks, there are two scenarios that require sensing of the spectrum:
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1. The CR is a primary user and it is sensing the environment to determine the interfer-

ence level at its location.

2. The CR is a secondary user and its accessing the 3G frequency band opportunistically,

thus sensing is required to avoid interference to primary users.

Researchers have shown that although the cellular bands experience heavy traffic during

peak hours (mornings, evenings) the rest of the time this spectrum sits underutilized. CR

can enable efficient use of the spectrum in these bands and increase utilization [27]. In B3G

wireless networks, with the convergence of wireless communications and IP-based networks

awareness of the radio environment is a must. Many researches have suggested the term

“cognitive networks” when referring to B3G networks. Sensing of the spectrum is presumed

as heterogeneous platforms (i.e. 2G, 2.5G, 3G, 4G, Wi-LAN, Wi-Max, etc.) will be accessing

the same spectrum and sharing cooperatively the radio resources.

In this work, when we refer to the CR’s ability of “sensing”, it is implied that the spectrum in

the vicinity of the cognitive radio is scanned, and the existence of possible interfering signals

is determined. Classification of the signals can be performed either by the Sensing module

or by the Environment Analyzer. In some cases, some preprocessing and feature extraction

of the signal is performed in the UE, but if the methods used for classification are intensive

on computation and memory requirements, it is advisable to locate these processes in the

RNC. Furthermore, when we refer to “awareness” in the CR context we refer to the radio’s

capability to adapt to its environment knowing its computing context, the user context and

the physical context as described by Ilyas and Mahgoub [97]. In our implementation, since

the focus is in the design of the cognitive engine rather than the sensing mechanisms, we

assume that the Sensing module works as desired, with 100% accuracy in detecting and

classifying signals.
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Figure 4.3: Radio Environment Map: Scenario Characterization

Radio Environment Map

The Radio Environment Map (REM) is an integrated spatiotemporal database that includes

the cognitive radio’s environment information such as: geographical features, regulation,

policy, radio equipment capability profile, radio frequency emissions among others [98]. Fig-

ure 4.3 depicts how the REM supports the CR functionality by characterizing the radio

scenario [91].

The REM can be also be viewed as an extension to the available resource map (ARM) pro-

posed by Krenik [99, 100]. Furthermore, the REM can be employed to support cognitive

functionality such as awareness, reasoning and planning. This network support can be real-

ized by the global REM, generally located in the Core Network, and the local REMs which

are located in Node B and the UE, respectively. The purpose is to reduce the memory foot-

print and the communication overhead. Figure 4.4 shows the dissemination of information

throughout the network via the REMs.

Extensive investigations have been performed by Wireless@VT researchers on this topic,

for further details the reader can refer to the published literature [90–93, 98]. In this work,

although we do not implement a spatiotemporal database for the radio environment data,

we assume that the cognitive engine has access to this data, locally and globally, and uses

the available information along with the sensed information to be aware of its current radio
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Figure 4.4: Radio Environment Map: Information Dissemination

environment. Also, the information located in the REM is used by the cognitive engine in

the decision process. Furthermore, in our implementation, the REM information is readily

available and there is no need for retrieval of this particular information, thus we are not

considering additional time and memory requirements for the REM implementation.

Environment Analyzer

The Environment Analyzer synthesizes and abstracts the information gathered by the Sens-

ing module and the REM. It is the module that fuses all the data, and classifies it into a

problem of a certain type (handover, coverage, fault detection) or an optimization task for

the Core Agent. Figure 4.5 shows the inputs and output of this module. The Core Agent is

an intelligent agent that is flexible enough to solve different types of network problems, there

is a need for preprocessing of the collected data from the available sources (user, network,

radio environment, policy, etc.) for proper problem formulation.

Recalling the CR’s cognition cycle in Figure 2.1, the Environment Analyzer is part of the

Orientation phase of the cycle. The Environment Analyzer reports to the Core Agent the

current “state of the world”, as well as the current goals in a simplified version such that

the Core Agent can make a decision on how to react to the current “state of the world”. In
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Figure 4.5: Environment Analyzer Input/Output Diagram

terms of implementation we can consider the Environment Analyzer the data mining process

for the REM. The Environment Analyzer performs data fusion from different sources (i.e.

REM, Sensing Module, CE) to create new raw data that is represented as a new problem

formulation.

As discussed in the previous chapter, the CE in 3G wireless networks can be used for sev-

eral applications such as: scheduling, managing handover, fault detection and prevention,

mode/service selection, power amplifier optimization, interference management in femto

cells, and a planning tool for layout. The Environment Analyzer will consider the avail-

able user, network and environment data stored in REM, and the sensed information sent

by the Sensing Module and formulate a problem for the specific cognitive radio application

(i.e. managing handover, handling interference, etc.).

Core Agent

In the last sections we discussed the components that support the CR’s awareness func-

tionality, now we focus on the Core Agent which supports the cognitive abilities of learning
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Figure 4.6: Core Agent Architecture
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and reasoning. Figure 4.6 describes the Core Agent ’s architecture. The Core Agent is an

intelligent agent, that manages the cognition tasks of learning, reasoning and optimization,

over the network resources in order to improve performance for the cognitive radio user and

the network. In AI, an intelligent agent is defined as an entity that perceives and acts in

an environment with the objective of determining the best actions that will maximize its

performance goals [101]. Computationally speaking, an agent is said to be composed of

an architecture and a program. In some cases, it is also desirable for the agent to be au-

tonomous, the agent makes decision based on its own experience rather than on knowledge

previously programmed.

If we consider the Intelligent Agent (IA) definition in the context of 3G wireless networks,

we have an IA which is a computer program that uses machine learning techniques (i.e.

case-based reasoning and decision tree learning) that resides in a powerful computing device

(i.e. RNC) and that observes its environment (i.e. Sensing, REM, Environment Analyzer

outputs) and reacts with the appropriate action that will maximize the CR’s and the net-

work’s performance goals. In the next chapter, we will discussed the implementation details

of our proposed engine.

4.1.3 Cognitive Engine Design for Femtocell Deployments

In a femtocell environment, the CE is integrated into the access point. Therefore the focus

is in the use algorithms and artificial intelligence techniques that are computationally simple

and reduce processing time. The components are the same as in the generic CE. However,

in the case of femtocells the design has to be simplified significantly, as each femtocell deals

with an average of five mobile users. In the femtocell CE, the sensing is conducted by the

mobile and by the femtocell basestation. The interactions between components is the same,

and the data flows in the same manner. It is important to note that the algorithms and

processes for the femtocell CE should be computationally efficient. Femtocells do not have
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the same processing capabilities of macrocells basestations. The algorithms also should be

very fast, since latency is a paramount issue in femtocell deployments.

4.2 Summary

In this chapter, the generic cognitive engine used in our simulations was presented. Further-

more, each of the components was described in detail, specifying the inputs and outputs of

each component and possible approaches for implementation. The components are discussed

in the context of the 3G wireless network. However, the implementation of these components

in other environments (i.e. B3G, 2G, femtocells, etc.) may differ from what was described.

Suggestions on how to implement these components in other environments were made.



Chapter 5

Cognitive Radio Resource

Management

In this chapter, we discuss the concept of cognitive radio resource management (CRRM). We

begin with a brief introduction and motivation to replace traditional RRM with cognitive

RRM. We proceed by presenting our approach to CRRM and discuss some of the suggested

implementations in the literature. Then, we present seven RRM algorithms and how by

adding cognition the performance can be improved. Finally, we discuss three cases that

are the main topics of the following chapters: using cognition to improve coverage, using

cognition to perform handover management, and using cognition to determine policy event

patterns.

5.1 Motivation

CRRM refers to the implementation of cognitive algorithms in the allocation of radio re-

sources. The cognitive radio resource manager not only optimizes the use of the spectrum

resources, but also can manage call admission, network and link capacity, network and cell

75
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load, packet scheduling, antennas, handover, and power, among many other resources. Re-

cent trends in wireless communications are encouraging the use of cognition and intelligence

in the design and management of wireless networks. First and foremost, is the migration

from centralized, homogeneous but disjoint networks that do not allow for cooperation;

to decentralized, heterogenous and cooperative networks. The idea is to converge current

disjoint networks into a heterogenous network that optimally combines the different radio

access technologies (RAT) under a global infrastructure known as B3G networks. Second,

the demand for data applications, higher throughput, and user requirements for communi-

cation anytime, anywhere is contributing to the convergence to cognitive networks. Third,

research efforts during the last decade in dynamic spectrum access techniques have lead us

to apply cognition to other network resource problems, such as radio resource management.

Furthermore, reconfigurability (cognition and adaptability) is foreseen to overcome some of

the issues that arise from the management of heterogenous networks [16]. Furthermore, the

cognitive approach to radio resource management exploits the network’s awareness, previ-

ous knowledge, learning capabilities, and the ability to perform cross-layer optimization to

achieve fair and efficient allocation of the radio resources. Thus, the cognitive radio concept

is translated to a cognitive radio resource manager. In the next section, we discuss our

approach in the design of a cognitive radio resource manager.

5.2 Our approach to CRRM

In this section we discuss our vision for the cognitive radio resource manager. In this work,

the cognitive radio resource manager is defined as:

“An intelligent agent, that manages resource allocation tasks using learning, reasoning and

optimization in order to improve overall performance for the network and for the individual

link.”

We follow the approach to adding cognition in wireless networks discussed in Chapter 3, for
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Figure 5.1: The Cognitive Radio Resource Manager

the design of the cognitive radio resource manager. However, we foresee the manager as able

to tackle different network problems and able select various machine learning and artificial

intelligence techniques in order to achieve optimal solutions and improve performance. Figure

5.1 depicts the concept.

The CRRM acts as the Core Agent in our generic cognitive engine. The CRRM architecture

is distributed, with entities in each cell (Node B), a local version in each mobile equipment

and a global entity located in the network’s core. The CRRM is the decision maker, it acts

and reacts to the stimulus (measurements, alerts, etc.) received from the network, from the

individual links, and from a set of predefined objectives (i.e. user, network, operator, policy,

etc.). Predefined objectives can be located in the global REM and local REM for the mobile

equipment. The CRRM also has access to measurements and configuration information

across the various layers in the network, and thus is able to optimize across the various

layers.

Also, the CRRM is able to identify and synthesize the current network problem and select

the type of cognitive algorithm to use. The CRRM can select among several algorithms
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including: Call Admission Control (CAC), packet scheduling, load control, power control,

resource manager, handover control and coverage manager. The power control, handover

control and coverage control can be distributed and included in cells (i.e. basestations,

access points, femtocells, etc.). The power control and handover control algorithms are also

distributed and included in the mobile equipment. The CRRM has access to a selection

of machine learning methods, artificial intelligence techniques, optimization techniques, and

heuristics. The CRRM is able to select the optimal technique given the problem formulation

and representation. As an example, if the CRRM is encountering a handover problem in

a cell, or a link, the CRRM can invoke the handover control algorithm that can solve the

handover problem. In the next section, we focus on discussing the cognitive algorithms that

are integral part of the CRRM.

5.3 CRRM Algorithms

In this section, we present seven applications for the Cognitive Radio Resource Manager, by

no means this list comprises of all the radio resource management applications. We believe,

that there are many aspects of the network management that can improve with the addition

of cognition. The applications discussed here have been incorporated in traditional radio

resource management, however we discuss how cognition can improve performance or what

cognitive algorithms can be implemented.

5.3.1 Call Admission Control

CAC is the process of managing the arriving traffic (at the call, session or connection level)

based on some established criteria [60]. Generally, CAC is applied as an algorithm that

admits or rejects arriving users to optimize an objective function, while guaranteeing the QoS

for arriving users, as well, as current users. There are several approaches to CAC including:

admission based on a threshold, admission to guard channels, pricing-based admission, non-
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cooperative admission, among others. Two other approaches that exhibit cognition have

been found in the literature: cooperative admission control and mobility-based admission

control.

In collaborative CAC, neighboring basestations share information on the networks’s con-

dition such that resources can be allocated in advance, and as accurate as possible. In

mobility-based admission control, the position and mobility patterns of the user can be

employed to allocate the resources in advance to guarantee admission. Skehill et al. [102]

presented a common radio resource management approach for call admission in heteroge-

neous networks. The approach selects the most appropriate wireless access system based on

the service type, user preferences and the network load. A cognitive CAC algorithm interacts

with other RRM algorithms (i.e. load control, handover control, power control, etc.) via

the Cognitive Radio Resource Manager. The objective is to optimize admission goals while

considering the network goals, and other radio resource management goals. Awareness of

the network’s admission control goals, as well as, neighboring basestations and/or neighbor-

ing systems’ (i.e. in a heterogeneous network) admission goals can improve the control of

admissions.

5.3.2 Packet Scheduler

Packet scheduling refers to the scheduling algorithm that manages bandwidth and monitors

the importance of data packets; and depending upon the priority of the packet, gives it higher

or lower priority or bandwidth levels. Packet scheduling is necessary for packet-based services

in order to provide adequate QoS levels to the user (delay, delay jitter, amount of bandwidth,

fairness), since many packets compete for a common outgoing link. In UMTS networks, there

are four type of service classes as mentioned in Section 2.4.2. The conversational class (i.e.

voice and teleconferencing) is transmitted without scheduling on a dedicated channel, the

background and interactive classes have no guaranteed bit rates therefore are transmitted
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without a packet scheduler. The streaming class requires minimum bit rates and tolerates

some delay therefore a packet scheduler is used.

As we move to B3G networks, where an all-IP architecture is envisioned, and traditional

circuit-switched services such as voice and teleconferencing will be packet-based; there is a

greater need for a packet scheduler and prioritization schemes. A cognitive packet scheduling

algorithm can prioritize packets per service class, but also prioritization schemes based on

cost or user preferences. An adaptive scheduling algorithm for cognitive radio was proposed

by Li et al. [103], the algorithm exploited QoS and spectrum awareness in the cognitive

radio to apply an adaptive algorithm that resulted in better QoS, higher system capacity

and improved spectrum utilization, when compared to the traditional packet scheduler.

5.3.3 Load Control

Load control is generally perform to guarantee that the system is not overloaded and remains

stable. If the system has been properly designed and the admission control and the packet

scheduling algorithms work well, an overload in the system should be the exception. If an

overload occurs then the load control algorithm returns the system back to the targeted load

by performing several tasks, including: denial of downlink power-ups commands, reducing

the target SINR used by the uplink fast power control, reducing the data throughput, per-

forming handover to another cell or to another system and dropping low priority calls. The

load control actions are performed at the cell level, and at the network level. A cognitive

load control algorithm can use history to foresee overload situations such as during peak

hours, or special events and start performing load control tasks to avoid overloads. The

algorithm can interact with other RRM algorithms such as: CAC, packet scheduler, power

control, etc. to minimize overloads. Intelligent load control algorithms have been suggested

in the literature for wired networks [104,105].
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5.3.4 Power Control

Power control comprises of the algorithms used to manage and adjust the transmit power

of basestations and mobiles [60]. Power control has several objectives including: reducing

co-channel interference, maximizing cell capacity, minimizing the mobile’s transmit power

and hence power consumption, and managing data quality. There are two major effects

that decrease the performance of wireless networks: the time varying nature of the wireless

channel and interference. Power control is used to mitigate these effects by keeping SINR

levels above the minimum protection ratio in order to provide an adequate communication

link. There is a tradeoff in the power control problem that one should consider, since

increasing a link’s power, will increase that link’s SINR but in turn increase the interference

to other links. This power control could, under certain circumstances, become unstable.

Other constraints to the power control algorithm include:

• The algorithm should be a distributed one for the uplink, so that each link is responsible

to use the limited resources cooperatively while maintaining QoS levels.

• The algorithm should be computationally simple. Limiting the overhead in the com-

munications protocol.

• The convergence speed for the power-control algorithm should be faster than the chang-

ing speed of the fading channels.

• The algorithm should allow for heterogeneous QoS requirements.

In recent years, power control algorithms have been studied extensively. When a search

with the key words power control and cognitive radio is performed on IEEE Xplorer over

a hundred items are returned. Cognitive power control algorithms can help improve link

quality, reliability and limit interference. Awareness and the ability to sense the environment

can help the node assess its link’s current condition, as well as, neighboring nodes’s links



82

and adjust its transmit power to optimize over its own link quality objective, neighbors and

the network as a whole.

5.3.5 Spectrum Manager

The management of spectrum resources is probably the most influential aspect of RRM in

the cognitive radio field. The search for efficient and effective spectrum management schemes

has encouraged research in multi-disciplinary areas by academia, industry, manufacturers,

government agencies, regulators and many others. Currently, spectrum rights are assigned

very similarly to real-estate rights. Primary users have “property” rights to their assigned

spectrum, thus no sharing is allowed. New spectrum sharing policies and technologies are

being researched to exploit the unused spectrum. One of the solutions to the spectrum

management problem is the cognitive radio. A radio that is able to use spectrum resources

opportunistically and more efficiently, increasing the spectral efficiency of the systems in

terms of bits/Hz. In our cognitive radio resource management approach, spectrum resource

management is one seven applications. A cognitive spectrum management algorithm is aided

by sensing and awareness in the mobile equipment (radio), and the knowledge and history

stored in REM to optimized the use of the spectrum. The algorithm is distributed and

located in the mobile, basestation and at the network’s core.

5.3.6 Handover Control

Handover control is the algorithm that transfers an active session (i.e. voice call or data

session) from one cell to another as the user moves in the coverage area of the wireless

network [106]. Handovers are performed in a cellular system if the mobile user has moved

out of range from the basestation, or if the basestation serving the mobile user is full and

needs to transfer the user to another nearby station, or if the current basestation is not

able to provide a service requested by the mobile user. The handover control process is
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divided in three stages, these include: initiation, new connection generation and data flow

control [107]. In recent years, handover control has received significant attention. It is also

part of a broader concept known as Mobility Management. Mobility management comprises

of two tasks: Location Management and Handover Management.

A cognitive handover algorithm can exploit previous knowledge and current information

obtained from sensing the radio environment to predict when a handover is needed. Also, it

can predict and allocate resources in advance. As an example, a cognitive handover algorithm

can be helpful in a femtocell environment, when a femtocell user needs to handover from its

femtocell to the macrocell, resources can be allocated in advance in order to minimize latency.

An extensive survey of handover control is presented in Chapter 7. Also, we introduce a

decision tree-based cognitive handover algorithm that uses previous information, mobility

management, and prediction to perform handover control.

5.3.7 Coverage Manager

Although coverage management is not typically performed in traditional radio resource man-

agement functions, as we move to distributed RRM algorithms we can foresee performance

improvements in coverage management if cells can manage and optimize their footprint.

Generally, the coverage of a cell is determined during the initial design stages in the network

system design process. RF coverage design along with network capacity is calculated based

on the operator inputs such as: subscriber forecast, usage forecast per traffic type, coverage

areas, type of coverage, available spectrum, QoS requirements, propagation characteristics,

environment type, topography, etc. [59]. Once deployed, the actual coverage is determined

using field measurements.

Assuming that reconfigurable antennas are available, a cognitive coverage algorithm can use

current coverage information reported by the mobiles to adjust the cell’s antenna character-

istics in order to improve coverage. Also, a cognitive coverage algorithm can interact with

other RRM algorithms such as power control, handover control, load control to maintain
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service requirements in a coverage gap. In Chapter 6, we propose a cognitive algorithm that

determines the actual coverage of a cell based solely on reported observations from the mo-

biles. Such algorithm, can be very useful in self-organized networks, femtocell deployments,

etc., where little human intervention is desired. The cell will adjust its coverage in order

to maintain the user’s QoS requirements. Recent literature shows some promising results in

this area. Di Taranto et al. propose simple antenna pattern switching to minimize interfer-

ence in cognitive networks [108]. Furthermore, Sayeed and Raghavan analyze the impact of

reconfigurable antennas for dynamic spectrum access in cognitive networks [109].

5.4 Case Studies

In this section, we present three cases where the concept of CRRM has been applied. First,

we present how to improve coverage knowledge in a network by adding cognition and learning

capabilities to the network and the mobile equipment. Second, we present how to use cogni-

tion for handover management. Lastly, we present how cognition can be used to determine

policy patterns. These cases are the main topics in Chapters 6, 7, and 8 respectively.

5.4.1 Case: Using Cognition to Improve Coverage

In this section, we present our first example on how to use awareness, previous knowledge, and

machine learning to learn the coverage of the cell based solely on observations. Traditionally,

the RF coverage of a cell can be determined by employing several well known methods. First,

operators can get a rough idea of the RF coverage by performing a mathematical analysis.

They may start doing a link budget and determining the radius of the cell. Then, they can

use stochastic models of the channel and simulation to get an estimate of the coverage given

their description of the site such as: the type of environment (i.e. urban, suburban, rural,

indoor, etc.), and the characteristics of their system (i.e. maximum transmitted power for

the DL, UL, etc.). Also, they may employ advanced simulators that include topographical
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Figure 5.2: Typical Coverage Problem in 3G Networks

information to get even more accurate predictions of the cell’s coverage. Finally, they send

their RF engineers to do field measurements and drive-by tests. After, their system is

deployed mobile customers may report coverage gaps by calling the operator’s customer

service.

If we examine a cognitive network, we add cognition to the current mobile equipment, by this

we mean the ability to sense the environment, the ability to know where it is (i.e. GPS) and

knowledge of what has happened before (i.e. memory). We exchange the current network

for a cognitive network, the system will be able to acquire new knowledge based on previous

experiences and determine the coverage of the cell as it is changing. To maintain processing

costs at a minimum, this process can be done offline everyday or as dictated by the operator’s

QoS requirements. In this case, cognition can help improve the network’s coverage and assist

in RF planning as discussed in Chapter 2. Chapter 6 discusses this example in detail.
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Figure 5.3: The Handover Concept

5.4.2 Case: Using Cognition to Manage Handover

In this section, we extend our original example to use the learned knowledge for the engine

and define a set of actions. The performance task involved is to predict the need for handover

using previous knowledge and the mobility pattern of the mobile user. Figure 5.3 shows a

typical coverage problem for the end-user in a wireless network. Let’s consider the following:

• The mobile user is moving from cell A to cell B.

• The mobile user moves at a velocity v in a specific direction.

• The call is maintained by cell A and given the direction of the user it will be handover

to cell B.

• The call is dropped before an effective handover to cell B.

• The user needs to start a new call.

This scenario repeats every time the mobile user travels in that direction from cell A to cell

B.
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Today, with current technology the mobile user deals with these coverage holes. The mobile

user may anticipate that the call is going to be dropped based on the previous experience,

and soon and may:

• Stop moving and finish the call before reaching the coverage hole.

• Continue talking until the call is dropped and then start a new call.

• The mobile user can terminate the call and start a new call once she passes the coverage

hole.

If we substitute the standard handset, for an enhanced cognitive handset and a cognitive

base station we can expect the following:

• the CR will have the previous information on similar events,

• the CR will be able to predict that the call may be dropped given the time of day, the

geographical location of the user, the velocity, the bearing of the user, etc.,

• the CR may increase power in order to complete the handover,

• the CR may handover to cell B before the quality of the call degrades,

• the CR may perform an inter-frequency handover,

• the CR may perform an inter-system handover (i.e. other RAT available).

In order to address the aforementioned problem, we develop a cognitive engine that uses

a case-based reasoning approach and decision-tree searches for its learning and decision

making. The engine exploits the user’s previous information and prevents call drops, thus

increasing coverage in the 3G wireless system. This in turn increases the quality of service

to the end-user. The cognitive engine design will follow the proposed approach in Chapter

3. This type of engine can reside in the cognitive resource manager and be used as needed.



88

The handover can be horizontal or vertical, as we move to B3G wireless networks similar

services will be provided by the various communication systems. This case is the main topic

of Chapter 7.

5.4.3 Case: Using Cognition to Determine Policy Patterns

Another possible application for the hybrid cognitive engine is to determine policy patterns

from observations. The learning problem can be formulated differently, such that the pre-

dicted variable is whether a policy event occurs or not. For example, let’s examine a 3G

network, where loading exceeds the maximum load allowed, this happens in a specific pat-

tern, (i.e. workdays from 5-7PM). During this event, cell breathing occurs. Cell breathing

is when the coverage of the cell decreases due to the noise floor of the cell increasing. The

mobile nodes react by increasing the power in order to maintain a call, thus in turn, affecting

the coverage of the cell.

If the network operator implements a policy event that during that length of time in order

to limit this effect. The operator may set the transmission power to a lower level in order

to avoid the cell breathing problem. However, this policy event reduces the cell’s coverage

footprint. Figure 5.4 depicts these events. The policy classification algorithm can extract

the event from observations and then higher layers of the engine process can interpret the

event and define some actions to deal with the event. In Chapter 8 of this work, we will

explore this case study in more detail.

5.5 Summary

This chapter presented the concept of cognitive radio resource management and its appli-

cation. Also, it introduced the three case studies addressed in this dissertation using the

proposed approach and hybrid cognitive engine. The idea was to connect the concepts de-
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Figure 5.4: Opportunistic use of primary channels

fined in Chapter 2, to the methodology presented in Chapter 3 and the applications discussed

here in this chapter. In the next sections, we will focus on implementing cognitive solutions

to these problems.



Chapter 6

Using Cognition to Improve Coverage

In this chapter, we present the first case study of the proposed cognitive engine. We begin

with an overview of the system, a description of the network problem that the engine is trying

to solve, and the models used in the simulation. We apply the engine to a 3G cognitive radio

application: learning the coverage of the basestation, based on environment observations.

We discuss obtained results and suggest ways that the acquired knowledge can be used to

develop algorithms that can improve network performance. We also discuss how to measure

the cognitive engine’s performance.

6.1 Problem Background

One of the most important objectives in wireless network design is radio network planning,

which includes coverage, capacity and network optimization. This process is generally done

in the dimensioning stage of the design process. RF engineers approximate the number of

sites, base stations, and their configurations based on the operator’s requirements and the

radio propagation characteristics of the area [58]. Capacity and coverage are closely related

in WCDMA system, thus often are considered simultaneously in the dimensioning stage. As

90
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explained in the previous chapter, there are several methods to determine the coverage of

a cell from mathematical analysis to field measurements for proper coverage estimation. In

this chapter, we present how adding cognition can increase the network’s and the mobile’s

knowledge on the actual coverage.

6.2 Problem Description: Using Cognition to Improve

Coverage

In this section, we discuss how to apply cognition to improve the coverage of a cell. First,

we describe the objectives of our proposed cognitive engine. Then, we compare and contrast

the approach of improving coverage in a traditional network versus a cognitive network.

We continue by describing the system’s models, and discussing the simulation parameters.

We present simulation results and evaluate our learning algorithm using several methods.

Finally, we conclude the chapter with a summary.

6.2.1 Objective

The objective of the coverage learning engine (CLE) is to exploit the cognitive capabilities of

the mobile and the network, to learn the coverage of the cell. We apply our approach to de-

velop the cognitive engine, formulate the coverage problem as a Classification and Regression

problem, and use a decision tree algorithm to predict whether the signal level is adequate to

sustain a call. We then evaluate the engine’s performance to measure improvements.

Recalling the cognition cycle in Figure 2.1 we can describe the cognitive process in terms of

the coverage learning problem as follows:

• Observe - The cognitive mobile and the cognitive network observe the surrounding

radio environment. In this phase, measurements such as: received signal strength,
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signal-to-interference ratio, etc. are taken. Also, location and mobility information is

collected.

• Orient - In this phase, the cognitive engine (network, mobile or both) fuses the new

information collected, with previous knowledge such as: geographical information, mo-

bility patterns, handover history, user requirements, terminal capabilities, etc., and

creates an interpretation of the current handover situation. In this step, the current

state of the world is determined, and the problem is formulated in a way that the

engine is able solve.

• Decide - In this phase, the cognitive engine evaluates the current network situation and

makes a decision whether a call is going to be dropped or not. The engine classifies

the observations and induces rules (new knowledge) regarding the actual observed

coverage.

• Act - In this first example, there are no immediate actions for the engine. The engine

derives patterns in the data collected. Later, these patterns and general domain knowl-

edge are used to induce rules on the overall behavior of the system. The engine’s goal

is to learn the coverage based on observations. In the next chapter, we will see how

adding a set of actions (handover options) improves the performance of the network.

• Learn - The system learns a coverage map of the cell, it classifies the regions based

on the probability that a call is dropped. The amount of information regarding the

coverage of the cell is increased.

6.2.2 System Overview

The overall system under investigation is composed of three modules: the network environ-

ment simulator, the Coverage Learning Engine (CLE), and a post processor used to interpret

the results obtained by the cognitive engine. Figure 6.1 describes the interactions between

these three modules. The network environment simulator, developed using MATLAB R© [110],
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Table 6.1: Case for CLE
Attributes Type

x numeric
y numeric
R numeric

SINR numeric
Call Drop boolean

was designed to generate cases for our cognitive engine to analyze. The input to the module

are the simulation parameters and the output is a *.csv file with the cases. If data from

a real system were available, the environment simulator can be replaced by a data mining

process that extracts the necessary information to formulate the problem. The Coverage

Learning Engine is based on Wireless@VT generic cognitive engine, however, decision tree

learning is used for the reasoning and learning. The DTL algorithm used is C4.5 as described

in Chapter 3. A post-processor was created in MATLAB R© to interpret and present results

graphically.

To design the engine we followed the proposed approach discussed in Chapter 3, the steps

are outlined as follows:

• Formulation - the learning problem has been formulated as a Classification and Regres-

sion problem. The CLE uses previous observations in the form of cases to determine

the expected SINR level at a given location.

• Representation - the data is represented in cases. Each case is constructed as in Table

6.1.

• Collection of Data - the cases have been generated using the Network Environment

Simulator (described in Section 5.3 and a Random Waypoint (RWP) mobility genera-

tor.

• Evaluation - we train the CLE using a training set for each experiment. Then, the

CLE is applied to a new data set. The CLE induces rules and a decision tree on the
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Figure 6.1: System Overview: Module Interactions

coverage of the cell, based solely on observations. The knowledge on the cell’s coverage

is increased.

• Application - the current application is to determine the exact coverage of the cell.

However, this learned knowledge can be fielded to other applications such as Handover

Management (i.e. Chapter 7), for power control algorithms, interference management,

etc.

Traditional Network

In a traditional network, an operator can improve the network’s coverage and increase ca-

pacity doing several things:

• deploying more cells,

• reducing the cell’s footprint, and

• decreasing the distance between the transmitter and the receiver.
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The last two also require the deployment of more cells in order to provide the same coverage,

but in turn by reducing the cell’s footprint and decreasing the distance between the trans-

mitter and receiver, the coverage is reduced. Hence, the goals for increasing coverage and

capacity are conflicting. There is a tradeoff between the deployment of more cells, increasing

coverage and increasing capacity.

Cognitive Network

A cognitive network is aware of its own coverage and capacity, and ideally can reconfigure

itself to compensate for coverage holes. One way is by collecting field measurements from

the mobiles and creating an updated coverage map. Since the coverage in a cell can change

dynamically due to the time variant nature of the wireless channel and susceptibility to

various propagation phenomena (i.e. reflection, diffraction, scattering, etc.), the network

can periodically update its coverage map. The cognitive network may react to the lack of

coverage in several ways:

• the network may force a handover to another cell (horizontal) or another communica-

tion system (vertical),

• the network may do power control in order to maintain the user’s QoS,

• the network may reconfigure its antennas’ radiating pattern in order to cover the hole,

and lastly,

• the network may alert the operator of the coverage problem.

The algorithm presented in this section has been design for a cognitive network, however

legacy networks that do not allow cognition in all layers of the communication stack, can

still benefit from the use of cognitive algorithms that use learning and previous experiences

to solve new problems [54].
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6.3 Network Environment Simulator

Although our generic cognitive engine is flexible enough that it can be used in any wireless

networks, we needed to provide context in order to evaluate its performance. The 3G wireless

network is the environment in which our engine, an intelligent agent, makes observations,

analyzes the current situation, and then reacts with the appropriate action. We selected the

3G wireless networks since these networks have been largely studied, analyzed and optimized.

Still, we think there is room for improvement, and even the simplest levels of cognition can

tackle typical problems encountered in these networks.

Among the four platforms supported in the 3G wireless system, we have chosen the WCDMA

FDD solution as our engine’s environment. WCDMA has a bandwidth of 5 MHz, with a

reuse ratio of 1. There are 4 services classes: conversational, interactive, streaming and

background. Each of these services has a corresponding data rate and QoS requirements.

Speech can still be a circuit switched service, thus the mobile user may have assigned radio

resources in a call. There are three testing environments: indoor, pedestrian and vehicular.

We have selected the vehicular environment which is characterized by macro-cells and high

transmit power. It is important to note that the gains for the WCDMA fast power control

are negligible for this test environment as the UE’s speed is too high. In the next paragraphs,

we describe the models used to characterized the 3G wireless network environment.

6.3.1 Propagation Model

The International Telecommunication Union (ITU) has recommended in their specification

ITU-R M.1225 [111] several reference scenarios and propagation models for the IMT-2000

standard. Since, these models have been widely used by international standards organi-

zations, we feel that it is best if we follow these recommendations in our simulation. In

the vehicular environment, the propagation model is composed of the mean path loss, the

slow variation around the mean due to shadowing and scattering, and the rapid variation
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in the signal due to multipath. In the next paragraphs we discuss the models used for the

propagation phenomena in the WCDMA environment.

Path Loss

The path loss model for the vehicular environment in Equation 6.1 can be used in urban and

suburban areas, outside the high rise core, where buildings have similar heights.

PL = 40 (1 − 4 × 10−3 ∆hb) log10 r − 18 log10 ∆hb + 21 log10 fc + 80 dB (6.1)

where r is the distance between Node B and the UE, fc is the carrier frequency (2000 MHz

is the default value), and ∆hb is the Node B antenna height, measure above rooftop level.

The valid range for ∆hb is between 0 and 50 meters.

Log-normal Fading

The log-normal fading around the mean path loss can be represented as a zero mean Gaussian

random variable and a standard deviation between 6 and 12 dB [112]. The ITU-R M.1225

recommended value for the standard deviation in suburban vehicular environments is 10

dB [111]. Thus, we have the following equation to characterize the probability density

function of the log-normal shadowing effects:

p(x) =
1√
2πσ

exp− (x2)

2σ2 (6.2)

where x is received signal level in decibels and σ is the standard deviation.
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Table 6.2: Vehicular Tapped Delay Line Model Parameters: Channel A

Tap Delay (ns) Power (dB)
1 0 0
2 310 -1
3 710 -9
4 1,090 -10
5 1,730 -15
6 2,510 -20

Fast Fading

In WCDMA, multipath fading is simulated using an N-tapped delay line model. The model

is characterized by the number of taps, the time delay relative to the first tap, the average

power relative to the first tap, and the Doppler spectrum for each tap. There are two sets

of parameters defined in the ITU-R M.1225 for each testing environment, one with relative

low average delay spread and one with very high average delay spread. Table 6.2 shows the

parameters for Channel A (average low delay spread model), a classic Doppler spectrum is

recommended for this model.

The models described in ITU-R M.1225 have been widely used, because they were accepted

by international standards organizations [113]. The main advantage that these models pro-

vide is uniformity, designers can evaluate all the radio transmission technologies for the

IMT-2000 specification under the same propagation conditions. The disadvantages include:

small number of taps, and that the models provide big differences in the power delay profile

among the different test environment but provide little difference between suburban and

metropolitan areas [113].

6.3.2 Spatial Model

In this section, we discuss the underlaying assumptions in the spatial model of the 3G

environment simulator. Node B is placed at the center of the coverage area or cell, at a
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height ∆hb above the rooftop level, this value ranges from 0 to 50 meters, the default value

is 25m. The maximum radius of the cell is set by the user, it is convenient to define the

maximum radius of the cell (i.e. 3 km) greater than the expected coverage of the cell (i.e.

1 km), in order to obtain the actual cell footprint in the simulation. Node B is aware of

the UE’s location and velocity. Furthermore, the nodes or UEs are randomly distributed

throughout the cell.

6.3.3 Mobility Model

The nodes move around the cell following a Random Waypoint (RW) mobility model. In

this mobility model, UEs move along a zigzag path consisting of straight legs form one point

to the next. Moreover, the UE moves directly towards the next waypoint at velocity v, once

the UE reaches that waypoint the direction of the next waypoint is randomly selected from

the uniform distribution over the plane A [114]. Figure 6.2 shows a sample mobility path

for an UE.

Although this mobility model is the most popular model in the research community, it may

not reflect real mobility of UEs in a 3G network. There are other mobility models that can

be used in our simulation such as: the Reference Point Group Mobility (RPGM) model [115],

the Freeway Mobility (FW) model, the Manhattan Mobility (MH) model and the Obstacle-

based Mobility Model (OM) [116]. In Chapter 7, we present three different experiments with

three typical environments and corresponding mobility models.

6.3.4 Node Model

The node is a 3G dual-band mobile, capable of accessing the WCDMA and the GSM plat-

forms. The node has very limited cognitive radio functionality. It is equipped with a local

REM that stores some of the UE’s local radio environment information. The node is capable

of sensing the spectrum and reporting results to the cognitive engine as indicated by the



100

Figure 6.2: Random Waypoint Mobility Path

CE. The node acts as a slave, the cognitive engine that resides in the RNC is the master

(intelligent agent). The idea is to keep cost, complexity and memory requirements at a

minimum in the UE.

6.3.5 Observation Model

In the simulation, the network and the nodes are sensing the radio environment every second.

New position information, as well as the received signal strength is measured every second.

The total simulation time is 3,600 seconds (1 hour). There are 100 nodes assigned to each

basestation. Thus, the total number of observations by the end of the simulation is 360,000.
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6.4 Simulation

In this section, we discuss how the hybrid engine is implemented. We focus on determining

the coverage of Node B in 3G wireless networks, thus the engine’s modules can be simplified.

The Sensing Module is simplified in the coverage problem implementation. The UE is the

primary user of the spectrum, it shares the band with other users in the cell. Node B’s ca-

pacity is limited by coverage not by interference. Thus, the coverage of the cell is determined

by the propagation characteristics of the environment, including obstructions. The UE is

able to determine the level of interference at its location and reports it to Node B. Node B

relays the information to the REM that resides in the core network where the RNC and the

Core Agent are located.

In the REM, we assume that only the coverage attributes are extracted from the database.

The cases are generated by the 3G Wireless Environment Simulator as described in the

previous section. Each case is characterized by the attributes listed in Table 6.3. For this

problem, the Environment Analyzer is not needed, as there is only one type of problem

to solve: learning the coverage of Node B. The Core Agent is composed of a case-based

reasoner that includes the case library, an algorithm for indexing, matching and retrieval.

The adaptation is a null adaptation since it is not necessary to modify the cases to determine

the cell’s coverage map. Some of the methods suggested for the adaptation module include:

genetic algorithms, hill climb searches, local searches, and exhaustive search [46,47,117]. The

Core Agent also includes the C4.5 decision tree learning algorithm. This DTL algorithm is

used to classify the training cases and learn the coverage of Node B. In the next section we

explain how the engine works.

6.4.1 How the hybrid engine learns the coverage

In order to validate the proposed hybrid engine, an engine that uses the C4.5 DTL algorithm

was implemented. The first step was to populate the case library. In this step, we created
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Table 6.3: REM Data and Type

Attributes Type
x numeric
y numeric
R numeric

SINR numeric
Call Drop boolean

the history and experience for the CE. If actual data sets were available, this step could be

replaced by mining of actual data sets for relevant attributes. The case library is populated as

follows: Node B is generated and placed in the center of the cell. Then, 100 UEs are assigned

to Node B. There is a maximum transmitting power for the Node B and for the UE. In order

to simulate mobility the Random Waypoint mobility model is used. The velocity of the UEs

varies from 30 - 100 kmph. The chosen simulation environment is a suburban vehicular test

environment where Node B has a high antenna height (15-50m) above the rooftop level, and

the geometrical path loss rule is R−4. We followed the International Telecommunications

Union (ITU) recommendations described in ITU-R M.1225, and applied Channel A (low

delay) parameters to the N-tap delay line channel impulse response [111]. A detailed list

of the simulation parameters are included in table 6.4. For this case, 80,000 cases were

generated.

Once the case library was populated, we proceeded to apply the decision tree algorithm to

learn about our system. C4.5 was applied to the case library, the target value was the SINR.

The algorithm classified the cases and derived rules regarding the value of SINR that resulted

in a call being dropped. The algorithm uses the concepts of entropy and information gain as

discussed in Chapter 3, to generate the tree. For the detailed description of the algorithm

the reader can refer to Algorithm 2. Results are discussed in the next sections.
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Table 6.4: Simulation Parameters
Parameter Value
Antenna Height 25 m
Maximum Cell Radius 5 km
Environment Vehicular Suburban
Channel Model Channel A
Mobility Model Random Waypoint
Service Speech
UE velocity 40-100 kmph
Carrier Frequency 2 GHz

6.5 Results

The testing scenario included an obstruction as seen on Figure 6.3, the propagation behind

the obstruction was modeled as a path loss of 100 dB in the shadow of the obstruction, then

it gradually goes down to 0 dB at the leading edge of the obstruction. The blue shaded dots

in the figure represent the cases where the Eb/No is lower than 5 dB and results in a call

being dropped. Furthermore, let’s say that at the initial stages of deployment the operator

designed the coverage area with a 10% probability of a dropped call for the entire cell. Now,

the operator can describe more accurately the areas and the probability of dropped calls.

The knowledge on the coverage of Node B has increased. In order to classify the coverage, 13

rules where induced. The maximum depth size of the rules is 4. A detailed table is included

in the Appendix.

If we recall the approach for applying a machine learning method to a real life problem

discussed in Chapter 3, we have completed three of the five steps in the approach. We have

formulated the problem, represented the data and collected the training cases. We have

acquired new knowledge, thus implying learning. The steps remaining in the approach are:

evaluating the learned knowledge and fielding the learned knowledge. In the next sections,

we evaluate the engine’e performance and suggest applications of this knowledge to improve

network performance in 3G networks.
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Figure 6.3: Scatter plot of the number of dropped call cases
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6.5.1 Evaluating the engine’s performance

In this section, we evaluate the engine’s performance. We discuss two different methods

to evaluate what has been learned: error rate and receiver operating characteristics (ROC)

curves. Furthermore, we present a complexity analysis in terms of O(n) for inducing and

evaluating the tree.

Error Rate

Evaluating the learned knowledge is a very important step, the learning algorithm is not

worth the computational complexity if the learned data is not useful in future cases. The

coverage problem was model as a classification problem, thus we can evaluate its performance

in terms of the error rate. The classifier predicts the class of each case: if it is a correct

classification then it is a success, if not, it is an error. The error rate, is the ratio between

the number of errors occurred and the whole set of cases as seen in Equation 6.3.

error rate =
number of errors

total number of cases
= ε (6.3)

Furthermore, in statistics the succession of independent events that are either success or fail

is known as a Bernoulli process. If we refer to the set of instances at a particular node, the

probability of error (misclassified case) at the node is denoted by γ, and the probability of

success is denoted by β, where β + γ = 1. The question that we must answer now, is how

close to the true number of errors is that probability? This is often expressed as a confidence

limit δ on the confidence ζ, thus we have the following equation:

Pr [
ε− γ√

γ(1− γ)/N
> ζ ] = δ (6.4)

where N is the total number of instances, ε is the observed error rate and γ is the true error
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Figure 6.4: Estimate of the error rate vs. number of training cases

rate. Then if the upper confidence limit is used as an estimate for the error rate ε we obtain

the following equation:

ε̂ =
ε+ ζ2

2N
+ ζ

√
ε
N
− ε2

N
+ ζ2

4N2

1 + ζ2

N

(6.5)

In the C4.5 algorithm, the default value of δ is 0.25, though this value can be changed. It

is important to note, that in the C4.5 algorithm this probability of error is on the training

data not on independent test data, it also uses the upper limit of the confidence interval,

therefore it is considered a more pessimistic estimate of the error rate [83], nevertheless the

error rate is still very useful. Figure 6.4 shows the estimated error rate for the algorithm

with respect to the number of cases used in the training set, as we increase the number of
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cases in the training set, the estimate of the error rate is reduced. In order to obtained this

graph each simulation was run 10 times, an average of the estimated error rate calculated.

ROC Curves

ROC curves are a graphical technique for evaluating data mining schemes. The acronyms

stands for receiver operating characteristics, and it was used by electrical engineers in signal

detection to characterize the tradeoff between hit rate and false alarm rate over a noisy

channel [83]. ROC curves show the performance of a classifier without considering the

class distribution or the error costs. The vertical axis shows the number of positives as a

percentage of the total number of positives, while the horizontal axis shows the number of

negatives as a percentage of the total number of negatives.

The true positive rate (TP ) is given by the following equation:

TP rate =
TP

TP + FN
× 100% (6.6)

where TP is the number of true positives and FN is the number of false negatives.

The false positive rate (FP ) is given by the following equation:

FP rate =
FP

FP + TN
× 100% (6.7)

where FP is the number of false positives and TN is the number of true negatives.

In a binary classifier, in which outcomes are assigned two values either positive ρ or negative

η. There are four possible outcomes as shown in Figure 6.5. If the outcome from a prediction

is ρ and the actual value is also ρ, then the instance is labeled as a true positive (TP); however

if the actual value is η then it is labeled as a false positive (FP). An instance is classified

as a true negative when both the prediction outcome and the actual value are η, and false

negative is when the prediction outcome is η while the actual value is ρ.
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As an example, let’s assume that we are classifying the area of the cell in two distinct classes,

dropped call and no dropped call. A value of 1 is assigned to an instance where the call quality

is good, and a value of 0 where the call quality results in a call dropped. The true positive

rate is the amount of instances where the call quality was predicted to be good and were

classified as no dropped call, over the total number of instances of no dropped call. The false

positive rate is the amount of instances where the call quality was predicted to be good, but

the actual classification was dropped call.

Figure 6.6 shows the ROC curve for the coverage learning engine. A good classifier is as

close to the northwest corner of the chart as possible, and the area under the curve (AUC)

should be close to 1. In this case, the algorithm performs well, however we see how the

noise and randomness in the mobility model affect classification. The coverage algorithm

induced 13 rules, with a maximum depth of 4. A list of the rules has been included in the

Appendix. This decision tree is very simple, thus computational complexity of evaluating is

very low. However, in certain areas where the call drops is neither close to 1 or close to 0,

the classification is not as certain.

Computational Complexity

When we evaluate the performance of a learning algorithm another very important measure-

ment is computational complexity. In computing, O(n) is used to represent a quantity that

grows linearly with n, O(n2) is used to represent a quantity that grows quadratically with

n, and so forth. Following the approach described by Witten and Frank [83], let’s define

a set of training data that contains n instances and a attributes. The depth of the tree is

assumed to be on the order of log n, therefore it is expressed as O(log n). The computa-

tional cost of building a tree with a attributes is represented as O(an log a). Moreover, the

computational complexity of pruning a tree by subtree lifting or replacing is added. The

subtree replacement complexity is O(n) and the complexity for subtree lifting is defined as

O(n log n), thus the total complexity of reclassification is O(nlog n2). Then we have that the
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total computational complexity for inducing a tree is:

O(a n log n) +O(n (log n)2) (6.8)

The computational complexity of evaluating the tree is defined as O(log n). As a result, once

the tree is induced the computational complexity of evaluating the tree grows logarithmically

with the amount of instances n.

6.5.2 How to use the learned coverage map

In previous sections, we discussed four of the five steps of our approach. In this section, we

focus on the last step, what we refer as “closing the learning loop”, or in other words applying

the learned knowledge acquired by our engine to solve a problem that results in improved

performance. The objective is to find a set of actions that use the learned knowledge to

achieve the desired performance task. As an example, given the new knowledge that we

have on the coverage map of the cell, we can develop a handover algorithm that prevents

dropped calls in the vicinity of the obstruction, or a power control algorithm that increases

the power while the UE is in the vicinity of the obstruction in order to maintain the call.

Although we focus on the coverage knowledge obtained in the formulated problem, the

approach can be applied to other problems in 3G networks as discussed earlier in Chapter 2.

Furthermore, the cognition cycle of a cognitive radio is considered an infinite loop. After,

applying the knowledge and reacting to the environment with the appropriate action, the

cognitive radio again observes the environment and determines if another action is necessary.

This begins a new cycle, where learned knowledge (not trained knowledge) has been applied,

then we must investigate how the environment has changed due to the engine’s reaction, and

the implications for the UE and for the network.

Some of the algorithms that can be developed in order to provide an appropriate set of

actions to the engine are:
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• Handover Prediction Algorithm - the coverage map can be used to predict when a han-

dover is necessary before reaching the handover threshold. The algorithm can choose

between the several handover options and select the one that maximizes the UE’s ob-

jective function. This algorithm can be of great significance in femtocell environments.

Femtocells will be self-deployed, requiring auto-configurability and adaptability to a

changing environment. If equipped with a cognitive engine, and algorithms such as the

proposed in this chapter, the femtocell will be able to learn the users’ patterns in terms

of their mobility, handover, power, and throughput requirements. The femtocell can

apply that learned knowledge, predict when adaptations to its own configuration are

necessary, and then reacting to this learned knowledge. As an example, the femtocell

can learned handover patterns to the macrocell environment, predict when a handover

will be needed, and then prepare and adjusts its parameters to guarantee a successful

handover, while optimizing the use of the radio resources. This algorithm can also be

helpful to enable opportunistic use of femtocells.

• Power Control Algorithm - in the vehicular environment the fast power control in

WCDMA cannot compensate for the fast fading, thus the power control algorithm can

predict when the SINR will drop below the desired levels to sustain a call and instruct

the UE to increase power in order to maintain the call.

• Interference Management Algorithm - the cognitive engine can be applied to create

an “interference map” similar to the coverage map. An algorithm that manages the

interference experienced by the user can be developed.

• Radio Network Planning Tool - radio network planning requires extensive field testing

measurements and knowledge expert for proper planning, the DTL algorithm can be

a great tool to determine coverage from observed data without the need of human

interaction.

Two other applications suggested not necessarily related to the coverage problem but to the

cognitive engine design are:
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• Indexing and case classification - The DTL algorithm can be used to perform indexing

and classification instead of the k-Nearest Neighbor search algorithm or other case

matching methods [87].

• Feature Weighting - The DTL algorithm can be used to determine the most impor-

tant features for the problem formulation process of the cognitive engine and also to

determine the weights of these features [86] as discussed earlier in Chapter 3.

6.6 Summary

In this chapter, we presented the implementation of the hybrid cognitive engine. We began

with a system overview and discussed the assumptions and models used in simulations. We

presented the results that showed how the cognitive engine classifies the observed cases to

determine the coverage area for Node B. Then, we presented four methods to evaluate the

performance of the algorithm: the estimate of the error rate and ROC curves. Also, we

presented a complexity analysis and derived the computational complexity of inducing and

evaluating the decision tree. We concluded with a discussion on how to apply the learned

knowledge. Part of the material presented in this chapter was published in June 2009 at the

IEEE International Conference in Communications [118].



Chapter 7

Using Cognition for Handover

Management

In this chapter, cognition is applied to improve handover management in a wireless network.

First, we provide a brief discussion on the background work in this area. We then discuss

the concepts of handover management and handover prediction algorithms. We apply our

approach to develop a cognitive engine that can improve the performance of the network

by predicting handover based on the user’s mobility and history. We compare and contrast

how this process is performed in a traditional network and in a cognitive network. Finally,

we discuss the metrics used to measure the improvements in performance and the results

obtained from simulations.

7.1 Problem Background

Over the last two decades, the demand for capacity in wireless networks has increased dra-

matically. Generally, operators have solved this problem by deploying more cells and reduc-

ing the footprint of each cell. As a consequence mobile users have to change basestations

114
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Figure 7.1: The Handover Concept

with a greater frequency than before. Furthermore, as current wireless networks evolve, and

converge into future heterogeneous wireless networks; cells size will be further reduced (i.e.

femtocells) and the heterogeneity of the network will require the use of fast and efficient

algorithms, not only within the same wireless network but within different communication

systems (2G, 3G, B3G, WLAN, Wi-Max, etc.). The main objective is seamless communi-

cations, anytime, anywhere. Cognition can bring improved performance in the network by

improving the handover management process, the idea is to exploit the awareness and the

learning capabilities in the cognitive radio to predict when a handover is needed. Also, we

will address how this approach differs from existing approaches, and how to measure the

improvements when cognition is applied. We begin by discussing the handover concept and

the related background information in the next section.

7.1.1 Handover Management

Handover is the mechanism that transfers an active session (i.e. voice call or data session)

from one cell to another as the user moves in the coverage area of the wireless network [106].

Figure 7.1 illustrates the basics of handover. Handovers are performed in a cellular system

if the mobile user has moved out of range from the basestation, or if the basestation serving
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Figure 7.2: The Handover Management Process

the mobile user is full and needs to transfer the user to another nearby station, or if the

current basestation is not able to provide a service requested by the mobile user.

Handover management oversees the stages needed to maintain the session active. The han-

dover management process is divided in three stages, these include: initiation, new connec-

tion generation and data flow control [107]. Figure 7.2 depicts the process. In the first stage,

initiation, the need for a handover is determined. This process can be started either by

the mobile or the network. In the second stage, new connection generation, the network or

the mobile must find the resources needed to perform the handover. In the third stage, the

data flow from the old connection to the new connection is maintained, while considering

handover QoS parameters such as: handover delay, handover blocking probability, etc. As

we will see in the next section, handover schemes can be classified by the type of resources

or by the type of control process used.

In recent years, handover management has received significant attention. It is also part of

a broader concept known as Mobility Management. Mobility management comprises of two

tasks: Location Management and Handover Management. In this work, we assume that the
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location information is provided by the mobile unit (i.e. GPS equipped) or in the case that

GPS is not available location has been predicted using infrastructure-based location systems.

7.1.2 Handover Schemes

It is useful to discuss the various handover schemes, since proper algorithm selection depends

on the type of wireless network, the resources available, and the type of control. Handovers

are generally classified by the type of scheme used as follows [60]:

• Hard Handover - a hard handover requires the mobile unit to break the connection

with the old basestation prior to making the connection to the new basestation. It is

also known as “break-before-make”. Femtocells currently use this scheme for handover.

• Soft Handover - a soft handover requires the mobile unit to establish the connection

with the new basestation prior to breaking the connection with the old basestation.

It is also known as “make-before-break”. This scheme is often used in Code Division

Multiple Access (CDMA) systems since basestations use the same frequency, and also

because the mobile units are equipped with a rake receiver [60].

• Horizontal Handover - is the type of handover that is performed within the same access

network. This type of handover can be a Soft or Hard handover. The type of mobility

that is considered in this handover is termed localized.

• Vertical Handover - is the type of handover that is performed across heterogeneous

access networks. As an example, the mobile user may switch from the 3G access

network to the WLAN access network [119]. For this type of handover, the IEEE

802.21 is the emerging standard. It enables handover and interoperability between

heterogeneous networks, including both 802 and non 802 networks [120].

Handovers can be further categorized by the handover control process [60,120], as follows:
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• Network Controlled (NCHO) - in this handover the network makes the handover deci-

sions based on the measurements of the active links at the basestation. This scheme is

generally used in first generation wireless networks, it requires information on all the

link qualities to properly conduct the handover.

• Mobile Assisted (MAHO) - in this handover the mobile makes the measurements and

the network makes the handover decision. This scheme is generally employed in second

generation wireless networks such as GSM.

• Mobile Controlled (MCHO) - in this handover the mobile makes all the handover

decisions. It collects the measurements on signal strength and interference in the

surrounding area and completes the handover process. A cognitive radio’s awareness

of its surrounding environment and own capabilities makes this scheme feasible.

In the case of cognitive radio networks, the type of control scheme will depend on where

cognition is located. In 3G networks, where cognition is located in the RNC, the handover

scheme may be initiated by the UE, but all the control is performed by the RNC. In a

femtocell deployment, if the femtocell is the only device equipped with cognition, thus the

mobile unit is not a cognitive element, then the process may be handled by the femtocell

entirely. In B3G networks, cognition is dispersed throughout the different layers and devices,

the handover management is a multi-layer process handled by the cognitive elements and

the cognitive network. In the next section, we discuss the handover criteria and/or inputs

to the handover algorithm.

7.1.3 Handover Inputs

In this section, we discuss the handover criteria or inputs to the handover algorithm. Tradi-

tionally, handover algorithms have been designed based on the following inputs [121,122]:

• Received Signal Strength (RSS) - is a measurement of the power in the received signal.
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It is often used in traditional handover algorithms. One of the disadvantages of this

criterion is the that does not consider interference. Handover algorithms that rely

solely on RSS tend to perform an excessive number of handovers [106,121].

• Signal to Interference Ratio (SIR) - is the ratio of the power of the received signal, to

the total power of the interference signal [112]. This input considers interference, and

its advantageous to use given the relationship with the Bit Error Rate (BER) and the

link quality. However, in interference limited systems (i.e. CDMA, UMTS) a low BER

and poor link quality does not necessarily imply a need for handover.

• Distance - is the distance of the mobile unit from the base station. This input is useful

to determine the cell borders. It can be determined by the basestation given the signal

strength measurements or calculated using the mobile’s location information where

Global Positioning System (GPS) is available. This input is not so accurate in indoor

systems where precise location information is not available (i.e. femtocells).

• Transmit Power - the transmit power can be used as a handover input to limit the

power requirements, reduce interference and extend battery life.

• Traffic - traffic information can be used as a handover input to avoid uneven traffic

loads in adjacent cells, and to maintain QoS for mobile users.

• History - the mobile user’s mobility pattern and preferences can be a helpful handover

input, especially in handover prediction algorithms. In this work, we exploit the mobile

user’s history to predict when a handover is needed.

As networks evolve, new algorithms should also take into account other inputs as described

in [122] such as:

• Access Network Information - as we move from centralized single technology networks

to heterogeneous networks, the mobile user may select among different communication
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systems available, and also given the conditions of the network the mobile user may se-

lect the one with optimal conditions. As mentioned previously, IEEE 802.21 addresses

heterogeneous network handover.

• User Preferences - may include QoS level requirements, access network, access points,

costs, etc.

• Service Type - the user may assigned different handover priority given the service (voice,

VoIP, teleconferencing, data, etc.).

• Terminal Capabilities - if its a multi-mode terminal or not, the access technologies it

supports, battery life, power consumption, etc.

• Cost - there may be a cost advantage of using a particular system, for example a

femtocell versus a macrocell. Or a WLAN access point versus the cellular network,

thus the mobile user may prioritize given the cost of the service. The authors in [122]

developed a cost function to determine the access network that minimized cost.

The DTL algorithm used in this work, can also prioritize the handover criteria in order to

place the most relevant input towards the root of the tree and test on those features first for

the prediction.

7.1.4 Handover Performance Metrics

When designing handover algorithms it is very important to measure the performance im-

provements that the algorithms brings to the network, as well as the cost involved in the

handover. There are several performance metrics suggested in the literature [106, 123, 124]

that help us evaluate handover algorithms, these include:

• Call Blocking Probability - this is the probability that a new call is blocked.
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• Handover Blocking Probability - this is the probability that a handover attempt is

blocked.

• Handover Probability - average number of handovers per session.

• Call Dropping Probability - the probability that a call terminates due to handover

failure.

• Probability of Unnecessary Handover - the probability that a handover is initiated by

the handover algorithm when the current link is adequate to maintain the ongoing

session.

• Rate of Handover - the number of handovers per unit of time.

• Duration of Handover Interruption - the length of time during a handover that the

terminal is in communication with neither base station. (This event occurs in hard

handovers, or “break-before-make” type handovers. Where the communication link

between the base station is terminated before associating with new the base station.)

• Handover Delay - the position at which the assignment probabilities of a mobile to

both (current and target) basestations are equal [125].

The aforementioned handover performance metrics can help us evaluate the improved per-

formance gained from implementing a cognitive approach in handover management.

7.2 Handover Management in Wireless Networks

In this section, we discuss the approaches to handover management in wireless networks. We

begin by discussing handover in 3G networks. Then, we proceed by discussing the handover

scenarios in femtocell deployments. We finalize this section by describing the handover

management process in B3G wireless networks. This section will give us an insight on how

cognition can be used to improve handover management in wireless networks.
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7.2.1 Handover Management in 3G Networks

3G wireless networks support two types of handovers: soft handover and hard handover.

However, with High Speed Downlink Packet Access (HSDPA) technology soft handovers are

no longer supported [59]. The main difference between the two types of handovers are the

system resources used for maintaining a session. As explained earlier, a soft handover re-

quires communication with more than one cell at a given time. In 3G networks, there are

two variants of soft handover: the UE may be in soft handover with two cells supported

by the same RNC, or by two cells in the same Node B. A hard handover may occur in

several situations: among two cells that use different carrier frequencies, or among cells that

are connected to different RNCs. Another type of hard handover in 3G networks, is the

inter-system handover. In this hard handover, the 3G mobile user uses the GSM network

where 3G service is not available. In 3G networks, regardless of the type of handover the

decision and resource handling of the handover is made by the RNC. Handovers in 3G are

sometimes mobile-assisted (MAHO), where the UE triggers the handover decision by the re-

porting measurements. The handover procedures have been standardized by 3GPP, however

the handover algorithms have not been standardized [59]. Handover algorithms are gener-

ally proprietary algorithms designed by equipment manufacturers. The handover criteria

and handover decision thresholds are generally selected by the operators according to their

network planning and overall network QoS goals, thus there is a lot of variety in the algo-

rithms and thresholds used. Thus, there is room for network performance improvement by

employing efficient handover algorithms that maximize network performance, reduce latency

and minimize the use of resources.

7.2.2 Handover Management in Femtocell Deployments

In femtocell deployments only hard handovers are supported, regardless of the technology

used. Therefore, all calls are switch to or from the femtocell zone to the macrocell network.

Figure 7.3 illustrates handover in a femtocell deployment. In a femtocell deployment, there
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Figure 7.3: Femtocell Handover Scenarios

are two scenarios that indicate the need for a handover: the user moves from the femtocell

zone to the macrocell environment, and the user moves from the macrocell environment to

the femtocell zone. However, these scenarios increase if femtocells are able handover to both

2G or 3G networks in the macrocell environment, depending on the coverage available [126].

There are several issues in handover management that need to be addressed in femtocell

deployments.

First, the type of access provided by femtocells. If femtocells provide open access, how

will handovers be performed? Current handover algorithms work by broadcasting neighbor

lists used by the mobile to identify candidate cells for handover. These algorithms do not

scale to the expected large number of femtocells that lie in the same coverage area of the

macrocell [15]. Thus, new handover algorithms need to be develop in order to guarantee

proper access. The idea is to incorporate these changes in current networks, while minimizing

the addition of new equipment and minimizing changes to current communication protocols.

Second, how can latency in a handover be minimized? Can we predict handover with enough

accuracy such that the resources can be allocated ahead of time? This in turn, minimizes the

latency; but may decrease the efficient use of resources. So there are tradeoffs to consider.
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Another important aspect of handover is billing. Femtocell originated calls are covered in

the monthly fee; if a call is in handover from the femtocell to the macrocell should billing

differ? What happens if a call originated in the macrocell and is handover to the femtocell?

What is approach to billing in these situations?

Handover management is key in the successful deployment of femtocells. The last thing a

femtocell user wants is loose coverage as he enters the home. Therefore, the need for fast

handover algorithms in femtocell deployments.

7.2.3 Handover Management in B3G Wireless Networks

B3G wireless networks can be described by two adjectives: convergent and heterogeneous.

These networks are convergent, because at a high level they mark the intersection of data

and circuit-switched services, the convergence point being the Internet Protocol (IP). Mobile

users no longer have to choose which wireless system is needed for their application [59].

Also, it is the convergence of multiple wireless devices (i.e. cellular phones, PDAs, laptops,

etc.) into one single platform if the mobile users wishes to. Ultimately, whether to use one

device or multiple devices is the user’s choice, however, manufacturers and operators need

to provide terminal equipment that is configurable to the user’s needs. The single platform

is envisioned to be an SDR module that the user can then configure according to his or her

application needs.

In terms of handover management, there are two possible types of handovers in B3G net-

works: horizontal handover and vertical handover. The horizontal handover is an intra-

system handover. This type of handover has been researched extensively in the literature,

however there is still room for improvement. Currently, the vertical handover is the key

challenge in these networks. The idea is to provide seamless handover even in inter-system

handover scenarios in order to maintain QoS levels. If we further explore what the term

seamless handover implies, we can describe this type of handover as fast and imperceptible

by the mobile user. Today, in some scenarios with current technology a seamless han-
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dover is not achievable [127]. The interruption of service is still perceptible by the user.

Several solutions have been offered in the literature including: a common radio resource

management approach for heterogeneous networks [102], a common based identifiers ap-

proach [127], a peer-to-peer (P2P) overlay network approach [128], an a priori database

handover approach [129], also Layer 2 handover schemes [130–132], and several cognitive

approaches [133–135], among others. An article that compares some of these approaches has

been written by Stevens-Navarro et al. [136].

In summary, handover management in B3G networks is key to the successful integration

of multiple communication systems. One of the main objectives is to offer seamless com-

munications to the mobile user, even when performing vertical handovers. We believe that

cognition can be useful in achieving this objective, however more research needs to be per-

formed in order to develop fast and efficient algorithms that enable seamless handover, while

minimizing changes to the infrastructure and equipment in current networks.

7.3 Handover Algorithms

In this section we provide an overview of traditional handover algorithms. We first describe

algorithms based on the relative signal strength, the most common method. We then describe

other traditional algorithms that trigger a handover based on the distance between mobile

and basestation, the velocity of the mobile user, or the Signal-to-Interference Ratio.

7.3.1 Relative Signal Strength Algorithm

In this section, we discuss the RSS based handover algorithms. This type of handover

scheme is very widely used and implemented, it was used in 2G networks and is currently

being used in 3G systems with some modifications. The handover algorithm chooses the

cell with the strongest relative signal at all times [106]. Figure 7.4 illustrates the basics of
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Figure 7.4: Handover based on Relative Signal Strength

this handover. The decision is based on the average of received signal measurement. The

purpose of the averaging is to remove the rapid fluctuations on the signal strength due to

the multi-path environment. One of the disadvantages of this method is the relatively high

rate of handovers, even when the current basestation may be adequate. There are many

variants of this method. In some a threshold, or a hysteresis margin, or both have been

added to decrease the unnecessary handover rate [106,124,137]. Also as Zhang and Holtzman

suggested an algorithm that combines absolute and relative signal measurements [138]. They

are described as follows:

• Relative Signal Strength with threshold - In this algorithm, the network allows the user

to handover only if the current basestation signal strength is less than a threshold, and

the target basestation signal strength is the stronger one. This technique is generally
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not used because the selection of the threshold depends on prior knowledge of the

crossover signal strength between basestations.

• Relative Signal Strength with hysteresis - In this algorithm, the network allows the user

to handover only if the target basestation signal strength is sufficiently stronger (by a

hysteresis margin) than the current basestation. This technique prevents the ping-pong

effect caused by fluctuations in the received signal strength of both basestations.

• Relative Signal Strength with threshold and hysteresis - In this algorithm, both variants

are incorporated. Therefore, the network allows the user to handover when the current

basestation signal strength is below the designated threshold and the target basestation

signal strength is stronger by the hysteresis margin. This method is used in 3G systems.

• Combined Absolute and Relative Signal Strength - In this algorithm, the handover

decision is made if the following two conditions are satisfied [138]: the average signal

strength of the serving basestation falls below an absolute threshold, and the average

signal strength of the candidate basestation exceeds the average signal strength of the

current basestation by a hysteresis margin.

The RSS algorithm and its variants are the most widely known handover algorithms, how-

ever as networks evolve into heterogeneous networks the need for flexible, fast and efficient

algorithms increases. In the next section, we present other handover approaches in the

literature.

7.3.2 Other Handover Algorithms

In this section, we describe other algorithms that are available in the literature [121, 139].

Some of these algorithms based their handover decision on the mobile user’s distance from

the basestation, the velocity of the mobile user, the Signal-to-Interference Ratio of received

signals, the minimum transmit power and other criteria. While these algorithms are not as
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widely used as Relative Signal Strength Algorithms, their approach to handover triggering

and handover decision may be useful in cognitive handover algorithms.

• Distance-based Algorithm - In this algorithm, the UE is assigned to the nearest cell.

The handover decision is based on the RSS measurements and the relative distance of

the mobile from the cell. The relative distance is calculated by comparing propaga-

tion delays. This algorithm allows handoff at the planned cell boundaries, however its

efficiency over the RSS algorithm diminishes as cell sizes become smaller (i.e. micro-

cells, picocells and femtocells). Some implementations of this algorithm can be found

in [140–142].

• Velocity-adaptive Algorithm - In this algorithm, the length of the averaging window for

the RSS adapts to the UE’s velocity. This algorithm works well for fast moving users in

overlay networks. Three velocity-adaptive algorithms are presented in [143, 144]. Re-

cently in 2008, He et al. proposed a combined distance and velocity adaptive algorithm

for heterogeneous networks [142]. The algorithm samples the received power from the

basestation continuously, it also uses the basestation coverage radius and propagation

parameters. The mobile terminal then estimates the distance and the leaving velocity

from surrounding basestations. Simulation results showed significant improvements

over the traditional handover decision algorithm. In addition, this algorithm can be

solely implemented by the mobile.

• Signal to Interference Ratio Algorithm - In this algorithm, the handover decision is

made if the Signal-to-Interference Ratio (SIR) from the current cell falls below a certain

threshold. An advantage of using SIR as handoff criteria is that it is often the key to

voice quality, system capacity and dropped call rate [139]. It is a metric for the link

quality, however the SIR may oscillate due to the propagation effects and result in an

increased handover ping-pong rate [139]. In references [145,146], the authors combine

the SIR criterion with a minimum transmit power algorithm.
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• Minimum Power Algorithm - In this algorithm, the objective is to minimize the up-

link transmit power by searching for a suitable combination of basestation and chan-

nel [145, 146]. This algorithm is useful when extending battery life, reducing power

consumption, and reducing interference are the primary QoS requirements for the user.

However, this algorithm results in an increased number of unnecessary handovers [121].

7.4 Handover Prediction Algorithms

In this section, we provide a brief overview of the handover prediction algorithms in the

literature. Handover prediction algorithms have been studied extensively in the literature,

however these techniques have not been well accepted in 3G or LTE systems due to their

insufficient cost/performance ratio [147]. Therefore, the need to investigate handover pre-

diction algorithms that are easy and economical to implement while improving the mobile

user’s QoS and the overall network performance.

The main idea in these algorithms, is to base the handover decision on the expected future

value. The handover decision could be based on the signal strength, the mobile user’s

movement or distance from the current cell, handover history, and mobility patterns. There

are three main types of predictive systems: history-based, location-based and hybrid, which

combines both [148].

• RSS and threshold Prediction Algorithm - In this prediction algorithm, the UE periodi-

cally measures the RSS from the current basestation and compares it with a predefined

threshold. If the expected future value of the RSS will lie below the threshold, then

the UE triggers a handover. Some examples in the literature of the implementation of

this algorithm are found in [124, 149]. In [124, 149] the authors developed a handover

algorithm using Grey prediction theory to obtain the predicted RSS value. Results

in [124] showed a smaller mean of handovers and smaller mean delay when compared

to the traditional RSS handover algorithm without prediction.
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Figure 7.5: Handover Prediction Algorithms

• Movement Extrapolation Prediction Algorithm - In this prediction algorithm, the UE

reports movement information including: location, direction, and velocity. The han-

dover prediction algorithm calculates the expected next location of the UE and if the

serving basestation for the area is a different from the current basestation, it initiates

a handover. An enhanced version of this algorithm is presented in [150] where the

movement trajectory of the UE is employed to make the target cell handover selection.

• Handover History Data Prediction Algorithm - In this handover prediction algorithm, a

handover prediction is made based on previous handover history. The UE collects data

on the cells visited, the dwell time in each cell, the candidate cells for handover, etc.

Then the stored data is mined, the handover decision is predicted based on the history

collected [119]. Many of the proposed algorithms today include the handover history

data along with mobility patterns, thus algorithms that are solely-based on history are

not as common. This type of algorithm may be useful where location services are not

available (i.e. indoors where GPS is not accurate).
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• Distance-based Prediction Algorithm - In this algorithm, a prediction is made based on

the distance of the UE from the current basestation. If the UE is moving away from

the serving cell, the algorithm calculates the time that it will be out of the coverage

range and then decides on a handover and searches for the target cell. This handover

tends to be fast but less precise since it uses only location information for the handover

decision. An example of this algorithm is presented in [151] where a traveling distance

handover prediction algorithm is applied to minimize unnecessary vertical handovers

from cellular networks to Wireless Local Area Networks (WLAN)s.

• Mobility Pattern Prediction Algorithm - In this algorithm, a prediction is made using

the mobility pattern of the UE. The UE collects movement data and handover history

data. Then mobility patterns are extracted from the data, and the handover is pre-

dicted on a current mobility pattern using old mobility patterns in memory. Interest in

this algorithm has been significant in recent years. It has been proposed for handover

prediction in CDMA systems in [152–154]. Furthermore, in [119] it is use to improve

handover in 3G-WLAN overlay networks. Also, it has been suggested for 3G LTE

systems in [147]. Moreover, it has been suggested as part of the handover management

scheme of next generation wireless networks in [155].

7.5 Problem Description: Using Cognition in Handover

Management

In this section, we discuss how to apply cognition to the handover management process. First,

we describe the objectives of our proposed cognitive engine. Then, we compare and contrast

the approach to handover management in a traditional network versus a cognitive network.

We continue by describing the system’s model and the knobs and meters of the cognitive

engine. With this implementation we execute the final step of the proposed approach by

fielding the learned knowledge in an application.
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7.5.1 Objective

The objective of the handover management engine is to exploit the cognitive capabilities of

the mobile and the network to improve the overall performance. We apply our approach

to develop the cognitive engine and formulate the handover problem as a Classification and

Regression problem and use the decision tree algorithm to predict whether a handover is

needed or not. We then evaluate the engine’s performance to measure improvements.

Recalling the cognition cycle in Figure 2.1 we can describe the cognitive process in terms of

handover management as follows:

• Observe - The cognitive mobile and the cognitive network observe the surrounding

radio environment. In this phase, measurements such as: received signal strength,

signal-to-interference ratio, etc. are taken. Also, location and mobility information is

collected.

• Orient - In this phase, the cognitive engine (network, mobile or both) fuses the new

information collected, with previous knowledge such as: geographical information, mo-

bility patterns, handover history, user requirements, terminal capabilities, etc., and

creates an interpretation of the current handover situation. In this step, the current

state of the world is determined and the problem formulated in a way that the engine

can solve.

• Decide - In this phase, the cognitive engine uses prediction to make a decision. In

our work, we use a decision tree learning algorithm to predict whether a handover is

needed or not, based on the expected future location and direction of the mobile user.

• Act - The handover process is initiated. Measurements are collected in order to deter-

mine performance improvements.

• Learn - The system learns to predict with accuracy when a handover is needed.
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In summary, the cognitive engine should: predict when a handover is necessary with a certain

accuracy probability, minimize the rate of handovers, minimize handover delay, and minimize

the use of resources.

7.5.2 System Overview

The overall system under investigation is composed of three modules: the Network Envi-

ronment Simulator (NES), the Handover Management Engine (HME), and a post processor

used to interpret the results. Figure 7.6 describes the interactions between these three mod-

ules. The NES, developed using MATLAB, was designed to generate cases for our cognitive

engine to analyze. A mobility simulator, called MobiSim, created by Mousavi et al. [156] was

used to generate mobility traces for various mobility models. The HME was design using

the approach described in Chapter 3. The DTL algorithm used is C4.5 as described in the

previous chapter. A post-processor was created in MATLAB to interpret and present results

graphically.

The engine was built upon the coverage learning engine discussed in Chapter 6. The steps

are outlined as follows:

• Formulation - the learning problem has been formulated as a Classification and Re-

gression problem. The engine uses previous observations in the form of cases, used to

derive a decision tree that makes a prediction on the expected value of the received

signal. If the expected value of the received signal is below a certain threshold the

engine will make the decision to handover.

• Representation - the data is represented in cases. Each case contains is constructed as

in Table 7.1.

• Collection of Data - Mobility traces are generated using MobiSim [156] for the various

mobility models under investigation (Freeway, Manhattan and Random Waypoint).

Then the cases are generated using the NES.
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Table 7.1: REM Data and Type

Attributes Description Type
x position in the x axis numeric
y position in the y axis numeric
R distance from Node B numeric
v velocity of the mobile numeric

SINR reported SINR level numeric
HO handover boolean

Figure 7.6: System Overview: Module Interactions

• Evaluation - We train the HME using a training set for each experiment. Then, HME

is applied to a new data set. The HME makes a prediction on handover based on the

training set and the rules derived for the training data. We analyze the performance

of the prediction algorithm and compare it to the traditional handover algorithm.

• Application - In this case, the application of the learning method is use to predict and

manage handovers in the networks.
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Traditional Handover Algorithm

In a traditional 3G network, handover management is generally handled by the RNC. It may

be assisted by the mobile (MAHO) or network controlled (NCHO). UMTS supports two types

of handovers: soft and hard. However, in HSDPA soft handovers are no longer supported due

to the amount of resources used and latency. Handover algorithms are generally proprietary

to the equipment manufacturer, or have been designed by the operator to fulfill their QoS

requirements. In this work, when we refer to the traditional handover algorithm we refer

to a RSS averaging algorithm with threshold and hysteresis. The mobile reports the RSS

measurements and the network controls the handover.

Algorithm 3 Traditional Handover Algorithm

Perform RSS measurements
Average RSS measurements
if current RSSC measurements greater than threshold τ then

Compare RSS measurements for available basestations
Select best basestation:N
if RSSN > RSSC + hysteresis h then

Handover to basestation N
else

No Handover
end if

else
Perform RSS measurements

end if

Cognitive Handover Algorithm

In our implementation of a cognitive handover algorithm, the mobile reports the current

RSS levels. The HME uses the DTL algorithm to predict the RSS level of the mobile at time

t+∆t. If we predict that the RSS level will be below the threshold τ , we initiate the handover

process. If not, we continue to monitor the current state by performing RSS measurements

again. The handover management process continues as the traditional one, the step that

differentiates them is the prediction obtained by the DTL algorithm. We consider several
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Table 7.2: Handover Management Engine Experiments

Experiment Environment Velocity Mobility Service
1 Pedestrian 0-5 kmph RWP Voice
2 Urban 0-40kmph Manhattan Voice
3 Suburban 40-100 kmph Freeway Voice

attributes of the mobile’s mobility pattern. We use the initial location (x, y, R) and given the

time elapsed, the mobile’s velocity and direction we predict the mobile’s location at t+ ∆t.

We then examine the RSS level at time t+∆t and if the RSS level lies below the threshold τ ,

we proceed with the handover management steps as in the traditional handover algorithm.

Algorithm 4 Cognitive Handover Algorithm

Perform RSSC measurements
Predict RSSC at t+ ∆t
if RSSC at t+ ∆t > threshold τ then

Compare RSS measurements for available basestations
Select best basestation:N
if RSSN > RSSC + hysteresis h then

Handover to basestation N
else

No Handover
end if

else
Perform RSS measurements

end if

7.6 Simulation Results

In this section, we discuss the experiments that were used to test the HME. The experiments

characterize typical wireless network environments for pedestrian, vehicular and urban mod-

els. Table 7.2 describes the experiments. In the next sections, we discuss each experiment

in detail and present the results.
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Figure 7.7: Experiment 1: Pedestrian Environment

7.6.1 Experiment 1: Pedestrian

In the first experiment, we model a pedestrian environment, where the users’ mobility can

be characterized using a RWP mobility model. The RWP is the “benchmark” model to

evaluate the impact of mobility on network protocols due to its simplicity [157]. This model

can characterize mobile users walking in a plaza, shopping center, or an open outdoor area.

This model is implemented as follows: mobile users are randomly placed in the simulation

area, then each mobile user travels towards its destination with a constant velocity chosen

uniformly and randomly from [0, Vmax]. Vmax is the maximum velocity for all nodes. When

a node reaches a destination it pauses for time Tpause. If Tpause = 0 then the mobility is

continuous without pauses at each destination. After, this pause the node selects a random

direction and the process repeats.

It is important to note that the RWP mobility model has some disadvantages such as: lack

or regular movement modeling which provides no predictability. Also, it introduces sudden
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stops, is unable to achieve a steady-state and it is a memory-less movement behavior [158].

The speed of the users ranges typically from 0 to 5 kmph. We consider the service type to be

voice, which is a circuit-switched service, thus requiring low latency. Furthermore, handover

to another cell must be imperceptible by the user. To test the HME in a pedestrian environ-

ment, we have design the experiment represented in Figure 7.7. There are two basestations

that cover the area. There is a coverage hole in each cell coverage area. The initial condition

is for nodes to be assigned to the basestation that has the highest SINR. The idea is that

the handover management engine will predict when the mobile user enters the coverage hole,

and handovers to the other basestation.

Results

The results obtained from a scatter plot for the pedestrian experiment are shown in Figure

7.8. There are 360,000 observations corresponding to 1 hour of observation, and 100 nodes.

The blue dots depict the cases observed by the engine, the shaded areas represent the coverage

hole, with red being the worst coverage. As a node moves around the coverage area in a

random waypoint pattern and is about to enter the coverage hole, the handover management

algorithm will predict when the coverage hole will be entered and request a handover to the

other basestation.

For this experiment, we found that in order to classify the coverage area, the algorithm

induced 292 rules, with a maximum depth of 9 for some of the rules. The algorithm misclas-

sified 1,113 cases out of 359,500, for a 0.3% classification error. A decision tree is created for

each basestation. As expected due to the strong and random variations in the mobility of

the nodes using RWP the resulting tree is relatively large, and cannot be easily drawn on a

piece of paper. In this case, the idea is to generate the decision tree once during the day and

update it when the processing requirements of the network are low. Thus, the latency to

induce the tree can be handled offline, but still keep the coverage information current. When

compared to the traditional handover algorithm, the results on the number of dropped calls,



139

Figure 7.8: Scatter Plot for Handover Management in Pedestrian Experiment
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Table 7.3: Traditional Versus Cognitive HO Algorithm - Pedestrian

Metric Traditional Algorithm Cognitive Algorithm
Number of Dropped Calls 192 81
Number of Handovers 1042 1155
Number of False Handovers n/a 81

the number of handovers and the rate of false handovers for the cognitive algorithm are as

follows:

Results showed that the amount of dropped calls was reduced by 57.8%, however the rate

of handover increased by 10.8%. For the cognitive algorithm, the amount of false handovers

was 81, representing a 7% of the total number of handovers.

Performance

The ROC Curve obtained for the handover management engine for the pedestrian experiment

are shown in Figure 7.9. The ROC Curve validates our design and shows that the resulting

classification obtained from the decision tree induced for this experiment offers very good

performance, with an area under the curve close to 1.

7.6.2 Experiment 2: Urban

In the second experiment, we model an urban environment where the users’ mobility can

be characterized using the Manhattan mobility model. The Manhattan model uses a grid

road topology [159] that mimics the street layout in urban cities. The map used in the

Manhattan model is composed of horizontal and vertical streets. Each street has one lane in

each direction, the mobile user moves along the streets in the grid. At each intersection the

node can go straight, turn left or turn right. The model employs a probabilistic approach to

make the turn at the intersection. Each node has 50% probability of remaining in the same
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Figure 7.9: ROC Curve for Handover Management in Pedestrian Experiment
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Figure 7.10: Experiment 2: Urban Environment

direction and 25% probability of turning either left or turning right. The Manhattan model

differs from the RWP in several aspects [160]:

• Each mobile’s movement is restricted to a grid-like pattern.

• The velocity of the mobile is temporally dependent on its previous velocity.

• If two nodes are on the same lane, the velocity of the following node cannot exceed the

velocity of the preceding node.

The following speed rules describe the inter and intra node relationships:

|~Vi(t+ ∆t)| = |~Vi(t)|+ η ∗ |~ai(∆t)| (7.1)

∀i, ∀j,∀t,Di,j(t) ≤ SD ⇒ |~Vi(t)| ≥ | ~Vj(t)
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Some of the shortcomings of this model are the lack of consideration on user travel decisions,

and traffic safety conditions. Hence, this model is the middle ground between RWP and a

car-following model [159]. This model is still considered a random mobility model.

The speed of the users ranges typically from 0 to 40 kmph. As with the previous experiment,

the service type is voice, which is a circuit-switched service, thus requiring low latency (this

is also needed for high-speed data services). Furthermore, handover to another cell must be

imperceptible by the user. To test the HME in an urban environment, we have design the

experiment as in Figure 7.10. There are two basestations that cover the area. An coverage

hole is modeled in the middle of the area, the idea is that the engine will make a prediction

based on the mobility of the user and handover from the basestation that has the coverage

hole to the basestation with the stronger signal.

Results

The results obtained from a scatter plot for the urban experiment are shown in Figure 7.11.

There are 360,000 observations corresponding to 1 hour of observation, and 100 nodes. The

blue dots depict the cases observed by the engine, the shaded areas represent the coverage

hole, with red being the worst coverage. The grid-like movement typical of the Manhattan

mobility model is observed.

For this experiment, we found that in order to classify the coverage area, the algorithm

induces 24 rules with a depth size of 6 for the first basestation, and 20 rules with a maximum

depth size of 8 for the second basestation. The resulting trees are relatively small, thus it

is feasible to induce the tree for this type of environment as conditions change. When

compared to the traditional handover algorithm, the results on the number of dropped calls,

the number of handovers and the rate of false handovers for the cognitive algorithm are as

follows:

Furthermore, the amount of dropped calls is reduced by 99.5% in the cognitive algorithm,
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Figure 7.11: Scatter Plot for Handover Management in Urban Environment

Table 7.4: Traditional Versus Cognitive HO Algorithm - Urban

Metric Traditional Algorithm Cognitive Algorithm
Number of Dropped Calls 733 4
Number of Handovers 4,516 4,532
Number of False Handovers n/a 13
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Figure 7.12: ROC Curve for Handover Management in Urban Environment

and the rate of handover is very similar it increased by 0.4%. The false handover rate is 0.3%.

In this case, the amount of resources used is very similar in both cases, but the amount of

dropped calls is significantly reduced by the cognitive algorithm. In the Urban experiment

the tradeoffs between resources, complexity and performance improvements favor the use of

the cognitive algorithm.

Performance

The ROC Curve obtained for the handover management engine for the pedestrian experiment

are shown in Figure 7.12. The ROC Curve validates our design and shows that the resulting

classification obtained from the decision tree induced for this experiment offers very good

performance, with an area under the curve close to 1.



146

Figure 7.13: Experiment 1: Suburban Environment

7.6.3 Experiment 3: Suburban

In the third experiment, we model a suburban environment where the users’ mobility can

be characterized using a Freeway mobility model. The Freeway model mimics the mobility

of users in a freeway. Nodes are restricted to move along a lane in one direction, as in the

Manhattan model the same speed rules apply.

The speed of the users ranges typically from 40 to 100 kmph. As with other experiments,

voice is the service type, which is a circuit-switched service, thus requiring low latency.

Furthermore, handover to another cell must be imperceptible by the user. To test the HME

in a suburban environment, we have design the experiment as in Figure 7.13. There are two

basestations that cover the area. An coverage hole is modeled in the middle of the area,

the idea is that the engine predicts with enough time the need for handover. In this case,

where velocities are high and mobiles go in and out of the coverage area quickly, a fast and

accurate prediction is very significant.
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Figure 7.14: Scatter Plot for Handover Management in Suburban Environment

Results

The results obtained from a scatter plot for the suburban experiment are shown in Figure

7.14.

For this experiment, we found that in order to classify the coverage area, the algorithm

induces 38 rules with a maximum depth size of 6 for one basestation, and 31 rules with a

maximum depth of 6 for the second basestation. As with the urban experiment, the pre-

dictability in the mobility model allows for accurate predictions and a simple tree. Therefore,

it is feasible to induce this type of tree several times during the day as network conditions

change. When compared to the traditional handover algorithm, the results on the number

of dropped calls, the number of handovers and the rate of false handovers for the cognitive

algorithm are as follows:
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Table 7.5: Traditional Versus Cognitive HO Algorithm - Suburban

Metric Traditional Algorithm Cognitive Algorithm
Number of Dropped Calls 1433 25
Number of Handovers 11,653 11,456
Number of False Handovers n/a 131

In this experiment, the amount of dropped calls is reduced by 98.3% in the cognitive al-

gorithm, and the rate of handover is reduced in the cognitive algorithm. In this case, the

amount of resources used is very similar in both cases, but the amount of dropped calls is sig-

nificantly reduced by the cognitive algorithm. For this experiment, the amount of handovers

is reduced for the cognitive algorithm by 1.7%. The false handover rate is 1.1%, which is

relatively low. In the Suburban experiment the tradeoffs between resources, complexity and

performance improvements also favor the use of the cognitive algorithm.

Performance

The ROC Curve obtained for the handover management engine for the pedestrian experiment

are shown in Figure 7.15. The ROC Curve validates our design and shows that the resulting

classification obtained from the decision tree induced for this experiment offers very good

performance, with an AUC close to 1.

7.7 Summary

In this chapter we presented another implementation of the hybrid cognitive engine. We

began discussing the related background of handover management. We provided a system

overview and discussed the assumptions and models used in simulations. We presented

three different experiments that characterize typical wireless network environments. Re-

sults showed that our Handover Management Engine uses the learned knowledge from the

Coverage Learning Engine presented in Chapter 6, and maps a handover management ac-
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Figure 7.15: ROC Curve for Handover Management in Suburban Environment
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tions that result in improved performance. We also presented how to evaluate the engine’s

performance.



Chapter 8

Determining Policy Events Using

Cognition

In this chapter, we explore the impact of policy on our cognitive engine. First, we provide a

brief discussion on the background work on policy-based management (PBM). Then, current

approaches to applying policy in 3G networks, femtocell deployments and B3G networks

are discussed. Furthermore, our cognitive engine is extended to learn policy events from

environment observations.

8.1 Problem Background

The rapid proliferation of wireless applications has increased the demand for the electromag-

netic spectrum. Current spectrum regulations limit its use, thus researchers in academia and

industry have been investigating new approaches that maximize the use of this resource. Re-

search has been conducted in many areas, including: DSA techniques, new technology such

as: software radio, cognitive radio, and MIMO antennas, among others. However, in order

to implement these spectrum maximization solutions a major paradigm shift in regulations,

151
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policies and market structures must take place. As with any autonomous device, there are

concerns regarding a cognitive radio’s behavior. A CR may behave selfishly, resulting in

interference for non-cognitive or legacy users, and other cognitive devices. To address this

issue, regulatory policies must be developed to assure fair use of all the network’s resources.

In the next section, we discuss the concept of policy-based management,and its applications

in network management.

8.1.1 Policy-based Management

The concept of policy is used in many areas and fields from law to engineering. There is no

consensus on a single definition for policy, mainly because of its variety of uses. However,

in this work we will explore what policy means in the context of a network. In general, a

policy is a set of guidelines that directs one’s actions in order to achieve a set of goals or

outcomes. The Internet Engineering Task Force (IETF) has defined policy as “a definite

goal, course or method of action to guide and determine present and future decisions.” In

machine learning, policy can be defined in terms of an intelligent agent as: a control strategy

for choosing actions to achieve the agent’s performance goals [85].

Furthermore, one can also classify policy in terms of how it is used in the management of

the network. According to Chadha and Kant [161] there are four basic applications of policy

in networks:

• policy as rules,

• policy to grant/deny permissions,

• policy as constraints or parameters, and

• policy as configuration.

The first application is probably the most common one. A policy is a set of rules that
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dictates the behavior or actions for the network given the current conditions or state of the

network. As an example, a policy rule for our cognitive 3G network could be:

“If Wi-Fi network available, use Wi-Fi for all data communications.”

In this application the policy is prescriptive and procedural [161].

The second application is to grant or deny permissions, in this case the policies tend to be

declarative rather than prescriptive. They specify the what not the how. As an example of

this type of policy could be:

“If user is from service class A, do not connect to Wi-Fi.”

In the third type of application, policy is used as constraints or parameters in the network.

This type of policy application implements the network’s target goals in a declarative form

[161]. In this case, the policy also makes statements about relationships that must hold

true among the network’s elements. Furthermore, the network’s target goals may come

from different sources (i.e. operator’s business goals, QoS requirements from the users,

regulatory policy, etc.), thus the network operator must translate these higher goals into

policy formulations that can be implemented in the network. An example could be:

“At most 20% of the bandwidth, is allocated to service class A.”

The above policy statement ties two network elements such as the bandwidth, and the user

service class to higher network goals such as targeted QoS, revenues, resource allocation, etc.

The fourth application is policy configuration. In this application, policy is used to configure

the network elements, protocols and services. This type of policy is prescriptive and more

precise as it sets parameters in the network configuration.

“Set maximum transmit power for users in service class A to -10 dBm.”

The previous policy statement limits the transmission power of an user in a particular service

class to -10 dBm.

In summary, the term policy can have different meanings in the context of network manage-



154

ment. Analogous to applying machine learning to wireless networks, where formulation is

key. The accurate application of policy relies on the proper use of policy given the network

goals.

8.2 Problem Description: Determining Policy Events

Using Cognition

In this section, we discuss how to apply cognition to determine policy event patterns. First,

we describe the objectives of cognitive engine. We continue by describing the system’s model

and the knobs and meters of the cognitive engine. With this implementation we validate

our approach, and show how different problems can be solved by mining the appropriate

information and formulating the learning problem, as discussed in Chapter 3.

8.2.1 Objective

The objective of the policy management engine is to exploit the cognitive capabilities of the

mobile and the network to determine policy patterns. We apply our approach to develop

the cognitive engine and formulate the policy determination problem as a Classification and

Regression problem and use the hybrid case-based reasoning and decision tree algorithm

to predict whether a policy event has occurred or not. The policy event of interest is

transmission power control. In this scenario, The target goal for the engine is to classify

network events as policy events.

Recalling the cognition cycle in Figure 2.1 we can describe the cognitive process in terms of

policy management as follows:

• Observe - The cognitive mobile and the cognitive network observe the surrounding

radio environment over long periods of time. In this phase, measurements such as:
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received signal strength, signal-to-interference ratio, cell load, etc. are taken. Also,

location and mobility information for each mobile is collected.

• Orient - In this phase, the cognitive engine (network, mobile or both) fuses the new

information collected, with previous knowledge such as: geographical information, mo-

bility patterns, handover history, user requirements, terminal capabilities, etc., and

creates an interpretation of the current network situation. In this step, the current

state of the world is determined and the problem formulated in a way that the engine

can solve. The objective for the engine has been clearly defined as policy determination.

• Decide - In this phase, the cognitive engine uses prediction to make a decision. In our

work, we use a decision tree learning algorithm to predict the likelihood that a policy

event will occur or not.

• Act - The engine classifies the events as being policy events or not. If it determines

that the transmission power control will occur, then the nodes in excess to the new

capacity (limited by the new maximum transmission power) will be handover to the

other basestation.

• Learn - The system learns the network’s policy patterns.

8.2.2 System Overview

The overall system under investigation has the same structure as the HME in Chapter 7.

However, the objective of the engine is to determine policy patterns over long periods of

time. The engine was built upon HME discussed in Chapter 7. The steps are outlined as

follows:

• Formulation - the learning problem has been formulated as a Classification and Re-

gression problem. The engine uses previous observations in the form of cases to derive

a decision tree that makes a prediction on the likelihood that a policy event will occur.
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Table 8.1: REM Data and Type

Attributes Description Type
τ timestamp numeric
x position in the x axis numeric
y position in the y axis numeric
R distance from Node B numeric
v velocity of the mobile numeric

SINR reported SINR level numeric
Policy policy event boolean

• Representation - the data is represented in cases. Each case contains is constructed as

in Table 8.1.

• Collection of Data - Mobility traces are generated using MobiSim [156] for the various

mobility models under investigation (Freeway, Manhattan and Random Waypoint).

Then the cases are generated using the NES.

• Evaluation - We train the Policy Engine (PE) using a training data set for each exper-

iment. A decision tree is generated for each training set. Then, the PE is applied to a

new data set. The PE makes a prediction on whether a policy event occurred and the

time period that it occurred.

• Application - In this case, the application of the learning method is use to predict

policy events.

8.3 Policy Determination Experiment

In this section, we discuss the experiment used to simulate how the cognitive engine deter-

mines policy events. The experiment characterizes the 3G macrocell network environment

with a Freeway mobility pattern. The engine performs network environment observations on

a 2-lane highway, for a total period of 1 hour. There are 100 nodes, thus resulting in 360,000

cases.
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Figure 8.1: Experiment: Policy Events Determination

Furthermore, the nodes are moving along the lanes at random velocities that 40 kmph

and 100 kmph. The metric used is analogous to the three bars on a 3G cellphone screen,

availability of service. A policy event that constrains the transmitted power is added during

an interval of time, ∆t. The policy engine is induced with an initial simulation of 360,000

cases and tested on another set of 360,000 cases.

8.3.1 Simulation Results

The resulting decision tree is shown in Figure 8.1. In this case, the decision tree simplifies

significantly as it determines that the attribute timestamp, τ , is uncorrelated from the rest

of the attributes. It is the attribute with the highest entropy and splitting on that attributes

results in the simplest tree.
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Figure 8.2: ROC Curve: Policy Determination Engine

The resulting ROC curve for the classifier obtained on the testing set is depicted in Figure

8.2. As seen from the figure, the policy engine is a good classifier for policy events, with an

area under the curve very close to 1. The ideal classifier has an ROC curve with an area

under the curve exactly one. The resulting decision tree algorithm is a good way to classify

the event but it is not immune to noise or overfitting of the data.

This policy determination algorithm can be used in many network environment scenarios.

As we move to autonomous devices and self-organizing networks, we can initialize these

devices with “typical scenarios” knowledge, then these cognitive devices that are capable

of learning via computation (i.e. using Machine Learning (ML) algorithms) can alter their

initial pre-programmed configuration to improve performance as dictated by the observed

network conditions.

As an example, a femtocell that has been deployed in a suburban setting, where other fem-



159

tocells have been deployed, can determine from environment conditions that power trans-

mission should be minimized at a certain time or in a certain direction (if equipped with a

directional antenna) in order to limit interference to a nearby femtocell, or to the macrocell.

Also, a cognitive device can generate policy rules from the observed conditions and dissemi-

nate the information with nearby nodes, either cognitive or non-cognitive devices. Also, this

type of algorithm can be employed by policy regulators to validate that policy rules have

been enforced.

8.4 Summary

This chapter presented how the decision tree learning CE can determine policy event pat-

terns. We began discussing the concept of policy-based management and how it is currently

applied to wireless networks. We proceeded to describe how the cognitive engine is used to

determine policy events, or derive policy rules. We suggested several implementations of this

approach. Finally, we evaluated the engine’s performance via simulation.



Chapter 9

Conclusions and Future Work

This document proposed an approach to applying cognition in wireless networks. Also,

discusses the concept of a cognitive radio resource manager. The proposed approach is

used to design a hybrid cognitive engine that uses CBR and DTL for the reasoning and

learning phases of the cognitive cycle. We applied the hybrid engine to three typical RRM

problems: improving coverage, managing handover and determining policy events. This

chapter summarizes this work, lists contributions and future research direction.

9.1 Conclusions

This document begins by providing the motivation for applying cognition to 3G and B3G

wireless networks. Although, most of the focus of the cognitive radio research has been on

the application of cognitive radio for management of the spectrum, we argue that cognitive

radio can bring improvements in radio resource management by the addition of awareness,

intelligence and the use of previous experience to solve current problems.

We proceeded with a brief discussion of the concepts of cognitive radio and cognitive engine.

We contrasted some of the popular definitions and also provided the scope of these concepts

160
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in this proposal. We continued with a survey of previous cognitive engine implementations,

the type of applications and the machine learning techniques used in these cognitive en-

gines. We proceeded by discussing the application of cognition to 3G wireless networks. We

listed possible applications, discussed the areas that can benefit from adding cognition and

identified the knobs and meters for a cognitive radio implementation in 3G wireless networks.

In Chapter 3, we presented the proposed approach to adding cognition to wireless net-

works. First, we discussed the impact of adding intelligence to communications systems. We

described our approach used to apply machine learning to “real-life” problems in order to

achieve learning. We continued with a detailed discussion of the machine learning techniques

and the data mining algorithms used in the hybrid cognitive engine. We examined case-based

reasoning, its advantages, its disadvantages, and how to implement it in the cognitive engine

design. As discussed, CBR is a better technique for acting and planning learning problems,

while DTL works on problems that have been formulated as a classification and regression

learning problems. CBR can be the decision maker and solver of general problems, while

DTL can be used to solve very specific problems.

Chapter 4 presented the generic cognitive engine and its components. Inputs and outputs

of these algorithms were described and discussed. Also, cognitive engine architectures for

femtocell deployments and B3G wireless networks were suggested. Our generic cognitive

engine is not limited to the 3G architecture but it was chosen to provide a definite context

in order to evaluate performance.

Chapter 5 presented the concept of cognitive radio resource management. We first provided

an introduction and the motivation for the concept of CRRM in wireless networks. We

discussed possible CRRM applications and how adding cognition can improve performance.

Finally, we introduced three RRM problems that are the main focus of Chapters 6, 7 and

8: applying cognition to improve the coverage in a cell and furthermore, using the acquired

knowledge to perform handover management, and determining policy patterns from obser-
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vations. This chapter merged the concepts of cognitive radio and cognitive engine to the

radio resource management tasks in the network.

In Chapter 6, we presented the Coverage Learning Engine and its results. First, we provided

an overview of the system, and a description of the coverage problem in Node B. Also, the

assumptions and the models used in the simulation were discussed. We applied the engine

to a 3G cognitive radio application: learning the coverage of Node B based on environment

observations. The results obtained showed that the engine classified the drop call cases

for Node B and deducted general rules on the coverage of the cell. The resulting tree was

examined. Furthermore, we evaluated the performance of the engine in terms of the quality

of the learned knowledge by examining the estimate of the error rate. We also presented

ROC curve that depicts the performance of the classifier in terms of the tradeoff between

hit rate and false alarm rate. Furthermore, we presented the cost of implementing the

algorithm in terms of the computational complexity for inducing the decision tree. The

computational complexity for evaluating the tree grows logarithmically with the amount of

cases. The idea is to induce the tree with a representative amount of training data, such

that the resulting tree is able to accurately predict or classify future events. An operator

can choose to induce the decision tree offline, and update it once a day or as needed. In

order to minimize computation in the system. This chapter concludes presenting how this

new acquired knowledge on the network’s coverage can be used to develop algorithms that

improve the network’s performance.

Chapter 7, presented an example of how to use the acquired coverage knowledge to manage

handover and improve the performance of the network. By doing this we completed the

steps of our proposed approach described in Chapter 3. First, we discussed the concepts

of handover management and handover prediction algorithms. We applied our approach

to develop a cognitive engine that improved the performance of the network by predicting

handover based on the user’s mobility pattern and history. We compared our cognitive

handover management approach to a traditional handover approach. Finally, we discussed
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the metrics used to measure the improvements in performance and the results obtained from

simulations.

In Chapter 8, another case study on how to apply cognition was presented. In this case, the

learning problem was formulated such that the predicted value was whether a policy event

occurred or not. The learning task for the cognitive engine was to determine if a transmission

power control event occurred. With this case study, we also validate our approach of adding

cognition to the wireless network.

9.2 Contributions

The contributions of our work are three-fold. First, we discussed the application of machine

learning techniques and data mining methods in the design and development of a cognitive

engine. There is a need to research AI and machine learning techniques that will allow for

robust cognitive engine design, at the present time only a handful have been investigated.

Furthermore, in order to successfully implement cognitive radio in 3G and B3G wireless

networks, issues such as: latency, complexity, auto-configurability, and autonomy have to

be addressed. In this work, we attempted to address some of these issues. The latency

requirements in wireless networks will drive the cognitive engine design. We proposed a

hybrid cognitive engine that uses case-based reasoning and decision tree learning. Case-

based reasoning provides problem solving for acting and planning, while decision tree learning

provides problem solving for classification and regression. We have divided the “learning”

phase of the cognitive engine’s cycle in two steps. Both of the techniques used in the engine’s

design exploit using past experiences to induce general rules and to gain new knowledge.

We selected these techniques as they provide key features for our engine’s design. We found

that CBR systems are easy to implement if experience is rich, they also provide a closer

match to the actual human reasoning process, they provide efficient reasoning by focusing

on the problem solving aspects that were important in previous cases, and they allow for
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faster knowledge acquisition. Also, maintenance efforts can be reduced as the CBR system

will learn from the new cases and update the case library as new problems and solutions

are tackled. DTL offers several advantages: the DTs produced are easy to understand

and interpret, DTs manage large amounts of data quickly, DTs can work successfully with

discrete and continuous attributes, and DTs have been well studied in literature. There are

efficient algorithms such as C4.5 that reduce development time. Furthermore, if we consider

the latency requirements in 3G wireless networks, we can expect that most of the training of

the CBR system will be off-line learning in order to minimize the processing time, while the

DTL can be trained using both offline and online learning. The DTL’s algorithm abilities

to classify large amounts of cases, and to prioritize among relevant features, minimizes the

processing time of the cognitive engine, this in turn improves the latency of the engine.

Second, an analytical framework that relates the machine learning techniques (CBR and

DTL) to the cognitive engine’s learning tasks was presented. The cognitive engine learns

when its performance at a certain network tasks improves, given its experience on the task.

The design objective of the cognitive engine was to forecast the occurrence of an event at

some future time, given the current observed conditions at a given time. The cognitive engine

estimated the probability of the event occurring, given previous network conditions. If the

probability was reasonably close to 0 or to 1, the cognitive engine had successfully used

previous experience to get information about future events, thus enhancing the decision

process. The predicted event was modeled as a Bernoulli trial, where the probability of

success is a function of network conditions. A mixture model was used to accomplish this.

Decision tree learning and case-based reasoning are used to estimate the parameters for the

mixture model. Each case in the case library represents the network conditions at a given

instant. The parameter for each distribution in the mixture model can be estimated using

the maximum likelihood estimator (MLE) for the probability in a Bernoulli trial. Therefore,

the decision tree is used to estimate the components of the mixture model, and the case base

library is used to estimate the parameter of each of the components.

Third, we applied the hybrid cognitive engine to three network problems: learning the
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coverage of a cell, managing handover and determining policy patterns. In the first case

study, the cognitive engine learned the coverage of the cell from observations; the objective

was to provide a “proof-of-concept” on our engine design. Results showed that the engine

learned the coverage and, furthermore, was able to induce general rules on the training

cases. The engine increased the knowledge it had over the radio environment; now when

future cases arise, the engine is able to predict if the SINR will be adequate to maintain a

call. If the prediction is such that a call drop is expected, then the engine must map an

action that will prevent the call drop from happening such as performing a handover. The

performance of this engine was evaluated in terms of error rate, and ROC curves. We also

derived the computational complexity of inducing the tree in terms of O(n).

We expanded the initial engine design and completed our proposed approach by fielding

the learned knowledge with an application. We developed a handover prediction algorithm

using decision tree learning and tested the engine under several scenarios: pedestrian, urban

and suburban (i.e. vehicular). We mapped actions in handover management to the learned

knowledge. In other words, once we acquired the new knowledge on the radio environment

we used the knowledge to improve the network’s performance and maximize the user’s goals.

The handover prediction algorithm used the coverage map to predict when a handover was

necessary before reaching the handover threshold. Results showed the for the pedestrian

case, where the mobility was depicted by RWP model and small velocities (0 - 5 kmph),

the number of dropped calls was reduced by 46%, however, the handover rate increased

by 7.9%. The resulting classifier was a strong one with an area under the curve for the

ROC curve very close to 1. For the urban case, the mobility pattern was characterized

using the Manhattan mobility model and velocities between 0 and 40 kmph, the amount

of dropped calls was reduced by 90.2%, the handover rate was very similar to the non-

traditional handover algorithm. The rate of false handover for the urban case was 0.4%.

For the last case, we examined mobility patterns in suburban environments. Where the

mobility can be characterized by the Freeway model, and velocities ranging from 50 kmph

to 100 kmph. Results showed that the amount of dropped calls was reduced by 75.9% and
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the rate of handover was slightly smaller than the traditional handover algorithm. The false

handover rate was around 1.8%.

The handover prediction algorithm developed can bring significant improvements in many

network scenarios. Femtocells will be self-deployed, requiring auto-configurability and adapt-

ability to a changing environment. If equipped with a cognitive engine, and algorithms such

as this one, the femtocell will be able to learn the users’ patterns in terms of their mobil-

ity, handover, power, and throughput requirements. The femtocell can apply the learned

knowledge, predict when adaptations to its own configuration are necessary, and then react

to this learned knowledge. As an example the femtocell can learn handover patterns to the

macrocell environment, predict when a handover will be needed, and then prepare and ad-

justs its parameters to guarantee a successful handover while optimizing the use of the radio

resources. One of the limiting aspects of using this type of algorithm indoors is the need for

location information. Currently, indoor location services are not very reliable or might not

be cost-effective for a femtocell deployment. Therefore, other options for mobility prediction

indoors have to be considered. The handover prediction algorithm can also be employed in

B3G networks, where users will be able to handover to the various RATs available. User

preferences can be included in order to maintain the highest QoS level while reducing costs.

As an example a mobile user may default to free public Wi-Fi access rather than the more

expensive 3G or 4G access.

The policy prediction algorithm developed classifies policy events accurately. The resulting

decision tree is simple, and the algorithm is able to classify the regions precisely. This occurs

because the attribute timestamp is independent from the other attributes, time passes and

the policy event shall take place regardless of the network conditions. The ROC curve for

the classification is very close to 1. There are some variations due to noise in the data,

and overfitting by the algorithm. This type of algorithm is very useful in self-organizing

networks where self-configuration and self-optimization are expected. The node can learn

the network’s policies at initiation, and self-configure as these change.
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9.3 Future Work

The scope of this dissertation included application of machine learning techniques to cogni-

tive engine design, the application of cognition to three CRRM algorithms: coverage man-

agement, handover management and determining policy patterns. Also, we focused on two

machine learning methods: case-based reasoning and decision tree learning. Furthermore,

for our simulations we considered the 3G wireless networks environment. Going forward we

would like to extend this research in several areas including:

• Cognitive Engine Design - in terms of the cognitive engine’s design the broader cog-

nitive radio issues discussed in Chapter 1 should be further explored. There are still

many unknowns and there is a need to further investigate: the amount of cognition

needed in the engine, the location of this cognition in the system’s architecture, the

engine’s architecture, the methodology used in the engine’s design, the amount of pre-

vious information used, the transfer of learned knowledge, the amount of information

used for training (as seen in Chapter 6), the tradeoffs between cognition, computa-

tional complexity and latency. These aspects have been investigated in the machine

learning and artificial intelligence field, however research on the impact of these aspects

in telecommunication systems design has just begun.

• Machine Learning and Data Mining Methods - the focus of this work has been on two

learning techniques (CBR and DTL), recalling the agreements for applying learning

methods: there is no algorithm that leads to better learning, but the representation

of data and the definition of adequate performance tasks lead to successful implemen-

tations. The machine learning and data mining fields offer many learning alternatives

that have not being explored. Research on other learning techniques that are com-

putationally simple, easy to implement and easy to understand while still optimizing

learned knowledge, will be continued.

• Multivariate Decision Trees - in this work we employed univariate decision trees, where
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each partition is made on a single attribute. Multivariate decision trees are able to

generalize when dealing with attribute correlations, resulting in simpler tree structures

and less overfitting of the data [162]. In wireless networks there exists correlation among

the attributes that describe the network (i.e. cell loading and blocked probability, call

blocked probability and QoS, etc.). Thus, creating tree structures that can exploit

these correlations can yield to simplification of the tree structures, thus reducing the

amount of time it takes to evaluate the tree.

• Algorithms - in this dissertation we focused on three CRRM algorithms: coverage man-

agement, handover management and policy management. In Chapter 5, other CRRM

algorithms were discussed. In future work, the formulation of the learning problem

can be such that other CRRM algorithms can be developed. Also, the context of these

algorithms was the 3G network environment. The interaction of these algorithms in a

multi-RAT environment have not yet been studied. Future work, will include the devel-

opment of multi-RAT cognitive algorithms for radio resource management as described

in Chapter 5.

• Networks - in this work, we discuss how to apply cognition in 3G, femtocell deployments

and B3G networks. However, we tested our algorithms in the 3G wireless network

environment. In our future work, we would like to develop algorithms and test them in

other network environments such as: femtocell deployments, B3G networks, personal

area networks, ad hoc networks, sensor networks, and others.

• Simulation Environment - we were able to develop realistic models by developing our

own Network Environment Simulator, and employing a mobility simulator MobiSim

created by Mousavi et al. [156]. However, the impact of mobility management and

prediction based on expected mobility can be further explored. A more generic sim-

ulator that includes the amalgam of RATs available in B3G networks will be a great

tool to research how the cognitive algorithms perform across communication systems.

Therefore, in our future work we will focus on creating a more flexible simulation



169

environment that encompasses the various RATs available in the next generation of

networks.

• Testbeds and Hardware - the methodology used to perform the research outlined in this

dissertation has been analysis, modeling and simulation. Future work, should include

the implementation of these algorithms using commercially off-the-shelf equipment.

The creation of cognitive test-beds is necessary to validate the algorithms in real-life

scenarios.

The application of cognition to wireless networks is in the early stages of research and

development. The author believes that developing cost-effective learning techniques that

optimize: network goals, users goals, operators goals while maintaining complexity low, will

be key in the success adoption of cognitive radio technology.

9.4 Expected Publications

The work presented in this dissertation will be published as follows:

1. L. Morales-Tirado, J. E. Suŕıs-Pietri, and J. H. Reed, “An Approach to Using Cog-

nition in Wireless Networks,” journal submission to IEEE Wireless Communications

Magazine, special issue on Dynamic Spectrum Management in Wireless Networks, due

January 15, 2010.

2. L. Morales-Tirado, J. E. Suŕıs-Pietri, and J. H. Reed, “Using Decision Tree Learning

for Cognitive Radio Resource Management,” journal submission to IEEE Transactions

on Mobile Computing, due March 1, 2010.

3. L. Morales-Tirado, J. E. Suŕıs-Pietri, and J. H. Reed, “A Decision Tree Learning

Algorithm for Handover Management in Wireless Networks,” to be submitted to IEEE
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and EURASIP 2nd Workshop on Cognitive Information Processing, due January 10,

2010.

9.5 Publications

The research presented here, as well as background research has resulted in the following

publications:

1. L. Morales, J. E. Suŕıs and J. H. Reed, “A Hybrid Cognitive Engine for Improving

Coverage in 3G Wireless Networks”, IEEE ICC Joint Workshop on Cognitive Wireless

Networks and Systems, June 2009.

2. L. Morales, J. E. Suŕıs, “Cognitive Radio: A New Trend in Wireless Communica-

tions”, Colegio de Ingenieros y Agrimensores de Puerto Rico, Revista Dimensión, to

be published in 2010.

3. An He, Kyung Kyoon Bae, Timothy R. Newman, Joseph Gaeddert, Kyouwoong Kim,

Rekha Menon, Lizdabel Morales, Youping Zhao, Jeffrey H. Reed, and William H.

Tranter, A Survey of Artificial Intelligence for Cognitive Radios”, accepted to IEEE

Transactions on Vehicular Technology, to be published in 2010.

4. An He, Timothy R. Newman, Jeffrey H. Reed, Lizdabel Morales, Kyung K. Bae,

Chan H. Park, “Development of a Case-Based Reasoning Cognitive Engine for IEEE

802.22 WRAN Applications,” accepted to ACM MC2R Special Issue on Cognitive

Radio Technologies and Systems, to be published in 2010.

5. An He, Joseph Gaeddert, Timothy Newman, Lizdabel Morales, Jeffrey H. Reed, Kyung

K. Bae, Chang-Hyung Park, “Development of a Case-Based Reasoning Cognitive En-

gine for IEEE 802.22 WRAN Applications,” ACM Mobile Communications and Com-

puting Review, April 2009.
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6. Y. Zhao, L. Morales, J. Gaeddert, K. K. Bae, J. S. Um; J. H. Reed, “Applying Radio

Environment Maps to Cognitive Wireless Regional Area Networks,” IEEE Dynamic

Spectrum Access Networks (DySpan), April 2007.

7. Y. Zhao, J. Gaeddert, L. Morales, K. K. Bae, J. S. Um, and J. H. Reed, “Development

of Radio Environment Map Enabled Case- and Knowledge-Based Learning Algorithms

for IEEE 802.22 WRAN Cognitive Engines,” International Conference on Cognitive

Radio Oriented Wireless Networks and Communications (CrownCom), August 2007.

9.6 Research Related Intellectual Property

1. Youping Zhao, Lizdabel Morales, Kyung Bae, Joseph Gaeddert, Jeffrey Reed and

Jungsun Um, “Case and Knowledge Based Learning (REM-CKL) Method for Cognitive

Radios,” VTIP:07-062.

2. Youping Zhao, Lizdabel Morales, Kyung Bae, Joseph Gaeddert, Jeffrey Reed and

Jungsun Um, “A Generic Cognitive Engine Design Based on Radio Environment Map

(REM),” VTIP:07-060.
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Appendix A

Sample Rules for CLE

Coverage Learning Engine Rules

Sample case: Reads 80000 cases (4 attributes).

• Rule 9: x > 1.38826, θ > −0.186259, θ ≤ 0.187019, then class 0, with p = 99.7%

• Rule 11: x > 0.500936, θ > −0.182438, θ ≤ 0.187019, then class 0, with p = 99.6%

• Rule 14: R > 1.8129, θ > −0.189561, θleq0.189072, then class 0, with p = 99.6%

• Rule 3: x > 0.500936, y > −0.19949, R ≤ 0.726296, θ ≤ 0.196606, then class 0, with

p = 99.1%

• Rule 17: x > 0.500936, y ≤ 0.19513, R ≤ 0.716611, θ > 0.196606, then class 0, with

p = 96.7%

• Rule 22: x ≤ 2.36099, y > 3.98481, θ <= 1.14328, then class 0, with p = 74.1%

• Rule 13: R > 0.692618, R ≤ 1.8129, θ > 0.187019, then class 1 with p = 99.3%

• Rule 8: x ≤ 1.38826, R > 0.724814, R ≤ 1.89371, θ ≤ −0.182438, then class 1, with

p = 99.1%
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Table A.1: Resulting Rules in CLE Case Study

Rule Size Error Used Wrong %
9 3 0.3% 3031 3 0.1%
11 3 0.4% 1356 7 0.5%
14 3 0.4% 30 4 13.3%
3 4 0.9% 82 0 0.0%
17 4 3.3% 90 0 0.0%
22 3 25.9% 10 0 0.0%
13 3 0.7% 15144 74 0.5%
8 4 0.9% 15256 112 0.7%
20 3 2.8% 20298 854 4.2%
15 4 2.9% 106 11 10.4%
1 1 3.1% 15761 841 5.3%
23 3 3.3% 221 52 23.5%
2 2 3.8% 8516 478 5.6%

• Rule 20: y > 0.19513, R ≤ 4.18057, θ > 0.196606, then class 1, with p = 97.2%

• Rule 15: x > 0.500936, x ≤ 2.26378, R > 0.692618, θ > 0.189072 then class 1, with

p = 97.1%

• Rule 1: x ≤ 0.500936, then class 1, with p = 96.9%

• Rule 23: x ≤ 4.03474, y > 0.19513, θ > 0.196606, then class 1, with p = 96.7%

• Rule 2: y ≤ −0.19949, θ ≤ −0.189561, then class 1, with p = 96.2%

Evaluation on training data (80000 items):

Tested 80000 cases, found 2483 errors, resulting in 3.1% total classification error.



Appendix B

Acronyms

3G Third Generation

3GPP Third Generation Partnership Project

4G Fourth Generation

AI Artificial Intelligence

AMR Adaptive Multirate

ARO Army Research Office

AWGN Additive White Gaussian Noise

B3G Beyond 3G

BER Bit Error Rate

BSC Base Station Controller

BTS Base Transceiver Station

CAC Call Admission Control

CBR Case-based Reasoning

CDMA Code Division Multiple Access

CE cognitive engine

CNS Communications Network Services

CR cognitive radio
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CRRM Cognitive Radio Resource Management

CoRTekS Cognitive Radio Tektronix System

CLE Coverage Learning Engine

DARPA Defense Advanced Research Projects Agency

DSA dynamic spectrum access

DT Decision Tree

DTL Decision Tree Learning

ETRI Electronics and Telecommunications Research Institute

FCC Federal Communications Commission

FDD Frequency Division Duplex

GGSN Gateway GPRS Support Node

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile Communications

HLR Home Location Register

HME Handover Management Engine

HSDPA High Speed Downlink Packet Access

IA Intelligent Agent

IBR Instance-based Reasoning

IEEE Institute of Electrical and Electronics Engineers

ITU International Telecommunication Union

LTE long term evolution

MAC Media Access Control

ML Machine Learning

MPRG Mobile Portable Radio Group
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MSC Mobile Switching Center

NES Network Environment Simulator

NTIA National Telecommunications and Information Administration

OfCom Office of Communications, UK

OSI Open Systems Interconnection

OSSIE Open Source SCA Implementation-Embedded

PHY Physical Layer

PE Policy Engine

P2P peer-to-peer

QoS quality of service

RAN Radio Access Network

RAT Radio Access Technology

REM Radio Environment Map

ROC Receiver Operating Characteristics

RF radio frequency

RNC radio network controller

RRM radio resource management

RSS Received Signal Strength

RWP Random Waypoint

SCA Software Communications Architecture

SDR Software Defined Radio

SON Self-Organizing Networks

SGSN Serving GPRS Support Node

SIR Signal-to-Interference Ratio

SINR Signal-to-Interference and Noise Ratio
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TDD Time Division Duplex

UE User Equipment

UMTS Universal Mobile Telecommunications System

UTRAN Universal Terrestrial Radio Access Network

WCDMA Wideband-Code Division Multiple Access

WLAN Wireless Local Area Networks

WRAN Wireless Regional Area Networks

XG neXt Generation


