COMPARING THE EFFECTIVENESS OF COMPUTER SIMULATION ON COMPUTER MONITOR VS. VIRTUAL REALITY AS COMMUNICATION TOOLS IN INTERIOR DESIGN

by
Jongran Lee

Dissertation Submitted to Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
IN
HOUSING, INTERIOR DESIGN, AND RESOURCE MANAGEMENT

APPROVED:

Joan McLain-Kark, Chair
Jeanette Bowker
Ronald D. Kriz
Lennie Scott-Webber
Anna Marshall-Baker

January, 1999
Blacksburg, Virginia

Keywords: Interior design, Computer simulation, Virtual reality

Copyright 1999, Jongran Lee
Comparing the Effectiveness of Computer Simulation on Computer Monitor vs. Virtual Reality as Communication Tools in Interior Design

by

Jongran Lee

Dr. Joan McLain-Kark, Chairman
Department of Housing, Interior Design, and Resource Management

(ABSTRACT)

Computer simulations have developed as communication tools in interior design. The purpose of this study was to investigate the effectiveness of two types of computer simulation: passive walk-through animation of an interior design on the PC monitor and immersive walk-through of the same interior design in the CAVE™. This effectiveness was decided in terms of communicating basic visual information, such as visual forms, spatial relationships, colors, and textures.

Sixty voluntary subjects chosen from faculty, staff, and graduate students at Virginia Polytechnic Institute and State University were tested experimentally and interviewed. The interior design of the Visualization and Animation Laboratory in the Advanced Communications and Information Center, which is under construction on the Virginia Polytechnic Institute and State University, was simulated by the two types of computer simulation and shown to the participants.

This study found that the simulation in the CAVE™ was more effective than that on the PC in terms of communicating information about visual forms and spatial relationships in interior design. However, the PC was more effective in communicating information about colors. In terms of textures, no difference was shown. The simulation in the CAVE™ appears to have more of a three-dimensional perception and makes people feel as if they were actually present in the space. Both technologies can have a role for general introduction to interior spaces. However, people gain more information in the CAVE™ simulation.
ACKNOWLEDGMENTS

I appreciate many people whose help I received for my dissertation. Dr. Joan McLain-Kark academically guided me from the initial idea of this research and gave much support for this project. She helped me to collect data in the Interior Design Future Lab in Virginia Tech. Dr. Ronald D. Kriz gave information about the new technology of computer simulation, the CAVE™ (Cave Automatic Virtual Environment) and gave me the technical support of the CAVE™ facility for data collection. Staff in the VT CAVE™ lab helped me to generate the simulation in the CAVE™.

I would like to thank the sixty subjects who volunteered participation in this research so that I could obtain valuable results and findings. I appreciate helpful recommendations for this research from Dr. Jeanette Bowker, Dr. Lennie Scott-Webber, and Dr. Anna Marshall-Baker.

Finally, I am thankful for the support and endurance of my family.
LIST OF FIGURES

Figure

1. Perceptions of an Interior Environment ...16
2. Visual Representation of Design by Simulation ...18
3. Three Elementary Activities of Designing: Imaging, Presenting, and Testing19
4. Design Development Spiral Process ...19
5. General Problem Solving Paradigm ..20
7. Conceptual Model of the Study: Communication Effectiveness
 of Simulation in the Design Process ..25
8. Empirical Model of the Study ...27
9. Interior Design of the VALAB ..33
10. Texture and Color Samples Chosen for the Experimental Test34
11. The Sequential Walk-Through Process of the VALAB ...35
12. The Walk-Through for the Experimental Test ...36
13. The Image at the Point 2 ..39
14. The Image at the Point 4 ..39
15. The Image at the Point 10 ..40
16. The Image at the Point 1 ..41
17. The Image at the Point 3 ..41
18. The Image at the Point 9 ..42
19. The Image at the Point 5 ..43
20. The Image at the Point 6 ..44
21. The Image at the Point 7 ..44
22. The Image at the Point 8 ..45
23. The Image at the Point 11 ..46
24. Frequency of the Age Range of the Two Groups ...58
25. Frequency of the Gender of the Two Groups ...59
26. Frequency of the Occupation of the Two Groups ...60
LIST OF TABLES

Table

1. Hypotheses, Dependent Variables, and Experimental Test Questions 30
2. Objects for Testing Perception of Visual Forms in the Experimental Test 38
3. Objects for Testing the Perception of Spatial Relationships in the Experimental Test. ... 40
4. Objects for Testing the Perception of Color in the Experimental Test 42
5. Objects for Testing the Perception of Texture in the Experimental Test 45
6. Screening Test Variables ... 48
7. Matching Results: Mean of the Scores of the Screening Test Questions After Matching and Assignment to Two Groups 51
8. Data Analyses .. 54
9. Frequency of the Question about Shape ... 61
10. Frequency of the Question about Proportion ... 61
11. Frequency of the Question about Size .. 62
12. Frequency of the Question about Distance .. 63
13. Frequency of the Question about Depth .. 63
14. Frequency of the Question about Proximity ... 64
15. Means and Standard Deviations of the Scores of the Question about Value 65
16. T-test of the Question about Value ... 65
17. Means and Standard Deviations of the Scores of the Question about Chroma 65
18. T-test of the Question about Chroma ... 65
19. Means and Standard Deviations of the Scores of the Question about Hue 66
20. T-test of the Question about Hue ... 66
21. Means and Standard Deviations of the Scores of the Question about roughness ... 67
22. T-test of the Question about Roughness .. 67
23. Means of scores of the Question about Size of Texture 68
24. T-test of the Question about Size of Texture.. 68
25. Limitations Mentioned and Suggestions by the Participants 75
27. Summary of the Results of the Experimental Test ... 83