Pin1 Catalytic and WW Domain Ligands

by

Xingguo Chen

Dissertation submitted to the faculty of the
Virginia Polytechnic Institute and State University
In the partial fulfillment of the requirement for the degree of

Doctor of Philosophy
In
Chemistry

Felicia A. Etzkorn, Chair
Paul R. Carlier
Richard D. Gandour
James L. Tanko
Gordon T. Yee

April 27, 2011
Blacksburg, Virginia

Keywords: Pin1, catalytic, WW domain, ligand, inhibition, mimic, conformation,
phosphorylation, assay, ELEBA, combinatorial, library, solid-phase, synthesis, NMR, peptide
Appendix-Spectra of Characterized Compounds

Should you have any questions, please contact Dr. Felicia Etzkorn at fetzkorn@vt.edu or Xingguo Chen at xgchen@vt.edu.
1H NMR of 1-iodocyclohexene in CDCl$_3$ (500 MHz)
13C NMR of 1-iodocyclohexene in CDCl$_3$ (125 MHz)
1H NMR of (S)-2.2 in CDCl$_3$ (400 MHz)
1H NMR of (S)-2.2 in CDCl$_3$ (100 MHz)
1H NMR of the mixture of (2S,3R)- and (2S,3S)-2,3 in CDCl$_3$ (500 MHz)
\(^1\)H NMR of (2S,3R)-2.4 in CDCl\(_3\) (500 MHz)
13C NMR of (2S,3R)-2.4 in CDCl$_3$ (100 MHz)
Analytical HPLC of (2S,3R)-2.4
Analytical HPLC of (2R,3S)-2.4
1H NMR of (2R,3R)-2.4 in CDCl$_3$ (400 MHz)
13C NMR of (2R,3R)-2.4 in CDCl$_3$ (100 MHz)
1H NMR of (2S,3R)-2.5 in CDCl$_3$ (500 MHz)
13C NMR of (2S,3R)-2.5 in CDCl$_3$ (100 MHz)
$^1\text{H NMR of (2R,3R)-2.5}$ in CDCl$_3$ (500 MHz)
13C NMR of (2R,3R)-2.5 in CDCl$_3$ (100 MHz)
13C NMR of (2R,5S)-2.6 in CDCl$_3$ (100 MHz)
1D nOe of (2R,5S)-2.6 in CDCl₃ (100 MHz)
Analytic HPLC of (2R,5S)-2.6
1H NMR of (2S,5S)-2,6 in CDCl₃ (500 MHz)
13C NMR of (2S,5S)-2,6 in CDCl$_3$ (125 MHz)
COSY of (2S,5S)-2,6 in CDCl₃ (500 MHz)
1D nOe of (2S,5S)-2.6 in CDCl₃ (400 MHz)
1H NMR of (2R,5S)-2.7 in CDCl$_3$ (500 MHz)
13C NMR of (2R,5S)-2.7 in CDCl$_3$ (125 MHz)
1H NMR of (2S,5S)-2.7 in CDCl$_3$ (500 MHz)
1H NMR of (2R,5S)-2.8 in CDCl$_3$ (500 MHz)
1H NMR of (2R,5S)-2.8 in DMSO-d6 (500 MHz)
13C NMR of (2R,5S)-2.8 in CDCl$_3$ (125 MHz)
Analytical HPLC of (2R,5S)-2.8
Analytical HPLC of \((2S,5R)\)-2.8
1H NMR of (2S,5S)-2.8 in CDCl$_3$ (400 MHz)
13C NMR of (2S,5S)-2.8 in CDCl$_3$ (100 MHz)
1H NMR of (2R,5S)-2.9 in CDCl$_3$ (500 MHz)
Analytical HPLC of (2S,5R)-2.9
1H NMR of (2S,5S)-2.9 in CDCl$_3$ (400 MHz)
13C NMR of (2S,5S)-2.9 in CDCl$_3$ (100 MHz)
1H NMR of (2R,5S)-2.10 in CD$_3$OD (500 MHz)
1H NMR of (2R,5S)-2.10 in CD$_3$OD (125 MHz)
Analytical HPLC of (2R,5S)-2.10
1H NMR of (2S,5S)-2.10 in CD$_3$OD (500 MHz)
13C NMR of (2S,5S)-2.10 in CD$_3$OD (125 MHz)
1H NMR of (2R,5S)-2.11 in CDCl$_3$ (500 MHz)
13C NMR of (2R,5S)-2.11 in CDCl₃ (125 MHz)
Analytical HPLC of (2S,5R)-2.11
1H NMR of (2S,5S)-2.1 in CDCl$_3$ (500 MHz)
13C NMR of (2S,5S)-2.11 in CDCl$_3$ (125 MHz)
Analytical HPLC of (2S,5S)-2.11
1H NMR of (2R,5S)-2.12 in CDCl$_3$ (500 MHz)
13C NMR of (2R,5S)-2.12 in CDCl$_3$ (125 MHz)
31P NMR of (2R,5S)-2.12 in CDCl$_3$ (202 MHz)
^{31}P NMR of (2R,5S)-2.12 in CDCl$_3$ (202 MHz)
1H NMR of (2S,5S)-2.12 in CDCl$_3$ (500 MHz)
13C NMR of (2S,5S)-2.12 in CDCl$_3$ (125 MHz)
Analytical HPLC of (2S,5S)-2.12
1H NMR of (2R,5S)-2,1 in CD$_3$OD (500 MHz)
13C NMR of (2R,5S)-2.1 in CD$_3$OD (125 MHz)
31P NMR of (2R,5S)-2.1 in CD$_3$OD (202 MHz)
Analytic HPLC of $(2R,5S)\cdot 2.1$
Analytic HPLC of ($2S,5R$)-2.1
1H NMR of (2S,S)-2.1 in CD$_3$OD (500 MHz)
13C NMR of (2S,5S)-2,1 in DMSO-d$_6$ (125 MHz)
3P NMR of (2S,5S)-2.1 in DMSO-d$_6$ (162 MHz)
31P NMR of (2S,5S)-2.1 in DMSO-d6 (162 MHz)
Analytical HPLC of (2S,5S)-2.1
^{1}H NMR of the mixture of $(2R,3R)$- and $(2R,3S)$-2,13 in CDCl$_3$ (500 MHz)
\(^1H \) NMR of \((2S,5S)-2.14\) in CDCl\(_3\) (500 MHz)
13C NMR of \((2S, 5S)-2.14\) in CDCl$_3$ (125 MHz)
COSY of (2S,5S)-2.14 in CDCl3 (500 MHz)
NOESY of (2S,5S)-2.14 in CDCl$_3$ (400 MHz)
1H NMR of (2S,5S)-2.14 in CDCl$_3$ (500 MHz)
13C NMR of (2S,5R)-2.14 in CDCl$_3$ (125 MHz)
COSY of (2S,5R)-2.14 in CDCl₃ (500 MHz)
1D nOe of (2S,5R)-2.14 in CDCl₃ (400 MHz)
1H NMR of the mixture of 2-cyanoethyl phosphite and iPr$_2$NH · TFA salt in CDCl$_3$ (400 MHz)
1H NMR of 4.4 in CDCl$_3$ (500 MHz)
13C NMR of 4.4 in CDCl$_3$ (125 MHz)
1H NMR of 4.5 in DMSO-d6 (500 MHz)
1H NMR of 4.5 in DMSO-d6 (125 MHz)
1H NMR of 4.6 in CDCl$_3$ (500 MHz)
1H NMR of 4.10a{21} in CD$_3$OD (500 MHz)
1H NMR of 4.1{21, l} in CD$_3$OD (500 MHz)
31P NMR of 4.1(21, l) in CD$_3$OD (202 MHz)
1H NMR of crude product of 4.1(2, d) in CD$_3$OD (500 MHz)
1H NMR of cis-4.1{2, d} in DMSO-d6 (500 MHz)
13C NMR of cis-4.1\{2, d\} in DMSO-d6 (125 MHz)
3P NMR of cis-4,l (2, d) in DMSO-d$_6$ (202 MHz)
31P NMR of cis-4.1{2, d} in DMSO-d6 (202 MHz)
1H NMR of trans-4.1{2, d} in DMSO-d6 (500 MHz)
13C NMR of trans-4.1 2, d in DMSO-d$_6$ (125 MHz)
31P NMR of trans-4.1{2, d} in DMSO-d6 (202 MHz)
31P NMR of trans-4.1{2, d} in DMSO-d6 (202 MHz)
1H NMR of 4.1{2, o} in DMSO-d6 (500 MHz)
13C NMR of 4.1{2, o} in DMSO-d6 (125 MHz)
31P NMR of 4.1{2, o} in DMSO-d6 (202 MHz)
31P NMR of 4.1{2, o} in DMSO-d6 (202 MHz)
1H NMR of 4.1{18, m} in CD$_3$OD (500 MHz)
13C NMR of 4.1\{18, m\} in CD$_3$OD (125 MHz)
^{31}P NMR of 4.1{18, m} in CD$_3$OD (202 MHz)
31P NMR of 4.1\{18, m\} in CD$_3$OD (202 MHz)
1H NMR of (2S,5R)-2.1 in CD$_3$OD (500 MHz), peaks for DBU are marked with *