An Exploration Of The Effects Of Data Aggregation
And Other Factors On Empirical
Estimates Of Market Power

by

Rodney D. Jones

Dissertation submitted to the faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Agriculture and Applied Economics

Approved:

Paul J. Driscoll
Everett B. Peterson
Wayne D. Purcell

Co-Chairmen

David E. Kenyon
Anyà M. McGuirk
Ted C. Schroeder

January, 1995
Blacksburg Virginia
c.o.
An Exploration Of The Effects Of Data Aggregation
And Other Factors On Empirical
Estimates Of Market Power

by
Rodney D. Jones

Paul J. Driscoll,
Everett B. Peterson, and
Wayne D. Purcell, Co-Chairmen

Agricultural and Applied Economics

(ABSTRACT)

Econometric studies of firm-level behavior are gaining acceptance among some industrial organization economists. This is a potentially useful tool for detecting non-competitive behavior. Policy makers and antitrust enforcement officials are interested in the results of these studies as they are applied to specific industries to help enforce current antitrust regulations and develop new policies.

These New Empirical Industrial Organization (NEIO) econometric behavioral studies typically require detailed price, quantity, and cost data regarding the industry being studied. The models used are derived from the profit maximization problem of individual firms. In spite of this fact, many previous studies have relied on publicly available industry aggregate data, often also aggregated over time to the quarterly or yearly-level. This study investigates the sensitivity of empirical estimates of market power obtained from econometric conjectural variations studies to the level data aggregation used for the analysis. In addition, the sensitivity of the results to model specification is also explored.
The focus of this study is on measurement of oligopoly power in the U. S. beef packing/processing industry. Using Monte Carlo techniques, weekly plant or firm-level data are simulated to be representative of the U. S. beef packing industry in two broadly defined geographical procurement regions. To broaden the scope of the experiment, the assumed underlying technology of the beef packing industry is varied across a broad range of possibilities. In addition, alternative assumptions regarding the conduct of industry participants in the live cattle procurement market are imposed on the data generation process. The disaggregate data sets are aggregated over plants and firms to weekly industry aggregates, and over time to quarterly industry aggregates. At each level of aggregation, the data are tested using 3 alternative specifications of an NEIO econometric market power testing model, that differ by functional form. Results of the tests are compared across aggregation levels, and across model specifications.

The results reveal that in general the actual size of the test of the null hypothesis of no market power is much higher than the chosen nominal size of the test. The power of the test for market power is quite high. Data aggregation tends to bias the results of tests for market power. In addition, an adequately flexible functional form must be specified to capture the underlying technology of the industry when using econometric methods to test for market power. Therefore, in order to be useful for antitrust policy enforcement, econometric behavioral studies must make use of detailed firm (or plant)-level disaggregate data, and must use carefully specified models.
Dedication

I would like to dedicate this dissertation to the memory of two deceased family members. First to my father, Glen E. Jones, who passed away while I was a young teenager. The lessons and values learned from him will remain with me for a lifetime. Second, to my younger sister Deann, who was tragically killed in a car accident while I was pursuing my doctoral degree. I only hope she knew how much I loved her, and how proud I was of her.
Acknowledgements

A special thanks is owed to Dr. Wayne Purcell, who has been my mentor throughout the Ph.D. program. I had been exposed to the work of Dr. Purcell, and had developed a respect for him and his work long before entering the graduate program at Virginia Tech. Throughout my Ph.D. program we have developed a working relationship and a personal friendship, and my respect for him and his work has continued to grow. He taught me to view problems from a broad perspective, then focus in on the aspects that are important to the end users. In this regard his insights and advise have been invaluable. Dr. Purcell has also been instrumental in finding and providing financial support for travel and other research projects throughout my Ph.D program.

Without the generous help and advise of Dr. Paul Driscoll the simulation and analysis involved in this dissertation would not have been possible. The Fortran programs used to simulate the data were based on programs written by him for previous work. In addition, his advise with regard to the design of the overall experiment, and specification of the market power models has been invaluable. His insistence on following through with problems at times when I wanted to take an easier way out has resulted in a broadening and strengthening of the analysis in this study.

Dr. Everett Peterson has contributed significantly to my education at the Ph.D. level. His guidance and advice on this, and several other significant research projects,
have strengthened my research skills. The analytical skills learned from him, both through course-work instruction and individual interaction, will be a great help throughout my career. Dr. Peterson's careful review of, and critical comments on earlier drafts of this dissertation are greatly appreciated.

The other members of my committee also deserve special thanks and recognition. Dr. Anya McGuirk has provided guidance and advice on many projects throughout my graduate program. Dr. David Kenyon has also been an advisor, as well as a personal friend, and has helped to keep me focused on the applied aspects the agricultural economics profession. Dr. Ted Schroeder's training and guidance throughout my masters program is responsible in large part for my decision to pursue a Ph.D. I will be eternally grateful for his help and inspiration, and will always value his friendship.

I would also like to express my thanks and appreciation to my mother, LaVeta Jones, and to the rest of my family. I know that my decision to attend a graduate program so far away from home was difficult for them. I appreciate their willingness to support me, and encourage me in that decision.
Table Of Contents

Chapter 1 Introduction ... 1
\hspace{1em} 1.1 Introduction .. 1
\hspace{1em} 1.2 Purpose Of Study ... 4
\hspace{1em} 1.3 Policy Implications ... 6
\hspace{1em} 1.4 Objectives ... 8
\hspace{1em} 1.5 General Procedures ... 9
\hspace{1em} 1.6 Overview Of Research .. 10

Chapter 2 Literature Review ... 12
\hspace{1em} 2.1 Introduction .. 12
\hspace{1em} 2.2 Recent History Of Industrial Organization 13
\hspace{1em} 2.3 The Conjectural Variations Model And Extensions 15
\hspace{1em} \hspace{1em} 2.3.1 Measuring Oligopoly Power 16
\hspace{1em} \hspace{1em} 2.3.2 Measuring Oligopsony Power 21
\hspace{1em} 2.4 Including Additional Factors In The Models 27
\hspace{1em} 2.5 Non-Econometric Studies Based On Conjectural Variations 30
\hspace{1em} 2.6 Summary ... 32

Chapter 3 Theory .. 34
\hspace{1em} 3.1 Introduction .. 34
\hspace{1em} 3.2 Modeling Oligopsony Behavior In U.S. Beef Packing 34
\hspace{1em} \hspace{1em} 3.2.1 Testing For Market Power 37
\hspace{1em} \hspace{1em} 3.2.2 The Econometric Model ... 40
\hspace{1em} 3.3 Data Aggregation ... 42
\hspace{1em} \hspace{1em} 3.3.1 Aggregation Over Space and Time 43
\hspace{1em} \hspace{1em} 3.3.2 Aggregation Over Inputs ... 45
\hspace{1em} \hspace{1em} 3.3.3 Implications And Conclusions 46

Chapter 4 Simulating The Beef Packing Industry And Testing For Market Power ... 48
\hspace{1em} 4.1 Introduction .. 48
\hspace{1em} 4.2 The Experiment ... 51
\hspace{1em} \hspace{1em} 4.2.1 Assumptions Governing The Data Generation Process 53
\hspace{1em} \hspace{1em} 4.2.2 Generating Inputs And Outputs 55
\hspace{1em} \hspace{1em} 4.2.3 Generating Output Price ... 61
\hspace{1em} \hspace{1em} 4.2.4 Generating Input Prices For Each Scenario 62
\hspace{1em} \hspace{1em} 4.2.5 The Aggregation Levels ... 69

vii
List Of Tables

Table 4.1 Overview of the scenarios, aggregation levels, and tests performed in the experiment ... 52

Table 4.2 Summary of the parameter values of the various technologies imposed on the data generation process, their associated returns to scale, and Allen cross price partial elasticities of substitution .. 56

Table 4.3 Mean values of capacity and weekly variable input quantities assumed to be used in the respective size categories of beef packing plants ... 58

Table 4.4 Variance - Covariance matrix associated with the input usage matrix ... 59

Table 5.1 Percent Rejection of the Null Hypothesis of No Market Power When No Market Power is Present ... 82

Table 5.2 Percent Rejection of the Null Hypothesis of No Market Power When a Small Amount of Market Power is Present ... 89

Table 5.3 Percent Rejection of the Null Hypothesis of No Market Power When a Moderate Amount of Market Power is Present ... 93

Table 5.4 Percent Rejection of the Null Hypothesis of No Market Power When the Firm, Rather Than the Plant, is the Decision Maker and a Small Amount Market Power is Present ... 97

Table 5.5 Percent Rejection of the Null Hypothesis of No Market Power When a Small Amount of Market Power is Possible, But Not Recognized by the Plants ... 102
Chapter 1

Introduction

1.1 Introduction

Recent increases in aggregate concentration have stimulated interest in measuring the degree of oligopoly or oligopsony market power.¹ Broad measures of aggregate concentration, especially in the industrial sectors, have shown increasing trends throughout this century (Sherer and Ross). Many individual U. S. industries are highly concentrated, dominated by a few large firms or corporations. For example, in 1987, at least 60% of total production was accounted for by the 4 largest firms in 81 of the 459 4-digit Standard Industrial Classification (SIC) manufacturing industries (United States Department of Commerce, 1987 Census of Manufacturers). For the food processing industries, this proportion is much higher, where 15 of the 49 4-digit SIC industries (e.g., breakfast cereal production, sugar refining, and malt beverage production) have a 4-firm concentration ratios above 60%. In agricultural enterprises such as fruit and vegetable production, specialty grain production, and fed livestock production, many small farmers or livestock producers typically face a highly concentrated processing sector. The actions of large firms in these industries may affect industry output, input procurement, and the

¹Oligopoly power is the ability to sell output at above the competitive price and oligopsony power is the ability to procure inputs below the competitive price.
pricing strategies pursued by rival firms in either output markets or input procurement markets.

If firms in these highly concentrated industries have the potential to exercise, or are already exercising, market power then there is reason for public or societal concern. First, it is well known from standard welfare economic theory that any deviation of price from the competitive level will result in a net societal welfare loss. The overall economic pie will be smaller. Previous estimates of these welfare losses have been sensitive to model specification and data sources (Peterson and Connor). However, most studies have found that the welfare losses do exist and could be quite significant. In addition, when market power is exercised, excess profits are reaped leading to a redistribution of wealth from consumers and/or input suppliers to industry participants, and raises public concerns regarding fairness and equity.

This dissertation focuses on the U. S. beef packing/processing industry, which has an interesting history of changing concentration levels and has played a major role in the evolution of U. S. antitrust policy. Since the late 1970's, concentration levels in the beef packing industry have increased to where nearly 80% of the boxed beef trade in the U.S. was controlled by the 4 largest firms in 1990 (United States Department of Agriculture, Packers and Stockyards Administration). Concentration measures in regional fed cattle procurement markets are even higher (Ward, 1992).

2A book by Yeager provides a thorough, detailed discussion of the history of the beef packing industry and its important role in early U. S. antitrust policy.
Increases in firm concentration in the beef packing industry have been primarily the result of a series of horizontal mergers. The Federal Trade Commission (FTC) and Department of Justice (DOJ) approved these mergers by relying heavily on economies of scale arguments. There is some question as to whether the regulatory authorities fully considered the potential negative long-run implications of increased consolidation when making these decisions (Purcell, 1990). In any event, increased concentration in beef packing has raised concerns regarding non-competitive pricing, particularly on the input procurement side. Additional concerns have been voiced regarding the future of independent cattle producers when access to markets is reduced or restricted. Recent public pressure has prompted Congressional investigations regarding the potential exercise of market power by beef packers (United States General Accounting Office).

Previous researchers such as Quail et al. and Marion et al. have argued that the high levels of buyer concentration, particularly at the regional level, have resulted in decreased fed cattle prices. Others, such as Schroeter (1990), Azzam and Pagoulatos, and Koontz et al., have argued that market power cannot be inferred from concentration levels alone. They contend that it is the behavior of the market participants that must be investigated if one is to identify the presence of market power.

Potential long run problems arising in highly concentrated industries such as decreased new product development are also discussed in Geroski et al.
Analysis of firm-level behavior requires detailed firm-level data on prices, quantities, and specific components of cost.4 Unfortunately, the available data are usually industry aggregates and the observations often encompass long time intervals, such as quarters or years. The implications of using such aggregated data to test for the existence of market power at the firm level have not been investigated, and potentially important policy issues remain unresolved.

1.2 Purpose Of Study

The purpose of this study is to investigate the sensitivity of empirical estimates of oligopsony power to data aggregation and model specification. Many previous market power studies have used data that were aggregated over various dimensions such as across firms or over time, primarily due to the lack of firm-level data consistent with the decision time frame of the decision makers in the industry. In order for aggregate industry data to be an adequate alternative to the desired disaggregate firm-level data, several restrictive assumptions regarding the applied technology and the behavior of firms in the industry must hold. Specifically, all firms must have constant and equal marginal costs and must have the same beliefs about rival responses to their output changes. Previous research has indicated that marginal costs are not constant across firms in the beef packing industry (Ward, 1988 and Duewer and Nelson). Therefore, it is doubtful that the

4The theoretical models upon which these studies are based are derived from firm-level profit maximization problems.
necessary restrictions hold completely in the beef packing industry. If these restrictions do not hold, then a serious loss of information occurs when the data are aggregated across temporal or spatial dimensions (Zellner and Montmarquett), leading to higher variances of empirical estimates and lower power of statistical tests. Within the context of industrial organization research, any statistical test for market power may be inaccurate when using aggregated data.

The direction and magnitude of the error resulting from the inappropriate use of aggregate data is not known. For example, it is possible that empirical tests using aggregated data may indicate that firms are exercising market power when they are actually behaving competitively. Conversely, it is possible that market power may not be detectable using aggregate data when in fact individual decision makers are behaving in a non-competitive manner. Thus, the probability of making an erroneous inference regarding the exercise of market power when using aggregate data is not known, and information is needed regarding the sensitivity of the results to various dimensions of data aggregation.

It is not difficult to understand why studies have proceeded using data aggregated over these various dimensions. Detailed firm-level data are confidential in nature and are difficult to obtain. This study is not intended to be a criticism of previous work that has used aggregated data. Rather, the goal of this study is to provide a guide for future applied work using econometric methods to analyze firm behavior, for policy formation,
or for monitoring purposes by regulatory agencies such as the Packers and Stockyards Administration.

Model specification also plays an important role in the success of any econometric effort to test for market power. There is a potential for biased parameter estimates if the economic models are not specified such that they adequately capture the true underlying technology of the industry being studied. It is likely that any error in modeling the technology will be incorrectly allocated to the market power parameter in efforts to test for market power. Therefore, when modeling firm behavior, it is important to use a functional form that is flexible enough to accurately capture the underlying technology of the industry being studied. This study will compare 3 alternative functional form specifications with regard to their ability to accurately model the underlying cost structure of the industry in testing for ologopsony power.

1.3 Policy Implications

In order to enforce the current interpretation\(^5\) of antitrust laws and regulations, and to assist in further antitrust policy development, it is imperative that analysts and policy makers be able to accurately identify non-competitive pricing behavior when it is

\(^5\)Currently, most analysts agree there is increased emphasis on micro-efficiency and firm behavior arguments in the enforcement of antitrust laws. This is in contrast to previous policies of intense scrutiny and possible regulation of industries which were highly concentrated. The change in antitrust policy has resulted in a severe attenuation of antitrust activity in recent years (Preston and Connor).
present. The efficiency and effectiveness of government policies and attempts to prosecute industry participants perceived to be operating in a non-competitive manner relies on the ability to accurately identify those industries or individual firms which are, in fact, exercising market power. If empirical tests of market power are to be used for antitrust enforcement, it is important for policy makers to be confident regarding the accuracy and robustness of the results of those tests. If the results of these empirical tests are misleading and inappropriate policy decisions are made, a societal welfare loss could occur. Given that the empirical techniques used to test for market power are relatively new and continue to be refined, it is not clear how reliable the results are when using alternative levels of data aggregation and alternative model specifications.

The results of this study will provide insights regarding the need for, and importance of, obtaining detailed, and mostly confidential firm, or even plant-level primary data when testing for the presence of market power. Obviously, this has broad implications for the role of government as we continue to move from a regulatory environment to a monitoring environment in the policy arena. There may be a need to ensure monitoring agency access to detailed firm-level data in industries which are perceived to have high potential for market power. Of course, there may be a tradeoff between the accuracy and power of statistical tests on the one hand, and the high cost of obtaining better data on the other. Therefore, it is important to determine which dimensions of aggregation and which model specifications have the most potential to bias
results so that decisions regarding data collection and model specification can then be made from a better informed position.

1.4 Objectives

The primary objectives of this research are to investigate the consequences of using data that are aggregated over firms and over time in testing for market power, and to evaluate and compare alternative model specifications. Specific objectives are:

1. to review the literature regarding the development of conjectural variations models of firm behavior within the New Empirical Industrial Organization (NEIO) framework;

2. to analyze the effects of data aggregation over firms and over time, and the effects of alternative model specifications, on empirical estimates of market power in the U. S. beef packing industry, and

3. to provide alternatives and suggestions regarding data needs and model specifications to help guide policy makers and analysts as they formulate and administer antitrust policies and monitoring procedures.
1.5 General Procedures

The development of the conjectural variations model and the results of previous empirical studies of firm behavior using this technique are summarized in Chapter 2. This review of previous empirical literature is helpful in developing the theoretical underpinnings of this study, which are presented in Chapter 3.

The implications of using various levels of aggregate data and alternative model specifications to test for market power in the beef packing industry are determined by simulating weekly plant or firm-level data to represent the beef packing industry in Chapter 4. Various assumptions regarding the magnitude of the exercise of market power at the plant or firm-level are imposed on the data generation process using Monte Carlo simulation techniques. The data are aggregated over firms in the industry, and over time, to create different data sets representing different levels of aggregation consistent with previous research and with publicly available data. Each data set is then analyzed for market power using 3 alternative model specifications. These models differ in the functional form chosen to represent the cost function and to thereby capture the underlying technology in the industry.

The results of the simulation are presented in Chapter 5. The results of the tests for market power are compared across aggregation levels and across model specifications to ascertain the importance of these factors when testing for market power.

Insights garnered from the empirical analysis are used to provide suggestions for further research on measuring market power in Chapter 6. Because future antitrust
monitoring procedures are expected to increasingly rely on empirical studies of firm level behavior, guidelines are suggested regarding the levels of data, and model specifications, to be used for investigating the exercise of market power.

1.6 Overview Of Research

Chapter 2 provides an extensive literature review of previous research related to this dissertation. Specifically, the evolution of the field of industrial organization from the Structure-Conduct-Performance (SCP) paradigm to the development of industry behavioral studies, that fall under the broad category referred to as the New Empirical Industrial Organization (NEIO) is described. Different variations of the basic econometric behavioral study that have been developed are explained and previous empirical studies employing econometric behavioral study methods to test for market power in the meat packing industries are reviewed.\(^6\)

The third chapter develops the theory underlying the model of firm behavior to be used in this analysis. The general model to be used in this study to test for market power in fed cattle procurement markets is derived and discussed. In addition, theoretical problems related to data aggregation in the context of testing for market power are discussed.

\(^6\)Studies using econometric behavioral study techniques to empirically test for market power in other industries are reviewed, and alternative methods of modeling firm behavior are discussed in Appendix A.
The experiment performed in this study involves generating and testing data using Monte Carlo simulation. The specific details of the experimental procedure are presented in Chapter 4. To make the experiment as broad and useful as possible, assumptions underlying the data generation process are varied across several dimensions. These include variations in the underlying technology of the industry, variations in the assumed behavior of industry participants, and variations in the level of aggregation of the data used to test for market power. This chapter also provides specific details regarding the computer program used to generate the various data sets, as well as the specific econometric behavioral models used to test for market power.

The results of the study are summarized and discussed in Chapter 5. Conclusions and policy implications are presented in Chapter 6, with an emphasis on providing a base for future research efforts.
Chapter 2

Literature Review

2.1 Introduction

This chapter provides a review of literature regarding recent developments in industrial organization research and, in particular, the analysis of market power using conjectural variations models. These models provide the foundation for the econometric market power testing models to be used in the Monte Carlo experiment performed in this study. The review summarizes previous studies that have used variants of the conjectural variations model to analyze firm behavior. The primary focus is on previous studies that have investigated firm behavior in the meat packing sectors.7 Readers already familiar with the industrial organization literature and New Empirical Industrial Organization (NEIO) techniques of econometrically modeling firm behavior will find sufficient background in the theory and modeling chapters (Chapters 3 and 4). Readers unfamiliar with recent developments in industrial organization research, or those wanting to clarify how the various techniques fit together, will find this chapter and Appendix A useful.

7Additional previous studies which have used the conjectural variations model, and studies which have used alternative methods of searching for non-competitive behavior such as residual demand analysis, are discussed in Appendix A.
The chapter begins with a brief discussion of the recent history and evolution of industrial organization research in section 2.2. Next, a detailed review and discussion of conjectural variations models is provided in section 2.3. This discussion focuses on previous studies that have used these methods to examine firm behavior in the meat packing industries. Section 2.4 reviews studies that have extended the basic conjectural variations model to account for additional factors whose influence may be mistakenly attributed to market power in the basic model. Finally, section 2.5 presents a review of studies which have used non-econometric methods to investigate the exercise of market power in meat packing.

Readers interested in literature regarding the effects of structural changes and consolidation in the beef packing industry are also referred to a recent annotated bibliography by Rowsell. Due the excellent coverage of the topic in that recent work, a review of that literature is not provided here.

2.2 Recent History Of Industrial Organization

Until the late 1970's and early 1980's, industrial organization researchers -- and policy makers -- relied heavily on the Structure- Conduct-Performance (SCP) paradigm. The origination of this paradigm is often credited to Joe Bain, though Bain himself gives Edward Mason credit for the theory (Bain, 1972). The framework involves searching for empirical associations between market characteristics (structure), market conduct, and market performance (Bain 1942, 1968). The long term structural characteristics of an
industry or sector include buyer and seller concentration, product differentiation, and barriers to entry. According to Bain, market conduct can encompass two aspects of behavior. The first includes any collusive mechanisms which industry participants might use to obtain coordination of their price and output policies with those of their rivals. This aspect of behavior is clearly illegal under current U. S. antitrust laws. The second aspect refers to the firm-level price - output calculation itself, which can include expectations of rivals' responses. This aspect of behavior is not necessarily illegal. Market performance is multi-dimensional, referring to such outcomes as prices, level of economic profits, progressiveness, and various other dimensions of market efficiency such as information availability (Bain 1960).

The SCP paradigm has proven to be a useful cross sectional tool to help identify and target industries with the highest potential for non-competitive behavior (Geroski 1988). These models are designed to detect and predict general associations between structure and performance, but are not designed to pinpoint the actual behavior of firms in a specific industry.\(^8\) Under the current interpretation of U. S. antitrust laws and regulations, non-competitive behavior must be shown to exist, or be expected to develop as a result of a merger, before enforcement action can be taken (Landis and Posner). In order to accommodate this need, Weiss suggested that after selecting a specific industry

\(^8\)Early calculations by Bain (1951) suggested that an 8 firm concentration ratio above 70% would result in excess economic profits. Recently others (White, and Geithman et al.) have suggested that a 4 firm concentration ratio above 40 to 60% would result in excess economic profits.
for investigation, researchers and antitrust authorities should rely on more detailed intra-industry case studies. Several variations of these single industry case studies have become popular in recent years (Cowling and Waterson and Bothwell et al.)

One variation of the industrial organization case study analyzes firm-level behavior by econometrically estimating the firm's conjectural variations, or beliefs regarding rival responses. An equation (or equations) in the econometric model is (are) derived from the profit maximization problem of the firms in an industry. The model parameters are then estimated to determine the extent to which price differs from marginal cost.⁹

This study examines two potential problems that arise in the practical implementation of the econometric conjectural variations technique. The first relates to the use of aggregated data to infer firm level behavior, and the second relates to potential problems of model specification. Therefore, the remainder of this chapter focuses on the early development of the conjectural variations model and on studies that have used this model to examine behavior in the meat packing industries.

2.3 The Conjectural Variations Model And Extensions

Bresnahan (1989) summarizes the econometric behavioral modeling approach as an attempt to use systematic statistical evidence to study single, or related, industries. The

⁹The derivation of the first order conditions of profit maximization has been used to develop several models for analyzing or predicting firm level behavior. The conjectural variations model is discussed in this chapter. Other models such as residual demand are presented in Appendix A.
central focus is on firm behavior, or conduct. This section begins with a detailed
discussion of early approaches to modeling firm behavior using the conjectural variations
framework. This basic framework has many extensions and variations that are presented
in section 2.3.2.

2.3.1 Measuring Oligopoly Power

Iwata (1974) was the first to attempt to empirically test for oligopoly market
power using a conjectural variations model. He defined the firm's conjectural variation as
the change in the quantity supplied by other firms in an industry that a particular firm
believes will result if it changes its own supply. Iwata developed the conjectural
variations model by deriving the profit maximizing first order condition of an oligopolist
producing homogeneous goods as shown below. With profit (π) defined for each firm as
revenue minus costs, the profit function can be written as:

2.1

$$\pi_i = p(D)q_i - C_i(w_{i1}, ..., w_{iP}q_i)$$

where p is the price of output, q_i is the output produced by firm i, D as total industry
output ($D - \sum_i q_i$), and C_i represents total cost and is a function of firm output and the input
prices (w_i's). Differentiating the revenue portion of equation 2.1 with respect to firm
output yields an expression for perceived marginal revenue:
2.2
\[\text{mr}_i \cdot p \cdot \frac{\partial p}{\partial D} - \frac{\partial D}{\partial q_i} = q_i \]

If \(\frac{\partial D}{\partial q_i} \) is rewritten as \(\sum_k \frac{\partial q_k}{\partial q_i} - 1 \cdot \sum_{k \neq i} \frac{\partial q_k}{\partial q_i} \), and specified as \((1 + \gamma) \), then the right hand portion of equation 2.2 can be rewritten as:

2.3
\[p \cdot \frac{\partial p}{\partial D} \cdot (1 + \gamma) \cdot q_i \]

where \(\gamma \) is defined as firm i's conjectural variation.\(^1\) From the solution of the first order condition for profit maximization, setting perceived marginal revenue equal to marginal cost results in the following equation:

2.4
\[p \cdot \frac{\partial p}{\partial D} \cdot (1 + \gamma) \cdot q_i \cdot \frac{\partial C(w_i, \ldots, w_q)}{\partial q_i} = 0 \]

If \(\alpha \) is used to represent the price elasticity of demand, \(\frac{\partial D}{\partial p} \cdot \frac{P}{D} \), then equation 2.4 can be rewritten as:

\(^1\)A conjectural variation \((\gamma_i) \) equal to zero implies Cournot behavior. Joint profit maximizing behavior (cartel) is implied by \(\gamma \) equal to 1.
\[p \cdot \frac{1}{\alpha} \cdot \frac{P}{D} \cdot (1 + \gamma_i) \cdot q_i \cdot \frac{\partial C_i(w_1, \ldots, w_k, q_i)}{\partial q_i} = 0 \]

With this derivation, Iwata demonstrated that if equation 2.5 is rearranged with \(p \) isolated on the left hand side, the market price level is a function of the price elasticity of demand, marginal cost (\(mc \)), and the conjectural variation of each firm.

Iwata analyzed the Japanese flat glass industry, a highly concentrated industry composed of 3 large firms, for the period 1956 to 1965. Using a 3 step sequential process, the author first estimated cost functions for each firm in the industry using semi-annual data on labor, capital, and a composite of all other inputs for each firm. He then estimated market demand functions for the two primary types of glass produced, window and plate. Finally, conjectural variations were estimated as a function of the elasticities of demand, marginal costs, prices, and quantities. This was accomplished by rearranging equation 2.5 in the following manner:

\[\gamma_i = \alpha \cdot \frac{mc_i \cdot P}{p \cdot q_i} \cdot 1 \]

where \(mc_i = \) marginal cost \(= \frac{\partial C_i(w_1, \ldots, w_k, q_i)}{\partial q_i} \).

Estimates of marginal cost and elasticities of demand from the first two steps were used, along with prices and quantities, to estimate \(\gamma_i \) for each firm and each product using
the time series of the data. The results of Iwata's study were inconclusive, a result which he attributed to poor estimates of both price elasticities and marginal costs.

Another often cited work that further developed the conjectural variation approach is a 1982 study by Appelbaum. This paper shows how production theory can be extended to a general class of oligopolistic markets with homogeneous goods. The perceived marginal revenue expression from equation 2.2 is multiplied by $\frac{p}{p} \frac{D}{D}$, and rearranged as:

$$\frac{p \cdot \frac{\partial p}{\partial D} \cdot \frac{\partial D}{p} \cdot \frac{\partial q_i}{\partial q_i} \cdot \frac{p}{D}}{2.7}$$

By specifying $\epsilon \cdot \frac{\partial p}{\partial D}$, as the inverse market demand elasticity, and $\theta_i \cdot \frac{\partial D}{\partial q_i}$, as the conjectural elasticity\(^1\), the first order condition from equation 2.5 can be rewritten as:

$$\frac{p(1 + \theta_i \epsilon) = mc_i}{2.8}$$

Market power is broadly defined by Getoski as the deviation of price (p) from marginal cost (mc). Therefore, when perceived marginal revenue is equal to price market power is absent, and when perceived marginal revenue is less than price (because ϵ from

\(^1\)The conjectural elasticity is the percentage change in industry output as a result of a one percent change in the output of firm i.

19
equation 2.8 is negative) there is some element of market power (Bresnahan 1982). The measure of market power is composed of two parts; the inverse demand elasticity (flexibility), and the conjectural elasticity.

The empirical test for the presence of market power involves estimating θ_i from equation 2.8 and testing whether or not it is significantly different from zero. Since marginal cost is not provided exogenously, but must be estimated, equation 2.8 is supplemented with input demand equations derived via Shephard's lemma from the cost function to yield a system of simultaneous equations. These input demand equations provide additional information for the estimation process, so the variance of the estimated cost function (and marginal cost) parameters is reduced.

When using industry aggregate data to test for market power via equation 2.8, the measure market power (θ_e) is interpreted as the weighted average of the firm measures. In order to obtain an unbiased estimate of θ using industry aggregate data, firms must have linear and parallel expansions paths, implying that marginal costs are constant and equal across firms and that all firms employ constant returns to scale technology. This amounts to the restrictive assumption that individual firm cost functions are of the Gorman Polar form. Appelbaum shows that if this restriction holds, than the conjectural elasticities of all firms must be the same ($\theta_i = \theta_j = \theta$) in equilibrium.

Using annual industry aggregate data from 1947 through 1971, Appelbaum applied the model to four U.S. industries; rubber, textiles, electrical machinery, and tobacco. The three variable inputs assumed to be used were labor, capital, and an intermediate input and
a generalized Leontief cost function was used to represent the technology in each industry. The conjectural elasticity (θ) was not estimated as a single parameter, but was specified as a function of the exogenous prices in the system and estimated using two-stage regression techniques. Appelbaum concluded that oligopoly power has been exercised in the electrical machinery industry and in the tobacco industry, but not in the rubber and textiles industries.\footnote{Additional studies which have used this technique, and closely related extensions, are reviewed in Appendix A.}

\subsection*{2.3.2 Measuring Oligopsony Power}

Schroeter (1988) showed how the Appelbaum dual technique can be extended to measure deviations from pure competition in input procurement markets if the inputs are used in fixed proportions to the output produced. The profit function from equation 2.1 is rewritten as:

\begin{equation}
\pi = p(D)q_l - w(D)^Tq_i - C(w_2, \ldots, w_k q_i)
\end{equation}

where \(w_1\) is the price of the fixed proportion (primary) factor, \(q_i\) now represents the quantity of the primary factor used by firm \(i\), \(D\) represents both total market demand for industry output, expressed in terms of the quantity of the primary factor, and input supply

\footnote{Additional studies which have used this technique, and closely related extensions, are reviewed in Appendix A.}
of the primary factor. The first order condition for profit maximization can be expressed as:

\[\frac{\partial \pi}{\partial q_i} = p \cdot \frac{\partial p}{\partial D} \cdot q_i \cdot w_i \cdot \frac{\partial w_1}{\partial D} \cdot \frac{\partial D}{\partial q_i} = mc \]

Multiplying by \(\frac{P_i \cdot D}{p \cdot D} \) and \(\frac{w_1 \cdot D}{w_i \cdot D} \), and rearranging yields:

\[p \cdot \frac{\partial p}{\partial D} \cdot \frac{\partial D}{\partial q_i} \cdot q_i \cdot w_i \cdot \frac{\partial w_1}{\partial D} \cdot \frac{\partial D}{\partial q_i} \cdot w_1 = mc \]

If \(\theta_i \) and \(\epsilon \) are defined as the conjectural elasticity and demand flexibility, and \(\eta \) is defined as the inverse supply elasticity (flexibility) in the primary factor market \((\eta \cdot \frac{\partial w_1}{\partial D}) \), equation 2.11 can be rewritten as:

\[p \cdot (1 + \theta_i \epsilon) = w_1 \cdot (1 + \theta_i \eta) \cdot mc \]

The firm's conjectural elasticity divided by the elasticity of input supply provides a direct measure of oligopsony power. Schroeter used annual data from 1951 through 1983.

\[^{13}\]p in this case is scaled to be in terms of the quantity of the material input \((x_i) \) used.
to estimate the model parameters in an econometric system. The system consisted of the first order condition for profit maximization (equation 2.12), input demand equations to increase the efficiency (reduce the variance) of the marginal cost parameters, an output demand equation to obtain an estimate of ϵ, and a fed cattle input supply equation for the beef packing industry to obtain an estimate of η. The firm was assumed to use the non-material inputs of labor and energy in addition to the material input of fed cattle to produce beef, and a generalized Leontief cost function was used to capture the technology. The results implied that the assumption of price taking behavior is not valid for the beef packing industry. Price distortions, or market power, in both input and output markets were present but at modest levels.

A study by Schroeter and Azzam (1990) extended the technique of Schroeter (1988) to the case of a two product oligopoly/oligopsony. Their model included single product conjectures and cross product conjectures in both output markets and the two primary input markets. The authors applied their model to the U.S. meatpacking industry, encompassing both beef production and pork production. Some firms in the industry own only beef plants, some only pork plants, and some firms in the industry are engaged in the processing of both. The two goods were assumed to be related on the demand side, and were assumed to be produced in fixed proportions to the inputs of live cattle in beef processing and live hogs in pork processing. Schroeter and Azzam hypothesized that the extent of joint production identified suggests that firm's conjectures regarding cross market responses play a significant role in the profit maximization problem.
Demand and supply elasticities were obtained from exogenous sources, not estimated within the model. Production was assumed to require five non-material inputs consisting of three types of labor, energy, and transportation services. The technology was represented by a generalized Leontief cost function. Quarterly industry aggregate data regarding input and output prices and quantities for a 10 year period were used for the analysis. Anticipated cross market conjectures were found to have no impact on the firm's profit maximization decisions. Single product conjectures were, however, found to be significant. The authors concluded that this was an indication of the presence of some market power in both beef processing and pork processing.

Azzam and Pagoulatos (1990) pointed out that since the cost function is dependent upon the prices of inputs, deriving an expression for the conjectural elasticity in a factor market using the approach of Appelbaum (1982) is not possible unless, as in Schroeter (1988), one assumes Leontief technology for the input that is purchased in a market suspected to be non-competitive. Azzam and Pagoulatos propose an alternative primal approach, with technology described by a production function. In this framework, conjectural elasticities can be derived for output as well as for each input for which

14 If a biased exogenous value of ε, or η is provided there is an increased potential to bias the estimate of θ.

15 Another solution to this dilemma is to derive the behavioral equations from the profit function. For a discussion of this technique see Appendix A.
potential for market power is suspected, and these inputs are not restricted to be used in fixed proportions to the output.

The derivation of the behavioral equations begins from the profit function expressed as:

\[\pi_i = p(D) \cdot q_i - \sum_j^n w_j(X_j) \cdot x_j - \sum_k^m w_k \cdot x_{ki} \]

where as before D represents total industry output (\(\sum_i q_i \)), \(x_j \) is the amount of the non-competitive input \(j \) used by firm \(i \), \(X_j = \sum_i x_{ji} \) is the total industry demand for input \(j \), and \(x_{ki} \) is the amount of the competitive input \(k \) used by firm \(i \). For each non-competitive input, the first order condition, \(\frac{\partial \pi_i}{\partial x_j} \), equating marginal value product with marginal factor cost is:

\[p \cdot \frac{\partial q_i}{\partial x_j} + q_i \cdot \frac{\partial p}{\partial D} \cdot \frac{\partial D}{\partial q_i} \cdot \frac{\partial q_i}{\partial x_j} + w_j \cdot X_j \cdot \frac{\partial w_j}{\partial X_j} \cdot \frac{\partial X_j}{\partial x_j} \]

Expressing the marginal product of \(x_j \) (\(\frac{\partial q_i}{\partial x_j} \)) as \(f_j \) and multiplying the left hand side of equation 2.14 by \(\frac{D}{D} \), results in the following expression for marginal value product:
\[p \cdot s_f \left(1 + \frac{\partial p}{\partial D} \cdot \frac{\partial D}{\partial q_i} \cdot \frac{q_i}{D} \right) \]

As before, the demand flexibility \(\frac{\partial p}{\partial D} \) can be expressed as \(\epsilon \), and firm i's conjectural elasticity in the output market \(\frac{\partial D}{\partial q_i} \cdot \frac{q_i}{D} \) can be expressed as \(\theta_i \).

The right hand side of equation 2.14 is multiplied by \(\frac{X_j}{X_j} \), resulting in the following expression for marginal factor cost:

\[w_f \left(1 + \frac{\partial w_f}{\partial X_j} \cdot \frac{X_j}{X_j} \right) \]

Firm i's conjectural elasticity in the \(X_j \) non-competitive input market \(\frac{\partial X_j}{\partial x_i} \cdot \frac{x_i}{X_j} \) can be expressed as \(\phi_j \), and the supply flexibility in the \(X_j \) market \(\frac{\partial w_f}{\partial X_j} \cdot \frac{x_i}{X_j} \) can be expressed as \(\eta_j \). The first order condition (equation 2.14) for each non-competitive input can be expressed as:

\[p \cdot (1 \cdot \theta_i) \cdot s_f = w_f \left(1 + \Phi_j \cdot \eta_j \right) \]

For each competitive input, the first order condition, \(\frac{\partial x_i}{\partial x_i} \), is:
In this primal approach to econometrically testing for market power, these behavioral equations (one for each input) are estimated in a simultaneous system along with a production function. As in the dual approach, the demand flexibility (ε) and the non-competitive input market supply flexibilities (ηj's) can either be provided exogenously, or additional equations can be added to the system to estimate these parameters simultaneously in the econometric model.

Azzam and Pagoulatos applied the model to the U.S. meat packing industry using annual aggregate industry data from 1959 through 1982. Technology was represented by a translog production function. The hypotheses of competition in both input and output markets were soundly rejected. The authors were apparently aware of possible data aggregation problems since they pointed out that until firm level data are available, little is known about how the market power estimates may be biased by aggregation.

2.4 Including Additional Factors In The Models

Schroeter and Azzam (1991) added an additional dimension to the problem of econometrically estimating conjectures by exploring the connection between output price uncertainty and marketing margins in an oligopoly/oligopsory setting. The specific case they analyzed was the U.S. hog packing industry. The technique used was similar to that
of Schroeter (1988), based on the Appelbaum dual model. They specified the expected margin in the industry as the sum of marginal cost, oligopoly price distortions, and oligopsony price distortions. An additional term was added in an ad hoc manner to the first order condition (equation 2.12) to account for risk aversion, with risk being measured by the standard deviation of output price.

Their total model consisted of a margin equation (first order condition), an input supply relation, and a demand relation. Technology was represented by a generalized Leontief cost function with inputs of labor, energy, and transportation services. Quarterly aggregate industry data from the second quarter of 1972 through the fourth quarter of 1988 were used for estimation. Oligopoly and oligopsony price distortions were found to be small, but statistically different from zero. Since the conjectural elasticity (θ) was specified as a function of exogenous variables16, the price distortion could be calculated for each period. Oligopsony price distortions were prevalent early in the sample period; however, no statistically significant distortions were found in the later years. An important finding of this study is that when the price risk term was excluded from the model, the market power terms became significant and were more important determinants of the margins. Therefore, the authors concluded that ignoring the price risk component in empirical analysis can lead to erroneous inferences of non-competitive conduct.

16The authors hypothesized that θ may not be constant, but rather may vary with changes in output and exogenous prices.
In an attempt to identify factors that may mistakenly be identified as market power in behavior models, Stieger et al. (1993) examined how the cattle price markdown (θ_1 from equation 2.12) is affected by both anticipated and unanticipated supply shocks. Their hypothesis is that when packers cannot secure the average processing cost minimizing quantity of cattle, the packers may price cattle below marginal value product in order to avoid losses. The oligopsony models discussed previously would attribute this to market power.

The authors derived supply and input demand equations for the beef packing industry from a generalized Leontief profit function. The market power term in their model was specified as a function of both forecast and unanticipated cattle supply. Quarterly data from 1972 through 1986 were used for estimation, with factors of production being cattle, labor, and energy.

Steigert et al. found packer behavior to be consistent with rule of thumb pricing for live cattle. As the anticipated live cattle supply decreased, the packers increased their markdown of live cattle prices. The authors arrived at the interesting conclusion that the measure that has traditionally been attributed to market power may not be market power at all, but rather supply shortages. These shortages may force packers to deviate from the minimum point on their average processing cost curve because there simply are not enough live cattle available for slaughter during some time periods.

17 Unanticipated cattle supply is measured as the difference between forecast supply and actual slaughter.
2.5 Non-Econometric Studies Based On Conjectural Variations

Azzam and Schroeter (1991) argued that a problem of previous studies of competitive behavior in the beef packing industry is that they have not taken into account the regional nature of fed cattle procurement. Their paper proposed a non-econometric equilibrium approach for projecting price effects. The equilibrium conditions are derived in the same manner as those used in the econometric behavioral studies of Schroeter (1988) and Schroeter and Azzam (1990). Packers were assumed to choose cattle input quantities to maximize profit. A firm with market power will internalize the effect of that choice on regional quantity, and in turn on price. The authors derived a relationship between the price-cost margin in the regional market, and a function involving an index of the degree of coordination in the region, the regional Herfindahl index, and the regional supply elasticity in fed cattle. Basically, this function replaced the \((\theta \eta) \) term outlined in the first order condition derived by Schroeter (1988) in equation 2.12.

With the objective of determining how recent or future increases in concentration have affected or will affect cattle prices, the authors simulated results beginning with a baseline case consistent with the conditions in the industry at the time of the study. The parameters of the simulation model were then varied, and the model recalculated for each variation. For instance, concentration ratios within regions were increased, and conduct indices were varied to reflect more cooperative behavior. It was shown that for fixed values of the coordination index and supply elasticity, the price distortion increased with increases in concentration. Also, for given conduct and concentration, the distortion
decreased as supply elasticity increased. The authors reported that it is likely that cattle prices have been depressed by less than one percent in the most concentrated regions relative to what would have occurred in the competitive ideal. The magnitude of this estimate was less than that of previous estimates of fed cattle price distortions due to oligopsony power.

A 1993 study by Koontz et al. was an attempt to go beyond the identification of conduct. The motivation for the study was the fact that little attention had been paid to understanding the optimal pricing strategies in the oligopoly/oligopsony setting. An additional motivation was the desire to account for the regional nature of fed cattle markets. The study is unique in that it tried to model conduct in terms of non-cooperative game theory.

Short run (daily) beef packer behavior was modeled by assuming that in this very short run everything is fixed except for the number of fed cattle slaughtered. A trigger pricing strategy based on margins in the previous period was assumed under the theory that packers recognize the choice between pricing to maintain market share and pricing to improve profit margins. The authors derived a multi-period optimization problem which contained market power measures. These market power (conduct) measures were allowed to switch between the choice of cooperation or non-cooperation. The choice was triggered by a decision rule based on previous period margins.

Daily prices from four U.S. regional markets were collected and used for estimation. Depending on the region, the authors found market power gains of from
$5.00 to $19.00 per head during an early period (1980 - 1982). The market power gains were lower, $2.00 to $5.00 per head, during a more recent period (1984 - 1986). The decrease in the exercise of pricing power during the later period was due to a decrease in the probability of being in the cooperative phase of the game. A conclusion reached that is particularly relevant for this study is that the magnitude of the conjectures in this study using daily data were smaller than estimates from other studies using data aggregated over time. The authors found that market power in this industry is not constant over time, nor is it constant over space.

2.6 Summary

The goal of most empirical NEIO behavioral studies is to attempt to measure market power. This chapter has revealed that while there are many ways to go about achieving this objective, many questions remain unanswered. For example, several studies (Schroeter and Azzam 1991, Stiegert et al.)\(^{18}\) reveal that there is a real danger that the effect of factors excluded from the model will be attributed to market power. In addition, the consequences of using aggregate data to test for market power within this framework are not known. The assumptions required for consistent aggregation have been pointed out in some of the studies reviewed in this chapter, and will be further discussed in the next chapter. The magnitude of the possible error in estimation when using aggregate

\(^{18}\)Additional studies which support this observation are reviewed in Appendix A.
data to study industries in which these assumptions are violated has not been determined.

Finally, empirical estimates of market power may also be biased due to model misspecification. The use of incorrect functional forms to represent processing technology may lead to incorrect conclusions regarding the presence of market power.
Chapter 3

Theory

3.1 Introduction

This chapter builds upon the conjectural variations behavioral models presented in Chapter 2 to develop a general modeling framework which is used to test for market power in this study. The extension of the basic model derived for this study includes a unique specification of the market power term. Section 3.2 develops the specific model to be used for this analysis, and outlines the differences between this model and models used in previous research.

The goal of this dissertation is to investigate potential problems which arise when using conjectural variations models in empirical industrial organization research. One potential problem is the use of aggregate data. Section 3.3 of this chapter provides a discussion of the potential information loss and parameter bias in econometric estimation posed by data aggregation. The discussion includes requirements for consistent aggregation, and offers implications for empirical work if these requirements do not hold.

3.2 Modeling Oligopsony Behavior In U.S. Beef Packing

For this study, it is assumed that beef packers can potentially exercise market power in the procurement of fed cattle. The beef packing industry is assumed to use the
variable inputs of labor, energy, and other materials to produce output (boxed beef) in
direct proportion to the amount of fed cattle slaughtered. The fixed proportion (dressing
percent) on average remains constant across firms and over time, though it can vary
somewhat between individual animals. Beef packing firms have large investments in plant
and equipment which cannot be easily altered from week to week. For this study, this
investment is assumed to be a fixed input (capacity) in processing fed cattle into output.
Packers purchase fed cattle in regional procurement markets which tend to be highly
concentrated (Ward 1988). The output of the beef packing industry is sold in a national
market, which is less concentrated than the fed cattle procurement markets. For this
study, it is assumed that this output market is competitive. The assumption of a fixed
input\(^\text{19}\) and the assumption of a competitive output market distinguish the models
developed for this study from that of Schroeter (1988).

The firm level profit maximization problem for beef packers can be expressed as:

\[
3.1 \quad \text{Max } \pi = \gamma P_y y_t - w_t(y_t) - VC(w_2, \ldots, w_n, K, y_t)
\]

\(^{19}\)This study treats capacity as a fixed input and uses a short run cost function.
Previous studies have treated capital as a variable input.
where P_y is the output price, γ is the dressing percentage20, y_i is the fed cattle slaughter of firm i, Y is the total regional fed cattle slaughter ($\sum_i x_i$), w_i is the regional price of fed cattle, VC represents variable processing cost, w_2 through w_4 are the input prices of labor, energy, and materials, and K_i represents the capital stock (capacity) of firm i.

Differentiating equation 3.1 with respect to y_i yields the first order condition for profit maximization, expressed as:

\begin{equation}
3.2 \quad \frac{\partial \pi}{\partial y_i} = P_y \cdot w_i \cdot \frac{\partial w_1}{\partial Y} \cdot \frac{\partial Y}{\partial y_i} + \frac{\partial VC}{\partial y_i} = 0
\end{equation}

which can be rewritten as:

\begin{equation}
3.3 \quad P_y \cdot w_i \cdot \frac{\partial w_1}{\partial Y} \cdot \frac{\partial Y}{\partial y_i} \cdot \frac{\partial Y}{\partial w_i} \cdot \frac{\partial VC}{\partial y_i} = 0
\end{equation}

As discussed in Chapter 2, previous researchers have expanded the market power term, $\frac{\partial w_1}{\partial Y} \cdot \frac{\partial Y}{\partial y_i} \cdot \frac{\partial Y}{\partial w_i}$, into two components, $\frac{\partial w_1}{\partial Y} \cdot \frac{\partial Y}{\partial y_i}$ and $\frac{\partial w_1}{\partial Y} \cdot \frac{\partial Y}{\partial w_i}$ (θ_i and η from equation 2.12). This representation has been termed a conjectural elasticity times the fed cattle supply price flexibility. This breakdown demonstrates that in the oligopsonistic setting the

20γ is assumed to be a constant for this study. For the remainder of this chapter γP_y is expressed as simply P_y, which is used to represent the scaled price of output.
behavioral equation (first order condition) for each firm includes the firm's conjectures regarding industry responses (Kamien and Schwartz), and implies that conduct is an important determinant of performance with regard to pricing (Geroski).

3.2.1 Testing For Market Power

Given that $Y = \sum y_i$, the fed cattle price (w_i) is a function of Y, and that each firm's procurement decision depends on the firm's conjectural variation (see equation 3.3), the fed cattle market equilibrium price and quantity depend on the complete set of conjectural variations held by all producers in the industry (region). Econometric models of firm behavior attempt to assess the value of these conjectures (or the conjectural elasticities $\theta_i = \frac{\partial Y_i}{\partial Y}$) to infer firm behavior along the spectrum from competitive to monopsonistic (monopolistic).

Theoretically, one should be able to separately estimate both θ_i and η. However, in order to explicitly estimate θ_i, one must obtain an estimate of η. This may be accomplished by providing a supply flexibility (or elasticity) exogenously, or simultaneously estimating both η and θ_i. By explicitly estimating θ_i, one can test whether θ_i is equal to zero. This is strictly a test of the conduct of setting price equal to marginal cost (Appelbaum 1979). From a practical point of view, it is difficult to obtain a consensus regarding the estimate of the supply flexibility in many markets. Any error in estimation of η would bias the estimate of θ_i. By the same token, inclusion of an
erroneous exogenous estimate of the supply flexibility would bias the estimation of the
market conduct parameter (θ_i).

To reduce the potential estimation bias, an alternative test for market power
estimates the $\theta_i \eta$ term as one parameter and then tests whether this parameter is equal to
zero. This is a test of one of the following three scenarios: 1) $\theta_i = 0$ and $\eta \neq 0$, 2) $\theta_i \neq 0$
and $\eta = 0$, or 3) $\theta_i = 0$ and $\eta = 0$. Any one of these combinations would result in the
entire term ($\theta_i \eta$) being equal to zero. To clarify, the η in the term $\theta_i \eta$ could be non-zero
(the firm faces a somewhat inelastic supply curve in reality), but the firm may not realize
this potential to influence the input price. In their profit maximization decision, the firm
may behave as if it faced a perfectly elastic supply curve, and treat the price of the input
(cattle) as fixed. This model specification is designed to identify market power by testing
whether or not the whole market power term ($\frac{\partial w_i}{\partial Y} + \frac{\partial Y}{\partial \eta} w_i$ from equation 3.3) is equal to
zero, but is not designed to determine the specific industry conduct in terms of behavioral
theories.\footnote{21} Using this approach to testing for market power further distinguishes this study
from previous research.

In an empirical study using a time series of disaggregate firm-level data, one could
model each firm separately and estimate the market power term for each decision making
unit. For this particular experiment, numerous estimates of market power (one θ_i for each
plant or firm) when using the disaggregate firm-level data would be difficult to compare

\footnote{21}Certain values of the conjecture can be interpreted as implying certain behavior.
For example, conjectures equal to zero imply Cournot behavior.
with the one estimate of market power (θ for the whole industry) when using industry aggregate data. What is needed for this study is a simple test to reveal the exercise of market power in the industry that can be used in both the disaggregate cases (using pooled time series - cross sectional data), and in the aggregate cases (using only time series industry level data), so that the results can be compared.

Previous studies using industry data have restricted their estimate of the conjectural elasticity (θ), the portion of the market power term that could differ across firms, to be either constant across firms (Borooah and Van Der Ploeg), or to be a weighted average of each firm’s conjectural elasticity (Appelbaum 1982, Bresnahan). For this study, a similar assumption is imposed in that the first component of the market power term from equation 3.3 ($\frac{\partial w_1}{\partial y} \frac{\partial y}{\partial y}$) is assumed to be constant across plants. This implies that changes in procurement will result in the same proportional changes in fed cattle prices, regardless of which plant (firm) initiates the procurement (output) change. This assumption allows the specification of a market power term that can be used in both the disaggregate and aggregate cases. Total exercise of market power is allowed to differ between plants or over time as procurement levels change since the second part of the market power term ($\frac{y}{w_1}$) is allowed to vary across plants and over time. With these assumptions the total market power term can be expressed as:
3.4
\[\alpha_0 \cdot \frac{y_i}{w_i} \]

with \(\alpha_0 = \left(\frac{\partial w_i}{\partial y} \right) \) being constant across plants (firms). In the aggregate cases \(y_i \) is replaced by it's aggregate counterpart \(Y \), allowing the total amount of market power in the industry to depend on the level of industry input procurement.

3.2.2 The Econometric Model

With the specification of the market power term described in the last section, the first order condition from equation 3.3 (the behavioral equation) can be rewritten as:

3.5
\[P_y - w_t = \alpha_0 \cdot y_t \cdot \frac{\partial VC}{\partial y_t} \]

The technical relationships underlying the true variable cost function are not known. Therefore, a functional form must be chosen to represent the variable cost function and it's parameters need to be estimated along with the parameter which captures the degree of market power \(\alpha_0 \). In previous studies, factor demand (or share) equations have been added to the econometric model in a systems approach to supplement the specification of marginal cost in equation 3.5 and increase the efficiency of the cost
function parameters. In the models to be used for this study, the cost function itself will be included in the system, to add additional information to the estimation process and further help to obtain the cost function parameters. Therefore, for this study, each system will include the behavioral equation, the cost function itself, and the factor demands or share equations (derived from Shepard's lemma).

Each specification of the model will consist of the following equations:

\[P_y \cdot w_i = \alpha_0 \cdot y_i \cdot \frac{\partial VC}{\partial y_i} \]

3.6

\[VC = VC(w_2, \ldots, w_k, y_j) \]

3.7

and for each input \(j \):

\[x_j = \frac{\partial VC}{\partial w_j} \quad \text{or} \quad \frac{x_j \cdot w_j}{\sum_j x_j \cdot w_j} = \frac{\partial VC}{\partial w_i} \cdot \frac{\sum_j x_j \cdot w_j}{w_j} \]

3.8

\[\ldots \]

22Including non-redundant additional equations to the model adds more information to the estimation process and helps the model to more precisely estimate the parameters, if the added information is correct.

41
Previous studies of market power in the meat processing industries have typically used the generalized Leontief functional form to represent the industry cost function (Schroeter and Azzam 1990, 1991, Schroeter, Stiegert et al.). These researchers have assumed that the generalized Leontief is an adequately flexible form to capture the true cost structure of the industries being studied. This assumption has not been tested. For this study, another interesting dimension of empirical estimates of market power using NEIO econometric methods will be investigated by using the generalized Leontief, translog, and normalized quadratic functional forms to represent the firm/industry cost functions. This will allow investigation of not only the effects of data aggregation, but also the impact of using different functional forms on parameter estimation.

3.3 Data Aggregation

A common problem faced by researchers analyzing agricultural or agribusiness markets is that the available data are aggregated over various dimensions. These dimensions commonly include aggregation over space or firms, aggregation over time, or aggregation over inputs in the production process. The data are often aggregated to such a degree that the actual underlying decision process which the researcher is trying to model may be undetectable in the data (Zellner and Montmarquet). Failure to account for the effect of this data aggregation can result in distorted parameter estimation in empirical work (Robinson, Ward 1992, and others), and could bias the views of industry analysts and policy makers.
This dissertation determines the effects of data aggregation over plants or firms and over time on econometric estimates of market power in the beef packing industry using the behavioral model discussed in the last section. This section presents a discussion of the requirements for legitimate aggregation over various dimensions, and why the requirements do not likely hold in data aggregated over plants (firms) or over time in the beef packing industry.

3.3.1 Aggregation Over Space and Time

In general, data aggregation leads to a loss of information that may cause inflation of error variance and a worsening of multicollinearity between variables in statistical modeling (Houck). The magnitude of this information loss, and the resulting loss in efficiency of the estimates, depends not only on the level of aggregation, but on the nature of the variables themselves. Therefore, it is nearly impossible to predict the consequences of aggregation in any given situation. Consequently, most studies of the aggregation issue have been case specific. These studies are either deterministic, in that they identify the consequences of aggregation of one specific data set (Young and Stevens, Park and Garcia, Blank and Schmiesing), or like this study, attempt to assign probabilities to the consequences of aggregating data in a particular empirical context (Orcutt et al., Sexaur, Choi).

In empirical work, the aggregation problem can arise when it is necessary to use simplified models as mathematical approximations to economic theories (May). Some
researchers have identified aggregation problems as being similar to measurement error (Hannan), while others have viewed aggregation as a specific type of specification error (Grunfeld and Griliches). In a regression context, the variation in the dependent or independent variables may be altered by the aggregation in such a way that the influences of the independent variables can become intermingled. This can make accurate analysis in a regression framework difficult or impossible (Hannan).

The link between the level of data aggregation and the model specification, both chosen by the researcher, should not be ignored. The performance of a particular model specification may be sensitive to the units of observation in either a spacial context (Lyon and Thompson), or in a temporal context (Blank and Schmiesing, Lancaster). Following Lyon and Thompson, this study investigates the effects of both aggregation over firms and aggregation over time in a particular empirical context (market power in beef packing) using alternative model specifications.

The use of aggregate data implies that certain assumptions must hold in order to estimate both cost function parameters and the measure of market power. When using aggregate data to estimate cost function parameters, the researcher believes that the assumption of constant and identical marginal costs for all firms (if aggregating spatially) or over time (if aggregating temporally) holds. The individual cost functions must be of the Gorman Polar form (Warmon and Sexton), implying that the production expansion paths must be linear and parallel (Appelbaum 1982). One of the practical motivations for this study is that this assumption may be too restrictive with regard to the beef packing.
industry. Previous researchers have identified long run economies of size in this industry (Ward 1988 and Duewer and Nelson). We know that productive capacities are not the same, and therefore cannot assume that all firms have the same cost structure. If the assumption of constant marginal cost does not hold, the estimates of cost function parameters obtained using aggregate data will be biased relative to those obtained using weekly firm-level data. In addition, the market power measure is assumed to summarize the information regarding conduct and performance of the units being studied when using spatially aggregated data. As with the estimates of cost function parameters, if the implied assumption of identical marginal costs does not hold, then measures of market power obtained using aggregate data may be biased relative to measures obtained using disaggregate data (Lopez and Domsainvil).

3.3.2 Aggregation Over Inputs

In order to aggregate several inputs into a group for econometric modeling purposes, one must assume that those inputs are weakly separable from all other inputs. This means that the marginal rate of substitution between any two inputs in the group to be treated as an aggregate cannot depend on the level of input usage from any other group. For example, to combine skilled and unskilled labor into one aggregate labor variable, the marginal rate of substitution between these two inputs must not depend upon the level of any input from another group, such as energy. For this study it is assumed that the aggregate input groups of capital, labor, energy, and other materials meet the
separability requirements when analyzing the beef packing industry. Previous studies of
the meat packing industry have used similar input groupings (Schroeter 1988, Schroeter
and Azzam 1990, 1991), and these input classes are intuitively distinct.

Any attempt to include more disaggregated measures of input usage would make
the study unmanageable in terms of model specification and the number of observations
needed in each data set to allow sufficient degrees of freedom for statistical testing.
Therefore, it is beyond the scope of this study to empirically test the imposed separability
assumptions. It should be noted, however, that if these assumptions do not hold, there is a
potential for biased results. Burgess, for example, found that the maintained hypothesis of
separability between factors in some previous studies had been responsible for imposing a
downward bias on derived demand elasticity estimates. In addition, using non-parametric
tests Lim and Shumway determined that the justifiable levels of input aggregation in
agricultural production data varies widely between sectors and geographical areas being
studied.

3.3.3 Implications And Conclusions

Many empirical studies of agricultural and other markets continue to use
aggregated data, suggesting that researchers are largely ignoring the implications of using
such data. This is not necessarily the result of poorly planned research. In most cases, the
choice is made based on data availability (Hannan). Nonetheless, there may be hazards
associated with using data simply because they are the best available (Houck). There is an
overwhelming consensus among previous empirical studies that changes in the level of data aggregation produce changes in parameter estimates. In some situations, the bias has been found to be small (Boot and Dewit), inferring that the level of data aggregation in some instances may not be a big issue. In other situations (Eisgruber and Schuman, Hannan), the aggregation bias has been so large that the authors have reached the strong conclusion that estimates obtained from aggregated data are not very useful for economic analysis.

The concept of fragility refers to whether conclusions drawn from a modeling effort are sensitive to changes. These changes can be in the form of assumptions, model specification, or data (Zellner and Montmarquet). Hannan notes that there is a need to consider the magnitude of errors and faulty inference associated with using aggregate data under various situations, and Lyon and Thompson add that it is also necessary to investigate the impact of differing model specifications. In response, researchers have begun to empirically examine these issues on a case by case basis. This study will be an important contribution to this body of research, in that it will determine whether the results of conjectural variations behavioral models are fragile with respect to the level of aggregation, and/or model specification.
Chapter 4

Simulating The Beef Packing Industry
And Testing For Market Power

4.1 Introduction

In this chapter, a Monte Carlo experiment that explores the implications of using aggregated data to test for the exercise of market power in the U. S. beef packing industry is described. In the experiment, data are simulated to have characteristics representative of the beef packing/processing industry in two broadly defined geographical regions, the Northwest with plants in Washington and Idaho, and the Southern Plains with plants in Texas, Kansas, Colorado, and Nebraska. To make the experiment as useful as possible, underlying assumptions regarding the beef packing industry are varied in two dimensions, technology and behavior. Data are aggregated across firms and over time to add a third dimension to the data generation process. In addition to exploring the issue of data aggregation, the sensitivity of estimates of market power to model specification is examined by comparing results from alternative functional form specifications.

Since the production technologies of beef packers are not known, it is necessary to perform the experiment across a range of plausible technologies, thus increasing the chance of closely replicating the true underlying technology and broadening the scope of
the study. These technologies differ by important characteristics such as relative ease of factor substitution and returns to scale. There is a tradeoff between the breadth of the experiment and manageability of the study. As a compromise, 13 different technologies are simulated for each behavioral scenario. These 13 technologies are presented and discussed in section 4.2.2.

There are a number of plausible assumptions regarding the behavior of industry participants. For instance, decisions could be made at the firm level, or each plant of a multi-plant firm could act as an individual profit center. The fed cattle procurement market could be competitive, in which case individual plants or firms would have no ability to exercise market power on the input procurement side, or there could be various degrees of potential for, and exercise of, market power in the industry. Five behavioral scenarios are designed to cover this scope of possibilities. These scenarios are discussed in section 4.2.4 along with details of the data generation process.

Lastly, there are a number of different levels of aggregation at which the data could be collected. Data could be collected from individual plants or from individual firms, encompassing weekly, monthly, quarterly, or some other observation time frame. On the other hand, aggregated industry level data could be collected representing any observation time unit. The three levels of data aggregation across decision makers and over time to be simulated and examined in this study are presented in section 4.2.5, along with a brief discussion regarding the number of observations generated at each level of aggregation.
Monte Carlo experimentation involves repeating each technology - behavioral scenario - aggregation treatment a number of times (with some changes in the exogenous inputs) in order to assign probabilities to the outcomes.23 It is common for economists and statisticians to use this technique to discern the properties of various models or estimators (Smith). For each treatment, the specific steps are to: 1) generate the data; 2) test for market power using the generated data; and 3) collect the outcomes of each test. Only the test outcomes are saved from each cycle.

A critical question that arises is how many times the experiment must be repeated for each treatment in order to infer a probability distribution from the outcome of the simulation. From a technical point of view, it depends on the magnitude of the dispersion of the stochastic input variables. The larger the variance of the stochastic variables, the more repetitions are needed to capture the distribution of the outcomes of the experiment. Previous researchers provide a practical guide to the number of replications needed (Reidy, Orcutt et al., Thursby and Knox Lovell, and others). Reidy varied the number of replications in a Monte Carlo experiment between 30 and 500. In general, his probability measures were not sensitive to changes in the number of replications above 30. There is clearly a tradeoff between the cost of resources used in producing more replications of each experiment and the resultant increase in the precision of the probabilities garnered.

23For this experiment, the changes to the input data sets are accomplished by drawing different values of the exogenously provided input variables. These distributions are discussed in section 4.2.2.
from the simulation. Following Richardson and Condra, Nutt and Skees, and others, each
treatment in this experiment will be replicated 100 times. When all treatments for the
study are considered, the total experiment involves generating 6,500 different data sets at
each of 3 aggregation levels, for a total of 19,500 unique data sets.

The last section of this chapter (4.3) provides the specification of each of the
econometric models used to test for market power in the generated data. Three models
are specified which will be used to test for market power at all levels of aggregation.
These models differ in the functional form of the cost function used to capture the
underlying technology of the industry.

4.2 The Experiment

As mentioned above, there are three dimensions to the data generation process.
First, 13 different technological possibilities for the U. S. beef packing industry are
represented. Second, data for each technology are generated consistent with 5 alternative
behavioral scenarios, amounting to different assumptions regarding the exercise of market
power and the decision making level in the industry. Third, data sets for each technology-
scenario combination are generated at 3 alternative aggregation levels. Each technology-
scenario - aggregation level combination represents a unique treatment, requiring the
generation of 100 data sets for testing. Table 4.1 provides an overview of the 5 scenarios
and the 3 aggregation levels. The remainder of section 4.2 reveals the details of the data
generation process.
<table>
<thead>
<tr>
<th>Behavior</th>
<th>Scenario 1. No market power</th>
<th>Scenario 2. Small amount of market power exercised</th>
<th>Scenario 3. Relatively large amount of market power exercised</th>
<th>Scenario 4. Firm, rather than plant is the profit center. Some degree of market power exercised</th>
<th>Scenario 5. Market power is possible, but plants do not recognize the potential for market power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Aggregation</td>
<td>Disaggregate data representing 52 weeks of plant level weekly data from two major beef packing regions in the U.S.</td>
<td>For each of these scenario-aggregation level combinations the same 13 technology assumptions are looked at in a separate treatment, providing a total of 195 sub-experiments (treatments). Each treatment involves the simulation of 100 data sets at each level of aggregation. Each data set is tested for market power using the econometric models and the results of the tests are saved to be reported and discussed in the next chapter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data aggregated over all plants, firms, and both regions representing 52 weeks of industry level data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industry level data aggregated over time to represent 20 years of quarterly data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2.1 Assumptions Governing The Data Generation Process

For this study, it is assumed that feed cattle procurement decisions are made at either the plant or the firm level on a weekly basis. This is the same as deciding how much output to produce in a given week since output is assumed to be directly proportional to the volume of cattle slaughtered. Each plant is assumed to have some input such as capital (represented by maximum slaughter chain speed) that is fixed in the relevant decision making time frame. In addition to capital, the plants are assumed to use 3 general classes of variable inputs to process fed cattle into final products. These include labor, energy, and other material inputs. This choice of inputs is consistent with previous research. However, previous studies have lumped the energy and other material categories into one (Schroeter 1988, Azzam and Pagoulatos), or have included transportation services instead of other material inputs (Shroeter and Azzam 1990, 1991). These 3 general categories of variable processing inputs (in addition to the primary input of fed cattle) are assumed to be sufficient to adequately represent the processing technology while maintaining manageability of the study. It is doubtful whether any comprehensive empirical study of the industry could ever accommodate more variable inputs because of degrees of freedom limitations.

In order to estimate the systems of equations used to test for market power outlined section 4.3, the following data are needed; input quantities and prices (including regional cattle prices), output quantities and prices, and plant capacities. Some of the variables are provided exogenously, and the remaining variables are calculated consistent
with profit maximizing behavior on the part of the plants or firms. This study will use a
"primal" approach to simulate the data, with the production technology being represented
by a production function. Input quantities and output price are provided exogenously,
output is calculated, and input prices consistent with profit maximizing behavior are then
obtained from the first order condition for profit maximization.24

For realism, these generated data reflect the size distribution of beef
slaughtering/processing plants in the two procurement regions chosen for this study. The
first region, commonly referred to as the Southern Plains cattle feeding area, contains a
total of 14 major beef packing plants belonging to 4 firms in southwest Kansas, eastern
Colorado, southern Nebraska, and the panhandle of Texas. The second region is the
Northwestern U.S. cattle feeding area where there are 4 major packing plants belonging to
3 firms, all located in Washington and Idaho.

Variable input quantities for average plants in each size category and a categorical
measure of capacity are provided for each plant in the two regions for which data are
simulated. The plants are divided into three distinct size categories based on reported
daily capacities (CF Resources). The categories are chosen arbitrarily, based on
experience and Packers and Stockyards data and include small (under 2,000 head per day),
medium (2,000 to 4,999 head per day), and large (over 5,000 head per day). At the end

24 The simulation could have been based on a dual approach, starting from a pre-
specified cost function with input prices and output quantities exogenously provided, and
solving for a set of input quantities consistent with profit maximization.
of 1993, there were 8 medium sized plants and 6 large plants in the Southern Plains region. In the Northwest region, there were 3 small plants, and 1 medium sized plant. There were no large plants in the Northwest, and no small plants in the Southern Plains (CF Resources).

4.2.2 Generating Inputs And Outputs

The production function chosen to represent the relationship between input usage and the number of units of cattle processed (number of units of output produced) in the data generation process is a generalized CES (Mukerji). This functional form is chosen because of its flexibility to represent a number of different technological possibilities with respect to elasticities of substitution and returns to scale. The exact specification of the generalized CES production function to be used for this study is:

\[Y = (\sum \delta_i x_i^{\rho_i})^{\gamma/p} \]

In addition to its general flexibility, the generalized CES has been shown to have globally well behaved curvature properties as long as the following parameter restrictions are imposed (Hanoch, Driscoll):

(1) \(\delta_i > 0 \).

(2) \(\Sigma \delta_i = 1 \).

(3) \(\rho \) and \(\rho_i > 0 \).
or \(\rho < 0 \), and \(-1 < \rho_i < 0\).

or \(\rho = \rho_i = 0 \).

Thus, the generalized CES is appealing for Monte Carlo experimentation because
the characteristics of the production process (the technology) can be altered easily in any
way desired by changing \(\rho_i \)'s, \(\rho \), \(\delta_1 \)'s, and \(\gamma \). For this study \(\gamma \) is set to 1 in all instances,
and \(\delta_1 = \delta_2 = \delta_3 = \delta_4 = .25 \). Values for the remaining parameters for each of the 13
technologies are given in Table 4.2.

Table 4.2 Summary of the parameter values of the various technologies imposed on
the data generation process, their associated returns to scale, and Allen
cross price partial elasticities of substitution.

<table>
<thead>
<tr>
<th>Parameter Values</th>
<th>Allen Elasticities of Substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rts(^a)</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1.01</td>
</tr>
<tr>
<td>6</td>
<td>.97</td>
</tr>
<tr>
<td>8</td>
<td>.98</td>
</tr>
<tr>
<td>9</td>
<td>1.01</td>
</tr>
<tr>
<td>10</td>
<td>.99</td>
</tr>
<tr>
<td>11</td>
<td>1.11</td>
</tr>
<tr>
<td>12</td>
<td>1.21</td>
</tr>
<tr>
<td>13</td>
<td>1.24</td>
</tr>
</tbody>
</table>

\(^a\) Returns to Scale
Sufficient technological differences are achieved by varying the values of ρ and the ρ_i's. An effort is made to keep the returns to scale parameter close to 1 for the first 10 technologies in order to concentrate on changes in assumed input substitutability, but to allow for increasing returns to scale in the last 3 technologies.25 Technologies exhibiting long run economies of scale are included since both Ward (1988) and Duewer and Nelson found existence of long run economies of scale in the beef packing industry.

The first 4 technologies from Table 4.2 are homogeneous CES, and the substitution possibilities between inputs are made increasingly difficult as one moves from technology 1 to technology 4. Technology 4 is very near Leontief technology. For technologies 5, 6, and 7, the elasticity of substitution is one value for three input pairs and another value for the remaining three input pairs, with different values and combinations for each of these three technologies. In general, the substitution possibilities become more difficult moving from technology 5 to technology 7, and technology 7 is fairly close to a Leontief technology. Technologies 8 and 9 exhibit a unique elasticity of substitution for each input pair, and these values differ between the two. Technology 10 assumes that capital, energy and materials are slight complements to one another, but are all moderately substitutable for labor. The last 3 technologies are not homogeneous and exhibit increasing returns to scale. Technology 11 is CES, and technologies 12 and 13 have

25The values of ρ and the ρ_i's were arrived at through the use of a spreadsheet which calculated the returns to scale via the formula in Driscoll, and the Allen partial elasticities via the formula in Mukerji.
different substitution elasticities for each input pair. These technologies were chosen because they represent a fairly broad range of input substitution and returns to scale possibilities.

The input variables \((X_i's)\) are randomly drawn from a multivariate log-normal distribution. For each of the 3 size categories of beef processing plants, the mean values of the capacity and input quantity variables used in this analysis are provided in Table 4.3.

Table 4.3 Mean values of capacity and weekly variable input quantities assumed to be used in the respective size categories of beef packing plants.\(^{26}\)

<table>
<thead>
<tr>
<th></th>
<th>Under 2,000 hd/day</th>
<th>2,000 - 5,000 hd/day</th>
<th>Over 5,000 hd/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain Speed</td>
<td>82,500</td>
<td>191,000</td>
<td>302,500</td>
</tr>
<tr>
<td>Labor</td>
<td>16,000</td>
<td>35,000</td>
<td>52,000</td>
</tr>
<tr>
<td>Energy</td>
<td>1,500</td>
<td>3,120</td>
<td>4,700</td>
</tr>
<tr>
<td>Materials</td>
<td>1,000</td>
<td>2,300</td>
<td>3,600</td>
</tr>
</tbody>
</table>

The assumed variance-covariance matrix of the multivariate log-normal distribution of inputs is provided in Table 4.4.

\(^{26}\)The data generation program actually draws from the distribution around the natural log of these mean values. This simplifies the data simulation process because in log form only one variance-covariance matrix is needed to facilitate random draws that reflect the same percentage variations of inputs for all 3 size categories.
Table 4.4 Variance - Covariance matrix associated with the input usage matrix.

<table>
<thead>
<tr>
<th></th>
<th>Chain Speed</th>
<th>Labor</th>
<th>Energy</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain Speed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Labor</td>
<td>0</td>
<td>0.00664</td>
<td>0.0073</td>
<td>0.0077</td>
</tr>
<tr>
<td>Energy</td>
<td>0</td>
<td>0.0073</td>
<td>0.0124</td>
<td>0.0099</td>
</tr>
<tr>
<td>Materials</td>
<td>0</td>
<td>0.0077</td>
<td>0.0099</td>
<td>0.0124</td>
</tr>
</tbody>
</table>

The capacity variable (chain speed) is assumed to be fixed in the short run and does not have an associated covariance with any other input. It is assumed that labor usage can vary as much as 15%, and energy and materials inputs can vary as much as 20% from mean values. This is based on the observation that plants rarely operate less than a 32 hour per weekly shift work week, about 20% less than the standard 40 hour shift, but may also kill on Saturday which could add approximately 20% to the normal shift work week. However, included in the labor component are salaried and management personnel, a component which does not vary nearly as much as the shift labor. Therefore, it is assumed that the total labor input could typically vary by as much as 15% from week to week during normal operation. The other broad categories of inputs are assumed to vary by about the same amount as the shift labor, in large part due to the assumed high correlation between the use of the various inputs. For example, the correlation between labor and energy and the correlation between energy and materials are both assumed to be .8. The correlation between labor and materials is assumed to be .85. This is simply based on the observation that energy would be used even when the plant is shut down or
operating at a level far below capacity. However, labor and materials are both assumed to be used in close to fixed proportions to the number of cattle being slaughtered. For the entries in Table 4.4, the standard formula for covariance(i,j), $\text{Cov}(i,j) = \rho_{ij} \cdot \sigma_i \cdot \sigma_j$, is used to obtain the individual entries.

In order to estimate the market power models outlined in section 4.3, it is necessary to assume that there were some changes in plant capacity throughout the year for those treatments in which a year's worth of data are required and over the 20 year period for those treatments in which 20 year's worth of data are required. This is accomplished by assuming that certain plants increase capacity (move up 1 size category) periodically through the data simulation process. Specifically, at the end of the 5th year, 2 plants were assumed to increase capacity from the medium to the large category, and 1 plant was assumed to switch from the small to the medium category. At the end of the 10th year, 2 plants were assumed to change from the small to the medium category. At the end of the 15th year, 2 more plants were assumed to add capacity, going from small to medium classifications. In the final year (the only year used for disaggregate and industry level weekly data sets), at the end of the 1st quarter one plant increased in size from medium to large, at the end of the 2nd quarter one plant increased in size from small to

27 ρ_{ij} is the correlation between input i and input j, and σ_i is the standard deviation of input i.

28 This is due to the fact that in certain model specification-aggregation level combinations, the fixed capacity variable becomes perfectly correlated with the intercept.
medium, and one plant increased in size from medium to large. Finally, at the end of the 3rd quarter one small plant became a medium sized plant. These changes provide enough variability in the capacity variable to facilitate estimation in the aggregate treatments.

The specific procedure for generating output is as follows. For each hypothesized week, random draws of inputs are taken from the exogenously provided distribution of inputs and capacities (Tables 4.3 and 4.4).

The appropriate number of random draws are taken from each plant size category to maintain consistency with the structure and plant size distribution in each of the two regions. For each observation, \(y_a \) is then calculated using the production function (equation 4.1), with the various parameter values from Table 4.2 imposed according to the technology being simulated.

4.2.3 Generating Output Price

Output price is provided exogenously for each observation. The price is based on a $110.00 per cwt. boxed beef cutout value, but adjusted to reflect the fact that in the models estimated in this experiment the output price is in terms of units of fed cattle procured rather than units of output sold. In addition, the output price is adjusted for each technology to reflect the divergence between the average number of units of regional

\[29 \text{In all cases the ending size distribution is consistent with that described for the end of 1993.} \]

\[30 \text{This is accomplished using the RNMV subroutine in Fortran. An initial seed of 12345 is used for the first replication of each treatment, and 201 is added to the seed for each subsequent replication.} \]
output produced by the model and the average number of cwt.'s of fed cattle that would be expected to be produced in the region based on reported plant capacities. Thus, the price is adjusted to reflect a different scaling interpretation of the output value. After being specified in scaled form, the output price is randomly disturbed by a maximum of 5% from the assigned value for each observation at the disaggregate level. Adding this small amount of variability to the output price adds an element of realism to the experiment in that output price is not constant in the industry.

4.2.4 Generating Input Prices For Each Scenario

This section provides a detailed discussion on how the rest of the variables of each data observation are generated consistent with profit maximizing behavior for each of the 5 behavioral scenarios. For this study, data are generated consistent with each plant’s solution to the following profit maximization problem:

\[
\max \pi = P_y y_u - w_1(I_y) y_u - VC(K, \omega_2, \omega_3, \omega_4 y_u)
\]

where:
\(P_t = \) Composite price of all of the outputs resulting from the slaughtering and processing of fed cattle in time \(t \);\(^{31}\)

\(w_{mt} = \) Cost per unit (cwt) of procuring live cattle in time \(t \);

\(w_{nt} = \) Cost per unit of labor in time \(t \);

\(w_{st} = \) Cost per unit of energy in time \(t \);

\(w_{nt} = \) Cost per unit of other processing materials in time \(t \);

\(K_i = \) the designed capacity of plant \(i \);

\(y_{it} = \) number of units (cwts) of cattle processed by plant (or firm) \(i \) in time period \(t \); and

\(Y_i = \) Total units of cattle processed in the region in time period \(t = (\sum_i y_{it}) \).

For scenario's 1, 2, 3, and 5 it is assumed that each plant acts as an individual profit center, making decisions regarding output and input usage on a weekly basis. For these scenarios, the \(y_{it} \) in equation 4.2 represents individual plant production. In scenario 4, it is assumed that each firm acts as a profit center within each region, thus \(y_i \) from equation 4.2 represents the firm's production. Because the multi-plant firms control more volume, the potential for exercise of market power is amplified if this assumption holds.

Based on the "primal" approach to data simulation, with the technology imposed by the parameters of the production function, output levels are calculated from the input quantities. The specifics of this step were outlined in section 4.2.2, which provided a

\(^{31}\)For the simulation, this output price is specified exogenously and is adjusted to reflect the fact that in this specification it is in terms of fed cattle processed, not the outputs produced.
detailed discussion of the production function and the technologies. After calculating output, a vector of input prices consistent with profit maximizing behavior are calculated from the profit maximization problem to complete the data set for each observation.

Specifically, the first order condition for profit maximization implies that \(\frac{\partial \pi}{\partial y_t} \) equals zero. From equation 4.2:

\[
4.3 \quad \frac{\partial \pi}{\partial y_t} = P - w_1 - \left(\frac{\partial w_1}{\partial y_t} \bullet \frac{\partial Y}{\partial y_t} \right) \cdot \frac{\partial VC}{\partial y_t} = 0
\]

For the first scenario it is assumed the supply of fed cattle is perfectly elastic, and each plant recognizes its lack of ability to influence the cattle price through output changes. In this case, the \(\frac{\partial w_1}{\partial y} \) term in equation 4.3 is zero and plants behavior is consistent with the simplified first order condition expressed as:

\[
4.4 \quad \frac{\partial \pi}{\partial y_t} = P - w_1 - \frac{\partial VC}{\partial y_t} = 0
\]

For this behavioral scenario the value of \(w_1 \) (the per unit procurement cost of cattle) is provided exogenously. The value provided is based on a $70.00 per cwt. average fed cattle price. However as with output price, it is adjusted for each technology to reflect the divergence between average simulated output and an estimate of actual average output.
As presented in Table 4.1, for scenarios 2, 3, 4, and 5 it is assumed that there is at least some potential for exercise of market power in the fed cattle market. This amounts to assuming that the supply of fed cattle is not perfectly elastic and that the price of fed cattle is related to the quantity of fed cattle sold in the region during the relevant time period (week). An assumed value of the regional fed cattle supply price flexibility
\[
\left(\frac{\partial w_i}{\partial Y_r} \right)^2
\]
is used to determine the value of \(w_i\). By assigning a value to \(\partial w_i/\partial Y\) (the slope of the fed cattle supply curve), one can calculate \(w_i\) as
\[
\left(Y_r \times \left(\frac{\partial w_i}{\partial Y} \right) \right) / (\text{the price flexibility})
\]. The price flexibility is provided exogenously, consistent with the range of fed cattle price distortions found by previous researchers (Koontz et al., Azzam and Schroeter), and varies in magnitude depending upon the amount of market power potential desired. By varying the assigned value of \(\partial w_i/\partial Y\)\(^3\), and the price flexibility, the magnitude of the potential for market power in the input procurement market is changed. The values of \(w_i\) generated are consistent with variation around a $70.00 per cwt. fed cattle market in all cases.

The assumptions regarding the magnitude of the supply price flexibility for the various behavioral scenarios are as follows. For the second scenario, a fed cattle supply price flexibility of between .03 and .04 is imposed on the data. The data are generated

\(^{32}\) \(Y_r\) represents weekly regional fed cattle supply.

\(^{33}\) In the current simulations the realistic assumption that the slope of the fed cattle supply curve is not constant, but increases slightly as regional output increases, is imposed on the data.
such that the supply flexibility increases within this narrow range as regional output
increases within the range of its generated values. Individual plants are assumed to
recognize the full market power potential of this supply flexibility. This assumption is
consistent with a 10% increase in the quantity of fed cattle demanded by packers resulting
in a price increase of from $70.00 per cwt. to $70.25 per cwt. This is thought to be a very
small potential for market power, especially at the plant level, and is consistent with
previous findings of only slight exercise of market power in fed cattle markets (Koontz et
al.).³⁴

For the third scenario, a fed cattle supply price flexibility of between .15 and .17 is
imposed on the data, again increasing within this range as regional output increases.
Again, each plant is assumed to recognize the potential of this flexibility. As an example
of the price distortion potential of this flexibility, a 10% movement along the supply curve
could result in the fed cattle price increasing from $70.00 per cwt. to $71.12 per cwt.
This is thought to be a moderate amount of market power potential that should be
detectable in any modeling effort to test for market power, and is consistent with the
higher end of previous estimates of market power in fed cattle markets (Azzam and
Schroeter).

³⁴This same magnitude of market power price distortion could result from a more
inelastic fed cattle supply price flexibility combined with a conjecture of less than the
assumed value of one. For this study, the desired overall price distortion is imposed in the
simplest manner possible.
In the fourth scenario, where the firm rather than the plant is assumed to be the decision maker within each region, a fed cattle supply flexibility of .03 to .04 is again imposed on the data, and the firms are assumed to fully recognize this potential for market power. At the regional level, this results in the same potential for fed cattle price changes as in scenario 2. Each multi-plant decision maker, however, influences a larger share of the regional market, thus the \(\frac{\partial w_i}{\partial y} \) term from equation 4.3 is multiplied by a larger \(y_i \). This increases the potential for price distortion in the fed cattle market by individual decision makers. For scenarios 2, 3, and 4 the decision makers are assumed to behave according to the solution to equation 4.3.

For scenario 5, the plant is assumed to be the decision maker and, as in scenario 2, a relatively small supply flexibility of .03 to .04 is imposed on the cattle price data. In this scenario, however, the plants do not recognize their ability to influence the fed cattle price and do not account for this ability when making their output decisions. The price of cattle is generated to be dependent upon regional output, but plant behavior is consistent with the solution to equation 4.4. Market power should be no more detectable under this scenario than under scenario 1.

To this point, \(y_i \) has been calculated from the production function and \(w_i \) has been exogenously provided or calculated based on regional output and assumed flexibilities. With the assigned value of \(\frac{\partial w_i}{\partial y} \) and the assumption that \(\frac{\partial y_i}{\partial y} \) equals 1, and an exogenously provided \(P \), we can calculate \(\frac{\partial P_C}{\partial y_i} \) (marginal cost) as a residual from equation 4.3 (or 4.4 in scenarios 1 and 5).
Profit maximizing behavior is assumed on the part of the individual plants, therefore, the variable cost function in equation 4.2 represents the variable costs associated with utilizing the cost minimizing bundle of inputs that will produce \(y_i \). Solving the first order conditions of the cost minimization problem written as:

\[
\text{Min} \quad w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 \\
\text{s.t.} \quad F(x_1, x_2, x_3, k_i) - y_i = 0
\]

results in the following:

\[
w_i = \lambda \frac{\partial y_i}{\partial x_j}
\]

and from the envelope theorem (Varian, p. 76) it is shown that \(\lambda \) in this problem must be \(\frac{\partial y_i}{\partial y_i} \) (marginal cost). The term \(\frac{\partial y_i}{\partial x_j} \) is simply the marginal product of \(x_j \) from the production function. Therefore, we have all of the information necessary to calculate \(w_2, w_3, \) and \(w_4 \) using equation 4.6, completing the data requirements.
4.2.5 The Aggregation Levels

In the experiment, tests for market power are first performed using disaggregate data. It is assumed that output, and thus input, decisions are made in this industry on a weekly basis. Late in a given week plant (or firm) level managers evaluate market conditions and decide how many hours the plants will operate the following week. Procurement plans are formulated accordingly. Therefore, data are generated to represent the collection of 52 weeks of data at the plant or firm-level from the two major U.S. beef packing regions. In the treatments using plant-level data, this represents 52 weeks of data from 18 plants. In the treatments using firm-level data (scenario 4), this represents 52 weeks of data from 7 firms.

The tests for market power are next conducted at the weekly industry aggregate level. These data are obtained by combining the weekly disaggregate data from each plant (or firm in scenario 4) into weekly aggregates.

Twenty years of weekly plant, or firm, level data are generated for the third aggregation level. These data are then aggregated over plants, or firms, to yield 20 years of weekly industry aggregates. Then 80 quarterly observations are created by combining each 13 week period into one observation. This final data set is representative of 20 years of quarterly industry aggregate data. The aggregation from plant or firm data to regional industry data is similar to aggregation over time, so the results of these types of aggregation on estimates of market power are expected to be similar.
A sufficient number of observations is needed in each data set to allow for ample degrees of freedom in the tests for market power. For this study, the number of observations generated is at least as large as that of previous studies investigating market power problems in meat packing (Schroeter and Azzam 1990, Schroeter 1988, Azzam and Pagoulatos, and Stiegert et al.). At the most disaggregate level where the individual plant is assumed to be the decision maker, each data set contains 936 observations, consisting of 52 weeks of weekly data from 18 plants. For the treatments where the firm is assumed to be the decision maker (scenario 4), each disaggregate data set contains 364 observations, consisting of 52 weeks of data from 7 firms. For each scenario, the industry level data sets contain 52 weekly observations, and each quarterly data set contains 80 observations, representing 20 years of quarterly data.

4.3 The Models Used To Test For Market Power

The models used to test for market power in this study are econometric systems of equations based on the NEIO duel framework discussed in section 3.2 of chapter 3. Each system includes a cost function, input demand or share equations derived from Shephard's lemma for each variable input, and a behavioral equation. The behavioral equation is the plant (or firm) level first order condition for profit maximization as derived in section
3.2.3. For the systems to be estimated in this study, the general form of the behavioral equation is:\[35\]

\[P_y - w_1 = \alpha_o y_t \cdot \frac{\partial VC}{\partial y_t} \]

where \(\alpha_o \), the market power parameter, represents \(\frac{\partial w_1}{\partial y_t} \cdot \frac{\partial y_t}{\partial y_t} \).

The goal is to determine if the price of output (marginal revenue) minus the cost of cattle systematically differs from marginal cost. This is accomplished by testing whether or not the market power parameter \((\alpha_o) \) from equation 4.7 is statistically different from zero. In order to estimate this market power parameter, it is necessary to estimate the marginal cost parameters simultaneously. In the remainder of this section, each of the 3 econometric systems used to estimate the market power parameter is specified. Each system is based on a different specification of the cost function, allowing a comparison of how the tests for market power are affected by functional form.

4.3.1. The Generalized Leontief System

Consistent with previous studies of market power in the beef packing industry (Schroeter and Azzam 1990, 1991, Schroeter 1988, Stieger et al.), in the first instance, the cost function:

\[35\] See section 3.2.3 for the complete first order condition derivation.
is represented by a generalized Leontief with a fixed input and is therefore assumed to be
of the form:

\[
VC = C(y_p, \kappa, w_2, w_3, w_4)
\]

The function is homogeneous by definition, and the only restrictions needed are
symmetry.

To increase the efficiency of estimation, factor demands are derived from
Shepherd's lemma for inputs \(x_1\) through \(x_4\), which are of the form:

\[
x_i^* = \gamma_i \left(\sum_{j=2}^{4} \gamma_j \frac{w_j}{w_i} \right) k \left(\sum_{j=2}^{4} \delta_j \left(\frac{w_j}{w_i} \right)^2 \right)
\]

The first order condition of equation 4.7 is rearranged after re-specification of the
market power term \(\frac{\partial w_1}{\partial \gamma} \frac{\partial \gamma}{\partial \gamma_i}\), represented by \(\alpha_o\), yielding the following equation for
estimation.
\[P - w_i - a_0 - y_1 - y_{22} - 2y_{23} - w_2 - y_{33} - w_3 - y_{44} - w_4 \]

Equations 4.9, 4.10, and 4.11 are estimated simultaneously for each treatment, consisting of 100 randomly generated data sets.

At the disaggregate level the system of equations is estimated using plant-level (or firm-level in the case of scenario 4) data. For the aggregate treatments the system of equations is estimated using the aggregates created from the original plant or firm-level variables. The estimation is initially accomplished using ITSUR in SAS. The perception of a simultaneity problem can arise, especially in the treatments using industry-level or quarterly data. At the plant-level, under the null hypothesis of no market power, plants do not perceive that they can influence the price of cattle by changing output levels. Therefore, under the null hypothesis \(w_i \) and \(y_i \) are not simultaneously determined. Even though the aggregates are constructed by aggregating data resulting from these individual level decisions, an argument can be made that at the aggregate level it is not realistic to assume that the price of cattle and industry output are not simultaneously determined. If these two variables are co-determined in the market, then \(Y \) is endogenous in the system.
along with \(w_i \). This must be allowed for by instrumenting for \(Y \) in the estimation process since it enters the system as a right hand side variable.

In order to address this potential problem, for all of the aggregate treatments involved in the experiment, two versions of the model are estimated. The first, as previously pointed out, treats \(Y \) as an exogenous variable using ITSUR to estimate the system. The second version treats \(Y \) as an endogenous variable. In addition to ITSUR, the system is estimated using IT3SLS in SAS using all exogenous variables in the system, as well as the rank of observation \(Y_i \) in the data set relative to all other observations of \(Y \), as instruments.

4.3.2 The Translog System

To represent the second functional form, the cost function in equation 4.8 is assumed to be translog of the form:

\[
\ln (VC) = \delta_0 + \delta_1 \ln (y) + \gamma_{\theta} \ln (y)^2 + \sum_{i=2}^{4} \delta_i \ln (w_i) + \sum_{i=2}^{4} \gamma_i \ln (w_i) \ln (y) + \sum_{i=2}^{4} \sum_{j=2}^{4} \gamma_{ij} \ln (w_i) \ln (w_j) + \delta_k \ln (k) + \gamma_{kk} \ln (k)^2 + \sum_{i=2}^{4} \gamma_i \ln (k) \ln (w_i) + \gamma_{kk} \ln (k) \ln (y)
\]

Homogeneity is imposed by the following restrictions: \(\sum_i \delta_i = 1 \), \(\sum_i \gamma_i = 0 \),
\(\sum_{i} \gamma_{ij} \) for all \(j \), and \(\sum_{j} \gamma_{ij} \) for all \(i \). Symmetry is imposed by restricting \(\gamma_{ij} \) to be equal to \(\gamma_{ji} \) in all cases.

Again, in order to increase the efficiency of the parameter estimates, the system is supplemented by 2 of the 3 variable cost share equations stemming from Shepherd's lemma. Specifically, the two additional equations to be added to the system are:

\[
\frac{x_{2} \cdot w_{2}}{V_{C}} = \delta_{2} \cdot \gamma_{22} \ln(y) \cdot \gamma_{23} \ln(w_{2}) \\
\cdot \gamma_{23} \ln(w_{3}) \cdot (-\gamma_{22} - \gamma_{23}) \ln(w_{1}) \cdot \gamma_{21} \ln(k)
\]

and:

\[
\frac{x_{3} \cdot w_{3}}{V_{C}} = \delta_{3} \cdot \gamma_{32} \ln(y) \cdot \gamma_{33} \ln(w_{3}) \\
\cdot \gamma_{33} \ln(w_{3}) \cdot (-\gamma_{32} - \gamma_{33}) \ln(w_{1}) \cdot \gamma_{31} \ln(k)
\]

The first order condition of equation 4.7 is rearranged, after specification of the market power term as before, and allowing for the fact that \(\frac{\partial VC}{\partial y_i} \cdot \frac{\partial \ln(VC)}{\partial \ln(y_i)} \cdot \frac{VC}{y_i} \), to yield the following:

\[
P_{x} \cdot w_{i} \cdot \alpha_{i} \cdot y_{i} \cdot \frac{\partial \ln(VC)}{\partial \ln(y_i)} \cdot \frac{VC}{y_i}
\]
In this form, the equation would be difficult to estimate in the system because the VC term is an endogenous variable to the system and would thus have to be specified as the antilog of equation 4.12 nested within equation 4.15. This problem is addressed by subtracting $\alpha_0 y_i$ from both sides, dividing both sides of equation 4.15 by VC, then dividing by $(P_y - w_1 - \alpha_0 y_i)$ and inverting to yield the following equation for estimation:

\[
COST = \frac{(P_y - w_1 - \alpha_0 y)}{\delta_y \gamma_y \ln(y) \cdot \gamma_w (\ln(w_2) - \ln(w)) \cdot \gamma_w (\ln(w_3) - \ln(w_4)) \cdot \gamma_k \ln(k)}
\]

Again, the system consisting of equations 4.12, 4.13, 4.14, and 4.16 is estimated simultaneously using ITSUR for the disaggregate treatments, and both ITSUR and IT3SLS for all aggregate treatments.

4.3.3 The Quadratic System

The final functional form for the specification of equation 4.8 to be investigated in this study is a quadratic specification. Normalizing all input prices and cost by w_4 imposes homogeneity and results in the following specification for estimation:
\[COST_n = \delta_0 \cdot \gamma \cdot \gamma_{yy} \cdot \gamma^2 + \delta_2 \cdot w_{2n} + \delta_3 \cdot w_{3n} \]

\[
 = \gamma_{x1} \cdot w_{2n} + \gamma_{x2} \cdot w_{2n} + \gamma_{x3} \cdot w_{3n} + \gamma_{yx} \cdot w_{2n} \cdot y + \delta_{y1} \cdot w_{3n} \cdot y + \delta_{y2} \cdot w_{3n} \cdot y \\
 + \delta_{kk} \cdot k \cdot \gamma_{ck} \cdot k^2 + \gamma_{x2} \cdot w_{2n} \cdot k + \gamma_{x3} \cdot w_{3n} \cdot k + \gamma_{yx} \cdot k \cdot \gamma_{ck} \cdot k^2 \cdot y
\]

Where \(COST_n = (\text{COST}/w_4) \), \(w_{2n} = (w_2/w_4) \), and \(w_{3n} = (w_3/w_4) \).

As with the other functional forms, the cost function is supplemented with factor demand equations to increase the efficiency of the cost function parameter estimates as follows:

\[
x_2 = \delta_2 \cdot \gamma_{yy} \cdot \gamma^2 + 2 \gamma_{x2} \cdot w_{2n} \cdot \delta_{x3} \cdot w_{3n} \cdot \gamma_{x2} \cdot k
\]

and,

\[
x_3 = \delta_3 \cdot \gamma_{yy} \cdot \gamma^2 + 2 \gamma_{x3} \cdot w_{3n} \cdot \delta_{x3} \cdot w_{2n} \cdot \gamma_{x3} \cdot k
\]

Finally, the first order condition of equation 4.7, with the market power term specified as before, is written as follows for estimation:
This system, consisting of equations 4.17 through 4.20, is estimated simultaneously. Again, both ITSUR and IT3SLS are used for all aggregate treatments. Each econometric system is estimated separately for each data set generated. With the data sets generated at different levels of aggregation, results of the tests for market power can be compared across aggregation levels to determine the effect of aggregation on the tests for market power. The results of estimating these econometric systems using each of the generated data sets are summarized and discussed in Chapter 5.
Chapter 5

Results

5.1 Introduction

The results of the Monte Carlo experiment are presented in this chapter. The experiment examines the size and power of statistical tests of the null hypothesis of no market power various levels of data aggregation. To make the experiment as useful as possible, the experiment is repeated for each of thirteen technologies and five assumptions regarding firm behavior for each aggregation level. The technologies differ by ease of substitution between factors and returns to scale. The behavioral scenarios differ by the potential for, and exercise of, market power by the decision makers in the industry. For each technology - behavior combination, three distinct data sets are created that reflect three different aggregation levels. The first aggregation level represents weekly data collected from individual plants (or firms in scenario 4). The second aggregation level represents industry-level data (aggregated across plants or firms) collected on a weekly basis. The third aggregation level represents industry-level data collected at weekly intervals and aggregated to quarterly time intervals. For each technology - behavioral scenario - aggregation level treatment, 100 unique data sets are replicated for the experiment.
When weekly plant (or firm)-level data are not aggregated, the econometric models specified to test for market power are estimated using Iterative Seemingly Unrelated Regression (ITSUR). Each data set is tested using three alternative specifications, which differ by functional form. Results of the tests for market power may be sensitive to functional form specification. It is therefore important, as suggested in earlier chapters, to investigate alternatives. The three functional forms compared in this experiment are the generalized Leontief, the translog, and the normalized quadratic.36

When the data are aggregated (either over firms, or over both firms and time), each specification of the model used to test for market power is estimated using 2 alternative methods, ITSUR and Iterative Three Stage Least Squares (IT3SLS). The second estimation method accounts for the possibility that procurement levels (output) and fed cattle prices may be simultaneously determined. The hypothesis of no market power is tested in every aggregate data set using each of the 3 alternative specifications of the market power model, each estimated using the two alternative methods.

The results for the 5 behavioral scenarios are summarized in 5 separate tables. Entries down the left hand column of each table indicate which technology (Tech) is being represented by that particular row in the table. Each table is divided into two sections, the first reporting the results of the models estimated using ITSUR, and the second revealing the results of the models estimated using IT3SLS. For each estimation method, 36The complete derivation of each of the 3 specifications of the econometric system of equations used to test for market power is presented in section 4.3 of Chapter 4.
the results are sub divided by the aggregation level of the data generated and tested, and for each aggregation level the results are again sub divided by the functional form assumed to represent the cost function in the market power estimation model.

The individual entries in each result table for every technology - functional form - aggregation level combination reveal the number of times out of 100 that the null hypothesis of no market power is rejected at the 95 percent confidence level using a one tail test (this is a test of the α_0 parameter from each model).37 Following each table representing a particular scenario, the results are discussed and summarized.

5.2 Scenario 1 Results

Table 5.1 presents the results of scenario 1 in which the fed cattle market supply curve is generated to be perfectly elastic in the relevant time frame. Therefore, plants have no opportunity to exercise market power. One would expect each entry in the table to be approximately 5% because the nominal size of the test is .05.

37Periodically, the number of rejections at a different confidence level are provided if those results are thought to be particularly interesting.
Table 3.1

Percent rejection of the null hypotheses of no market power when no market power is present.

<table>
<thead>
<tr>
<th>Industry Level</th>
<th>Quarter</th>
<th>Designates</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table above presents the results of a statistical test examining the rejection of null hypotheses related to market power. Each cell represents the percentage of rejection for a particular industry level and quarter, indicating whether the null hypothesis of no market power is rejected under the condition that no market power is present.
Each technology, aggregation level, and estimation technique was replicated 100 times. The rejection level of the test statistic used is 5%.

Technologies 1 through 4 are homogeneous CES, and substitution possibilities become increasingly difficult moving from 1 to 4. For technologies 5, 6, and 7, the elasticity of substitution is not one value for all pairs of inputs, but rather is one value for three input pairs and another value for the remaining three input pairs. In general, the substitution possibilities become more difficult as one moves from technology 5 to technology 7. Technology 5 reveals slight increasing returns to scale and 6 and 7 reveal slight decreasing returns to scale. Technologies 8 and 9 exhibit a unique elasticity of substitution for each input pair. Technology 8 displays slight decreasing returns to scale and 9 displays slight increasing returns to scale. Technology 10 assumes that capital, energy, and materials are compliments to each other, but are all substitutes for labor, and displays slight decreasing returns to scale. Technology 11 is non-homogeneous CES with increasing returns to scale. Technologies 12 and 13 are non-homogeneous with increasing returns to scale, and exhibit a unique elasticity of substitution for each input pair.

Disaggregate-level data represents weekly observations from 18 individual plants in 2 regions.

Industry-level data represents weekly observations of data aggregated across all 18 plants.

Quarterly data represents quarterly (13 week period) observations of data aggregated across all 18 plants (Industry-level data).

A generalized Leontief functional form was used to represent the cost function in the market power estimation model.

A translog functional form was used to represent the cost function in the market power estimation model.

A normalized quadratic functional form was used to represent the cost function in the market power estimation model.
The results reported in Table 5.1 indicate that even using disaggregate-level data (considered to be the most ideal data), there is a significant danger of rejecting the null hypothesis of no market power when it is in fact true. For many of the functional form-technology combinations the actual size of the test is significantly different from the nominal size of the test (.05) because the models tend to reject the null hypothesis of no market power too often. However, when using disaggregate data all models tend to have high total explanatory power.38 The translog specification performs by far the best across the full range of technologies examined. Only for technologies 6 and 7 (slight decreasing returns to scale, and fairly low elasticities of substitution between inputs) did the translog perform poorly. The translog is not expected to perform as well for technologies that exhibit very low elasticities of substitution because when the higher order terms are excluded the translog becomes a Cobb Douglas with an elasticity of substitution of 1 for each input pair. The translog did perform quite well for some technologies that exhibit fairly low elasticities of input substitution (3, 4, and 8). The quadratic and the generalized Leontief systems yield similar results when testing disaggregate data. Both of these models are expected perform well when the elasticities of input substitution are fairly low because when the higher order terms are excluded from the quadratic it is very similar to Leontief, which represents a technology with no input substitution possibilities. With the

38As indicated by a very high R2 (.95 and up) for each equation when testing the first replication of each data set. R2 was not examined or saved for subsequent replications.
exception of technology 7, this expectation is fulfilled when testing the scenario 1
disaggregate data. Because of the included higher order terms, the quadratic system is
expected to, and does, perform somewhat better than the generalized Leontief for some of
the technologies with greater substitution possibilities between inputs (2, 8, and 9).

Prior expectations regarding the effects of data aggregation depend on the
underlying technology. The first 4 technologies are homogeneous (exhibit constant
returns to scale). Aggregation should not affect the results of tests for market power in
these treatments. Technologies 5 through 10 deviate slightly from constant returns to
scale. It is expected that aggregation may affect the results of the test for market power.
The last 3 technologies exhibit significant increasing returns to scale. Data aggregation is
expected to significantly affect the results of the test for market power.

When using the weekly industry-level aggregate data, all models tend to again have
very high explanatory power,39 however the results change significantly. When using the
ITSUR method to estimate the translog model, the number of false rejections remains
fairly constant when using the industry aggregate data instead of the disaggregate data to
test the first 4 technologies. In contrast, the number of false rejections in general increases
when testing industry aggregate data generated via technologies 5 through 10. Exceptions
include technologies 6 and 7, where the translog did not perform well in the disaggregate
treatments. As expected, the number of false rejections increases significantly when using

39As indicated by a high R^2 (.90 and up) for each equation. This was only observed
for the first replication of each data set.
the translog to test industry aggregate data from the last 3 technologies, which exhibit increasing returns to scale. The expected changes in results do not appear when using either the generalized Leontief or the quadratic to test industry-level data. Since the expectations are fulfilled when using the translog, which is the most flexible of the functional forms compared, the erratic and unexpected results from the other two specifications are attributed to inappropriate functional form specification. The results obtained from the two different estimation methods are virtually identical for all models, and the same general inferences can be garnered from the results of the models using 1T3SLS as from those using 1TSUR.

When using the industry quarterly data to estimate the models the results again change significantly in terms of the number of false rejections. As is the case when analyzing the weekly industry data, differences between the two estimation methods are virtually non existent. The overall explanatory power of the models decreases significantly. For the translog model, the results remain somewhat consistent with results obtained using the weekly industry-level data, though the number of rejections decreases somewhat for a few of the technologies. This decrease in the number of rejections for some technologies can be attributed to an increase in the variance of all parameter estimates, including the market power parameter, when using the highly aggregated data. For the first 10 technologies, which all exhibit nearly constant returns to

\[^{46}\text{R}^2 \text{ measures for each equation decreased to as low as the .50 range for each equation when testing the first replication of each data set.}\]
scale, both the generalized Leontief and the quadratic models do fail to reject the hypothesis of no market power the most often when applied to the quarterly industry-level data. This result is also primarily attributed to the increased parameter variance when using the quarterly aggregate data. At first impression, this could draw one to the misleading conclusion that highly aggregated data are well suited for this empirical technique. This would be a premature conclusion. First, note that when testing the technologies that exhibit significant increasing returns to scale (11,12, and 13) the number of false rejections tends to increase when testing the aggregate quarterly data relative to the number of rejections when testing disaggregate or weekly industry data. Second, for several of the technologies generated and tested in the experiments described below where plants (or firms) do in fact exercise market power, this exercise of market power is often not detected in the aggregate data treatments when it is detected in the disaggregate treatments.

5.3 Scenario 2 Results

Table 5.2 presents the results of using the models to test for market power in scenario 2. In this scenario some market power is exercised because a very small (.03 to .04) non-zero price flexibility is imposed on each regional fed cattle supply curve, and each plant is assumed to take this fact into consideration when making it's profit maximizing procurement, and thus output, decisions. One would expect more rejections
of the null hypothesis of no market power for each treatment in this scenario than in scenario 1, because the null hypothesis of no market power is not really true.
<table>
<thead>
<tr>
<th>Descriptive Industry Level</th>
<th>Industry Level</th>
<th>Quarterly</th>
<th>ILSIR</th>
<th>T_{LSIR}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2

Percent Rejection of the Null Hypothesis of No Market Power When a Small Amount of Market Power is Present.
Table 5.2 Endnotes.

* Each technology, aggregation level, and estimation technique was replicated 100 times. The rejection level of the test statistic used is 5%.

b Technologies 1 through 4 are homogeneous CES, and substitution possibilities become increasingly difficult moving from 1 to 4. For technologies 5, 6, and 7, the elasticity of substitution is not one value for all pairs of inputs, but rather is one value for three input pairs and another value for the remaining three input pairs. In general, the substitution possibilities become more difficult as one moves from technology 5 to technology 7. Technology 5 reveals slight increasing returns to scale and 6 and 7 reveal slight decreasing returns to scale. Technologies 8 and 9 exhibit a unique elasticity of substitution for each input pair. Technology 8 displays slight decreasing returns to scale and 9 displays slight increasing returns to scale. Technology 10 assumes that capital, energy, and materials are compliments to each other, but are all substitutes for labor, and displays slight decreasing returns to scale. Technology 11 is non-homogeneous CES with increasing returns to scale. Technologies 12 and 13 are non-homogeneous with increasing returns to scale, and exhibit a unique elasticity of substitution for each input pair.

c Disaggregate-level data represents weekly observations from 18 individual plants in 2 regions.

d Industry-level data represents weekly observations of data aggregated across all 18 plants.

e Quarterly data represents quarterly (13 week period) observations of data aggregated across all 18 plants (Industry-level data).

f A generalized Leontief functional form was used to represent the cost function in the market power estimation model.

g A translog functional form was used to represent the cost function in the market power estimation model.

h A normalized quadratic functional form was used to represent the cost function in the market power estimation model.
When using the disaggregate level data, Table 5.2 reveals that all models are able to detect even the very small amount of market power being exercised by industry participants, indicating that the power of the test is very high. These results are somewhat surprising. *Apriori,* it was assumed that this small amount of market power would result in only a few more rejections of the null hypothesis of no market power than in scenario 1 because the amount of market power being exercised is very small.

Similarly, when the ITSUR models are estimated using the weekly industry aggregate data, the null hypothesis is rejected nearly 100% of the time for each technology and model specification. The notable exceptions include technology 6 when using both the translog and the quadratic model specifications, and technology 10, primarily when using the translog model. Only slight differences in results are observed between the two estimation methods.

When using the quarterly industry aggregate data to test for market power, the null hypothesis is less likely to be rejected. Using either estimation method both the generalized Leontief and the quadratic models tend to either reject none of the time or reject all of the time, depending on the underlying technology. The technologies which yield no rejections are the same using both the generalized Leontief and the quadratic models. This result is not surprising since these two models are expected to perform similarly for the same technologies. The translog model does not yield these "always or never" results when testing the quarterly aggregate data. The model does, however, fail to reject the null hypothesis of no market power a number of times for each of the first 6
technologies when analyzing the quarterly data. This result is again attributed to the increased parameter variance when using quarterly aggregate data. The null hypothesis is rejected slightly less often when using IT3SLS to estimate the translog model. These results differ markedly from those obtained using the same model to test either disaggregate or weekly industry-level data.

5.4 Scenario 3 Results

Table 5.3 presents the results of the tests for market power in scenario 3. For this scenario a significant amount of market power is exercised because a moderate (.15 to .17) non-zero price flexibility is imposed on each regional fed cattle supply curve, and the behavior of each plant is simulated such that this market power potential is accounted for in each profit maximizing output decision. It is expected that the null hypothesis of no market power will be rejected virtually all of the time for each treatment, because of the significant exercise of market power.
Table 5.3

Percent rejection of the null hypotheses of no market power when a moderate amount of market power is present.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Industry Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0</td>
<td>GL</td>
</tr>
<tr>
<td>GL</td>
<td>G0</td>
</tr>
<tr>
<td>TL</td>
<td>G0</td>
</tr>
<tr>
<td>G0</td>
<td>TL</td>
</tr>
</tbody>
</table>

Market power is present.
Table 5.3 Endnotes.

\footnote{Each technology, aggregation level, and estimation technique was replicated 100 times. The rejection level of the test statistic used is 5%.

\footnote{Technologies 1 through 4 are homogeneous CES, and substitution possibilities become increasingly difficult moving from 1 to 4. For technologies 5, 6, and 7, the elasticity of substitution is not one value for all pairs of inputs, but rather is one value for three input pairs and another value for the remaining three input pairs. In general, the substitution possibilities become more difficult as one moves from technology 5 to technology 7. Technology 5 reveals slight increasing returns to scale and 6 and 7 reveal slight decreasing returns to scale. Technologies 8 and 9 exhibit a unique elasticity of substitution for each input pair. Technology 8 displays slight decreasing returns to scale and 9 displays slight increasing returns to scale. Technology 10 assumes that capital, energy, and materials are complements to each other, but are all substitutes for labor, and displays slight decreasing returns to scale. Technology 11 is non-homogeneous CES with increasing returns to scale. Technologies 12 and 13 are non-homogeneous with increasing returns to scale, and exhibit a unique elasticity of substitution for each input pair.

\footnote{Disaggregate-level data represents weekly observations from 18 individual plants in 2 regions.

\footnote{Industry-level data represents weekly observations of data aggregated across all 18 plants.

\footnote{Quarterly data represents quarterly (13 week period) observations of data aggregated across all 18 plants (Industry-level data).

\footnote{A generalized Leontief functional form was used to represent the cost function in the market power estimation model.

\footnote{A translog functional form was used to represent the cost function in the market power estimation model.

\footnote{A normalized quadratic functional form was used to represent the cost function in the market power estimation model.}
Table 5.3 reveals that there is little chance that any of the models specified for this experiment would fail to discover the moderate exercise of market power in the disaggregate data. As in scenario 2, the power of the test is apparently quite high because for every production technology the exercise of market power is revealed 100% of the time using each of the 3 model specifications.

Also, when testing for market power using data generated at the weekly aggregate industry-level, both the ITSUR models and the IT3SLS models reveal the market power in the vast majority of the time. The only exceptions are found when analyzing technology 6 data, where both the translog and the quadratic models do not reveal the market power all of the time, and when analyzing the complementary input data (technology 10), where the translog and the quadratic models reveal the market power most, but not all, of the time.

Once again, when the data are aggregated to the quarterly level, the results change somewhat. As was the case when testing the scenario 2 quarterly data, both the generalized Leontief and the quadratic models tend to reveal the market power either all of the time, or virtually none of the time, and as expected these two models again tend to perform in very similar fashion across the technology spectrum. The translog model reveals the market power the majority of the time for all technologies, but fails to reveal the market power in several of the replications of technology 5, and a few of the replications of technology 6. When using the IT3SLS method to estimate the translog model the null hypothesis of no market power is in general slightly less likely to be rejected across the technology spectrum than when using ITSUR.
5.5 Scenario 4 Results

The results of the tests for market power in scenario 4 are presented in Table 5.4. As in scenario 2, a small amount of market power is present because the same very small (.03 to .04), but non-zero, price flexibility is imposed on the fed cattle supply curve, and the decision makers recognize this potential for market power. In this instance, however, it is the firm, rather than the plant, that is the decision maker. This increases the share of the total procurement market that is controlled by some decision makers and, for a given supply flexibility, increases the potential for exercise of market power by those decision makers. One would expect more rejections of the null hypothesis of no market power for each treatment in this scenario than in scenario 2 because of this increased potential for market power.
Table 5.4 Percent Reflection of the Null Hypothesis of No Market Power When the Firm, Rather Than
the Plant is the Decision Maker and a Small Amount of Market Power is Present.

<table>
<thead>
<tr>
<th></th>
<th>Industry Level</th>
<th>Industry Level</th>
<th>Industry Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disaggregate</td>
<td>77.8%</td>
<td>77.8%</td>
<td>77.8%</td>
</tr>
<tr>
<td></td>
<td>77.8%</td>
<td>77.8%</td>
<td>77.8%</td>
</tr>
</tbody>
</table>
Table 5.4 Endnotes.

a Each technology, aggregation level, and estimation technique was replicated 100 times. The rejection level of the test statistic used is 5%.

b Technologies 1 through 4 are homogeneous CES, and substitution possibilities become increasingly difficult moving from 1 to 4. For technologies 5, 6, and 7, the elasticity of substitution is not one value for all pairs of inputs, but rather is one value for three input pairs and another value for the remaining three input pairs. In general, the substitution possibilities become more difficult as one moves from technology 5 to technology 7. Technology 5 reveals slight increasing returns to scale and 6 and 7 reveal slight decreasing returns to scale. Technologies 8 and 9 exhibit a unique elasticity of substitution for each input pair. Technology 8 displays slight decreasing returns to scale and 9 displays slight increasing returns to scale. Technology 10 assumes that capital, energy, and materials are compliments to each other, but are all substitutes for labor, and displays slight decreasing returns to scale. Technology 11 is non-homogeneous CES with increasing returns to scale. Technologies 12 and 13 are non-homogeneous with increasing returns to scale, and exhibit a unique elasticity of substitution for each input pair.

c Disaggregate-level data represents weekly observations from 7 individual firms in 2 regions.

d Industry-level data represents weekly observations of data aggregated across all 7 firms.

e Quarterly data represents quarterly (13 week period) observations of data aggregated across all 7 firms (Industry-level data).

f A generalized Leontief functional form was used to represent the cost function in the market power estimation model.

g A translog functional form was used to represent the cost function in the market power estimation model.

h A normalized quadratic functional form was used to represent the cost function in the market power estimation model.

i Supplemental results in parentheses indicate percentage rejection of the null hypothesis using a 10% rejection level, one tailed test statistic.
Using disaggregate data, the results in Table 5.4 indicate that the power of the test is quite high and that all of the models reveal the exercise of market power 100% of the time for all technologies. One would expect the exercise of market power to be even easier to detect in this scenario than in scenario 2, since some decision makers control a larger share of the market. Based on a comparison of the results reported in Tables 5.2 and 5.4 this expectation is not easy to discern because the market power is revealed essentially all of the time in both scenarios when using disaggregate level data.

Using weekly industry-level data, all of the ITSUR models again detect the market power the vast majority of the time for most of the technologies. The exceptions occur with technologies 6 and 10, and as was the case in scenario 2, it is the translog model which reveals results for these technologies that are inconsistent with the results of testing the rest of the technologies. Results from the two estimation methods are very similar for this scenario - aggregation level combination.

Results change dramatically when the ITSUR models are used to test the quarterly aggregate data in this scenario. As was the case for previous scenarios, results from both the generalized Leontief and the quadratic models are irregular. Depending on the technology, the null hypothesis of no market power tends to be either rejected almost always or almost never, and as expected these two models perform similarly across the technology spectrum. Clearly, the generalized Leontief and quadratic models do not consistently reveal the market power when using the highly aggregated quarterly data, especially when the underlying technology exhibits nearly constant returns to scale.
Supplemental results in parentheses for selected entries indicate the number of rejections at the 10% level using a one tail test. They are included to reveal that in many instances the results are on the borderline between reject and fail to reject using the 5% level test statistic. The translog specification more consistently reveals the exercise of market power in the aggregate data across the technology spectrum, and the results are more consistent with the findings at lower levels of data aggregation. More so than in the previous scenarios, some differences do show up between the two estimation methods when testing the quarterly aggregate data. For some model specification - technology combinations, the IT3SLS models are slightly more likely to reject the null than the ITSUR models, though the differences are usually not large.

5.6 Scenario 5 Results

Table 5.5 presents the results of testing for market power in scenario 5. This is the scenario in which a small (.03 to .04) non-zero price flexibility is imposed on the regional fed cattle supply relationships, but the individual plants do not recognize this potential to exercise market power. In making their individual profit maximization decisions, the plants behave as if they faced a horizontal fed cattle supply curve, and therefore do not actually exercise any market power. This scenario is included to determine if the models are detecting actual decision maker behavior with regard to market power, or simply potential for market power. If the models are detecting actual behavior, one would not expect the tests to reveal the exercise of market power. Ideally,
the entries in this table should all be approximately 5%, consistent with the nominal size of
the test. Realistically (considering the previous results) it is hoped that the results will be
similar to those of scenario 1.
<table>
<thead>
<tr>
<th>Tooth</th>
<th>GL</th>
<th>TL</th>
<th>0</th>
<th>GL</th>
<th>TL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>20</td>
<td>2</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>65</td>
<td>8</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>66</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>50</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>75</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>18</td>
<td>47</td>
<td>20</td>
<td>2</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>19</td>
<td>14</td>
<td>65</td>
<td>8</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>66</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>35</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>35</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>10</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.5

Percent Rejection of the Null Hypothesis of No Market Power When a Small Amount of Market Power is Possible but Not Recognized by the Plans.
Table 5.5 Endnotes.

a Each technology, aggregation level, and estimation technique was replicated 100 times. The rejection level of the test statistic used is 5%.

b Technologies 1 through 4 are homogeneous CES, and substitution possibilities become increasingly difficult moving from 1 to 4. For technologies 5, 6, and 7, the elasticity of substitution is not one value for all pairs of inputs, but rather is one value for three input pairs and another value for the remaining three input pairs. In general, the substitution possibilities become more difficult as one moves from technology 5 to technology 7. Technology 5 reveals slight increasing returns to scale and 6 and 7 reveal slight decreasing returns to scale. Technologies 8 and 9 exhibit a unique elasticity of substitution for each input pair. Technology 8 displays slight decreasing returns to scale and 9 displays slight increasing returns to scale. Technology 10 assumes that capital, energy, and materials are compliments to each other, but are all substitutes for labor, and displays slight decreasing returns to scale. Technology 11 is non-homogeneous CES with increasing returns to scale. Technologies 12 and 13 are non-homogeneous with increasing returns to scale, and exhibit a unique elasticity of substitution for each input pair.

c Disaggregate-level data represents weekly observations from 18 individual plants in 2 regions.

d Industry-level data represents weekly observations of data aggregated across all 18 plants.

e Quarterly data represents quarterly (13 week period) observations of data aggregated across all 18 plants (Industry-level data).

f A generalized Leontief functional form was used to represent the cost function in the market power estimation model.

g A translog functional form was used to represent the cost function in the market power estimation model.

h A normalized quadratic functional form was used to represent the cost function in the market power estimation model.

i Supplemental results in parentheses indicate percentage rejection of the null hypothesis using a 1% rejection level, one tailed test statistic.
The results of testing for market power in scenario 5 using the disaggregate data are similar to those of scenario 1. The large number of entries in Table 5.5 greater than 5 indicate that once again the actual size of the test is much larger than the .05 nominal size of the test for many of the functional form - technology combinations. The generalized Leontief performs the poorest, falsely rejecting the null a large portion of the time, but does not perform much worse in this scenario than in scenario 1. Both the generalized Leontief and the quadratic specifications tend to correctly identify the absence of market power when testing technologies that exhibit fairly low elasticities of substitution between input pairs. As expected, however, both the generalized Leontief and the quadratic specifications perform poorly for most of the technologies that allow for significant substitution possibilities between input pairs. As in scenario 1, the translog specification correctly leads to a conclusion of no market power more consistently than the other two models. The only significant exception occurs when testing the technology 6 data, which exhibits fairly low elasticities of substitution between inputs. Depending on the technology, the translog model either falsely rejects the null hypothesis a few more times, or a few less times, than it did in scenario 1, however the results are quite consistent with those of scenario 1. The numbers in parentheses for selected entries indicate the number of times that the null is rejected at the 1% level, and reveal that in several instances the null hypothesis is just barely rejected at the 5% level.

When using the ITSUR translog model to test weekly industry data generated via the first 4 technologies the number of false rejections remains fairly consistent with the
number revealed using disaggregate data. This result is as expected, since these
technologies are homogeneous. In general, the number of false rejections increases when
using the translog model to test for market power in industry aggregate data when the
underlying technology does not exhibit constant returns to scale. This observation is
especially true for the technologies exhibiting significant increasing returns to scale (11,12,
and 13). In contrast, when using both the generalized Leontief and the quadratic models
to test weekly industry-level data, the overall number of false rejections tends to decrease,
though this general pattern does not hold for every technology analyzed. Once again,
since the most flexible model specification (the translog) performs as expected in most
cases, the erratic and unexpected results of the other two models can be attributed to
inappropriate model specification in terms of the functional form of the cost function.
Differences in results between estimation methods are minor for all models.

Unlike scenario 1, when analyzing the quarterly aggregate data for scenario 5, the
number of false rejections tends to increase above the number found at the more
disaggregate levels. With the exception of three of the technologies (1, 5, and 11), all
ITSUR models reject the null hypothesis of no market power nearly all of the time. This
result is compatible with expectations, but it is particularly interesting in that it is only in
scenario 5 that the number of rejections (false or true) somewhat consistently increases
across the technology spectrum when testing the quarterly aggregate data. Comparisons
between the two estimation methods reveal very similar results when analyzing the
quarterly data, though the translog model fails to reject the null hypothesis of no market power a few more times for some technologies when estimated using IT3SLS.

5.7 Summary

The implications of using data that have been combined over firms into weekly aggregates to test for market power depend on the underlying technology and behavior of the industry being studied. If the individual decision makers in the industry are not exercising market power, the results of tests for market power change dramatically across aggregation levels. When using the model specification that does the best job of capturing the true underlying technology and behavior in the disaggregate data sets (the translog), the number of false rejections of the no market power hypothesis tends to increase when industry aggregate data are used for the analysis. As expected, this observation is especially true when the underlying technology exhibits increasing returns to scale. When using the other model specifications, the results are so erratic that consistent conclusions are hard to draw. This evidence suggests that these alternative model specifications (the generalized Leontief and the quadratic) are not flexible enough to capture the true underlying technology.

When the decision makers in the industry are actually exercising market power, all 3 models used in this study tend to reveal this fact the vast majority of the time in both the disaggregate and weekly industry aggregate data. This is not very encouraging in light of the fact that the underlying behavior is not known and it is this behavior that the analyst is
attempting to ascertain. Given that there is an increased danger of false inference regarding market power when industry participants are behaving competitively when using the industry aggregate data, it appears that a significant information loss results from aggregation over plants or firms.

When the weekly industry data are aggregated over time to quarterly data, the number of rejections tends to decrease for scenarios 2, 3, and 4 where market power is actually being exercised. In these scenarios, there is an increased danger of not discovering the existence of market power when using the quarterly data. For scenario 1, there is an increased tendency to correctly infer no market power when using quarterly data if the true underlying technology exhibits nearly constant returns to scale, but there is an increased danger of falsely inferring the existence of market power if the true underlying technology exhibits increasing returns to scale. In addition, when testing the scenario 5 data sets where market power is possible but not actually exercised, there is a general tendency for the models to falsely infer market power more often when using quarterly aggregate data across the technology spectrum.

The results vary significantly across model specifications for all scenarios. This is an indication that it is critical to accurately capture the underlying technology in the cost function parameters, because any error in capturing the exact technology can be at least partially incorrectly attributed to market power. Since the true underlying technology is never known, it is imperative that an adequately flexible functional form be used to capture the underlying technology when testing for market power behavior using
econometric techniques. Of the three functional forms compared in this study, the translog model performs as expected most consistently across the range of technologies, behavioral scenarios, and aggregation levels investigated in this experiment. This is not really surprising because the translog is the most flexible of the three functional forms used. What is somewhat surprising is the magnitude of the differences in results between the 3 models in several of the scenario - aggregation level combinations.

The true underlying production technology of the industry being studied plays an important role in dictating the success of the efforts to test for market power. Features of certain technologies appear to make them very difficult to model in studies attempting to simultaneously detect the exercise of market power and the cost function parameters. This is somewhat discouraging as well, given that the true underlying technology is never known.

The results obtained from the ITSUR and IT3SLS estimation methods are virtually identical, so the same general inferences can be garnered from the results of the models estimated using either method. In the context of this experiment, this observation is not surprising because output and cattle prices are not simultaneously determined in the data sets used for this analysis. The comparison does reveal that the IT3SLS procedure could be an appropriate alternative when testing data in which simultaneity is suspected, because even if simultaneity is not present, the IT3SLS procedure performs just as well as ITSUR.
The most striking observation from the results reported in this chapter is that when testing disaggregate data, there is more danger of revealing market power when it is not present, than not finding it when it is present. This indicates that the actual size of the test for market power is larger than the nominal size of the test, but that the power of the test is quite high. If a carefully specified model using firm-level data fails to reveal market power, then the researcher, and in turn policy makers and regulatory authorities, can be fairly confident that the industry participants are behaving competitively. On the other hand, if the analysis reveals the presence of market power, the researcher should be careful in placing a high level of confidence in the findings. Whether market power is actually being exercised or not, the use of highly aggregated data to test for market power tends to significantly bias the results, especially if the underlying technology does not exhibit constant returns to scale.
Chapter 6

Conclusions

6.1 Introduction

In the empirical portion of this study, data consistent with various behavioral assumptions in the U. S. beef packing industry were simulated and tested to see if these data revealed the exercise of market power in the industry. The primary objectives were to determine whether or not estimates of market power remain consistent when the data used to obtain the estimates are aggregated across firms and over time, and to determine the sensitivity of these estimates to model specification.

In order to develop the framework within which this empirical study could take place, literature was reviewed regarding the modern techniques of empirically testing for market power. The historical evolution of industrial organization research was presented, particularly as it led to the modern techniques of modeling firm-level behavior. The various specific methods that have been used to econometrically model behavior were discussed, both from an historical perspective in Chapter 2, and from a theoretical perspective in Chapter 3. This led to the development of specific models to be used to test for market power in this study, which combined elements of models used by previous researchers.
Three market power models were specified for this experiment, models that differed in terms of the functional form used to represent the cost function and to capture the underlying technology of the industry being tested. The data used to estimate the models were generated using a simulation program written in Fortran. The data generation process was based on a primal approach where input quantities and output price were provided exogenously, output quantities were calculated from the pre-specified production function, and input prices were generated consistent with plant or firm-level profit maximizing behavior. The assumed underlying technology of the beef packing industry was varied across a range of possibilities by altering the assumed production function parameters. The presumed behavior of the decision makers in the industry was also altered in the data generation process by imposing different assumptions regarding the potential for, and recognition of the potential for, market power on the part of the individual plants or firms in the industry. For each technology - behavior combination the data sets were generated at 3 levels of aggregation including weekly firm-level, weekly industry-level, and quarterly industry-level.

Using Monte Carlo techniques, 100 data sets were generated for each behavior - technology - aggregation level combination (treatment). Each data set was tested using the three different specifications of the market power model to see if the hypothesis of no market power would be rejected. The results of these tests for market power were presented and discussed in Chapter 5. This chapter reveals some conclusions that can be drawn from this study. In addition, implications for future antitrust policy and
enforcement are discussed. Finally, possible directions for further investigation and suggestions for future research are provided.

6.2 General Conclusions

The effectiveness and usefulness of econometric behavioral models designed to detect and forecast the exercise of market power is based on their ability to do so accurately. These models are derived from well known economic theories of profit maximizing behavior on the part of decision makers in an oligopoly or oligopsony setting. Therefore, if the models are applied to the appropriate data, and are specified in such a way that they capture the underlying technology and behavior of the industry participants, they should yield an unbiased indication of any non-competitive behavior.

The results presented in Chapter 5 reveal that, in reality, there is a strong tendency for these behavioral models to reveal inaccurate information regarding the exercise of market power. Furthermore, the actual size of the test for market power is much larger than the nominal size chosen for the test. There is a significant danger that the models will indicate that market power is being exercised in an industry where in reality it is not. This observation seems especially true when analyzing data at the disaggregate and weekly industry aggregate levels. Conversely, the power of the test for market power in general appears to be quite high. There is little danger that the models will fail to reveal the market power when it is actually being exercised. When using econometric behavioral models to simultaneously estimate market power parameters and technology parameters, it
appears that any inability to capture the true underlying technology of the industry is at least partially picked up by the market power parameters, in much the same way that an intercept term would capture systematic deviations not captured by the explanatory terms in a standard linear regression model.

When the data used to test for market power are aggregated to the quarterly industry-level, the explanatory power of the models decreases significantly, and the variance of all parameter estimates increases to the point that many parameters become insignificant a large portion of the time. This includes the parameter specified to capture the exercise of market power. In the context of the standard specifications of models used to detect market power, this leads to a tendency to fail to reject the hypothesis of no market power. Even when testing data generated such that market power is present, the exercise of market power is often not revealed in the highly aggregate data.

More specific conclusions regarding the effects of data aggregation and functional form selection are presented in the next two sections. In general, however, it appears that the researcher must be very careful when using these econometric techniques to empirically test for market power. The models must be specified carefully, and a functional form must be chosen that is flexible enough to precisely capture the unknown underlying technology. This is an aspect of this overall technique that has been ignored in previous research. In addition, if individual firm, or even plant, level data with observations consistent with the decision making time frame in the industry being studied
are not available for the analysis, there is a high risk of obtaining a biased result regarding the inference of the exercise of market power.

6.3 Conclusions Regarding Data Aggregation

When developing econometric models to be used for forecasting or policy analysis, it is important to determine if the aggregation level of the available data is appropriate for the analysis being conducted. If the available data are not consistent with the assumptions underlying the modeling effort, biased results could be obtained. Within the context of the present study, the probability of accurately inferring the exercise of market power based on the results of econometric behavioral models clearly changes when the data are aggregated over firms (decision makers), and over time. The magnitude of this change depends on several factors, including the amount of market power actually being exercised in the industry, the underlying technology of the industry, and the exact specification of the model used to test for market power. Models that in general do the best job of capturing the true data generation process at the disaggregate level do not reveal the same probability of correctly identifying market power when applied to aggregate data.

If the true underlying technology of the U. S. beef packing industry is not homogeneous (does not exhibit constant returns to scale), then the restrictive assumptions required for consistent data aggregation across firms, and over time, do not hold in this
industry. It is probably rather widely accepted that the restrictions do not completely hold for this industry, or any other industry subject to investigation. In spite of this observation, researchers have continued to use data aggregated over various dimensions to test for market power. What has not been previously determined is the magnitude of the information loss that can occur through aggregation when the underlying assumptions are not entirely valid. This simulation has provided evidence to suggest that the information loss due to aggregation when the underlying technology is not homogeneous is sufficient to significantly change the estimates of market power as the aggregation level of the data is changed.

6.4 Conclusions Regarding Functional Form

Perhaps even more dramatic than the differences across data aggregation levels were the differences in results between the three specifications of the market power testing model. The specifications differed in the functional form chosen to represent the cost function, which captures the underlying technology of the industry. When both the generalized Leontief and the quadratic functional forms were assumed to represent the cost function, the results were very erratic, and were not consistent with prior expectations. At all levels of data aggregation, these models tended to either reject the

41Briefly stated, in order to consistently aggregate the data, there must be constant and equal marginal costs across firms and over time, and the quantity weighted conjectures regarding rival reactions must be equal.
null hypothesis of no market power nearly all of the time, or none of the time, as underlying technologies varied when testing randomly generated data sets with no market power imposed. In addition, the results between aggregation levels were very erratic when testing the same underlying technologies and imposed behavior. On the other hand, the translog model performed largely as expected across the range of technologies tested. Though this model did tend to falsely reject the null more that the expected 5%\(^{42}\) of the time when testing disaggregate data generated to contain no market power, it did on average reveal the true underlying behavior much more consistently across the technology spectrum than the other two models. Also, when changing aggregation levels, the translog model tended to perform as expected depending on the returns to scale exhibited by the underlying technology. This is in contrast to both the generalized Leontief and the quadratic models, neither of which performed as expected.

This result is undoubtedly due to the fact that the translog is the most flexible of the three specifications investigated in this study. It clearly did a better job of capturing the true underlying structure of the data being tested, at all levels of aggregation. The results of this study also indicate that the most commonly used functional form in previous NEIO econometric studies of behavior, the generalized Leontief, may be a poor choice for these studies of market power. The evidence from this simulation suggests that the generalized Leontief specification is not flexible enough to adequately capture the

\(^{42}\)The tests were based on a 5% rejection level nominal test statistic.
underlying technology. Errors associated with improper choice of functional form appear likely to be allocated to the market power term when testing for non-competitive behavior in an econometric system.

6.5 Policy Implications

Industrial organization researchers are interested in the measurement and empirical verification of non-competitive behavior in order to investigate public policy questions proposed by antitrust laws and regulations. In the past, the government regarded an industry with high values of standard concentration indexes as a prime candidate for intervention. Under the present policy, high levels of concentration merely target an industry for further investigation to determine if intervention is warranted. When an industry is selected for antitrust investigation, industry behavior now plays an important role in the investigation. For example, sustained pricing above the competitive level (referring to oligopoly behavior) is clearly spelled out as part of the criterion for allowance or disallowance of mergers in the new (1992) merger guidelines (Ordover and Willig). In addition, both section 2 of the Sherman antitrust act, and section 7 of the Clayton act, require proof of the exercise of market power before enforcement actions can be taken (Landis and Posner). During the course of an actual investigation, opposing sides must provide evidence regarding whether the feared anti-competitive behavior has or has not occurred, or will or will not occur.
In order to be consistent with these policies, investigations into market power issues will likely rely increasingly on empirical studies of individual industry behavior. Any real value of these studies for the purpose of policy enforcement is clearly dependent on the accuracy and stability of the results. The implication of this study is that researchers, and in turn policy makers, must be careful when relying on results of NEIO empirical econometric studies for policy enforcement. The models upon which the respective studies are based must be carefully specified to assure that the true technology and underlying structure of the industry being analyzed are captured. In addition, the study must be conducted using very disaggregate firm-level data with observations consistent with the time dimension in which input usage and output production decisions are made. Access to such hard to obtain, confidential data must accompany any request by policy enforcement agencies for an investigation into potential market power issues in any particular industry. There may need to be the potential for significant costs to society in terms of exercise of market power in a particular industry before the benefits of regulatory enforcement would outweigh the costs of obtaining the required data and performing the careful analysis needed to accurately identify non-competitive behavior.

Analysts and policy makers also need to keep in mind the following implication of this study. Even when using essentially ideal disaggregate data and carefully specified models, there is a significant danger that the exercise of market power will be revealed by the analysis, when in fact it is not there. In other words, to use a widely familiar analogy,
there is a very real danger of essentially convicting an innocent industry when using econometric models of firm behavior to test for market power.

6.6 Future Research

This research was confined to a fairly narrow set of assumptions regarding industry structure, behavior, and technology. Before the results and implications garnered from this study can be broadly interpreted, similar studies should be conducted based on differing assumptions. For example, this study focused on market power in the primary input procurement market (oligopsony power). Though it is likely that the overall conclusions would be similar if data were simulated and tested for oligopoly power, this cannot be known for certain until the issues addressed here with regard to measuring oligopsony power are investigated with regard to oligopoly power.

Simulating and testing data generated to represent other industries with a broad range of underlying structural characteristics, and a broader range of potential underlying technologies, would be useful. An additional interesting extension would be to simulate data such that some decision makers in the industry are exercising market power, and others are not, to determine how well models designed to test for the exercise of market power perform under these circumstances.

Another important dimension of data aggregation that was discussed briefly in Chapter 3, but not empirically investigated in this experiment, is the issue of aggregating specific inputs into groups. Fairly restrictive separability assumptions must hold in order
to consistently combine specific inputs into broadly defined groups for econometric analysis. The degree to which these assumptions hold in the beef packing industry, or any other industry, is not known. More importantly, the consequences of violating these assumptions to various degrees in terms of parameter estimation bias in empirical studies, and in particular behavioral studies of market power, are not known. This would be an interesting, and important, direction for future research.

Finally, it is clear from the results presented in Chapter 5 that model specification, and in particular functional form, is an important determinant of the success of efforts to econometrically test for market power. Even the most flexible of the three functional form specifications compared in this study (the translog) did not perform exceptionally well. Future research should be devoted to investigation of other alternative model specifications, and perhaps development of functions that are even more flexible than the translog, for incorporation into models of firm behavior. Obviously, it is very important that the true underlying technology of the industry being studied be adequately captured in studies of firm behavior. Efforts to improve the analysts ability to do so empirically would be a significant contribution.
Literature Cited

125

Appendix A

Supplementary Literature Review

A.1 Introduction

This appendix provides a review of studies that have used the conjectural variations econometric model, and closely related alternatives, to study non-competitive behavior in a variety of settings. The appendix is a supplement to Chapter 2, and provides the reader with a more comprehensive discussion of various techniques of searching for market power in the conjectural variations framework. Studies applying these techniques to industries other than the U.S. meatpacking sectors are reviewed and discussed in this appendix.

The appendix begins in section A.2 with a brief discussion of the major schools of thought in recent industrial organization research, and reveals that the general NEIO conjectural variations method can be interpreted as a synthesis of the mainstream paradigms of industrial organization. Studies that have used the basic conjectural variations econometric model outlined in section 2.3 of Chapter 2 to investigate non-competitive behavior in a number of settings are reviewed in section A.3. Section A.4 presents a related alternative to the basic conjectural variations model that was not discussed in Chapter 2. Section A.5 presents the derivation of the behavioral equations (first order conditions) from the profit function in a couple of different ways, and presents
Section 2.4 of Chapter 2 presented a discussion of studies that have incorporated additional factors into the basic conjectural variations model which could be mistaken for market power in beef packing if left out of the model. Section A.6 of this appendix provides further evidence that the incorporation of additional factors can be important in testing for market power by providing a review of a study of another industry that supports this conclusion. Section A.7 provides a review of studies that have attempted to go beyond the identification of market power. These studies have tried to pinpoint the sources of market power using extensions of the basic conjectural variations behavioral model. Section A.8 presents an alternative technique of searching for market power that has become popular in recent years. The residual demand (or residual supply) technique, as it is referred to, is shown to be closely related to the basic conjectural variations econometric method, but requires less detailed data to implement. Studies that have used the residual demand (or residual supply) technique to study various industries are reviewed in section A.8. Studies that have used non-econometric based conjectural variation models to study non-competitive behavior in beef packing were reviewed in section 2.5 of Chapter 2. An additional study that relied on the comparative statics conjectural variations approach is reviewed in section A.9 of this appendix.
A.2 Evolution Of Industrial Organization Research

Early industrial organization researchers, and policy makers, relied heavily on the Structure - Conduct - Performance (SCP) paradigm of Bain. Some critics of the SCP paradigm claim that it is not possible to determine the directional flow of causality between structure and performance. Others claim that the models used are *ad hoc*, and that there is no theoretical relationship between market structure and market performance (Cowling and Waterson). Still others claim that it is difficult to find an acceptable measure of performance upon which to base the models.

On the other extreme of industrial economics thinking is the contestable markets theory promoted by the Chicago school economists. This theory emphasizes the supremacy of competition in promoting "good" economic performance (Blackwell), and allows for little chance of deviation from pure competition in most markets because the conduct of market participants is restricted by threat of entry by outsiders (Baumal).

The Chicago theories also are not without critics. Many believe that highly concentrated industries can have characteristics that provide a deterrent to entry. These can include such things as high specialized capital investment costs that do not permit "hit and run" entry, and limited market scope which prevents large numbers of viable sized firms from existing in a particular market.

As somewhat of a middle ground in the debate between these two extremes, new methods of searching for market power, commonly referred to as the New Empirical Industrial Organization (NEIO) approaches, have gained acceptance among many
industrial organization economists in recent years. Connor (1990) describes the NEIO methods as a synthesis between the traditional Bainian approach and the Chicago model. Structure is important because the models used are specified such that firms with larger market shares have more potential to exercise market power. However, unlike traditional SCP models, which often specify an ad hoc relationship between structure and performance, the NEIO behavioral models are typically derived from the profit maximization problem of the decision makers in the specific industry being studied. In addition to being based in economic theory, the NEIO models (in particular conjectural variations behavioral models) are econometrically structural in nature. Therefore, the estimated parameters have economic interpretations, such as elasticities and conjectural variations, which provide an objective basis for model evaluation (Schroeter, 1990). These new approaches that fall under the category of NEIO econometric behavioral models have not yet resolved the eternal debate between the extremes, who on one side see concentration in industry as an efficient adaptation to external technological conditions (the Chicago School), and on the other hand, see games of market power and societal welfare loss in concentrated industries (traditional followers of SCP). The emergence of the new techniques has, however, moved the debate to a more technical and analytical level (Jacquemin, p. 5).
A.3 Additional Studies Using The Basic Conjectural Variations Model

The basic conjectural variations econometric method of testing for oligopoly power first derived by Iwata (1974) and modified by Appelbaum (1982), was described in section 2.3.1 of Chapter 2. This section summarizes the results of additional previous studies which have used this method to test for market power in a couple of different settings.

Boroohah and Van Der Ploeg (1986) used the Appelbaum (1982) version of the model to obtain econometric estimates of the degree of monopoly power in a 10 of industries in the United Kingdom. Each model was applied to industry level, annual data from 1954 through 1979. Their models assumed three inputs; labor, capital, and intermediate materials. Significant oligopoly rents were found in 9 of the 10 industries studied: food, drink, tobacco, mechanical engineering, electrical engineering, motor vehicles, metal goods, textiles, and leather and clothing. Oligopoly rents were found to be insignificant in the instrument engineering industry. The authors compared their estimates of total monopoly rents (the conjectural elasticity divided by the price elasticity of demand), to concentration ratios. They found no systematic relationship, supporting the theoretical observation that any structure could lead to any performance. The authors acknowledged that the availability of firm level data would allow relaxation of the constant returns to scale and identical conjectural elasticity assumptions, which could in turn make a difference in the estimates of market power.
Gelfand and Spiller (1987) provided an interesting extension of the Appelbaum (1982) model by allowing for the possibility of market power in a two product case. Conjectural elasticities were included in the first order conditions of their model to account for single product conjectures in each individual output market, and to account for cross product conjectures. The authors were investigating changes in banking regulations in the Uruguayan banking sector. Aside from the fact that they looked at a multi-product case, another interesting feature of the study is that it utilized a disaggregate data set. The authors had access to confidential monthly reports of private banks. They concluded that removal of barriers to entry into this banking system resulted in the markets for two distinct types of loan services becoming more competitive.

A.4 An Alternative Extension To The Basic Conjectural Variations Model

Appelbaum (1979) developed an alternative framework which can be used to study non-competitive markets. Specifically, Appelbaum derived a markup function which represented price above marginal cost. Basically, the markup function replaced the market power term of alternative specifications such as the \(\frac{1}{\varepsilon} \frac{P_y}{D} (1 - \gamma y) q_i \) term from Iwata's derivation in equation 2.5, or \((\theta, \varepsilon)\) from the Appelbaum (1982) derivation in equation 2.8, with the price markup function \(\beta(y, X, p) \). The Author was testing for market power in an industry producing an intermediate good to be used by a competitive final goods industry. In the markup function \(y \) is the output of the intermediate goods industry, \(X \) is a vector of inputs to the final goods industry in addition to \(y \), and \(p \) is the price of the final good sold.
by the competitive final goods industry. The conjecture first described by Iwata does not explicitly show up in the model, but is implicitly a component of δ. Appelbaum assumed the monopolistic industry (U.S. petroleum and natural gas) produced an intermediate good, then derived a function representing the demand for this good based on the profit maximization problem of the final goods industry (the rest of the U.S. economy).

By specifying a profit function for the final goods industry and differentiating with respect to the price of the intermediate good (p_y) (output of the monopolist, input to the final goods industry), the demand for the monopolist output is obtained:

$$\frac{\partial \pi_p}{\partial p_y} = -y = f(y, X, p_p)$$

The approach is similar to specifying a demand function for a final good demanded by consumers from a monopolist. Plugging this function into the profit maximization problem of the monopolist, and differentiating with respect to y, yields the monopolists first order condition:

$$p_y \frac{\partial f(y, X, p_p)}{\partial y} + f(y, X, p_p) = \frac{\partial C(y, w)}{\partial y}$$
where \(C(y,w) \) represents the cost of producing \(y \), and \(w \) is a vector of the prices of the inputs used by the monopolist.\(^{43}\) Appelbaum then re-specified equation A.2 as:

\[
P_y = \delta(y,X,P_P) \cdot \frac{\partial C(y,w)}{\partial y}
\]

The parameters of the \(\delta \) function were estimated using both maximum likelihood and three stage least squares estimation techniques within in the first order condition, and the system was supplemented with derived demand equations to help obtain cost function parameters. The value of \(\delta \) was then calculated at each observation and tested to determine if it was significantly different from zero. The test of this markup being equal to zero is not a test of whether the demand curve is horizontal, but whether the decision rule is to equate price with marginal cost. Appelbaum used a generalized Leontief cost function to represent the monopolist's technology, assuming three inputs; capital, labor, and energy, and estimated the system using yearly data from 1947 through 1971. The markup term is found to be statistically different from zero evaluated at the mean of the data.

Appelbaum and Kohli (1979) used a similar technique to test the small open economy hypothesis in the case of Canada - U.S. trade. The authors assumed that

\(^{43}\)Appelbaum demonstrated two alternative methods of deriving the same behavioral equation from the profit maximization problem.
Canadian firms face supply and demand functions for imports and exports respectively, and tested for competitive behavior by formulating a production model of the Canadian economy, treating imports as inputs and exports as outputs. A profit function was used to represent the technology, and derived demand and supply functions were obtained via Hotelling's lemma.\(^{44}\) The derived demand function contained a price markup term, and each non-competitive input supply function contained a price markdown term. These were specified and incorporated into the system of equations in much the same way as the markup term in equation A.3 of Appelbaum (1979).

For data, aggregate annual labor and capital for each country and net trade relationships for the period 1951 through 1972 were used. The authors concluded that Canadian firms do not have any monopsonistic power when purchasing U.S. exports. The research did, however, find that Canadian exporters have, and exploit, monopolistic power when selling to the U.S. This is an indication that the Canadian industries as a whole perceive a downward sloping demand curve for their products.

A recent study by Love and Murninglyas (1992) extended and adapted the NEIO method derived from the profit function to the problem of identifying the presence of market power where government trade agencies have a role. The analysis looked at the Japanese international wheat market, where a government trade agency is relied upon for all wheat imports and domestic resale.

\(^{44}\)See the discussion of the Roberts (1984) study in the next section for a detailed discussion of the derivation from the profit function.
Using a technique similar to that of Appelbaum and Kohli, coefficients were added to the equilibrium first order conditions derived from the profit function of the Japanese trade agency to allow for the possibility of monopoly market power in the domestic market or monopsony power in the international market. Annual data from 1964 through 1985 were used for estimation. Little or no monopoly power appeared to have been imposed on the Japanese domestic market, however some monopsony power may have been exercised by Japan in the international market.

A.5 The Derivation From The Profit Function

Roberts (1984) used duality principles to derive demand and supply functions from the profit function via Hotelling's lemma as in Appelbaum and Kohli. The authors demonstrated the derivation concisely, starting from the variable profit function written as:

\[\pi_i = \pi(p_i, w_1, \ldots, w_n, z_1, \ldots, z_m) \]

where \(w_i \) through \(w_n \) represent variable input prices, \(z_i \) through \(z_m \) represent fixed input levels, and \(p'_i \) represents perceived marginal revenue derived as:

\[p'_i = p \cdot q_i \cdot \frac{\partial p}{\partial q_i} \cdot q_i \cdot \frac{\partial p}{\partial D} \cdot \sum_{j \neq i} \frac{\partial q_j}{\partial q_i} \]
where \(p \) is the market price of output, \(q_i \) is the quantity produced by firm \(i \), \(D \) is total industry demand, and \(\sum_{j \neq i} \frac{\partial q_j}{\partial q_i} \) is the total conjectural variation of firm \(i \). With the conjectural variation expressed as \(\beta_i \), equation A.5 can be rewritten as:

A.6

\[
p^* = p^*(1 - \frac{q_i}{D \cdot \eta})(1 + \beta)
\]

where \(\eta \) is the market demand elasticity.

From the variable profit function, input demand and output supply functions are derived as:

A.7

\[
x_{ki} = \frac{\partial \pi}{\partial w_k} = f(W, p^*, Z)
\]

and

A.8

\[
q_i = \frac{\partial \pi}{\partial p^*} = f(W, p^*, Z)
\]

where \(x_{ki} \) is the amount of input \(k \) used by firm \(i \), \(W \) is the vector of variable input prices, and \(Z \) is the vector of fixed input levels. Equations A.7 and A.8 were derived and estimated, replacing \(p^*_i \) with equation A.6. The conjectures (\(\beta_i \)’s) were directly estimated in the model, rather than specified as a function of exogenous variables as in previous research. Conjectures implied from this model are interpreted as the conjectures the firm
must have held in order for the observed input and output choice to have been the result
of a profit maximization decision. One unique feature of the specification from the
variable profit function is that dominant firm behavior can be directly tested for. Roberts
attempted this by grouping firms by size and testing whether or not the conjectures
regarding rival responses differed by the size of the firm. This is a test that is not available
with some alternative specifications, which test for the markup term of the entire industry.

The author analyzed behavior in the U. S. coffee roasting industry using a cross
sectional data set consisting of annual data from 1972 for the 52 largest firms in the
industry. Joint price taking behavior by all firms was rejected, however, the hypothesis of
price taking behavior by the smallest 50 firms could not be rejected. The author was
unable to pinpoint the exact behavior of the two largest firms, however, they did not
appear to act as price takers.

Gollop and Roberts (1979) expanded on the notion that in the oligopoly setting the
conjectural variations become an important element of a firm's decision process. They
hypothesized that it is this pattern of interdependence of the conjectures regarding rival
responses held by different firms that is important to policy makers and industrial
organization researchers. The authors derived a model based on the profit function that
can be used to identify the pattern of a particular firm's conjectural variations regarding the
responses of firms of various sizes in an oligopolistic industry.
Using a primal approach, the profit function of each firm was differentiated with respect to each input used. Thus for each firm i, a first order condition was derived for each input j as:

$$\frac{\partial \pi_i}{\partial x_{ij}} = pf_i^p(1 + q_i \frac{\partial p}{\partial q_i} \sum_{k=1} \frac{q_i}{p} \frac{\partial p}{\partial q_k} \frac{\partial q_k}{\partial q_i}) - w_j = 0$$

with f_i representing the marginal product of input x_i, $\frac{\partial q_i}{\partial x_i}$, p representing the price of output, and w_j representing the price of the x_j input.

With this specification there is one behavioral equation for each input for each firm, and each firm has $n-1$ conjectures $\frac{\partial q_i}{\partial q_i}$, as opposed to alternative specifications where each firm is assumed to have only 1 total conjecture. The important focus of the study was on the patterns and interdependence of these $n-1$ conjectures, so it was essential to distinguish among a particular firm's conjectures regarding the responses of other firms in the industry. With only cross sectional data, it was impossible to estimate the full set of conjectures for each firm in the data set. Instead, the authors assumed that size is a distinguishing characteristic of firms, so firms in the data set were ranked by size, creating subsets of ranked firms. Conjectures were estimated for a benchmark group of 4 firms, one for each size class subset. The goal was to test whether the conjectures of a particular firm vary across the size classes of rivals. The framework employed relied on the
assumption that firms of similar sizes are most likely to have a similar vector of
countertues regarding other firm's reactions.

The model was applied to the U.S. coffee roasting industry. Data for the study
included a cross section of the 52 largest coffee roasting firms for the year 1972. Inputs
were aggregates of labor, capital, and an intermediate input. The authors employed a
translog production function to represent the technology. Cournot behavior was rejected
and it was concluded that at least some producers do incorporate into their decision
process the expected reactions of rivals. They found some evidence of dominant firm
leadership in the industry, in that all firms were more likely to respond to the actions of the
large firms.

The goal of a study by Wann and Sexton (1992) was to improve the understanding
of behavior in the food processing sector. A model of the farm to retail price spread was
estimated which reflects the structural characteristics of the underlying agricultural
markets. The model was applied to the California pear processing industry, which
produces two primary products consisting of grade pack pears and fruit cocktail. The
main contribution of this paper was presentation of a technique of testing for market
power in input markets which resolves a problem of prior research. When using the
Appelbaum (1982) dual approach to analyze input market power one must assume fixed
proportions technology and the conjectural elasticity is restricted to be the same in both
the input market and the output market (as in Schroeter 1988 and Schroeter and Azzam
1990). This technique is not appropriate when the fixed proportions assumption does not
hold, and the alternative of using the primal approach (as in Azzam and Pagoulatos, and Gollap and Roberts) works only when dealing with a single output industry. Therefore, this paper developed a framework for the analysis of market power in multi product industries where market power may be present in both the output markets and in input markets.

The first order conditions for each product were derived from the profit function of a multi-output firm by differentiating with respect to the output of each product. Each first order condition contains market demand elasticities, and conjectural elasticities for the individual product. Also, each first order condition contains cross product price elasticities and cross product conjectural elasticities. In addition, the first order condition for the primary product involves an elasticity of supply for the raw agricultural product, and an elasticity of market area with respect to changes in firm output. In a departure from most previous work, but similar to Roberts (1984), the set of parameters representing the conjectures was estimated directly in the system, rather than in a second stage as a function of other variables. The measure of the elasticity of market area with respect to changes in firm output was interpreted as a test of spacial market power.

The study, using annual data from 1950 through 1986, provided evidence to reject the hypothesis of perfectly competitive markets for wholesale grade pack pears and fruit cocktail. An additional conclusion was that growth in farm cooperatives to offset the potential market power of pear processors did not appear to have enhanced competition in the raw product procurement markets.
A.6 Incorporating Additional Factors Into The Models

A few studies have attempted to identify factors that could be mistaken for market power when using the basic conjectural variations behavioral techniques. Studies by Schroeter and Azzam (1991) and Stieger et al. (1993) were reviewed in Chapter 2. In addition, Atkinson and Kerkvliet (1989) demonstrated a connection between the analysis of regulation and the analysis of market power. They faulted previous studies of the effects of regulation for failure to account for market power. In their study they simultaneously estimate output market oligopoly distortions, input market oligopsony distortions, and regulatory price distortions. The behavioral equations were derived from the profit function, and the price distortion term was specified for the output market as in Roberts (1984). In addition, the authors allowed for price distortions in the input markets by including similarly derived price distortion terms which capture conjectures in those markets. In each behavioral equation (first order condition) the authors included a binary variable accompanied by a parameter to indicate whether a particular firm was subject to regulation in a particular year or not. They used 3 years worth of annual data from a cross section of 31 utilities which use western coal as an input to estimate the model. Additional inputs are assumed to be labor and capital, and a translog functional form was used to specify the profit function. The hypothesis of output price taking behavior was not rejected, however the hypothesis of price taking behavior in the western

\[\text{Equations similar to A.6 were derived to represent perceived marginal value products (} w^*_{ij}\text{'s), and substituted into the behavioral equations.}\]
coal input market was rejected. Though the parameter measuring regulatory price
distortions was statistically insignificant, alternative model specifications without this term
included yielded significantly different estimates of market power distortions. This study
further reveals that the connection between market power and other factors cannot be
ignored in empirical analysis.

A.7 Sources of Market Power

Bresnahan (1989) pointed out that there is a need to identify the sources of market
power. A few recent studies have responded to this call by attempting to go beyond the
identification of behavior (conduct) in the conjectural variations framework. These studies
have tried to explain the non-competitive conduct in terms of policy changes, and other
factors. The non-econometric study of Koontz et al. (1993) discussed in Chapter 2 was
one example. As another example, Lopez and Dornainvil (1990) econometrically
examined the determinants of pricing conduct. They were particularly interested in the
effect of non-price arrangements in the Haitian coffee market. The non-price
arrangements in this market involve agreements to provide loans to farmers in return for
growing coffee under contract. Many have asserted that the credit arrangements have
given the buyers the ability to exert downward pressure on prices.

The authors derived a behavioral equation (first order condition) similar to that of
Appelbaum (1982) and used a two stage regression technique to model the market power
term as a function of exogenous variables including industry concentration, and dummy
variables representing changes in government policy regarding the credit arrangements. Annual data from 1954 through 1984 were used to estimate their coffee price equation. The non-price credit arrangements were found to negatively affect the prices paid to farmers (positively affect the price distortion parameter) for coffee.

Wilson and Casovant (1991) analyzed the effects of the shipping act of 1984. Again, the authors were responding to the call to try to explain the determinants of market power. They used an econometric behavioral model to account for changing market conditions and for changing legislation likely to affect the ability to exercise market power. As a measure of cartel effectiveness, they modeled the departure of shipping rates from marginal cost using a market power parameter. The intent in this instance was not to explicitly impose behavioral assumptions on this market power parameter in the model, but rather to see if the parameter changed as a result of the shipping act. In other words, the authors were investigating whether or not an endogenous factor, legislation in this case, was a determinant of market power.

Following Appelbaum (1982), they specified an industry demand function as:

\[p = p(Q, X^d) \]

where \(p \) is the shipping rate, \(Q \) is industry tonnage shipped, and \(X^d \) are demand shifters. An industry cost function was specified as:
A.11 \[C = C(Q, X^c) \]

where \(C \) is total industry cost and \(X^c \) are cost shifters. An equation representing the first order condition for the industry profit maximization problem which included the market power parameter was specified as:

A.12 \[p = \frac{\partial C(Q, X^c)}{\partial Q} \cdot \frac{\partial p(Q, X^d)}{\partial Q} \cdot Q \theta \]

where \(\theta \) is a market power parameter. In a significant departure from previous studies using the Appelbaum (1982) method, Wilson and Casavant assumed that \(\theta \) did not depend on \(p \) or \(Q \) and solved equations A.10 and A.12 for the reduced form expression for \(p \):

A.13 \[p = p(X^d, X^c, \theta) \]

Demand and supply shifters were assumed to include exchange rates, fuel prices, and shipping capacities. The market power parameter (\(\theta \)) was simply assumed to be a function of shipping act implementation, so the reduced form model was written as:
with shipping act implementation incorporated as a dummy variable. Quarterly data from the fourth quarter of 1978 through the second quarter of 1987 were used to estimate the reduced form model of shipping rates for five groups of commodities, using ordinary least squares regression.

Results were mixed. For lumber, the shipping act appeared to have increased the potential for setting shipping rates above marginal cost. For the other commodities looked at (apples, fries, hay, and onions) this potential appeared to have been decreased by the shipping act of 1984.

A.8 Residual Demand Studies

Geroski (1988) pointed out that the major drawback of the original conjectural variations econometric technique is the high cost in terms of detailed data. Hard to obtain specific input usage and cost data are required for estimation. A newly discovered shortcut is to econometrically estimate the parameters of a firm's residual demand (residual supply) curve using data on the output price and quantity of that firm, and an exogenous variable associated with rival marginal costs. Basically, if the residual demand (residual supply) curve is found to not be horizontal then there is potential for market power. The tradeoff, and drawback, associated with the shortcut, is not being able to link
the result to an explicit model of oligopoly behavior. Residual demand (and residual supply) models provide an alternative to the dual or primal NEIO econometric approaches which attempt to model conduct. The models are simpler in specification and require less data, but also reveal less information about behavior. These techniques may be especially useful as a screening device to select industries for possible further policy analysis.

Sumner (1981) revealed a simplified version of the residual demand technique in an attempt to investigate alleged market power in the cigarette manufacturing industry. Sumner was trying to measure the weighted average price elasticity of demand facing firms in the industry. The paper stressed the importance of elasticity of demand in the analysis of market power, but also reiterated the fact that firms must recognize that the imperfectly elastic demand exists and take advantage of that fact.

Price was simply modeled using ordinary least squares regression as a function of observable factors presumed to affect marginal costs, and the tobacco excise tax rate which varied by state and year. It was also assumed that monopoly power would give cigarette manufacturers the ability to charge prices in states and years that differed by more than the differences in tax rates. Legal restrictions place limits on the potential for arbitrage at the wholesale level, so geographical differential pricing could exist to some extent.

The author showed that the parameter measuring the relationship between the tax rate and the price, (β), is theoretically related to the elasticity of demand facing a firm (\(\eta_i \)) by the equation \(\beta = \frac{\eta_i}{\eta_{r+1}} \). By calculating firm level demand elasticities from the parameter
estimates, Sumner concluded that firm level demand curves are relatively elastic, but that monopoly power does add some to the price of cigarettes.

Buschena and Perloff (1991) revised the technique and spelled it out more clearly. The goal of their study was to analyze the effects of legal and institutional changes in the Philippine coconut oil market. This was an innovative attempt to determine the causes of market power using the residual demand method. In the first step of a two-step process, a three-equation model was specified. This consisted of a world demand equation:

\[Q = Q(p, z) \]

with \(p \) being the price of coconut oil and \(z \) being exogenous demand shifters. The model also included a competitive fringe supply equation:

\[Q_s = Q_s(p, x) \]

with \(x \) being factors effecting supply. The final equation in the model is equilibrium condition called residual demand derived from the difference between world demand and fringe supply:

\[Q_d = Q - Q_s = Q_d(p, z, x) \]
Inverting equation A.17 yields an equation for price, \(p = p(Q_d, x) \). Functions were specified and estimated for A.15 and A.16. The inverse of A.17 was then solved for based on the estimated parameters and used to calculate price for each observation.

To begin the second step, the firm under investigation was assumed to maximize profits subject to the residual demand. The firm's first order condition setting perceived marginal revenue equal to marginal cost is rearranged and expressed as:

\[
A.18 \quad p = \text{marginal cost} + \lambda \frac{\partial p}{\partial Q_d} Q_d
\]

The authors claim that within this framework there is no need to specify a cost function to obtain marginal cost. Marginal cost can simply be expressed as a function of residual demand, and a vector of exogenous variables thought to effect marginal costs. The parameter \(\lambda \) measures the gap between price and marginal cost, and is among the parameters to be estimated. This "market power" parameter cannot be directly interpreted as a conjectural variation, but does measure the degree to which market power was both possible (non-horizontal residual demand) and exercised. This implicitly reveals something about the conjectural variations. Therefore, this derivation shows that the technique is closely related to the conjectural variations models, but reveals less information regarding actual firm behavior.
For the Buschena and Perloff study, world demand and fringe supply curves were modeled as linear in the coefficients, but with an interaction term to allow for the rotation necessary to identify the market power parameter (Bresnahan 1982, Lau).46 In addition to quantity (residual demand), marginal costs of producing and exporting coconut oil were assumed to depend on real wages, rainfall, and ocean freight rates. The market power parameter was specified as a function of dummy variables representing times when legal and institutional changes were imposed by the government of the Philippines. Yearly data from 1959 through 1987 were used to estimate the system. The authors concluded that the creation of the Philippine Coconut Authority in 1973 appears to have allowed the distortion between price and marginal cost to increase in the Philippine coconut oil market.

A 1992 study by Durham and Sexton extended the residual demand work to the supply side by deriving a residual supply equation instead of the residual demand equation. The first order condition includes a parameter to measure the degree of market power in the primary input market.47 The study used the alternative model to analyze the potential for oligopsony power in the processing tomato industry in California. Results of this particular study indicate that the potential for oligopsony market power in the California processed tomato market is limited.

46The term \(pz\) is included in the world demand equation along with a parameter.

47The derivation of the first order condition is similar to that of Schroeter (1988). It is assumed that output is produced in fixed proportion to the primary input.
As is the case in residual demand studies, the residual supply market power measure, which implicitly includes a conjecture and a flexibility, is not useful for defining actual firm or market conduct, but it can indicate whether there is market power being exercised, or potential for market power in a particular market. The flexibility of the residual supply (or residual demand) function facing a firm (or group of firms) provides a measure of the potential market power of the firm (or group of firms). This flexibility can be calculated by differentiation of the estimated residual supply (demand) function and converting to a flexibility. A major contribution of this type of analysis is that it is consistent with the ability to define antitrust markets under the new Department of Justice merger guidelines. Under the new definition an antitrust market is defined as the smallest group of firms that can raise and maintain a price of five percent above the competitive level. This could be turned around in the oligopsony case to mean a five percent decrease in price in input procurement markets. Therefore, groups of firms which face a joint residual supply price flexibility of .10 or greater would be subject to scrutiny under the new guidelines.

A.9 Non-Econometric Studies Based On Conjectural Variations

Some researchers have used non-econometric methods to analyze the changes in industry performance in response to changes in various assumptions. Industry equilibrium

48See Sheffman and Spiller 1987, p.131 for complete derivation.
conditions are derived from firm level profit maximization relationships just as in the
econometric NEIO studies. Instead of using a time series or cross section (or both) of
data to estimate the parameters, values are provided exogenously. These parameters can
be systematically varied to evaluate changes in assumptions or policies. Studies which
have used this approach to study the beef packing industry were reviewed in section 2.5 of
Chapter 2.

Chen and Lent (1992) used a comparative statics approach to demonstrate their
theory that the impact of supply shifts on market prices may depend on the underlying
market structure. The firm level profit maximization problem they derived from the profit
function was similar to that of the econometric based conjectural variations studies such as
Roberts (1984). The authors considered the case of a few buyers purchasing farm
products from many sellers. Assumptions (parameters) were altered to demonstrate that
shifts in supply in an oligopsony situation may affect prices and quantities of farm products
in a manner quite different than under perfect competition, or monopsony.

A significant finding was that under certain assumptions regarding the supply
relationship, an increase in farm supply could result in higher prices paid to farmers for
their products, and vice versa. Those responsible for formulating farm policy need to
consider these findings when looking at policies regarding farm products sold in
oligopsonistic markets.
Vita

Rodney D. Jones, born October 4, 1961, is the son of LaVeta M. Jones of Hutchinson Kansas and Glen E. Jones, deceased. After graduating from high school, Mr. Jones began his college education by attending Kansas State University from the fall of 1980 through the spring of 1983. Between 1983 and 1988 he was a self-employed farm owner and manager in south central Kansas. Mr Jones returned to Kansas State University in the spring of 1989 to complete his Bachelor of Science degree in agricultural economics. He entered the graduate program in the department of agricultural economics at Kansas State University in the fall of 1989, and received a Master of Science degree in 1991. Upon completion of his masters program Mr. Jones entered the Doctor of Philosophy program in agricultural and applied economics at Virginia Polytechnic Institute and State University. Mr. Jones received funding as a U. S. D. A. national needs graduate fellow while pursuing his Ph.D. from 1991 through 1994. Mr. Jones is employed with the rank of assistant professor as an extension livestock production and farm management economist. This is a joint appointment with the department of agricultural economics at Kansas State University and the Kansas Cooperative Extension service.

His research interests are focused on current livestock production and marketing problems. In addition, Mr. Jones is responsible for providing education to his extension clientele regarding current research in the economics of livestock production, and
addressing concerns regarding policies which affect livestock producers and the agricultural community.

Rodney D. Jones