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(ABSTRACT) 

An experimental analysis was conducted on a bimaterial plate of steel and brass, subjected 

to a uniform temperature change. The steel and brass portions of the plate were joined along 

a common edge with a nearly zero thickness medium. Whole-field, in-plane displacement 

measurements U and V were made by means of high-sensitivity moiré interferometry. The 

corresponding distributions of stresses, 0x, Oy, and Txy were determined for the free surface. 

Near the interface, and along its length, the largest stresses were Oy, acting perpendicular to 

the interface. The oy peaks occurred very close to the interface, but not on it. These peak 

values were tensile in the steel and compressive in the brass. The transition between these 

opposite peak stresses featured an extremely strong gradient in a 50 um interface zone. The 

distribution was akin to that of a stress singularity, but the stresses reached finite peak values 

in the physical experiment. Even larger stresses were found near the corner, where the 

interface of the two materials intersects the free edge. Both macroscopic and microscopic 

moiré interferometry were required to determine the stress distribution.
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Chapter 1 

Chapter 1: Introduction 

In every case where dissimilar materials are bonded together and undergo a subsequent 

change of temperature, there will be residual stresses developed because of the mismatch 

of material properties. These residual stresses can be very large and may have a significant 

influence on the life of that product. For this reason, it is of great importance to clearly define 

the state of stress existing in a bimaterial joint. This problem can be approached as a 

strength-of-materials problem, an elasticity problem, a materials problem, as well as an 

interface problem of composite materials. 

The state of stress near the interface of a bimaterial joint is very complex. The stress field is 

statically indeterminate and self-equilibrating. In addition, the stress field may induce zones 

of plastic as well as elastic deformation. Because of these complexities, a complete analytical 

solution to this problem does not appear in the literature. However, there are several useful 

approaches in the literature based on various assumptions that have simplified the problem. 

Analytical solutions usually involve a number of parameters and assumptions which may not 
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be completely understood. Therefore, experimental work, recording actual strains and dis- 

placements in a bimaterial joint, is needed to supplement these theoretical solutions. 

The motivation for the following experimental work was to produce detailed knowledge of the 

thermally induced deformation in the interface region of a bimaterial joint. This investigation 

may also be useful to gain insight into the performance of bimaterial joints under mechanical 

loading because the critical stresses in a bimaterial joint subjected to mechanical loading are 

directly analogous to those caused by thermal loading. 

Chapter 1: Introduction 2



Chapter 2 

Chapter 2: Background and Literature Review 

Theoretical solutions to the bimaterial problem have been evolving over the past 60 years with 

rather little guidance from detailed experimental work. Without this guidance, several differ- 

ent approaches have emerged. These can be divided into the five categories shown in 

Table 1, where the numbers in brackets pertain to corresponding literature citations in the 

Reference section. 

  

Table 1. Approaches found in the literature for solving the bimaterial problem. 

References 

1. Strength of materials (beam theory)(2-D) ..........ecccccceeeeeeees [1,2,3,4,5,6,7,8,9,10,11,12] 
2. Eigenfunction series approximations (2-D) oo... cc ccccsssseseeeeeeseeeeees [10,11,12,13,14,15] 
3. Elasticity (2-D, and 3-D) oes [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30] 
4. Finite Element Method (3-D) .......... cc ccscsssesseecceeecesssseececceerscaeeessnses [31,32,33,34,35,36] 

Boundary Element Method (2-D, and 3-D) ...........ccceeecccccsssesecensaeseeececaneeseccauaness [37,38] 
5. Experimental Measurement ..........ccccessessseseeceeees [39,40,41,42,43,44,45,46,47,48,49,50]       
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The bimaterial problem was studied by Timoshenko in 1925 [1] using a strength of materials 

or beam theory approach. Timoshenko [1] wrote a seminal paper on the two-dimensional 

plane-stress analysis of a bimaterial bonded strip, subjected to a uniform thermal change. 

He used a two-dimensional analysis to describe the deformation of a bi-material bonded strip 

subjected to a uniform temperature change. Figure 1 illustrates this approach. With a given 

temperature change, material B expands more than material A. If the two materials remain 

bonded along the interface, material A is stressed in tension at the interface and material B 

in compression so that they are the same length along the interface. Timoshenko represented 

this loading as a combination of an axial load, P, and a moment, M, acting on each component. 

This analysis produced relatively good results, except near the ends of the strip, and near the 

interface. Timoshenko, himself, noted that the stress-distribution must be more complicated 

in these regions. Boley and Weiner also made contributions with a very similar approach [3]. 

Timoshenko’s solution to the bimaterial problem is a special case of a beam in bending. Itis 

a good approximation of the stress field away from the ends. However, with Timoshenko’s 

solution, as with a beam in bending, the axial stress varies linearly with depth in each lamina, 

as shown in Figure 1(c). However, the ends of the bimaterial beam are traction free and 

therefore the stress field near the ends must change to satisfy the stress-free boundary con- 

ditions. 
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Figure 1. Two dimensional strength-of-materials approach. 
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2.1 Initial Developments 

2.1.1 Saint-Venant’s Principle 

Timoshenko was actually applying Saint-Venant’s principle to his formulation of the bimaterial 

problem. This allowed him to solve a much simpler problem and then apply this solution to 

the bimaterial problem. Saint Venant’s principle assumes that the stress fields away from the 

end are essentially the same in both the bimaterial problem and the simplified problem of 

Figure 1(b), provided the applied loads are statically equivalent. 

As a separate example, a distributed load can be represented by a (statically-equivalent) point 

load, which makes the problem much easier to solve. However, this simpler solution does 

not apply in the region near the loading point and it is understandable that the two stress 

fields in this region would not be alike. However, the difference between the two stress fields 

decays in a characteristic length away from the loading region until the difference is negligi- 

ble. 

This characteristic decay length varies, but it is often assumed to be approximately equal to 

the height of the beam (or lamina). Alwar [44] measured this decay length experimentally, 

using photoelastic techniques. He determined that the decay of the end effect is much slower 

for a laminated beam than for a solid beam. This decay length increased with an increasing 

difference in Young’s Modulus between adjacent lamina. Accordingly, the two-dimensional 

strength of materials solution cannot be applied to accurately determine the stress field that 

is within this characteristic length from the end of the beam. If the beam is shorter than twice 

this characteristic length, the two-dimensional strength-of-materials solution will not approxi- 
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mate the stress field anywhere in the beam. Therefore, it is erroneous to evaluate the 

stresses in a short beam by using Timoshenko’s formula, which incorporates Saint-Venant’s 

principle. 

The two-dimensional strength of materials or beam theory approach does not consider the 

stress distribution near the ends of the beam, nor the stress disturbance near the interface. 

Although this solution is a good approximation for the bending stresses away from the ends, 

it does not address the stress singularities nor satisfy the traction-free boundary conditions. 

Despite the approximations, this two-dimensional solution has been used extensively as a 

standard for experimentally determining the difference in thermal expansion between enamel 

and metal [39,40,41,42,43]. 

2.1.2 Development of the End Solution 

Hess recognized the need to satisfy the boundary conditions, and superimposed a stress field 

on Timoshenko’s two-dimensional solution that negated the traction near the ends [10]. A 

30-term eigenfunction-series expansion was used to approximate the correct end condition. 

This solution accomodated the normal stress and shear stress distributions along the inter- 

face near the end of the bimaterial joint. 

Hess [11] also found that the radii of curvature determined by the Timoshenko solution was 

not necessarily the same for each material, as illustrated in Figure 2. Therefore, normal 

stresses are required to enforce continuity at the interface and these normal stresses per- 

pendicular to the interface could be either tensile or compressive. Consequently, tensile peel 

Chapter 2: Background and Literature Review 7
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Figure 2. Radius of curvature can vary with material properties and geometry. 
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stresses or compressive pinch stresses are developed along the interface near the free ends 

of the joint. 

Hess’s approach was really quite clever. He basically agreed with Timoshenko’s solution, but 

modified it to satisfy two-dimensional boundary conditions. It was a backward approach. In- 

stead of forming a solution that directly modeled the stress distribution at the end of the beam, 

the approach Hess used was based on modeling the additional stresses that were needed to 

cancel the Timoshenko stresses near the ends of the beam. The results of Hess’s parametric 

study are presented in reference [11]. 

Hess’s solution actually satisfied the boundary conditions near the end of the joint, but not 

exactly at the end of the joint. His solution for the stress distributions at the end of the joint 

was unbounded, and therefore no finite prediction for the stress could be obtained. The sol- 

ution implies infinite stresses there. 

The stress field Hess dictates near each end of the joint includes normal and shear stresses 

at the interface. These components may induce delamination. It has been demonstrated by 

Hein, Erdogan, Bogy, and Sternberg [17,18,19,20], that this stress field will theoretically include 

a singularity at the end of the interface. While a singularity cannot exist in a real material, a 

severe stress concentration is to be anticipated. 

Bogy and Sternberg [16,19] used two-dimensional elasticity to investigate singularities arising 

from discontinuous (normal and shear-stress) loadings applied to an arbitrary semi-infinite 

solid. This is similar to the discontinuous loading at a bimaterial interface. Bogy later ex- 

tended this work to study bonded bimaterial half planes [20,21] using plane (plane strain and 

generalized plane stress) theory of elasticity. He then determined the plane solution for joined 

elastic semistrips by superposition of solutions for the half planes and for infinite strips [27]. 
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The principle of superposition allowed Bogy to solve two simpler problems, where their com- 

bined solutions satisfy the original problem. The strength of the singularity resulting from 

different material properties and angles of intersection was also investigated [22,23,24,25,26]. 

Grimado [12] also used a strength of materials approach. Unlike Timoshenko and Hess, 

Grimado considered the effect of the bonding material as a third layer. However, he ignored 

equilibrim of this third layer (the bonding layer) and the stress-free end conditions of this 

layer. Grimado’s results show the maximum interlaminar shear stress occurs at both ends 

of the beam (i.e. Txy #00n the free ends). Cheng and Gerhardt [28] used two-dimensional 

elasticity to study this problem; here, too, the stress-free end condition is not satisfied. 

Chen, Cheng, and Gerhardt [29] expanded on this earlier (two-dimensional theory of elasticity) 

solution of Cheng and Gerhardt [28]. In their treatment, Chen, Cheng, and Gerhardt also used 

two-dimensional theory of elasticity, but in conjunction with the variational theorem of com- 

plementary energy. They developed a pair of governing differential equations that satisfy the 

boundary conditions concerning stress-free surfaces and stress-free ends of the beam. 

2.1.3 Similarity with Single-Lap Joints and Previous Work 

The knowledge gained in studying adhesive lap joints may be useful in the study of bimaterial 

joints. The stress distribution in an adhesively-bonded single-lap joint, Figure 3(a), is very 

similar to the stress distribution near the end of a bimaterial interface, Figure 3(b). The 

strongest similarity in the two problems is the discontinuous loading at the end of the joint, 

where the highest shear stresses seem most likely to occur. As discussed above, Bogy and 

Sternberg [16,19] investigated singular stresses that result from a discontinuous loading. 

Chapter 2: Background and Literature Review 10
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If the adherends are inextensible, as shown in Figure 4(a), they will move as solid blocks and 

the adhesive will deform rather uniformly. Although the adhesive deforms uniformly, the 

stress distribution will not be uniform. Each adherend carries the full load, P, until reaching 

the joint region, where the load is transferred to the other adherend through the adhesive. 

Therefore, the load carried by the inextensible adherend no. 1, is greatest at C and diminishes 

toward D, where it is zero. So, if the adherends are compliant, as in Figure 4(b), the greatest 

interface strain & in adherend no. 1 would occur at C and diminish toward D. Since the 

shear stress Tyx at A increases from zero at a finite rate, the drop in &, is continuous. An 

assumption of non-zero Tyx at the end of the joint would imply a discontinuous variation of 

Ex and it would violate the condition of zero shear stress Ty, at the free surface. 

This is the same situation facing the bimaterial problem where the elementary solution pre- 

scribes stresses at the free edge, in Figure 5(b). Neither of these models can have stresses 

on the free edge. Therefore, the stress distribution very near this edge must change rapidly 

to accomodate the free surface. This self equilibration of the stresses near the end of the joint 

is expected to be very similar in these two problems, as shown in Figure 3, and thus have 

similar solutions. Stress distributions in bonded-lap joints have been investigated analytically 

[2,25,51,52,53,54,55] and experimentally [56,57,58]. The experimental deformations presented 

by Post, et. al. [56,58] validate this rapid change near the free surface of the adhesive-lap joint 

that must similarly occur in the bimaterial specimen. 
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2.2 Considerations in Formulating the Problem 

2.2.1| Three Dimensionality - (A Strength-of-Materials Approach) 

Although the above solutions give meaningful insights, they are solutions to two-dimensional 

problems and not the real three-dimensional problem. Figure 6 illustrates why this must be 

solved as a three-dimensional problem. The two-dimensional approaches do not account for 

the thermal expansions in the third direction. This two-dimensional deformation recognizes 

stress singularities at the ends only (c) and assumes constant stresses through the thickness. 

The stresses, oft), shown in Figure 6 are a qualitative representation of the o, stresses, 

relative to the stress at the center of the specimen interface. 

Unequal thermal expansions of the two adjoining bodies create shear stresses on the joint 

interface. In the two-dimensional problem, illustrated in Figure 7, the Txy interface shear 

stresses cause bending of unequal curvatures of the two bodies, depending on the geometry 

and material properties. For continuity of these two bodies, normal stresses must exist along 

the interface. These normal stresses depend on the geometry and material properties, which 

determine a peel condition (Figure 7a) or a pinch condition (Figure 7b). 

The same deformations that develop Txy stresses on the interface in the two-dimensional 

problem must also exist for Tyz stresses in the real, three-dimensional problem. Figure 8, il- 

lustrates the three-dimensional peel and pinch conditions. 

Consequently, a three-dimensional approach (Figure 6e) will conclude that similar types of 

stress singularities existing at the ends of the two-dimensional joint (Figure 6c) also exist 
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along all edges of the joint. Understanding this, it is clear that theoretical singularities exist 

along the entire perimeter of the joint, and the three-dimensional problem becomes very much 

more complex. 

2.2.2 Inapplicability of Plane Stress and Plane Strain 

Because of this complexity, most of the analytical solutions are based on the assumptions of 

either generalized plane stress or generalized plane strain [2,9,14,20,21,22,23,27,29], which are 

not realistic here. The plane-stress assumption applies to a thin plate, loaded parallel to the 

plane of the plate and with loads distributed uniformly across the thickness, as illustrated in 

Figure 9. And, ifthe stresses ox and oy, applied to the edge of the plate, in Figure 9 are not 

uniform across the thickness of the plate, but are symmetrical with respect to the middle plane 

of the plate, a state of generalized plane stress is said to exist. In formulating problems for this 

case, the field variables, oj, €;, and U; are averaged across the thickness of the plate. How- 

ever, in the bimaterial problem - 

(1) the interface stresses vary significantly through the plate thickness 

(2) significant shear stresses act perpendicular to the plane of the plate. 

Each of these reasons indicate that the generalized plane stress-assumption should not be 

applied for a fully valid solution. 

The plane-strain assumption applies to a long body that is loaded perpendicular to the longi- 

tudinal direction, x, illustrated in Figure 10. For the plane-strain assumption to be applicable, 

the body can have no displacement in the axial direction, and the load must not vary along the 

length (i.e. every cross-section will undergo the same deformation). However, the interface 
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           O, = constant 
  

  

    Ca   

Oy = constant z 

Figure 9. Plane stress problem. 

  

Oy =constant 

Oy = constant y.V 

Oz =constant 

  

Figure 10. Plane strain problem. 
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shear and normal stresses along the bimaterial interface indicate that displacement and strain 

will occur in all three directions within the interface region of the bimaterial specimen. For 

these reasons, the plane-strain assumption cannot be applied. In conclusion, the shear 

stresses existing on the bimaterial interface (acting along the interface, perpendicular to the 

plane of the body) require this to be considered as a three-dimensional problem. 

2.3 Recent Developments 

2.3.1 Recent Theoretical and Numerical Solutions 

Sawa, et. al. [30] used three-dimensional elasticity to solve for the interface stresses between 

two dissimilar adherends in an axisymmetric adhesive butt joint of aluminum and steel. Their 

interest was in determining the interface stresses that may be responsible for initiating the 

fracture or debonding of the joint. They report that their elasticity solution correlates well with 

experimental results. However, the experimental (strain) data presented were taken with 

strain gages along a line perpendicular to the interface and extending across the interface on 

both sides, and the elasticity solutions (stress) are presented along the interior interface from 

the core to the surface. The elasticity solution presented shows singularities along the inter- 

face near the free surface. It seems unrealistic that three strain gages mounted 5-mm apart, 

with the closest one mounted 5-mm from the interface, could validate such a singularity. 

Seo, et. al. [59], studied the three-dimensional, axisymmetric problem by the boundary ele- 

ment method (BEM) and the finite element method (FEM). They plotted distributions of the 
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stress normal to the interface along the free surface of the cylinder, where they showed tensile 

stresses on one side of the interface and compression on the other. 

Yada, et. al. [36] investigated how the geometry of an axisymmetric-bimaterial butt joint affects 

the stress distribution, using a three-dimensional finite element method and varying the angle 

of one of the cylindar walls. These results show the same kind of singularities presented in 

Sawa, et. a. [30]. 

Most of the interest in the bimaterial problem is concerned about the interface and free- 

edge/interface stresses. Most of the information found in the literature only presents stress 

distributions along the joint interface and not across the interface. However, Terasaki, et. al. 

[38] investigated the residual thermal stresses using a boundary element method (BEM) to 

determine the stresses along a line perpendicular to the interface of the two bonded materials. 

They presented the effect of various geometric ratios, shown in Figure 11. They used a 

plane-stress condition, which might be an appropriate assumption of the stress field away 

from the interface, but, it cannot be an accurate result near the interface where the critical 

stresses occur, where the three-dimensional effect is more significant. Instead, certain trends 

would be revealed. The results of Terasaki, et. al., presented in Figure 11, shows an ex- 

tremely sharp transition of normal stresses from tension to compression along the free sur- 

face, across the interface. A strong stress gradient is predicted across the interface. 

2.3.2 Correlation with Experimental Measurements 

Suganuma, et. al. [47,48], found a similar normal stress distribution experimentally, with a 

thermal loading. Strain gages (1-mm by 1-mm) were placed along a line perpendicular to the 
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interface and 1 mm from the edge (or corner). The results of these experiments are shown 

in Figure 12 for (1) Invar bonded to silicon nitride and (2) Kovar bonded to silicon nitride. 

Although information closer to the interface could not be obtained, both of these results exhibit 

the change of sign and strong gradient presented in the BEM results of Terasaki, et al. [38]. 

However, the capability of strain gages is very limited for detailed analysis. 

There are two important limitations to using strain gages for this problem. 

(1) The data collected represents the average strain in the area contacted by the strain gage. 

Thus, measurements made in zones of rapid change are inaccurate. 

(2) The size of the gage limits how close it can be placed to a specific point. 

These limitations are apparent in the experimental results shown in Figure 12, where the 

closest measurements were 1-mm from the interface. In addition, the strains recorded are the 

average (not peak) values occurring in the area of the gage. 

2.4 Applications 

2.4.1 Application to Composites 

The composites community is also concerned about this same three-dimensional problem, 

calling it "free-edge effects.” This free-edge effect is thought to cause theoretical singular 

stresses in a composite laminate everywhere a cross-ply or angle-ply interface intersects a 

free edge. These free-edge stresses may be large and can greatly reduce the strength of the 

laminate [60,61]. Free-edge stresses can be caused by fabrication (curing stresses) [62] and 
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thermal changes [63] as well as by mechanical loading [64]. Although the magnitudes will 

vary, these stresses will exist regardless of joint geometry or what dissimilar materials are 

involved. For this reason, there has been a lot of emphasis given to determining the stress 

distribution in the edge region. This region borders the free edge and extends into the com- 

posite along the interface. The inward distance is small, typically only a few ply thicknesses. 

The composite free-edge problem is actually a special application of the more general 

bimaterial joint problem discussed above. The composite contains many bimaterial interfaces 

between plies, but also introduces the added complexities of anisotropic materials and the 

influence of nearby plies on the stress fields. 

  

Table 2. Additional approaches used to determine the interface-stress distribution in a 
composite-free-edge problem. 

References 

1. Elasticity oo csccccseeecceeeeseeeeceeesecesecsseeeeseceesenseceseese [65,66,67,68,69,70,71,72,73,74] 
2. Approximate Analytical Methods ..............cssssccccssssseeesscersesececeuenseeseseeaseseess [75,76,77, 78] 

Eigenfunction and Fourier Series approximations (2-D) ............cccccceeeeeeees [73,74,79] 
3. Finite Element Methods ooo... eesseetteserertseeseeeees [60,61,63,80,81,82,83,84,85,86,87] 

Boundary Element Methods (2-D, and 3-D) 0... eeseseeeeceeeeseneeessesesceeeeeeneaeeers [88,89] 
Finite Difference Methods oo... ccccssseseseecccccecsessesuvsstececccasseeuseseveesensenenaeees [66,90] 

4. Experimental Methods ou... eesssssseccecccsccceeeseeeeenceseccssuuueesnseeceseeeeseeueeaaeecseecens [91-117]     
  

Solutions to the composite free-edge problem have evolved in ways analogous to the work 

of Timoshenko and Hess, described above. Similar to Timoshenko’s bimaterial strip solution, 

lamination theory also implies boundary tractions on a free edge - which connot exist 

(65,91,118,119,120]. Analogous to the Hess approach, several solutions have emerged to de- 

termine the interlaminar stress distribution required to satisfy the free-edge boundary condi- 

tions. Approaches that have been used to determine the interlaminar stress distribution are 

given in Table 2. In [111], Guo, et. al., measured interface strains in laminated composites 
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under compression, revealing &y strain concentrations on the free surface and extremely 

strong &y gradients in the interface region; &, is the strain perpendicular to the interface. 

2.4.2 Other applications of this problem 

There are many applications in which the bimaterial mechanics problem is a dominant issue. 

Some of these are listed in Table 3, with pertinent literature references. 

2.4.3 Interface Stresses and Plasticity 

It has been shown above, that the stress field near a bimaterial interface is very complex, with 

predicted singular stresses near the bimaterial interface (see Figure 11). Singular or infinite 

stresses, however, cannot exist in reality because a given material will either yield or fracture. 

A ductile material yields and spreads the load over a larger region. It is assumed that yielding 

occurs near the bimaterial interface. 

The mechanical properties of ductile materials change when they are strained beyond the 

elastic range. For strain-hardening metals, an ever-increasing stress is needed to produce 

further yielding, as indicated in Figure 13. This is the result of dislocation interaction from the 

localized stresses surrounding the dislocations. The magnitude of these particular stresses 

cannot be measured directly, but may be estimated through the theory of elasticity. 
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Table 3. Applications of the bimaterial problem. 

References 

1. COMpOSite Materials oo... cceeecesecseeseeeeeeeeees [60,61,63,64,65,91,111,118,119, 120,121,122] 
(edge-effects) ......0.. (62,63,64,68,75,77,79,83,84,85,86,90,93,94,95,121,123,124,125, 126,127] 
(interface stresses and delamination) ................. {50,60,61,62,65,66,67,68,76,78,79,81,82,85] 

sees a aaa aaaaaaaaaaaaaaaaaaaaaeuaaeaaaeaaaaaaegs [91,92,96,102,109,111,118,120,122,126,128, 129, 130,131,132, 133] 
(fiber/matrix bond-interface StreSS€S) ..........cccscsssssessesseeseesceecesececeeeceeeeeeereeees [122,134,135] 

2. Seals 
(CEramMic/Metal) ........cccccccccceesssssssssteeeeeeeseeees [44,46,47,48,59,123,136,137,138,139,140, 141,142] 
(QIASS/COLAMMIC) cece cccccccccccccccccececeeeceeeeeeeeeeeeeeseeeeeeeseeeeeesseeseseeeseseeeeresessseeeseeeceeeneres [143,144,145] 
(GlASS/Metal) oo ccccsceesssseeeceeeeseneuseeseeesseeeseeeeeeeeeaeueeeuceeeseueeeuaaaeuseeseseussagageeeeeseess [146,147] 
COLNE) vic. csssssessceccssssusceeneseeveveseeueenseeuseesueseecsssessuauseesesssssecsesauausuaeeeesseecesssseuuausnsnserseseusanes [9,34] 

3. Porcelain Enamel on Sheet Iron .............seesseseseseenens [39,40,41,42,43,97,98, 100,148,149, 150,151] 
(ANG OTNEL COATINGS) oo... cssssesssecseeeceecceeeaesseeseeeeeeeeeeeeesssseessseseseesesessauaaaganeeseesenes [43,100,152] 

4. Brazed and Welded Joints .........cccccccccsssssecessssseccsssssnseessssssarecevssesaeeeeeseseaneesensenas [44,87,123,153] 

5. Microelectronics Industry AppliCations ..............ccssscccccesseeceesseeseececeaeessess [5,6,145,154,155, 156] 
(THIN FIIMIS ON SUDSTrAtTES) ooo. ccsssssseeseecececeeeesesausaeesseseseceesessuueaasssenceseeeesnensnseeeeeeeess [152] 
(CEFAMIC-tO-MeEtal JOUMIMG) oo... ccccccccccccecececccccceuccecceneeeneeveveeeveseeeeeerens [44,46,59,138,139, 140] 
(packaging, CirCUit DOArAS, CEC.) ....eeeccceececccesseseenseeeseeeececenceeeusesesseeeeceeeseaaueaeseeess [154,155] 

6. Adhesives . [2,53,80,102,105,151,157,163,164,169,170,171,172,173,174,175,176,177,178,179, 180] 
(SUIFACE CHEMISEIY) oo. cccccccceecceeeeeeeeceeeeeeeeeceeeeeeesseeeeeeeeeeeeeseeseseceeeeeeereseeseees [134,157,158] 
(DUtE JOINTS) occ cccccccccccccccceecesceesececeeeceneeerenereeses [40,49,69,101,128,159,160,161,162,163] 
(lAP JOINTS) oo... eccccccccccccccecccceceecceceeceecceseseseeseeeeeerenes [40,51,52,54,55,56,57,102,164,165, 166,167] 

7. Laminated Beams ....... cesses [29,45,49,50,53,58,68, 79,126, 128,131,169,171,181,182, 183] 

8. Transition Interlayers 0.0.0... ccccssssssscceeeeeeeessesenees [79,101,129,137,142,147,153, 156,161,184, 185] 

9. StreSS COFrOSION CLACKING ....... ee eececccccceceeecceseeeeeeeeecseeeeeeesseceseeeerseeetessereerees [87,157,186,187,188] 

10.Residual Stress ............. (50,103, 104,126, 138,139, 140,153,157,161,165,167,171,174,181,184,189] 

11.Bimaterial Interfaces 
(Crack Propagation) ................csssssssssssessesssessseterseees [79,88,89,157,161,171,180,190,191,192,193] 
(INTE FACE! FLAWS) oo... cessssssseseseeccccscseeesseeeeececceseucaueesseeseccecseeaueessssseeccesessseugageseecesentaagensssess [79] 
(GISIOCATIONS) oo... cecceeccccceececeececascesececececeeeessesseseesececeeceeasasessssaeeeeeneasens [152,194,195,196,199] 
(residual stresses and Plasticity) ............ [49,59,88,105,107,111,124,126,127,130,133,134,138] 

eee eee eeeeeeeesesseesseeeesseseeeseeseeseesseess [139,140,143,144,145,151,157,158, 162,163,165,171,172,173] 
beebeseseseesssseseseececcecceececeseeeeesecececeees [174,179,183,187,188, 191,192,194, 195,196,197,198,199,200) 

12.Strength Evaluation of a Bimaterial Joint 
(stress and strength evaluation) [61,80,118,122,126,127,141,143,172,177,185,199, 201,202,203] 
(FAUULE) oo... ceeecccccccccceccessseececcceceesssuaessseccecenseeseeeasnsesecessseseeaesssesscsecsseuegeesseeseeeensanees [154,175,203] 

13.Mathematical Singularities 
(Singular SOLUTIONS) .........ccceeccccceeeseeeeseeeees [49,64,70,71,79,95,126,130,151,167,168,177,180,190] 

se aeseeesessaseesssscseeesseceeseececceeeeeeneceeeseeeeees [197,199 ,204,205,206 207 ,208,209,210,211,212,213,214] 
(mathematical models) ..... [49,53,70,71,80,81,82,95,126,130,131,134,151,154,157,167,168,179] 
beseunees [189,195,197,204,205,206 207,208 ,209,210,211,213,215,216,217,218,219, 220,221 222,223] 

(effect Of GeOMetry) oo... cceccccccceesessseeeeaees [49,70,80,91,119,140,166,209,210,211,212,213,214] 
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2.9 Background Summary 

From the above analyses, we can conclude that there is a critical region of stress concen- 

tration, which exists along the entire perimeter of the bimaterial interface. This region is near 

the line of intersection of the interface with the free surface of the composite body, or “critical 

line.” In addition, it follows that the stress concentrations along a "critical line” are further 

increased in the region where two “critical lines” intersect, i.e. at the corners. These critical 

regions of stress concentration exist at any bimaterial interface, regardless of the type of 

loading (thermal or mechanical, static or dynamic), regardless of materials (flexible or stiff, 

elastic or plastic), and regardless of geometry. 

In earlier studies, this line of intersection of the interface with the free surface (or “critical 

line”) was avoided entirely (Timoshenko’s solution). In later studies, this region was treated 

as one exhibiting singular stresses (Hess). However, the analyses are typified as plane sol- 

utions, which model the critical region at the end of the specimen, but ignore the “critical line” 

along the face of the specimen. 

More information is needed to better understand the actual stresses acting in this region. 

Severe stress gradients are anticipated as a result of singular or free-edge effects. Exper- 

imental documentation is needed to characterize and model the three-dimensional nature of 

those effects. 
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Chapter 3 

Chapter 3: Experimental Investigation 

3.1 Specimen Material and Geometry 

The following research was designed to produce a detailed knowledge of the thermally- 

induced surface deformation in the interface region of the bimaterial joint. The specimen ge- 

ometry and experimental conditions are shown in Figure 14 for Specimen A, the primary 

specimen studied. 

From the previous work seen in the literature [6,9,10,11,30,36,38,47,48.49], the stress distrib- 

utions are greatly influenced by the geometric aspect ratio. For this reason, two other ge- 

ometries were also studied to compare the influence of aspect ratio on the thermally-induced 

deformation and corresponding stress distributions. The geometry of Specimen A was chosen 
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as the primary specimen for interrogating this problem because this geometry had the longest 

length of interface (dimension “b” in Figure 15, below, as well as the greatest aspect ratios, 

a/c, and b/c. (Also, see Table 4.) 

These two other specimen geometries, along with the primary specimen (Specimen-A), are 

shown in Figure 16. The corresponding aspect ratios are given below, in Table 4, and the 

material properties are given in Table 5. The dimensions a, b, and c, correlate to Figure 15, 

below. The shaded surface correlates to the surface interrogated by moiré interferometry and 

reported, here. 

Table 4. Specimen geometric aspect ratios. 

Aspect Ratio 
  

  

  

    
        

Specimen ab alc b/e 

A 0.50 13.5 27.1 
B 0.50 0.50 1.00 
C 6.77 0.25 | 0.037 
D 0.50 685 13.8     

  

Figure 15. Relative orientation of specimen dimensions. 

Chapter 3: Experimental Investigation 31



  

~% 
=——— b   

a = 2.20 in. (55.9mm) 
b = 4.40 in. (112.mm) 
c = 0.16 in. (4.1mm) 

    

    
a 
b 

0.50 in. (12.7mm) 
1.00 in. (25.4mm) 

c = 1.00 in. (25.4mm) a 
é a= 1.10 in. (27.9mm) 

Atte b = 0.16 in. (4.1mm) 
tL ett c = 4.40 in. (112mm)   

Figure 16. Specimen geometries and material properties for specimens: 
(a) A, (ob) B, and (c) C. Note: U, V, and W are displacement 

components in the x, y, and z directions, respectively. 
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Table 5. Specimen material properties. 

STEEL BRASS 
E, = 29.5 x 108 psi. Eg = 15.9 x 10° psi. 
Vs =0.29 Vg =0.33 

O, = 6.90 x 10°°/°F Og = 10.8 x 10°°/ °F 

    
  

Two specimens (a bimaterial plate and a bimaterial cube) were made from the same stock 

of brass and steel. After it had been tested, Specimen-A (Figure 16a) was cut to make 

Specimen-C (Figure 16c). And similarly, after testing, Specimen-C was cut to make 

Specimen-D (Figure 17), i.e., Specimen-A and Specimen-C, (Figure 16a and c), and 

Specimen-D (Figure 17), are all from the same original specimen. The thermally-induced 

deformation in the interface region of Specimen-A, was investigated by the experimental 

method of moiré interferometry [108], which is described in the following sections. (This tra- 

ditional method of moiré interferometry will be referred to, here, as macroscopic moiré 

interferometry.) 

This investigation of Specimen-A, using macroscopic moiré interferometry, revealed ex- 

tremely strong gradients in the immediate vicinity of the interface, a very narrow zone where 

the paths of the fringes were inconclusive. Therefore, in order to clearly define the deforma- 

tion in this region, additional experimental evidence was sought by the higher-sensitivity 

method of microscopic moiré interferometry [116,117], using Specimen D. 

The brass and steel were joined by a very thin continuous film of high-temperature silver 

solder. Each specimen was tested over approximately the same temperature increment, 
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AT. Temperature increments, free-thermal expansion, and corresponding coefficients of 

thermal expansion, for each of the specimens tested, are given later in Table 7 on page 55. 

The aspect ratios are given in Table 4 and the material properties are given in Table 5 for 

all four specimens. 

3.2 The Experimental Method: Moiré Interferometry 

3.2.1. Introduction 

The stress distributions were investigated by using the experimental method of moiré 

interferometry [108]. Moire interferometry is an optical technique utilizing two-beam optical 

interference to produce interference fringe patterns which are full-field contour maps of in- 

plane displacements. It can be applied to measure deformations in almost any engineering 

material. With its very high sensitivity, the method produces a great abundance of displace- 

ment information. Therefore strains can be determined with high accuracy and stresses can 

be calculated from the strains. 

This technique can be used to analyze both homogeneous and non-homogeneous, linear and 

non-linear deformations. This broad capability enables determination of both elastic strains 

and plastic strains in different regions of the same field on the same specimen, which is an 

important asset for this problem, since it was thought that localized plasticity could occur. 

Analytical models predict singular or infinite stresses at the interface of two dissimilar 

homogeneous-elastic materials. This indicates that yielding might occur at the interface in the 
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real material having the lower yield strength. Very high strain gradients are also predicted 

in this region adjacent to the interface, but the experimental method of moiré interferometry 

can cope with extremely high gradients. 

3.2.2 Moire Interferometry - the Basic Principle 

Moiré interferometry [108] is typically practiced at room temperature by replicating a high- 

frequency specimen grating on the surface of the specimen. When the specimen is loaded, 

the grating deforms together with the underlying specimen. A fixed reference grating is 

superimposed on the specimen grating. The reference grating is usually formed by the 

intersection of two coherent beams and is twice the initial frequency of the specimen grating. 

The result is a moiré pattern, which is formed by interaction of the specimen grating and ref- 

erence grating. The frequency of the virtual reference grating (2400 ?/mm) is adjusted to twice 

that of the specimen grating, thus producing a null field before the specimen is loaded. Then, 

when the specimen is loaded, the displacement U (or V) of every point is mapped by the moiré 

fringe pattern and interpreted by 

1 1 
U= —N,, V=—N, 1 f f y ( ) 

where WN, and N, are fringe orders at the corresponding point, and f is the frequency of the 

reference grating. This room temperature application of moiré interferometry was adapted for 

use at elevated temperatures by the method described below. Governing equations for the 

thermal-strain problem are given in Table 6 on page 51, and described in that section. 
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3.3 Experimental Procedure - 

Crossed-line diffraction gratings (i.e. with furrows in orthogonal x and y directions) were rep- 

licated on each of the bimaterial (steel/brass) specimens at an elevated temperature. A ref- 

erence mold with known grating frequencies was used to replicate epoxy gratings on the 

specimen on the interface as well as the free corners, as illustrated in Figure 14. This left 

crossed-line gratings imprinted in epoxy on the specimen surface. When cooled to room 

temperature, the specimen and overlying grating deformed as a result of (a) the free thermal 

contraction of the steel and brass and (b) the state of stress caused by the mutual constraint 

along the joint interface. The gratings that straddled the interface deformed as a result of both 

effects, while the gratings near the traction-free corners experienced only the thermal con- 

tractions; the latter were used to measure the coefficients of (stress-free) thermal expansion 

for each of two materials. 

Moire interferometry [108] was used to record the U and V displacements at each point in the 

gratings, i.e., the displacement components in the x and y directions, respectively. The ex- 

perimental data were received as fringe patterns that represented whole-field contour maps 

of the displacement fields. The displacement sensitivity was 0.417 wm (16.4 pin.) per fringe 

order, corresponding to moiré with 2400 lines/mm (60,960 lines/in.), i.e., twice the initial 

specimen grating frequency [108]. (This is the value of f, used in the equations given in 

Table 6 on page 51, and is defined as f,, given in the list of symbol definitions.) In the course 

of the experiments, carrier fringes [110] were used to emphasize features of the deformation 

field. In addition, a special technique (whereby carrier fringes canceled the uniform defor- 

mation fringes of free thermal contraction) was applied to produce a pattern that represented 

the stress-induced displacements, alone [99]. 
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Moiré interferometry measures the deformations incurred between the application of the 

grating to the specimen and the subsequent observation of the deformed grating. Thus, the 

measurements are independent of the state of residual stresses in the specimen, except to the 

extent that the residual stresses might influence the mechanical and thermal properties of the 

material. In this analysis, the material properties were assumed to be constant through each 

element, brass and steel, although the residual stresses from fabrication of the specimen are 

concentrated near the interface. 

This method is described below, in greater detail. 

3.3.1 Method for Absolute Thermal Strain Measurements 

The basic idea is simple. A special grating mold is made on a zero-expansion substrate so 

that it has the same frequency at room temperature and elevated temperature. This mold is 

used to cast (or replicate) a specimen grating at elevated temperature. It is also used (directly 

or indirectly) to adjust the frequency of the virtual reference grating. Accordingly, the fre- 

quency of the reference grating is fixed at twice the frequency that the specimen grating pre- 

viously had at the elevated (replication) temperature. Then, the absolute change of specimen 

grating frequency, induced by cooling the specimen, is recorded in the moiré pattern. 
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3.3.2 Zero-expansion Mold 

A grating mold is produced (replicated) on a (nearly) zero-expansion substrate. This proce- 

dure is illustrated in Figure 18(a). The normal grating mold on a glass substrate, marked 

grating mold A, is obtained. (It is made for example by the methods described in Ref. 108.) 

This grating is replicated in silicone rubber on the zero-expansion substrate at room temper- 

ature. 

The substrate used here is a one-inch thick Ultra-low Expansion (ULE) glass plate, marketed 

by Corning Glass Works. In the temperature range 75-315°F, its coefficient of thermal expan- 

sion is 5 x 10-8/°F, which is sufficiently low to be considered zero for most applications. In 

special cases where the error might be significant, a correction can be introduced in strain 

calculations. The thermal expansion of this particular substrate was measured by 

interferometry by Bowles [109] to confirm that it fell within the Corning specifications. 

To make the ULE mold, the substrate was coated with primer (Dow Corning 9-2023) to enable 

the silicone rubber to adhere to it. A small pool of liquid silicone rubber (Sylgard 184 by Dow 

Corning) was poured on the ULE plate and squeezed into a thin film by grating mold A 

(Figure 18a). The silicone rubber cured to a solid in 24 hours. The excess rubber was then 

trimmed away and mold A was pried off. This produced the zero-expansion mold, which is the 

ULE substrate with a thin (0.001 in.) silicone rubber grating on one surface. 
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3.3.3. Specimen Grating, Elevated Temperature 

Figure 18(b) illustrates the process for producing the specimen grating at elevated temper- 

ature. The method is similar to the room-temperature procedure described above, but the 

grating is cast in epoxy instead of silicone rubber. The ULE mold and the metal specimen 

were preheated to 315°F in an oven. A small pool of liquid epoxy (Epon 828 with 36.5-percent 

hardener DDS) was poured on the specimen. The ULE mold was lowered onto the epoxy and 

a weight producing a force of about 0.2 pounds per square inch was added. The assembly 

was maintained at 315°F in the oven. The epoxy cured to a solid in about 1.5 hours, which 

eliminated the effects of a thermal gradient caused by the necessary oven door opening dur- 

ing replication. After six hours, the ULE mold was pried off and the specimen was slowly 

cooled to room temperature. A virtue of using silicone rubber for the zero-expansion mold is 

that epoxy will not adhere to it. Finally, an ultra-thin film of aluminum was applied to the epoxy 

surface by vacuum deposition to produce a reflective specimen grating. 

3.3.4 Optical Apparatus and Virtual Reference Grating 

The four-beam moiré interferometry apparatus [108] illustrated in Figure 19 was used. The 

light source used here, was produced by an argon-ion laser, using 200mW of power and a 

wavelength of 514.5 nm (A = 514.5nm). A virtual reference grating was formed by light from 

sections A’ and B’ of the incoming collimated beam, which were intercepted and redirected 

by mirrors A and B. Intersection of these sub-beams generated the virtual reference grating 

for the V field. The angle of intersection determines the frequency of the virtual reference 

grating and it was adjusted by fine thumbscrews on the mirror mountings. Similarly, the 
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virtual reference grating for the U field was formed by sub-beams C’ and D’, after reflection 

of beam C’ by mirror C. 

3.3.5 Virtual Reference Grating - Calibration 

In the procedure employed here, a room-temperature replica of the ULE grating mold was 

installed on a fixture behind the interferometer (shown in Figure 19) where the specimen was 

later placed. A replica of the ULE grating mold (made at room temperature) will insure that 

the same conditions of the undeformed specimen grating (at elevated temperature) can be 

matched by the reference grating. This replica of the ULE grating mold was used to calibrate 

the virtual reference grating. Figure 20 illustrates why this is necessary. 

The ULE grating mold, shown in Figure 20(a), is a crossed-line grating with grating fre- 

quencies F, and F, superimposed at an angle, 8. Although F, and F, are essentially equal, 

they might not be exactly equal. And, although angle £ is nominally 90 degrees, it might not 

be exactly 90 degrees. A replica, or mirror image of the ULE grating mold would produce 

the crossed-line grating shown in Figure 20(b) with frequencies F, and F, superimposed at 

an angle of, (180°— 8). Mixing these two different orientations (i.e. adjusting or “tuning” the 

interferometer to the original ULE grating mold to interrogate a replica of the ULE grating 

mold ) would introduce an error of 2 x (90° — 8) in shear strain measurement. 

Simply rotating the ULE grating mold by 90°, as shown in Figure 20(c), would elliminate this 

error. However, an error in extension measurement would be introduced if the grating fre- 

quencies, F, and F, are not exactly the same. To avoid these sources of error, a replica of 

the ULE grating mold (shown in Figure 20b), was used. 
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Figure 20. ULE mold: (a) original orientation , (6) replication, and (c) rotated, only. 
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This room temperature replica of the ULE grating mold was then placed in the interferometer 

and used to adjust (or “tune”) the frequencies and orientation of the reference grating. The 

interferometer was adjusted to produce null fields (which are uniform intensity across each 

field) for both the U and V fields. The procedure outlined in Ref. [108] was followed for the 

adjustment, and it is referred to, briefly, in the following section. (Light diffracted in the O* 

order of the grating is directed back into the source to define the angular orientation of the 

plane of the grating.) After null fields were established and calibration of the virtual reference 

gratings were completed, the mirrors remain fixed. They were never readjusted during the 

course of the experiment. 

3.3.6 Moiré Carrier Patterns 

A carrier pattern is introduced by changing the frequency and/or orientation of the reference 

grating. A carrier pattern is the result of the mismatch between the adjusted reference grating 

frequency, and the true or absolute reference grating frequency. The carrier pattern is an 

important ingredient in moiré interferometry. Together with other special properties, it makes 

moiré interferometry a unique and powerful technique for displacement and strain measure- 

ments. Carrier patterns can be used for various purposes, including (1) to increase the 

acuracy of extracting data from fringe patterns, (2) to distinguish the signs of the displace- 

ments by introducing a carrier pattern of known sign, (3) to determine fringe gradients when 

they are not adequately represented in the load-induced fringe patterns, (4) to cancel the ini- 

tial or no-load fringe pattern, and (5) to measure in-plane and out-of-plane displacements, si- 

multaneously [110]. Here, in this study, carrier patterns were used to cancel the uniform, 

thermal-contraction portion of the displacement fields, and to accentuate details in the defor- 

mation fields. 
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In moiré interferometry, the frequency and orientation of the reference grating is changed by 

adjusting the incident beam. These adjustments can be made by changing the angle of the 

incoming collimated beam (shown in Figure 19), or by changing the angle of mirrors A and 

B, (or mirror C). 

For the work presented here, the reference grating was calibrated to a known value by 

changing the angle of the mirrors. And, to ensure that the reference grating remained con- 

stant throughout the experiment, the mirror angles were not changed after the initial cali- 

bration. Therefore, it was necessary to introduce carrier patterns by changing the angle of the 

incoming collimated beam. However, it was also necessary to indroduce the carrier patterns 

in such a way that the calibrated optical system was not disturbed. 

This was accomplished by inserting a glass plate in the diverging path of the laser light, prior 

to its collimation. Inclination of this glass plate changed the angle of the incoming collimated 

beam, without altering the calibration of the system. The carrier pattern was adjusted by 

changing the angle of the glass plate, and the carrier could be removed easily, by removing 

the glass plate from the system. 

The pattern of Figure 21 on page 47 was transformed into that of Figure 22 on page 47 by 

carrier fringes of extension. The carrier fringes are parallel to the x axis, so ON,/0x is not 

changed. However, the gradient ON,/dy, corresponding to a normal strain in the y-direction, 

is altered by a constant, uniformly over the field. The special virtue of Figure 22 is that it 

makes the transition region between brass and steel very clear. This apparent subtraction 

of a uniform strain over the entire field helps to accentuate the non-uniform strain. The fringe 

gradients 6N,/dy (corresponding to normal strains €y ) across the interface change dramat- 

ically in an extremely narrow zone, which is emphasized by this addition of carrier fringes. 

This zone is apparently less than 0.005-in. wide, in Specimen-A. 
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Figure 21. Specimen-A. V-displacement fields without a carrier pattern. 
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Figure 22. Specimen-A. V-displacement field with a carrier pattern. 
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3.4 Data Extraction from Experimental Results 

3.4.1 Recording Data 

Specimen gratings were replicated at an elevated temperature, and interrogated at room 

temperature. Therefore, the deformation observed was the result of the temperature differ- 

ence, AT. The specimen deformation caused by the temperature difference, AT, was ob- 

served by the optical system described above, after the system was calibrated. 

To record the thermal-deformation data, the specimen was attached to a fixture that allowed 

translations in the x, y, z directions, as well as universal angular adjustments about these 

axes. After the calibration steps described above (or “tuning” the system), the tota/ U - and 

V - displacement fields were recorded photographically. And, in addition, carrier patterns 

were introduced to accentuate the stress-induced irregularities as well as the patterns of 

stress-induced fringes, which were also photographically recorded. 

3.4.2 Specimen A - An Example of the Experimental Method 

The specimen was the bimetal plate shown in Figure 14 and Figure 16(a). Specimen gratings 

were replicated (at 314°F.) in the regions shown. The larger grating was used to investigate 

thermal deformations near the interface, and the corner gratings were used to determine the 

coefficients of thermal expansion of the steel and the brass. 
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The fixture to which the specimen was attached (shown in Figure 19) allowed controlled 

translations in the x, y, z directions, and universal angular adjustments about these axes. 

After the steps described above ("tuning” the system), the U and V fields were recorded pho- 

tographically for the three regions. Figure 21 is the V-displacement field surrounding the 

joint. This is the total displacement caused by the —240°F temperature change from the 

grating replication temperature to the interrogation (room) temperature. This thermal defor- 

mation is independent of any state of residual stresses developed in the manufacturing proc- 

ess of the material and the joining process of the specimen, since such residual stresses 

would have already been present when the specimen grating was applied; only the change 

of deformation is measured. 
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3.4.3 Data Reduction 

3.4.3.1 Calculation of Strains and Stresses 

The governing equations for the thermal-strain problems are given in Table 6 on page 51, 

where, 

U and V are displacements in the x and y directions, respectively; 

N, and Ny are the fringe orders inthe U and V displacement patterns, respectively; 

Ni and Nj are fringe orders in the corresponding U and V fringe patterns of total 
displacements; 

Nz and NY are fringe orders in the corresponding U and V fringe patterns of stress- 
induced displacements; 

f is the “effective” grating freguency, with 

fo. = 2400 lines]/mm (60,960 fines/in.), for the macroscopic study; 

€ and ) are normal and shear strains, respectively; 

O and T are normal and shear stresses, respectively; 

AT is the temperature increment; 

& is the coefficient of thermal expansion; 
V is Poisson’s ration; 
E is the modulus of elasticity, or Young’s Modulus; 

G is the shear modulus of elasticity, (or modulus of rigidity); 

superscripts t, o, and «, correspond to the total strain, the stress-induced part of the strain, 
and the free-thermal-expansion part of the strain, respectively; 

a, V, E, and G are a different value for steel and for brass, and are listed in Table 5 on 

page 33, as well as in Figure 16 and Figure 17 on page 34. 

Here, U, V, N,, and N, represent total displacements and fringe orders, as read from total 

deformation patterns such as Figure 21 on page 47. Equations (3)-(5) and (9)-(11) apply to 
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Table 6. Governing equations for the thermal-strain problem. 

Displacements: 
1 1 

U= —N,, V=—N 1 f f y ( ) 

Normal Strains: 

we at(M) pw L1( (2) 
* x f\ ox 7 ’ y f\ ey 

et= 67 + fe, e=alAT (3) 

4 ONt ) 4 ( ONG ) 
o— pt pt — — — pts — _—— aad = 4 ( a eG (4) 

4 ON 4 ONY 
by = &} — &% -4/ oe 4+( (5) 

Shear Strains: 

7 OU, WV _1/ ON , ON 
vay “ay + x = +( éy + ax (6) 

Voy = V5. as Vy = (7) 

,. 1{ ON. . ON, \_ 1 / Ne | ONY (8) 
ve Fo ox } f\ oe ax 

Stresses: 

x= 5 = 7 (ek + vey) (9) 

oy = a (eo + veg) (10) 

ty = Gyy = | —=— ] 9¢ (14)     
  

the brass and steel portions, separately, inasmuch as @ (and €“), V, E, andG are different 

in the two materials. Equations (9) and (10) apply to the surface of the specimen, where there 

are no normal tractions on the surface. Shear strains and corresponding shear stresses are 
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independent of the uniform thermal contraction (equation 7). Therefore, either Nt or N’ can 

be used to determine the shear strain (equation 8). 

3.4.3.2 Specimen-A: An Example of the Experimental method, using carrier 

patterns 

The pattern of Figure 21 on page 47 was transformed into that of Figure 22 on page 47 by 

carrier fringes of extension. The carrier fringes are parallel to the x axis, so dN,/dx is not 

changed. However, the gradient, 0N,/dy, corresponding to a normal strain in the y-direction, 

is altered by a constant, uniformly, over the entire field and helps to accentuate the non- 

uniform strain. The carrier fringes used (added) to transform the pattern of Figure 21 into the 

pattern of Figure 22 on page 47, were carrier fringes of extension, which were approximately 

equal to the average thermal expansion of the brass and steel, in magnitude, but opposite in 

sign. The differences between Figure 21 and Figure 22, are an excellent example of the 

special virtue of the carrier pattern, which, in this case, makes the transition region between 

brass and steel very clear. The fringe gradients, ON,/dy (corresponding to normal strains 

Ey ) change dramatically, across the interface, in an extremely narrow zone, which is em- 

phasized by this addition of carrier fringes. This extremely narrow zone is apparently less 

than 0.005-in. wide. 

The carrier pattern of extension corresponds to adding or subtracting a constant strain over 

the entire fringe pattern, as illustrated above. Therefore, this technique can also be used to 

subtract the constant stress-free thermal contraction from the entire field. After subtraction, 

the pattern represents the stress-induced part of the total deformation. 
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The stress-free corners, away from the interface, were used to determine the stress-free 

thermal contraction, as well as the carrier pattern required to subtract the (constant) thermal 

contraction from the total deformation. An example of this is shown in Figure 23, below, for 

the stress-free corner of the brass, before (Figure 23a) and after (Figure 23b) the addition of 

the carrier pattern equal (in magnitude) to the stress-free thermal contraction of the brass, 

but with opposite sign. In Figure 23(a), the fringe gradient represents the free thermal ex- 

pansion of the brass; the adjustment that produces (b) introduces an opposite fringe gradient 

that nullifies the fringes of free thermal expansion at the corner and everywhere else in the 

specimen. 

  

Vy   

U,x 

  

  

  

    

     Brass 

0.0 inches 0.5 

Figure 23. The V-displacement field in the stress-free brass corner, (a) without, and (b) with car- 
rier pattern. 

The constants & and &*, were determined from this experiment, separately, for the brass and 

steel by equation (3). These values were determined from each of the free corner (stress- 

free) patterns for the brass and the steel. 
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4,1 Results: Specimen - A 

The temperature increments and thermal-expansion measurements are given below, in 

Table 7. 

Table 7. Temperature increments, thermal strains, and coefficients of thermal expansion. 

  

  

  

  

  

  

a AT=€*, Strain x 10° 

Specimen AT Steel Brass Ag 

A -133°C 
(-240°F) -1663 -2601 938 

B -4 44°C 

(-260°F) -1823 -2750 927 

-136°C C (245°F) -1688 -2602 914 

-126°C * D -1568 - * * (207°F) 2435 867             
  

4.1.1 The Use of Moire Interferometry 

The direct results of moiré interferometry for Specimen-A are shown in Figure 24 and 

Figure 25. Figure 24(a), is the total V-displacement field, i.e., the Nf pattern. It is domi- 

nated by the thermal contraction of each part, steel and brass; thus the gradient ONt/dy is 

negative everywhere. This is seen in the magnified pattern of Figure 26, which verifies that 

Chapter 4: Experimental Results 55



  

  

  
  

    

  

    

|+— 2a—+| 
a= 2.20 in. (55.9 mm) 

  

       - _ i 

Figure 24. Specimen-A. V-displacement fields in the shaded region for AT = -240°F 

(-133°C). (a) contours of Ny, depicting the total displacements. (b)V field, 

modified by carrier fringes of extension, (approximately) equal to the 

average of the thermal contractions. (c)contours of NS y Gepicting the 

stress-induced displacements in steel and brass. 
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Ni decreases everywhere, as y increases. The zero-order fringe is chosen arbitrarily, because 

the analysis of deformations only requires relative displacements. 

Although the fringe gradients in both materials change quite rapidly near the interface, the 

total displacements across the steel/brass interface must be continuous (unless the material 

has failed, leaving a gap). The stress-induced deformations combine with the free thermal 

contractions to produce a very-sharp change of fringe gradient across the interface. This 

change is emphasized in Figure 24(b) (and earlier, in Figure 22 on page 47), where carrier 

fringes of extension were introduced. These carrier fringes have the effect of subtracting off 

a uniform strain (approximately) equal to the average of the thermal contractions. The 

change across the interface is rather abrupt, which is emphasized by the carrier patterns used 

in these figures. 

In Figure 24(c), the carrier fringes introduced a uniform, apparent strain, equal and opposite 

to the experimentally determined €* (or « AT), which had the effect of canceling the free 

thermal contraction part of the fringe pattern. The result is a pattern of the stress-induced 

displacements, namely the contour map of N’,. This procedure was carried out for the upper 

(steel) and lower (brass) regions, separately, since the magnitudes of «, (or e*) are different 

for steel and brass. 

The U-displacement fields (corresponding to the V-displacement fields in Figure 24), are 

shown in Figure 295. Figure 25(a) is the total displacement pattern of the N*‘, fringes. 

Figure 25(b) is the same field, but combined with a carrier pattern that has the effect of sub- 

tracting a constant strain from the entire field. The value of carrier strain subtracted off, is 

(approximately) equal to the average of the thermal contractions of the brass and steel (and 

corresponds to the carrier for the V-displacement field shown in Figure 24b). Figure 25(c) 

is the stress-induced part of the U field, depicted by contours of Ng. Pattern (b) demonstrates 
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that the «{ (total) strains in the steel and brass are essentially constant along the interface 

and identical in the two materials. The fringe orders marked in Figure 25(c), indicate that the 

stress-induced strain, «2, along the interface is compressive in the steel and tensile in the 

brass. This is consistent with the greater thermal contraction of the brass and the opposing 

restraint by the steel. 

4.1.2 The Use of Mechanical Differentiation 

Figure 27 introduces another kind of fringe pattern, the pattern of mechanical differentiation 

{112] and [108]. Using Figure 27(a) as an example, the pattern was constructed by superim- 

posing two photographic images of Figure 25(a), with a shift of one image relative to the other 

by a finite increment, Ax. (Here, Ax = 0.1 in., or 2.5 mm). .When shifted, the dark lines of 

the two patterns interweave and create a moiré effect. The effect is known as geometric 

moiré, which is distinct from the interferometric moiré of Figure 24 and Figure 25. At any 

point in the pattern (resulting from mechanical differentiation) the fringe order N;, equals the 

difference, AWN, of fringe orders, Nf, in the two superimposed transparencies. Thus, 

AN, aN 
Ax ~ O* 3x 

    Noa = ANE = Ax (12) 

The double subscript refers, first, to the displacement component of the firinge pattern and, 

second, to the direction of the shift. Using Ny, the subscript ”/” represents the displacement 

field (i.e. x for the U-displacement field and y for the V-displacement field), and the subscript 

“j" represents the direction of mechanical differentiation (i.e. a translation parallel to the x 

or y axis). 
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Accordingly, Nyx is proportional to the finite-increment approximation of the differential. 

By Equation (4), 

  Nyx — & (13) 

The finite increment approximation must exactly equal the derivative at least at one point in 

the interval and it is very accurate in regions where the strain gradient in the interval, Ax, 

is either linear or small. In this case, it is a useful means of extracting the derivatives on a 

whole-field basis everywhere except in the immediate vicinity of the interface. 

The same procedure was used to portray all four derivative fields, i.e. shifting each pattern 

Ni and Nf by increments Ax and Ay. The increments were 2.5 mm (0.1 in.) in all cases, 

and the data pertains to the midpoint of each increment. Therefore, zones of width Ax/2 and 

Ay/2 are blank in the figures because the parent patterns did not overlap in these zones and 

no data exist, there. These blank zones are only 1.25 mm wide (or about 1% of the specimen 

length) and, in this case, the gradients were large in these zones, near the interface. 

An obvious feature of the strain distrigution is the irregular nature of fringes in Figure 27(a). 

A theoretical-elasticity solution would prescribe smooth contours, so the irregularities must 

be associated with some facet of the experiment. There does not appear to be a consistent 

argument that attributes the fringe irregularities to features of the experimental technique. It 

is tempting to attribute these fringe irregularities to gaps or cracks in the silver-solder joint. 

However, cracks would introduce out-of-phase fluctuations on opposite sides of the interface, 

in Figure 27(a). The observed in-phase fluctuations indicate that there is &, -continuity across 

the interface. Therefore, | believe that there were no gaps or cracks in the joint, but instead, 

one or both of the materials exhibits small variations of (one or more) physical properties, 

namely the thermal coefficient of expansion, modulus of elasticity and Poisson’s ratio. These 
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variations might be heightened in a heat-affected zone near the silver-soldered interface, 

where the fringe irregularities are most severe. This is also the zone of largest residual 

stresses. Such anomalies illustrate the idiosyncracies of real materials. 

In Figure 27, the largest departure from a smooth N;, fringe occurs near the interface in the 

brass, where the departure is about 1/4 of a fringe order. Ifa variation of the thermal coeffi- 

cient of expansion in the brass was fully responsible for this irregularity, the local value of 

® would have changed by 3 x 10-7/°C, (or by 1.5% of its global value). 

Away from the interface, the Nx fringes were smoothed for data interpretation. Then, (using 

the mechanical-differentiation pattern of Figure 27, with Ax = 0.10 in.), the total strains were 

determined from the fringe orders by 

Nyx 
cl = Fax = 164 x 10-° N,,, (2') 

and the stress-induced strains by 

e&& = 164x 10-° Ni, — &%. (4’) 

Note that &€* is negative for both materials (as a negative temperature increment was used). 

Similar relationships apply for all four derivatives. The numbers shown on the fringe patterns 

are N° values for each derivative field, where, N° represents Ni, as described, above. 
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4.1.3 Graphs and Contour Maps 

The displacement patterns of Figure 24 and Figure 25 were analyzed in accordance with 

Equations (4), (5), and (8), given in Table 6 on page 51. A detailed analysis was performed 

along the y’ axis at the quarter-width of the specimen. The results for the stress-induced 

strains are plotted in Figure 28. Corresponding strains along y’ are substantially different in 

sign and magnitude for the steel and brass. Near the interface, where y’ ~ 0, the difference 

of stress-induced strains, «2, in steel and brass is almost equal to the difference of free 

thermal contractions, e"teey — E"wrass, OF Act. The ef and yy curves are nearly linear and 

data extraction was relatively easy. The « curves and their values far away from the inter- 

face are nearly linear, also. However, special attention was given to the determination of the 

ef curves and their values near the interface. 

The gradient of the N, vs. y curve rapidly increases (or decreases in magnitude) approaching 

the interface, and linear interpolation of fringe order between fringes in this interface region 

is no longer valid. Consequently, additional data was sought to increase the number of data 

points in this region, which increased the sensitivity of the experiment in this region, allowing 

the N, vs. y’ curve to be defined more accurately. 

This additional data was extracted from the fringe patterns, using a method somewhat analo- 

gous to the method of fringe-shifting [116,117]. The method is referred to here, as the 

parallel-axis method, and is described below in section 4.2: Technique developed for increas- 

ing sensitivity of the experimental method. 
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Figure 28. Specimen-A. The distribution of stress-induced strains on 
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These data were extracted from Figure 24(a), as well as other fringe patterns of the V- 

displacement field with the addition of carrier fringes, by the parallel-axis method, described 

in section 4.2. 

The &y strains were not extrapolated to the interface, but remained undetermined from this 

experiment, in the narrow zone bounded by yx +100 um. (0.004 in.), called the interface 

zone. 

The corresponding stresses were calculated from the strains by Equations (9)-(11) (given in 

Table 6 on page 51), which are valid over the free surface of the specimen, where oz =O. 

These stresses, along the y’ axis of Specimen-A, are plotted in Figure 29. The stress distrib- 

utions are remarkably similar in the steel and brass. The shear stresses are nearly sym- 

metrical and exhibit equal magnitudes at the interface (as theoretically required for 

equilibrium). Normal stresses, o,, have similar distributions, but opposite signs. The differ- 

ence between interface values does not violate equilibrium, because o, is self-equilibrated. 

Normal stresses, o,, exhibit similar distributions, but also with opposite signs. Similar to 

the & strains, the stresses near the interface were not extrapolated through the interface 

zone, if they were, a violation of ay equilibrium would appear. The dy stresses in the 

interface zone for this specimen (Specimen-A) will be validated and discussed, further, in the 

next chapter. 

A detailed analysis of the fringe patterns, Figure 24 and Figure 25, was also performed along 

the interface zone. The stresses plotted in Figure 30 represent Gx and Txy at the interface, 

and the peak values of o,, which occur near the interface, although not on the interface. They 

illustrate that the stress disturbance at the specimen corner is highly localized, --- within 

about 1% of the specimen length for the normal stresses and 3% for the shear stresses. 

Elsewhere, (outside the critical-corner region), the normal stresses are constant and the shear 

Chapter 4: Experimental Results 66



  

  

  
     

    

  

  

y Y 

/ P OSa Steel L 

ij | * 
/ i % ) 

/ | | — 24 —_>| 

Steel / a = 2.20 in. (55.9 mm) 

| 

fe 
T 

( Ny 
\ | Stress 

“15 “10 \ “9 | . — 7 

1 

5 \. 10 I5 
oo 

\ 

| | 

Syl 4 \%y ox 
Brass \ / 

| / 
\ / 

/ 
| - / 
! / 

! / 
-O.30a-   

Figure 29. Specimen-A. The distribution of stresses on the y ’ axis. 
The units on the stress scale are psi, when the numbers 
are multiplied by 1 

Chapter 4: Experimental Results 

000, and MPa, when multiplied by 6.9. 

67



a = 2.20 in. (55.9 mm) 

  

    

  

  

  

    
  

  

  

  

  

Steel 

lO - 

Oy 
0 l | {| 

“04, Brass 

-20- 

“+ Brass | 

0 ! _t Le 

Ox Steel ee 

-10 

-20 

lO - 

Ola 0.5a lOa x 
O am $$ ret 

Ty 

“10 Steel 

Brass 

-20/   
Figure 30. Specimen-A. The distribution of peak stresses near the interface, 

along the free surface. The units on the stress scale are psi, when the 
numbers are multiplied by 1000, and MPa, when multiplied by 6.9. 

Chapter 4: Experimental Results 68



stresses vary linearly along the interface length. Of course, these represent stresses at the 

surface of the specimen and they are not proposed as representative of the interior stresses. 

(See Figure 6 on page 16, for the three-dimensional qualitative stress distribution, where it is 

clear that the distribution of surface stresses in a three-dimensional problem, does not repre- 

sent the distribution of interior stresses.) 

Whole-field contour maps of the surface stress fields for Specimen-A are shown in Figure 31. 

The mechanical differentiation data of Figure 27 were used for the portion of the specimen 

that was covered by the specimen grating (except in the high-gratient interface region). For 

the shear stress determination, the special graphical process of Post, et. al. [113] was used 

to add the cross-derivatives of Figure 27(c) and {d) and construct the map of shear strains, 

shown in Figure 31(c). Equations (9)-(11) were used to calculate the stresses. In the high- 

gradient region, near the interface, stresses were calculated using data from the moiré pat- 

terns of Figure 24 and Figure 25. Figure 31(b) illustrates that ay is very small except near the 

interface. The dy distribution is essentially independent of x near the interface, except close 

to the free corner (or critical corner) of the specimen, as illustrated by Figure 27(b). 

4,2 Technique developed for increasing sensitivity of the 

experimental method. 

This technique is referred to here, as the parallel-axis method. This technique is performed 

by 
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(1) measuring the coordinates of the centers of fringes from an enlarged pattern, using a 

digitizing tablet, and then 

(2) plotting fringe order, Nt, vs. distance from the interface, along the y’ axis, 

(i.e. Ni vs. y, along each y’ axis), 

(3) drawing a best fit curve through this data and determining the slope of the Ni vs. y 

curve at various points along the y’ axis. 

(4) calculating the strain, from the slope of the Nf curve using equation (2) from (Table 6 

on page 51), and subtracting off any uniform carrier pattern as well as the uniform 

thermal expansion, &*%, by equation (5), and plotting the curve through this high gradi- 

ent portion of the data, and 

(5) repeating the above procedure along several y* axes parallel to y’ and lying in the vi- 

cinity of y’. 

The parallel-axis method is effective here, and in all other cases where eg, is independent of 

x in the region of interest, that is, where the N,-fringes change with x in a self-similar fashion. 

The value of this technique is its ability to extract an abundance of statistically significant data 

in the local region near the interface. It was used to reveal turn-around points near the 

interface for e, curves that, otherwise, appeared to vary monotonically. 
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4.3 The turn-around-point 

The turn-arouna-point (i.e. the point where the strains and corresponding stresses reach a 

maximum or minimum, and then reverse) was found to depend upon the geometric-aspect 

ratio of the specimen. Three specimen geometries were evaluated, specimen geometries A, 

B, and C, shown in Figure 16 on page 32. The turn-around-point was most evident in Speci- 

men B, on the brass side, approaching the interface. 

In Figure 32, it is clear that the fringes become closer and closer (i.e. the gradient, odV/dy, 

increases in magnitude) as they approach the interface from the brass side. However, the 

last fringe spacing on the brass side of the interface is wider, which indicates a turn-around- 

point. This is seen more clearly in Figure 33. Using the parallel-axis method, the turn- 

around-point was determined to be at about 0.039 inches from the interface, on the brass side 

of the interface, and about 0.008 inches from the interface, on the steel side of the interface. 

This is illustrated in Figure 34, which shows the stress, gy, along the specimen centerline, 

calculated from the V-field patterns and the corresponding U-field patterns. 

Unlike Figure 32 and Figure 33, the turn-around-point was more difficult to determine in 

Specimen C, using Figure 35 and Figure 36. However, with the parallel-axis method, the 

turn-around-point was determined to be at about 0.017 inches from the interface on the brass 

side, and 0.002 inches of the interface on the steel side. This is illustrated in Figure 37, which 

shows Oy along the specimen centerline. 

The turn-around-points for Specimen A were closer to the interface than could not be deter- 

mined from this method. An additional method was used to measure these values, micro- 

scopic moiré interferometry, and it is discussed in the following chapter. 
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Figure 32. 

Specimen-B. V-displacement field, 
showing contours of total displacements 
perpendicular to the interface. 
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Figure 33. 

Specimen-B. V-displacement field (Figure 32) 

modified by carrier fringes that subtract off the 
average of the free thermal expansions of the 

two materials. 
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The oy curves in Figure 34 and Figure 37 were calculated from the moiré data and Eq. (10). 

Because €, is essentially constant in the interface zone (near y’), the location of peak values 

of &, coincides with the peak values of dy. 

Table 8. Effect of geometric aspect ratio on turn-around-point. 

  

  
  

  

  

  

Turn-around-point 
. 

distance from the interface | _ interface Aspect Ratio 
zone width 

Brass Steel 
i lA a/b a/c b/c 

Specimen Ay Ay total Ay 

1000um 200um 1200um 

B (0.040 in.) | (0.008 in.) | (0.048 in.) 0.50 0.50 1.00 

430 um <60um | <490um 

C (0.017 in) (<0.002in) | (<o.019in) | 77 0.25 0.037 

D 25um | 25um | 50um | 9.50 | 685 | 13.8 
(0.001 in.) | (0.001 in.) | (0.002 in.)               
  

  
Table 8 gives the relationship between the geometric aspect ratio and the turn-around-point 

for each of the specimens tested. The width of the interface zone (given as the distance be- 

tween maximum and minimum peak stresses) is also given. Results shown for Specimen-D 

are taken from Chapter 5. 

The width of the interface zone must be a function of the specimen-aspect ratios. However, 

the specimen with the widest interface zone (Specimen-B) does not have the highest or lowest 

aspect ratio. This can be explained by the three-dimensional nature of this problem. The 

measurements made along the centerline of Specimen-C contained the additional influence 

of the critical corner, because of the narrow width of the specimen. The measurements from 

the other two specimen geometries were not affected by the additional influence of the critical 
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Specimen-C. \V-displacement field, showing 
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Brass Specimen-C. (a) V-displacement field with no carrier. (b) the 
same V-displacement field as (a), modified by carrier fringes that 

| subtract off the free thermal expansion of the steel. (c) The 
W-displacement field modified by carrier fringes that correlate to (b). 
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corner. This is illustrated schematically in Figure 6(e) on page 16, where ofeltve) js higher 

at the center of the narrow face than at the center of the wide face. 

4.4 Summary of Results 

The surface stresses in a bimaterial metal joint subjected to a uniform temperature change 

were determined experimentally. Surface strains, €, &y, and yxy were determined on a 

whole-field basis. Stresses were calculated using known mechanical properties. Dependable 

whole-field measurements were made in regions outside of a + 100 um wide zone near the 

interface, using macroscopic moiré interferometry. Large tensile and compressive stresses 

were documented on opposite sides of the interface. Comprehensive results were plotted for 

Specimen A. Normal stresses, oy were plotted for specimens B and C. 

The stress distributions were akin to those of singular solutions (i.e. stresses approaching 

co), but in the physical experiment, the stresses reached finite peak values of opposite signs. 

Thereupon, their magnitudes decreased precipitously in a very narrow interface zone, a zone 

of about 1200 ym (0.050 in.) width for Specimen-B, and 500 ym (0.020 in.) width for Specimen-C. 

However, for Specimen A, the paths of the fringes were inconclusive by this method and re- 

quired further investigation to demonstrate continuity of the stress distribution for oy. 

In order to assess the distribution of &, in the immediate vicinity of the interface, a special 

technique (described in Section 4.2) was used to increase the sensitivity of this macroscopic 

moire interferometry method. The fringes are clearly delineated outside the interface zone, 

for all three specimen geometries. 
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Chapter 5 

Chapter 5: Interpretation and Discussion 

9.1 Stresses within the Interface Zone, Specimen A,D 

In order to assess the distribution of Gy in the immediate vicinity of the interface, the sharp- 

ness of the chevron-like fringes of Figure 24(b) must be evaluated. The fringes are clearly 

delineated outside the interface zone. Within the tiny interface zone, however, the paths of the 

fringes are inconclusive. If the clearly delineated fringes in the steel and brass are extrapo- 

lated to the interface with a monotonically decreasing inclination, or else with a constant in- 

clination, then the peak values of «,, in both materials would occur at the interface (where 

y =0). A physically inadmissible condition would result, where o,, at each interface point, 

would have two distinct values and where vertical equilibrium would be violated. 
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On the other hand, if the fringes change their course and bend toward the interface, the curve 

of Oy vs. y’ would reach peak positive and negative values at some small distance from the 

interface. The curve would then turn sharply away from the peaks and progress in the inter- 

face zone with finite slopes between the peak values. The following analysis relates the fringe 

inclination in Figure 24(b) to oy. 

Close to the interface, the behavior of Gy hinges upon the behavior of Ey. This exclusive 

dependence occurs because €&% is (essentially) constant within the 100 wm interface zone, 

Figure 28, and it can be treated as a constant in Equation (10). The behavior of Ey can be 

elicited from Figure 24(b). The fringe orders N,, marked in the figure, represent 

where superscript “c” denotes carrier fringes. The gradients of these fringes are related to 

ey, through Equation (5), by 

4 ON, 4 ON? 

f oy f ay 
    +k = 6 + ky (14) 

where k, is a constant, representing the combined effect of « AT, and the carrier fringes. The 

fringe order N, = 0 is chosen arbitrarily in Figure 24(b), since only relative displacements are 

required for strain analysis. 

Along y’, ON,/dy is positive in the steel. It can be determined by 

4 ONy 4 ONy _ 
fou 7 f ox tang = k2tan®d,   
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since tan ¢ = dx/dy, where ¢ is the angle from a line parallel to the y axis to the tangent to 

the fringe, and where kz is a constant. The derivative ON,/6x can be considered a constant, 

as corroborated by Figure 27(c), which indicates that near the interface its variation along y’ 

is essentially zero. Accordingly, 

e§ = kgtang@ — ky. (15) 

Since ef can be treated as a constant within the interface zone, Equations (10) and (15) pro- 

vide, for that zone, 

oy = k3tang — ka, (16) 

where k3 and Kq are combined constants. 

The same argument applies to Oy, in the brass, where ON,/dy is negative and correspond- 

ingly, @ is negative. Thus, Oy has opposite signs in the steel and brass. And again, the 

magnitude of G, increases as |¢| increases. Thus, Oy reaches opposite peak values 

{tensile and compressive) as the interface is approached from the steel and brass. 

3.2 Supplementary Experiment 

Since o, depends critically upon ¢ in the narrow interface zone of Figure 24(b), and the 

shape of the fringes in that zone remains uncertain, additional experimental evidence to 

characterize o,, was sought by the method of microscopic moiré interferometry (Han and Post 
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[116], and Han [117]). With this method, an immersion interferometer provided a two-fold in- 

crease of basic sensitivity, utilizing a virtual reference grating of 4800 lines/mm (122,000 

lines/in.). Phase shifting and optical/digital fringe sharpening and multiplication provided 

contour maps of displacements with contour intervals of 52 nm/fringe contour. 

Microscopic fields of view of 540 and 310 wm (0.021 and 0.012 in.) widths were observed, 

spanning the interface region. The measurement sensitivity was eight times greater than that 

of the macroscopic analysis, equal to the sensitivity of moiré with 19,200 lines/mm (487,680 

lines/in.) i.e. f, = 19,200 lines/mm. 

The same specimen as that of Figure 14 on page 30 was used, except its width and height 

were cut to half of the previous dimensions. The specimen grating was applied at elevated 

temperature, as before, and observed at room temperature to reveal the stress-induced ther- 

mal deformation. The specimen grating was applied at the center of the specimen, as shown 

in Figure 17 on page 34, and as depicted in Figure 38. This change from the quarter-width 

position of y’ is permissible since o, is independent of x in these regions. Replication of the 

specimen grating in this small region of interest was achieved with a much smaller grating 

thickness, approximately 2 um thickness in this case. Accordingly, the shear-lag deformation 

that occurs through the grating thickness in the vicinity of high-strain gradients, is now ex- 

pected to affect a zone of about 10um (0.0004 in.) width near the interface, i.e, +5 wm. Au- 

thentic results can be expected at locations twenty-times closer to the interface than in the 

macroscopic experiment. 

The resulting fringe contours are shown in Figure 38, which represent the thermal defor- 

mations plus carrier fringes. The carrier fringes were applied again to emphasize the 

changes near the interface. Carrier fringes of extension, subtracted off the average (approx- 

imately) of the fringe gradients in the steel and brass, as before, (similar to Figure 22 on page 
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Figure 38. Patterns corresponding to Figure 24b, but with higher sensitivity and 
resolution, produced by microscopic moire interferometry. The 
patterns differ by the amount of carrier of rotation and magnification. 
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47). Carrier fringes of rotation were applied to clearly delineate the fringe contours near the 

interface. Note that the carrier of extension adds a constant, apparent strain to «, as pro- 

vided in Equation (14), and that the carrier fringes of rotation are parallel to the y axis and 

have no influence on @N,/dy and also have no influence on «?. The interface is indicated by 

the broken line in Figure 38. Its location relative to the contour map was determined by mi- 

croscopic inspection. 

The patterns show a distinct decrease of | ¢@ | in a 50 wm (0.002 in.) zone, which proves that 

the curves of Ey for the steel and brass turn-around from their peak values and move towards 

each other in a very narrow zone of extremely-high stress gradients. By Equation (10), and 

knowledge that €&, is essentially constant in this zone, Oy must follow the same trend. The 

distribution of Oy is illustrated in Figure 39, where the vertical scale is greatly magnified. 

The axis is marked y’, but the results apply along most of the interface zone as indicated in 

Figure 30 and as discussed above. The dashed line recognizes the remaining uncertainty in 

the high-gradient region. The region of uncertainty is now diminished by nearly an order of 

magnitude, and a monotonic variation of Oy within the region can be rationalized with sub- 

stantial confidence. The microscopic analysis indicates that a Oy curve near the interface is 

always single-valued, i.e., the curve has a finite slope, and the potential equilibrium imbal- 

ance is eliminated. The stress gradients are high, but they are finite. 

In Figure 38, the fringe contours outside the 50 um zone are nearly straight on the brass side. 

Correspondingly, the stress in Figure 39 is nearly constant in the same portion of the speci- 

men. On the steel side, the fringes are concave. Angle @ increases as the 50 wm zone is 

approached, and this translates to the corresponding increase of Oy revealed in Figure 39. 

The peak value of Gy in the steel obtained from Figure 24 was slightly lower, but the result 

of the microscopic analysis has been incorporated into the curves of Figure 28, Figure 29, and 

Figure 30. 
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Figure 39. Thedistribution of ©, near the interface. The stress units are psi when 

the numbers are multiplied by 1000, and MPa when multiplied by 6.9. 
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5.3 Discussion 

Note that ON,/éx is not affected by the fringe curvature in the interface zone. Note, too, that 

there is no corresponding uncertainty for the Ny fringes. Accordingly, the 0, and Tyy curves 

in Figure 29 extend to the interface, where y’ = 0. 

It is interesting to observe the similarity of stress distributions in Figure 29, Figure 30, and 

Figure 31, for tne steeel and brass elements. When the joined body experiences a temper- 

ature change, one element tends to expand relative to the other. The dominant constraint that 

restricts the relative expansion, is a system of shear forces. At each point on the interface, 

the shear forces acting on the steel and the brass are equal in magnitude and opposite in di- 

rection. If we consider the steel and brass parts separately, and if we consider only these 

shear forces, we see that the parts have identical geometry and exactly opposite force sys- 

tems. Since the stresses in an elastic body depend only upon the forces and body geometry, 

these forces generate equal stress distributions in the steel and brass, but of opposite signs. 

Indeed, the results in Figure 29, Figure 30, and Figure 31 show approximately equal and op- 

posite stress distributions in the steel and brass. 

The theoretical singularities predicted in the literature cannot occur in real joints that maintain 

their structural integrity. Nevertheless, it is seen that the experimentally determined stresses 

mimic the singular solutions to a substantial degree. Very near the interface, however, the 

asymptotic rise of a singular stress is replaced by a reversal and an extremely rapid decrease 

of the normal stress, oy. 
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Chapter 6 

Chapter 6: Conclusions 

The stress distribution near a bimaterial metal interface subjected to a uniform temperature 

change were determined experimentally. Surface strains, &, €y, and yxy determined on a 

whole-field basis. Stresses were calculated using known mechanical properties. Dependable 

whole-field measurements were made in regions outside of a + 100 um wide zone near the 

interface, using macroscopic moire interferometry. Large tensile and compressive stresses 

were documented on opposite sides of the interface. Microscopic moiré interferometry was 

used to characterize the stresses in the interface zone to within + 5 um of the interface. 

The stress distributions were akin to those of singular solutions (i.e. stresses approaching 

co), but in the physical experiment, the stresses reached finite peak values of opposite signs. 

Thereupon, their magnitudes decreased precipitously in an extremely narrow interface zone, 

a zone of about 50 ym (0.002 in.) width, for Specimen-A/Specimen-D, 1200 ym (0.048 in.) width 

for Specimen-B, and <490 ym (<0.019 in.) width for Specimen-C. This very strong tension- 
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compression stress system and the very strong stress gradient occurred along the entire 

length of the interface and it can be assumed to prevail along the entire perimeter of the joint. 

A localized, but strong stress-strain disturbance was observed in the corner region where the 

two free edges intersected. The experiments represent the analysis of a fully three- 

dimensional, bimaterial joint, thermal-stress problem. Both macroscopic and microscopic 

moiré interferometry were required to extract the stress distribution. 
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