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CHAPTER 1 

ltLTftOT)U G1IQ!:t 

There are two ways in which the problem of missing 

data may arise when a random sample is observed: grouping, 

of which censoring is a special case, and truncation. The 

purpose of this dissertatlon is to study the estimation 

procedures 'fiich are appropriate when a sample from certain 

unique types of discrete distributions is defective due to 

grouping. First, "78 shall be concerned vlith grouping in 

a single distribution and then in a combination of dis­

tributions \.ihich resembles a mi}~ture of these particular 

distributions, but "7hich contains some important differences fi 

The usual situation in v1hjACh censoring arises occurs 

\?hen a random samplB has b~cn dra'\,m from a popule.tion and 

for 8.11 observations ill the region, or regionG, of censor­

ship only the total frequency is kn~)v!l1 ~rhile the exact 

values of the censored frequencies is un!<l1o\'1o. For. th:ts 

particular situation, it lr: 8.ssttmed that in repeated 

sampling the tocal sample size is f1.x{~d lih()reas the fre­

quency of observatiorLf;i belongi,ng to the c.ansored regions 

is an observable variable. In this dissertation we con­

sider the more general situe.tion of censorlng v7hich \-7e shall 

designat0 as groLl.ping of the. sa.,.-nple fr€~qt1e.nc:Les. Here, it 
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is assu.med that certain points ill the sample space are 

grouped in such a ~211ner that, when sampling is performed t 

only the group totals of the frequencies are knovm. 

To illustrate grouping in the single distribution 

case, consider the follovring example given by Hartley [9J. 

Assuming that the number of males per litter of pigs f0110";-1s 

a binoillial distribution, it is desired to estimate the sex 

ratio, i.e. the probability of a male pig being born. From 

a random sample of 106 litters of 8 pigs each, the dat:e. ob-

tained tv-ere grouped in the follo't·ring manner: 

14 litters with 0, 1, or 2 males 

73 litters with 3, 4, or 5 males 

19 littc1:s '\<lith 6, 7 t or 8 males. 

It is easily seen from this example that cases may 

ari~e in 'Hhich n consider~~ble a 1:.10unt of detailed informa-

tion is lost due to grouping, 11aximurn likolihood esti.-

mation of the p8.rameters of the assumed distributions il1 

such cases 'Hi11 be coneide:red in Chapter II. 

A mixture is a v7~ighted sum of probability functions. 

That is, 5 .. f 

1) f.(xle.) is a probability function for all 1 ._J. -

,. = 1,2, ••• ,n 

and 
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2) 0 < at ~ 1 for i = 1,2, ••• ,n 

and 

then 

G(x) ::: 
n 
i.: a . f . (xl i. ) 

i!:l 1. '- 3. 
(1.2.1) 

is a mixture of the probability functions, fi(xfii ). 

There are many pre.ctical applications for mixtures 

of distributions. Cohen [4J, [5J~ and [6J discusses the 

analysis of atmospheric data and the distr.ibution of the 

physical dime.nsio11s of var:tou.s m:3.ss-produced items as t,<10 

e.xamples in ,·,hich mixtures of d;~!;t!:.'ibutions must be dealt 

with. 'Vleiner [18J has also uSf:;d thenl to fit the reliabil:tty 

curve for electronic equipment. 

In some of the pract1.cal problC:'l11s ,,~here mixttt:.ces 

have to be considered) the observE:d frequenctes actLtal1y 

occur as stims of "na.tura.l n partial frequencies which arc 

not observed and frequently it is the case that they are 

impossible to observe due to the e~{perim<=)nter f s inability 

to classify them. Hore "Jj.11 be s~lid concerning the class-

ifica.t:i.on of these partial frequfH"lcif.~s in the follot.7lng 

section. tve will cO~1cluc1e this section \,:rlth a practical 

example in vlhich it is impossible to clase;:ify the partial 
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frequencies. 

Suppose it is desired to test the ability of t\gO 

boar hogs to produce offspring possessing a. certain de-

sirable trait. For the sake of completeness s a.ssume that 

the number of pigs per litter with this trait follo't-ls a 

binomial distribution and further that the parameter in the 

distribution remains constant as the litter size varies. A 

give.!" numbers n
1

, of sOvrs is bred to the first boar 811d 

placed in a pen and n2 different sows are bred to the second 

boar and placed in a separate pen. During the course of the 

gestation period, the SOt-iS become inadvertently mixed. 1:)..cior 

to the mixil18 of the sous, the pr.ocedure \'lould have been the 

rather simple estimation of the parameter in two separate 

binomial distributions. Hoviever. due to the mix;'ng, the 

distribution from \'7hich 01)0 is now sampling is a mixture of 

the t,;;o original binomial distrlbutiol1s given by 

,¥1here 1'1 is the littel:" size and Ct is the probability of a 

sow being bred to the first boar.. A sample from this dis-

tribtttion v10uld be of the foiloT,rlng form: 

NUi.!lber of pigs per litter of slze r:r 
posses~ing the desirable trait 

o 

1 
• • • 

frequency 



5 

Notice that the frequencies are s,ctual1y made up of the sum 

of t'HO partial frequencies, one of which would correspond to 

the number of times a given number of pigs with the trait 

appeared ill a litter of size N due to the first boar and the 

remainder being due to the second boar. It would be im­

possible to classify these partial frequencies with no more 

information than is given. 

1.3 The Combination of Distributions Diff kb 
~~. • _ *"t> ....... 1oIl .............. ~LJ·V ... ' ....... ....". r ..... 1IIM_. __ 

To facilitate the study of the material described in 

th:ts section, ~-'1e make the follo'\,rinB definition.. 

[~J, and l7here [~J represents the lfl.r.gcst integer conta.ined 

l.·n th~ '-\~-ct~on n .I. ~.,. J. I.. ~ ,}- - b • 

For n < kb, n D1.ff kb is undefln€.:d. 

In this sect:i.on we shall introduce the combination 

of distribt.l1:ions mentioned earller. These have properties 

simi.le:c to those of mi.xtures, but they are not a mixture as 

defl..l1ed in the usual senet). 

COIisider the probl.e~n faced by the manufacturer of a 

conSU1''tH~r product \vhon trying to decide upon the ttopti:~l1Umlt 

bulk size i.n ,·;hich to package his product.. A possible 

solution to this probl€';;n might be to presc.-nt several dif-

ferent bt:tk s:tzes to th.e public and see 't,~hich :tt prefers 

by estiro.l:lting the ;n~e.n nU'1lber of single items demanded, 
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. given that a particular bu.lk size or multiple of that bulk 

size was also demanded t the smaller mean indicating that 

that particular bulk size is preferable to all bulk sizes 

with larger conditional mea11S. Regardless of the form of 

the underlying distribution, the distribution of the number 

of items demanded would be cortibinations of this distribution 

diff y, \'lhere y takes on all possible integer mUltiples of 

the bulk size \1hich are less than or equal to tho number of 

items demanded. In order to clarify the preceding sts.te-

ment, COllsider v;rhat happens ,.,rhen the bulk size is six and 

twenty-three items are demandeo in a given period of tilne. 

There are four possible ways in which such a. demand could 

be made: 

1) twenty-three single items 

2) one bulk and se.venteen single ite~s 

3) two bulk and eleven single items 

4) thr(~e bulk and five single items. 

If each of the four. cases listed above follows a 

different probability distribution, thCj:l the probability 

that t~·la.'1ty-three items are demanded can be expressed in 

the fol1o'uing manner: 
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where ii is a vector of parameters associated with the 

probability of twenty three items being demanded by means 

of (i-l) bulk and 0.
1 

is the probability that a demand is 

made by means of (i-1) bulk. 

Thus far it appears as if the distribution of the 

number of items demanded is a mixture of distributions as 

defined in section 1.2 of this chapter. Hov1ever. consider 

what would happen if there were also a dew~nd for twenty­

four items. In addition to the four ws_ys in Hhich a de-

mand for tvlen.ty-thl."ee items could be made we nov] he.va the 

possibility of four bulks being demanded and herlce 

P (x=24) = o.1Pe (x=24 cliff 0) + a2P~ (x~24 diff 6) 
1 ~ 2 

In this situation v7C see that a ne,,1 distribution is 

comb1.ned Hi th the existing ones everytirne that a demand is 

made for a number of items YJhich is greater tban or equal 

to the appropl:"iate integer multi.ple of the bulk size. This 

property makes such a combinatif)n of distributions different 

from a mixture of distributions as defil'H:~d in section 1 e 2 

Hore it should be obvious that '\vhEln sampling from 

this clistribtuion the observed frequencies arc quite 
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naturally sums of partial frequencies. For example, suppose 

that a d~~nd for seven items was made N ti~es when the 
7 

bulk size is six. This frequency could be divided further 

o into the n~mber of times, n
7

, which a demand for seven 

1 single items was made and the nu~ber of times, n
7

, for which 

there was a demand for a bulk of six and a single item. It 

should also be noted that it is possible to observe these 

, partial frequencies. 

So fa.r, in this section '\'le have discussed the com-

bination of distributions diff kb in the light of an 

example concerning it em demands Rnd ,,,e have also pointed 

out the difference batt-leen such a combination of distri.-

butions al1d a mixture of distributiol1,S as defined in 

section 1.2. Nou W{~ shall present the probability model 

for the diff kb combine. tiOl1 of distr:tbutiOt1S in general; 

it is giv£n by 

[tJ~<oo 
Po(x=j) = t P (x=j cliff kbln=k)p(n=k), 
~ k=O ~k 

(1.3.1) 

whe1.'e n is a random variable wl1os'e interpretation in a 

practical situation v~11 be made clear later, and b is a 

kno,-m c.onsta.nt. 

It is ,-7ith this distribution that we tv-ill be con-

cerned in Chapter III and IV. In Cha.pter III, '·le shall 

develop procedures for obtaining the maxi~lm likelihood 



9 

estimators for the parameters involved when there are 

varying degrees of completeness in the observed samples. 

Chapter IV will be concerned with the estimators of the 

parameters and their properties when the conditional dis­

tributions in the model are Poisson. There will also be a 

discussion of the applications of this probability model 

when various distributions are used. 



GROUPING IN A SINGLE POISSON DISTRIBUTION 

As was indicated in Chapter 1, a random sample may 

be incomplete due to grouping of the observations. In this 

chapter we shall review an iterative method, due to Hartley 

(9J, for obtaining the maximum likelihood (N.t.) estimator 

of -the pa.rameter 't'lhen grouping occurs in a one-parameter 

discrote distribution, give e. proof that <this method con­

verges for the Poisson distribution for ell st:arting values 

of the parruneter, and then give the results of a study of 

the effects of grouping on both the small sample variance, 

which '-las obtain~d by means of Honte Carlo simu.la.tion, and 

the asymptotic var:tnnce of the estimator. An extel1s; .. on of 

Hartley's iterative method \-1i1.1 provide us \vith the 

iterative procedurf; T/,;:'hich ~lil1 be used in later chapters 

to obtain the }f.L. estimators of the parameters in the com­

bination of distributions diff kb. 

Various conditions me~y arise \vhich malc.e the obser-

vation of e. complete sample impract:i.cal or even impossible t 

but permit the observance of grouped samples. For this 

reason, it ;.5 des:1.rable to have a method for obtaining the 

M.L. esti.tnator of the parameter in the underlying probability 

distribution. Given that our random sample is partitioned 

10 
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into G groups, the follot-n.ng notation is necessary to de­

velop the iterative procedure used in obtaining the M.L. 

estimator of the parameter in question. 

X is a discrete random variable which takes on the 

integral value i in the g-th group with probability f(i,g,e). 

The probability that an observation belongs to the 

g-th group is written as 

F(g,9) = t f(i,g,e·), 
ieg 

(2.1.1) 

and l{ denotes the total observed frequency of the g ... th 
g 

group. 

The likelihood of such a. sample is 

L= 
G N n F(g,9) g • 

g=l 
(2.1.2) 

A 

The maximum likelihood estimator of 9 t ~, is that value of 

9 'tvhich maximizes (2. 1.2) • HO\.-7ever, since (2. 1.2) and 

log L = 
G 
I: N log F(g, () ) 

8=1 g 
(2.1.3) 

are ma:{imUi1i for the same va lue of €I, it is convenient to 

call log L the 'likelihood function'. If the range of the 

distr:tbution is inr1€!pendent of the parameter, the H.L. 
A 

estimator, e, will be a solution, if any (;xlst, of the 

'likelihood equation' given by 
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~ log~ = 0 
de • 

For our case, the likelihood equation is 

d log ~ = ~ 
de g=1 

G 

Ng fa F(g,S) 

F(g, a) 

= I; ~ 

Ng (jde f (i , g , 9 ) 
.... "I" • ...... :: o. 

&=1 ieg F(s,a) 

(2.1.4) 

(2.1.5) 

It is usually the case that (2.1.5) cannot b0 solved 

for e in closed form or if a solution is obtained it is 

gotten by use of 'special aid tables', see Cohen [3J, which 

would have to be compilodfor every different grouping 

si tua tion. The method pl:'esellte-d her.e is e general on.e in 

the sense that it is applicable to all discrete grouping 

situations. 

Proceeding with Hartley's method, '\fe make t'he follo'V7ing 

defin:ttion: 

"""'8 Ngf(i,g,e) 
n. =~", ... "",,~ 

1. F4(g, e) 
(2.1.6) 

'Vg 
n

i 
ca.n actually be considerE;c as an estimator of the i-th 

frequency in the g ..... th group. Upon rearrangil'lg (2 .l. 6») 'He 

obtain 
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~~ f(i,g,a) 
........ =- ------- (2.1.7) 

which, 'tvhen substituted into (2.1.5), yields 

~ d f(" 1"'1) G ni de 1,g,Q 
!l log .& == I::E ..... .- == 0 

dS g=l isS f(i,e,S) 
(2.1.8) 

~1hich is exactly the form of the likelihood equation to be 

solved in the full data case. 

'rne method for' obtainins the solution to the like­

lihood equation (2.1.8) is as follows: 

1) Partition the observed total group frequencies 

into individual frcque11c:l.es. The o:t'lly restriction placed 

on these individu8.1 initial values is that they sum to the 

observed group frequencies. 

2) vlith the estimates of the missirlg frequencies, 

solve equation (2.1.8) for G. 

3) Using the l1e~,] value of e, calculate new values 

of tho missing frequencies by use of equation (2.1.6). 

4) Repec?t steps (2) and (3) until there is no 

change in the e values. 

The value of e to which this process converges is 

the H.1..". estimate. This fo110\>7s '~lhc!n one recognizes that 

equation (2.1.8), by menns of (2el.6), is identical to 

equation (2.1.5). Hence, any solution of (2.1.8) must be 
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a solution to (2.1.5). 

The point should he made here that, assuming con­

vergence of the iter~lti ve process, the el:.act 1ikell.hood 

equations are being solved, not an approximation to them. 

Very often, 'tvhen sampling from a continuous distribution, 

the observations are gr.ouped but the likelihood equations 

solved are the same as those that would be solved when no 

grouping is present and are, therefore, appro}~ima.tions to 

the correct equations. It is for this case that Lindley 

[12J and Tallis [15J have discussed grouping corrections 

to the solution of the a.ppro,{imate likelihood equations. 

NO'\07 'tite illustrate the methods of the last section 

\1'i th the Poisson distr5.bution. Equa tion (2. 1.5) becomes 

,*Jhere 

f(1,g,9) 

Upvn substitution of (2. 1.6), t'7e have 

i 
[~ - 1.J = 0 
e 

(2.2.1) 

(2.2.2) 
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which yields the solution 

where 

G 
N =: I: Ng • 

8:::1 

(2.2.3) 

Equation (2.2.3) is solved v1ith the various estimates of the 

n~ obtained from (2. 1. 6) until convergence occurs. 
1. 

Clearly t this i ters.tive procedure is one of suc-

cessive approl!:imations. '\ve shall no".,., stllte and prove a 

theorem due to Ford [8J wh:tch given suff:tcient conditions 

for convergence of this itere.tlve procedurE:~ and then shows 

that it converges for the Poisson case regardless of the 

ini tial guesses of the missing indi vidue,l frequencies. 

~2.z:g,m_2.2 __ J.: Let e be a solution of the equat:Lon e=s(e) 

and let Isl(S)! < Iv! < 1 in the interval (R:e-h;S9<8+h) • If 

90 is in 'the int(~rval Rand i.f 91 ,6 2 , ••• are found suc­

cessively from the equations 

then 

lim en -- e . 
n...;;::..eo 

(2.2.4) 

(2.2.5) 
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D;oof: First 've sho'tv the t if e 1 is in R then a is in R. n- n 
Since e is a solution to e = see), we have 

e = sea) • 

Applying the Mean Value Theore~, Taylor [16,page 70J, to the 

second member of the following equation 

e -@ = see )-see) 
n n-l (2.2.6) 

we have 

(2.2.7) 

where 

and therefore An lies in R, since en_lis assumed to be in 

R. F'rom equatlons (2.2.6) and (2.2. 7), we h8.ve 

I 9n-@ I = I~:' (An)ll en_1-el 

< M I en - 1-@ I 

<h. 

(2.2.8) 

Hence, en € R. Since ,.,.,e have chosen 90 , our initial guess, 

to be in R, we have, by the inductive principle, that e 1 ,9 2 , 

••• are in R. 
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By a repeated application of (2.2.8), we can ~~ite 

(2.2.9) 

and :tf our inl.tial guess is such that 190.9' is finlte, 'Y7e 

have 

since ~f < 1. 

lim 1 9n -€;)1 == 0 , 
n-i>OO 

(2.2.10) 

Now that ~7e have a sufficient condition for the con-

v-~~r8ence _ of the process of successive approximations, let 

us sea if Hartley's procedure for Poisson grouping satisfies 

it. For Hartley's procedure 

see) == 

NOv1 consider 

s' (9) --

G 
}:; 

g=l 

G 
E 

g=l 
!: 

teg 

i ""'8 n. 
-~ 

N 

d Ng 
i -- n'J de l ......... ~ - ., 

n • (2.2.11) 

\then the above derivative is taken, (2.2.11), -as a result 

of (2.1.6), becomes 
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slce):: t .1.: i [ ------
{ 

G - Ng ~ £(i,e) 

g~l 1eg p(g,e) 

_ ~?f(i,e) feFCg , () J} + N 

F(g,a) F(g,e) 

{

G 
:: ~ 

g=l 

N-
. g ... - 1:: [i..9-f ( i e) 

F(g,e) ieg de ' 

- ;.f,l.i ~ e }" .9.o-1;"I(g, e) J} + N. 
F(g,e) de 

We define 

i f(:l e) J.J. e 1:: __ ... _-_ .. ~ . .::..1 __ _ 

g 1 ieg Feg,e) 

Nou tV'e can ~1ri te 

s' (0) = {E . .!L I: i:':-l('~f(i,e) 
g F (8 , e) i es ,.. v 

• 

(2.2.12) 

(2.2.13) 

(2.2.14) 
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but, for the case vnlore £(1,9) is the Poisson mass function, 

we have 

(2.2.15) 

Making use of (2.2.15), '·TEl are finally able to 'sTrite 

= [L N I: (i~({j._JLl - ,.f (;$.$,9.2 
g g ieg 9F(g,e) F(g,e) 

Ng 2 = L -( u' - u)' N 
gag 2 8' 1 

= L Ng Var g · NO , 
g 

(2.2.16) 

't~:here Var g :::: gU~ - gJ.Jf :1.S the vnrien,ce of the "sub-distri­

.bution fl defined on the B-th group. From (2.2.16) we see 

tha t if Var g < e, thE~ variance of the complete, ungrouped 

POiSSOl1 distribution, thel"l S '(0) ';'Till be less than unity 

a.nd Hartley's iterat5_ve procedure "7il1 altvays COl1verge for 

the grouped Poisson case" In the remainder of this section, 

'V7e shall shoy1 tha.t the variance of the usub-distrihatlonU 

defined on the g-th group, for cert~Jin types of groups to 
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be defined later, is less than the variance of the total 

Poisson distribution. This problem, in itself, has generated 

considerable interest. BO'\ven [2J and Hayles [10J have con­

sidered it in 'Vl0rk involving var.ious conditional distri-

butions. As a result of this property of the Poisson dis­

tribution, 'tl1e vli1l be able to sho'\\t the.t Hartley's pro­

cedure, when applied to the grouped Poisson distribution, 

converges for any starting value of the unkno~m parameter. 

It almost appears obvious that the variance of the 

distribution defined on a group Hottld al\vays be less than 

the variance of the complete distributione Indeed, it is 

easy to construct counter-examples to the above statement. 

Consider the random \rariable X ~Yhich takes on the three 

values 1,2, and 24, e.ach \1ith probability 1/3. The variance 

of this distribution is found to be 112 and 2/3. NO~l He 

corlsider the group 'Hhich contains 1 and 2/+. In this group 

X assumes the t'HO values equiprobably. Hence, the variance 

of the grouped distrihutiol1 is 132 lU1d 1/l.~. 

\'le define a cormected group of integers to be such 

that it contains every il1toger bet'\veen and including its 

end points. Thus (3,4,6) is not connected uhile (2,3,4) 

is a connected group. In 'tvhat follo\vs, it will be shotm 

that for the sub-distribution defined on a connected group 

of (k+l) POiSSOll variates the variance is less than the 

variance of the complete distribution. 
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To simplify some of the algebraic expressions in ,yhat 

follows, the following notation is introduced: 

pi+k::: (i+l)(i+2) ••• (t+k) 
i 

= !i+l{21 
il • 

(2.2.17) 

Hence, the probability of belonging to the g-th connected 

group, vmose initial element is ~t containing (k-.,1) ele­

ments can be v~itten as 

(2.2.18) 

-e01 
,,"There p(i .. e) ::: L-2-. l-lithln this group ~ie defil1G the , il 

fol1o\.r:tng distributioli: 

p(1+1,e)g) 

• 
• 

P(i"l .. k, e I g) 

ep(ite)/p~+l 
:: . _ --"-

F(g, e) 
(2.2.19) 

okp(i,e)/p~+k 
=~~"'-"""'!15~~ 

},<'I(8,9 ) 

';There P(i+j, e I g) is the condit1.cl1D.l probability that: the 

ra.ndom. var1~able X takes on tho V::7.l.th3 i..:-j in the g ... th group. 

By use of (2.2.17), we can s:trn!)lify (2.? .19) and ,·rei te 
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(2.2.20) 

The first t\,10 non-central moments of this distribution are 

ert.id hence tbe var:1.ance becom~s 

(~. ehpi+k)( ~ eh (i_1-h)2 pi+k) .. ( ~ eh (i+h)pi+k)2 
h=O i+11 h=-:O' i· .. h h=O i+h V

2 
= -"'_. __ .- ---"""'~Q'---""-"" r. ... ....... 

(I; eh,pi+k)2 
h=O i+h 

(2.2.21) 
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'tlorking \vith the numerator of' (2.2.21), the coefficient of 

gj can be found for the follo'\virig situations: 

1) j odd and j ~ k 

2) j even and j ~ k 

3) j even and k < j ~ 2(k-l) 

4) j odd and k < j S 2(k-l). 

S1 tua .. 1;.1:.9Jl_\.: 

From (2.2.21), lye see that the desired coefficient 

can be expressed as 

+ ••• 

+ Plt1C(j+l)/2 )pt~:~ (j-l)/2) «i+( (j+l )/2»2 

+(i+«j-l)/2»2_2(i+«j+l)/2»(i+«j-l)/2») 

(2.2.22) 
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Here we can express the coefficient as 

(j/2)-1 . i+k-~+k 
- 2 t (i+j-h)(i+h)Pi hfi+j-h 

h=O + 

== ~+k1:~«i+j)2+i2_2i(i+j» 

+ p~+kpi+k «i+j-l)2+(i+l)2.2 (i+l)(i-i>j-l) 
1+1 i+j-l 

+ ••• 

+ ~+J(.:::' -/2) p~+l(C */2) 1«i+(j/2) ... 1)2+(i+(j/2)+1)2 
1+ J -1 3.+ J ~ + 

-2(i+(j/2)-1)(i+(j/2)+1) 

• • • 

+ 4pi+k pi+k 
-i+(j/2)-1 i+(j/2)+1 • 

(2.2.23) 

In a similar mannE'!r, the cl~sirec1 coefficient is 

found to b~ 
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Using the same methods that 'vere employed in the 

previous situations, we find the desired coefficient to be 

(2.2.25) 

No~v that ue have the coefficierlt of ej in the nurnerB.-

tor of (2.2.21) for all the desired combinations of rela-

tionshi.ps bet"1eCt1 j and k, we obtain the corresponding 

coefficien1:s of ej in the denominator in a similar manner. 

After considerable algebra, one arrives at the fol1o,qing 

results: 

j even and j !:. k 

i~l' 2 (j/2)-1 -+k ilk 
(p T'" ) + 2 1: pl.. P T 

i+(j/2) h=O i+h i+j-h 
(2.2.26) 

j odd and j ~ k 

«j-l)/2) .+k i_t.lr 
2 l: pl. p'~ 

h~O i+h i+j-h 
(2.2.27) 
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j even and j > k 

(~+k )2 (j/2)-1 i+k i+k 
1'-- + 2 l: P P 
i+(j/2) h=j-k i+h i+j-h 

(2.2.28) 

j odd a.nd j > k 

«j-l)/2) i+k i+k 
2 k P p.. 

h=j-k i+h 1+J-h • (2.2.29) 

It can easily be seen that the coefficients of eO 

and e2k in the numerator of (2.2.21) are both zero. We 

notice that ej , in the numerator, ha.s a non-zero coeff;.cient 

as j ranges from one to 2k-l, so we are able to factor a e 

itl. the numeratOl. ... and have the varia11ce of the g-th group of 

size k+l expressed as 

~~u 
--bT?fJ ' (2.2.30) 

whore the exponents of e in aCe) range from zero to 2(k-1) 

and the exponents of e in b(e) range froll zero to 21<:. '1e 

shall see that these extra tviO positive terms irl the de­

nominator will be of no corlsequence in the proof tha.t 

follows. Now that \~ie have the veriance expressed in the 

form of (2.2.30), 'va aI:'E~ a.bIe to compare the cocff:i.cient of 

oj, for e1.1 j, in the nume!'ator "/ith tho correspondirlg co-

efficient in the denominator. It \"il1 be shoHn tha.t the 

coefficient of ej , for all j, in the numerator is less than 
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the corresponding coefficient of ej in the denominator a.nd 

hence (2.2.21) becomes 

Var ~ e p where p < 1 , (2.2.31) 

since the sum of terms in the numerator would be less than 

the sum of terms in the denominator. Thus, as mentioned 

earlier, the extra two positive terms can be ignored since 

the desired result can be obtained without considering 

them. 

In 'ihat f0110\'78, we shall consider, without loss of 

generality t the coefficient of ej '\vhere j is even e.nd merely 

write d~~.n1 the corresponding resutt l?hen j is odd '(rlithotlt 

sho\>Tirlg 'the algebra involved. Perha.ps it is best to begi11 

v1i th an eX&"Tlple in order to become acquainted \1i th the 

problem and to illustr~lte the method il'1Volved. The co­

efficient of e6~ 6 S k, in the numerator of (2.2.30) is 

(2.2.32) 

and in the de:nominator it is 

(2.2.33) 

vIe have to show that 
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(pi+k)2+2-oi+kpi+k+2~+kpi+k+2Pi+kpi.rk 
1+3 ~i 1+6 1+1 i+51+2'1+4 

> 49~i+kpi+k+25Pi+kpi+k+9pi+kpi+k+~+kpi+k (2 2 ~4) 
- -1 i+7 . i-:,l i+6 -3.+2 i+5 1+3 1",·4· •• .... 

Cancelling «i+k)I)2, (2.2.34) becomes 

1 + 2 + 2 + _. __ 2 __ _ 
(i+3) 1 (i+3) Iii (1 .. ,..6) I (i+1) I (i+5) I (i+2) I (i+4) 1 

49 25 9 > . ",no ... + ________ + _ b 

- il(i+7)1 (i+l)1(i+6)1 (i+2)I(i+5)1 

1 + "~ .. """""'"'tP ... 

(i+3) I (i+4) 1 
(2.2.35) 

which "lhen multiplied by i 1 (1+6) f simplif:tes to 

49 25 9 (1+6) (i+6) (:1.<>t-5) > ~ + ~ + ~"!mII:"'L~~""'" + "~"-"""M""""" 'Qa •••• 

- i+7 i+1 (i+2)(i+1) (i+3)(i+2)(i+1) 
(2.2.36) 

Equation (2.2.36) reduces to 

(i+7 )(i+6) (i .. :·5) (i+l !. )+2 (1+7) (i+3) (1+2) (1+1 )+2 (1+7) G.-t~6) a ~ .. 3Xi+2) 

+2(1+7)(i+6)(1+3) ~ 49(i+3)(i+2)(i+l)+25(i+7)(i+3)(i+2) 

+9 (i+7) (i+6) (1+3 )+(1-1·1 )(1.+G) (i+5). (2.2.37) 
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Note carefully the manner in which these terms are factored. 

Upon factoring (2.2.37), we have 

3(i+3) 
r""--~ "' 

(i+7)(i+6)(i+5)[(i+4)+2(i+3)-lJ+(i+7)(i+6)(i+3)[2(1+2)-9J 

+(i+7)(i+3)(1+2)[2(i+l)-25J-49(1+3)(i+2)(i+4) ~ 0 (2.2.38) 

which, in turn, can be written as 

5(i+2) 
~ 

(1+7)(i+6)(i+3)[3(i+5)+2i-5J+(i+7)(i+3)(i+2)[2(1+1)-25J 

-49(i+3)(i+2)(1+1) ~ o. 

Equation (2.2.39)factors to 

___ ].!i..:-l) 
(i+7 )(1+3) (:1+2 )[5 (i+6) .. :-2 (i+l):25] .. 49(i"i·3) (i+2) (1+1) 

(2.2.39) 

~ O. (2.2.40) 

FinallYt 'He can write 

71(i+1)(i+2)(1+3) ~ o. (2.2.41) 

The above inequality, (2.2.4·1) is seen to be true for all 

i 2: O. Hence, the initial inequality, (2.2.34), is true e.nd 

the coefficient of e6 in the numerator of (2.2.30) is indeed 

less than the corresponding co~~fficient in the denomil1ator. 

Now we ShO'N' that for j < k and j even the coeff:tcient 
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of ej in aCe) is less than or equal to that. in bee), i.e. 

j/2 2 i+k i+k 
- E «j+l)-2h) Pi+hPi+(j+l)-h ~ o. 
h=O 

(2.2.42) 

Notice that each terra in the above expression has [(itk)1]2 

in it, so 'Y1e can 'tvri te 

After multiplying (2.2.43) by il(i+j)l, we have 

+ -lliill_(itj=Jl.!-!~!t~jj12±fL _ .0~l-li _ ~l=}'J.: 
(i+(j/2)-1)(i+(j/2)-2) ••• (i+l) i+j+l i+1 

• •. _ ii-.:rj)--<i±5:1) (!r:tj~Zh~~_(Lt,.(jll.2tll 
(i+(j/2»(i+(j!2)-1) ••• (i+l) , 

(2. 2 .l~3) 

(2.2.4.4) 
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where 

and 

o S s ~ (j/2) • 

Now multiplying thru by 

(i+j+l)(i+(j/2»(i+(j/2)-1) ••• (i+l), 

we obtain 

(i+j+l)(i+j)(i+j-l) ••• (i+(j/2)+1)+2(i+j+l)(i+(j/2»)(i+(j/2)-1) 

••• (i+l)+2(i+j+l)(i+j)(i+(j/2»(i+(j/2)-1) ••• (i+2) 

+2(i+j+l)(i+j)(i+j-l)(i+(j!2»(i+(j/2)-1) ••• (i+3)+ ••• 

+2(i+j+l)(i+j) ••• (i+j-p+l)(i+(j/2»(i+(j/2)-1) ••• (i+p+1) 

+ ••• +2(i+j+l)(i+j) ••• (i+(j/2)+2)(i+(j/2») 

~ . 

-(j+1-2s)Z(i+j+l)(1+j) ••• (i+j+2-s)(i+(j/2»(i+(j/2)-1) 

••• (i+s+l)- ••• -(i+j+l)(i+j)(i+j-l)~ •• (i+(j/2)+2). (2.2.45) 
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To factor (2.2.45), we combine the last negative term 

lvith the first and last positlve terms, the next to last 

negative term and the ne2ct to last positive term, etc., until 

the only term left is the first negative term by itself. 

Hence, (2.2.45) becomes 

3(i+(j/2» 
,....---"""'- " 

(i+j+l) (i+j )(i+j -1) ••• (i+(j /2 )+2 )(i+(j/2 )+1-J-2i+j -1) 

+(i+j+l)(i+j) ••• (i+(j/2)+3)(i+(j/2»(2i+j-2-9) 

+(£ .... j-:.-1) (1+j) ••• (i·r(j/2 )+4) (i+(j /2» (i+(j/2 )-1) (2i+j-4-25) 

+ ••• +(i+j+l)(i+j) ••• (i+(j/2)+r+2)(i+(j/2»(i+{j/2) .... 1) 

••• (i+(j/2)-r+l)(2(i+(j/2)-r)-(2r+l)2)+ ••• 

+(i+j+l)(i+j)(i+(j/2»)(i+(j/2)-1) ••• (i+3)(2i+4-(j-3)2) 

+(i+j+l)(i+(j/2»(i+(j/2)-1) ••• (i+2)(2i+2-(j-l)2) 

-(j+l)2(i+(j!2»(i+(j/2)-1) ••• (i+l). (2.2.46) 

The general term is obtl!:tned by letting p=(j /2 )-(r+l) al:ld 

s=(j/2)-r in (2.2.45). The variable r is used to count 

back from the last positive and negative terms in (2.2.45), 

e.g. v7hen 1:=2 we are combining the sE~cond from the last 

ne3ative term in (2.2.45) to the second from last positive 

term. 
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We are now able to combine the first two terms of 

(2.2.46). Doing so, we have 

(i+j+l)(i+j)(i+j-l) 
5(i+(j/2)-1) ,.. ............. , 

••• (i+(j/2)+3)(i+(j/2»(3i+(3j/2)+6+2i+j-ll) 

+(i+j+l) (i+j ) ••• (i+(j /2 )+lJ.) (i+(j /2) (i+(j /2 )-1 )(2i+j -29) 

+ ••. +(i+j+l)(i+j) ••• (i+(j/2)+r+2)(i+(j/2)Xi+(j/2)-1) 

+(i+j+l)(i+j)(i+(j/2)(i+(j!2)-1) ••• (i+3)(2i+4-(j-3)2) 

+(i+j+l)(i+(j/2»(i+(j/2)-1) ••• (i+2)(2i+2-(j-l)2) 

. -(j+l)2(i+(j/2»(i+(j/2)-1) ••• (i+l). (2.2.47) 

Combing the first tv70 terms of (2.2.47) yields 

7 (j~+(j /2 )-2) 
,. .......... " 

••• (i+(j/2)+4)(i+(j/2»(i+(j/2)-1)(5i+(5j/2)+15+2i+j-29) 

+ ••• -:,,(i-:.j+l) (i+j ) ••• (i+(j /2 )+r+2) (i+(i /2» (i+(j /2 )-1) 

••• (i+{j/2)-r+l)(2(i+(j/2)-r)-(2r+l)2)+ ••• 

+(i+j+l)(i+j)(i+(j/2»(i+{j/2)-1) ••• (i+3)(2i+4-(j-3)2) 

+(i+j+l){i+(j/2»(i+(j/2)-1) ••• (i+2)(2i+2-(j-l)2) 

-(j+l)2(i+(j/2»(i+(j/2)~1) ••• (i+l). (2.2.48) 
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. In equations (2.2.46), (2.2.47), and (2.2.48), vle 

see that the coefficient of the first term was initially 

equal to 3 and has increased by 2 after each step. We 

notice that after the initial combining of terms there will 

be «j/2)-I) others each adding a factor of 2 to the pre­

vious one. Hence, the final coefficient will be 

3+2«j/2)-1) = j+l. (2.2.49) 

In general, if r=n the coefficient of the first term will 

be 2n+l. 

To complete the proof of (2.2.42) we must obtain a 

general term in the above factoring. It is, where r=n, 

(2n+l) (i+j+l) (i+j) ••• (i+(j /2 )+n+l) (i+(j /2) )(i+(j /2 )-1) 

••• (i+(j/2)-(n-l»).(2.2.50) 

That (2.2.50) is the general term f0110\-18 from the 

follol-7ing inductlve proof. When n=l the term is 

3(i+j+l)(i+j) ••• (i+(j/2)+2)(i+(j/2». (2.2.51) 

This is exactly the term that '(vas calculated in equation 

(2.2.l~6). NO'tv'tt1e assume (2.2.50) to be true when n~c and 

'vrite (2.2.50) as 

(i+j+l)(i+j) ••• (i+(j/2)+c+l)(i+(j/2»(i+(j!2)-1) (2c+l) 

••• (i+(j/2)-(c-l». (2.2.52) 
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No\v, following the factoring procedure, \-7e see that (2.2.52) 

will be combined '(-lith 

(i+j+l)(i+j) ••• (i+(j/2)+c+2)(i+(j/2»(i+(j/2)-1) 

••• (i+(j!2 )-c+1)(2 (i+(j /2 )-c ){lc+l)2); (2.2.53) 

the expression is obtained from (2.2.46) by letting r~c. 

Upon combini1;lg (2.2.52) and (2.2.53), 't-1e are able to vlrite 

that the resulting term is 

(2c+3)(i+j+l)(i+j ) (i+j-l) •• " (i+(j /2 )+c+2)(i+(j /2» (i+{j /2 )-1) 

••• (i+(j/2)-(c-l»(i+(j/2)-c), (2.2.54) 

which is of the desi1"'ed form. Hence, \ole are able to C011-

elude that (2.2.50) is the correct general term. 

From equation (2.2.49), we have that the coefficient 

of the last term is j+l. Looking at (2.2.50) we see that 

n must be (j/2) so the result of combining the last two 

positive terms is 

(j+l)(i+j+l)(i+(j/2»(i+(j/2)-1) ••• (i+l), (2.2.55 ) 

which must 110~v be combined Hith the negative terra 

(2.2.56) 

The final rest.tl. tis' . , 

(j+l)i(i+{j/2»)(i+(j/2)-1) ••• (i+l) ~ 0, (2.2.57) 
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which is seen to be tnle for all i ~ O. Hence, (2.2.42) 

is true and the coefficient of ej in a(O) of (2.2.30) is 

less than the corresponding coefficient in bee). 

NOly ,ve consider the case \-7here j=k and j is even. 

vie would like to ShO'V1 that 

(2.2.58) 

Recall ti1at the coefficient of ek in a(O) is the coefficient 

of ek-1-1 in the numerator of the expression for the variance; 

hence the (k+l) appears in the negative tecru above. Can­

celling «i+k) 1)2 and multi.plying (2.2.58) by i 1 (i+k) 1 

leaves 

ii+~~2.(it1<-:l:.l~~~m.&~..,_ +2~r t(:ktl:~.2. ,.. 
(i+(k/2»)(i+(k/2)-1) ••• (i41) i+1 • • • 

+ t(!~:!~)(~-t!<-l) ... -<:t!!~:P~:!.l .. _ .(k-.l~~ .. _ y-5'k2~!~:-.. 3)2 
(i+p)(i+p-l) •.• (i+l) i~l (i+2)(i+1) 

_ ll-tJ$dl(~±l~.::JJ_Q~J.!. _ 
(it{~3) (i+2) (i+1) 

. .. - .l~.±J -2 §.2~(t.l':k)_(J;}·~~Qt!~ .. s+2 ) 
(i+s)(i+c-l) ••• (i+l) 

. .. . (2.2.59) 

where 
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o ~ P So (k/2)-1 

and 

1 ~ s ::; (k/2). 

After multiplying (2.2.59) by (i+(k/2»(i+(k/2)-1) 

••• (1+1) vie have 

(i+k)(i+k-l) •.• (i+(k/2)+1)+2(i+(k/2»(i+{k/2)-1) ••• (i+1) 

+2 (i+k) (i+(k/2» (i+ (k!2 )-1) ••• (i-1-2) 

+2(i+k)(i+k-l)(i+(k!2»(i+(k/2)-1) ••• (i+3) 

+2(i+k)(i+k-l) ••• (i+k-p+l)(i+{k/2»)(i+(k/2)-1) ••• (i+p+1) 

+ ••• +2(i+k)(i+k-l) ••• (i+(k/2)+2)(i+(k/2» 

-(k-l)2(i+(k/2»(i+(k/2)-1) ••. (i+2) 

-(k-3)2 (i+k) (i-:,,(k/2») (i+(k/2 )-1) ••• (i+3) 

-(k-5)2(i+k)(i+k-l)(i+(k/2»(i+(k/2)-1) ••• (i+4)- ••• 

- (k+1-2s)2 (i+k) (:iA·k-l) ••• (i;},k-s+2) (i-l-(k/2» (i"l-(k!2 )-1) 

••• (i~"s-l)- ••• - (:t .. }k) (1.+k-l) ••• (if (k/2 )+2). (2.2.60) 

To factor (2.2.60), 'H8 use the same method that '-las 

employed previously. ~~e combine the last negative term 
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with the first and last positive terms, the next to last 

negative term with the next to last positive term, etc., < 

until the first negative term is combined with the second 

positive term. In this case, unlike the case where j < k 

and j even, there is no term left by itself. Factoring 

yields 

3(i+(k/2» 
,,,.-.---"""" "" 

(i+k){i+k-l) ••• (i+(k/2)+2)[i+(k/2)+1+2i+k-l] 

+(i+k)(i+k-l) ••• (i+(k/2)+3)(i+(k/2»)[2i+k-2-9] 

+(i+k)(i+k-l) ••• (i+(k/2)+4)(i+(k/2»)(i+(k/2)-1)[2i+k-4-25J 

+(i+k)(;.+k-l) ••• (i·,. (k/2 )+r+2) (i+(k/2» (i4,,(k/2 )-1) 

••• (i+(k/2)-r+l)[2(i+(k/2)-r)-(2r+l)2]+ ••• 

+(i+(k/2»(i+(k!2)-1) •.• (i+2)[2i+2-(k-l)2]. (2.2.61) 

'tlith the exception of the term (i+k+l),. \t7e notice that 

(2.2.61) is identical to the cot"l."espond:tng equations for 

the case j even and j < k. By the same incluctive proof we 

have that the general term in the factoring of (2.2.61) 

\-:rill be 

(2n+l)(i+k)(i+k-l) ••• (i+(k/2)+n+l)(i+(k/2»(i+(k/2)-1) 

••• (i+(k/2)-(n-l», (2.2.62) 
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where 

1 < n < (k/2)-1. - --
Letting n = (k!2)-1 in equation (2.2.62) yields 

(k-l)(i+k)(i+(k/2»(i+(k/2)-1) ••• (i+2)- (2.2.63) 

This term must be combined ~'7ith the last te1.'"1ll appearing in 

(2.2.61). This final factoring yields 

(k+l) (i+(k/2») (i-l- (k/2 )-1)" • II (1.+1), (2.2.64) 

which we see is greater than zero for all non-negative i. 

Finally \ve C011sider the case for vJhich j is even and 

j > k. \·1(3 have to sho,-; that 

(2.2.65) 

11any of the steps tal:::en here are identical tvi th those taken 

in the previous two cases; ~'vhenev€~r this is the case only 

the results v1i11 be preserlted. 

After di vidilig by «i+k) 1)2 and roul tj.plyil1g by 

(i .. : .. k) 1 (i+j-k) 1 we a.re left ,-lith 
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1i+k).(i+k-l) .•. ~ !..It.::''(j /2 )~i-l.). .. .., + 2 + ?~i+k~_ ... 
(i+(j/2»(i+(j/2)-1) ••• (i+j-k+l) i+j-k+l • • • 

+. 2(i+k)(i+k-l) ••• ",,<~~r!<:--E+l). -I" 
(i+j-k+p)(i+j-k+p-l) ••• (i+j-k+l) • • • 

+ -1l1~-1) ..•. (M_(j}1)+3) ....... _ .. .. 
(i+(j /2 )-2) (1+ (j /2 )-3) ••• (i+j+l-k) 

+ .. ?~i.:!.!0{i+k-!) •. ::~)+f.),_, ___ _ J2k:-j;-1)2 
(:t+(j/2)-1)(i+(j/2)-2) ••• (i+j-k+l) (i+j+l-k) 

• • • 

(2.2.66) 

1 S p S k-(j/2)-1 

and 

1 ~ s ~ k-(j/2)-1. 

Multiplying (2.2.66) by (i·}·(j/2»)(i..z~(j/2)-1) ••• (i+j+l-k) 

we obtal.n 
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(i+k) (i«rk-l) ••• (1+(j/2 )+1 )+2 (i+(j/2») (i+(j/2 )-1) ••• (i+j+l ... ·k) 

+2 (i+k) (i+(j /2» (1-1·(j /2 )-1) ••• (1-1'(5/2 )+k+2 )+ ••• 

+2(i+k)(i+k-l) ••• (i+k-p+l)(i+(j/2)(i+(j/2)-1) ••• (i+j-k+p+l) 

+ ••• +2(i+k)(i+k-l) ••• (i+(j/2)+3)(i+(j/2»)(i+(j/2)-1) 

+2 (i+k) (i+k-l) ••• (i-f-(j/2)+2)(i.-r-(j/2» 

-(2k-j-l)2(i+(j/2»(i+(j/2)-1) ••• (i+j-k+i> 

••• (i+j+2-k+s)- ••• -9(i+k)(i·:·k .... 1) ••• (i+(j/2)-a-3)(i+(j/2» 

(2.2.67) 

\·le nO"7 factor (2.2.67) precisely a.s ,.;re have aOn0 :i.n the 

previous t'HO cases and obtain 

3 (i~"(j /2» 
r---~ ""'" 

(i+k) (i·,·k-l) ••• (i+(j /2)+2) (i~·: .. (j /2 )+1+2i+j -l)+(:t+k) (i,,;-k-1) 

••• (i+(j/2 ) .. ;,,3) (1+(j /2» (2:1+j-2-9 )+(1+k) (i·t-k-l) 

••• (i+(j/2)+4)(i+(j/2»(i+(j/2)-1)(2i+j-4-25)+ ••• 

-I' (i .. :-k) (i+k-l) ••• (i+(j /2 )+r+2) (1+(j /2») (i+(j /2 )-1) 

••• (i+(j/2)-r+l)(2(i~(j/2)-r)-(2r+l)2)+ ••• 



+(i+k)(i+(j/2»{i+(j/2)-1) ••• (i+j+3-k)(2i+j+4-2k+j-(2k_j_3)2) 

+(i+(j/2) )(i+(j/2)-1) ••• (icl .. j+2-k) (2i+2j 

+2-2k-(2k-j-l)2), (2.2.68) 

where r is a counting variable as explained in connection 

with equation (2.2.46). As a result of the inductive proof 

given earlier, we have that when r=n the first term in the 

resulting combination is given by 

(2~+1 )(i+k)(i·~ .. k-l) ••• (i+(j/2)+n+l) (;."I .. (j/2)) (i+(j/2 )-1) 

••• (i-:· (j /2)- (n-l ». (2.2.69) 

Ue noticE! that 8.fter the first combination, the coefficient 

of the leading tern is 3 ctnd there \-7111 be (k-(j/2)-1) 

additional combinations each contributing a factor of 2 be­

fore (2.2.65) is co:npletely factored. Hence, the co ... 

efficient of the final term will be 

2(k-(j/2)-1)+3 = 2k-j+l. 

Tne fili.al step in the factoring of (2.2.65) is 

(2k-j-l)(i+k)(i+(j/2»(i+(j/2)-1) ••• (i+j-k+2) 

+(i+(j/2»(i+(j/2)-1) ••• (i+j+2-k)(2i+2j+2-2k 

-(2k-j-l)2), 

which factors to 

(2.2.70) 

(2.2.71) 



(i+(j/2»(i+(j/2)-1) 

= (2k-j+l)(i+(j/2»(i+(j/2)-1)(i+(j/2)-2) 

••• (i+j-k+2)(i+j-k+l) (2.2.72) 

and we sec that this quantity is greater than zero for all 

non .... negative i. 

Tne differences between the coefficients of ej , 

j odd, in aCe) and bee) are 

for j < k 

(k+l)(i)(i+l) .•• (i+«j-l)/2» (2.2.73) 

for j = k 

(k+l)(i+l)(i+2) .•. (i+«k-l)/2» (2.2.74) 

for j > Ie 

(2k-j+l)(i+«j-l)/2»(i+«j-3)/2» 

••• (i+j~2-k)(i+j+l-k). (2.2.75) 

These terms are all seen to be gres.ter than or equal to 

zero for a.ll non-negative i. Hence) '-le have that for each 

term in aCe) of (2.2.30) the corresponding term. in bee) is 

at least as larse (j<k) or larger (j~k) and therefore p in 
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equation (2.2.31) is indeed less than unity. Thus v7e have 

shovm that for a connected group of Poisson variates the 

variance of the sub-distribution defined on the group is 

less than the variance of the complete distribution. 

As a result of this property of the Poisson dis­

tribution, equation (2.2.16) becomes 

Sf (e) 

== p < 1 (2.2.,76 ) 

and for the grouped (or censored) Poisson distribution, 

Hartley' s itera~tive procedure al'tvays converges regardless 

of the initial values of, the missing frequencies. The 

only restriction on the i!litial guesses of the missing 

partial frequencies . is that these guesses sum to the 

observed total frequencies for eo.ch group. 

2.3 9.?mpar~~on of _ the 110nte Ce~rlo and AS)~1ptOt~C, V!1riances 

of the Estima.tor .. 

In this section a comparison is made of the asymptotic; 
A 

and Honte Carlo varianc(':s of the cstl.mator, e, of the 

parameter, e, in the grouped Poisson distrilnltion. For the 

tlngroup~1 Po:l.sson, the variance of ~ :1.8 give11 by 

& (2.3.1) 



and for the grouped case, the asymptotic variance is given 

by 

-r~~~~~·j-l = (2.3.2) 

where 

F(g,a) 
e-ae i 

== E --. 
ieg il 

To determine hot" the size of the group affects the variance 
A 

of 'e, 't·:re calculate the per cent increase in variance duE'~ 

to grouping; this is given by 

but 

d 2 
I: -2-F(g,e) 
g de 

Q. 
N 

Upon simplification (2.3.3) becomes 

Fer Cent Increase = 

x 100 

(2.3.3) 

(2.3.4) 

x 100. (2.3 If 5) 
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Note that the above expression for per cent increase in 

varian.ce is independent of sample size. 

If ue define the efficiency (Lindley [12J) of the 

estimator of a parameter from grouped data as 

A 

Eff = Var e ungrouped 
A 

(2.3.6) 
Var e grouped 

lt1e have that 

Per Cent Increase = (~'::'-f1-.c -l)xlOO. r ... ;;: 
(2.3.7) 

,. 
The vari~nce of e and t119 per cent increase in the 

,. 
varj.ance of e due to grouping t'1ere il'':Ivestigated for small 

sclrnples by Itfonte Carlo simala ti.on on an IB1:1 7040 computer. 

The purpose of this study 'Has threefold: 

1) To learn ho'\v changes in the group size affect the 
"-

variance of e. 
A 

2) 

3) 

To lee.!:'l1. ho't~ che.nges in e 8.ffE!ct the var:l.ance of e. 

To sec ho,\} le.rge the sample size must be in ox"dar 
,. 

that the asymptotic variance of e be adequate. 

For a given valtJ.e of e e.nd a g:1.V(~l:l_ group size, 

1000 random samples of a pt"e-dete·1."'Itlil1.ed size were gel1era ted 

from the grouped Poisson distr:tbut:5M011 in ten groups of 

,. 
the estimate of e) e, vlas obtai-ned by !1$.l"'tlE.JY's method e_ud 

stored in tb.e cOmptlter. From each group of one bunc1red 
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,.. 
values of e, the variance \vas calculated and then these ten 

values of the variance "Jere averaged and a standard e.rror 

of this mean was obtained. It should be noted here that 

whenever the sample size was large enough to expect agree-

ment betv1een the l,fonte Carlo and Asymptotic values of the 
,. 

variallce of e t the l·fonte Carlo value ",as t-1ithin at most tt'iO 

standard errors of the asymptotic value. After the Nonte 
,.. 

Carlo value for the var:tance of e "lae ca.lculated. , it \vas 
,. 

compared to the asymptotic value, to the value of var a 
whe.n there t-las no grouping, and finally the HOl1te Carlo 

,.. 
value of the per cent increase in the variance of e due to 

group:l.ng \vas compared to the asymptotic value. Tn:i.s study 

",,,as made using various values of the pa,:'ameter 'Viith different 

group sizes and sa.mple s:l.zes -- tt'70 of these variC3.bles bei!1g 

held fi;~ed 't·:hile the third '-Jas allo\'7ed to vary. The results 

are presented in figures (2.1)-(2.7). It can be seel1 from 

the graphs that as the paramet€:r i:ncree.ses s the a.symptotic 

and 110nte Carlo values of the per cell1; l.ncrease in varia11ce 

due to grouping agree for smaller values of the sample 

size. From these figures it also becomes evident that the 

per cent increase in the variance due to grouping varies 

d;.rectly ~'7ith some function. of the group s:tze and in-

versely 'tnth a functj.on of the parameter size, a result 

which is explained by the fact that for the Poisson distr:t-

butl.on the VC'l.ri8.11.Ce also equals 6. If €I is large, the 
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sample is more likely to be spread over several groups; 

whereas if the group 'size is large or the parameter small, 

it becomes very likely that the majority of the observations 

lie in a single group v-lhich 'tvould helve the same result as 

placing the entire sample space in a single group. 



CHAPTER III 

CO?-mINATIONS OE' DISTRIBUTIONS DIFF kb 
• L .. .bot • 

In this chapter we shall derive some basic properties 

of the combination of distributions diff kb and then develope 

the procedures necessary to obta; .. n the }-faximum Likelihood 

estimators of the parameters involved under various degrees 

of completeness of the observed sample. A set of very 

genera.l regularity conditio!1S will then be given 'ti7hich, when 

satisfied, \-7ill insure that the Haximu.m Likelihood estima.tors 

are consistent and asymptotically normally distributed. 

Recall that in Cha.pter I vJ~ defined the probabj~lity 

that a random variable X takes on the non-negative integral 

value j in the combi.l18. tion of distributions diff kb to be 

(3.1.1) 

where 

p{X=:j Cliff kblo~k) 

end 

P(O=k) 

lJ.t'c val:td probability functions dofined on th<3 n011-negative 

integers and f; is <l finitE: bound O!'! the nU~lb0r of terms in 

56 
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the model. Here we ShO'H that (3.1.1) sums to unity and ob­

tain the moment generating function for diff kb combina-

tions, assuming that such a function exists for the dis­

tribution p(X==j I O=k). 

co co 

L p(X=j) == 1: 
[j/bJ~<oo 

j=O j=kb 
I: p(X=j diff kbln=k)p(o=k) 

k=O 

[j/bJ~<oo co 
::: E ~ p(X=j diff kbln=k)p(O=k). 

k==O j=kb 

Letting 

a = j-kb 

and recalling the defirlitl.01.i of j diff kb 'tVe can ,.;rite tha 

preceding swn~ation as 

[j/bJ:g3<e¢ 00 

r E p{X=aIO=k)p(O~k); 
k=O a=O 

bu t 't.ve Y..110\-1 that 

and 

so "1e have that 

E P(X=afO=k) =- 1 
a 

13 
E P(O=k)::: 1, 

k=O 
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co 

t p(X=j) = 1. 
j=O 

(3.1.2) 

( 

In order to obtain the moment generating function 

(m.g.f.) of (3.1.1), it is necessary to find the m.g.f., 

'l'c:(t), of X diff a, t-lhere X is a non-negative random variable 

with probability function p(X) and m.g.f. vet). Recalling 

the definition of .a m.g. f. 'Vie have 

co 

'net) = I: etjP(X-=j fliff 0:). (3.1.3) 
j::Cl 

If "1E! let 

1 -- j diff Cl, 

then 

j == 1 + Cl 

and 

00 

et (l+a)p(X=l) 'tr,( t) == 1.: 
1=0 

00 

etlp(X~l) ; = eta. I; 

1=0 

but 

00 

tlpc·r 1) yet) == i: e ~ .. =. 
1=0 
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Hence, 

(3.1.4) 

tie can use (3.1.4) to obtain the m.g.f. of the com-

bination of distributions diff kb. Assuming that each com­

ponent distribution in the diff kb combination has a m.g.f., 

denoted by 'kb(t), k=O,l, ••• ,a<~, the m.g.f. of the com­

bination is obtained by evaluating 

0:) 

1: e tj p(X=j) 
j=O 

[j/bJ~~<oo ~ tj 
= t I: e p(X=j diff kblo=k)P(O=k). 

k=O j=kb 

Letting 

(3.1.5) becomes 

00 

1': etjP(X~j) 
j=O 

1 == j-kb, 

(3.1.5) 

(3.1.6) 
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Since much emphasis is placed on applications where the 

component probabilities are Poisson, in the next chapter 

the m.g.f. and the fj.rst t\<10 moments are found from (3.1.6) 

for the case lv-here p(X~ll n:::k) is the Poisson probability 

function. 

We nO'\-1 turn our attention toward the estimation 

problem in the combit'lation of distributions diff kb. 

In the introduction, we mentioned the fact that when 

sampl1..ng frora the type of distribution defined by (3.1.1) 

the observed Ittotal tI ft'equencies can be part! tion€:d into 

partial frequencies tvhich might be, but often in practical 

situations are not, observed. In this section \V'e deal '(-lith 

the problc:rn of obtaining the maximu.rn likelihood estima.tors 

of the parameters of the underlying distributions, and the 

"mix ins pcu:ameters ft
t designated by P(O=k) in (3.1.1), "men 

all the partial frequencies have been observed alld are 

available. 

Before continuing i;.7ith the estilnatiol1 problem, 'V-7e 

introduce the fol1o'Hing notation: 

N is the tota.l observed frequency representing the 
g 

number of times the randorn v;;U:·i:=lble X takes 011 the value g. 

n j is the j-th observed partition of the total observed 
8 

frequency, Ng , 'Hherc j=O, 1, ••• ,[g/b J and the n~ are such 

that 
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(3.2.1) 

f(8 diff bk, i k , Elk) == skf(S di.ff bk, i k ) is the actual 

probability of g diff bk. (3.2.2) 

ak = P(O=k) and ~ 8
k 

== 1. (3.2.3) 
k=O 

i
k 

is the parameter vector of the k-th component dis­

tribution. 

Assuming that the observations are independent, 

identically distributed random variables, the likelihood 

of the sample is 

(3.2.4) 

We once again define log L to be the likelihood function. 

The maximum likelihood estimators of ik and ak will be 

solutions of the likelihood equations 

and 

o log L ::: 0 
o.tk 

k=O,l, ••• ,S 

k=O,1, ••• ,f3-1 

(3.2.5) 

(3.2.6) 

-Writing the likelihood equations for the i k , we see 
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that, for every k, each equation can be solved independently 

of the others, that is, 

a log L co ... ,..:: E 
o~ g=kb 

n: ilk f(g diff bk'~k.ak) 
----------_._.,-------------- = Q. 

f(g cliff bk, ik,a
k

) 
(3.2.7) 

However, to obtain the M.L. estimators for the ak' we have 

to solve a system of ~ simultaneous equations since 

~-l 
8fl = 1 ... Ea •• 

j=O J 

The system of likelihood equations is 

P 10&. l! ::: 
oao 

• 
• 
• 
• 

a lo~ ~ = 
oak 

• 

• 

E 
8=0 

n~ 0%; f(~ d~~~ O.2o.ao) 

f(g diff O,~,ao) 

+ E 
g=Sb 

E 
g=bk 

nk ~- f(g diff bk,i1<,ak ) 
_g.o~k .... __ ~, .. _ 

(3.2.8) 
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• 

As a result of (3.2.2) and (3.2.3), (3.2.8) becomes 

• 
• 
• 

n~ 
--S-_= 0 

fl-l 
1.. I: 8 j j==O 

nfJ 
----w,"",,13..r - == 0 • f;-
1 - I: a. 

j=O J 

The solution to (3.2.9) is 

(3.2.9) 
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and 

The properties of these esti~ators will be dis­

cussed later in the chapter. 

We have just obtained the maximn~ likelihood esti~ 

mators of the parameters in the combinatiori of distribll-

tions diff kb ~~en all the partial frequencies were observed 

and available to the experimenter. Notice that tho estt-

mation, in this case, is similar to the estimation of the 

parameters in (~·: .. 1) independent probt:tbility functions. We 

shall see that this is not the case when sanle or, espec:tally. 

all of the partial frequencies are missing and only the 

total frequencies are available. 

Here we corlsid(~r the problem of estill1ating the 

parameters in (3.1.1..) \vhen any cnm.binatiol'i of the partial 

frequencies is Ulikno'Hn to the exper:trrl€~t1ter. As a 1 )-;rays, 

each of the total frequencies has been observed and is 

. available to the (:;:{perimenter. Perhaps it should be 

mentioned here that "7h:tlc the methods developed in this 
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section are general 8.n1 l>lill a.ppl.y to any c0i11bination of 

mis.sing partial frequencies, particular e1}lphasis will be 

given later to the case where all of the partial frequencies 

are missing with only the total frequencies being kno,m. 

This is due to the fact that in ITk~ny practical situations 

1f any of the partial frequencies are knO\vn there usually 

1s no reason ~nLY they should not all be knovm. However, 

there are cases in which only the total frequencies are re­

corded. 

Before proceeding with the estimation problem, we 

introduce the follov1ing notation in addition to that de-

veloped in the preceding section. 

F(g,!!.,!!.) is the total probability of the random 

variable X taking on the value g, i.e., 

(3.3.1) 

011ce we have observed a sample, we partition it 

into the following sub-classes 

C1 == ~ : some or all of the n j ,j:::O, 1 t ••• ,[g/bJ ,are observed) 
g 

C2 == (g:only Ng , the total frequency,is observed) 

The remaining sub-classes are defi118d to be such that they 

contain those g which 00 not belong to C1 or C2 and have 

the saml:J partl.al frequenci(~s unobscrvcd o For example, t-1hen 
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b=6 the follovling data arrangement is possible: 

N
18 = (n~8) + (niB) + 2 

,1118 + :3 
niB 

N
19 = (n~9) + (nig) + (nig) + (n~9) 

• 
• 
• 

N23 = (ng3 ) + (n~3) + (n~3) + (n~3) 

N24 ~ 
0 + n l 4- 2 + :3 + 4 n
24 24 n24, n24 

n
24 

• 
• 
• 

l'lh€~re the partial frequencies in parenth(~ses are unobserv·ed. 

Then 

and 

Anoth(!t' of the subset S "lOU ld be 

c = ( 18, 25) , 

since nia' rAts' nZ5 ' and nis arl~ the only missing partial 
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frequencies for 18 and 25, respectively. 

t-le also define for each g l 01 + 02 

I 

H(g,!l,Sl) = F(g,.t,~) - E f(g diff bj,ij,a
j

) (3.3.2) 
observed 

j 

and 

* N = N -g g 
j 

I; nO'. 
observed (:) 

(3.3.3) 

j 

The likelihood of an incomplete sample can be ex-

pressed as 

and henco the likelihood function becomes 

[g/bJ~t3<oo . 
~ nJ lQg f(g diff bj,iJ.,a

J
.) 

j=O 8 

The lik(!)lihood equations fOj: the e. are 
"'-J 

(3.3.4.) 
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n~ si - f(S diff bj.ij ,aj ) 
_ jV7t .. rr.: ....... ~ _ ••• m,~ .... ~' • 

f(g diff bj,ij,a j ) 

+ 

:: Q.. , (3.3.6) 

where j = O,l, ••• ,~. 

Notice that if ni is observed then f(g diff bj,ij,aj ) 

is subtracted from F(g,i,~) in forming H(g,i,~) and 

~ H(o~,a,a) = o. o e · -- --j 
(3.3.7) 

As (3.3.6) stands, it can't be solved since it con-

taina more than one of the unkno"tms. It must be solved 

simulta.neously vlith the other likelihood equatio11S for i k , 

k ~ j and 8j' j=O,l, ••• ,~-l. This would involve solving a 

system of 2~+l non-linear simultaneous equations - a task 

've \-7ould like to avoid if at all possible. By applying 

an iterat::i.ve procedur'e similar to the one described ill 

Chapter II we are hopefully ,able to solve this system of 

simultaneous equa tiOl'lS. The definitions, corresponding to 

those '.n Cl:"'.Lapter II) "7hicb must be m<:lc1e hE!'re are 
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(3.3.8) 

and 

Applying these to (3.3.6), we have to solve 

a log L:: I; 

o!j geC1 

n~ ali f(g diff bj,ij,aj ) 
* .... , ..... 

= o. (3.3.10) 

and 

SOt finally, (3.3.10) becomes 
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. n~ ~f(g diff bj'~j,aj) 
t ..J""",-__ - - - - .•.. -

geC1 f (g cliff bj ,!t.j , a j) 

~~ ai: f(g cliff bj'~j,aj) - ~ '... . . 
f(g diff bj,ij,a

j
) 

~~ ~ f(g diff bj,lj,aj ) 
_ ....-..::.J _ • ,__ • 

f(g diff bj,ij,a j ) 

::: 0 (3.3.11) 

and 'He Bee no,v that (3.3.11) involves only i
j 

and hence C8.11 

be solved for i j itself witho~t resorting to the sL~ultaneou$ 

solutiOl1 of the system of 2p-t·l equations. We now have the 

A step-by-step dcscript:to:n of the iterat:ton procedure "rill 

be given later in this chapter. 

Ue can obtain ~:d.m:tlar equ.:lt:ton.s for the ajt j:-::O,l, 

••• ,~-1. By the definitiotls of f(g diff bj,ij,Bj),F(g,!l"a), 

and H(g,i,€;!) lle can 't\~t:t"ite 

(3.3.12) 

Sil"lCe 

~-l 
I: a. • 

j=O J 



71 

There are several combinations of missing data which 

lead to different values of a!- H(g,i,ft). They will be 
j 

listed and considered separately. 

a) o~- H(g,i,~) = a!' [F(g,i,~)-f(g diff bj,ij,a j ) 
j j 

-f (g diff ~b,if3 ,ep) 

t f(g diff bi,ii,si>] 
remaining 
observed. i 

= ~ f(g diff bj,ij,sj) oa. 
J 

= 0 for g ?:. f3b. 

= 0 for 8 < ~b. 

(3.3.13) 

(3.3.14) 
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II. n~ observed, n~ not observed 
. .. 

- t f(g diff b1'it,si)] 
rAmaining 
observed i 

- 1- f(g diff Sb,~,aQ) 
a~ ..., 

(3.3.15) 

b) ~ H(~.e,a) = 0 08. ......,- .. -
J 

g < ~b. (3.3.16) 

III. n~ not observed, n! observed 
......... ....."..,. _ trw .... --.. 

a) ~ H(~ e a) = n rF(g~,e,a)-f(g, diff Qb,_e
13

,a,,) "!!I.e. o,_~_ ~ . - .. "" ..., 
o J O~j 

E f(S diff b1,ii,si)] 
renk'1 ining 
observed i 

= JL f(g diff bj ,ij 6
J
.) 

B
j 
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= ~ f(g diff bj,ij,aj ) j~b. 
j 

= Jl f(g diff bj,e .,a.) j<~b. 
a j -J J 

IV. n~ not observed, n~ not observed 

----------------------------

(3.3.17) 

(3.3.18) 

a) ~~ H(g~i,~) = ~-~[F(gJi,a)- ~ f(g diff bi,ii'~i)] 
() J oa j remain.ing 

~ observed i 

-t- f(g diff ~b,i~,a~) g~b. (3.3.19) 
~ 

b) ~ H(g.i.~) = t: f(g diff bj,ij,a
j

) g<~b. (3.3.20) 
J J 

HencC'., ,va can vrri te 
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a. loS k = E n~ f(8~~f b~!!:j,ai? .. 
~a j ge C1 Sj f (g diff bj ,ij ,Aj) 

+ 1: ~g. __ .. (~g ~~~a.i~~ .. t~.) 
geC2 F(g,!,a) a j 
g<Sb 

+ L ~~ __ , .. _(~ (g«!.if:_~~~_~!~j~~ 
geC2 F(g,i,a) a j 
g~b 

N"( 
+ I: _(---!_".T'_)'~ (- l f (g cliff flb ,i

f3 
,a'fj)) 

geIln H g,i,a a~ 

N* 
+ t .. __ '.:2",,,- (aJ ..... ' f(g diff bj ,i

J
- ,aJe» 

selila H(8,!,~) J 

= o. (3.3.21) 
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t~otj.ce that the last five terms of (3.3.21) are due to the . 

partitionins of l g :8/C1 +czl · 
By an application of (3.3.8) and (3.3.9) we can 

simplify (3.3.21) and obtain 
. 'i"{j nj Nfj 

~.6.l! :: n J n 
1: _Ii + I: ..A ~ .. L (...8. _ • ~:l -_.) 

~a. seC1 
8. 

8€C~ 
B.. 

8 eCZ 
8 j J J J 1 - t B.k g<~ g~b k=O 

I\.J~ Nj "-'j 

+ L (- _1~~t; ___ ) + I: !~S. + I: ~~g, 
ge: Ila f3-1 ge: IlIa a. ge: IIIb a . 

1 - 1: sk J J 
k=O 

:: 0, (3.3.22.) 

As with the full data case~ in order to obtain the 

" solution, a jt j=O,l, ••• )B-l, to (3.3.22), we Lmlst solve 

a systern of sir&11t8neous equations. The solution is 

a. = (3.3.23) 
J 

where 
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and 

(3.3.24) 

In Chapter II) some general reme.rks concern~ng 11.L. 

estimation in incomplete samples due to grouping ,·jere made. 

Perhaps the reader has notl.ced the similarity bett·1een 

groupj.ng e.s discussed in Chapter II for classical prob­

ability models and the natural erouping we have here t~len 

son'e or 8.11 the pe.rtial frequenci€~s are mi.ssing for a given 

set of rig. In the former case the grouping is vertical 

v:rhereas in the latter ,.va have horizonta,l gl."ouping. TIler€!-

fore, when dealing with combinations of distributions 

diff kb, it is possible to have tw'o dimensional grouping 

.. horizontally clnd vertically. In 'V7hat follows, '·7e ShOvl 

ho'\'1 to obte.in tb,e l-f.L. estimators ,".,hen tve do have this 

two"d.imensio11.a 1 group:tng. 

To avoid repetition and remain general, vie deal 

only vlith the case in 'tv-hl.ch l\7C have a subset of o'ur d,tta 

grouped horizontEtlly B.nd vertj.ca lly t i. e .. for a g;.ven sub-

set of the sample space ,v-e do not kno'tv any of the total 

frequencies or any of the partial frequencies, but tva 

kno"l the sum of the missing tota.l frequ€~ncies.. For e;{ample, 

if b=6, the fol1owin8 data arrangement is possible: 
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No = nO 
0 

Nl = nO 
1 

• 
• 
• 
• 

1'16 
0 (+) n1 = n6 6 

N nO (+) 1 = n7 7 7 

• 
• 
• 
• 

Nil nO ("'A) 1 = nil 11 

N12 
0 (+) 1 (+) 2 = n
12 1112 n

12 

• 

• 

\lhere the "boxed in It frequencies are all missing but their 

total 

is known. 

17 
'f = i: N 

g:::11 g 

Before lve obtain the t{.L. estimntors of the parame-

ters t vie def ina 
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F(g,i,i,a) = Pr(X=g..,th integer in i-th group) 

. E F(g,i,i)~) = G(i)i,f:!,) = Pr(X € i-th group) 
gei 

1i = total observed frequency for i-th group. 

The term in the general likelihood for a sample 

(3.3.4) due to such two~dL~ensional grouping is 

(3.3.25) 

and hence the term in the likelihood function beco~es 

(3.3.26) 

Taking the derivative of (3.3.26) with respect to 

!j yields the following term in the general li.kelihood: 

\ 

(3.3.27) 

By an application of the chain rule for partial derivatives 

and the definition of G(i,!,~), (3.3.27) reduces to 

To obtain the M.L. estimator for ij' (3.3.28) nrust 

be equated to zero and solved, but roere than one of the Ul1-

known para.'meters appears i-11 (3.3.28) and therefore a direct 
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solution is not possible. SOt once againt we are forced 

into solving a system of 2t3+1 simultaneous equations. HO'\-1-

ever, the procecure ~nlich pe~aitted us to by-pass this 

problem earlier in this chapter also applies in this case 

if we make the fo11oning definition: 

~j 
n 

g 

Using (3.3.29), (3.3.28) reduces to 

(3.3.29) 

(3.3.30) 

Notice that l-1e have reduced the te1.~l in the likel:thood 

equat:ton due to t'l;vo""'dimensional groupj~ng to the same form 

as if e \-1ere a mefuber of 01 in equat:ton (3.3.11). 

It should be remembered that (3.3.30) is an equation 
,. 

that \,;i11 be solved for e" many times, ~vlth the 8.1<1 of 
J 

(3.3.29), until the iterative process converges to a single 
,.. 

value of ej • 

t~e obtain the estlmators for the 8 j , j=O,l, ••• ,f) in 

a similar manner: 

(lEI.. 
J 

'f. ~4-. G(i,O,a) 
:I. OC;l.j --~-

1: W~"iQIIIIIO~~i~,"",,~"""".· It'...... • 

i G(i,.Q.,f}) 
(3.3.31) 

o log To.! 
~~~""'C::r""",,"""'" :' 

After applying the chain rule for partial derivatives and 
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the definition of G(it~,~~ (3.3.3t) becomes 

(3.3.32) 

Recalling (3.3.29) and the definition of F(g,i,!,~) we 

have 

o ::. g < jb (3.3.33) 

jb !S g < i3b (3.3.34) 

(3.3.35) 

Including these terms in. the general l1ke.ljJl0od 

functiol1 (3.3 .ll.) and then writing the likelihood €~quat:ions 

fOl'" llj and the solutions of the likelihood equations for 

+ 
n~ a~-~ f(g diff bj ,itj ,el j) 
_~~ .. -J"Q"""""'''''':A<'''''''''''~;~~''''''~~-~''' 

f(g diff bj,ijfaj) 



81 

::: 0 , j=O,l, ••• ,~. 

~ ,...,j 
~ *n g/c1+cZ g 

g/vert:Lcal 
". groups 

~j + E n 
8€vertical g 

groups 

(3.3.36) 

a - ------------.-.--,~-.-.-----------.-----.---.--------~~ , j - N 

and 

for j :: O,l, ••• t~-l 

A 

Sf3 :: 1 -
f3-1 A 

1: a . 
j=O J 

(3.3.37) 

Except for the full data case, the method for ob­

taining the estimators is an iterative one. The steps to 

follow in order to obtain the roots of tbe likelihood 

equation are 

1.. Hake an l.nitial. euess at the Illissing partial fre-

quencies such that for each g ll2! in the vertically grouped 

section of the sample~ tbes€: pa:i:·tial frequencies Rt1n1 to 

Ng ; for those g in the vertically gr:ouped section of the 



82 

sample) ~~ke an initial guess at the missing partial fre­

quencies such that for e~ch group they sum to the group 

total. 

2. With these values of the missing frequencies, solve 
A A I 

equations (3.3.36) and (3.3.37) for ~j and a j , j=O,l, ••• ,S. 

3. Using these new values of the 9j and a
j

, calculate 

new values of the missing frequencies by use of equations 

(3.3.8), (3.3.9), and (3.3.29). 

. 4. Using the new values of the missing partial fre­

quencies, solve (3.3.36) and (3.3.37) for different values 
A A 

of e. Slid' a ... 
J J ,.. 

5. Continue this process until the sequences of e
j 

and 

a. have converged. 
J 

It is readily seen that if this iterative process 

COl1verges, it must converge to the l"f.I.'e solution. This 

fol10tvs since equation (3.3.36), by m~ans of (3.3.8),(3.3.9)~ 

and (3.3.29), is identicc;ll to equation (3.3.6) includine 

the terr.1 due to vel. .. t:tcal e:t'oup:tng ana (~quation (3.3.22) with 

the e=ttra term due to vert5.cnl grouping included ;_8 identi-

cal, by using (3.3.8), (3.3.9), and (3~3.29), to (3.3.21); 

therefore, a solution of (3.3.36) r~tst be a solution to 

(3.3.6) and a solution to (3.3.22) mt'\st be a solution to 

(3.3.21). 

~le shall no'\'7 state a theorem due to Ford [8J ,.,hich 

gives suffici.ent conditions for the conVel."'gelice of the 
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preceding iterative process. The proof is omitted due to 

its similarity to the corresponding proof in Chapter II. 

Theorem: Let (eO,el, ••• ,e~) be a solution to the 

equations 

i == O,l, ••• ,f' 

and in the region 

let 

",here 

i :: O,l, ••• ,~ 

I ~ s 11 < Iv1 • o e. iJ 
J 

i,j - O,l, ••• ,a 

~ 
E 1,1.. < r < 1. 

j=O l.J 

• 
• 
• 

be found succE~ssively fr.o:"\.1 the eque.tions 
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lei = si(oeo'oelt···)oe~) 

29 i = 6i(leo '191'···'19i) 

• 
• 
• 

nei = si(n-190'n-191'···'n-19~) 

then 

i=O,l, ••• ,a. 

In the following chapter there will be a discussion 

of these conditions when working with a practical situation 

in 1V7hich the Poisson distribttt:l.on is used. 

3.4 Disct.lss5_on of The AS)1'mptotic Properties of the Esti-
.............. ~~ ...... ~ ... ~.-...:u~ •• ~?~' ................... GoMr~ ..... l11. _____ _ 

rnators 

It is well kno\Jn that under cE!rtain regul.?r:tty COl1-

ditiol1S the maXimUTi\ likelih.ood estimators trre consistent, 

asymptotically normal and unbiased vli'th dispersion matrix 

calculr::tted as the :tnverse of the inior't!1ation matrix, a 

matri,~ '\4f'hose eie11ents at"e c}:pectatiol1S of the second de-

rivatives of the likel:Lhood function. In this S(~Ctl~o11, 

we sha.ll l;~st thesE-~ regularity condItions and discuss them 

with reference to our modol. 
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The regularity conditions which insure the de­

sirable properties of a. set of maximum likelihood esti­

mators are given by Rao [lft-]. They are, for our type of 

model 
co 

1. ~ F(g)~,~) log F(g,~ao) > -~ where the zero sub­
g=O 

script denotes the true value of the para,meter vectors. 

2. F(g,i,fl):/: F(g,{i,b) for at least one g \,rhen 

[i,~J f [~,hJ, which is an ~1ent}:f~~b}lity ~~~!t;2~. 

3. F(g ,.ft.,g) adm:i.ts first order partial derivat:i.ves 

which are continuous at the true value of the par2~eter 

vector, [~o,aoJ. 

4. 7tle information matrix is non-singular at [io,!QJ. 

Since the form of the underlying distributions in 

the comb5_nation of dist:cibutiol1S diff kb partially de .. 

termines 't,mether or not these regularity conditions ~vill 

be satisfied, 'He cannot make the statemen.t that for B.ny 

such combinations of dlstr5.butions the estimators \.1i11 be 

consistent end asymptotically normally distributed. For 

this reason, the satisfaction of conditions 1-4 must be 

discussed in the presence of a given fa.mlly or families of 

component distr:'tbutlons. In Chftpter IV, \<!e shall ShOl" 

that vihel1 the CO:npol1cnt dist:t;'l.hut:i.ons are m0J'Ubers of the 

Pois son family the result ing es t:tr:1cl tOl::'S 8.1:'0 consistent e,nd 

asymptot:1Ci;.illy norrM3tlly distributed. 



CHAPTER IV 

ESTIHATION OIt" THE PARA.HETERS IN THE 

In this chapter we shall apply the M.L. estimation 

procedure developed in the preceding chapter to the de-

mand problem \>7hich wa.s mentioned briefly in Chapter I .. 

4.1 The Poisson Demand Proble~ 
• k r4 44J 

As the title of the present section indicates, the 

Poisson probability function \-lilt be the underlying dis­

tribution in the combinat5 .. o11 model. The Poisson model is 

developed through the fol1o\.\Ting: 

~12~,-t.: Assuming that the conditional probability of 

a single item being demanded in a time interval of length 

6t, siven that a non-negative integer mUltiple of bulks has 

also been demanded in the time interval, can be expressed as 

(4.1.1) 

and that tbe probab:tlity of t'\\to ot' more such de1!1ands in 

the sa~ne time interval can b(=..! e~tpressed as o(At), then 

Pr(X(t)=n diff kb) 
-GIrt( )n cliff kb e "- e t -. , .... --k_ .. __ ... , 

(n d1.ff kh) I 
(4.1.2) 

,<(here P:r(X(t)=n diff kb) is the probability that after 8. 

period of time, t, n (liff kb single items \'iill have been 

86 
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demanded given that k bulks have also been demanded. The 

proof of this theorem is given in many textbooks on sto­

chastic processes. See, for eXEl:rople t Bailey [l,page 67J. 

Hence, for the demand model we have 

[j/b]SS<oo -Ok ~(j diff kb) 
=: 1: a ~ '- t1k . ( ) 

k O k ------)--' "'=0 .. 1 ..... • 4,.1.3 = (j diff kb J ~" 

Comparing the terms in (4.1.3) with those in (1.3.1), 

we see that the Poisson portion of (4.1.3) corresponds to 

i.e., the cOl'lditional probabil:tty that (j-kb) single items 

(singles) are acmanc1(::d g1.ven that a dE~mand for j itells '-las 

made by means of k bulks. The term P(n=k) corresponds to 

ak \vhich is the probability of k bulks being demanded. 

Perhnps mention. should be made here of the physical 

signif icance of the pa!,"8meters :tl1 the pre~sent form of the 

demand model. The a'k have alrc'ady be~n expl~li11ed. The Gk 

are the, meEtn nll.'11ber of singles domanacc1 givel1 that a de-

mand has been made by k bu.lks. If one k...n.e'\V' the values of 

these parameters, ;,.1: ,,;rould then be possible to determ:tne 

how frequently mul t:iples of bulks \r?re demanded and th(!J 

efficj,~!ncy of the bulk size. The e.ff:tciency of a part5~cule.r 

bulk size ,.;ouid bE~ invE.:rs(~ly proporticl r)8,1 to the average 

number of singles demanded along '"ith 8. bulk or. a multiple 
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of bulks. For these reasons, we shall be interested in 

estima.ting the parameters i.n the model determined by (4.1.3). 

The Poisson is certainly not the only distribution 

that can be applied to the demand. probla~. In fact, in 

certain cases t it is likely that it l-1ould not fit the data 

well. In section 4.5 of this chapter, the negative bi­

nomial distribution is discussed in connection "lith this 

probl~'n. 

Before beginn1.ng with the estima.tion proble.m, con­

sider the moment generating function of this Poisson model. 

function of such a co~nbination of distributions could be 

written as 

Vet) :: 

where 'f1b(t) represents the m.g.f. of the underly3.1'lg dis­
K 

tribution. For the Poisson distribution, we ha.ve 

(4.1.4) 

Hence~ the m.g. f. of the Poisson cOlnbination model be-

comes 

(4.1.5) 
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. As is '>lell knovTn) the p-th non-central moment can be 

calculated from (4.1.5) by taking the p-th derivative with 

respect to t and evaluating it at t==O. In this manner, the 

first t\yO non-central moruents of the Poisson demand model 

were calculated and found to be 

P 
J.ll = 1: 8k(e k+bk) 

k=O 
(4.1.6) 

and 

t p 2 
J,12 ::: t at [ (e,<:+bk) +9 kJ. 

k=O t I: '" 

(4.1.7) 

4.2 !1.aximum Likellhood Estimation In The Full Data Poisson 
.. <11'. r P $J .. ..... ............... 

Demand Proble:n 
4 

In this section \<7C 'ivill obtain the Naximum Likeli-

hood estimators of the parameters and discuss their pro-

perties. From equation (3.2. 7) \ve obtain 

00 • 

t(g-jb) n j 
II< g=jb g 
9

j 
::: --;---:----- j=O,l, ••• ,S. 

E nJ 
g=jb g 

(4.2.1) 

Notice that this is exactly the estimator arrived B.t \·jhen 

there is but one Poisson param9ter to be: estimated and all 

the data are. available to the ei~pc~riment:er. 'The estirnator::l 
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for the a. \'7ere esta.blished ear'lier as 
J 

(4.2.2) 

As '\ve shall see, unlike the case of missing parti.al 

frequencies, in the full data situation it is very simple 

to sho~V' that the estimators given by (l~.2.1) and (4.2.2) 

have the usual as~nptotic properties for maxit~~ likeli-

hood estimators. In fact 5.t is trivial to ShOl-1 that the 

full data distribution admits a set of jo:lntly sufficient 

statistics for the parameters. The likelihood for the full 

data sample is 'tvritten as 

\-lhere 

00 

= h(,fl.,g", I; n~(g-bi)~N(:i-1 f(x), 
g=bi 

(4.2.3) 

and f(x) denotes a function of the observations only. TI1US 

the statistics ~ (g-bi)ni B.nd N(i) arl~ jointly sufficient 
g=b:t g 
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for a. and 9., i-=1,2, ••• ,~. (Sec !{ood and Graybill [13J). 
1. 1. 

Since it is 'vell kno\¥n that in lar.ge samples any function 

of the sufficient statistics will estimate its expected 

value vdth variance covarl.a.nce matrix given by the inverse 

of the info~ation matrix t (See Kendall and Stuart [11J, 

vol. 2, page 27), we he.ve the desired result. It can also 

be sho,·m that sufficiency insures that the likelihood 

equations have a unique solution, and the solution occurs 

at a maximum of the likelihood function. Asymptotical 

normality and consistency of the est:Vna tors g:1.ven by (4.2.1) 

and (4.2.2) will fo110\1 as a result of an argument 'tvhich 

is presented in section 4.3, as applied to the incomplete 

data situation. 

Since, for the full data case, the dispersion matrix 

of the cst:tmators is given by the inverse of the informa-

tiOl) matrix, \le shall proceed 't'1ith the derivation of the 

elements of tho iniol:m,,9.tion matrij.t. ~.J'e have 

log j", = (4.2.4) 

and 
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2 
0 2108 L "" f(g diff bktOk.8.k)~f(g diff bk.Ok .8.k ) = E nk[ _____________ ._._. ___ ._k ______________ __ 

oO~ g=bk g f2(g diff bk.9
k

.8.
k

) 

(4.2.5) 

where the random variable n~ is multinomial1y distributed. 

lienee, 

(4.2.6) 

Therefore, 

- N l: 
(~ f(g diff bk.Ok .8.k »)2 
~~~~ ... _""".'!IIf':~ 

g=bl:: 

since f(g diff bk,9k ,ak ) is the Poisson probability function. 

as a result of 
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Thus, 've can In:ite 

but 

E(g diff bk) = Gk t 

which follo'\vs since f(g diff bk,9 k ) is the Poisson fre ... 

quency function. TI1crefore, 

Finally, 

E(g diff bk - e )2 = 9k • 
k 

k=O,l, ••• ,~. (4.2.7) 

The l1cgat:tve of (4.2. 7) gives the first (f3+1) diagonal 

elements of the inverse of the dispersion matrix (infor-

rna t:lon rna trix) • 

To obtain the terrflS of the information matrix \.vhich 

vlil1 lead to the cO\tar:tances betv7een the Sk.' ,,7e ha.ve to 

evaluate 

E ~. 2 ~~3 _!!. 
oG i (je k 



where, without loss of generality, k is assumed to be 

greater than i. 

00 k ~~i f(g diff bi~ei.ai) ~ f(g diff bk~ektak) 
- E 1: n [ ---", ... .._.... · ...... " " I ., ... ] 

g=bk 8 f2(g diff bk,9k ,sk) 

but, 

Hence, 

(4 .• 2.8) 

Since 

(4.2.9) 

A A A 

the variance of a~ and covariance between a1 and a~ can be 

ca.lculated from the variances and covariances of the re-
•• Q A 

mal.n:Lng "" irldcpel1del1t Eli using the fol1ol1ing fornlulae: 

A 

Var a~ == (4.2.10) 
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(4.2.11.) 

Continuing ~ith the development of the information 

matrix. we determine 

(~ f(g diff bj,Sj,a j »)2 
- J tJ • ] 

f2(g diff b j ,9 j ,a
j

) 

2 
~ f(g diff ~b,e~,a~) ~ f(g diff ~p,ep,ap) 

+ E n" [ - · - ~ .. .. 
g=~b g 2 

f (g diff ~bte~,a~) 

That (4.2.12) must be partitioned is a result of (4.2.9). 

we have 

By the definition of f(g diff bj,e.,a.), (3.2.2), 
J J 

~f(g diff bj,eJ",a
J

e ) = ~~~(g diff bj,9.,a.) (4.2.13) oa j a
j 

J J 
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and 

Using (4.2.13) and (l~.2.14) in (l~.2.12) and taking the 

necessary expectations results in 

(4.2.15 ) 

The negative of (4.2.15), for all jf~t yields the re-

mainder of the diagonal elements of the information matrix. 

Consider the case for which !.t~2::~_. ~t::i (without loss 

of generality i>j) 

co i rl/(g diff bi,Oi,al) o~jf(g diff bi.Oi.ll.i) 
I: n [- = .. -~----.. -,--,-----'" ...... w .... "'_._] 

g=bi g f2(g diff bi,9 i ,ui> 
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= -

butt for i!~ 

and 

~f(g diff bi,el..,si) ~ 0 
08. . 

j 

E tlog_;_ = 0 • 
o 9 i Oaj 

(4.2.16) 

If vIe change the conditions which led to (If..2.16) by 

letting i=~ and ilj, we obtain 

-E ~ n~[~:(g diff ~~~) Cl"5f
(: diff flb:~~~tl~? 

g=~b f2(g diff ~b,ep,a~) 

00 ~f(g diff tlb.Ofl.tlf.l} ~~j-f{g cliff flb,9fl.tlf.l) 
= -N E ---.._-". . ... ----,,' ...... -.. ~, ...... __ ..... - .. "'- • 

g=Sb 

l1aking use of the fact that f(g d:tff. Sb,e fl ,afj) is nothing 

mo!,,"'e than the Poisson probabi11~ty function multi.plied by 
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a~, we can write 

f(g di~f ~b~~~,a~(g diff ~b - 9~) 
a~ e~ 

co 

=.!L E f(g cliff f)b,9 p )(g diff ~b - efj). 
af) g=Sb 

Following the same argument used to obtain (4.2.7), we 

arrive at 

but. 

E g diff ~b = e~ (4.2.17) 

so, 'tV'e have 

(4.2.18) 

In a simila,r manner, 've are able to sho\-1 that 

(4.2.19) 

Finally, "7e considet" the case ,-,here i!j (i>j 't-lith­

out loss of generality) 
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Upon taking the necessary expectations ar1d recalling that: 

for :tfs 

we are left ,nth 

(4.2.20) 



100 

Once again, the proper term to place in the information 

matrix is the negative of (4.2.20). This completes the 

information matrix. 

Although the asymptotic variances and covariances 

of the estimators of the parameters must be obtained from 

the inverse of the information mB;trix, the information 

matrix for the full data Poisson demand problem is such 
,. 

that it permits one to obtain the va.ri.ances of the e j ~ j= 

O,lt ••• ,~, without inverting the entire matrix. These 

variances are merely 

~ 
Ne. • 

J 

(4.2.21) 

Notice the simile.rity bettveen (l}.2.21) B.nd the varia,nee of 
,. 
e in the ordinary one-parameter Poisson problem vlh1_ch is 

given by 

~ • (4.2.22) 

The denornil'lator of (4.2.21) is noth:tng more than the e:!c-

pected frequency of demands made by means of j bulks. 
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4.3 Estimation in the Poisson Demand Problem When Only 

The Total Frequencies ar~ ~Y.:!! 

As a result of the large number of different com­

binations of incomplete data for the demand problem t we 

shall consider only the case in '\·;hich the total frequencies t 

NS ' of item demands are observed with all partial fre­

quencies missing. 

The demand problem itself first arose out of a need 

by the Logistics Branch of The Office of Naval Research. 

l{avy 8.dministrative personnel have been concerned for some 

time with the probl~n of fitting distributions of items de-

mal'lded by Navy personnel on submarines and other ships tha,t 

remain at sea for long periods of time. The eventual goal t 

of course t 'Has one of an inventory nature. For certain 

types of itE.nis) the Poisson or Negative Binomial Distri-

b'lltlon norrl1ally seemed to fit the data extremely "vell.. 

However, for other types of items, there seemed to be 

"surges" of frequencies at X'::!'2,6,or 10, etc., depending on 

the item, an.d rnultiplEHJ of these numbel"'s. The result is, 

of course, that for these items, no classical type of 

probability mod~l could be used to fit the data. After a 

close SCrtltir.~y of the itern types, it \..jt\s deter:nined that 

the itellS "1hose demand fr€!quencies had the strange surges 

at X=kb, k=1,2, ••• , v1ere those that ",,:rere packed in bulks 

of size b. 
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As a result of this, it was felt that a different 

type of probabili ty model ,,,as needed, one vlhich takes l.nto 

account the bulk problem. The combination of distributions 

diff kb probability structure seemed like a possible solu­

tion to the problem. To make the problem more difficult, 

the only data that is available to the logistics people 

are tota 1 frequencies, i. e., the number of tilnes that X 

items ,,,ere demanded., vlithout reference to whether the de-

mand ,~as satisfied by bulks, singles, or e cOlnbination of 

bulks and singles. 

Recall that j.n Chapter III we outlined the iterative 

procedure vlhich \vo1.l1d yield thf.2 maximum likelihood esti-

mators of the unkno'\\ltl parameters, if the method itself 

cOl'lverged. The iterative solutlons to the Poisson likeli-

hood equations are simply 

A 

9. ::: 
J 

(4.3.1) 

and 

00 
nJ· 

}; nJ 
A g=bj g 
a. = *"<I>.~~fttW'I.......-;t ........... (l~.3.2) 

J N 

lv-here) after the ini.tial guess at the missing pa.rtial fre­

quencies, the ,?:j al-e obtai.ned from 
g 
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(4.3.3) 
[g/b] A -e- Ag diff bi 

(g diff b j ) ! I: ~_._1._9 ......... i ____ _ 

1=0 (g diff hi). 

Briefly, the iterative procedure is the following: With 

an initial guess at the missing partial frequencies, ob­

tain values of 9j and aj from (4.3.1) and (4.3.2) respec-
,.. A 

tively. USil1B these ne'\'i values of e j end a j in equation 
N" 

(4.3.3) Olle can obtain new values of the n J which \'7ill lead g 

to a different value of 5. and ~ •• Continue this process 
J J 

untH the· sequences I e j land ( aj 1 converge. 

A considerable anlOtlnt of time and effort "las spent 

unnuccessfully trying to obtail1 a proof that the above 

mentioned i tera ti ve procedure a.l~lays cOliverges. HOv1ever, 

in performins the Honte Carlo \vork to be presented later 

in this chapter, B. rather large body of enlpi1.."'ical evidence 

was cOfilpiled \-1hich 'Yl0uld support such a proposition. The 

iterative procedure \1a9 performed approx:tmately 11,500 times 

on different bulk sizfjs. difft~:t."'ent numherg of parametE:'>rs 

involved, and different sample sizes, and it never fail(;!d 

the rates of convergence, of course) decreased, but con-

!'ZO'\v that \.yo hcl.v(: tbE-; iteratlve procedure v7hich, 5.f 
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the process converges, yield:; the maximum likelihood esti­

mat.ors, ,-re shall ShOH that ,<;hen only the total freque.ncies 

are kno\~a the regularity conditions listed in 3.4 are satis-

fied. Hence, '\ale "rill have established the desirable 

asymptotic properties of the estimators. 

90~9~t~on~1: For our model, this condition is written 

• (4.3.4) 

By the definition of F(g,i,~), 

lvhere 

(4.3.5) 

end, therefore, 

So vIe have 

- a o l'!~ log g I 

= ao log 80 - aoO o - a~eo log eo 
- aoE log gl (4.3.6) 
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and, for non-Zero a o ' 't'le have all the ter;ns in (4.3.6) 

finite ~~cept for the possible e:;\:cept1on of E log g J. 

Consider E log g J • From Feller [7J '" we have 

(4.3.7) 

which 1.mplies 

" log g J < ~ log 2fT "+ (g+~) log (g¥2) - (g+%). 

Hence, 

E log gl < ~ log 2IT + E (g+~) log (g+~) - E (8+\). 

How-ever, since 

(8+~) > log (g"'r''2) for all integers. 

"1e have 

• 

So, finally, we have 

> .... co (4.3.8) 

and condition 1 is satisfied. 

9.QJ2f1 .... ir~LQ...n __ 2.: SincG lj~nee.r comblnatlol.1s of Poisson distri­

butions are identifiable t Teich~r [17J, condition 2 is 
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satisfied. 

POlld).tiQ!L~: Since F(g,~,ao) is nothing more than the 

v7eighted sum of Poisson probability functions, each adulitting 

continuous first derivatives, tlle condition is satisfied. 

Thus) for the Poisson de~and problem with only the 

total frequencies known, we have insured the existence of 

a consistent, aS3~ptotical1y unbiased and nor~al1y distri-

buted solution to the likelihood equations with the aSj~p-

totic variance-covariance matrix given by the inverse, 

assuming it exists t of the tnformation matrix. Note that 

this implies, for the full data case, that the un:tque 

solution to the likelihood equations is consistent, as}~p-

totically unbiased and nor~al1y distributed with covariance 

matri't' equal to the inverse of the irliormat; .. on matrix, the 

elements of which 'Her.e developed earlier in th:ts chapter. 

As \"1e have just seen, for the case in w11.ich only the 

total fl:equencies 8.re kno'\m, the elements of the inverse of 

the dispersion matrix of the esti,mators are calcula.ted from 

the various second derivatives of the likelihood function. 

In this cS.se 

Log L (4.3.9) 

The second derivatives are 
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(4.3.12) 

(4.3.14) 



I: 
g=bj 
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(4.3.15) 

Notice that in equations (l~.:;. 10) - (4. 3. 15) whenever i al~d 

j appeared together j was assumed to be larger. 

The Ng are mt1.1tino:nially distributed lvith 

(4.3.16) 

Upon taking the expectations and simplifying, equations 

(4.3.10)-(4.3.15) beco~e 

E P~l!'~Ll!::: -N ~ (f(gRMdi_~~_.t:~.:1,ej2_::j)-f(g. ~ff ~!_ejt~i~: 
093 g=bj F(g,i,~) 

(4.3.17) 

where the second te1:m :tn the nunlerator does not contribute 

until g ::. ~b. For example, let ~~2 and b:::6. 

1 
F(ll,!t,~) -= 1: f(11 diff 6k~ek,ak)· 

k=O 
(4.3.19) 
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We see that a2 does not appear in (4.3.19) and therefore 

the derivative \dth respect to 82 of (4.3.19) is zero. 

HO~-1ever, When g::::14, ',7e have 

(4.3.20) 

with a2 appearing in (4.3.20) and hence, the derivative of 

(4.3.20) with respect to 82 is non-zero. 

E ~210U ". -N E[(:"~~_~~j-l~ .: f(gd~ff •. J;~.~~) 
091 a9j g~bj F(g,i,~) 

Again, the terms preceded by a m:i..nus sign in the numerator 

do not contribute until g ~ Pb. 

E 2 ~1.<?~ .. 1 :: _!~ ~ [( f (!.~~:: f ~:L: 1 , e j , a.i ) -.~ ~ ~ ?.i f f ~ .. ~,1!~i~.~ i.~ 
o9 j oai g=bj F(g,i,a) 

T'ne term that: contains 913 a.nd 8..fj do(.!~s not contribute until 

8 ?!'. fjh. 
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E ~ 21~g .• 1:. = -N ~ [(~. (8 diff t:~ :1..!..!J ,a j )-f (g diif bj, e j ,at» 
aa j oa j g=bj F(g,i,~) 

.(~f(g diff bj,ej,aj)-~(g diff ~bte~.a~)~.(4.3.23) 

As before, the term involving e~ and a~ does not contri" 

bute until g 2:. flb. 

The Inatrix whose elements are the negative of the 

terms just derived 'Hill be the information ro.atrix. The 

variances and covariance of the estimators 'Hill be the ele-

ments of the inverse of the!! information matrii{. 

4.4 i'lolite Carlo Study of the Variances of the ¥lB.ximum .""-__ .. ~~ ... ,,w............ "'~_ .. """" ___ ..... at ... ~,.. .......... ~ 

Likelihood Estimators 

It ~vas decided to compare the large sample variances 

of the estil.1'lators \·7hen all the data are avail~tble 'Hith the 

variances of the estimators when all the partial frequencies 

are missing v7ith only the total frequenc;.es knoWD t in order 

to gain an insight 011 hO'\\1 the ho:cizontal grouping affects 

the variances. Consideration of al1Y of the cases of data 

arrangement between full data and totally, horizont~ .. lly 

grouped data 'tvas impract:"a..cal due to the large number of 

possible combinations of partially complete data. 

The variances of the esti!nators obtained in the 

totally, ho:cizontal1;t grouped denal"ld p1:oblem 'I;.]ere investi-

ga ted by l.'fonte CLu:-lo Gir~~ul.l:l tion 0)1 an IBM 7040 COhlputer. 
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For given known vall1es of the parameters involved, 1000 

random samples of a predetermined size were generated 

from the demand distribution. The estimates of the pa-

rameters vIere obtained by using the iterative procedure 

discussed in Chapter III and section 4.3 of the present 

chapter. From these 1000 values of the estimates of the 

parameters, the variance of each estu~tor, including its 

standard error, was calculated. The results of the Monte 

Carlo study are given in tables (4.1)-(4.6). In each of 

the six tables, it will be not5 .. ced that the Monte Carto 

variances are close to tIle large sa~ple variances obtained 

from the diagonal. of the dispersion matrices. 

As a. result of the de:nan.d model, in any practical 

applicatio11, the sample space of the COmpOl"lent distribution 

containing Sj is s:naller by a bulk size than the sample 

space of the distribut:ton contain;'l1g e j-l. Hence, the 

distribution con·talning e f3 has the smallest sa.mple spe.ce 

of any of the distribut:tons consider~,,;d al'ld thus j~ t 'Hould 
A ,. 

appear that the varia.nces of 9p and afj would be much 

larger than the variances of so::ne of the other estimators. 

HOViever, such is not the case as can be Seel'l in the ~fix 

tables. 

From studying the elements of the informati.on matrix 

in both the full data and horizontally grouped data cases, 

equations (4.2.7)-(4.2.20) ru1d (4.3.17)-(4.3.23) respectively, 
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TABLE 4.1 

Variance Comparisons b=6 (6 parameters) 

l10nte Carro-'- Large Sample 

Var So :: 0.071329 ( • 009048 ) "l.: Var 9
0 

:: 0.065670 

Var a
1 = 0.018792 (.002851) Var 91 = 0.019046 

Var: 92 
:: 0.002361 (.000173) Var 92 = 0.002473' 

Var 8
0 

:: 0.000938 (.000106) Var ao -~ 0.000860 

Var a 1 = 0.000870 (.000094) Var a -1 - 0.000861 

Var a2 = 0.000428 (.000060) Val:' a 2 = 0.OOOl~57 

9 --
0 

4.0 91 == 2.0 92 == 0.4 

8 0 = 0.33 a
1 = 0.34 a Z :: 0.33 

Bulk Size :::: 6 

Sa.mple Size = 500 

.... ~....,.,.."...~.iI-::..w."'~~ •• .." 

*'L1.e qtla1l1.t::i.ties in parentheses 8.rc the standard errors 
associated with eech variance. 
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TABLE 4.2 

Variance Comparison, b:6 (10 parameters) 
* .... zm(j .... ,. -. 

Honte Carlo Large Sample 
II "~M"""" 

Var e '= 0.026074 (.003105) 
0 

Var eo '= 0.025403 

Var 91 = 0.050141 (.006417) Var e1 '= 0.053807 

Var e2 == 0.127383 (.019195) Var 92 '= 0.153354 

Var 93 '= 0.315606 (.1..05881) Var 93 '= 0.147088 

Var 94 '= 0.043542 (.006186) Var 94 =: O.Ol!-6030 

Var 8 0 -= 0.000147 (.000018) Var 8 0 '= 0.000147 

Var a1 '= 0.000307 ( .. 0OO05l~) Var a1 -= 0.000308 

Var a2 '= 0.003716 (.000407) Var: 8 2 '= 0.004054 

·Var 8 3 == 0.003022 (.000323) Var a3 = 0.003689 

Var a4 =: 0.000217 (.000035) Var B4 : 0.000211 

Go '= 1.0 91 '= 3.2 92 '= 5.6 93 = 2.7 9
4 

'= 1.4 

So = 0.08 a 1 '= 0.17 a 2 '= 0.50 a 3 '= 0.17 a 4 '= 0.08 

Bul.k Size == 6 

Sample Size '= 500 
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TABLE 4.3 

Variance Com.parison, b=7 (10 parameters) 

lvf..ont e Carlo Large Sample 
........... ~. • ...... .e ..... 

Var 00 ~ 0.024794 (.002177) Var 90 = 0.025079 

Var 91 = 0.046325 (.005708) Var 91 = 0.046315 

Var ,02 = 0.075092 (.011769) Var 92 = 0.078534 

Var 93 = 0.105330 (.025509) Var 93 = 0.089345 

Var 94 = 0.041953 (.003821) Var 94 ~ 0.037903 

Var no = 0.000150 (.000021) Var ao = 0.000147 

Var a1 = 0.000287 (.000047) Var a1 = 0.000293 

Var a 2 = 0.001408 (.000216) Var B2 = 0.001566 

Var a3 = 0.001225 (.000136) Var as ~ 0.001335 

Var 8
4 

= 0.000162 (.000011) Var a4 = 0.000159 

90 = 1.0 91 = 3.2 92 = 5.6 93 = 2.7 94 = 1.4 

a o = 0.08 8 1 = 0.17 a 2 = 0.50 a 3 = 0.17 a 4 = 0.08 

Bulk Size = 7 

Sample Size = 500 
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TABLE 1~.4 

Variance Comparison, b~8 (10 parameters) 

-------------------------~-------------------Monte Carlo Large Sample 
--___________ • ___ ~. ____ • ___ .• ____ , ___________ ~ ___ ' __ n_ 

Var Go :: 0.024896 (.OO325 l }) 

Var 91 ~ 0.043160 (.004627) 

Var 92 :: 0.049552 (.006665) 

Var 93 =: 0.061692 (.010593) 

Var 94 ::: 0.039943 (.004462) 

Var ao =: 0.00014.9 (.000025) 

Var a 1 :: 0.000299 (.000061) 

Var a 2 :: 0.000880 (.000117) 

Var a3 = 0.000634 (.000068) 

Var a4 :: 0.000150 (.000020) 

eo ::: 1.0 G
1 

=: 3.2 92 =: 5.6 

Cto :: 0.08 a1 -- 0.17 82 ~ 0.50 

Bulk Size ::: 8 

Sample Size -. 500 

Var 90 =: 0.025013 

Var 91 :: 0.042364 

Var 92 :: 0.050635-

Var 93 = 0.061218 

Var 94 ::: 0.035752 

Var ao = 0.000147 

Var a1 :: 0.000287 

Var a
2 

:: 0.000887 

Var a3 :: 0.000667 

Var a4 :: 0.000150 

93 = 2.7 94 :: 1.4 

83 :: 0.17 8 4 =: 0.08 
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TABLE 4.5 

Variance Comparison, b=9 (10 parameters) 
.... 

Monte Carlo Large Sample 
L rt 

Var 90 = 0.022857 (.003318) Var Go = 0.025002 

Var 91 = 0.038778 (.005350) Var 91 =: 0.040036 

Var 92 =: 0.036120 (.005893) Var 92 = 0.037797 

Var 93 = 0.052841 (.005934) Var 93 =: 0.047380 

Var 94 = 0.033679 (.005632) Var 94 =: 0.035192 

Var 8 0 = 0.000151 (.000018) Var 8 0 = 0.000147 

Var 8 1 =: 0.000259 (.000037) Var a
1 

=: 0.000283 

Var.a2 =: 0.000667 (.000086) Var 82 = 0.000658 

Var 83 ::: 0.000417 (.000060) Var a,3 :-:: 0.000439 

Var a4 =: o. 0OO141~ (.000023) Var 84 =: O.0001 l .8 

90 =: 1.0 91 =: 3.2 92 = 5.6 93 = 2.7 94 ~ 1.4 

a o = 0.08 a
1 

=: 0.17 a 2 = 0.50 a3 =: 0.17 a 4 =: 0.08 

Bulk Size =: 9 

Sample Size =: 500 
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TABLE 4.6 
Variance Comparison, b=10 (10 parameters) 
~~ 

'Monte Carlo Large Sample 
~~~~~ .... 

Var 90 ::: 0.027557 (.1)04236) Var 90 ::: 0.025002 

Var 01 ::: O. 03893l~ (.004815) Var 91 = 0.038685 

Var 92 ::: 0.031666 (.0052.42) Var 92 ~ 0.031103 

Var 03 ::: 0.039453 (.006476) Var 93 ::: 0.040159 

Var 94 ~ 0.036126 ( • 0030 l t l .,) Var 94 :: 0.035047 

Var ao :: 0,000158 (.000018) Var 8
0 

:0;: 0.000147 

Var a1 :::: 0.000277 ( • OOOf')3l~) Var a1 ::: 0.000283 

Var. a2 :::: 0.000564 ( • 0OOO9 t+) Var 8 2 == 0.000568 

Var a3 :::: 0.000350 (.000033) Var 8.3 :::: 0.000350 

Var a4 :::: 0.000145 (.000022) Var 8.4 '= 0.000147 

9
0 

:::: 1.0 91 = 3.2 92 ~ 5.6 93 ~ 2.7 G4 ~ 1.4 

eo :::: 0.08 a1:::: 0.17 82:::: 0.50 a3 = 0.17 84 = 0.08 

Bulk S:tze ~ 10 

Sample Size ::: 500 
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it can be seen that the information matrix is nlultiplied 

by the scalar N and hence the dispersion matrix is multiplied 

by liN. Therefore, the effect of sc:unple size is such tha.t 

the variances of the estimators when the sample size is N 

are k times greater tha.n those when the sample size is kN. 

For this reason, only one sample size, N=500, will be con­

sidered in the discussion of the trends observed in the 

asymptotic variances of the estimators. 

In order to indicate what effect bulk size has ort 

the variance of the est:tmators when different nUfubers of 

parameters are present in the model, the dispersion matrix 

was calculated ul1.der a. va.riety of cOli.diti.ons and the vari­

ances \vere studied and compared \1ith the full data varl­

ances. Thus ,.;re are able to see ho\.y a complete sa,mpl.e in­

creases the precision of the estimator as compared to the 

totally) horizontally g:couped sample. The resul ts are 

tabulated end can be found in tables (4 .• 7) and (4.8). 

From studying t'e.bles (4.7) and (l~.8), the effect of 

cha.nging bulk size is very evident. As the bulk s;.ze i11-

creases, the v8.rial1ces of the est:l.ma tors i.n the totally, 

horizontally grouped situation approach the variances of the 

estimators in the full data. case. Th~~s can be explained in 

the follov;;ing m~nner. For th.c Poisson distrlbutio11, the 

variance equals the mean and therefore if the mean is small, 

the ttspread tf of the c1istributio:n is also small. l:ronce, the 

larger tht~ bulk size the more nearly th(~ total obnerved 
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TABLE 4.7 

Varying Bulk Size (10 parameters) 

. .... -.-... -
Bulk Size . "'/J "'.-6 7 8 9 10 Full Data 

A 

Var Go .025403 .025079 .025013 .025002 .025002 .025000 

Var ~l .053807 .046315 • 04236l~ .040036 .038685 .O376l l7 
,. 

Var 92 .153354 .078534 .050635 .037797 .031103 .022400 
A 

Var 93 .147088 • 0893l~5 .061218 .047380 .040159 .031765 
A 

Var 94 .046030 .037903 .035752 .035192 .035047 .035000 
A 

Var ao • 0OO1l~7 .000147 .000147 • 0OOll~7 .000147 .000147 
A 

.000308 Var 81 .000293 .000286 • 00028/0\- .000283 .000282 
II<> 

Var a2 .004·050 .001566 .000888 .000658 .000568 .000500 
II<> 

Var a3 .003639 .001335 .000668 .000439 .000350 .000282 
A 

Var a4 .000206 .000160 .000152 .000151 .000147 .000147 
~~.""!:3IIi' ......... "_FT"~~~~,""""t'l ... -..: .. ...,(~~ 

eo ~ 1.0 91 = 3.2 92 = 5.6 93 = 2.7 94 = 1.4 

So = 0.08 a1 = 0.17 a2 = 0.50 a3 = 0.17 8 4 = 0.08 

Sample Size = 500 
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TABLE 4.8 - Varying Bulk Size.(20 parameters). 

----------------------------"--~-, -----------Bulk Size 

6 7 8 9 10 Full Data 

" Var 9
0 

.070265 .070036 .070004 .fJ70000 .070000 .070000 

" Var 91 .030321 .030056 .030008 .030001 .030001 .030000 

Var 52 .025022 .024568 • 024l~6 7 • 024l~48 • 0244l~5 .0244·44 
A 

Var 93 .019391 .018776 .018615 .018580 .018573 .018571 

'" Var 94 .038201 .033352 .030690 .029318 .028729 .028421 

" Var 95 .072133 .055486 .047933 .044165 .042188 .040000 

" Var 96 .357607 .188688 .130616 .104798 .091426 .074286 
,. 

Var 97 1.13275 .l!.l~3029 .2l!.579l 1· .170089 .135526 .102222 
,. 

Var 98 .189935 .127062 .099215 .086585 .080812 .076667 
,. 

Var 99 .18281l~ .158770 .152226 .150521 .15')111 .150:)0 

Var a .000039 .000039 .000039 .000039 .000039 .000039 
o 

Var a1 .000113 .000113 .000113 .000113 .000113 .000113 

Var 8.2 .000164 .000164· .00016q· • 00016l~ .000164 • 00016l~ 

Ver a3 .000242 .000241 .000241 .000241 .000241 .000241 

,-
!far al~ .000328 

Var as .000363 

.000315 

.000331 

.000310 

.000318 

.000309 

.000312 

.00Q308 

.000310 

• ()00308 

.000308 

Var a 6 • 00051l~ .000334 .000281 .000259 .000250 • 0002l~1. 

Var 87 .000498 .000280 .000213 .000186 .000174 .000164 

Var a8 .OOOL}73 .000204 .0001l l.3 • 000121~ .000117 .000113 

Var Eto .0000/+5 .OOOO!}l • OOOOl~l .000039 .000039 .000039 
." 

~w~~~· ... ~~ ........ ~JIt·.~ ....... ;~"' .... ,t_,.., .... '*""'~ .. ~..&.'1O,~~ ...... b~~,~ ... ~1tIt ... ~':'C' ....... ~£.~_.:.oit .. ...".,......_ItI:I;;r~~~'tt,4IIIIP-""'" 

90 =0.7 el~O.9 92=1.1 e3~1.3 94=2.7 95=3.8 e6~5.2 97=4.6 98=2.3 

99=1.5 8 0 =.02 8 1=.06 8 2=.09 8 3=.14 8 4=.19 as=.19 a6=.14 a7=.09 

a8~.06 a 9=.02 Smnple Size = 500 
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frequel1cil~S are equal to the partial frequencies of the 

dominant co;-nponent distril)ution~ e.g. suppose that the bulk 

size is six, then froill a table of Poisson probabilit1.es with 

91 ,= 4.2, 92 = 1.1, and 8 1 = 8 2 = 0.5, the probability of 

having a demand for 7 single items is O.03l~3 and the prob­

ability of having a demand for 7 items by means of a bulk 

of six and a sinele is 0.1831. ~,rnile the probability of a 

demand for 7 items by means of a bulle and a single ite:n 

is approximately six times 1areer thcln that for havin.g a 

demand for: 7 sinsle items.r it is still reasonably Hl<ely 
I 

that a deinand for. 7 single,s 'V7ould be ma.de. HO\4ever, con-

sider'the same probelm Hhel:1 the bulk size is 12. The 

probabillty of a demand for 13 8i1'1g10 l,te~ns (one more than 

the btllk. size - as considered when the bulk size "\\Ta9 6) 

is 0.00015 \qhereas the probability of having a demand for 

13 items by means of a bulk of tHelve and a single is about 

0.1331. In this case, with a large probability) the total 

fr.equency of 13 iteiTIs equals the partial frequency of a 

bulk and 8~ 8i)'131e. Hence, 'tV'e are in the full data case 

for all practical put'p{)ses 8.l1d for tbJ.s reason as the bulk 

size increases the variances of the est~nators approach 

1ncj:eaS~f..113 the size of the parameters Hottld have the same 

effect as decreasing the bulk size. It is rather in-

terestinz to note the inver3c similar.ity bet\N~en bulk size 

in this chapter and eroup s;~ze in Chapter II. 
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larger bulk sizes the precisiort is good, "1hile for the 

situation discussed in Chapter II, l~rge group sizes re­

sult in less precision. 

Recall that for the Poisson distribution the vari­

ance of the maximum lil(elihood estima.tor of the pare.meter 

is directly proportional to the size of the parameter. Since 

we are dealing with a combination of Poisson distributions t 

it 'Has thought that the si~.e of the parameter might affect 

the variance of the estimators. In tables (It. 7) and (l~. 8) 

the parameters e,rE~ allo':-'ied to vary and it is im.possible to 

detE.!rmj.ne \yhethel: ot' not the parameters are being esti­

me.ted \~i5 ... th equal precision. In order to study the pre­

eisio!:l wl th which the var:tous parameters clre E-~stimated, 

all the €I values 't<lere made equal as WerE~ the a values. The 

Vari{;lnCe-covar:tance matr:1.x of the estimators of the csti­

rna tors tv~\S celcula ted 8.nd the d:to.gcl n3.1 elements of this 

matrix appear in tables (4.9) - (4.13). It can be seen 

from these tHbles tha.t the ini t:i.al llna latter v81ues of the 

parameter v€·ctors are estS.mated with more precision than 

thOSE! toward tha cl:::nter of the vectors. The other trends 

explained earlier in this chapter can also be observed and 

they are unchanged. 

In the preCE-:cJillg 'Vlork, vlC have only considered the 

diftgonal elements of the dispersion Tnntrix of the cstirnators 

of the par.erneters for th.€! dcm:lnd proble:m. \:lhile these in­

di vidual ele.mel'1ts are import8!lt tit 1.9 difficult to obtain 



TABLE 4.9 
Varying Bulk Size '\.J'hen i=l . ..Q (10 parameters) 

Bulk Size 

3 4 5 6 7 8 9 10 Full Data 

Var e .019362 .012599 .010697 .010162 .010032 .010005 .010001 .010000 .010000 
0 

V/lr 01 .021547 .012859 .010734 .010167 .010032 .010005 .010001 .010000 .010000 

Var 92 .021586 .012859 .010734 .010167 .010032 .010005 .010001 .010000 .010000 

Var 9..., .. 021496' .012857 .010734 .010167 .010032 .010005 .010001 .010000 .010000 
~ 

'l'l'a:r: e .Ole!.4S .01018'1 .OlUOJ3 .01:00()5 .010001 • 01000'0 ~oroooo 
.. 
.010000 .010000' ..... 

~ 4 "" <.,...) 

Va.!: ao .000385 .000330 .000322 .000320 .000320 .000320 .000320 .000320 .000320 

Var a
1 

.000439 .000339 .000323 .000320 .000320 .000320 .000320 .000320 • Q00320 

Var C\2 • OOOl~4·0 .000339 .000323 .000320 .000320 .000320 .000320 .000320 .000320 

Var a 3 .000l!-40 .000339 .000323 .000320 .000320 .000320 .000320 .000320 .000320 

V;: .. r a4 .000387 .000330 .000322 .000320 .000320 .000320 .000320 .000320 .000320 

eo = 9l = 92 = 93 = e4 = 1.0 a = a 1 ~ s2 = aft = a = 0.20 o ~ 4 
Sample Size = 500 



TABLE 4.10 
Varying Bulk Size. 't-7hen i~2 '! 0 (10 parameters) 

Bulk Size 

3 4 5 6 7 8 9 10 Full Data 

Var eo .093389 .Ol1-5083 .029768 .023822 .021379 • 02044l~ .020126 .020032 .020000 

Var 9
1 

.224443 .063188 .033274 .024581 .021551 .020482 .020134 .• 020033 .020000 

Var 02 .251102 .. 06t",345 .033326 • 02L!-583 .021551 .0204·82 .020134 '.020033 .020000 

Var e., .217124 .062223 .0331ii .024574 .021550 .020482 .020134 .020033 .020000 
..J .... 

Vc.r 94 .039477 .026100 .021963 .. 020579 .020154 .. 020037 .020008 .020002 .020000 "" .t:'-

\far e.o .001073 .. OOOl~51 .000351 .000328 .000322 .000320 .000320 .000320 .000320 

Va:: 81 .001£;.51 .000526 .000375 .000335 .000324 .000321 .000320 .000320 .000320 

Va.'!: a 2. .001611 .000536 .000375 .000335 .000324 .000321 .000320 .000320 .000320 

Var «:1,3 • OOll~98 .000529 .000375 .000.335 .OOO32l~ .000321 .000320 .000320 .000320 

Var a 4 .001241 .000456 .000351 .000328 .000322 .000321 .000320 .000320 .000320 

9
0 

= a1 ~ 92 = e3 = 94 = 2.0 a o = a 1 = a 2 = a 3 = a 4 = 0.20 

Sample Size = 500 



Var 00 

Var 91 
Var e 

2 
Va.r 0., 

,J 

Var 94 

Var a o 

Var 0.
1 

V"'r ~ <='. ~2 

Var a3 

Var a 4 ... 

I) !': e .. o .L 

TABLE 4.11 
Ve.ry;'ng Bulk Size Y7hen .2.= 3.0 (10 parameters) 

:3 4 5 

.348797 .117325 .065415 

1.87009 .290784 .102155 

2.74077 .329594 .105391 

1.78283 .278258 .100221 

.130977 • 0605l~6 • Ol~2327 

.OOl}llO .000871 • OOOl~56 

.007239 .001071 .000522 

.007907 .001159 .000533 

.007383 .001088 • 0OO52l~ 

.005289 .000937 .000461 

:= 92 ~ e"" -. ::; e -" 0 4 .- ..;. 

Bulk Size 

6 7 

.046951 .038373 

.057625 .OlJJ'1770 

.057962 • ()41802 

.057283 • Ol~1718 

\~O35460 .032309 

.000364 .000335 

.000393 .000347 

.00039/+ .000348 

.000393 .000347 

• 0OO36l~ .000335 

Sample Size ~ 500 

8 9 10 -Full Data 

.033890 .031627 .030608 .030000 

.034940 .031935 .030694 .030000 

.034942 .031936 - .030694 .030000 

• 03l~934 .031935 .030694 .030000 

.030862 .030282 .030083 .030000 

.000325 .000322 .000320 .000320 

.000330 .000323 .000321 .000320 

.000330 .000323 .000321 .000320 

.000330 .000323 .00032l .000320 

.000326 .000322 .000321 .000320 

a o ~ al = a2 = a 3 = a 4 = 0.20 

t-' 
I') 
f.JI 



TABLE 4.12 
Varying Bulk Size ~vhen i==4.0 (10 parameters) 

Eulk Size 

3 4 5 6 7 8 9 10 ·Full Date. 

Var eo 1.05819 • 2647l~4 .1234·98 .079876 .061338 .051924 .046611 .043421 .040000 

Var 01 11.l~803 1.1..3841 .279724 • 12l,,023 .. 077335 .058502 .049385 • 04l~513 .040000 

V~r 92 21.9395 1.51l~13 .309631 .127763 .077905 .058592 .049398 • 04451l~ .040000 

Var 9., 11.0808 1.07133 .269924 .122061~ .076889 .058401' .049365 .044510 .040000 
.J ,... 

Var el~ .le.OOO20 .129708 .O7l}608 .056312 .043351 .044349 .042160 .040951 .040000 
I') 
0\ ' 

'1a,r a .. Oll~l~·23 .001946 .OOO6i7 .000L,'.33 .000364 .000338 .000328 .000323 .000320 
0 

Ve.!: a 1 .045165 .002681 .000798 • OOOl~98 .000391 .000352 .000334 .000326 .000320 

\Tar a2 .037429 .002884 .0008[:.5 .000496 .000393 .000353 .000334 .000326 .000320 

Var a~ .045614 .002699 .000805 .000489 .000392 .000352 • 0OO33l~ .000326 .000320 
...; 

Var a 4 .027301 .002333 .000703 .000436 .OOO36l} .000339 .000328 .000323 .000320 

9
0 

= 91 ~ 92 == 93 ~ 94 ~ 4.0 a o ~ a 1 == aZ = as = a4 ~ 0.20 

Sample Size ~ 500 



TABLE 4.13 
Varying Bulk Size when i~2!O (10 parameters) 

Bulk Size 

3 4 5 6 7 8 9 10 Full Data 

Var eo 2.89176 .556606 .218556 .127130 .091406 .073990 .064296 .058515 .050000 

Var 0., 53.8806 3.93862 •726A365 .256556 .136879 .093093 .073117 .062791 .050000 
.I. 

Var e 
2 126.079 6.19998 .886534 .276642 .140263 .093746 .073246 .062816 .050000 

Var e., 52.5947 3.68867 • 69f)l~70 .249838 .135214 .092643 .072997 .062.761 .050000 
:i .... 

Var 94 1. 1222Lr. .267494 .126717 .035479 .068i20 .060450 • 0.55905 .053302 .050000 l'l 
.....: 

Var flO • 04l}l~79 • 004l~56 .001113 .000556 • OOOl~10 .000359 .000338 .000329 .000320 

Var: a1 • 24l .. 066 .008052 .001.359 .000640 .000455 .. 0OO38l~ .000352 .000336 .000320 

Var a2 .153278 .007531 .001467 .000666 • OOOl~6l .000386 .000352 .000336 .• 000320 

Var a3 .258935 .007949 .001371 .000644 .000456 .000385 .000352 .000336 .000320 

"Iar (14 .104093 .006036 .001213 .000566 .000412 .000359 .000338 .000329 .000320 

eo ~ 91 ~ 92 ~ 93 ~ 9
4 

~ 5.0 13.
0 

= a 1 ~ a 2 = a 3 = a
4 

= 0.20 

Sample Size = 500 
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a measure of the over-all variability in the estimators of 

these parameters from them. The determinant of the dis­

persion matrix, called the generalized. variance, is a scalar 

value \vhich does give us an insight into this overall 

varia,bl1ity. Tables (4,.14) and (4.15) illustrate ho\v in­

creasing the bulk size affects the generalized variance. 
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TABLr: 4. llJ. 

Bulk Size vs. Generalized Variance (10 parameters) 

Bui'-k-SJ.-·z-e----- Gen. Var. 
------.------.-.-.-.-... ~,---------

6 

7 

8 

9 

10 

73. 21608'~10-13 

9. 17677x10-13 

2. 57 5l~lxl0-13 

1. 17095xlO-13 

O.71404xl0-13 
,...,._ at t. Dc...," •• ~_ .. _._. _____ _ 

Full Data 

e ::: 1.0 9
1 

:: 3.2 G2 
_. 5.6 

0 

9
3 

:: 2.7 e := 1.14- a -- 0.08 
ll· 0 

a l 
:: 0.17 a2 

::= 0.50 8_
3 

-- 0.17 

a4 - 0.08 

SamplE! S:tze -- 50 
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TABLE If.15 

Bulk Size vs. Generalized Variance (20 parameters) 

------~~~~~-.. ------
Bulk Size 

4 

5 

6 

7 

8 

9 

10 

Full Data 

Gen. Var. 

905,603,34~Al0-29 

62 397xlO-29 , 
353.21xl0-29 

19.84xlO-29 

3.77xlO-29 

42 0-29 1. xl 

O.8008xlO-29 
....... , _.". ..-~ 

O.3999xlO-
_ ,.. ... ~ ... "I ••• _'iiWbS..,a:.,c .-~ .... ;;: .... 

Sample Size ::-: 50 
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4.5 General Co:n.-nel1ts Concernlng the Demand Problem 

In Chapter Ill, the ~H.L. estimation procedure for 

combinations of distributions diff kb 'vas developed lvith-

out regard to specific component distributions. In the 

present chapter, ¥7e have applied these methods to the de­

mand problem in 'talhich the underlying distribution vlas te.ken 

to be Poisson. Tne Negative Binomial Distribution can also 

be applied to problems concerning item demands. Its use is 

justified in either of two \Vays. 

1) Suppose that the number of demands per unit: time 

follo'\vs the Poisson distribution \vherE:as the number of items 

per demand follows the IJogarithm:tc Distr1.htltion~ then the 

number of items dem8,flded lvill be distributed 8.S a Poisson 

compOU11ded with the lozari.thmic distributiol1. It is well 

knovJl1 that the compotlnd:1.ng of these ttvO distrl.but;_ons re-

sults in the Neecltive Bitlomial Distribution. See, for 

insta.nce, Fe.ller [7J, page 271. 

2) If one is wIlling to El.ssume a prior distribution on 

the p.arameter in each one of the Po:tsson distributions in 

the demand model and, as a result of some further l~now'" 

ledge, one knotvs that those priors are of the Gamma family, 

then one can also arrive at the Negative Bino:nial as the 

Ul1derly:l.ng distribution fo:: the demand probl~m. See Kendall 

and Stuart [11J, Vol 1, pages 17.9-130. 

The only method of estimation studied in th:ls 
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dissertation has been the:t of maximum likelihood. The 

method of moments is another possibility. However, from 

the difficulty of the moment generating function and the 

fact that to obtain these 'estimators a system of 2~+1 

simultaneous equations must be solved for the Poisson de-

mand problem, it hardly seems worth the effort consid~ring 

the ease with which the maxinmm likelil100d estimators are 

4.6 A Further Application of Piff kb Combinations of 
•• M • .................... ~.........,. .. $!'_.: .. 't~~. I .... ~~~ ........ 'o •• , ... 

Distribu1:i0l1S 
~-....... 

The combination of d:ts tributions di.ff kb probahili ty 

model has possible applica tiO:i1S :i.n GValtUl tins the per-

formance of anti-missile missile systc-:ms for use aga.inst 

mis811€!s \·7h:i..ch are capable of car:cying multiple warheads. 

l'he random variable vn1.ich lv-ould be of i.nterE':st here \Y'ould 

be the nu-::nber of 'HB.rhonds destroyed by the antl-ballist:l.c 

missile before they re8.ch their targets. Since the '\ .. Yar-

heads are ce.rriE:-d in bulks of size b on. an offens:l.ve 

missile, it is assumed tha.t by dentroying one missile 

carrying the mUltiple warheads, b 'Hclrhec.ds ",ould be de .... 

stroY0c1 simultaneously; othervise a single defensive missj4J ... e 

could only destroy one wcrhead. Hence, the probability 

P(X~n) ::: 
[nib] 

E P(X~l1 diff kb(n=k)p(O=k) 
k::::O 
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where P(X-:=n) is the total probability of destroying n war­

heads; P(X=n diff kblO~k) l.S the probability distribution 

of (n-kb) single 't'larheads being destroyed given that k 

missiles carrying bulks of,uarheads has been destroyed; 

and P(O=k) is the probability of destroying k missiles 

carrying multiple lvarheads. 

It is possible tha.t the componElnt probability fu.nc­

tions do not all belong to the same family of distributions 

since there could be more than one type of defensive missile 

being used. One system could be developed to give distant 

protection, i.e. to destroy the incoming missiles at great 

distances from the target "lhile another system could be 

used to back up the first system by destroying the 't<7ar-

heads that pel1etrated the :l.nit:ie.l defensive system.. From 

this model one could study the effects of bulk siz.e on the 

probabil:t t:t,es of destrLlction of '·1e.rheads and perhaps arrive 

a t some optimum bulk size 't<7hich minimizes the proba.bil:i.ty 
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9ROU.Elll.Q .. _1-lLJ.TE~ DEl,tA.ND PROBL~!,fS, 

by 

Walter H. Carter, Jr. 

In this dissertatlon an iterative procedure, due to 

Hartley (9J, for obtaining the maximum likelihood estimators 

of the parameters from underlying discrete distributions 1.s 

studied for the case of grouped random samples. It is shovm 

that "then the underlying dj.stribution is Poisson the process 

always converges a.nd does so regardless of the initial values 

taken for the Ul1Y..1iOt-n1 parEnneter. In ShOt;'1ing this, a rather 

interesting property of the Poisson distribution was de­

rived. If one defines a conn~?cted group of integers to be 

such that it conta:i.ns all the integers bet'\>:een and including 

its end points, it 1.8 shovT'tl that the varlanc(~ of the sub­

distribution defined on this connected set is strictly less 

than the variance of the complete! Poisson distribution. A 

Monte Carlo study 'Has perfclrmed to indicate 110\-1 increasing 

group sizes aff ect0d the variances of the maximum like15 .. hood 

estimators. 

As a result of a problem encountered by the Office 

of Naval Research, combinations of distributions cliff kb 

'Ylere introduced. The difference bet)veen such comhinations 

and the classic[l.l m:txtures of distr5.but;.ol1S is that a nf;'tv 

distr:l.bution must be considered vlhel1ever the random variable 



in question increases by en integral multiple of a knol,rn 

integer constant, b. \~~en all t~e data are present, tbe 

estimation problem is no more i complicated than '''hen esti­

nUtting the individual pa:'Cam(~ters from the component dis­

tributions. However, it is pointed out that very frequently 

the observed samples are defective in the fact that none of 

the component frequencies are observed. Hence, horizontal 

grouping of the sample values occurs as opposed to the 

vertical grouping encountered previously in the one pa­

rameter Poisson case. An extension of the iterative pro­

cedure used to obtain the maxl.rnum likelihood estirrtator of 

the single pare.r:l;?ter grouped Poisson distribution is made' 

to obtain the estimators of the parameters in a horizontally 

grouped sample. 

As a practical example, the component distributions 

'Ylere all tal~en to be from the Poisson family. The esti­

matorn \07cre obtained e.nd their properties ~-1er~ studied. The 

regularity conditions \vhich are suff:Lcient to show that a 

consistent and aSY~llpt()tical1y normally distributed solution 

to the likelihood equations exist are seen to be satisfied 

for such combina.tions of Poisson distributions. Further, 

in the full da.ta case, a set of jointly sufficient sta.tistics 

is exhibited arid since, 1.n the presence of sufficient sta­

tistics, the solutions to the likelihood equat:tons are 

unique, the estlmators 8.re consistent and clSY.r:lptotical1y 

normal. 



It is seen that such cocr~inations of distributions 

can be appl:i.ed to probl'':.<ns in item demands. A justification 

of the Poisson dist:clbutlon is given for such applications, 

but it is also pointed out that the Negative Binomia.l dis­

tribution might be applicable. It is also shown that such 

a probability model might have an application in testing 

the efficiency of an anti-ballistic missile system when 

under attack by missiles vlhieh carry !.'l.1ultiple v.,Yarheads. 

HOH'evcr, no data \-,ere available and hence the study of this 

application could be car:c:ted no further. 




