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ABSTRACT 

 

This work considers inventory systems with two demand classes, where advance demand 

information is available. Three related scenarios are presented: three-stage production-inventory 

systems are studied in first two, whereas pure inventory systems are studied in the last scenario. 

In the first scenario, continuous review production-inventory systems are considered, where only 

one class provides advance demand information and early demand fulfillment is permitted. A 

new approach for production replenishment and order fulfillment in such systems is proposed, 

which combines the benefits of early fulfillment with Kanban-based pull systems. Simulation is 

used to compare the performance of the resulting policy with two other policies for a variety of 

scenarios (depending on the arrival rates, system utilizations, cost structures, arrival ratio, 

priority levels and amount of the advance demand information). A simulation-based lower bound 

on the optimal cost is established for some specific scenarios. The proposed policy outperforms 

the existing policies in every setting considered. Also, the proposed policy has added advantage 

of both retaining the benefit at high system utilizations and increasing the benefit up to the 

maximum level of advance demand information provided. A small fraction of customers 

providing advance demand information with early fulfillment acceptable is shown to have higher 

benefit than all customers providing same advance demand information with no early fulfillment. 

In second scenario, both classes provide advance demand information in production-inventory 

systems, though only one class accepts early fulfillment. Different levels of system utilization, 

arrival ratio and backorder cost are considered in the simulation experiments to show the 

superiority of early fulfillment. Also, experiments suggest that lowering the expected supply lead 

time may be more beneficial than increasing the demand lead time by the same amount for 

production-inventory systems with utilization dependent supply lead times.  

In third scenario, pure inventory systems are considered, where the demand classes provide 

different amount of advance demand information, and only one class accepts early fulfillment. 

The structure of an optimal policy is analytically characterized for periodic review systems under 

some specific conditions.  
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1. Introduction 

1.1 Motivation 

For today’s global companies, creating and managing efficient supply chains are getting wide 

attention. Supply chain performance depends upon several fundamental factors, such as 

production and inventory capacities of its partners, delivery lead-time and service level. The 

capacity is inherently related to the cost of the supply chain; however, the last two quantities may 

depend upon effective managerial decisions and can be seen as opportunities for improvement 

without making any significant investment on the supply chain per se. Recent development in 

information technology and telecommunication infrastructure sets a new trend of sharing vast 

amount of data among supply chain partners. A retailer shares point-of-sale information with his 

suppliers; similarly, a huge amount of information is exchanged between the manufacturers and 

retailers and between the retailers and consumers. This information sharing helps to streamline 

supply chains by keeping a detail track of required items that minimizes replenishment order 

volume, which can effectively reduce inventory holding cost. Evidence can be provided in this 

context: In 1993 United States witnessed a period of economic growth (increasing business 

profits with relatively stable price, more workers and more high-technology investment) and yet 

decreasing productivity in the business sector. This conflict was attributed to significant 

shrinkage of inventories because of information sharing that had been possible through 

technological progress happened in that time (Woodward, 2000). The research on improving 

operational benefits through information sharing is still in an early stage, but it is rapidly 

developing. The key to operational benefit is to create a better match between supply and 

demand for all supply chain partners, which helps to reduce the amount of waste in form of lost 

revenue, surplus capacity or surplus inventory. 
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Matching supply with demand in a stochastic environment seems to be a never-ending 

challenge for supply chain managers. Apart from the recent trend of information sharing as 

described above, there are several ways to create a match. Traditionally, pricing has been used by 

the business managers to match supply with demand. When the demand is not as high as 

expected, a price discount or sales promotion is offered for stock clearance. A relatively recent 

strategy for a better match between supply and demand is to segregate customers among various 

classes and to offer different levels of service to these customer classes. Segregating customers is 

also effective for creating a flexible supply chain, which can cater to the needs of different 

requirements set by the customers. 

Segregation of customers into different classes may be based upon the urgency of the 

customers to get the product (Chen, 2001). Different customers have different levels of urgency 

in reality because of the following reasons: (i) Many businesses may run an online store together 

with several brick-and-mortar stores. Selling items from brick-and-mortar stores needs 

immediate fulfillment. However, online customers need to wait for a few days, which 

automatically provide the firm with some advance demand information. (ii) Levels of urgency 

vary among the customers for the same product. A business executive who suddenly broke his 

laptop may pay extra for overnight delivery of a replacement. But a student who may buy his 

laptop from the same online store should prefer to wait a few days to get an inexpensive shipping 

rate. For example, Dell has four shipping options for its online customers − standard, priority, 

overnight and precision. Some other online retailers like Amazon sometimes order the products 

from the manufacturer after receiving the customer orders (Simchi-Levi, 2010). (iii) Some of the 

supply chain partners may have long-term contract with the manufacturer, while others may not.  

Because of the special relationship with long-term contract holders, the manufacturer may 
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prioritize the order fulfillment for them. (iv) Levels of equipment criticality play a role to 

segregate customers. Critical backorders (e.g., parts needed to fix a breakdown) are much more 

expensive than non-critical backorders (e.g., parts needed for restocking). (v) A business may 

sell its products to other businesses as well as to the consumers. Delivery timeline for the 

businesses and consumers may be different. (vi) In the Just-In-Time environment, many 

intermediate partners focus on maintaining minimal inventory for their businesses. Although 

these partners may know the precise demand well in advance (and inform their vendors 

accordingly), still they may not accept delivery from the vendors until the items are due in the 

manufacturing floor. Thus, different buyers providing different amounts of advance demand 

information can be segmented into different classes. Catering to the needs of these customer 

classes and simultaneously maintaining an efficient system with low production and inventory 

cost is a practical challenging problem to the researchers.  

1.2 Outline of the Document 

The remainder of the Introduction provides some preliminary concepts, problem description 

and research objective. The next section briefly discusses some of the relevant papers on (i) 

inventory management with multiple demand classes and (ii) the use of advance demand 

information in inventory systems. Section 3 discusses the proposed approach for the above-

mentioned problem. Section 4 describes the methodology used for production-inventory systems 

(simulation model, experimental design and implementation), followed by the results and 

discussion in Section 5. Section 6 discusses pure inventory systems, followed by the final section 

for conclusions. 
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1.3 Preliminaries 

Some general concepts and related vocabulary are presented here. 

Advance Demand Information (ADI): When customers announce their orders ahead in time 

of actual demand, a firm and precise information of future demands is obtained at the time of 

order arrival. Here, firm means non-cancellable and precise means detail information regarding 

order quantity and order due date. Clearly, orders with ADI are not due on arrival. In other 

words, there is a positive time gap between order arrival and order due date. When orders are not 

fulfilled within their due date, they are either lost or backordered. Because of the presence of 

ADI, the terms orders and demands may not be used interchangeably. The orders arrive when the 

inventory manager receives the ADI, but the demands are realized on the order due dates. 

On-hand inventory: the number of items actually available in the inventory that are ready to 

serve the demand. 

On-order inventory/ pipeline inventory: the number of units that have been ordered but yet to 

be received in the stock. 

Inventory position: An inventory manager decides on order placement based upon the current 

inventory position. This term is indicated by the combined value of on-hand and on-order 

inventories minus the items demanded by customers, which are not yet delivered. Therefore, 

Inventory position = on-hand inventory + pipeline inventory – backorders. 

Inventory level: Another important quantity in inventory management is inventory level, 

which determines the overall cost of maintaining inventory for given values of per unit holding 

and backorder costs. Inventory level = on-hand inventory – backorders. 
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Supply lead time: This is the time required to replenish an item in stock. For a production-

inventory system, this indicates the production time using capacitated production line. For a pure 

inventory system, this is the time between order placement and item arrival. 

Demand lead time: The gap between order arrival and order due is termed as demand lead 

time. This term is coined by Hariharan and Zipkin (1995). In their paper, the authors show that 

increasing the demand lead time has the exact same effect as reducing the supply lead time by 

the same amount, when early order fulfillment is not permitted. 

Pure inventory system: Inventory replenishment is typically vendor driven, so the 

replenishment process is exogenous. Thus, the supply lead times for such systems are load-

independent. 

Production-inventory system: Inventory replenishment is typically done by 

manufacturing/assembling the units in-house. The replenishment process is therefore 

endogenous, and the supply lead time is load-dependent. 

Risk pooling: When several demand classes require the same product and the demand is 

stochastic, it is beneficial to use a common inventory to serve all classes rather than maintaining 

separate stocks for each class. The strategy of combining inventories in this way is known as risk 

pooling. In reality, the aggregate forecast for stochastic demand tends to be more accurate than 

individual forecasts. Thus, the system that serves several classes through common inventory is 

less variable than the system that keeps separate inventories. Therefore, a smaller amount of 

safety stock is sufficient for a common inventory system. 

Early fulfillment (EF): If an arrived order with ADI is fulfilled before its due date, then the 

fulfillment type is termed as early fulfillment (as opposed to exact fulfillment, where orders are 

fulfilled on their due dates). When early fulfillment is permissible, the inventory manager or the 
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manufacturer has sole discretion to fulfill an order early or exactly on the due date without 

incurring any penalty. The possibility of early fulfillment may provide the inventory manager 

with greater flexibility and reduced inventory holding cost. However, from a customer’s 

perspective, acceptance of early delivery may not be always beneficial. For example, if the 

customer serves as a supplier for its downstream supply chain, then she may prefer exact 

fulfillment to cut down excessive inventory holding cost. In contrast, when the customer is an 

end consumer, she should be more than happy to receive the delivery earlier than expected. 

Order crossover: Order crossover describes the situation when an arriving order is due earlier 

than a previously arrived order. This is possible only when multiple demand classes exist with 

different demand lead times. Order crossover happens only when (i) the arrival of an order with 

ADI is followed by arrival of another order with shorter demand lead time and (ii) the order 

arrived later (i.e. the order with shorter demand lead time) is due before the due date of the order 

arrived earlier. 

Base-stock policy: Under this policy, inventory is continuously monitored and whenever a 

demand occurs, a replenishment order is immediately placed (or a production is initiated) to 

restore inventory. Demands are fulfilled immediately on arrival if stock is available. Therefore, 

for a base-stock policy, at any instance of time, inventory position remains constant. 

Order-base-stock policy: Under this policy, an order arrival, instead of a demand fulfillment 

triggers replenishment order placement (or production initiation). Therefore, the policy maintains 

a target value of modified inventory position. This policy works differently than a standard base-

stock policy only when ADI is available at least for some of the customer orders.  

(s, S) policy: Under this policy, an order is placed (or production is initiated) to raise the 

inventory position to the predetermined order-up-to level S whenever it falls to or below the 
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predetermined reorder level s. Scarf (1960) uses the properties of K-convex functions to show 

that only a (s, S) type policy maximizes the expected discounted profit for finite horizon dynamic 

inventory problems where the holding and shortage costs are linear, and the ordering cost is a 

combination of a fixed and a unit variable cost. 

CONWIP policy: Under this policy, the total number of work-in-process items and finished 

goods inventory is constant; hence, production can begin only when an item is consumed from 

final inventory. This policy helps to control cost by limiting the number of jobs present in the 

system. 

Push and pull strategies: In a push-based supply chain strategy, production and distribution 

decisions are taken according to long-term forecasts. This system performs poorly against 

demand variability; hence, a large amount of safety stock is required to avoid stock-out. 

However, this system is considered as appropriate for large-scale production over a long-time 

period. In contrast, in a pull system, production and distribution decisions are demand-driven, 

which is effective to reduce inventory. But this system is not favorable for planning far ahead − 

thus, it cannot take advantage of economies of scale very often. A base-stock policy is an 

example of a pull-driven system.  

1.4 Problem Description 

We consider systems where ADI is available in the form of demand lead time (time gap 

between an order arrival and its due date) associated with some or all of the demands. Three 

different scenarios are investigated in this research. In each scenario, two demand classes are 

assumed, which are discussed later in this section. The following assumptions hold for all 

scenarios considered: (i) demands are interchangeable, hence same items can be used to fulfill 

demands from any class, (ii) no demand cancellation or modification after arrival, (iii) linear 
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backorder and holding costs, (vi) stochastic arrival process for each demand class, (v) difference 

between the two classes is based upon the delivery requirement. Therefore, the demands from 

these classes are independent to each other (an example of online laptop store is provided earlier: 

in reality, demand of laptops from the executives are independent of that from the students), (vi) 

demand arrival and replenishment processes as well as the costs are stationary, (vii) all quantities 

(e.g., demand, inventory position) are integers, (viii) no setup or ordering cost, (ix) no machine 

failures, and (x) no raw material shortages. 

 

Scenario 1 

 Continuous review, finite capacity production-inventory systems are considered, where 

only one demand class provides ADI (demand from the other class is due as soon as they arrive). 

Early fulfillment of demand is allowed– therefore the demands can be fulfilled anytime between 

their arrivals and the due dates. 

A schematic of this scenario is shown in Figure 1, where the serial production-inventory 

system consists of three stages. The number of stages is restricted to three for fair comparison to 

the literature, where three stages are assumed. The three-stage system may represent an 

assembly-line process in reality. The three stage model is a sequence of queues with no 

restriction on queue length. However, because of the complexity of Kanban-based serial-

production systems, results cannot readily be extended to the general  –stage case.  The 

demands may provide ADI (depending upon the demand class) and ADI-providing demands may 

wait in the delay station (depending upon the fulfillment decision). Demand arrival and 

processing time distributions at the stages are known. 
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Figure 1. Production-inventory system with two demand classes. 

 

As shown in Figure 2, there is a trade-off in early fulfillment of type 1 demands. Early 

fulfillment helps to save inventory holding cost, but increases the possibility of stock-out when type 2 

demands arrive. 

 

Figure 2. Two types of demands in a time diagram (Scenario 1). 

 

Scenario 2 

This scenario is the same as the previous one with the exception that the demands of both 

classes provide the same amount of ADI, but only one class accepts early fulfillment. The 

backorder costs for the demand classes may be different. Figure 3 shows two types of demands 
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in this scenario in a time diagram. For both Scenarios 1 and 2, the replenishment process is 

endogenous (i.e., replenishment orders are pipelined and they arrive in the same order in which 

they are placed). 

 

 

Figure 3. Two types of demands in a time diagram (Scenario 2). 

 

For a production-inventory system, let   and   be the cost of holding WIP and FG inventory, 

respectively:   is the backorder penalty cost (all expressed in per item per unit time). The 

objective is to find a policy p that gives the minimum combined cost of holding and 

backordering for a given system. This is mathematically expressed by the following: 

     lim
   

 

 
   [∫{    ( )      

 ( )      
 ( )}   

 

 

] (1) 

In above expression    and    are the WIP and inventory level respectively, at time t, (i.e.,  

  
 ( )      (  ( )  ) = FG inventory level and   

 ( )      (   ( )  ) = backorder level at 

time t). An effective policy for a given scenario balances the two costs – holding cost 
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(summation of first two terms within the integral in (1)) and backorder penalty (the last term 

within the integral). 

When the backorder costs (  ,   ) are different for different classes, the above expression 

becomes: 

     lim
   

 

 
   [∫{    ( )      

 ( )        
 ( )         

 ( )}   

 

 

] (2) 

Here    
 ( ) and    

 ( ) are the backorder levels of two classes at time t. As with the previous 

case, an effective policy creates a balance between holding cost and backorder penalty. 

 

Scenario 3 

 A periodic review pure inventory system is considered in this scenario, with two demand 

classes having different amounts of ADI and different fulfillment flexibility criteria (i.e., early 

fulfillment is not allowed for one class). Figure 4 shows a time diagram for this scenario. The 

demand class that accepts early fulfillment is assumed to provide shorter demand lead time.  

 

Figure 4. Demands and the inventory replenishment process in a time diagram (Scenario 3). 
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This scenario is different from the previous two production-inventory scenarios in the 

following aspects: 

(1) This is also a two-demand-class scenario with both demand classes provide advance 

demand information. However, the demand lead time for Class 1 (  ) is shorter than that 

of the Class 2 demand (  ). Also, only the demands from Class 1 accept early fulfillment. 

(2) For pure inventory systems supply lead time is not endogenous. Here the supply lead 

time ( ) is assumed to be constant. 

(3) This is a periodic-review system, where the ordering decision is made only at the 

beginning of each period (and this decision may depend on unfulfilled advance demand 

and available inventory). The sequence of events in each period is as follows: (a) 

inventory manager reviews the system state and (b) places order for replenishment 

quantity   . (c) Then she receives the delivery of replenishment order (  ), which was 

placed   periods earlier (       ). (d) Demands from both classes arrive through their 

respective advance information. (e) Decisions on demand fulfillment are taken by the 

inventory manager. 

(4) The system is capacitated with the maximum order quantity in any period is a constant  . 

(5) Demand in a period is stochastic; however, no specific distribution of demand has been 

assumed. Single period demand distribution is denoted by  , and the density by  . The 

one-period discount factor in the context of classical inventory system is assumed to be 1 

(i.e., future period costs are not discounted). 

Table 1 summarizes the three scenarios. 

 

 



13 

 

Table 1. A summary of the three scenarios. 

Type Scenario 
Class 1 Class 2 

Remarks 
ADI EF ADI EF 

Production

-Inventory 
1 √ √    

Production

-Inventory 
2 √ √ √  Both classes provide same amount of ADI 

Pure 

Inventory 
3 √ √ √  Class 2 provides higher amount of ADI 

 

1.5 Research Objective 

This research aims to find inventory-replenishment/production-control policies for Scenarios 

1 and 2, which are expected to show benefits over conventional policies. A simulation-based 

lower bound on the optimal cost will also be established for some cases, which will help to 

measure the effectiveness of the proposed policy. Additionally, a sensitivity analysis will be 

conducted to observe the change in performance with the following variables: (i) for Scenario 1: 

system utilization, demand lead time, relative arrival rates of the demand classes, relative 

backorder costs; (ii) for Scenario 2: relative arrival rates, relative backorder costs, and a change 

in the demand and supply lead times. The optimal policy will be characterized for Scenario 3.   
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2. Literature Review 

Previous work on the effect of ADI on inventory systems with multiple demand classes is 

related to two different streams of research. These are reviewed separately in the following 

sections. 

2.1 Inventory Management with Multiple Demand Classes 

Veinott (1965), Topkis (1968) and Kaplan (1969) present some of the earliest research 

concerned with multiple demand classes and rationing policies. Each of these works assumes 

periodic review inventory systems. The underlying notion of these papers is that of a threshold-

type static rationing policy, which works to fulfill only the high-priority demands and all other 

demands becoming backorders once the on-hand inventory drops to a predetermined reserve 

level. 

A continuous review production-inventory system with multiple demand classes is 

considered in Ha (1997a), Ha (1997b), among others. In his papers, Ha proves the optimality of 

stationary critical-level rationing policies in make-to-stock production systems when processing 

times are exponential, order arrivals are Poisson, and either lost-sales or backordering is allowed. 

The reader is referred to Teunter and Haneveld (2008) for an excellent review of the various 

rationing policies. Each work described there assumes that order fulfillment priority depends 

upon shortage cost or service level, which vary with the demand class. By contrast, the proposed 

research focuses on multiple classes that differ in the flexibility of early fulfillment or the 

amount of demand lead time provided. 

A growing number of researchers investigate inventory management problem with 

multiple demand classes, where the demand lead time varies among the classes. These works are 

described in the following section, along with the single-class-version of the same problem. 
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2.2 Inventory Management Using Advance Demand Information 

The literature on this research area can be categorized using some characteristics (e.g., 

system, review type, nature of supply lead time, etc.) as shown in Table 2. Some of the listed 

papers consider both categories of the characteristics. For example, Wang and Yan (2009) 

primarily consider uncapacitated inventory systems and then extend their analysis for capacitated 

systems. Hariharan and Zipkin (1995) focus on deterministic lead time and then extend the 

results on systems with stochastic lead times. Similar extensions are observed in the work of 

Wang and Toktay (2008) on demand classes, Karaesmen et al. (2004) on early fulfillment, 

Cattani and Souza (2002), and Wijngaard and Karaesmen (2007) on shortage treatment. Iravani 

et al. (2007) consider that the orders not fulfilled in due date are lost for one class and are 

backordered for the other class of demands. The table depicts that limited research has been 

conducted so far where early fulfillment is allowed: this is the focus of the current research. 

Some of the papers from the table are discussed in the following sections on uncapacitated and 

capacitated inventory systems. 
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Cattani and Souza (2002)  •  •  •  • •   • • • 
Claudio and Krishnamurthy (2009)  •  •  • •   •  •  • 
Duran et al. (2007)  • •  •   • •   •  • 
Duran et al. (2008)  • •  •   • •   •  • 
Gallego and Ozer (2001) •  •  •   •  •  •  • 
Gallego and ozer (2003) •  •  •   •  •  •  • 
Gayon et al. (2009)  •  •  •  • •   • •  
Hariharan and Zipkin (1995) •  •  • • •   •  •  • 
Iravani et al. (2007)  •  •  •  • •   • • • 
Karaesmen et al. (2004)  •  •  • •   • • •  • 
Kim et al. (2009)  •  •  • •     •  • 
Kocaga and Sen (2007) •   • •   • •   •  • 
Liberopoulos and Koukoumialos (2005)  •  •  • •   •  •  • 
Liberopoulos (2008)  •  •  • •   •  •  • 
Lu et al. (2003) •   •  • •   •  •  • 
Ozer (2003) •  •  •   •  •  •  • 
Ozer and Wei (2004) •  •  •   •  •  •  • 
Tan et al. (2009) •  •  •   • •   • •  
Wang and Yan (2009) • •  • •   • •  •  •  
Wang et al. (2002) •   •  •  •  •  •  • 
Wang and Toktay (2008) •  •  •  • •  • •   • 
Wijngaard and Karaesmen (2007)  •  •  • •   •  • • • 
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2.2.1 Uncapacitated Inventory Systems 

In their paper, Gallego and Ozer (2001) consider both positive and zero set up cost cases, and 

show the optimality of state-dependent (s, S) and state-dependent base-stock policies 

respectively. The state is represented by the advance demand vectors outside the supply lead 

time horizon. The second case is particularly relevant to this research, where the researchers 

focus on both finite and  -discounted infinite horizon problems. An important finding of their 

work is that the observed demand beyond the protection period (which is defined as the sum of 

supply lead time and a review period) has no influence on the optimal base-stock level. 

Wang and Toktay (2008) extend the work of Gallego and Ozer for systems where early 

fulfillment is permitted. They consider homogeneous as well as heterogeneous demand lead time 

cases. For homogeneous demand lead time cases, again a state-dependent (s, S) policy is shown 

to be optimal, where advance demand vectors outside the supply lead time horizon defines the 

states. Additionally, they show that increasing the demand lead time is more cost effective than 

reducing the supply lead time by the same amount. When demand lead time is increased, 

flexibility due to early fulfillment can potentially be employed over a larger time horizon, which 

helps to reduce the cost. This finding is in contrast to the earlier finding by Hariharan and Zinpin 

(1995) considering early fulfillment forbidden. For heterogeneous demand lead time cases, the 

presence of order crossover makes joint optimization of replenishment ordering and inventory 

allocation decisions complicated. In the model of Gallego and Ozer (2001), system state is 

defined by the modified inventory position and observed demand profile beyond the protection 

period. But, allowing early fulfillment makes the model even more complicated, where the state 

is defined by three terms − inventory level, supply pipeline and unsatisfied advance demand 

profile. The dynamics of first and third terms are nonlinear, unlike the same terms for systems 
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without early fulfillment. The researchers obtain the upper and lower bounds on the optimal cost 

by proposing protection-level heuristics and using allocation assumptions respectively. In both 

models mentioned above, the demand classes are formed based upon the amount of ADI comes 

with the orders; there is no difference in terms of the reward for fulfillment or the penalty cost 

for backordering among these classes. But the following works assume either different reward or 

different penalty cost among the demand classes. 

Wang and Yan (2009) consider inventory systems serving both patient and impatient 

customers. Fulfillment of patient customer orders is flexible, as it can be deferred to the next 

cycle. However, demand from impatient customers must be fulfilled from the on-hand inventory. 

In this scenario, they prove the optimality of threshold-type inventory allocation and base-stock 

type replenishment ordering policies. Except for the models described in Wang and Toktay 

(2008) and Wang and Yan (2009), no other model in the literature on pure inventory 

management allows early fulfillment. 

Cattani and Souza (2002) consider two different modes of shipment for direct market firms 

serving two demand classes with different demand lead times. Using a birth-and-death Markov 

decision model, they compare the performance of various rationing policies with a naïve first-

come, first-serve policy for a variety of scenarios. 

Kocaga and Sen (2007) also consider a two-demand class inventory management problem, 

where the demand classes are of different criticality. The criticality of a demand class is 

measured by the service level requirement for that class. Demand from the critical class must be 

satisfied immediately, but the non-critical class demands provide ADI. Under a one-for-one 

replenishment policy, they derive the expressions for service levels of both classes. As early 

fulfillment is not permitted in their model, the purpose of rationing becomes pointless when the 
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demand classes are of equal criticality. A numerical study conducted by the researchers depicts 

as much as 14% savings on inventory cost through the use of demand lead time and rationing. 

2.2.2 Capacitated Production Inventory Systems 

Karaesmen et al. (2004) investigate the value of ADI for M/M/1 queuing systems, both with 

and without the considerations of early fulfillment. Assuming all orders provide the same amount 

of ADI, they propose the base-stock policy with advance demand information (BSADI) for the 

scenario when early fulfillment is not allowed. As opposed to the standard base-stock policy 

defined by a single parameter (the target inventory level), BSADI has two parameters: the target 

inventory level and the release lead time. Under the proposed policy, the optimal release lead 

time may postpone production release from the customer order arrival time, depending upon the 

availability of ADI, and the policy is claimed to achieve near-optimal performance. Introduction 

of the release lead time results in a partial transition to make-to-order system. When early 

fulfillment is permitted, the researchers use a simple property that the system with early 

fulfillment/order-base-stock policy is equivalent to the standard base-stock system with a 

modified backorder cost that starts to incur after a delay equal to the amount of demand lead 

time. For this equivalent system, ADI does not exist, and it is possible to determine the 

mathematical expression of the optimal base-stock level and the optimal cost assuming an 

M/M/1 configuration. This is the only paper on production-inventory systems that considers 

early fulfillment. 

Liberopulos and Koukoumialos (2005) used simulation to investigate trade-off between 

optimal base-stock levels, number of Kanbans and planned supply lead times for single-stage and 

two-stage systems with ADI under base-stock and hybrid base-stock/Kanban policies. 
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Wijngaard ((2007) proves the optimality of order-base-stock policy for systems with 

deterministic production process, and shows that inducing ADI into the system would result in 

inventory cost savings of   (   )      (where  ,  ,   and   are the inventory holding cost per 

unit per unit time, system utilization rate, demand lead time and production speed respectively). 

Liberopulos (2008) shows that the trade-off between the optimal order-base-stock level and 

demand lead time is linear for single-demand-class M/M/1 and M/D/1 production-inventory 

systems. It is also shown for generalized queuing systems that the optimal order-base-stock 

vanishes if the demand lead time is sufficiently long. 

The literature discussed so far in this section considers that all orders provide the same 

amount of ADI, so these are single-demand-class problems. The following works address 

multiple demand class problems. 

Iravani et al. (2007) consider a capacitated supplier serving both primary and secondary 

customers. The primary customer’s demand needs to be fulfilled at the end of each cycle, but the 

order volume becomes known only after an elapse of a fixed amount of time in each cycle. The 

secondary customer’s demand for a single item occurs randomly. The benefit of fulfilling the 

primary customer’s demand is more than that for the secondary customers. If the orders are not 

fulfilled in due time, they are backordered for the primary customers, and they are lost for the 

secondary customers. The researchers show the optimality of threshold-type policies, which are 

monotone with primary customer’s order volume for both average profit and discounted profit 

cases. 

Duran et al. (2008) model the two-demand-class inventory allocation problem where the item 

prices and lost-sales costs vary with the demand class. It is possible to delay order fulfillment of 

one class till the next period, but the other class does not accept any delay. They model the 
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problem as a Markov decision process and show the optimality of threshold type policies for 

production, reserving and backlogging decisions. 

No work in the existing literature seems to consider the exact problem in production-

inventory systems for either scenario (i.e., Scenario   ― satisfying a mix of ADI and non-ADI 

orders with backordering, and Scenario 2 ― satisfying a mix of flexible and inflexible ADI 

orders), which are addressed in this research. 

In the context of pure inventory systems (Scenario 3), previous works characterize the 

optimal policies for the following cases: (i) multiple demand classes, but no early fulfillment 

(problem is trivial for uncapacitated systems with no ordering cost. The optimal policies can be 

characterized when either an ordering cost, or a capacity limit, or both are present); (ii) single 

demand class, but early fulfillment is acceptable. The literature also extends the analysis in case 

(ii) to a multiple-demand-class scenario (where the arriving orders in the current period may be 

due in the same period, or they may be due in any future period within the span of the maximum 

demand lead time set for a particular problem), but the optimal policy has not been characterized 

(though, protection-level heuristic policies are proposed). The literature assumes a general 

problem with virtually any number of classes for this scenario, whereas the current research 

considers only the two-class problems. 
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3. Approach 

3.1 Production-Inventory Systems 

Even in absence of early fulfillment, the development of an optimal policy for a single 

demand class system with endogenous replenishment time requires detailed information on 

future order arrivals and the timing of future due dates, and can be very complicated (Karaesmen 

et al., 2004). A simulation model will be developed in this context, and experiments will be 

performed to study how well the policy works under various conditions. 

The first of the three policies described in this study is a Kanban-based make-to-order policy 

built upon Claudio and Krishnamurthy (2009). The second policy is a one-for-one replenishment 

CONWIP policy, where performance improvement is obtained solely from early fulfillment. 

This policy is based on order-base-stock policy proposed by several researchers (e.g., Karaesmen 

et al., 2004). The final one is the proposed policy that combines early fulfillment with partial 

make-to-order policy. 

In each of the first two scenarios, two possible cases will individually be considered for two 

demand classes: (i) same priority/backorder-penalty and (ii) different priority/backorder-penalty. 

For each case, early fulfillment decisions should be governed by some sort of rationing policy. 

Otherwise, the service level of shorter demand lead time orders (or orders with no flexibility) 

will be severely affected. Moreover, a second kind of rationing is used in (ii) to prioritize the 

fulfillment of higher backorder cost demands. 

3.1.1  Policy 1: Partial Make-to-order 

In the partial make-to-order policy, production is initiated upon order arrival, as long as the 

current FG + WIP level is less than a specified limit. The available stock is used for immediate 
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fulfillment of non-ADI orders. ADI orders are fulfilled on their due dates, if stock is available. A 

schematic representation is provided in Figure 5(a). 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Production-inventory control policies for utilizing advance demand information. 

 

To get the benefit of ADI, this policy employs a number of Kanban cards ( ) for controlling 

production but maintains a separate initial base-stock level ( );   ≥   ≥  . A Kanban card 

remains attached to every item in base-stock, thus initially (  ) Kanban card sets remain free.  

To release raw materials for production, both activated orders and free Kanban cards are 

necessary. Once an item is utilized to fulfill an order, the corresponding Kanban card becomes 
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free. It is then capable of initiating further production upon future order arrivals. The quantity of 

Kanban cards equals the maximum FG + WIP limit, and the initial base-stock level   is an 

integer in [0, ]. The original policy (Claudio and Krishnamurthy, 2009) starts production in max 

(0,   LT) time after an ADI-order arrival (LT is the average flow-time for jobs in the facility 

when ADI is not utilized but assumed available). This delayed production release policy is seen 

to work only for systems with low utilization, low backorder cost and high demand lead time. 

However, implementation of this policy in the current work starts production immediately upon 

order arrival, as it is observed that immediate production release is always better than delaying 

production. No ADI order is satisfied before spending time    in delay station O1. 

3.1.2 Policy 2: Early Fulfillment with Fixed-level Threshold Rationing 

In this policy, ADI orders are fulfilled early when the current inventory level is sufficiently 

high (i.e., above threshold). Otherwise, exact fulfillments of those orders are carried out. Figure 

5(b) provides a schematic representation of this policy. 

The policy starts production only upon actual consumption of items from the inventory. 

Thus, it is a CONWIP-type policy, where (FG + WIP) level is always constant and the system 

has no way to make items to order. The policy is defined by two parameters: the base-stock level 

  and the rationing level  ,   ≥   ≥  .   ach non-ADI order is fulfilled immediately upon 

arrival, as long as stock is available. Each ADI order is also fulfilled immediately if the current 

FG inventory level is above  ; otherwise, the order waits for the first of the two events to occur: 

(i) the order becomes due, or (ii) the FG inventory level goes above  . This determines the 

waiting time of ADI orders at delay station O2, as shown by decision block D( ) in Figure 5(b). 

The probability of early fulfillment in this policy increases with a reduced value of  . When   = 

0, no rationing is used and all items in stock are available for early fulfillment. 
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3.1.3 Policy 3: Pairing of Previous Two Approaches 

A policy is proposed, where early fulfillment complements the make-to-order strategy. As 

shown in Figure 5(c), this Kanban-based partial-make-to-order policy is governed by three 

parameters:  ,   and   (all as previously described). The relationships mentioned previously 

(i.e.,   ≥   ≥   and   ≥   ≥  ) also hold for this policy. 

As with Policy 1, this policy also initiates new production upon order arrival, as long as a 

free Kanban card is available. Reduced base-stock levels can be used, as   ≥   and some items 

are produced in make-to-order mode to meet demand. Again, ADI orders are fulfilled early, 

when the current FG level is above   (as with Policy 2). Therefore, O2 and D(R) are exactly the 

same as those in Policy 2. By pairing the two strategies, it is possible to take advantage of both. 

Each of the first two policies reduces inventory holding cost, but in different ways. Early 

fulfillment clears stock sooner, whereas make-to-order replenishes stock later. The synergy of 

these two approaches should thus result in a well-performing policy. 

Although the three policies are operationally different, all reduce to the same conventional 

system (no make-to-order, no early fulfillment) under following configurations: (i) Policy 1 with 

  =   = c, (ii) Policy 2 with   =   = c, and (iii) Policy 3 with   =   =   = c, where c is any 

positive integer. Also, Policy 3 reduces to the classical base-stock policy when   =   =  . 

Therefore, the selection of parameter values for these policies will play a pivotal role in policy 

performance. 

3.1.4 Determination of a Lower Bound on Total Cost 

Early fulfillment is beneficial since it lowers average holding cost due to items spending less 

time in FG inventory. However, early fulfillment may also create stock-outs and thus enhance 

the risk of backordering in the presence of order crossovers. These two contradicting objectives 
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make it difficult to derive an expression for a lower bound on total cost. By employing a 

modified version of the allocation assumption made by Wang and Toktay (2008), however, a 

simulation-based approach to a lower bound can be established. The assumption is very simple: 

items already consumed for early fulfillment can be recalled and utilized to fulfill urgent orders. 

Therefore, the lower bound policy (termed as LB) would fulfill all ADI orders as soon as they 

arrive, then retrieve a portion of already consumed items to fulfill urgent orders, which otherwise 

can no longer be fulfilled on their respective due dates. While not practically possible, the 

assumption nevertheless allows early fulfillment only when it is advantageous to do so. The 

approach is relatively straightforward for the case of continuous review with endogenous 

replenishment time, when the demand lead times provided by two customer classes are either 

positive constants or zero (as assumed in this research). 

The operating procedure of LB is the same as Policy 3, with following two exceptions: (i) 

rationing level R = 0 and (ii) when a non-ADI order arrives at time tnoADI during stock-out, the 

policy searches for any previously fulfilled ADI order such that the arrival time of that ADI order 

(tADI) satisfies the condition tADI ≤ tnoADI < tADI +  . If one such ADI order is found, the allocation 

assumption is used to take back the item from ADI order for fulfilling the non-ADI order. Later, 

the ADI order can be fulfilled again when the stock becomes available. Swapping items this way 

between ADI orders and non-ADI orders reduces the combined backorder cost. In case several 

ADI orders satisfy the above condition, the last arrived ADI order is chosen to for retrieving the 

item (this keeps the combined backorder cost at a minimum). If no crossover between an early 

fulfilled ADI order and the current non-ADI order occurs, however, no item is retrieved from 

previously fulfilled orders: rather, the non-ADI demand is backordered until replenishment stock 

becomes available. For fulfilling backordered demand, the earliest-due-date rule is followed 
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irrespective of the class of backorder. It can be noted here that the applicability of the lower 

bound evaluation is limited to the case, where backorder costs of the demands are same. For the 

equal-backorder-cost case, as items are reallocated to newly-arrived non-ADI orders, production 

replenishment time should be recalculated in a strict sense. Avoiding this complex calculation 

makes the analysis simpler (but not incorrect as it gives only a lower bound cost). Simulation, 

using this assumption, can then be used to establish the bounds for any given setting. 

3.2 Pure Inventory Systems 

The pure inventory scenario described in Section 1.4 is analytically more tractable than the 

previous two scenarios. Thus, the approach is to analytically characterize the optimal policy in 

Scenario 3, rather than employing simulation. In the presence of multiple demand classes, 

allowing early fulfillment makes the analysis more complicated than that for a system without 

early fulfillment. Wang and Toktay (2008) show that the characterization of optimal policy for 

any number of classes is difficult when early fulfillment is considered. The problem with two 

demand classes is the simplest multiple-class problem. An analytical model based upon dynamic 

programming may provide some general insights, which helps the decision maker to choose a 

suitable class of policies.  

The intention is to use backward recursion to characterize the structure of the optimal policy. 

Without doing any numerical evaluations, here the optimal decision rules for each period will be 

found. 

In reality, customers should receive some incentives both for providing larger ADI and for 

accepting early fulfillment. In this scenario, Class 1 demand provides smaller amount of DLT, 

but agrees to accept early fulfilment at the discretion of the inventory manager. The Class 2 

demand does not accept early fulfilment, but it provides a larger ADI. 
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4. Production-Inventory Systems: Methodology 

 A simulation model was developed to evaluate the performance of three policies (along with 

their lower bounds) in Scenarios 1 and 2. We assume the demand lead time is   , and order 

arrival is Poisson process for both demand classes. Processing time is exponential with mean     

at each stage. Poisson arrival processes and exponential processing times are assumed by many 

researchers in past (e.g., Bonvik et al., 1997, Liberopoulos and Koukoumialos, 2005). The 

assumptions described in section 1.4 hold for the systems. This work is an extension of Sarkar 

(2007), where an improvement in order fill rate is shown by using ADI together with early 

fulfillment for pull-production systems controlled by two sets of Kanban cards. The first set of 

Kanban cards controls production, whereas the second set puts a limit on the frequency of early 

fulfillment. That work assumes lost sales instead of backordering, in case the demands cannot be 

fulfilled from the on-hand inventory. 

4.1 Simulation Model 

The algorithm for discrete-event simulation is developed in Visual C++ (Microsoft 

Corporation 2010). Figure 6 shows a basic flowchart of this algorithm, which employs three 

events: order arrival, order fulfillment (including early fulfillment), and production release. The 

model is validated by comparing the performance of existing control policies.  

The specific logic for each event depends upon the policy being used (e.g., Policy 1 does not 

allow early fulfillment, Policy 2 cannot release production until order fulfillment, etc.). 
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Figure 6. Flowchart of simulation algorithm for evaluating policy performance. 

 

4.2 Experimental Design 

Various settings (depending upon the external factors, such as,  combined order arrival rate, 

DLT of both classes, cost structure, arrival ratio of order classes, SLT, etc.) are considered for 

performance evaluation. For each scenario, several experiment sets are formed. The objective for 

each experiment set is to identify the change in performance with a change in the settings for 

different policies.  Each combination of the external factors constitutes a simulation experiment, 

and a group of experiments form a set. For each experiment, optimal values of the policy control 

parameters ( ,   and  , as applicable) are employed: these are established via simulation 

optimization. In other words, a range of design alternatives (determined by the control parameter 
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values) are considered for each experiment. A fixed number of replications are performed for 

each design alternative in all experiment sets. 

A total of nine experiment sets were used: values employed for establishing the different 

settings and cost structures are shown in Table 3
1
. As described earlier, LT is the average supply 

lead time for given   and  , when ADI is not employed: these values are found via simulation in 

the same manner as the main experiments described in this section. The service rate   = 1 is 

assumed for each stage (except for Experiment Set 9, where expected supply lead time is 

changed). Some of the settings are parallel to those used in Claudio and Krishnamurthy (2009); 

but unlike the previous work, the optimal values of the parameters (  ,   ,   , as applicable) are 

found in each setting instead of assuming arbitrary values for them. The relative values of the 

cost factors ( ,   and  ) are important, as the ranking of various policies can change as a result 

of large changes in cost for a given setting. Backorder cost, which is incurred in the form of 

reduced future orders because of damage to customer goodwill, is hard to estimate. A review of 

the literature was performed to determine suitable values of     (i.e., the relative importance of 

backorder cost compared to holding cost) to use.  Choi et al. (2008) use five different values of 

    ratios: 1, 5, 15, 20 and 25, whereas Toktay and Wein (2001) use the values 10 and 50. Based 

upon these findings, three values are chosen, which are not too extreme: 10, 20 and 40. The     

ratio (i.e., FG inventory cost to WIP holding cost ratio) is assumed to be ½, and the argument for 

validity of this value is as follows. Let    be the cost of WIP at the beginning of a production 

process, whereas   is the cost when the production is completed. Using the arithmetic mean of 

these values as the average WIP cost seems reasonable. Assuming    is zero,     = ½, which is 

the minimum possible value of this ratio. Thus, with three     ratios, and a single     ratio, two 

                                                      
1
 Experiment sets 1 and 2 are reported in Sarkar and Shewchuk (2012). 
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cost factor combinations are employed. Actual cost values are calculated, in all cases, assuming 

  = 1. In subsequent experiments, arrival ratios ( ) and relative backorder costs (  ,   ) of the 

demand classes are changed. The ratio   is defined as the fraction of Class 1 orders in all arrived 

orders. Backorder cost    corresponds to the Class 1 orders, whereas    is that for Class 2. 

 

Table 3. Experimental Design. 

Scenario 
Experiment 

Set 
          

( : : ) or 

( : :  :  ) 
  (%) 

1 

1 
0.5, 0.6, 

0.7, 0.8 

0, 0.5LT, 

1LT, 2LT 
0 1 1:2:20 50 

2 
0.5, 0.6, 

0.7, 0.8 

0, 0.5LT, 

1LT, 2LT 
0 1 1:2:40 50 

3 
0.5, 0.6, 

0.7, 0.8 

0, 0.5LT, 

1LT, 2LT 
0 1 1:2:10 50 

4 
0.5, 0.6, 

0.7, 0.8 
1LT 0 1 1:2:20 

0, 25, 50, 

75, 100 

5 
0.5, 0.6, 

0.7, 0.8 
1LT 0 1 

1:2:10:100, 

1:2:10:10, 

1:2:100:10 

50 

2 

6 
0.5, 0.6, 

0.7, 0.8 
1LT 1LT 1 1:2:10:100 

25, 50, 

75 

7 
0.5, 0.6, 

0.7, 0.8 
1LT 1LT 1 

1:2:10:100, 

1:2:100:10 
50 

8 
0.5, 0.6, 

0.7, 0.8 

1LT, 

1.15LT 

1LT, 

1.15LT 
1 1:2:20:20 100 

9 
0.5, 0.6, 

0.7, 0.8 
1LT 1LT 

1.09,1.07, 

1.06, 1.04 
1:2:20:20 100 

 , order arrival rate;   , demand lead time of Class 1 orders;   , demand lead time of Class 2 orders;  

 , service rate at each stage;  , cost of WIP;  , cost of FG inventory;  , backorder cost when order 

classes have equal priority;    and    are backorder costs for Class 1 and Class 2 orders respectively, 

when one class has higher priority than the other; all costs are measured per unit, per time;  , arrival 

ratio is the fraction of Class 1 orders among all orders; LT, average job flow-time. In Set 9, when   = 

0.5,   = 1.09;   = 0.6,   = 1.07;   = 0.7,   = 1.06;   = 0.8,   = 1.04; 
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4.3 Implementation 

For each simulation experiment, five replications are performed. For the most promising 

cases (as explained in the following section), each replication has a run length of 100,000 time 

units and a warm-up time of 100 units. Common random numbers are used as a variance 

reduction technique (e.g., Banks et al., 2010). For each experiment, 95% confidence intervals are 

established for optimal total costs of all policies, which are found to be within 2% of the mean 

estimates for respective optimal costs. The warm-up time is determined by using Welch’s 

graphical procedure. 

To perform simulation optimization, implicit enumeration is employed. The parameters are 

discrete, and the negative of the cost function is observed to be concave and unimodal. Thus, a 

relatively small set of possible combinations of parameter values needs to be tested. For 

example, Policy 1 has two parameters (  and  ). Let’s assume    is optimal (∀   in      ) 

in a given setting and cost factor. The total cost is observed (Figure 7) to increase monotonically 

as   deviates further on either side of    (∀  in   ≥   ≥  ).   is an integer with an upper limit 

 . So, the set   = {  ,     ,…,   ;    <    <   } is formed and the optimal parameter 

values are found by evaluating cost for each ( ,  ) combination, where     and    [0, ]. 

The values of   ,    are determined by observing the trend of cost change with parameters for a 

few test runs. Similarly, optimal parameter values for Policy 2 and Policy 3 are determined. As 

the ranges for control parameter values widen, more efforts are needed for conducting these 

simulation experiments. For an example, if we consider the ranges of control parameter values to 

be   = [15,40],   = [10,30], and   = [0,5], then we need to run 2556 number of cases. Thus, 

efficiency becomes a big concern particularly for the design alternatives with higher number of 

control parameters and larger ranges for these parameter values. While narrowing down the 
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range by intuition or use of variance reduction methods can be helpful in reducing computational 

effort, it is still possible to further reduce it by implementation of an intelligent control of the 

simulation experiments. A more efficient procedure for discrete-event simulation-optimization is 

described in the following section, which is used in this research. This procedure, known as 

Optimal Computing Budget Allocation (OCBA) is outlined in Chen et al. (2000). Later, Lee et 

al. (2004) and Pujowidianto et al. (2009) extend it to multiple-objective and stochastic-constraint 

optimization problems respectively. 

 

Figure 7. A typical response surface of total cost using various control parameter values. 

 

4.3.1 Fundamentals of OCBA 

This budget allocation procedure minimizes the computation time to select the best design 

from a discrete number of design alternatives. The underlying notion to achieve a high 

probability of correct selection is allocating a larger portion of the computing budget to more 
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promising design alternatives. Using an iterative process based upon the information on both 

relative means and variances for the alternatives, it uses only a small fraction of the computation 

time needed for conventional equal allocation procedure. 

A general problem statement for OCBA (as described in Chen et al., 2000) is the following: 

    
    

 (  )     (    )  (3) 

Where, 

Θ is the search space (finite set); 

θi is design alternative i, i=  , 2, …, k, where k number of alternatives are formed by various 

control parameter values. 

J is the performance criterion (such as, total cost in our case); 

  is the sample performance; 

ξ is a random vector representating uncertainty in the systems. 

It has been assumed that (i) the system constraints are implicitly involved in the simulation, 

and (ii) performance can be measured only through simulation. 

  ̅ , which is the estimated performance of design i, can be found by 

   ̅  
 

  
∑ (      )

  

   

 (4) 

The conventional simulation approach based upon equal allocation requires a large number 

of samples for all designs, resulting in more computational effort. However, OCBA determines 

the optimal number of simulation samples (or run length) for each design to maximize the 

probability of correct selection of the best alternative for a given total effort. The following 

theorem (Chen et al., 2000) governs the rule for OCBA: 
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Given a total number of simulation samples T to be allocated to k competing designs whose 

performance is depicted by random variables with means J(θ1), J(θ2), …, J(θk), and finite 

variances   
 ,   

 , … ,   
  respectively, as T    , the Approximate Probability of Correct 

Selection (APCS) can be asymptotically maximized when 

(a) 
  

  
 (

  
    
⁄

  
    
⁄

)

 

,      {       }          (5) 

(b)      √∑
  
 

  
 

 

       
 (6) 

 

Where    is the number of samples allocated to design i,     =  ̅    ̅, and   ̅        ̅. 

4.3.2 Implementation of the OCBA Algorithm 

Based on the above theorem, an efficient iterative approach to select the best design among k 

alternatives can be formulated. In the first stage, less effort is spent on each of the k designs to 

get some estimation of the performance of each design. The sample mean and sample variance 

are computed from these initial sets of simulation runs. In the successive stages, incremental 

computing budget is allocated to each design based upon the above theorem. As mentioned 

earlier, five replications, each with 100,000 time units of run length is used in our experiments to 

get the necessary confidence interval. Because of the presence of smaller sample size with 

relatively longer run length, it is more efficient to use shorter run length (than using less number 

of replications) in the initial iterations for implementing the OCBA algorithm in the present case. 

The algorithm is summarized as follows: 
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Initialization:  

 (          )  (
 

 
 
 

 
   

 

 
) (7) 

where l is the aggregate run length for one replication allocated to k designs,    is the run 

length of one replication for design i.  

Step 1: run five replications (each with run length   ) for each design   (   ). 

Step 2: calculate   ̅,      and   . 

Step 3: estimate the best system as  ̂        {  ̅          } 

Step 4: calculate            from the following equations (  and   
  respectively denote 

the run length and the variance corresponding to the estimated best system): 

 
  
  
 

(

 
 
  
    
⁄

  
    
⁄

)

 
 

 

 (8) 

      
 ∑

 

  
 

 

       
 (9) 

Step 5: Increase the computing budget for the next stage by a factor   (   ), i.e.,      . 

Stop when    , where    is the limit on the computing budget in the final stage.  
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5. Production-Inventory Systems: Results and Discussion 

5.1 Experiment Sets 1, 2 and 3 

Results of the Experiment Sets 1, 2, and 3 are shown in Table 4, Table 5, and Table 6. Each 

table shows, for a given cost factor combination, the optimal control parameter values (  ,   , 

  , as applicable) and resulting performance (WIP, FG inventory and backorder levels) for each 

setting (,   ) and policy (1, 2 or 3). Table 4 provides these results for the first cost factor 

combination (1:2:20), Table 5 for the second (1:2:40), and Table 6 for the third cost factor 

combination (1:2:10). For each cost factor combination, Figure 8, Figure 9 and Figure 10 show 

the total cost for each setting/policy. The lower bound on total cost for each setting/policy is also 

shown in each figure. Table 7 shows the order fill rates, average WIP, and FG in each policy 

when the control parameter values are optimal for the first cost factor combination. 

 

Table 4. Results for comparison of three policies, first cost factor combination. 

     
Policy 1 parameters and states Policy 2 parameters and states  Policy 3 parameters and states 

  ,    E(  ), E(  
 ), E(  

 )   ,    E(  ), E(  
 ), E(  

 )   ,   ,    E(  ), E(  
 ), E(  

 ) 

0.5 0 10, 7 3.0, 4.1, 0.13 7, 0 2.9, 4.1, 0.15 10, 7, 0 3.0, 4.1, 0.13 

0.5 1LT 10, 5 3.0, 3.6, 0.14 6, 1 2.8, 3.2, 0.12 10, 5, 1 3.0, 2.4, 0.16 

0.5 2LT 9, 4 2.9, 4.0, 0.09 5, 1 2.7, 2.3, 0.14 9, 4, 2 3.0, 2.0, 0.11 

0.6 0 15, 9 4.5, 4.7, 0.27 10, 0 4.4, 5.6, 0.20 15, 9, 0 4.5, 4.7, 0.27 

0.6 1LT 15, 7 4.5, 4.9, 0.22 8, 1 4.1, 3.8, 0.22 15, 7, 1 4.5, 3.1, 0.24 

0.6 2LT 15, 4 4.5, 4.1, 0.26 8, 2 4.1, 3.9, 0.11 15, 6, 2 4.5, 2.7, 0.14 

0.7 0 22, 14 7.0, 7.3, 0.36 14, 0 6.8, 7.2, 0.39 22, 14,0 7.0, 7.3, 0.36 

0.7 1LT 22, 11 7.1, 7.3, 0.31 13, 2 6.6, 6.4, 0.24 22, 11, 2 7.1, 4.8, 0.32 

0.7 2LT 22, 7 7.0, 6.5, 0.35 11, 2 6.3, 4.7, 0.25 21, 9, 2 7.0, 3.5, 0.24 

0.8 0 30, 23 12, 11, 0.60 24, 0 12, 12, 0.53 30, 23,0 12, 11, 0.60 

0.8 1LT 29, 19 12, 12, 0.52 22, 2 12, 10, 0.37 28, 20, 2 12, 8.8, 0.45 

0.8 2LT 28, 13 12, 10, 0.65 19, 2 11, 7.9, 0.38 29, 16, 2 12, 5.8, 0.42 

 , order arrival rate;   , demand lead time of Class 1 orders; Policy 1, make-to-order approach; Policy 2, early 

fulfillment approach; Policy 3, the proposed approach for using ADI;   ,    and    are optimal values of 

respective policy parameters to minimize total cost for cost factor combination  :  :   = 1:2:20. E(  ), expected 

WIP; E(  
 ), expected FG inventory; E(  

 ), expected backorder level for various settings; LT, average job flow-

time. See Table 3 for experimental design. 
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Table 5. Results for comparison of three policies, second cost factor combination. 

     
Policy 1 parameters and states Policy 2 parameters and states  Policy 3 parameters and states 

  ,    E(  ), E(  
 ), E(  

 )   ,    E(  ), E(  
 ), E(  

 )   ,   ,    E(  ), E(  
 ), E(  

 ) 

0.5 0 10, 8 3.0, 5.1, 0.08 8, 0 2.9, 5.0, 0.09 10 / 8 / 0 3.0, 5.1, 0.08 

0.5 1LT 10, 6 3.0, 5.5, 0.05 7, 2 2.8, 4.2, 0.06 11 / 6 / 2 3.0, 3.4, 0.09 

0.5 2LT 9, 4 2.9, 4.0, 0.10 6, 2 2.7, 3.3, 0.06 10 / 5 / 2 3.0, 2.7, 0.06 

0.6 0 17, 11 4.5, 6.6, 0.13 11, 0 4.4, 6.6, 0.14 17 / 11 / 0 4.5, 6.6, 0.13 

0.6 1LT 16, 9 4.5, 6.7, 0.10 10, 1 4.4, 5.6, 0.08 17 / 9 / 2 4.5, 4.8, 0.10 

0.6 2LT 15, 6 4.5, 5.9, 0.12 9, 2 4.2, 4.8, 0.06 15 / 7 / 2 4.5, 3.3, 0.10 

0.7 0 22, 17 7.0, 10, 0.16 17, 0 6.9, 10, 0.16 22 / 17 / 0 7.0, 10, 0.16 

0.7 1LT 22, 13 7.0, 9.2, 0.18 14, 2 6.7, 7.3, 0.17 22 / 14 / 2 7.0, 7.4, 0.14 

0.7 2LT 22, 9 7.0, 8.4, 0.20 13, 3 6.5, 6.5, 0.11 22 / 11 / 3 7.0, 5.1, 0.13 

0.8 0 34, 27 12, 15, 0.30 27, 0 12, 15, 0.31 34 / 27 / 0 12, 15, 0.30 

0.8 1LT 30, 23 12, 15, 0.27 24, 3 12, 12, 0.24 30 / 23 / 2 12, 11, 0.27 

0.8 2LT 31, 18 12, 15, 0.28 22, 3 11, 11, 0.17 30 / 20 / 3 12, 9.0, 0.20 

  ,    and    are optimal values of respective policy parameters for cost factor combination  :  :   = 1:2:40; 

Other notations are same as those in Table 4. See Table 3 for experimental design. 

 

 

Table 6. Results for comparison of three policies, third cost factor combination. 

     
Policy 1 parameters and states Policy 2 parameters and states  Policy 3 parameters and states 

  ,    E(  ), E(  
 ), E(  

 )   ,    E(  ), E(  
 ), E(  

 )   ,   ,    E(  ), E(  
 ), E(  

 ) 

0.5 0 10, 5 3.0, 2.4, 0.35 6, 0 2.8, 3.2, 0.24 10, 5, 0 2.9, 2.4, 0.35 

0.5 1LT 11, 3 3.0, 1.9, 0.37 5, 1 2.6, 2.3, 0.21 10, 4, 1 2.9, 1.7, 0.24 

0.5 2LT 7, 3 2.9, 2.9, 0.19 5, 1 2.6, 2.3, 0.12 8, 3, 1 2.9, 1.2, 0.22 

0.6 0 12, 7 4.4, 3.1, 0.53 8, 0 4.1, 3.8, 0.42 12, 7, 0 4.4, 3.1, 0.53 

0.6 1LT 12, 5 4.4, 3.2, 0.41 7, 1 4.0, 3.0, 0.30 13, 6, 1 4.4, 2.4, 0.30 

0.6 2LT 12, 3 4.4, 3.3, 0.33 6, 1 3.8, 2.2, 0.31 13, 4, 1 4.4, 1.3, 0.32 

0.7 0 20, 11 6.8, 4.7, 0.70 12, 0 6.5, 5.5, 0.61 20, 11, 0 6.9, 4.7, 0.69 

0.7 1LT 17, 7 6.8, 4.2, 0.71 10, 1 6.1, 3.8, 0.52 20, 9, 1 6.9, 2.8, 0.45 

0.7 2LT 18, 4 6.8, 4.6, 0.56 9, 1 5.9, 3.1, 0.42 20, 6, 1 6.9, 1.6, 0.45 

0.8 0 25, 19 11, 8.1, 1.02 20, 0 11, 8.9, 0.95 25, 19,0 11.5, 8.1, 1.02 

0.8 1LT 23,13 11, 8.0, 0.98 16, 1 10, 5.9, 0.87 25, 14, 1 11.5, 4.4, 0.87 

0.8 2LT 25, 12 11, 7.2, 1.1 15, 2 10, 4.9, 0.56 27, 11, 2 11.6, 3.0, 0.51 

  ,    and    are optimal values of respective policy parameters for cost factor combination  :  :   = 1:2:10; 

Other notations are same as those in Table 4. See Table 3 for experimental design. 
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Figure 8. Optimal cost for various policies in different settings, first cost factor combination. 

 

Table 7. Performance measures of three policies, first cost factor combination. 
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Policy 1 states Policy 2 states Policy 3 states 

Fill rate, avg. WIP, avg. FG  Fill rate, avg. WIP, avg. FG Fill rate, avg. WIP, avg. FG 

0.5 0 0.907, 3.00, 4.11 0.904, 2.91, 4.09 0.907, 3.00, 4.11 

0.5 1LT 0.902, 3.00, 3.61 0.920, 2.80, 3.20 0.884, 3.00, 2.43 

0.5 2LT 0.931, 2.94, 3.99 0.903, 2.66, 2.34 0.914, 2.97, 2.03 

0.6 0 0.877, 4.53, 4.72 0.910, 4.39, 5.60 0.877, 4.53, 4.72 

0.6 1LT 0.900, 4.53, 4.86 0.901, 4.18, 3.82 0.879, 4.53, 3.10 

0.6 2LT 0.880, 4.53, 4.09 0.947, 4.07, 3.93 0.920, 4.53, 2.65 

0.7 0 0.896, 7.05, 7.26 0.891, 6.80, 7.21 0.896, 7.05, 7.26 

0.7 1LT 0.908, 7.05, 7.34 0.932, 6.62, 6.38 0.901, 7.05, 4.85 

0.7 2LT 0.896, 7.05, 6.50 0.926, 6.31, 4.69 0.913, 7.04, 3.50 

0.8 0 0.894, 12.05, 11.36 0.906, 11.79, 12.21 0.894, 12.05, 11.36 

0.8 1LT 0.906, 12.01, 11.73 0.931, 11.53, 10.46 0.913, 11.98, 8.85 

0.8 2LT 0.887, 11.97, 10.28 0.928, 11.11, 7.89 0.908, 12.02, 5.84 

 , order arrival rate;   , demand lead time of Class 1 orders; values shown result in minimum total costs for 

respective policies, (cost factor combination  :  :   = 1:2:20); LT, average job flow-time. See Table 3 for 

experimental design. 

(a) 𝜆 = 0.5 (b) 𝜆 = 0.6 

(c) 𝜆 = 0.7 (d) 𝜆 = 0.8 
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Figure 9. Optimal cost for various policies in different settings, second cost factor combination. 

 

Table 4, Table 5 and Table 6 depict optimal configurations of the policies covering a broad 

range of order arrival rates, demand lead time and cost factors for three-stage facilities. It can be 

observed that the optimal number of Kanban cards (   in policies 1 and 3) increases with an 

increase in order arrival rate, but remains nearly unaffected as the amount of ADI changes. 

However, the base-stock level (   in all policies) depends on both the arrival rate and ADI. This 

is because    is directly related to the average system utilization (the only way of keeping the 

system busier is more frequent production release), which cannot be changed by using ADI. 

However, ADI adds flexibility in the system that reduces safety stock requirement. The 

following is also observed: 

   ≥  ( w)  ( f
 )≥    for policies 1 and 3;  ( w)  ( f

 )=    for Policy 2 (10) 
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Figure 10. Optimal cost for various policies in different settings, third cost factor combination. 

 

Policy 2 is a pure make-to-stock policy that performs early fulfillment under certain 

conditions. Thus, FG + WIP level always remains constant (equal to the base-stock level   ). 

Policies 1 and 3, however, are partial make-to-stock and partial make-to-order policies, 

respectively. Consequently, the average FG + WIP level varies between the base-stock and 

Kanban card limits. Additionally, the following inequality holds when    > 0: 

   (  )  (  
 )             (  )  (  

 )            (  )  (  
 )          (11) 

 

The benefit of pairing early fulfilment with make-to-order is evident in this inequality. The 

backorder levels resulting from the optimal configurations of the policies do not differ 

significantly. A substantial reduction in FG inventory volume is possible, however, using Policy 

3. This finding is in agreement to that of Karaesman et al. (2004), who consider early fulfillment 
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using a single demand class and conclude that the benefit of early fulfillment is reduced 

inventories that result from advance order deliveries. However, as the cost of WIP is considered 

here, an order-base-stock policy ( =  ) is non-optimal. The results indicate that only a small 

amount of reserve stock (    [1,3]) is required for optimally fulfilling urgent orders: the 

remaining inventory is then made available for early fulfillment. When    = 0, no ADI exists and 

hence there is no need for rationing. Table 7 shows the average order fill rate (fraction of 

demands fulfilled from the on-hand inventory), WIP, and FG inventory for the optimal 

configuration of each policy. It is observed that the key advantage of our proposed policy is a 

much lower average FG inventory compared with the other policies (when    > 0), while the 

WIP and the fill rate are not greatly affected. As the overall cost is a function of the average 

WIP, FG, and backorders, the proposed policy emerges as superior to the competing policies, 

particularly at high system utilisation with longer demand lead time. 

A comparison of total cost (Figure 8, Figure 9 and Figure 10) also depicts that early 

fulfillment is beneficial wherever ADI is available (   > 0). Policy 1 does not use early 

fulfillment and performs the poorest in terms of total cost. In other words, it can be conjectured 

that early fulfillment with one-for-one replenishment is more beneficial than make-to-order for 

taking advantage of available ADI, and the relative benefit is increasing with   . The benefits are 

even greater, however, when early fulfillment is combined with a suitable make-to-order 

strategy.  

The plots show that the relative performance of the policies remains unchanged when the 

cost factor is changed (the     ratio is doubled in the second set of comparisons in Figure 9, and 

is halved in Figure 10) within the given range. In the absence of ADI (   = 0), performance of all 

policies is the same (except for Policy 2, which has marginally higher cost due to its inability to 
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make items to-order). As    increases, the benefit of the combined strategy (Policy 3) becomes 

more prevalent. This benefit is observed irrespective of the order arrival rates or cost factors used 

in the setting. Karaesmen et al. (2003) were not able to find the benefit of ADI using a make-to-

order approach under high system utilizations. Claudio and Krishnamurthy (2009) also indicate 

diminishing returns of ADI as demand lead time increases. The experimental results for Policy 1 

confirm both of these observations, as the total cost decreases slowly (especially under high 

system utilization) as    increases. In contrast, Policy 3 achieves a significant cost reduction in 

proportion to the amount of ADI available. At   = 0.8, increasing    from 0 to 0.5LT, 0.5LT to 

1LT and 1LT to 2LT reduces total cost by 8.7%, 9.2% and 17%, respectively ( :  :   = 1:2:20). 

At this cost factor combination and    = LT, an average cost reduction of 16.33% is observed for 

Policy 3 in comparison to Policy 1. The cost reduction becomes 29.21% when    = 2LT. 

Compared to Policy 2, Policy 3 achieves a cost reduction of 3.97% (at    = LT) and 8.76% (at    

= 2LT). Results are similar using other cost factor combinations. No other policy in literature 

outperforms the proposed policy by using ADI in the context of production-inventory systems. 

The results presented here thus show a performance improvement over the existing policies. An 

average cost reduction of 3% is observed for Policy 3 in comparison to the better of the other two 

policies, considering all settings (  ≤    ≤ 2LT). For any firm, even a small percentage saving in 

cost may translate into a large percentage rise in profit. The optimality gap (defined as relative 

increase in total cost for Policy 3 in comparison to the lower bound) is found to be 2.89% on 

average. Although this gap is higher than that obtained by Wang and Toktay (2008) in the 

inventory system with constant replenishment time (which is 2% on average), the performance of 

Policy 3 seems close enough to the lower bound policy, which is difficult anyway to implement 
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in reality. The outcome of these experiments indicates the superiority of combining make-to-

order and rationing. 

From the above sets of experiments, the performance of Policy 2 is observed to fall in 

between that for other two policies. Additionally, Policy 3 is an improvement over both Policy 1 

and Policy 2 as it combines the benefits of both these approaches together. However, Policy 1 is 

suitable when early fulfilment is not allowed. In other words, depending on whether early 

fulfilment is allowed, one of Policy 1 and 3 is desirable. Therefore, from now onwards, 

performance measure of Policy 2 is discontinued. The comparison thus obtained, reflects the 

incremental benefits of allowing early fulfillment in given conditions ( xperiment Set 4‒5). 
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5.2 Experiment Set 4 

Table 8 Shows the control parameter values, and Figure 11 shows the effect of changing the 

arrival ratio on the total cost for a range of system utilizations. Here arrival ratio denotes the 

fraction of orders providing ADI among all orders. 

 

Table 8. Results for Experiment Set 4. 

λ   (%) 
Policy 1 parameters and states Policy 3 parameters and states 

K*, Z* E(Iw), E(If
+
), E(If

-
) K*, Z*, R* E(Iw), E(If

+
), E(If

-
) 

0.5 0 10, 6 3.0, 3.2, 0.21 10, 6, 0 3.0, 3.2, 0.21 

0.5 25 10, 6 3.0, 3.9, 0.13 10, 6, 0 2.8, 3.7, 0.12 

0.5 50 10, 5 3.0, 3.6, 0.14 10, 5, 1 3.0, 2.4, 0.16 

0.5 75 10, 4 3.0, 3.4, 0.13 11, 4, 1 3.0, 1.8, 0.14 

0.5 100 10, 3 2.9, 3.1, 0.13 10, 3, 1 3.0, 1.3, 0.12 

0.6 0 15, 9 4.4, 5.0, 0.24 15, 9, 0 4.4, 4.8, 0.24 

0.6 25 15, 8 4.4, 4.9, 0.23 15, 8, 2 4.4, 4.0, 0.22 

0.6 50 15, 7 4.5, 4.9, 0.22 15, 7, 1 4.5, 3.1, 0.24 

0.6 75 12, 5 4.4, 4.1, 0.24 12, 5, 1 4.4, 1.8, 0.25 

0.6 100 12, 4 4.3, 4.2, 0.21 12, 4, 1 4.4, 1.5, 0.21 

0.7 0 23, 14 6.9, 7.4, 0.32 23, 14, 0 6.9, 7.4, 0.30 

0.7 25 24, 12 6.9, 7.3, 0.31 24, 12, 2 6.9, 5.7, 0.32 

0.7 50 22, 11 7.1, 7.3, 0.31 22, 11, 2 7.1, 4.8, 0.32 

0.7 75 20, 8 6.9, 6.6, 0.31 20, 8, 1 6.9, 2.7, 0.33 

0.7 100 21, 6 6.9, 6.3, 0.30 20, 6, 1 6.9, 1.8, 0.31 

0.8 0 32, 23 11.7, 11.7, 0.55 32, 23, 0 11.7, 11.7, 0.50 

0.8 25 30, 20 11.7, 11.7, 0.53 30, 20, 2 11.7, 9.2, 0.48 

0.8 50 29, 19 11.7, 10.7, 0.52 28, 20, 2 11.7, 8.8, 0.45 

0.8 75 30, 13 11.7, 10.6, 0.52 30, 13, 1 11.7, 5.2, 0.44 

0.8 100 28, 10 11.6, 10.5, 0.52 28, 10, 1 11.7, 3.4, 0.42 

 , arrival ratio; Other notations are same as those in Table 4. See Table 3 for 

experimental design. 
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Figure 11. Variation of total cost with a change in arrival ratio (Experiment Set 4). 

 

It can be observed for all system utilization values that the difference between Policy 1 and 3 

widens as the arrival ratio increases. When all orders provide ADI (100% arrival ratio), the 

incremental benefits from early fulfillment varies from 30% cost reduction (for   = 0.5) to 37.6% 

(for   = 0.8). 

Another interesting observation from this set of experiments is that the total cost of managing 

inventory reduces significantly when only a fraction of the orders provide ADI and early 

fulfillment is allowed for them. It turns out for each of the above plots that the cost is lower even 

when a quarter of the orders provide ADI with early fulfillment than all orders providing ADI 
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with no early fulfillment. A managerial insight is that convincing a fraction of the customers to 

accept early fulfillment may worth more than convincing all customers to provide ADI. 

5.3 Experiment Set 5 

Results of changing the relative backorder costs are shown in Figure 12. Table 9 shows 

optimal control parameter values for three different backorder cost combinations at various 

system utilizations. Since the backorder costs for the demand classes are different, the class with 

higher backorder cost is the priority class. A static rationing level (R1) is maintained, such that 

whenever the inventory level comes down to R1, only the demands from the priority class is 

fulfilled. Another static rationing level R2 determines early fulfilment of ADI orders. R2 is 

applicable for Policy 3 only.  

Table 9. Optimal control parameter values for Experiment Set 5. 

  
  = 10,   = 100   =10,   =10   = 100,   = 10 

   

 Policy 1 Policy 3 Policy 1 Policy 3 Policy 1 Policy 3 

   ,   ,   
    ,   ,   

 ,   
    ,   ,   

    ,   ,   
 , R2*   ,   ,   

    ,   ,   
 ,   

  

0.5 9, 5, 1 8, 6, 1, 4 11, 3, 0 10, 4, 0 1 9, 5, 1 10, 5, 0, 0 

0.6 14, 7, 1 12, 8, 1, 4 12, 5, 0 13, 6, 0, 1 13, 7, 1 13, 7, 1, 2 

0.7 18, 10, 2 19, 11, 2, 4 17, 7, 0 20, 9, 0, 1 19, 9, 2 18, 10, 1, 2 

0.8 29, 15, 2 29, 17, 2, 5 23, 13, 0 25, 14, 0, 1 29, 15, 2 29, 17, 2, 3 

 , order arrival rate;    and    are backorder costs for Class 1 and Class 2 orders respectively;   ,   ,   
  and   

  

are optimal values of respective policy parameters to minimize total cost. See Table 3 for experimental design. 

 

One important finding of these experiments is that the early fulfillment is beneficial even 

when no-ADI class is the priority class. For Policy 3, early fulfillment happens whenever    is 

less than  . It is observed from the optimal parameter values that   
  is positive when either of 

the demand classes is a priority class. However, actual level of early fulfilment depends on the 

type of the priority class (i.e., whether the class is ADI providing). When a backordering of no-
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ADI demand is ten times more expensive that a backordering of ADI demand, still moderate 

amount of early fulfillment takes place for the optimal design alternatives (evidenced by the gap 

between   
  and   ). This gap widens when the demand classes have equal priority, or the ADI-

class is at higher priority. When both demand classes have equal priority (  = 10,   = 10),   
  is 

obviously zero.    takes positive values when either demand class becomes the priority class. 

In Figure 12, total cost of managing inventory is appeared more for (a) or (c) than in (b), as 

the backordering cost for one class is higher than the other. Costs of using Policy 3 in (c) are 

marginally smaller than corresponding costs in (a) because of the advantage of obtaining ADI 

from higher priority class. This difference is more prominent for the costs associated with Policy 

1. This observation is parallel to the outcome of Koçağa and Şen (2  7), where incorporation of 

demand lead time is shown to be more valuable if the ADI providing class is the higher priority 

class. Significant difference between the costs of Policy 1 and Policy 3 for all conditions in (a), 

(b) and (c) indicates the robustness of early fulfillment irrespective of the relative priority of the 

demand classes. At high system utilization, a rapid increase in total cost is observed for all 

policies, indicating less benefit of ADI at high utilization. 
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Figure 12. Optimal cost comparison of two policies (Experiment Set 5). 
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The remaining experiments (Sets 6‒9) focus exclusively on early fulfillment. Policy 1, which 

does not use early fulfillment, is not further considered. These experiments show the 

performance-sensitivity of Policy 3 with a change in the backorder cost, an increase in the 

demand lead time, and an equal amount reduction in the supply lead time. 

5.4 Experiment Set 6 

Table 10 shows the effect of change in arrival rate when all orders provide ADI, but only a 

fraction of the orders accept early fulfillment (Scenario 2). Here arrival ratio indicates the 

fraction of orders that accept early fulfillment among all orders. Figure 13 shows the 

corresponding cost variations. 

 

Table 10. Results for Experiment Set 6. 

    (%) 
  = 10,   = 100 

  ,   ,   
 , R2* E(  ), E(  

 ), E(   
 ), E(   

 ) 

0.5 25 9, 5, 1, 4 2.8, 4.4, 0.03, 0.022 

0.5 50 9, 4, 1, 3 2.9, 3.2, 0.09, 0.014 

0.5 75 10, 3, 1, 2 2.9, 2.0, 0.19, 0.006 

0.6 25 11, 6, 1, 4 4.2, 5.1, 0.07, 0.044 

0.6 50 11, 5, 1, 3 4.3, 3.6, 0.16, 0.023 

0.6 75 11, 5, 1, 2 4.3, 2.8, 0.19, 0.006 

0.7 25 17, 9, 1, 4 6.7, 7.6, 0.09, 0.049 

0.7 50 15, 9, 1, 3 6.6, 6.2, 0.16, 0.018 

0.7 75 17, 6, 1, 2 6.8, 2.9, 0.38, 0.010 

0.8 25 24, 14, 1, 4 11.1, 11.2, 0.23, 0.090 

0.8 50 23, 11, 2, 4 11.2, 7.0, 0.56, 0.020 

0.8 75 27, 11, 1, 2 11.5, 4.8, 0.48, 0.010 

 , arrival ratio; E(   
 ) and E(   

 ) are expected backorder levels for Class 1 

and Class 2 orders. Other notations are same as those in Table 4 and Table 9. 

See Table 3 for experimental design. 
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It is observed from the plot that the cost reduction is almost linear with the increase in arrival 

ratio, particularly for low to moderate system utilization. At high system utilization, the 

incremental benefit of advance demand information reduces with an increase in arrival ratio. 

This is expected, as an acceptable service level of Class 2 demands makes early fulfillment of 

Class 1 demands less frequent at high system utilization. 

 

 

Figure 13. Variation of total cost with a change in arrival ratio (Experiment Set 6). 

 

5.5 Experiment Set 7 

Table 11 and Figure 14 show the results of experiments conducted for two different 

backorder cost combinations: (i)   = 10,    = 100; (ii)   = 100,    = 10. In (i), early fulfillment 

is not allowed for the higher priority class, whereas in (ii) that class accepts early fulfillment. 
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Table 11. Results for comparison of two policies (Experiment Set 7). 

  
No EF for Priority Class (  = 10,    = 100) EF allowed for Priority Class (  = 100,    = 10) 

  ,   ,   
 , R2* E(  ), E(  

 ), E(   
 ), E(   

 )   ,   ,   
 , R2* E(  ), E(  

 ), E(   
 ), E(   

 ) 

0.5 9, 4, 1, 3 2.9, 3.2, 0.09, 0.014 11, 3, 0, 0 3.0, 1.9, 0.003, 0.26 

0.6 11, 5, 1, 3 4.3, 4.0, 0.13, 0.016 13, 4, 0, 0 4.4, 2.4, 0.004, 0.42 

0.7 15, 9, 1, 3 6.6, 6.2, 0.15, 0.018 18, 7, 0, 0 6.8, 4.3, 0.007, 0.48  

0.8 23, 11, 2, 4 11.2, 7.0, 0.55, 0.020 23, 11, 1, 2 11.3, 6.6, 0.031, 0.51 

E(   
 ) and E(   

 ) are expected backorder levels for Class 1 and Class 2 orders. Other notations are same as 

those in Table 4 and Table 9. See Table 3 for experimental design. 

 

 

  

Figure 14. Change in total cost with the arrival ratio (Experiment Set 7). 

 

Two important observations can be made from this set of experiments: (1) early fulfillment is 
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5.6 Experiment Set 8 and 9 

In Experiment Set 8, the effect of change in demand lead time is observed for different 

system utilizations. In Experiment Set 9,   is adjusted such that the average supply lead times are 

reduced by the same amounts, as the demand lead time increments in the preceding set of 

experiments. Results are shown in Table 12 and Figure 15. 

 

Table 12. Control parameter values and performance measures in Experiment Sets 8 and 9. 

  
E(SLT)= DLT (both equal to LT) DLT increased by 15% E(SLT) reduced by 15% 

  ,   ,   
  E(  ), E(  

 ), E(  
 )   ,   ,   

  E(  ), E(  
 ), E(  

 )   ,   ,   
  E(  ), E(  

 ), E(  
 ) 

0.5 14, 3, 1 2.9, 2.0, 0.08 14, 3, 1 3.0, 2.2, 0.06 15, 2, 1 2.5, 1.5, 0.07 

0.6 17, 5, 1 4.4, 3.3, 0.09 17, 4, 1 4.4, 2.7, 0.09 16, 3, 1 3.8, 2.1, 0.09 

0.7 17, 7, 2 6.8, 4.4, 0.18 18, 6, 2 6.8, 4.1, 0.17 18, 5, 2 5.8, 3.6, 0.12 

0.8 22, 12, 2 11.2, 7.3, 0.33 24, 10, 2 11.4, 6.4, 0.33 25, 8, 2 9.7, 5.4, 0.23 

Notations are same as those in Table 4 and Table 9. See Table 3 for experimental design. 

 

 

 

Figure 15. Effect of increasing the demand lead time and reducing the supply lead time. 
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For pure inventory systems, supply lead times are load-independent. For such systems with 

no early fulfillment, Hariharan and Zipkin (1995) shows that increasing the demand lead time 

has the exact same effect as reducing the supply lead time by an equal amount. Later, Wang and 

Toktay (2008) shows that allowing early fulfillment breaks this equality: increasing the demand 

lead time brings greater benefit than reducing the supply lead time by the same amount, as 

fulfillment flexibility increases in the first case. However, results in the current research are in 

contrast to the pure inventory systems, as increasing the demand lead time is observed to be 

worse than reducing the supply lead times. Outcome of these sets of experiments proves that the 

claim by Wang and Toktay in the context of pure inventory systems does not necessarily hold for 

production-inventory systems. This is so because of the queuing effect in the production-

inventory systems (supply lead times are load-dependent). 
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6. Pure Inventory Systems: Analytical Investigation  

6.1 Classical System 

As described in Section 3.2, an analytical approach is used for characterizing the optimal 

policy in Scenario 3. The model detailed in this section is an extension of the classical periodic 

review pure inventory model to accommodate multiple demand class and advance demand 

information. The classical model (e.g., Porteus, 2002) is first outlined, which will be helpful later 

to characterize the current model. 

 This is a univariate system, where the state of the system can be completely defined by the 

inventory position   (thus, the state space is a real line). The decision (action) is conveniently 

represented by the level of inventory after ordering ( ).  The following notations are used: 

    = unit holding cost per period (  >0) 

   = unit procurement cost 

   = unit shortage cost per period (     ) 

The expected loss function (i.e., one-period holding and shortage cost function) can be 

expressed in terms of   as follows: 

  ( )   ∫   (   ) ( )   ∫   (   ) ( )   
 

   

 

   

 (12) 

Then the optimality equation for this model becomes: 

   ( )  
   
   

{ (   )   ( )    ∫     (   ) ( )  
 

 

} (13) 

The last period cost is assumed convex. It can be reasonably assumed that the backlogged 

demands at the end of period    are met immediately (at usual cost), but the excess inventory has 

no value. Therefore, the cost function is: 
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   ( )  {
   
 
  
       
         

 (14) 

which is a convex function. 

Equation (13) can be expressed in terms of the decision variable  : 

   ( )  
   
   

{  ( )    } (15) 

Where, 

   ( )  {    ( )    ∫     (   ) ( )  
 

 

} (16) 

As the last period cost function is convex and linearity preserves convexity,    is shown to be 

convex and coercive using backward recursion. 

The above formulation indicates that the optimal inventory replenishment policy is a base-

stock policy.  For example, if    is shown in Figure 16 and    is a minimizer of   , then the 

optimal decision is to move up (to the right) of   , if the inventory position   is below the base-

stock level     

 

 

 

 

 

 

 

 

 

  

 

 

𝐺𝑡(𝑥) 

𝑥 𝑆𝑡  

Figure 16. A case where a base-stock policy is the optimal. 
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6.2  Extension of the Classical Model to Accommodate ADI and Multiple Classes 

When ADI and two demand classes are considered, inventory position alone is not sufficient 

to define the system state. At the beginning of any period  , the inventory manager takes 

replenishment order decision by considering all information available to her. These are: (a) the 

inventory level   , (b) replenishment orders placed since (   ) period, which are yet to be 

delivered, and (c) demands that need to be fulfilled in the current and future periods. The system 

state can be defined by these three variables together: (        ), where, 

    = inventory level 

    = supply pipeline 

    = advance demand profile 

    and     are vectors.    (                   ), where    is the replenishment order 

received in period  . 

    {         }  (17) 

     and      represent Class 1and Class 2 demand profiles respectively (  and   are suffixes 

to segregate demands from different classes). 

       (    
 ,     

   , …,     
      ) (18) 

       (  
 ,   

   , …,   
      ) (19) 

Where,     
  = Class 1 demands, which remain unfulfilled at the beginning of period  , and 

are due by period  .      
  is similarly defined for Class 2 demand. Also,    denotes all orders 

arrived in period  . The term      corresponds to Class 1 orders, whereas      corresponds to 

Class 2 orders arrived in that period. Therefore, the following equations hold. 

    =           (20) 
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       (21) 

The optimality equation (13) in classical case now becomes  

   (        )  
   

      
{ (  )     (  )        (              ) } (22) 

Similar to the classical case, a global minimum exists if     can be shown as convex and 

coercive. However, convexity can be proved, when the evolution equations of state variables are 

predicted to be linear. Though    and       evolve linearly, the possibility of early fulfillment of 

class1 demands voids the guarantee of linear evolutions of    and     .  

In the following paragraphs, three different possibilities depending upon the values of   ,   , 

and   are discussed. These three possibilities result in different outcomes for optimal policy 

characterization.  

Case (i):   ≤    ≤   + 1  

Any type of demand arriving in period   is due before receiving the delivery of orders placed 

in that period. A schematic for the above condition is shown in Figure 17. 

 

 

 

 

 

 

Case (ii):    ≤   + 1 <    

Supply lead time is more than the demand lead time for Class 1 orders, but less than that for 

Class 2 orders (Figure 18). 

 

t +1 t t +T
1
 t +T

2
 t +L 

Figure 17. A time diagram for Case (i). 
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Case (iii):   + 1 <   ≤    

Supply lead time value is lower than the demand lead time for both order classes (Figure 19). 

 

 

 

 

 

 

Our characterization of the optimal policy is based upon two observations as described below: 

Observation 1: 

In the optimal policy, Class 1 demands are never early fulfilled at the expense of 

backordering of Class 2 demands.  

This is intuitive as we have assumed (     ), which typically holds in reality. Since the 

discount factor   = 1, preserving inventory to prevent future backordering always results in 

lower inventory cost than utilizing the same units in early fulfilment of current period demands. 

Observation 2: 

In the optimal policy, Class 1 demands are fulfilled in First-Come-First-Served basis. 

t t +1 t +T
1
 t +L t +T

2
 

Figure 18. A time diagram for Case (ii). 

t t +1 t +L t +T
1
 t +T

2
 

Figure 19. A time diagram for Case (iii). 
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This is also a straight forward observation, as the demands due sooner should be fulfilled (by 

either early or exact fulfillment) before fulfilling demands due later  ― which may reduce future 

backordering. There is no incentive to do otherwise. 

Based upon the above observations, a notation  ̂ is introduced. At period  , the Class 1 

demand profile till period (t +   ) is known. The last  ̂ periods of these demands remain entirely 

unfulfilled (in period  ). Therefore,    terms can be positive only from period (  +  -1-  ̂) to 

(     ), which is a key observation for expressing the evolution of  . 

An example of evaluating  ̂ is provided in Figure 20. Assume that    3. At period  , after 

fulfilling all demands in that period, it is better to early fulfill Class 1 demands due in period (  + 

1) and period (  + 2). However, Class 1 demands due in period (  + 3) should not be fulfilled 

early in period   to avoid backordering of Class 2 demands in period (  + 1) and (  + 2). 

Therefore, last one period of Class 1 demand remains unfulfilled. Thus,  ̂ = 1 here. 

 

 

 

 

 

 

 

Then evolution of inventory level can be expressed as follows: 

       (      ∑     
 

      ̂  

   

   
 )

 

  (          
    

 )
 

 (23) 

Where,                          

𝑥  1 

       𝑡 

𝑤 = 5 

       𝑡           𝑡           𝑡    

𝑤 = 2 𝑤 = 1 𝑤 = 3 

𝑣  = 1, 𝑣  = 1 𝑣  = 1, 𝑣  = 3 𝑣  = 1, 𝑣  = 2 𝑣  = 2, 𝑣  = 1 

Figure 20. An example of finding 𝒕 . 
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In the above formulation,  ̂ can be evaluated only when    ≤   + 1. This indicates that 

characterization is possible for Cases (i) and (ii). 

A new term ― modified inventory position (as defined in Wang and Toktay, 2008) is used here: 

    (   ∑    ∑     
 

      

   

 ∑   
 

      

   

     

   

) (24) 

and  

          (25) 

where    is the modified inventory position before ordering at period  , and    is that after 

ordering. The term    denotes the amount of replenishment order placed in period  . This 

modified inventory position incorporates ADI, so it is different from the standard definition of 

inventory position (thus the term modified is used). With the help of the modified inventory 

position, evolution of    can be expressed as the following. 

Case (i): 

       (   ∑     ∑      ∑     
 

        ̂

     

      

   

   

   

)

 

 (   ∑      ∑     

      

   

      

   

)

 

 (26) 

 

Case (ii): 

       (   ∑     ∑     
 

        ̂

     

 ∑   
 

        

   

   

   

)

 

 (   ∑     

      

   

 ∑     

        

   

)

 

 (27) 

 

Case (iii): 

As  ̂ is unknown,        is also unknown at period  . 

Using the above expressions, the following proposition can be made: 
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Case (i):   ≤   ≤   + 1  

1.        can be expressed by MIP and upcoming demand. 

2.     ∑    ∑   evolves linearly, i.e.,              . 

3. A base-stock policy is optimal for this case. 

Case (ii):    ≤   + 1 <    

1.        can be expressed by MIP, upcoming demand and ∑     
        
   . 

2.               holds, but we need to remember ∑     
        
    terms. 

3. A state-dependent base-stock policy is thus optimal. 

Case (iii):   + 1 <   ≤    

1. As        is unknown by the above analysis, the optimal policy is difficult to find. 

The above analysis suggests the optimality of a base-stock or state-dependent base-stock 

policy in some specific cases depending upon the demand lead time and supply lead time values. 
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7. Conclusions 

In this research, an inventory management approach for satisfying demands with ADI has 

been developed. The approach is based upon early order fulfillment in the context of both 

production-inventory and pure inventory systems. Early fulfillment is shown to produce better 

inventory management policies in presence of multiple demand classes.  

For production-inventory systems, two different scenarios were considered. In the first 

scenario, only a fraction of the demands provide ADI (and early fulfillment is acceptable for 

them). Three different policies were compared: (i) a free Kanban-based make-to-order policy 

(existing policy, termed as Policy 1), (ii) a policy using early fulfillment (Policy 2), and (iii) a 

new policy that combines the benefit of previous two policies (Policy 3). Unrestricted early 

fulfillment for one demand class is detrimental to the service level of the other demand class 

(which does not accept early fulfillment). Therefore, a balance in the form of rationing is 

required. A free Kanban-based policy starts production upon receiving ADI, thus helps to reduce 

average FG inventory. On the other hand, early fulfillment satisfied the order in the first 

opportunity, thus releasing the FG inventory. Therefore, these two approaches can work together 

from different angles to reduce inventory management cost. Thus, Policy 3 was found to 

consistently outperform the competing policies in a variety of settings, with a range of values for 

demand lead time, system utilization, cost-factor combination, arrival ratio and relative 

backorder costs. A simulation-based procedure for finding the lower bound on cost was also 

described. In the second scenario, the benefit of early fulfillment was investigated when all 

demands provide ADI, but only a fraction of the demands accepts early fulfillment. The outcome 

of the simulation experiments identified the benefit of using ADI along with an early fulfillment 

policy: this benefit can be significantly more valuable in comparison to both a conventional 
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system with no ADI, and a system with ADI, but no early fulfillment. Utilizing early fulfillment 

is shown to improve performance even in high system utilizations, and the benefit is shown to be 

proportional to the demand lead time. Improvement from early fulfillment is so significant that 

receiving ADI (with early fulfillment allowed) from even a small fraction of customers seems to 

be better than all customers providing ADI, but none accepting early fulfillment. Also, in 

presence of two different priority classes with equal demand lead times and only one class 

accepting early fulfillment, this research found that inventory cost gets lower when the higher 

priority class accepts early fulfillment than the other class does it. 

In pure inventory systems with two demand classes, the optimal replenishment policy is 

characterized for some specific cases. When the demand lead times of both classes are less than 

the supply lead time, the optimal replenishment policy is shown to be a base-stock policy. When 

the demand lead time of the class not accepting early fulfillment is more than the supply lead 

time, the optimal replenishment policy is shown to be a state-dependent base-stock policy. 

This research on inventory management can be extended in several possible directions. One 

natural extension is consideration of more than two demand classes. Investigation of the 

combined benefit of early fulfilment with suitable postponement strategies is another possibility.  

Postponement strategies are effective for multiple product systems with some commonalities. 

Also, postponement helps the inventory manager to receive more information, which can be 

utilized to make better decisions on inventory allocation and shipping methods (see Xu et al., 

2009). Another extension is to integrate ADI with pricing and revenue management. In reality, 

firms need to entice the customers in providing ADI (by some sort of price discount). Therefore, 

the discount level, order fulfillment and replenishment decisions should be considered together 

in the model to evaluate the benefit for the firm.  
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