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(ABSTRACT)

The problem of time-optimal fuselage-reorientation maneuvering of a combat air-
craft, with and without thrust-vectoring capability, was analyzed.

An accurate mathematical model for the reorientation maneuvers of interest was
developed, to ensure practical value of the analysis. In particular, an effective method
for smooth fitting of the aerodynamic data was devised.

The Minimum Principle from optimal control theory was applied and the optimal-
control problems of interest cast into a form of numerical multipoint boundary-value
problems. These are extremely difficult to solve. To alleviate their treatment, a
hybrid approach was adopted. Homotopy ideas were combined with comprehensive
analyses of the structure of the dynamical equations and engineering insight into
the mechanics of the reorientation motions. The approach successfully yielded a
number of extremal solutions for a few typical reorientation maneuvers. The nature
and essential characteristics of the extremal motions were understood, as well as their
domains of existence. A few parametric studies showed how aircraft design parameters

should be tailored to allow for improved maneuverability.
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CHAPTER I

INTRODUCTION

In this chapter the objective of the thesis is presented. The problem of interest is
stated and the major ideas about how it has been attacked are given. Finally, the

structure and contents of the thesis are briefly outlined.

1.1 Introduction. A desire for achieving air superiority leads to a requirement for
more maneuverable fighter aircraft. Two important issues, which affect the capabil-
ities of such aircraft, are selection of design parameters (e.g. aerodynamic-control
surfaces power, stability properties) and optimal guidance and control of the aircraft.
Aircraft which are dynamically more stable require more control power to maneuver,
and vice versa: aircraft with reduced dynamical stability require less control power to
perform the same level of maneuvers. Given that sufficient control power is available,
a question of interest is how to apply the controls to perform the desired maneuvers
in some optimal fashion. In particular, one would like to utilize the inherent stability
properties of the aircraft along with the available control power when performing spe-
cific maneuvers. It is highly desirable that new design concepts account for and take
advantage of the interdependence between the design characteristics and the control
properties of the aircraft. Modern computers already allow for use of very complex
and accurate mathematical models and thus permit computing control laws, and sim-
ulation studies of the influence of various design parameters upon aircraft dynamic
characteristics.

One particular problem related to the issue of air superiority of a fighter aircraft



is rapid (minimum-time) fuselage pointing. In the past, traditional missile attacks
during aerial encounters have been made from behind the opposing aircraft. However,
the new all-aspect missiles have less restrictions on location with respect to the oppos-
ing aircraft at launch. Thus, sometimes in combat situations, the pilot may need to
reorient the fuselage of the aircraft in the direction of an oncoming adversary aircraft
before firing a missile. Immediately after that he may need to reorient the fuselage
again and shoot a missile into another adversary aircraft. This example illustrates the
motivation for studying minimum-time reorientation maneuvers for fighter aircraft.
We want to determine how eXisting aircraft can perform time-optimal reorientation
maneuvers. We want to gain some insight and understanding in the nature of time-
optimal maneuvering. Furthermore, we want to know how future design concepts
should be tailored to allow for improved fuselage reorientation capability.

This work describes some major ideas and concepts conceived in a study which
focused upon understanding time-optimal maneuvering of aircraft. It shows some
of the considerations taken into account, the ingredients of the problem of interest,
formulation of the problem in mathematical terms and a method for solution. No
attempt was made in the study to solve the problem completely. This is a formidable
task since many parameters influence the answer to the questions of interest. However,
the ideas and methods presented can serve as a basis for future work on the problem
of time-optimal maneuvering. An important contribution of the study is that it shows
that sophisticated mathematical models of aircraft can be used in conjunction with

optimization software.

1.2 Thrust-Vectoring Enhancement. Various analyses show that in future aerial
combat situations (dog-fights), according to the current trends in development of mis-
siles and radar technology, the more agile vehicle, capable of maneuvering at higher

angles-of-attack (a), will have air superiority [1][2][3][4]. Designing such a vehicle



(supermaneuverable aircraft) is a very complex and challenging task. Radically new
concepts may emerge in the future. However, if such an aircraft is to be built by
upgrading existing design concepts, then enhancing the aircraft with thrust-vectoring
(TV) capability is a very appealing idea. At high a’s, especially those beyond that
required for maximume-lift, the effectiveness of the aerodynamic-control surfaces de-
creases rapidly with increase in @. Thus, TV-generated (propulsive) moments can be
used to maintain control of the aircraft at high a. At low « the propulsive moments
can supplement those generated by the aerodynamic-control surfaces and increase
the agility (see [5][6][7]) of the aircraft. In addition, thrust-vectoring can be used to
control the aircraft in case of mechanical failure or malfunction of the aerodynamic-
control surfaces.

Several research programs, which focus upon utilizing TV-control, are currently
underway. One of them is the F/A-18 based High Angle-of-Attack Research Vehicle
(HARV) program. Data from the HARV program is used in this study. Accord-
ingly, the numerical results correspond to this aircraft. However, the discussion and
methodology in analyzing the results can be considered quite general.

One particular problem associated with the TV-system is the choice of optimal
design parameters. We are interested in how much control should a TV-system possess
in the direction of each of the body-axes in order to supplement the aerodynamic-
control surfaces generated moments most effectively. An attempt was made in the

course of the study to answer this question.

1.3 Scope of the Study. We restrict our interest to “small” reorientation maneu-
vers (less than 60° in polar coordinates, from the original direction of flight). Also,
the analysis is restricted to maneuvers at lower values of Mach number (M < 0.4).
Rapid reorientation at higher Mach numbers seems not to be desirable because the

high accelerations the aircraft experiences in this case are unacceptable for the pilot.



Simulation analyses and practical experience show that when reorienting the air-
craft rapidly from a steady state straight-line flight into a specified direction, during
the maneuver the aircraft center-of-mass does not deviate significantly from the line
of the original velocity direction (the reorientation maneuvers are fast enough so that
significant linear displacements, due to the aerodynamic forces acting upon the air-
craft, do not take place). Accordingly, the translational motion of the aircraft can
be neglected and only the rotational motion of the aircraft analyzed. One can imag-
ine the aircraft in a wind tunnel, free to rotate about the center-of-mass. We are
interested in how the aerodynamic-control surfaces and the TV-system can be uti-
lized most effectively, so as to reorient the aircraft from one attitude to another in
minimum time.

As an initial step towards answering the above question, it is assumed that aero-
dynamic controls will be used only in a “conventional” way, each control affecting a
single axis (i.e. differential ailerons for roll, the rudder for yaw and the horizontal tail
for pitch control only). Actually, one can use the ailerons to produce a certain amount
of yawing or pitching moment. The horizontal tail can be used to produce a certain
amount of yawing or rolling moment (actually, for some aircraft the horizontal tail is
the primary roll-control surface). “Nonconventional” use of the aerodynamic-control
surfaces (i.e. taking advantage of cross coupling effects) is interesting from a theoret-
ical standpoint and may indeed have some impact upon the results for time-optimal
reorientation maneuvering and upon some design parameters of future aircraft. How-
ever, at this stage it is important that a thorough understanding should be accumu-
lated first for time-optimal maneuvering by using the aerodynamic-control surfaces in
a “conventional” manner only. More thorough description of the assumptions made

is given in Chapter 2.

1.4 Mathematical Modeling. A mathematical model of the vehicle-environment



dynamical system, appropriate for the class of optimal control problems of interest,
is developed. As already mentioned, for the maneuvers of interest motion of the
aircraft center-of-mass can be neglected. This leads to a three degrees-of-freedom
model. There are six states total, which include the angular rates and three angles
which specify the attitude of the aircraft. Among them are the angle-of-attack «
and the sideslip angle 8. This model has singular points at 3 = —90° and 8 = +90°.
Though singularities in a model can potentially cause numerical dificulties, this model
was adopted because of the advantages it offers. Most significantly, the aerodynamic-
moment coefficients depend upon (the state variables) @ and 3 and thus no coordinate
transformation is necessary.

The mathematical model incorporates a model of the aerodynamic moments acting
upon the aircraft (these include the control moments generated by the aerodynamic-
control surfaces). Special care was exerted in modelling the aerodynamic moments.
While essential characteristics have been preserved, certain peculiarities have been
omitted. Their effect upon the results obtained is most likely negligible, and can be
investigated in future studies.

In modeling the aerodynamic-moment coefficients a problem of 2-D surface fitting
arises. 2-D splines do not seem to produce satisfactory fits for optimization purposes
since oscillations in the surfaces commonly occur. Therefore, a convenient and ef-
fective method for fitting 2-D surfaces was developed. The method is described in

Appendix B.

1.5 Optimal Control Theory. The problems of interest can be attacked, at least
in principle, by using parameter-optimization techniques. In one version of this ap-
proach the state and the control variables are approximated by piecewise polynomial
functions. This approach can produce accurate results for some problems. However,

our interest is in understanding trends as problem parameters are varied. To reliably



capture these trends, the approach adopted throughout the study is based on the
theory of optimal control.

The Minimum Principle is a theory which brings out a set of necessary conditions
that the system of interest (in particular, the control signals) needs to satisfy, if it
is to behave in an optimal manner according to some prescribed criterion. This set
of necessary conditions can be cast into the form of a multipoint boundary-value
problem (MPBVP) which can be treated numerically. A solution of the MPBVP
corresponds to a so called extremal solution (briefly: extremal). The optimal solution
of the problem is, according to the Minimum Principle, an extremal solution (one of
the extremals). This method has the advantage of providing very precise extremal
solutions to optimal control problem (unlike the parameter-optimization techniques
where various variables need to be approximated). However, the method itself has
two major drawbacks. First, for the problem of interest, there is no theory which can
assure or rule out the existence of extremal solutions for a reorientation maneuver
of interest. Also, if extremal solutions exist, their number is unknown. Second, the
MPBVPs that we are interested in are extremely difficult to solve. The numerical
schemes are based on Newton-type methods and the domain of attraction for any
solution can be quite small. Thus, a very precise guess for the unknowns is required
for the numerical procedure in the MPBVP-solvers to converge. This difficulty led
to the idea of adopting some homotopy ideas (more specifically: the continuation

method) in the process of solving the numerical MPBVPs.

1.6 Homotopy Method and Parametric Studies. The essence of the homotopy
continuation method is that a solution to a given MPBVP can serve as an initial
guess for a new MPBVP, which differs from the previous one by a small perturbation
in the mathematical model parameters or the boundary conditions. Thus, one can

try to solve first a MPBVP with a simplified mathematical model and/or different



boundary conditions. Then various parameters of the mathematical model and/or the
boundary conditions can be gradually varied, in some fashion, until the nominal value
of the mathematical model parameters or the desired boundary conditions are met.
In addition, by varying a single parameter of the mathematical model or a boundary
condition and keeping track of the evolution of various aspects (variables) of the
obtained extremal solutions, one might be able to get some insight and eventually
understand the essential features of the extremals considered.

There exist some theories about convergence of homotopy methods. Some of them
state necessary conditions that need to be met to ensure convergence. No attempt
was made to verify such conditions since the mathematical model is rather complex.
Indeed, in most cases the evolution of various variables, in the course of the homo-
topy continuations, provided enough information to predict, for small variations of the
mathematical model parameters or boundary conditions, the outcome of the subse-

quent runs. However, there were occasions when such simple continuation procedures

failed.

1.7 Time-Optimal Maneuvering. When trying to understand time-optimal air-
craft reorientation maneuvering, one needs to be able to answer questions like these:
What is the role of the thrust-vectoring generated moments in the course of the reori-
entation maneuvers? What is the role of the aerodynamic-surface generated control
moments? What is the significance of the aerodynamic damping? How do the gy-
roscopic moments affect the motion? Do the aircraft static aerodynamic moments
(C?, i=l,m,n; see Equations 2-C1,C2,C3) have a supportive role in the course of the
maneuver! These and similar questions led to the idea of tracking and analyzing
information about all the variables (effects) that affect the dynamics of the rotational

motion of the aircraft. Understanding the role of various effects ultimately facili-

tated better understanding of the nature of the motions represented by the extremal



solutions. Equally important is the fact that by keeping track of the evolution of
various model variables, in the course of the homotopy procedures, it was possible to
make judicious decisions how the homotopy continuation should be performed and
thus successfully solve the MPBVPs encountered (which are extremely difficult for
numerical treatment).

An attempt to generate extremal solutions for a very large number of reorienta-
tional maneuvers is possible, at least in principle, and ultimately should be done.
However, in this study the effort was concentrated upon a few typical reorientation
maneuvers. In addition to extremal solutions for an aircraft with nominal design
parameters, results of a few parametric studies are presented. Such results further

help understanding time-optimal reorientation maneuvering.

1.8 Related Results. A lot of work has been done in the area of optimal satellite
angular-rate control, reorientation and maneuvering in vacuum [8][9]. Also a lot of
work has been done in the area of optimal trajectories in atmospheric flight [10]. How-
ever, only recently has work appeared in the area of time-optimal aircraft reorientation
problems [11], inspired by the quest for improved agility of combat aircraft. Most
of those studies use point-mass models in studying minimum-time velocity change

problems [12].

1.9 Contents. In Chapter 2 the mathematical model of the vehicle-environment
system is derived. There is a discussion about which assumptions are made and what
is neglected. The obtained mathematical model is then scaled appropriately.

In Chapter 3 a class of optimal control problems of interest is formulated mathe-
matically and a set of necessary conditions for optimality is derived. Also discussed is
how the set of necessary conditions for optimality is cast into a multipoint boundary-

value problem and how the results obtained should be interpreted. In addition, the



numerical techniques used in solving the multipoint bounday-value problems are de-
scribed.

In Chapter 4 the homotopy approach for obtaining the desired results by starting
from solutions to simpler problems and solving a hierarchy of more complex problems
is briefly explained. Then, four particular extremal solutions are described for two
representative maneuvers, both with and without thrust-vectoring. The emphasis
is upon establishing terminology and methodology for analysis and interpretation
of the results. Detailed plots accompany the discussion to illustrate the individual
contribution and role of various effects in the course of the maneuvers.

Finally, Chapter 5 contains results of a few parametric studies. The gain in ma-
neuvering time, due to the thrust-vectoring enhancement of an aircraft, is discussed
and supplemented by some numerical results. The influence of some thrust-vectoring
system design parameters upon maneuvering time is shown. Also, an effect of the
final orientation on maneuvering time is discussed. |

Some suggestions for future research is given in the Concluding Section. Figures 1
to 7 contain a number of plots that supplement the discussion in Chapters 4 and 5.
Appendices A and B contain detailed information about modelling the aerodynamic-

moment coefficients.



CHAPTER II

MATHEMATICAL MODEL

A mathematical model of the vehicle-environment dynamical system is derived in
this chapter. The system of interest is highly complex, therefore certain assumptions
and simplifications are made in the derivation of the mathematical model, in coherence
with the optimal control problem of interest. The mathematical model is scaled

appropriately.

2.1 Simplifying Assumptions. The aircraft itself and the interacting environment
represent a very complex dynamical system. Some analyses combined with prior
knowledge and experience about the problem of interest suggest that simplifications
can be made without significantly affecting the accuracy of the mathematical model.
The interest in time-optimal reorientation maneuvers is limited to lower values of
the Mach number (M < 0.4). Rapid reorientation at higher Mach numbers seems not
to be desirable since the high accelerations the aircraft experiences in this case are
unacceptable for the human pilot. Of course, one may study these motions subject
to bounds on the induced acceleration levels. This work remains to be done.
Analyses by simulation show that while reorienting the aircraft rapidly from a
steady state straight-line flight to certain specified directions, the aircraft center-of-
mass does not deviate significantly from the line in the original velocity direction
(the deviation is in the order of a fraction of a degree). In fact, the reorientation
maneuvers are fast enough so that significant linear deviations, due to the aerody-

namic forces acting upon the aircraft, do not take place. This important fact leads

10
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to a major simplification in the mathematical model used to represent the aircraft
and the interacting environment, without any considerable effect upon the accuracy
of the model (the error is in the order of 1%). Accordingly, for the rapid reorientation
maneuvers of interest, the translational motion of the aircraft can be neglected and
only the rotational motion of the aircraft analyzed. One can imagine the aircraft in
a wind tunnel, free to rotate about the center-of-mass. We are interested in how the
aerodynamic-control surfaces and the TV-system can be utilized most effectively, so
as to reorient the aircraft from one attitude to another in minimum time.

To obtain initial results for such a complex problem, it is assumed that aerody-
namic controls are used in a “conventional” way, each control affecting a single axis.
Thus, the ailerons are used in a differential manner for roll control, the rudder for
yaw control, and the horizontal tail for pitch control only. “Nonconventional” use of
the aerodynamic-control surfaces (i.e. taking advantage of cross coupling effects) is
interesting from a theoretical standpoint and may indeed have some impact upon the
results for time-optimal reorientation maneuvering and upon some design parameters
of future aircraft. However, the author believes that thorough understanding should
be accumulated for time-optimal maneuvering by using the aerodynamic-control sur-

faces in a conventional manner only, before nonconventional control is considered.

2.2 Reference Frames. Three reference frames will be considered in the derivation
of the kinematical and dynamical equations of motion. These are the inertial hori-
zontal reference frame; the wind reference frame; and, a body-fixed reference frame.

Each is represented by a set of unit vectors, respectively:
(ih,jh, i:h)’ (iw,jw,];w) and (ib,jb,kb)

The orientation (attitude) of the aircraft can be described in different ways, for exam-

ple by using various sets of Euler angles (1,6, ¢), or Euler parameters (o, 51, 2, 53)
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[8][13]. A mathematical model using Euler parameters is appealing since the kine-
matical equations are free of singularities, unlike a model with Euler angles. However,
the aerodynamic forces and moments acting on the aircraft depend upon the aerody-
namic angles « (angle-of-attack) and 3 (sideslip angle). Thus, a mathematical model
directly involving « and f as state variables would require no conversion in the calcu-
lation of the aerodynamic forces and moments, or their derivatives with respect to the
state variables of the model (which appear in the dynamics of the adjoint variables).

Based upon the assumption of a model with “fixed” center-of-mass, it is possible to
devise a set of angles (a, 8, 1) that can describe the attitude of the aircraft uniquely
almost everywhere. Exceptions are the orientations that correspond to sideslip angles
B = 490° and B = —90°, which appear as singular points in the kinematical equations.
The singularities of the model at 5 = +90° and f = —90° do not cause serious
difficulties in the numerical procedures.

The angle p is defined and can be visualized most easily in the following manner.
We consider a horizontal, earth fixed reference frame (zp, ys, 25) in the wind tunnel,
having the z; axis parallel to the air-stream velocity-vector and in the opposite di-
rection. Due to the assumption that the motion of the center-of-mass of the aircraft
does not deviate from a straight line (which effectively means that the air stream
has a constant direction in the wind tunnel), the z,, axis of the wind reference frame
(Zw, Yw, 2w) Temains parallel to the z) axis of the horizontal reference frame. This
means that the wind reference frame is constrained to roll around the z, axis only.
In other words @™, the angular velocity of the wind reference frame with respect to
the inertial frame, has a non-zero component only along its z,, axis.

At initial time, prior to the beginning of a maneuver, the wind reference frame
coincides with the horizontal reference frame. This situation may correspond, for

example, to a steady-state level flight in the vertical plane. As the aircraft starts
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maneuvering and @* # 0, the relative position of the wind reference frame with
respect to the earth fixed (local horizontal) reference frame can be uniquiely specified
with a roll angle, denoted by g, the angular rate being p,, = du/dt. The aerodynamic
angles « and f specify uniquely the orientation of the aircraft body-fixed reference

frame with respect to the wind reference frame.

2.3 Kinematical Relations. According to the definition of the aerodynamic angles
a and f, the transformation matrix from body-fixed reference frame coordinates to
wind reference frame coordinates is given by Lys(e, 8) = L,(8) L,(—c), where L,
and L, are the elementary transformation matrices (single rotation around the y and
z axis, respectively). Thus:
+cosacosfB sinfB +sina cosf
Lyy(a,B)= | —cosasinf8 cosff —sinasinf
—sina 0 cos o

The relative angular velocity of the body-fixed reference frame with respect to the

wind reference frame is [14]:

. df . da

—fre!____—b_—'w____k_ hahad
wosw e v T

P Puw 0
wa q| — | Guw | —— 0
r Tw 1

This yields the following set of equations:

It follows that:

dp
i,
7 + L

d
Pw = +p cosa cos B + ( __a) sin B+ r sina cos 8

dt
. do . .
gw = —p cosa sin 8 + -7 cos f —r sina sin 8
Ty =—psina+r cosa+E

Based upon the assumption made, ¢, = 0 and r,, = 0, we get the following set of

differential equations which govern the dynamics of the angles specifying the attitude
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of the aircraft (kinematical equations):

d
d—qu—-(pcosa+rsina)tanﬂ
B

7 =psina—rcosa

d 1
d_?zpwz(pcosa-f-rsina)m

Obviously, this system is ill-defined when cos 8 = 0.

2.4 Dynamical Relations. The Euler rigid-body rotational equations are given by

the following set of differential equations [13][14]:

2( A/ :
L (1, Ly s DOV gy 6 s st
d h 2 h
Iyd—;’ =(L; = L) rp + uy(&)+ p(R)V (M ) )VQ(M’ ) sz Com (@, 8,860,689, M,...)

I, SbC, (v, 8,87, 6L,r, M,...)

YVrr Ve

2
% :(Il‘ - Iy)pq + uz(‘sz)'l' %ﬁl’—h)

In the above expressions, é,, 6, and 6, denote the TV-controls. The body-fixed
reference frame axes coincide with the principal axes of inertia of the aircraft.

The Euler equations as shown are valid under the assumption that the aircraft
is a rigid body. Actually, in the course of the maneuver there is mass change in
amount and distribution (e.g. the aerodynamic-control surfaces and the TV-system
deflect, the mass of the aircraft varies due to the fuel exhaust, there are aeroela.étic
effects, etc.). However, analyses show that the above effects can be neglected, with
no significant loss in the accuracy of the mathematical model. For example, the mass
of the moving aerodynamic-control surfaces is negligible compared to the mass of
the aircraft, so their movement does not vary the mass distribution of the aircraft
significantly. In the mathematical model the dynamics of the aerodynamic-control
surfaces is neglected since their response to pilot controls is very fast compared to the

time of the reorientation maneuvers.
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The current implementations of the TV-system can be plausibly modelled in the
following way:
Uz (6;) = ur®® 6,

uy(6,) = uy* 6, where 162" + |6,|™ + 16.]" < 1.0

u,(6,) = ul*** b,

mazx
T

maxr

u v

, U and u7*** denote the maximum roll, pitch and yaw power the TV-system
can provide, and é,, 6, and 6, are the (scaled) TV-controls. It was found that n = 2
models the TV-system quite accurately and this value is used in the mathematical
model of the HARV. It is also a nice choice for analytical reasons (see Section 3.5,
the optimality conditions).

The aerodynamic forces and moments acting upon the aircraft are very complex
functions, each depending upon the angles a and 3 as well as the Mach number,
altitude and deflections of all of the aerodynamic-control surfaces. However, analyses
of the aerodynamic data for the HARV shows that many of these dependencies can
be neglected for the problem considered.

For example, the center-of-mass of the aircraft moves, due to fuel sloshing and ex-
haustion, relative to the aerodynamic-reference center (not to be confused with the
aerodynamic center; it is just an arbitrary point with respect to which the aerody-
namic data is given). However, the displacement is small and stays within a few
inches from the aerodynamic-reference center. Therefore, it can be assumed that the
aircraft center-of-mass coincides with the aerodynamic-reference center. Thus the
aerodynamic forces (lift, drag and sideslip force) have no effect upon the total aero-
dynamic moments acting upon the aircraft. Furthermore, the Mach number and the
dynamic pressure can be assumed to be constant throughout the maneuvers.

The assumption that the aerodynamic-control surfaces will be used for conventional

moment control allows for additional simplifications. It is assumed that there are three
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primary controls (A,, é. and é,) such that:

§ =—6L=A,
67 =+6,=6.
§ =+6.=6,

The subscripts a, e and r refer to the aileron, elevator and the rudder, and the
superscripts r and [ stand for the right and the left control-surface, respectively. A,
stands for differential aileron. All these controls are scaled to the interval [—1,+1],
and (for the extreme values of -{—1 and -1) their sign equals the sign of the aerodynamic
moment generated by the corresponding control-surface. The usual sign conventions
for aerodynamic-control surfaces are not followed here. The signs of the controls are
selected so that a positive control provides positive aerodynamic moment.

Under these circumstances and assumptions an accurate representation of the aero-
dynamic moments and control-surface effectiveness is obtained if the following func-

tional dependencies are assumed for the aerodynamic-moment coefficients:

Cl = Ol(aaﬂyps Aa)zclo(av :8) +Clc(a7p) +Clc(a7 Aa) (2-01)
Cm = Cm(a, 8,4, 5e)=c1?1(aa ,B)+C,Cn(a, Q)+C;t(a’ 65) (2'02)
Cn = Cule, B,7,8,) =C2(a, B) +Cf(a, ) +Ci(a, 6;) (2-C3)

Here C?, C¢ and C¢ (i € {I,m,n}) denote the rigid-body static (all control-surfaces
in neutral position, or more precisely in their trimmed position prior to the begin-
ning of the reorientation maneuver), rate damping, and aerodynamic control-surface
contributions to the aerodynamic-moment coefficients, respectively.

The error due to the simplifications made seems not to exceed the measurement er-
ror (in the data available for the HARV) for « less than 75°. Data for the aerodynamic-

moment coeflicients for the HARV is available at a certain set of grid-points within
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the intervals 8 € [-20°,+20°] and a € [-10%, +90°%). In addition, a program is avail-
able for linear interpolation of the data between the grid-points [15]. For use with
optimization numerical code, analytical model functions for the aerodynamic-moment
coefficients (Cj, Cp, Cy,) were developed. The model functions are parametrically de-
pendent combinations (sums and products) of elementary (rational and transcedental)
functions. They are smooth and indeed have an infinite number of derivatives. These

model functions fit the data available within less than 5% error (see Appendix A).

2.5 Center-of-Mass Motion. A good estimate of the actual motion of the center-
of-mass of the HARV in the course of a maneuver (the deviation from a straight line
trajectory) can be obtained by simulation, using the aerodynamic data available for
the HARV. Since the horizontal reference frame is inertial, the equations of motion

follow from the Newtons law:

d2 Th 1 Xh 0
pro) [yh] abvARA AR
2 Zh g

where M is the mass of the vehicle, g is the gravity acceleration and X}, Y, and Z,
the components of the aerodynamic (D, S and L) and propulsive forces (P,, P, and
P,) in the directions of the horizontal reference frame axes. These components can

be obtained from the following relation:

Xp -D P,
Y, | = th(a, ,3, ﬂ) S + Py
Zh ~L Pz

where:
Liy(e, B, 1) = Liw(p) Lus(a, B)

= Lo(—p) Lus(a, B)
1 0 0

= |0 cosp —sinp
|0 sing  cosp

—cosasinfl cosff —sina sinf
— sin o 0 Cos &

+cosacosB sinf +sina cosﬁjl

= |—cosasinfcospy+sinasing cosfBcospyg —sinasinf cospy — cosa sin g

cos a cos 3 sin 3 sin & cos B
| —cosasinfsing —sinacosg cosfsing —sina sinf sinp + cosa cos p
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The initial conditions are:
yr(0) | = [0] and y(0) | = [ 0 ]
zr(0) 0 z,(0) 0

2.6 Scaled Mathematical Model. The mathematical model of the aircraft is
scaled so that it is well-posed for the numerical procedures in the optimization soft-

ware. This scaling is done in the following manner. Let

T=kt : P P Q p R
where k is a scaling constant. It follows that:

da dao .
=== @ — (P cosa+ R sina)tan 3 (2-S1)

._dB _dB .

B = 5= Tt = Psina— R cosa (2-S2)

_dp_ dp
P=ar kdt ﬂ (2-53)

The Euler rotational equations are transformed accordingly:

dP  dp up et 1B

. gr 1
P=r=%a= "t w bttt
_dQ dg  _rp 1ug™” 1C
T dr kdt T Vkk I k ‘5“+ka20"‘("')
. dR dr pgqg  1ure 1B
k= r=rma =Yt w bt el
where
L -1 I,- 1, L -1,
Jx— Ix Jy - Iy Jz - Iz
I |
B:ipV Sb C=§pV Se

We can set the scaling constant to have the following form:

uma:z:

k= L.
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mazx

where u}

and I, are scaling parameters that can be chosen arbitrarily (the values

mazr __ ,,MaT
=Uu

Uy ¥

and I, = I, are used). Finally, we get:

P = ']zQR+Jszax61' + Js:chCl(a’ ,B)pa Aa) (2'54)
Q = J,RP+J,a,6, + J1yC.Cu(, B, q,6.) (2-S5)
R =J,PQ+J,.a.5, + J,.B,Cp(at, B,7,6,) (2-56)

where the constants introduced to abbreviate the notation are given by:

’U,me u;naa: u:n.a:c
A, = ay a, =
u;na:r: u;na.x u;na:r:
B C
B, = C,=—
s 8
mazx max
us us

All the above constants are dimensionless. The time unit is 7 and the angles are given
in radian measure.

The scaled mathematical model was used iﬁ the study for defining the optimal con-
trol problems of interest and in the actual numerical computations of the extremal

trajectories. The state vector is x = (o, B, p, P,Q, R)7.

As can be seen, u is an
ignorable state variable (i.e. does not appear in the right-hand side of the differen-
tial equations 2-S1 to 2-S6). However, if the translational motion of the aircraft is

included, g is not ignorable.



CHAPTER III

OPTIMAL CONTROL PROBLEM

In this chapter a mathematical formulation of a class of optimal control problems
of interest is given. First, a mathematical formulation of a general optimal control
problem and a theorem concerning some necessary conditions for optimality (The
Minimum Principle) are presented. Then the scaled mathematical model of the
aircraft is shown along with the restrictions upon the controls, the desired state
boundary conditions and the cost function. These define the optimal control problem
completely. Next, the necessary conditions for optimality are derived. They include
the dynamics of the adjoint variables and the minimization of the Hamiltonian. The
convexity of the control domain and its implications are mentioned briefly. Also it
is discussed briefly how the results, obtained by using the necessary conditions for

optimality, can be interpreted.

3.1 General Formulation of an Optimal-Control Problem. We consider a
dynamical system (control process) whose behavior can be modelled by a system of

differential equations of the following form:
dz’ _
dt

fi(z,...,z™ ul, . u™), i=1,2,...,n; (3-1)

where z* are state variables which characterize the system and u* are control variables
which influence the course of the process. For brevity, we define a state vector x and

a control vector u:
x = (z',2%...,z") T € R"

u=(u!,?,...,u™) €U CR™

20
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Also, we write the system dynamics (3-1) in a vector form as:

dx
i f(x,u) (3-2)

We assume that the control domain U is compact and convex and consider only
bounded measurable functions u(-) for control. We want to guide (control) the
system from a given initial state xo = (z},...,22)T to a given final state x; =
(z},...,2%)T. No restrictions on the state vector x(-) are imposed. A control vec-
tor u(-) = (u!(+),...,u™(-))T € U which can accomplish that is called an admissible
control vector. The objective (the optimal control problem) is to find, among all
admissible control vectors, the one which renders minimum value of a given cost

functional J of the following form:

7= [ pextt),uo)a
to

The initial and final time (f, and ty) are not specified and, since the system is au-
tonomous, we see that it is only T' = t; — ¢o that is unknown and £, can be chosen
arbitrarily. We also assume that f*(x,u) and %%—’31 are continuous on R™ x U
(i=0,1,2, ... ,n; j=1,2, ... n).

Under the assumptions made, the following theorem [16][17][18][19] gives some nec-
essary conditions that a solution of the optimal control problem stated above needs

to satisfy:

MinmmuM PrincipLe. Let u(t), to < t < t; be an admissible control such that the
corresponding trajectory x(t), which begins at the point Xq at some time t, passes,
at some time ty through the point xs. In order that u(t) and x(t) be optimal it is
necessary that there exists a nonzero vector function A(t) = (A\°(t), A1(¢),..., A"(¢))T

corresponding to u(t) and x(t) such that:

1)
det _9H 4N _ 9H .. _ .,
@~ a& ew T o
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where

H=HQAx,u)= Z/\kkau)

is a function further referred to as the variational Hamiltonian of the system.

2) for every t, to <t < t;, the Hamiltonian attains its minimum at u(t)

H(A(t),x(2), u(t)) = min H(A(t), x(t), u)

uel

(3-3)

That is how the optimal control vector u*(-) is determined. We refer to Equation 3-3

as the optimality condition.

3) A =const. >0 and H(A(t),x(t),u(t)) =0 for to <t <t;.

3.2 Scaled Mathematical Model of the Aircraft. The scaled mathematical

model of the aircraft is given by the following set of differential equations:

&=Q —(Pcosa+ Rsina)tanfj
BzPsina—Rcosa

1
- (P in a)——
( cosa—i-Rsma)cosﬁ

P =¢ Jsxax6 + 6 JB:Ci(a, B,p, A, )+J QR

Ltu Laero Lq"
Q= & Joyayby + €7 J5yCsCn (e, B,9,6e) + J,RP
Y N —

Mﬂl Maero M"P

R=9Jza26 + € J0:B,Ca( 8,1 8;) +J:PQ

Ntu Naero N.'Pq

(3-S1)
(3-52)
(3-S3)
(3-54)
(3-S5)

(3-56)
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where

Ci(a, B,p, Aa) = C(e, B) + € Cf (0, p) + € Af (@) A, (3-C1)
W ~, - / ~ —~ "
Lo L, Lac
Cm(e, B,9,8.) = Co(, B)+ € Cé(a,q) + e EL (@) 8 + e Fo(a)  (3-C2)
N e? N P N ~— /
Mo Mc Mac
Cu(a, B,7,6, ) = CY(a, B) +¢ Ci(a,T) + €. R (a) 6, (3-C3)
N—— ~ - /N ~ /
No N, Nac

The analytical representations of the aerodynamic-moment coefficients (C;, Cy,, Cy,)
are shown in Appendix A. Here €, €7, ¢, and €, are homotopy variables. Their role is
explained in Chapter 4. The mathematical model represents the physical system of
interest when each homotopy variable has unit value. Individual terms in the dynam-
ical equations and the aerodynamic-moment coeflicients are underbraced and denoted
by different symbols. Understanding the contribution and role of each of these terms
in the dynamical behavior of the mathematical model is crucial for understanding the

nature of extremal reorientation motions of the aircraft.

3.3 Boundary Conditions and a Cost Function. We want to guide the system
from a given initial state xo to a given terminal state x; in minimum time. We will

consider a class of maneuvers which can can be characterized by:

X0 = ((to), B(to), #(to), P(to), Q(to), R(t0))”
= (a07 IHOa Ko, 0; 03 O)T
xs = (alts), B(ts), u(ts), P(ts), Q(ts), R(ts)"

= (afaﬁfaﬂf:(],(],O)T

The cost function here is:

t

f
ldt=t;—to=T

J= /to 7 po(x(t), u(t)) dt = /t

0

These define the class of minimum-time rest-to-rest reorientation maneuvers.
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3.4 Adjoint Variables Dynamics. The dynamics of the adjoint variables A, Ag,

Au; AP, Ag and Ap is given by the following set of differential equations:

dX, OH

7 =-—a—v, UE{a,ﬁ,ﬂ;PaQaR}

where

H = H(A x,u)

is the variational Hamiltonian of the system (normality is assumed; A\° = +1 > 0),

given by:

H=+414X,[Q — (Pcosa+ Rsina)tan ] (3-4)
+ Ag[Psina — Rcosal
) 1
+ A, [(Pcosa+ Rsin a)w]
+ /\P [et Js:z:axéx + €5 JstsCl(a, :B,pv Aa) +J:cQR]
+ Ag & Joyayb, + € 5y CsCrri( e, B,4,6.) +J,RP]

+ Ar[€t Jsz0:6; + €5 J5: BsCr(e, B,7,6,) +J.PQ]

Thus, the dynamics of the adjoint variables is represented by the following set of

differential equations:
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Ao = “%a = Ao(+P sina — R cosa)tan
— Ag(+P cosa+ R sina)
. 1
—Au(—=P sina+ R cosa) cos B
oC, oC,,
- /\pquszB a /\QﬁquyC da
A = —68—1; =+ Ao(+P cosa+ R sma) ! oy
— Au(+P cosa + R sina) Sm’;
aC; 0Cn,
— ApegJse Bs—— 35 — AgegdsyCs—— 98
Ap = —%—I: =0
. O0H aC,
Ap = ~%p = — AQJyR — ArJ,Q — ApegJoz Bs—— 3P
, cos a
+ Aqcosatan f — Agsina — /\#w
Ag = -g—g = — AgJ,P — A\pJ R — ,\QeEJ,yc,%%’ﬁ — s
- H
AR = —Z—E )\pJ Q /\QJ P — /\RéunB aacR
) sin o
+ Aosinatan B + Agcosa — )\poosﬁ

3.5 Optimality Conditions. Only the following part of the Hamiltonian:

H® =+ Xp e Jspaz 6 + €5 J5: Bs Af () A,]
+ Aq [er Jsyay 8y + € J5yCs ES, () 6 ]

+ g et Jsz0. 6, + 6 I B Ri () 6, ]

depends upon the control vector (6, 6,,6,, Aq, b, 6,)7.

— )\RG;I-JSZBS—n

/\quj.szB

(3-L1)

(3-L2)

(3-L3)

(3-L4)

(3-L5)

(3-L6)
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As stated in Section 2.4, the thrust-vectoring controls é,,6, and 6, obey the follow-

ing constraint:

16:1% + 16,1° + 6.1 < 1

Therefore, the optimal controls (which minimize the Hamiltonian) are computed as:

P ApJszag
" V/OPT2)? + Opdsyay)? + (ArJsza,)?
5, = — AgJsyay (3-6)
V(ApJderaz)? + (ApJeyay)? + (ArJs.a;)?
ArJ;sza;

z

\/()‘PJsza:c)z + (/\P']syay)2 + (ARJszaz)2

The aerodynamic controls appear linearly in the system dynamics and are indepen-
dent: A,, &, 6, € [0,1]. Therefore, the control domain (A,,é.,é;) is a cube. When

Ap, Ag and Ag are not equal to zero, the optimality condition yields:

A, = —sgn(Ap 5] BsAf(a)) = +sgn(Ap)
6 = —sgn(Ag e5J5,C,EL, (a))= +sgn(Ag) (3-7)

6, = —sgn(Ag J,. B Ri(a)) = +sgn(Ag)

The points where the adjoint variables Ap, Ag or Ag cross (transversally) through
zero are called switching points. At these points the corresponding control A,, é. or
6, switches from +1 to —1 or vice versa and can conventionally be assumed zero.
There might exist trajectories such that some of Ap, Ag or Ag stay zero along a time
interval of finite length. The existence of such trajectories (singular trajectories) is
not examined in the present study.

The software used for numerical search of extremal trajectories requires a fairly
good estimate of the points where Ap, Ao and Ap cross through zero. A good way

to get an estimate is to assume that the aerodynamic controls A,, §. and é, are not
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independent, but related as:
|Aa]™ + 8| + 6" < 1

For this case, the optimal controls can be calculated by using the Kuhn-Tucker nec-

essary conditions (or the Lagrange-multiplier rule). They yield Equations 3-6 and

3-8:
B.A(a)|7=
Aa et _Sgn(Ap) . |APJ31 s (a)l
DI
1
ey
6. = —sgn(q) - 227G H0)] -
6, = —sgn(Ag) - |ArJs: By R(a) |
zn
where

1
n

S = {NpJueBo AT + MJoyCoB(@)|7T + |Ard,. B,R()| 77}

As n > 2 increases, the control domain (A,,$,,é,) deforms from a sphere into a
cube-like shape. Satisfactory estimates are obtained for n = 6.

The control hodograph is the set of points (P, Q,R) C R?® as the controls §,, §y,
6,, A,, 6. and §, take all the possible values. One can easily visualize its shape.
It is convex, but not strictly convex. This means that the occurence of chattering

extremals can not be ruled out.

3.6 Interpretation of Results. A trajectory that satisfies the necessary conditions
for optimality and the given boundary conditions is called an eztremal trajectory, or
briefly an extremal. The sequence of switching points for a given extremal (i.e. their
order and total number) will be further referred to as a switching structure of the
extremal.

The extremal which yields a minimum value of the cost function is the actual

optimal trajectory. There is no theory which can assure existence of extremals for a
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given optimal control problem; furthermore, if extremal solutions exist, their number
is unknown. In general, one should attempt to find more extremals. The extremal
which renders minimum value to the cost function can be considered to be the best
extremal. Engineering judgement and analyses can further help explain the nature
of the extremals. In many cases one can explain the characteristics which make one

of them better than the others (for a given reorientation maneuver).

3.7 Numerical Multipoint Boundary-Value Problems. Additional scaling
needs to be done upon the state and the adjoint dynamical equations (Equations
3-51 to 3-56 and 3-L1 to 3-L6) in order to cast the set of necessary conditions into a
form of a system of nonlinear equations, appropriate for numerical processing. An-

other independent variable is introduced:

N3

where T is the unknown scaled extremum time. Thus, we get the following system of

differential equations:

dT dz’ oOH d)? oH .
-0 TTaw - Tagm wI=Leb

Initial and terminal points (boundary conditions) are:

Xo = (Oto, ﬂO’ Ho, PO) Q(’) RU)T

Xy = (af,ﬂfapfapvaf’Rf)T

An additional requirement is the Hamiltonian (Equation 3-4) to be zero at time T
(this is a consequence of the optimality condition; see Section 3-1). The above system
of differential equations and boundary conditions represents a well defined system of
seven nonlinear equations with seven unknowns. The unknowns are the initial values

of the adjoint variables: A, (o), Ag(to), Au(to), Ar(to), Ag(t0), Ar(to) and the time T.
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By choosing an initial guess for these unknowns, the system of differential equations
can be integrated from z = 0 to z = 1, using the optimality conditions to determine

the controls along the trajectory. The trajectory will end at a certain point x(7'):

We can also compute H(T'). The output of the so formed system of seven nonlinear

equations is:
(a(T) = ay, B(T) = By, w(T) = 5, P(T) = P;,Q(T) = Qs, R(T) — Ry, H(T) — 0)"

We want this output (vector) to be zero. For the case of a model with no aerody-
namic bang-bang controls, that explains in principle how we cast the set of necessary
conditions for optimality into a system of nonlinear equations.

If aerodynamic bang-bang controls are used, additional unknowns need to be intro-
duced. These are the switching points s; (1 = 1,2,...,s and 0 < s; < 1). Associated
with each switching point s; is a switching condition A, = 0 where v € {P,Q, R}.
Thus, the number of unknowns and the number of conditions that need to be satisfied
are equal again. Extremal solutions were found with 3,4,5,6 and 7 switching points.

Initially, IMSL subroutines [20] were used for solving the system of nonlinear equa-
tions (for rigid-body reorientation problems in vacuum; ;7 = 0, Equations 3-54,55,56)
and a certain number of extremal solutions obtained. For the subsequent work a spe-
cial software package designed for solving multipoint boundary-value problems with
switching points and jumping conditions, that appear in optimal control, was used

[21][22].

3.8 Homotopy Approach. The relevant numerical multipoint boundary-value
problems are extremely difficult to solve. They require a very good estimate of the

unknowns (A(0),T = t; — tp and the location of the switching points). A homotopy
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approach was adopted throughout the study so that solutions to simpler problems
were utilized to obtain solutions to more complex problems.

The essence of the homotopy method is that a solution to a particular problem can
serve as a fairly good initial guess for a new MPBVP, which differs from the previous
one by a small perturbation in the model parameters or the boundary conditions [23].
Thus, starting from a known extremal, by varying a model parameter (or the bound-
ary conditions) one can get a series of extremals, solutions to a number of MPBVPs.

Such a series of extremals will further be referred to as a family of extremals.



CHAPTER IV

NUMERICAL RESULTS

In this chapter the problem of choice of homotopy schemes is briefly addressed and
results (extremal solutions) for two reorientational maneuvers are presented, both
for an aircraft with and without thrust-vectoring capability. The discussion is suple-
mented by a number of plots in Figures 1 to 4. All results belong to one family of

extremal solutions and have some interesting characteristics in common.

4.1 Homotopy Schemes. In the mathematical model of the aircraft four homo-
topy variables are introduced. They are ¢z, €, € and e. (Equations 3-S1 to 3-56
and 3-C1 to 3-C3). They can control independently some physical quantities of the
mathematical model (the dynamic pressure, the thrust-vectoring (moment) power,
the amount of damping and the aerodynamic-control surfaces (moment) power, re-
spectively). The mathematical model represents the physical system of interest when
each of these homotopy variables has a unit value. Actually, in the study a number
of other parameters (constants that appear in the mathematical model) were varied
(used as homotopy variables) in order to facilitate some understanding about the
nature of the extremal solutions, their domain of existence, and evolution. A brief
explanation about the choice of homotopy schemes follows.

First a dozen different extremal solutions were found for a few reorientation maneu-
vers in vacuum, or equivalently for a model with ¢; = 1 and ¢ = 0. This was a difficult
problem in itself and some understanding about spatial and time symmetries of ex-

tremal rest-to-rest reorientation maneuvers was needed. Such considerations yielded

31
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a few analytical results, among which are certain group properties of the adjoint
variables and necessary conditions that they need to satisfy for certain reorientation
maneuvers. In the next step the vacuum results (note: these were results for a vehicle
with thrust-vector control only) were used as starting points for obtaining extremal
solutions for the nominal mathematical model. This was done in two phases. In the
first phase, solutions were found for a model without aerodynamic-control surfaces
(by first increasing €7 from 0 to 1 with €. = 0, after which ¢,eta was increased from 0
to 1). In the second phase, the aerodynamic-control surfaces were introduced (e, was
increased from 0 to 1). After that, the TV-power was decreased to zero (¢ decreased
from 1 to 0) and thus extremal solutions obtained for an aircraft with aerodynamic-
control surfaces only (without TV-control). This global scheme was partially directed
by the numerical difficulties experienced in the course of the work.

The transition from a vacuum model to a model without aerodynamic-control sur-
faces (the first phase) deserves special attention. First a set of linear model func-
tions for the static moment-coeflicients were developed. Let them be denoted by:
Cl"(a, B), Cir(a, B) and C'"(e, B). These functions are linear in both « and 8 di-
rection and roughly approximate the real aerodynamic data (see Appendices A and
B). Starting from the extremals for motion in vacuum, intermediate results were ob-
tained by gradually increasing a dummy homotopy parameter (say ef;"") from 0 to 1.

Next, the homotopy was continued by using the scheme:
g O™, B) (1 —e) + ¢ Ci(e,f) i€ {l,m,n}

As €5 was increased from 0 to 1 a transition from the linear model functions to the
desired model functions was done. When e = 1 the contribution of the linear model
functions vanishes. They can be discarded from the mathematical model, after which

ez takes the role of a scaling factor for the dynamic pressure (not all of the extremals
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from the vacuum case could be extended by the described homotopy scheme; only
several remained). Following this, the aerodynamic-damping terms were included by

increasing ¢; from 0 to 1.

4.2 Definition of Maneuvers. Results about extremal solutions for two types
of reorientation maneuvers are presented in this and the next chapter. The first
type of maneuver (Maneuver-1) is customarily called a roll-around-the-velocity-vector
maneuver (RVV maneuver) and is characterized by the following initial and final
states: xo = (ap,0°,0°0,0,0)7 and x5 = (ay,0°% 44,0,0,0)7, with ap = a;. Only
the case gy = 90° is considered further. Therefore, maneuvers of this type will
sometimes be referred to as 90°-RVV maneuvers. A maneuver of this type can be
fully characterized by a single constant apf=ap=0ay.

The second type of maneuver (Maneuver-2) is characterized by the following ini-
tial and final states: xo = (10°,0°,0°,0,0,0)T and x; = (ay,0°90°0,0,0)7. This
maneuver will be sometimes referred to as 90°~Roll maneuver. It can be fully char-
acterized be a single constant ay. This maneuver can be viewed as reorientation of
an aircraft from an initial steady-state, straight and level flight to a certain direction
in the horizontal plane, with no sideslip angle.

These two maneuvers are of interest for themselves, but also may be considered to
be part of a more complex, composite maneuver in a combat situation. Imagine the
aircraft performing Maneuver-2 first, firing a missile, then changing its attitude by
performing Maneuver-1 and firing another missile in the new direction.

By varying.the angles aps or ay, and thus the initial and final orientation (or the
final orientation only) of the aircraft, we can get a series of solutions, all belonging

to one family of extremals.

4.3 Maneuver—1 Results. Details about one particular extremal solution are pre-
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sented in Figures la to 11. The extremal corresponds to Maneuver-1 for agy = 30°.
In principle, it is possible to perform a roll-around-the-velocity-vector maneuver in
which the angle-of-attack « is kept constant and the sideslip angle 3 zero. For smaller
values of a, this can be done by rolling while adjusting the elevator (to keep a con-
stant) and the rudder (to keep § = 0). An extremal was found which resembles
to this motion. Several studies on various amounts of control power for roll, pitch
and yaw suggest that such an extremal exists if the aircraft does not possess much
roll power. However, the aircraft considered possesses a lot of roll power from the
aileron, especially at lower a. The extremal solution described next is quite different
in nature.

As can be seen from Figures la and 1c, the aircraft pitches down during the first
part of the trajectory, then pitches up during the rest of the maneuver. It rolls and
yaws in the positive direction all the time, as one would expect. Figure 1b shows
the orientation of the aircraft in time, in terms of the standard set of Euler angles
¥, 0 and ¢ (one can visualize the attitude of the aircraft easier in these terms). The
adjoint variables Ap, Ao and Ag, which are responsible for the determination of the
extremal controls, are shown in Figure 1d. The aerodynamic and the TV-controls
are shown in Figures le and 1f. The essential feature of this maneuver is that the
aircraft pitches down and up because it has a lot of pitch power from the elevator
and from the TV-system and because at lower « the aileron is more powerful. The
relative magnitude (proportion) of the power the aircraft has for roll, pitch and yaw
can be seen from Figures 1g, 1i and 1k. Also the individual contribution of the
TV-system, the aerodynamic moments and the gyroscopic moments (Equations 3-
S4 to 3-S6) can be seen. A remarkable feature of this extremal is that most of the
time throughout the maneuver the gyroscopic moments tend to support the thrust-

vectoring and aerodynamic-control-surfaces generated moments (Figures 1i and 1k;
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the gyroscopic terms in the yaw and the pitch channels are more powerful than the
control terms and act quite supportively).

The individual contributions of the aerodynamic terms can be seen in Figures 1h,
1j and 11 (see also Eqations 3-C1,C2,C3). The maneuver does not take a lot of
advantage of the dihedral effect: the sideslip angle tends to stay below 5°, which is a
desirable feature since higher 8 means considerable side accelerations that may not
be acceptable for the human pilot. The dehidral effect seems to have a supportive
role in the (normalized) time interval from 7 = 0.4 to 7 =~ 0.6 (Figure 1h) and slightly
opposing effect during the rest of the maneuver. In fact, when analyzing extremal
problems of the type considered, one must aiways keép in mind that there might
be some trade-offs on local level which help the extremal globally. This might be a
plausible explanation why the extremal motion considered does not take advantage of
the dehidral effect: the generated static moments are much lower than the gyroscopic
or the control moments; exerting control power to keep the aircraft in orientation
which produces supporting dehidral moments is not effective.

The extremal described is the only extremal found for the nominal value of the
aircraft parameters. Another extremal is found to exist for an aircraft possessing less
roll power. The Minimum Principle requires the controls to be utilized in a certain
way (to minimize the variational Hamiltonian, eg. bang-bang for the aerodynamic-
control surfaces). This explains why, given an initial and a final state, a particular
extremal might not exist as the aircraft design parameters are varied. The relative
amount of control power the aircraft possesses for roll, pitch and yaw are important
design parameters which can affect the existence of extremals, for rotation maneuvers,
or their characteristics. This can be seen from Figure 2, where an extremal solution is
shown for the same maneuver for the case where the aircraft has no TV-power. It was

obtained by using the previous solution and decreasing the homotopy parameter e;
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from 1 to 0. In Figure 1g it can be seen that the TV-power in the roll channel is very
small when compared to the aileron power. However, in the pitch and yaw channel
(Figures 1i and 1k) the TV-power is comparable to the control-surfaces power. So,
in the case of no thrust-vectoring, the aircraft posseses (relatively) more roll power
than an aircraft with thrust-vectoring. Perhaps the most distinctive characteristic of
the solution in Figure 2 is that the aileron has negative sign at the beginning of the
trajectory (where one would expect positive angular acceleration) and positive sign
at the very end of the trajectory (where one would expect angular deceleration). A
plausible explanation for this phenomena is that if the Minimum Principle requires the
aerodynamic controls to be used in full power (bang-bang), and the aileron possesses
a lot of roll power, then it is necessary that that power is neutralized for a certain
amount, so that the pitch and yaw power can accomplish their task by the time
the aileron has rolled the aircraft as much as it is necessary (though the roll, pitch
and yaw amount of angular motion are not independent and are related through the
nature of the trajectory, one can still imagine that certain reorientation maneuvers
need more roll, pitch and/or yaw motion than others).

The above claim is supported by the following result. Starting from the extremal
solution described by Figure 2, a series of extremal solutions were generated by de-
creasing the maximal thrust-vectoring roll power (this was done by gradually decreas-
ing the maximum absolute value of A,, from 1.0 to 0.6). This scaling does not change
the shape of Cf(a, 8) qualitatively, just decreases the maximal aileron roll power at
a given a. It was clearly noted that the last switching point (Figure 2e) was moving
towards 7 = 1.0 and ceased to exist beyond a certain value of A,. As A, was further
decreased, the first switching point moved rapidly towards 7 = 0.0. The described
evolution is illustrated in Figure 2e and Figures 5a-5d. These results clearly show that

as the maximal roll power is decreased, (for this particular maneuver and extremal



37

solution) the balance of control power in the roll, pitch and yaw channel becomes
more appropriate; so it is less necessary for the aileron to act the “wrong way” at the
beginning and at the end of the trajectory (in order to counteract its own excess of
power). The aileron power was decreased 40%. However, the total maneuvering time

increased from ta, 1.0 = 2.698374s to ta,—06 = 2.781385s, or only about 3.08%.

4.4 Maneuver—2 Results. Details about another pair of extremal solutions are
presented in Figures 3 and 4. These correspond to Maneuver-2 for a; = 45°, for an
aircraft with and without TV-power, respectively. The extremal with TV-power is
derived from the extremal presented in Figure 1, by gradually decreasing oo from
30° to 10° and increasing oy gradually from 30° to 45°. Consequently, they can be
considered to be members of the same family of extremals.

By examining the plots in Figure 3, one can easily see that the basic nature of
the motion, represented by this extremal trajectory, is similar to the motion of the
extremals shown in Figures 1 and 2. The aircraft pitches down a little, then pitches
up, while rolling and yawing (Figures 3a to 3c). From Figures 3g to 3 it can be seen
that various effects support each other most of the time. A notable exception is the
gyroscopic moment in the yaw channel (Figure 3k), which seems to severely oppose
the controls in the interval from 7 =~ 0.4 to 7 = 0.6. Questions naturally arise, such
as: why this happens and is it desirable or not?

To answer these questions, one needs to notice that the maneuver considered inher-
ently requires a large amount of pitching motion, considerable amount of roll motion
and relatively low amount of yaw motion. One can easily see that when the aircraft
pitches up and rolls positive, the gyroscopic term N, is negative. This explains why
the gyroscopic term opposes the controls in the time-interval mentioned.

To answer the second question, one needs to recall that the Minimum Principle

requires the aerodynamic controls to be bang-bang (singular arcs may exist; then
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other conditions need to be satisfied). Since little yaw motion is needed for this
maneuver (much less than the rudder can provide when used bang-bang, with full
power), there are a few possible solutions. One is that less yaw power can be inserted
by the T'V-system; this is controlled by the (relative) magnitude of the adjoint variable
Ar. However, this might not be enough by itself. Another solution is the rudder
to counteract itself by acting in the opposite way of the actual motion, as it was
the case with the aileron in Figure 21. Third, the rudder may take intermediate
values (singular arc in the middle of the trajectory). Figure 4d shows an example
of such a phenomenon: in this case the adjoint variable Ap tends to stay close to
zero during a certain time interval. And finally, as it is the case in Figure 3, the
opposing gyroscopic term, which has significant value, can take the responsibility
of neutralizing the undesired positive yaw power in the first part of the trajectory,
where the rudder is positive and has more power due to the lower a. In the second
part of the trajectory the aircraft is at higher «. Here it needs to have the yaw rate
decreased. The yaw power is decreased due to increased a (Figure A9). Thus, the
powerful gyroscopic term helps the decrease of the yaw rate in the second part of the
trajectory. This discussion suggests that the non-supportive role of the gyroscopic
term in the yaw channel (with respect to the controls) during a period of time is
indeed quite beneficial.

Figure 4 shows details of an extremal of the same family as above, for the same
maneuver as in Figure 3, for an aircraft without thrust-vectoring. As was explained
in Section 4.3, without thrust-vectoring the aircraft has relativelly more roll power.
By comparing to the case with thrust-vectoring, one can easily conclude that most
of the effects support each other and that similar trade-offs are made. However, an
exception appears with the aileron, which takes the “wrong” sign at the end of the

trajectory. An explanation again would be that it simply counteracts itself. Though
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it lasts about 20% of the time, it does not produce much roll moment since « is
high and its power is significantly decreased. An interesting question here is why the
aileron does not provide the “wrong” roll at the beginning, but does that at the end?
Does this feature help the maneuvering time for this extremal motion, and how? A
simple explanation might be that by doing so, the roll angular-rate better helps the
M,, term in the pitch channel (Figure 4i) where it is needed most (to pitch up) and
simultaneously counteracts the rudder in the last part of the trajectory, from 7 = 0.7

to 7 = 1.0 (where it might be more powerful than it is needed).

4.5 Common Features. The extremal solutions for the maneuvers discussed in
this chapter show some common features. The aircraft first pitches down, then it
pitches up, while rolling and yawing in the positive sense (most of the time), and
thus it takes advantage of the gyroscopic moments. Furthermore, most of the effects
seem to have supportive role, with some exceptions where trade-offs occur that ap-
parently improve the extremal globally. For a particular maneuver and a particular
extremal solution, the relative magnitude of control power in the roll, pitch and the
yaw channel is an important feature. If not ideally proportioned, the controls may
need to neutralize their own power that appears to be in excess. They can be neu-
tralized through the cross-coupling (gyroscopic) effects. This phenomenon appears
because the Minimum Principle requires that the controls be used in a certain way
(with full power, e.g. bang-bang for the aero-controls). Some results suggest that
singular extremal solutions may exist, and the appearance of the singular arcs seems
to be another way to balance the excess of control power in a certain channel (for a
particular maneuver). Obviously, the control power can not be proportioned well for
all maneuvers; the purpose of this discussion is to present some factors that affect
and issues related to time-optimal maneuvering; many other factors may influence

the choice of the control-system design parameters.
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Finally, an interesting question arises about the sideslip angle magnitude. For
the maneuvers presented and most others examined, it stays quite small (less than
10% and often less than 5°). Big sideslip angles are not desirable since pilots can
not tolerate high side-accelerations. Thus, if solutions with (unacceptably) large
B were obtained, it would have been necessary to impose a constraint on 8 and
solve optimization problems with the state-constraint. The same holds true for the
accelerations p, ¢ and 7. In order to understand why 8 remains small in the extremal
solutions presented, one needs to review carefully the role of the aerodynamic static
moment coefficient components in the course of the maneuvers. While C?, (a) appears
to play an important supportive role in the pitch channel (C2 does not effectively
depend on S for |8] < 20°), CP(e, B) and C2(a, B) seem to have less important roles
(their magnitudes are of much lower intensity than the control power and the damping
power). In some cases they act supportively, in some cases not (their sign depends
upon the sign of 3). In order to develop more significant values of CP and C9, the
aircraft needs to increase the sideslip angle considerably (say 15° to 20°), with a
proper sign, and eventually maintain it (furthermore, for some a there does not exist
a sideslip angle such that both the roll and yaw channel benefit; compare Figures Al
and A3 and consider the need for roll and yaw power in the course of the maneuvers
in Figures 1 to 4). Thus, instead of deliberately exerting control power to increase f,
the aircraft performs the maneuver in such a way that it takes a lot of advantage of
the gyroscopic effects, and if § evolves such that the developed static moments are
not supportive, it does not affect the overall performance significantly (this is one of
the trade-offs that in general an extremal inherently contains).

Here it needs to be stressed that the whole discussion pertains to one particular
family of extremal solutions and specific types of reorientation maneuvers and for the

aircraft mathematical model under consideration.



CHAPTER V

PARAMETRIC STUDIES

Results related to a few parametric studies are presented in this chapter. The gain in
maneuvering time, due to the thrust-vectoring enhancement of the aircraft, is shown
for a number of maneuvers belonging to one particular family of extremal solutions.
The influence of two thrust-vectoring system design parameters upon maneuvering
time is discussed. Those parameters are the (maximal) available thrust-vectoring
power and the amount of thrust-vectoring roll power. Finally, a set of results is
presented to support the answer to the question whether zero sideslip angle at the

terminal point yields the best maneuvering time.

5.1 Significance of Parametric Studies. The term Parametric Studies is used
here to denote a set of related results, obtained by varying a parameter of the aircraft
model or a boundary condition of the maneuvers considered. In the context of the
problems of interest, parametric studies provide a useful means for investigating the
performance of a particular control system design under various circumstances (for
example: different reorientation maneuvers) and how various control system designs
(e.g. different thrust-vectoring systems) perform for some reorientation maneuvers of
interest. Coupled with other design objectives and requirements, parametric studies

can help the designer make judicious decisions in the course of the design process.

5.2 Benefit in Maneuvering Time Due to Thrust-Vectoring. Results for

two sets of extremals are shown in Figure 6a. They show the aircraft maneuvering

41
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time for two sets of 90°~RVV maneuvers (Maneuver-1). Independent variable is
the angle-of-attack ags (the horizontal axis). The maneuvering time is represented
on the vertical axis in (real) seconds. The lower set (lower curve) corresponds to
an aircraft with nominal design parameters, while the upper set corresponds to an
aircraft without thrust-vector control (¢, = 0). All these results belong to one family
of extremals. The upper set of extremals is derived from the lower by decreasing the
thrust-vectoring homotopy parameter ¢ from 1 to 0. The solid dots merely show
some of the members of the family of extremals that is evaluated by varying ags. The
open circles show the points where the switching structure changes along the upper
or lower curve. A nominal switching structufe is shown in Figure le. In the other
switching structures some of the switching points swap (change their order) or new
switching points emerge (at the beginning or at the end of the trajectory); compare
Figures le, 2e, 3e and 4e. The dotted segments of the curves represent regions where
the swiching structure changes very rapidly (for example, about half a dozen different
switching structures on an interval of less than five degrees). This rapid change of
the switching structures in those regions indicates higher sensitivity of the solution
(upon agy). From this plot one can easily estimate the gain in maneuvering time, due
to the thrust-vectoring enhancement, for the reorientation maneuvers considered.

In Figure 6b the maneuvering time is shown for two sets of extremals for Maneuver-
2 type of reorientation problems. As before, the lower line corresponds to an aircraft
with thrust-vectoring capability, and the upper one to an aircraft without thrust-
vectoring capability. Furthermore, both sets of extremals belong to the same family
of extremals as those shown in Figure 6a. Below 35° the family ceases to exist
for an aircraft without thrust-vectoring capability. This feature is not thoroughly
examined yet. Actually, it appears that the aircraft has unproperly balanced roll,

pitch and yaw power for these reorientation maneuvers. The evolution of the adjoint
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variables suggests that singular extremals might emerge and exist for smaller oy.
More specifically, the aileron is so powerful at the lower a, where most of the rolling
takes place, that the elevator and the rudder can not “cope” successfully with it.
Thus, the aileron can not be used with full power (bang-bang). It will need to stay
at some intermediate values along a time arc of finite length, starting somewhere at
the middle of the trajectory and extending till the end. (Chattering solutions may
exist, as well). That is how the family of extremals evolves as ay is being decreased
along the upper curve. As a final remark here, one must note that the evolution of
a family of extremals is related to and dependent upon the homotopy path selected.
Bifurcation phenomena can be observed in the course of the homotopy procedures.

Thus, different homotopy paths can yeld different families of extremals.

5.3 Amount of Thrust-Vectoring Power. Figure 7a shows results for two fam-
ilies of extremals obtained by varying the homotopy parameter ¢, above and below
its nominal value. One can give a physical interpretation of the mathematical model
as corresponding to an aircraft with a more or less powerful thrust-vectoring sys-
tem (e.g. by varying the size of the paddles which deflect the jet-stream). The two
lines correspond to 90°~RVV maneuvers for ap; = 30° and ap; = 50°, respectively.
The stars denote the maneuvering time for the nominal value of the thrust-vectoring
power (compare to Figure 6a, lower curve). One can see that by decreasing the
thrust-vectoring power, the maneuvering time increases significantly. However, by in-
creasing the thrust-vectoring power, the maneuvering time decreases negligibly. One
can conclude that for the two particular reorientation maneuvers corresponding to the
extremal considered, the nominal value of the thrust-vectoring power is a good choice.
By examining plots like this one, for a variety of reorientation maneuvers and different
extremals, one can make a good engineering decision (usually associated with other

engineering trade-offs) about an actual implementation of a thrust-vectoring system.
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5.4 Contribution of the Thrust-Vectoring Roll Power. In Figure 7b the
thrust-vectoring roll power is varied, while keeping the pitch and yaw power at their
nominal value. This is done by varying the a, parameter in the mathematical model
(Equations 3-S4 to 3-S6). The families of extremals correspond to the same maneuvers
as in Figure 7a. Below certain values of a, the families could not be extended. The
evolution of the adjoint variables Ap, Ao and Ag suggests that singular extremals
may emerge as a, is decreased further. As can be seen, for these maneuvers and the
extremal considered, maneuvering time does not change significantly as the thrust-
vectoring roll power varies over a broad range of values. This fact is due to the
already described particular nature of the extremal. The aircraft pitches down to
lower « since in that region the aileron has a lot of roll power, which is much greater
than a thrust-vectoring system can practically produce (for the HARV design). By
examining plots like this one for a variety of maneuvers and extremals, a designer
can make a decision about how much thrust-vectoring roll power the aircraft should
possess. The designer must also include in the analysis the fact that thrust-vectoring
roll power is needed at high a (where the aileron is much less effective). In actual
flight, the aircraft is subjected to disturbances. If an automatic control-system is
implemented for control of the aircraft in the course of the reorientation maneuvers,
it should be composed of an open-loop controller and a closed-loop control subsystem
(which will cope with the disturbances and the measurement error). The latter will
certainly require thrust-vectoring roll power. Another criterion for the designer might
be a desire for fault-tolerance: in the case of mechanical failure of the aileron, the

thrust-vectoring roll power can be used to safely land the aircraft.

5.5 Minimum-Time Fuselage Pointing Problems. So far only minimum-time
rest-to-rest reorientation maneuvers with zero sideslip angle at the initial and the ter-

minal point were considered. As mentioned in Chapter 1, the desire for understanding
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the minimum-time reorientation maneuvers arises from the need for the aircraft fuse-
lage to be reoriented rapidly, in a combat situation, in order to fire a missile. In
this context, other minimum-time reorientation problems can be posed. Thus, a pilot
might want just to reorient the z,-axis in a certain direction and fire. This is a less
constrained problem and thus the corresponding optimal trajectory is faster (at least
no slower) then an optimal trajectory where besides the orientation of the z-axis at
the terminal point a zero sideslip angle is required.

Both problems above belong to the class of minimum-time rest-to-rest reorientation
maneuvers. Another interesting class of reorientation maneuvers is the one where the
angular velocity at the terminal point is restrained within a certain interval, for

example:

p e[ — Pmazs + pmax]
q E[ — Gmaz, + qma:z:]

r E[ — Tmaz> + 'rma:t:]

From Figures 1 to 4 one can see that some 10 to 20 percent of the terminal part of the
trajectory the aircraft already points close to the desired final direction. The angular
velocity @ = (p, ¢,7) is low in the terminal portion of the trajectory (and ultimately
decreases to zero), thus it takes a significant portion of the total maneuvering time
for relatively small angular displacement. Furthermore, the pilot may not necessarily
need a zero angular velocity to lock onto a target and fire. A problem like this can
be dealt with from the standpoint of optimal control theory.

The problem of minimum-time z;-axis pointing can be analyzed independently, as
unrelated to the problem of reorientation with zero sideslip angle at the terminal point.
One needs to set up an appropriate set of necessary conditions, start from the vacuum

case and perform the whole homotopy procedure as it is already done for the zero
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final sideslip-angle problem. However, from a practical standpoint one considers that
an extremal solution is not acceptable if the angle-of-attack is negative or the sideslip
angle large at the terminal point. Also, practice with the homotopy procedures shows
that, for the problems considered, for small variations of the terminal conditions
there is a high likelihood that an extremal will continue to exist. These observations
suggest that the problem of minimum-time z;-axis pointing can be approached by
using results from the zero final sideslip-angle problem. One needs to relate the set
of angles already used to specify the aircraft orientation, (e, 8, 4), to the 3-2-1 set
of Euler angles (v,8,$). Here 3 is the azimuth angle, 8 is the elevation angle and
¢ is the so called body-roll angle. The orientation of the aircraft z,-axis is uniquely
specified by % and 0. If we keep these angles constant and vary ¢, we get various
orientations of the aircraft, all of which have the property that the z,-axis points in
one constant direction.

Figure 8a is related to Maneuver-1 with ag; = 30° and the extremal solution shown
in Figure 1. For that maneuver at the terminal point the orientation of the aircraft
can be described by (ay = 30°,8; = 0% py = 90°) or (3 = 30°,8; = 0°, ¢; = 90°).
Let us call this orientation the nominal one. Two series of extremals are derived from
the nominal. One is derived by increasing ¢; from 90° to 110° by small increments
of 1° to 2°. The other series is similarly derived by decreasing ¢; from 90° to 70°.
Thus, a family of extremals is obtained. The time to perform the maneuvers of this
family is shown on the vertical axis. The actual minimum of this curve is at ¢} ~ 91°.
In this case the zero endpoint sideslip-angle maneuver seems to be close to the best
that this extremal can offer for the z3-axis pointing problem. As one can conclude
from Figure 1 and the discussion in Section 4.3, the control power in the roll, pitch
and yaw channel seems to be well balanced for this particular maneuver and extremal

trajectory. The fact that the minimum time is at ¢} = 91° and not at ¢; = 90° can



47

be simply explained by noting that if the aircraft rolls a little bit more, the additional
gyroscopic power supports the pitch and the yaw channel moment power and slightly
helps the maneuver globally. But rolling much more increases the maneuvering time.
Rolling less than ¢; = 90° increases the time, too. Careful studies of the extremal
solutions, in particular regarding the role of the TV-system throughout the solutions
in the family considered, clearly explain this phenomena.

For ¢; > ¢}, the case where the aircraft needs to perform more roll motion, the
TV-system exerts its power predominantly in the roll channel. However, for ¢; < ¢}
the aircraft needs to perform less roll motion and thus the TV-system exerts very
little of its power in the roll channel (thus more TV-power goes into the pitch and
yaw channels). Along the curve, at ¢; =~ 81° a new switching point emerges, related
to Ap, and for lower body-roll angles ¢; the aileron begins with a negative sign (the
“wrong” way). As ¢; further decreases, this initial period of aileron counter-action
becomes longer. Less roll means lower roll angular-rates, which in turn decreases
the gyroscopic power in the pitch and yaw channel (the gyroscopic moments are
predominant in the nominal extremal, Figures 2g, 2i and 2k). Thus, although more
TV-power goes into these channels, maneuvering time decreases.

For ¢; > ¢}, as the aircraft rolls more and thus higher roll rates are achieved,
the gyroscopic term in the pitch channel becomes more powerful. The period the
elevator is positive decreases (for ¢; < @7 it is increased). The bottleneck in this
case becomes the elevator negative power, necessary to slow the pitch rate at the
final part of the maneuver, and the rudder negative power for the same reason (the
terminal point here is at higher « where the control-surface effectivenes is significantly
decreased; the TV-system needs to exert more power in the roll channel to support
the predominant motion). So, the pitch and yaw channel have more gyroscopic power.

However, they get less TV-power and along with requirement for more roll motion,
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maneuvering time increases.

Figure 8b shows results related to Maneuver-2 with o; = 45° and the extremal
described in Section 4.4 and Figure 3. Maneuvering time decreases with ¢; in a
broad interval. The actual minimum time occurs at ¢} = 109°. There is a relatively
simple explanation for this phenomenon. One needs to notice that, for ¢; = 70° and
¢s = 110°, a; is (still) close to 45° and B; ~ £10°. From Figures Al and A3 one can
see that C?(45°, £10°) and C2(45°, +10°) are significant in value. The result in Figure
8b is a good illustration of how an aircraft can take advantage of the aerodynamic
static moments (which are due to nonzero sideslip angle) to perform a maneuver
faster. For small ¢; the sideslip angle at the terminal point is negative. This causes
(significant) positive roll and yaw aerodynamic static moments to develop. Thus a
considerable amount of (negative) thrust-vectoring and aerodynamic-control surfaces
power is needed to fight these moments. For large ¢ the terminal sideslip angle is
positive, which yields negative roll and yaw static moments (of significant magnitude),
which act quite supportively to the controls at the last part of the trajectory (help
decelerate the angular rate to zero). In this case for a relatively larger portion of the
first part of the trajectory the roll and yaw controls accelerate the aircraft (compared
to the case of smaller ¢;). Thus, the developed higher gyroscopic term supports
the pitch channel better. All this explains why maneuvering time decreases with
increasing ¢y.

However, beyond ¢; > ¢} time starts increasing again (not shown in the plot),
and the extremal eventually may cease to exist. Namely, the yaw channel becomes a
bottleneck. At ¢; = 110° the controls 6, and &, are positive all the time. The aircraft
decelerates in the yaw direction by using the gyroscopic term and the aerodynamic
static term C2. Due to the high roll and pitch rates the gyroscopic term, which is

significant in value and negative all the time, starts opposing the positive action of
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the yaw controls in the first part of the trajectory (Figure 3k and Section 4.4). For
large ¢ the TV-system exerts very little power in the roll channel (the aileron is quite
powerful and is supported by the aerodynamic static roll moment C?), and a lot of
power in the pitch and (especially) in the yaw channel, but eventually (for ¢; > ¢%)
this can not help enough and maneuvering time increases.

One can note that for Maneuver-2 with a; = 45° the aircraft needs to pitch up and
roll positive most of the time, which means a negative gyroscopic term in the yaw
channel needs to be developed. In this particular extremal (Figure 3) the aircraft
pitches down first primarily to fight against development of negative gyroscopic term
in the yaw channel too early. | '

An extremal where the aircraft starts or ends by rolling in the “wrong” direction
can not be ruled out a priori (indeed, such exist for the case of an aircraft without
thrust-vectoring, Figures 2e and 4e). Actually, rolling in the “wrong” direction has
no purpose of decreasing maneuvering time, but fighting against excess of power (not
well balanced proportion of power in the roll, pitch and yaw channel). Thus, one can
see that various trade-offs need to be made between different effects in the course of
the maneuver. The trade-offs are made in portions of the trajectory (on a local level).
The purpose is, obviously, to improve the extremal maneuver globally.

Also, while one extremal can yield very good results for some reorientation maneu-
vers, another extremal may be better for other reorientation maneuvers or different

values of the aircraft design parameters.



CHAPTER VI

CONCLUDING REMARKS

The work presented demonstrates that very complex and accurate mathematical
models can be used in conjuction with optimal control theory in analysing the prob-
lem of time-optimal reorientation maneuvering of aircraft. A methodology for such
analyses is established, and the major ingredients of the problem identified.

This work can serve as a solid basis for future research. One should study more
extremal solutions for a larger set of reorientation maneuvers. The extremal solutions
should be analyzed as aircraft design parameters are varied. This can yield under-
standing about the domain of existence of the extremal solutions, and provide some
useful design rules for the aircraft, as well.

Ultimatelly, it will become possible to develop an on-board automatic control system

that will provide guidance of the aircraft in the course of the reorientation maneuvers.
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APPENDIX A

AERODYNAMIC-MOMENT COEFFICIENTS

The aerodynamic coeflicients for the HARV are very complex functions of a number
of variables (states and controls). Data from wind-tunnel measurements is available
at a certain set of grid-points [15], ranging among all possible combinations of the
state and control variables (these vary within certain intervals, for example a €
[—10°,+90°] and B € [—20°,+20°]). In addition, a program is available which reads
this data and performs linear interpolation in any variable. Thus, for simulation
purposes one can have the value of the aerodynamic coefficients for any value of
the state and control variables (within their respective domains). However, for the
optimization procedures smooth data is needed. In addition, some state-variable
derivatives of the aerodynamic-moment coeflicients are needed. Thus, it was necessary
to develop smooth model functions for the aerodynamic-moment coefficients. These
model functions are combinations (sums and products) of some simpler functions
(referred to as shape functions). The shape functions used and the method used
in constructing model functions are discussed in Appendix B. In Appendices Al to
A9 the analytical expressions of the aerodynamic-moment coefficient model functions
are given, along with plots of each aerodynamic-moment coefficient data and the
corresponding model function (as used in the mathematical model). The data and
the model correspond to Mach number 0.30. The model functions depend upon
some parameters (constants). The initial estimates of these constants were originally

obtained by analyses, then adjusted either by visual comparision with the given data
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or by using (parameter-optimization) IMSL least squares fitting software [20]. In
the expressions that follow, these parameters are denoted by symbols of the form 7,

where the letters take values as follows:

le{a,b,c,d,e,w,a}
L €{L,Q,R,E,T,5,Y,7}

n €{1,2,3,4}

Each capital letter corresponds to a certain shape function; each lower case letter
corresponds to a certain parameter of a shape function; and the numbers denote the
component shape function within a model function. The numerical values of the
constants are given in [25].

In the appendices Al to A9, the notation is tailored so as to show more clearly the

structure of the analytical model functions.
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Appendix Al. Static roll coefficient

Clo(a) IB) = Al,O(a’ ﬂ) ' BM)(CY, ﬂ)

where

Ajo(a, B) = Lig(a) + Qo(@) + Elg(a) + Efg(a)

B:,o(a, :B) = }/I}O(a, 5) + Zl;:o(aa ﬂ)
and the components have the following form:

Lig(e) = ap,- a+ by

2 CQQ
Qrola) = ————;
1+ (%)
2
a—ad\?
Bipe) = exp |~ (222
L wE
[ /o —at\?]
E?o(a) = C4E *€Xp | — 1 E)
9 wE

1

Yb(a, B) = [a} - arctan(b}, - B)] -
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Appendix A2. Static pitch coeflicient

Cg;,(a: ﬁ) = Am,O(ay 18) : Bm,O(aa ﬁ)

where

Amola, B) = L}n,O(a) + Q12n,0(a)

Bm,O(a, ﬂ ) =1
and the components have the following form:

L11n,0(a) =ap-a+b;
2
c
2ole)= —2——

1+ (("—"f—@"u)2

vQ
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Appendix A3. Static yaw coeflicient

where

Cg(av /B) = An,O(aa :8) * Bn,O(a, B)

Anola, B) = Li,o(a) + Qi,o(a) + Eff,o(a) + E:,u(a)

Bn,O(aa IB) = Ynl,O(aa /B) + Zg,o(‘% ﬂ)

and the components have the following form:

Lyola)=ap-a+b;

1 w‘aE
[ (a- a; ]
E,a)=cg-exp |— ( ol )
Y o(a, B) = [ay - arctan(by, - B)] - 1 —
1+ (%)
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Figure A-3b. Static yaw coefficient (HARV data)
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Appendix A4. Roll-damping coefficient
Ct(a,p) = C{°(a) - p
where
Cf*(a) = Lig(e) + Qi) + Qic(a) + El¢(e)
and the components have the following form:

Lig(a)=ap-a+bp

2
Qiclo) = %
1+ (‘;gg‘)
&3
Q?,((a) = Q

a—at)?
Ef.(a)=ck-exp l—( " E) ]
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Appendix A5. Pitch-damping coefficient

Crla,q) = CP(a) ¢
where

C&(a) = L;ln,ﬁ(a) + an,g(a) + Efn,((a)
and the components have the following form:

L:n,((a) =ap-a+ by,
2

an,g(a) = i_z
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Appendix A6. Yaw-damping coefficient

Ci(a,r) = C%a) - r
where

Cio(a) = Ly (@) + Q7 c(@) + Q3 () + Ey ((a)
and the components have the following form:

Li(0)=al-a+b
cg

Q

i,c(a) =

3
€qQ

1+ (“—_?—3‘1)6

vQ

o—aot)’
E:‘C(a) = c} - exp [_ ( — E) ]
E

Qi,((a) =
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Figure A-6a. Yaw-damping coefficient (analytical model)
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Appendix A7. Roll coefficient due to differential aileron

C,C(a, Aa) = Al,c(a) . Dz,c(a, Aa)
where

AI,C(Q) = L},c(a) + T’l?c(a)

Dl,c(aa Aa) = Aa
and the components have the following form:

Li(a) =ap-atb

T (@) = ¢} - arctan [d7 - exp (aF - @ + b}) + €7
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Appendix A8. Pitch coefficient due to horizontal tail

Ci(a,6e) = Ame(@) + Emc(a) - e

where

Ame(a) =0.5(C2(a) + Crl(a))

En(a) =05(CF(a) — Ci(a))

C(e) = Ly, (@) + Sy c(a)

Co(a) = Ly, (@) + Ry, ()

and the components have the following form:

Lyc(a) =ap-a+b
5. (@) = & sin [
() =ad-ats
4
c
IR
1+ —wgﬂ

- arctan (a?g -a+ b:‘;) + eé]
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Appendix A9. Yaw coefficient due to rudder

Ci(a,é,) = Rnc(a) - Dpe(a,éy)
where

Rne(o) = Ly (o) + T, () + Ry o(e)
D, (a,é) =26,

and the components have the following form;

T? .(a) = c& - arctan [d% - exp (af - a + b2) + €2]

3 C?Q
Rn,c(a) = —ad .,.%
T+ |55t
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APPENDIX B

SHAPE FUNCTIONS

A few elementary functions were chosen as a basis in constructing the aerodynamic-
moment coefficient model functions. There is no unique way of combining these (or
some other) elementary functions to produce the desired model functions. Simply,
the chosen ones resemble some shapes and curves in the aerodynamic-moment coeffi-
cients data and one can try to combine them in such a way as to achieve a good fit.
However, some underlying principles were guiding the choice. Namely, we want to
have model functions which reflect the essential characteristics of the aerodynamic-
moment coefficients data given. In addition, we want modularity in a sense that we
can add some peculiarities of the aerodynamic data (like small humps or valleys in
the 2-D surfaces of data) and thus investigate their influence and significance upon
the extremal trajectories. Moreover, we want flexibility in a sense that we can easily
find a new set of parameters (consténts) which will fit well aerodynamic-moment co-
efficients data at another Mach number. Finally, we want to produce model functions
which are smooth (have continuous partial derivatives). If second-order variational
tests are to be performed with the mathematical model, then these functions need to
be twice continuously differentiable.

Thus, though it might seem that some of the model functions shown in Appendix
A could have been satisfactorily generated with polynomials, the above discussion

justifies the choice of shape functions.
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The following functions are chosen as a basis of shape functions:

L(z;a,b)=a-z+b

c
Qz;c,a,w) =
( e,
C(z;c,a,w) = ¢ — Q(z;¢,,w) = —E-—g-zjii
1 (=)
R(iv;C,a,w,T)=iT(—c;_;—gT

Fiseem = |- (152)

S(z;a,b,c,d,e) = c-sin|[d - arctan (a - z + b) + €]

T(z;a,b,c,d,e) = c-arctan[d-exp(a-z + b) + €]

1

Y(z,y;¢,b,0,w) = [c- arctan(b- y)] —————
1+ (52)"

o) (=)
Z(z,y;b, ,w) = (b'y)w

In the further discussion the dependence of the shape functions upon the constant
parameters will not be explicitly shown.

The linear function L(z) is the most common building-block in the model functions.
Indeed, as mentioned in Section 4.1, some homotopy schemes employed linear model
functions for the static aerodynamic coefficients, of the form C(a, 8) = L'(a)- L*(B).
Furthermore, the majority of model functions shown in Appendix A are built pri-
marily by adding humps and valleys to a basic linear function; some model functions
make use of the linear function for corrective purposes.

The inverse quadratic function @(z), the exponential E(z) and the function R(z)
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have the property that they decrease to zero as the distance from the point where they
achieve their maximal value increases. These functions are used to produce humps
and valleys in the model functions, by adding them to a basic linear shape. An
example is the model function CP(a, 3). The curve CP(a, 8 = —20°) is obtained by
a linear function Lj,(«) to which three other functions are superimposed (Appendix
Al). The first is Qfo(a), whose effect can not be easily seen. Its center is at o ~ 40°
and has a small peak value. The purpose is to neutralize the distant effect of the
other two superimposed functions and produce a light non-convexity above a = 50°.
The second superimposed function is Ef:o(a) and it produces the hump in the region
from a = 5° to a ~ 25°. The third superimposed function is E};(a) and it produces
the valley in the region a ~ 25° to a ~ 40°.

The exponential function E(z) decreases fairly rapidly and away from its peak it
does not affect the value of the composite function (the sum). Though the width of
the humps produced by both F(z) and (z) can be controlled by the parameter w,
the function E(z) is used in lieu of Q(z) because of the different aspect-ratio in the
width of the hump it can produce. For example, one can see the sharp kink in the
Cf(a, B) model function at o ~ 45°. It is produced by Ef.(a). A similar argument
justifies the occasional use of R(z). The parameter r in the exponent controls the
aspect ratio of the shape it produces. It is used in the C’,C (e, B) shape to produce the
deep valley in the region from a =~ 30° to a &~ 40% in the model function C§(a, 8) to
produce the shallow valley in the region from a = 30° to « = 50°; also in C¢(a, 8).

The function T'(z) is choosen to produce the model function Cf(a, A,). In the data
one can see that Cf(a,A, = —1) tends to converge towards constant values as «
approaches —10° and +90°. This suggests that an arctan(-) can be used. However,
the data shows that for @ > 30° the function Cf(a,A, = —1) decreases much slower

than it increases for a < 30°. This can be managed by distorting the the a-axis and
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that is done by picking a proper function of a, in particular the exp(-) function. The
some can be done with a polynomial function. However, the parameter-optimization
least-square fitting software may experience difficulties in the numerical search since
a polynomial function is not in general monotone.

Similar argument justifies the use of the function S(z). It is used in the C¢ (e, é,)
model function, to produce C¢(a,8. = —1). An idea behind this model function
is worth mentioning. The C{ (e, 6.) data clearly shows that the functions C¢ (a =
const, §,) are not monotone in the region above a & 40°. Thus, when the Minimum
Principle is applied, one does not always get a full elevator for control. This problem
is solved by a simple trick which effectively transforms the physical elevator control
variable into a new one. Namely, what matters for the Minimum Principle, according
to the expression for the Hamiltonian of our problem, is that at a given a, we pick
the control é, such that the lowest or the highest value of C¢ (e.,é.) is achieved
(depending upon whether Ao is positive or negative, respectively). If so, we can
find functions CP(a,) = maz [Cs (ax, é.) data] and Cot (o) = Er,in [C (s, b) datal]
and assign these to be values of a model function C¢(a,é,.) for 6, = +1 and é, =
—1, respectively. Then we can linearly interpolate between these values for 6, €
(—=1,+41). The Minimum Principle will yield é, = —1 or §. = +1. In the process
of homotopy, where the aerodynamic controls are assumed not to be independent,
the results are not correct (the model function is correct for . = —1 and 6. = +1
only). But this is not a problem, since ultimately we are interested in results with
independent aerodynamic controls (bang-bang). In a similar manner this model is
not good if singular trajectories are to be studied with the model. Once we have an
extremal trajectory, we can transform é, back to the actual physical value. Note that

linearization in the control variable is also done in the model functions Cf(a, A,) and

Cé(a, 6r).
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The functions Y(z,y) and Z(z,y) are used to control the f-dependence of the
model functions CP(e, 8) and C2(«, 3). Both of these functions are odd in 3. Thus,
CYa,—pB) = —CP(e, B) and CP(e,0) = 0. One can notice that the CP(a = const, 8)
data has arctan(8) shape in the region of a =~ 5% to @ ~ 35° and linear behavior
outside that region. Thus, one needs to multiply the curve C?(a, 8 = —20%) by such
a function of 3, which is antisymmetric, has zero value for 8 = 0°, arctan(f) shape
for o in the region from 5° to 35°, linear shape outside this region and unit value
for B = —20°. This can be accomplished by a sum of functions Y (e, 8) and Z(a, 8).
Y(a,3) shows the desired arctan(8) shape in the S direction. It contains a Q(«)
multiplier to bring its value to zero outside the desired region (Figure B7). Similarly,
Z(a, B) has linear behavior, with the desired slope, almost everywhere except in the
region where we want it not to have a lot of effect. This is accomplished by multiplying
a linear function of 3 by C(a), a function which is in a sense a complement of Q(a).

Those are some of the basic principles that guided the development of the model

functions for the aerodynamic-moment coefficients.
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values of R(x;w)
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