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(ABSTRACT)

Coping with droughts involves two phases. In the first phase drought susceptibility of a
region should be assessed for developing proper additional sources of supply which will be
exploited during the course of a drought. The second phase focuses on the issuance of
drought warnings and exercising mitigation measures during a drought . These kinds of
information are extremely valuable to decision making authorities.

In this dissertation three broad schemes i) time series modeling, ii) Markov chain analysis,
and iii) dynamical systems approach are put forward for computing the drought
parameters necessary for understanding the scope of the drought. These parameters
include drought occurrence probabilities, duration of various drought severity classes
which describe a region’s drought susceptibility, and first times of arrival for non drought
classes which signify times of relief for a drought-affected region. These schemes also
predict drought based on given current conditions.

In the time series analysis two classes of models; the fixed parameter and the time varying
models are formulated. To overcome the bimodal behavior of the Palmer Drought
Severity Index (PDSI), primarily due to the backtracking scheme to reset the temporary
index values as the PDSI values, the models are fitted to the Z index in addition to the
PDSI for the forecasting of the PDSI.

In the non-homogeneous Markov chain, monthly transition probabilities are utilized to

evaluate steady state probabilities of occurrences of various drought severity classes,



expected class, duration, and times of first visit to different weather classes signifying
entry into and exit out of drought classes. Also, a decision tree formulation is offered for
operational decision making during the course of a dry spell.

In the dynamical systems approach, by considering the hydrological processes to be local
phenomenon and the forcing function namely, the precipitation, to be triggered by a global
phenomenon, a stochastic differential equation (SDE) formulation is obtained. From the
SDE an equivalent partial differential equation, the Fokker Planck equation, is obtained to
yield the probability density function of the drought index. As an example, the fluctuations
in the global forcing is attributed to the El Nino Southern Oscillation (ENSO )
phenomenon. Its effects are accounted for through the Southern Oscillation index (SOI)
and the Sea Surface temperature (SST) index. The drift and diffusion functions employed
in the Fokker Planck equation capture sudden changes in the index values. To handle
nonlinear drift functions, a piecewise linearization scheme is suggested which, along with
a constant diffusion function, leads to employing a segmentwise Gaussian distribution as
the solution with considerable ease.

It is hoped that the proposed methodologies will help in the issuance of drought warnings
in a timely manner without undue burden on the forecasters or the citizenry. The results

should also help in planning for additional water resources for the drought prone regions.
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Chapter I

INTRODUCTION AND MOTIVATION

1.1 INTRODUCTION

Of all the natural environmental hazards on earth, drought is perhaps the most damaging.
By its nature it develops slowly, frequently occupying vast areas and persisting over long
periods. Drought is defined as an extended period of dry weather, specially one injurious
to crops (Webster’s Dictionary, 1986). In the U.S., in the 80s, drought occiured not only
with increased frequency and over wide spread areas, but was experienced by the large
population of the normally moist east. Also, the 1988 growing season was the driest since
1895 for many farming regions in the U.S. The 1988 drought clearly showed the
extensive impact of water shortages on agriculture, livestock, urban and industrial water
supplies, hydropower, navigation, forestry, wetlands, recreation, and the structural
integrity of water facilities. As a result of the drought of 1988, the federal government
spent $ 3.9 billion on drought relief programs and $ 2.5 billion on farm credit programs
(Riebsame et al., 1990).

There are mainly meteorological, agricultural and hydrological droughts emphasizing
conditions of precipitation, soil moisture, streamflow and water storage, respectively.
From the view point of extent of water deficiency, droughts are classified as mild,
moderate, severe and extreme types. It may also be worthwhile to distinguish between
aridity and drought, both of which are characterized by lack of water. Aridity carries the
connotation of a more or less permanent climatic condition, bringing about deserts as the
companion land form. Drought, on the other hand, is a temporary condition, occurring in
a climatic zone where precipitation is ordinarily adequate for vegetation or agriculture,
river flow and water supplies. There are marginal areas on the globe, often called semi-

arid, that are transition zones betwen truly arid areas and moist regions with more reliable



precipitation. These zones are most frequented by droughts. However, keeping in view
the past history of the occurrences of droughts, it is well understood that no region, no
matter how well blessed with water from the sky, is free from drought (Landsberg, 1975).
Even in today’s age of high technology and instant communication, agricultural and
livestock production in industralized as well as developing societies can be sharply

reduced by drought related stresses (Glantz, 1994).
1.2 METHODS OF ANALYZING DROUGHTS

The methods of analyzing droughts can be broadly classified into three categories :

i) index based approach, ii) time series analysis and iii) theory of runs. Studies related to
these methods relevant to the scope of present work are reviewed in Chapter II. An index
based approach typically computes the departure from normal. The normal may be simply
the mean precipitation or as in the Palmer index (Palmer, 1965) could be an integrated
measure of the climatically appropriate normal values. The index itself is set to represent
the cumulative departures. There have been many attempts to forecast drought severity
by using the time series models. In addition to the series of the meteorologic and
hydrologic variables, Sun spot series, tree ring series and the index (like the Palmer index)
series, just to cite a few, have been analyzed. In the case of the drought analysis, the time
series models have had only limited success. This may be attributed to the use of the
information in the data in a limited manner such as computing only the first two statistical
moments. In the theory of runs a cutoff value, say X, is chosen for the series X(t). The
wet periods (X(t) > X,) and dry periods (X(t) < Xo) are characterized in reference to the
chosen threshold X,. The probabilities of drought duration and severity are computed
with the assumption that the realizations after exercising the threshold limit form a random
sample (independent, identically distributed random variable). Such an assumption may
not always be valid. An appropriate method of drought analysis should be able to describe

various characteristics of droughts, for example, severity, duration, frequency and yield



results which are useful for both the planning and operational aspects of drought related

policies. The traditional methods of analysis seem to be deficient in one respect or the

other.
1.3 MOTIVATION

A comprehensive criterion for assessment of droughts must consider both the supply and
demand phenomena. In 1965, W.C. Palmer of the then U.S. Weather Bureau, now
National Weather Service, developed an index called the Palmer Drought Severity Index
(PDSI). The PDSI characterizes the weather conditions based on a physically based
comprehensive water balance analysis. For operational purposes there is the modified
version of the PDSI called the Palmer Hydrological Drought Index (PHDI) (Karl, 1986).
The PHDI, unlike the PDSI, avoids the backtracking procedure. In this study, because of
their distinct advantages, both the PDSI and PHDI are used to characterize the droughts.
Particularly, the monthly Palmer index data of the Northwest division in Arizona (1895-
1992), the San Joaquin Drainage division in California (1895-1992), and the Tidewater
division in Virginia (1895-1990) have been used. Also, a methodology for complete
characterization of drought should yield results which are helpful for the planning and
operational aspects of drought management strategies. Typically, during droughts it is the
responsibilty of a state level task force to recommend drought mitigation measures to the
regulatory agencies to minimize drought impacts. Such recommendations are based on
the impacts of drought on various resources.

A review of different state drought plans indicates a real need for information such as :

i) how frequently drought conditions can be expected in a region, ii) how long such
conditions will last , iii) when the relief (normal) canditions can be expected, iv) can such
drought conditions be predicted in advance ? , and v) are droughts in a region affected by
some external factor ? Besides, the task force needs some “decision rules” with regard to

the issuance of warnings. In this study, these aspects are grouped under the label of



“complete characterization of droughts”. The probabilities of occurrences of certain
drought severity classes, the durations, and times of return to a severer drought class
define the drought proneness of a region. Such information also aids the decision makers
to understand the drought behavior in quantitative terms. An enumerative decision tree
encompassing all possible occurrences is offered for operational decision making during
the course of a dry spell. Because the decision tree displays observed sequerice of events
upto the current period and offers all possible branchings from that point, the decision
making process becomes more objective and less cumbersome. The specific objectives are

given in the following section.

1.4 OBJECTIVES

The specific objectives of the present study are :

i) To fit fixed and time varying parameter time series models to the PDSI and the Z index
for forecasting.

ii) To identify an appropriate probability model for the complete characterization of
droughts using the physically based Palmer drought index.

iii) To analytically determine the probability density function of the Palmer index using the
dynamical systems approach and to analyze the effects of external forcing on droughts in a
region.

iv) To develop a “decision tree” based on the study results to be used as a tool for making

operational decisions during droughts by drought monitoring agencies.

The sequence of steps followed in the development of these methodologies is described as
follows. Chapter II contains a literature review. In chapter III, time series models are
developed for the PDSI and the Z index. These models are used to forecast the PDSI. In
chapter IV, a non-homogeneous Markov chain approach is used for determining the time

of residence (duration), time of return, and the probability of occurrence of a particular



drought severity class. Also, a procedure for predicting drought severity classes is
offered. A drought is considered to be resulting from a combination of a global forcing
action in the form of precipitation for which the source region can be far away and a local
response defined by the region’s hydrology in terms of the surface runoff and the moisture
holding capacity within the soil. In chapter V, a dynamical systems approach which
accounts for global forcing is considered. The method also explains the bi-modal
distribution of the PDSI by pointing out two stable points on the wet and dry side
respectively. The solution process is governed by the classical Fokker Planck equation. A
procedure for its time variant solution is given, and its application for making adaptive
forecasts is discussed. The analysis considers the ENSO phenomenon as the external
force. Chapter VI describes the use of the study results in developing a decision tree for
drought monitoring. For an illustrative example the Tidewater region, Virginia is chosen.

Chapter VII summarizes the key results and offers recommendations for future research.



Chapter I

LITERATURE REVIEW

2.1 INTRODUCTION

The commonly used variables to study droughts include rainfall, temperature, evaporation,
evapotranspiration, soil moisture, streamflow, reservoir tank levels and storages, and
ground water levels. Studies have also been performed using crop parameters like critical
growth stages, crop yields, fodder production, and land use classification.

A popular approach of drought characterization is through a drought index. Typically the
approach consists of devising a criterion which indicates cumulative moisture deficiency or
surplus in an area. Because of their simpler representation in the form of a numerical
value or an alphabet, the indices serve as an effective communication tool in government
agencies to take remedial actions. Moreover, the indices motivate for more detailed

research in the area. In the following a brief description of drought indices is given.

2.2 METEOROLOGICAL DROUGHT INDICES

Rainfall has been mainly used to characterize the meteorologic drought condition. A
commonly used procedure consists of comparing the depth of rainfall for a given period
i.e. week, month, season or year with the long term mean of rainfall (normal) for a given
duration. Based upon the review given in WMO (1975), the following indices are briefly
annotated. Bates (1935) considered drought condition when annual precipitation is 75%
of normal or when monthly precipitation is 60% of normal. Ramdas (1950) defined
drought as a week with actual rainfall equal to a half of the normal rainfall or less. Gibbs
and Mather (1967) used the decile (ten percent limits) of the rainfall frequency



distribution. The first decile cutoff is that rainfall amount which will not be exceeded by
only ten percent of the total indicating an abnormally dry condition.
Selyaninov (1930) suggested an index, k, based on the ratio of sum of rainfalls (mm)

when mean temperature is above 10° C and sum of rainfalls for the same period when the

mean temperature was less than 100 C. A dry spell is supposed to have occurred when
k <1 and a drought condition occurs k <.5. Koppen (1931) defined dry climate by
p <2 T for regions of winter rain and p < 2T+14 for regions of summer rain or no rainy
season where p is annual precipitation in cm and T is mean temperature in °C. Palmer
(1965) developed an index called the Palmer Drought Severity Index (PDSI) based on
water balance computations in the root zone. The studies on the use of the PDSI are
reviewed in section 2.5. Herbst et al. (1966) developed a technique for evaluating
droughts using monthly rainfall data. The authors computed effective rainfall for month i
as
Ei = Pi +W;(Pi1- Miy) ¢))
where: E;= effective rainfall for ith month;  P;= precipitation during ith month
W;= weighting factor for ith month; P;, = precipitation for (i-1)th month
Mi;.1 = mean precipitation for (i-1)th month

The weighting factor (W;) is calculated as

Mi
W; =0.1 (1+m) )]
where: Mi= mean precipitation for ith month computed based on long term

precipitation record for ith month
MAR = mean annual precipitation for the area

Further, mean monthly deficit for ith month (MMD;) is defined as

n
2. (Eij - Mi)
MMD; = I . if (Eij - Mi) > 0 then (Eij-Mi) =0  (3)
n
where : Eij = effective rainfall for ith month during jth year; n = number of years



The mean annual deficit (MAD) is then defined as
MAD = > MMD;;i=1,., 12 “@

The authors proposed a method to identify beginning and ending of drought to compute
the drought duration (D). The severity of drought was defined as

Severity index= Y . D 5)

Y = drought intensity ; D = drought duration

D
D [(Ei - Mi) - (MMDi)]
i=1 (6)

where: Y )
> (MMDi)
i=1

Strommen et al. (1980) proposed an index based on weekly precipitation values. Eight
weeks’ precipitation values are accumulated and the deviation from corresponding eight
weeks’ mean precipitation data is computed. If the deviation falls below 60 % of the
normal level , a drought warning is signalled. The choice of 8 weeks seems arbitrary. An
objective method called precipitation anomaly classification (PAC) to identify and track
significant global precipitation anomalies on time scales of a month and longer was
developed at the Climate Analysis Center (CAC) of National Oceanic and Atmospheric
Administration (NOAA) (Janowiak et al. 1986). The technique is a modified version of a
method originated from the Australian Bureau of Meteorology (Lee, 1980) and requires
only monthly accumulated precipitation values. The categories used in this method are
determined by comparing the precipitation at a station to the Gamma distribution of the
station’s historical record. A severe precipitation deficiency classification is given when
the rainfall for the past 3 months is among the lowest 5% of the site’s historical record for
that period. A serious deficiency exists when the rainfall for the 3 month period ranks
within the lowest 10% but above the lowest 5% of the historical observations. When
either the severe or serious categories are selected, the location is considered to be

drought affected until either of the following two conditions are satisfied: i) the



precipitation for the past month alone is sufficient to rank in the 30th percentile or greater
- of the historical record for the three month period starting with that month, or ii) the
precipitation for the past three months ranks in the 70th percentile or greater of the
historical record for the corresponding three month period. Meyer et al. (1992 a and b)
described the development of a new crop specific drought index (CSDI) which is derived
from the inputs of temperature, humidity, windspeed, solar radiation, and precipitation.
The CSDI has been developed for corn and efforts are being continued for other crops.
The CSDI values range from zero to one as the predicted production ranges from crop

failure to bumper crop.
2.3 AGRICULTURAL DROUGHT INDICES

The agricultural drought indices have been mainly based on rainfall deficiency and
occurrence of dry spells, evapotranspiration, soil moisture deficit and water balance
computations. Van Bavel (1953) and Vellidis et al. (1985) have observed that agricultural
drought should be defined on the basis of soil water status and resultant plant behavior. In
the Van Bavel’s study with tobacco crop, available water in soil was assumed to be 1.7
inch and a drought day was defined when available water reaches zero, and the incidence
of drought was indicated by the number of drought days during the growing season. Van
Bavel and Lillard (1957) defined probability of droughts in Virginia based on a method
which consisted of making a daily balance of available soil moisture and noting the number
of days (drought - days) on which supply of moisture is exhausted. The analysis was done
for the growing season (April through September ) and it was assumed that on April 1 the
amount of water in root zone was at its maximum. Daily water balance was done by
adding the rainfall and subtracting the estimated evapotranspiration data. The method
gives probability of number of drought days based on amount of available water in the
root zone in different parts of Virginia. Vellidis et al.,, (1985) updated the results of
drought analysis by Van Bavel and Lillard (1957) by analyzing data upto 1983.



Thornthwaite and Mather (1955) developed a water balance approach and identified the
extent and period of water deficit. The deficit was defined as actual evapotranspiration
(AE) minus potential evapotranspiration (PE). Rodda (1965) carried out monthly water
balance computations in Southeast England for 50 years assuming soil’s field capacity as
5.5 inch. A drought month was indicated whenever the soil moisture was below field
capacity. Federer (1980) used a daily water balance model to study agricultural drought in
New Hampshire. A drought day was defined whenever soil moisture deficit exceeded 60
mm in growing season from June 1 through August 31.

The techniques of computing PE in water balance studies have varied in the past. Jensen
et al. (1990) provide a good review of the ET methods. The approaches to compute
amount of water extracted from soils whenever precipitation is less than PE have also
varied in various studies. Thornthwaite and Mather (1955) assumed that the ratio of
actual to potential ET decreases as a linear function of the amount of available water.
Rodda (1965), however, assumed two soil layers in which soil moisture in top layer was
assumed to get extracted completely when P < PE and then moisture in lower layer is
extracted proportional to available water. Such a layering scheme is also used in Palmer
(1965). Aridity index (Ia) defined as the ratio of moisture deficit (PE-AE) and water need
(PE), has also been used to characterize agricultural drought. Palmer (1968) further
modified the PDSI to better reflect agricultural drought. He proposed a crop moisture
index (CMI) which considers agricultural drought as ET deficit. The index is developed
from moisture accounting procedures used in the PDSI and is the sum of an
evapotranspiration anomaly and a moisture excess. Both terms are a function of the
previous and current week. The evapotranspiration anomaly measures the
evapotranspiration deficit and is weighted to be comparable for location and time of year.
The moisture excess includes the runoff, soil recharge, and percent of field capacity during
a week. If potential moisture demand exceeds available moisture supplies, the CMI is
negative and if moisture exceeds demand, the index is positive. Negative values of CMI

always mean that ET has been abnormally deficient. The values of the index range from
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-4.0 to 3.0 and based on the values of CMI, various classes of agricultural drought have
been defined. Motha and Heddinghaus (1986) reported the development of a moisture
availability index (MAI) which is computed as the difference of weekly normalized
precipitation and normalized potential evapotranspiration and provides a relative measure
of moisture available for a given crop. In recent years, use of remote sensing technology
has been explored to monitor drought conditions. Based on the data of radiation
measurements, a normalized difference vegetation index (NDVI) is used to infer growth of
vegetation. The maximum NDVI for a given season can serve as an indicator of drought
severity by inferring deficiencies in the photosynthetic capacity in drought years as
contrasted with other years (Tucker and Goward, 1987). Further refinements of NDVI
have been reported to better assess impacts of weather on vegetation (Kogan, 1987 and

1990 b).
2.4 HYDROLOGICAL DROUGHT INDICES

Whipple (1966) defined a drought year as one in which the aggregate runoff is less than
the long term average runoff. Yevjevich (1967) defined the term “hydrological drought”
as deficiency in water supply or deficiency in precipitation, effective precipitation, runoff,
or accumulated water in various storage capacities. Linsley et al. (1975) defined
hydrologic drought as a period during which streamflows are inadequate to supply
established uses under a given water management system. Hydrological droughts are
related more to the manner in which precipitation shortfall affects the surface or
subsurface water supply ( i.e. streamflow, reservoir and lake levels, groundwater) than to
precipitation shortfalls itself (Dracup et al., 1980; Klemes, 1987). Beran and Rodier
(1985) discussed six types of hydrologic drought based upon variations in duration,
season of year, and severity. A short duration (3 weeks to 3 months) runoff deficit
experienced during the period of germination and plant growth could be catastrophic for

farming if the sole source of irrigation water is river runoff. The second type occurs when
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the minimum discharge is significantly lower or more prolonged than the normal minimum
but not necessarily advanced much in its position relative to the growing season and so
less harmful to the agriculture. The third category occurs when there is significant deficit
in the total amount of annual runoff which affects hydropower production and irrigation.
The fourth category is defined in terms of below normal annual high water level of the
river. This may introduce the need for pumping for irrigation. The fifth category refers to
the deficiency in river discharge over several consecutive years. The sixth type refers to
drought in which a significant natural depletion of aquifers occurs.
The variables used to characterize hydrologic drought include streamflow, reservoir levels,
groundwater levels, and soil moisture level. Beran and Rodier (1985) discussed the use of
pluviosity (ratio of actual rainfall during a year to the mean rainfall) and hydraulicity ( ratio
of actual river flow to mean river flow) to describe the drought conditions. The values of
these variables classified on the basis of probability serve as an index for drought. One
such scheme used in Europe is to divide the ranked pluviosities, and hydraulicities into the
following five classes:

very wet . exceedence frequency between 0 and 15%

wet : exceedence frequency between 15 and 35%

normal: exceedence frequency between 35 and 65%

dry : exceedence frequency between 65 and 85%

very dry: exceedence frequency between 85 and 100%
Stockton (1984), while studying the long term streamflow (1932-80) in various regions in
the U.S., considered hydrologic drought as any year among the driest 10 years in the time
series of flows. Dezman et al. (1982) reported development of a surface water supply
index (SWSI) in Colorado which integrates historical surface water supply data with
current data of reservoir storage, streamflow and precipitation at high elevation into a
single number. Cordery (1981,1983) used monthly water balance model to estimate soil

water deficit based on which hydrological drought was defined.

12



Though the PDSI has been defined as a meteorologic index, hydrological parameters like
runoff and recharge have been used in its development. Fieldhouse and Palmer (1965)
noted that the PDSI should be related to water supplies in streams, lakes and reservoirs
and hence be of interest to hydrologists. In view of the backcomputing procedure
involved in computing PDSI (see Appendix I), Karl (1986) described an adjusted PDSI
known as Palmer Hydrologic Drought Index (PHDI) which avoids the back computing
problem and can be used in operational mode. Groundwater level fluctuations from long
term levels have also been used to define drought intensity in conjunction with other
variables (State Water Control Board, 1990).

A popular definition of drought in hydrology is based on the theory of runs (Mood, 1940;
Yevjevich, 1967). Here a time series X(t) is truncated at a level Xo yielding distinct
events of wet periods (X(t) > Xp) and dry periods (X(t) < Xo). Any uninterrupted
sequence of dry period coincides with a drought of length equal to the number of dry
periods within the same event. The selection of the threshold X, is an important
determinant of run properties. Yevjevich (1967) suggested that for site specific
applications to streamflow X might be set at the average level of water use. Sen (1976)
calculated drought duration probability by assuming that the joint probability between two
successive random variables representing streamflow to be bi-variate normal. Dracup et
al. (1980) investigated trade offs between the choice of Xo as the mean or as the median
streamflow in studies of annual streamflows. Kottegoda (1980) descibed a procedure to

find expected value of deficit run length and deficit run sum.

2.5 STUDIES ON THE PDSI

2.5.1 PDSI For Drought Analysis, Forest Fires and Crop Yield

PDSI has been used by various researchers to illustrate the areal extent and severity of

drought in United States and elsewhere. Palmer (1967) studied abnormally dry weather of
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1961-1966 in the northeastern United States using the index. Dickerson and Dethier
(1970) used the PDSI for evaluating drought frequency in northeastern United States.
Felch (1978) used the index to compare droughts of 1930s, 1950s and mid 1970s.
Lawson et al. (1971) studied the spatial and temporal characteristics of droughts in
Nebraska using'the index. Klugman (1978) applied the PDSI to study droughts in 53
climatic divisions of upper midwest U.S. Skaggs (1975), Karl and Koscielny (1982) and
Diaz (1983) studied the spatial and temporal characteristics of dry and wet episodes over
the contiguous United States during 1895-1981. Puckett (1981) reconstructed a 230 year
record of the PDSI for northern Virginia using a relationship with variations in the widths
of tree ring. Haines et al. (1976 ,1978) reported the use of PDSI as a tool to monitor
environmental conditions conducive to forest fire danger. Sakamoto (1978) described use
of Palmer Z index in estimating yield of wheat crop in Australia. In applying the Palmer
index to New South Wales, Australia, McDonald (1989) observed that the empirical
constants which are developed and used in the U.S. to compute the index are also

appropriate for New South Wales.

2.5.2 Time Series Modeling of the PDSI

Time series models have been fitted to the PDSI by Havens et al. (1968), Davis and
Rappaport (1974) and Katz and Skaggs (1981). The latter examined the auto-regressive
moving average (ARMA) models of various orders for 344 climatic divisions and found
that an AR (1) was preferred for about 90% of the divisions. Rao and Padmanabhan
(1984) studied the stochastic nature of the PDSI using monthly and annual PDSI series for
TIowa (1930-1962) and Kansas (1887-1962). The authors uséd AR models of various
orders to model the PDSI series and selected AR(3) and AR(5) models for monthly PDSI
series in Kansas and Iowa, respectively. For annual PDSI series AR(5) and AR(4) models
were selected for Kansas and Iowa data, respectively. The monthly models gave smaller

mean square error to accurately forecast the drought indices one month ahead of time.
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However, the annual models were not found to have better forecasting capabilities. The
classical techniques of time series modeling are intended for making forecasts. They do
not describe duration, intensity and long term probabilities. Moreover, the distribution of
PDSI has been observed to be bi-modal ( Alley, 1984, 1985; Eder et al. 1987,
Heddinghaus and Sabol, 1991). Therefore, conventional time series mocdels, which
generally assume normality of data, are limited in their ability to capture the random

variations in the index.

2.5.3 Sensitivity Studies and Limitations

Most of the studies during the 70s and early 80s as listed above used the PDSI for
evaluating drought conditions and no efforts were directed towards evaluating the
sensitivity of the PDSI to the prescribed and derived parameters within model calibration.
Karl (1983) reported sensitivity of the spatial characteristics of drought duration indicated
by the PDSI to values of the available water capacity (AWC) and weighting factor (k) (see
Appendix I for details) as used in the computation of the index. To see the effects of
AWC, drought durations in various states were computed using spatially varying values of
the AWC as recommended by Palmer (1965). Then the AWC was kept constant (equal to
254 mm) for all states and again drought durations were computed. It was found that the
fixed AWC value did not significantly change the drought durations as compared to the
varying AWC. As per the computations of Palmer (1965), the k values change spatially
and monthly. To see the effects of k, it was set equal to 1.0 for every state for every
month. As a result it was found by Karl (1983) that the PDSI values got changed
significantly but the duration of droughts were not altered. Therefore, Karl (1983)
concluded that by altering the constants AWC and k, the drought duration was not
significantly affected across the United States. The criterion of classifying weather
conditions may affect the drought duration with varying AWC and k. Alley (1984) gave a

detailed account of limitations and assumptions of the PDSI alongwith its computational
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procedure. Heddinghaus and Sabol (1991) discussed the PDSI in terms of the problems
and solutions in its use in an operational mode and described results of a survey of PDSI
users for its usefulness, accuracy and critical parameter involved and future changes
desired. The authors cite the back tracking problem for PDSI’s use in the operational
mode and reported a modification to overcome this problem. Since June 1989, the sum
of the wet and dry terms after they have been weighed by their probabilities is used as the
operational PDSI. The survey results indicated that a majority of users used the index as

an aid in observing the hydrologic conditions.

2.5.4 PDSI and Surface and Groundwater Resources

Alley (1985) reported a comparison of the PDSI with streamflow and groundwater indices
for evaluating the hydrologic drought in New Jersey. The author reported the streamflow
index to fluctuate in and out of subnormal conditions even during major dry episodes. The
PDSI values showed more persistence of subnormal conditions than the streamflow and
the groundwater. The groundwater indicated the occurrence of dry periods later than
either the PDSI or the streamflow index. Bowles et al. (1980) applied the PDSI to
evaluate the drought indices they developed for three municipal and three irrigation
systems in Utah. Johnson and Kohne (1993) used the modified PDSI for operational
mode called the Palmer Hydrologic Drought Index (PHDI) for evaluating the
susceptibility of 516 reservoirs to droughts in the U.S. The authors used the PHDI values
< -3.0 to categorize severe and extreme drought for evaluating impacts on reservoirs.
The study identified climatic divisions in the country with severe and extreme drought
durations ranging from 12-48 months and it was observed that the interior portions of the
country predominantly the Great Plains, are more susceptible to prolonged drought than
the coastal areas. It was also reported that of 385 multiple purpose reservoirs, 52 were
susceptible to severe or extreme drought longer than 36 consecutive months. Further,

80% of the reservoirs and 90% of the multiple purpose capacity are located in climate
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divisions with drought durations greater than 12 consecutive months and less than 36
months. In terms of the regional assessment, maximum number of multi-purpose
reservoirs in the Missouri river and southwestern regions were affected by long duration
(up to 48 months) droughts. The authors compared the index with the corresponding
precipitation and annual runoff and observed that the index reflects a corresponding water
deficiency, making it appropriate for measuring hydrologic drought. The study indicated
that the midcontinent has the greatest potential for drought of long duration and noted
that in the same region greatest reservoir storage capacities lie (Johnson and Kohne,

1993).

2.5.5 PDSI and State / Federal Drought Plans

The PDSI / PHDI is used in various forms in drought contingency plans (DCPs)
developed by various states in recent years. Wilhite and Rhodes (1993) have discussed
the progress made by the State governments in developing drought mitigation strategies.
According to the authors during the widespread and severe drought of 1977-78, no state
had prepared a formal strategy to handle the drought situation. In 1982 only three states
had developed plans : South Dacota (1981), Colorado(1981), and New York (1982).
During the past decade, an additional twenty-four states have developed and implemented
formal DCPs. Therefore, now twenty seven states have DCPs including Arizona,
California and Virginia, the states for which analyses have been carried out in the present
study. The state DCPs have considerable diversity. Some are highly focused on municipal
water use or conservation ( such as New York ) , agriculture ( Nebraska ), or
multidimensional ( Colorado )( Personal Communication, 1995a). Typically, in DCPs it is
the responsibility of a Water Availability Task Force ( WATF ) to evaluate the status of
water availability in the drought affected regions. For example, as per the Colorado
Drought Response Plan (1981) one of the purposes of the WATF is to collect water

availability data and evaluate them to assess the changes in water availability conditions
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and make long term projections. The Task Force collects various information including
the Palmer index data for making such assessments.

Some DCPs have well defined criteria to activate the WATF. For example, in the
Colorado Plan the WATF gets activated once the Palmer index or a state’s Water
Auvailability index assumes value between -1 and -2. In Virginia, the triggering factor for
convening the Task force is a combination of the Palmer index, moisture deficits, surface
and ground water levels, and other indices. No specific targets have been established for
each triggering parameters but in the past the Task Force has convened when the Palmer
index has fallen below -3.00 at the start of the summer ; when precipitation remains
considerably below normal for several weeks ; or when there are widespread reports of
water shortage caused by wells or streams drying up ( Personal Communication, 1995 b).
Many states rely on the PDSI as a measure of drought severity and some supplement it
with other indices. For example, Colorado, Oregon, and Montana use the Surface Water
Supply Index (SWSI) for assessing water availability conditions in high altitudes along
with the Palmer index. In New York, for determining drought status the state is divided
into six regions in which four hydrologic indicators are monitored. Each indicator -
precipitation, reservoir-lake storage, streamflow, and groundwater levels - is assigned a
percent weight that reflects its importance as the source for priority water uses in each
region. These weightings of the hydrologic indicators determine a region’s drought stage
when correlated with the point system of the state’s drought index, which sets the criteria
for normal conditions and the four drought stages of an alert, a warning, an energency,
and a disaster. The Palmer index is considered along with the state index (Hrezo et al,,
1986). In Virginia, a Drought Monitoring Task Force monitors the drought related
conditions by compiling drought related data including the Palmer index. In Pennsylvania,
the Department of Environmental Resources (PA DER) monitors five indicators of
droughts which are : annual precipitation deficit, groundwater levels, streamflow levels,
reservoir storage levels, and the PHDI. Kibler et al. (1987) reported refinement of critical

threshold levels of the drought indicators used for drought triggering by PA DER. The
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study involved carrying out frequency analysis of 25 years of data of these indicators to
establish monthly exceedence levels. The 25th, 10th and 5th quantiles of PHDI were
suggested for drought watch, warning, and emergency, respectively. It was also
suggested to include seasonal fluctuations of PHDI in triggering criterion and
recommended an adjusted triggering criterion for droughts. Similar analysis was reported
for other indicators. The State Water control Board (SWCB,1990) in Virginia carried out
a study to analyze the droughts in the state during 1957-1987 using data of precipitation,
streamflow, groundwater level and the PDSI. From PDSI view point, drought conditions
were assumed if the index was below -2.00 for at least three consecutive months. The
number of drought years ranged between 5-10 in various six climatic regions during the
period of analysis. In addition, PDSI has been used by the Federal Government as one of
the principal criteria for disaster designation ( i.e. eligibility to receive federal drought
relief ; Wilhite et al., 1986).

The studies reviewed above indicate the widespread use of the PDSI for a variety of
purposes. There have been some attempts to forecast PDSI as a drought predictor. The
studies in this direction have been mainly confined to applying time-series models.
Tchaou et al. (1992) have demonstrated the use of a discrete Markov chain to analyse the
stochastic bahavior of the index and reported good agreement between the observed
values and the predicted values for 3-4 months lead time. However, the authors did not
focus attention on the residence time, mean recurrence time, and the steady state

probabilities for various drought classes which provide a comprehensive characterization

of drought.

2.6 SUMMARY

The traditional methods of analyzing droughts are deficient in providing a characterization
of droughts in terms of parameters necessary for drought planning as well as for drought

warning in an operational setting. The Palmer index has been the most widely used
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drought index since its inception. Its determination from the water balance computations
has the necessary physical support. A significant advantage of this index is its indication
of the onset, the progression, and the amelioration of droughts. Of course, the index also
points out the wet spell. Most of the literature fall under two broad areas namely the time
series analysis and the theory of runs with the focus on predicting future index values and
drought severity and duration, respectively. However, these methods suffer because of
their use of the PDSI directly in the case of time series analysis and the estimation of the
probabilities based on a threshold value and the assumption of independence in the case of
run analysis.

The time series models in the present study employ both the normally transformed PDSI
and the Z index. Moreover, both fixed parameter and time varying parameter models are
suggested. The Markov chain analysis overcomes the difficulty of choosing a single cutoff
value and the assumption of independence by employing a conditional transition
probability structure. With the aid of the total probability theorem the necessary marginal
and joint probabilities can be computed. This aspect provides for additional details such as
the first passage times which are not possible with the run analysis. There is also a
complete lack of methods for incorporating global forcing functions. In the present
research, the dynamical systems approach is recommended which not only accommodates
an external random forcing component but also provides for an analytical determination of
the required probability density function of the drought process. An aspect of this
literature survey is intended to take stock of current procedures on the issuance of drought
warnings. It is found that almost all the schemes adopt a wait and see procedure (Wilhite
,1993). The proposed decision tree approach examines all possible occurrences to reach a

decision. It is hoped that the methodologies proposed in this research would help to

alleviate the situation.
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Chapter III

TIME SERIES ANALYSIS

3.1 INTRODUCTION

In this chapter time series models are fitted to the PDSI data to forecast PDSI values.
However, because of its bi-modal conditional distribution (Alley, 1984, 1985; Eder et
al., 1987; Heddinghaus and Sabol, 1991) time series techniques have not been successful
in modeling the PDSI. Havens et al. (1968), Davis and Rappoport (1974), Katz and
Skaggs (1981) and Rao and Padmanabhnan (1984) applied time series analysis ragardless
of the bi-modality of the index. Alley (1985) in his discussion pointed out while PDSI
followed a bi-modal distribution, the Z index had a unimodal distribution. He suggested
that the time series models could be fitted to the Z index ( see Appendix I for details )
which could then be used to develop forecasts for the PDSI. The goal of this chapter is
to explore the potential of the time series techniques as a forecast tool in predicting the
PDSI and Z index. The analysis is carried out with the monthly PDSI series (1895-
1990) for the Tidewater region of Virginia. Two families of time series models with i)
fixed parameters and ii) time varying parameters are developed. The fixed parameter
models use the same parameters regardless of the month and the time varying models

have month dependent parameters.
3.2 TIME SERIES MODELING USING TRANFORMED PDSI DATA
Because the Normal distribution provides good support for statistical inference and its

advantages with the linear models, the time series variates are generally assumed to be

normally distributed.
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3.2.1 Fixed Parameter Model

The Box-Cox transformation for normality is applied to the monthly PDSI data as below
(Box and Cox, 1964):

PDSI;=[ (PDSI+6)°-1]/LS ifLS#0
=1In [ PDSI ] ifLS=0 ¢))
where: PDSIy = transformed PDSI

LS = a parameter (lambda) which yields zero skew coefficient
For example, the LS paraineter for the Tidewater PDSI data is 1.115. The statistics of
the original PDSI data and Box-Cox transformed data are given in Table 3.1. The Box
and Jenkins (1976) approach is adopted to select the appropriate time series model.
Table 3.2 gives forms of the various models fitted to the data. Based on the minimum
standard error of forecast and Akaike Information Criterion (AIC) (Akaike, 1974) an
AR(1) model of the following type is selected :

PDSI, = ¢ PDSI, +a )
where: a; = Gaussian white noise i.e. E [a] = 0.0; Cov [a,, a+1] =0.0. and ¢ =
.87
The Palmer equation (Palmer, 1965; Appendix I) has a coefficient of 0.897 for PDSI,,
which agrees quite well with the fitted model (Eq. 2). The model can now be used to

develop the forecast function. We can write

PDSIi = .87 PDSI 14 + & 3)
Taking conditional expectation, we get

PDSI(]) = .87 [ PDSI.141 ] + [a(] %)
where: PDSI (1) =1 steps ahead forecast standing at origin t, and square brackets

indicate observed or expected value.
Therefore, the n steps ahead forecast is given by
PDSIy(n) = .87" PDS], (5)

22



Eq. 5 is used to forecast the PDSI three months ahead of time for years 1931 and 1990.
The results are presented in Table 3.6 along with the observed classes and Markov chain
results stated as method # 1. The fixed parameter time series results are given under
method # 2 in Table 3.6. It is seen from Eq. 5 that the use of conditional expectation as

the forecast function for large n is unsuitable.

3.2.2 Time Varying Parameter Model

As the physical processes which affect the PDSI, i.e., precipitation and temperature,
vary on a monthly basis, it is hypothesized that the parameter ¢ should also vary with
months. Therefore, a time varying parameter model is fitted to the PDSI data after
transforming the data on a monthly basis using the Box Cox transformation. The values
of the LS parameter for each month which yield near normality of the transformed data
are given in Table 3.3. The transformed monthly data series has zero mean after
subtracting the monthly mean values. The variances and co-variances of the monthly

data are given in Table 3.4. The general form of the time varying parameter model is

PDSI( = ¢t PDSI{.] + a, (6)
by multiplying both the sides by PDSI,.; and taking the expectation we obtain:
¢g = { Cov [ PDSI[ PDSIt.l ] }/ { Var [PDSI;.] ] } (7)

Also, taking the variance of both sides in Eq. 6 we get:
Var [a] = Var [PDSI] + ¢ Var [ PDSI,.;] - 2 ¢, Cov [ PDSI; PDSI]
®
Eqgs. 7 and 8 are used to compute the parameters ¢, and Var(a,) , respectively for each
month The results are given in Table 3.3. It is observed from Table 3.3 that the values
of the parameters ¢, and Var[a,] indeed vary significantly from month to month. The
forecast function using Eq. 6 is now developed as

PDSILyi = ¢ust PDSIivp + aw ©
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Taking the conditional expectation, we get

PDSIL(I) = deit [PDSLir ] + [an1] (10)
forI=1; PDSI(1) = ¢v.; PDSI,
forl=2; PDSIy(2) = ¢u+2 . ¢er1 PDSI;
for =3 ; PDSI(3) = §us3 . 12 . rs1 PDSL, (11)

Equation 11 is used to forecast the weather classes three months ahead of time during
1931 and 1990 and the results are given in Table 3.6 as method #3. Following Alley’s
(1985) comments the Z index data are utilized to fit the time series models. In the

following section the Z index based models are presented.
3.3 TIME SERIES MODELING of the Z INDEX

3.3.1 Fixed Parameter Model

Palmer (1965) defined the Z index as
Z=d k (12)
where : d = difference between the observed precipitation P and the climatically
appropriate precipitation P’
k = weighting factor
or; d=P-P 13)
where : P = Actual precipitation
P’ = Climatically appropriate precipitation
A zero value of d (and hence of Z index) indicates climatically appropriate supply of
moisture to meet the various demands which as per Palmer (1965) include
evapotranspiration, recharge, runoff, and losses from the soil. The P"is computed using:
P'=ET"+R +RO’-L’ @14)
The climatically appropriate values of evapotranspiration ET", recharge R’, runoff RO" |

and loss L are obtained by multiplying the potential values by the respective coefficients,
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which are obtained as the ratio of the average values to their potential values. These
values are established through a hydrologic accounting procedure in the soil root zone.
As a part of the index computation a particular calibration period is used. Karl (1986)
observed that the Palmer Z index is much less sensitive to changes in the calibration
periods and is also more responsive to short term moisture anomalies. Sakamoto (1978)
illustrated the use of the Z index as a variable for estimating the yield of wheat crop in
Australia.
In this study, two types of autoregressive models, namely, AR(1) and AR(2) are selected
to represent the Z index series for the Tidewater region, Virginia. As shown in Table
3.2, the AI.C. and the standard error of one step ahead forecast are minimal for the
AR(2) model and is chosen to represent the Z-index as follows

Zi=¢1 Ziy 2 Zia + (15)
where : estimates of ¢; and ¢, are found to be .153 and .082, respectively.
Now we can take the conditional expectation in Eq. 15 to forecast the values of the Z
index.

For this purpose we write

Zt+1 =153 Zt+|-l + .082 Zt+|-2 + aw (16)
Taking the conditional expectation, we get
Z(1) = .153 [Zis11 ]+ .082[ Zysi2 ]+ [ain] a7n

Using Eq. 17, three step ahead forecasts of Z index are made from which the PDSI
values are retrieved using the Palmer equation

PDSI, = .897 PDSI., + Z; /3 (17a)
The results obtained for years 1931 and 1990 are presented in Table 3.6 as method # 4.
Method # 6 represents the PDSI values obtained from the Z index using the Markov

chain approach.

25



3.3.2 Time Varying Parameter Model

As in the case of the PDSI data series, a time varying parameter model is fitted to the Z
index. The estimation procedure for these parameters is as follows. A general form of

the AR(2) model with time varying parameters can be written as

Zi=bu Zyy +én Zy +a; (18)
multiplying both the sides by Z., and Z,.,, respectively ; we get

Z Zoi=bu Zii® + b2 Z1 Zip +Ziga (19)
and ; Zy Zu= duZiaZy +bn L' +Zioay (20)
Taking the expectations of both sides in Eq. 19, we get

E[Z Zet] = b1 [ Zei® 1+ b2 [ Zir Zia ] +E[Zi1] E[ad] 1)
Weknow,  Cov[Z. Z]1=E[Z..Z] -E[Z1 ]E[Z] (22)
combining Eqs. 21 and 22, we get

Cov[Ziu1 Z:]1= ¢ Var[Zi1] + ¢x Cov [Zyg Z:5] (23)
Similarly from Eq. 20 we get

Cov[Zi2 Z: 1= ¢uCoV [Zi1 Zia] + ¢ Var [Z,.] (24)

Solving Eqs. 23 and 24 for ¢y, and ¢ we get
b1 = { Cov [Z1 Z,]/ Var [Zu1]} - { Cov [Zv1, Ze2] / Var [Zn4]}.

{(Cov (Z1,Z)CoV(Ze1, Zi2)-CoV(Zia Z)Var[Zi] Y ((Cov(Zi1,Ze2)” - Var[Z:2]
Var[Zu]) } 25)
and; dn = {(Cov (Zu1,Z)CoV(Zur, Zuz)-Cov(Ziz ZYVar[Zoi] )/

(COV(ZurZuo)? - Var[Zus]Var(Zai]) } (26)

From Eq. 18, Var(a,) is computed as
Var(a) = Var(Z) + &1 Var (Zu1) + 2 Var(Zi) - 2 o1 Cov (Zy Zs.1)
-2 b dn Cov (Ziz Zsy) - 2 ¢ Cov (Z4 Z12 ) (27)
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Egs. 25, 26 ,and 27 are used to estimate the parameters ¢y; , ¢ and Var(a,) for each
month, respectively which are given in Table 3.5. Using the values of ¢; and ¢ for
different months, the one, two and three steps ahead forecasts are generated for the Z
index which are then in turn converted into the PDSI values. The results are given in
Table 3.6 as method # 5.

Towards the completion of the analysis, the non-homogeneous Markov chain approach
as described in Chapter IV for the PDSI data is also used for modeling the Z index
series. Karl (1986) gives the classification of weather into 7 classes based on the values
of the Z index. Using this classification 22 classes are formed for the 12 monthly
transition matrices. Using the prediction technique described in Chapter IV, one, two
and three steps ahead forecasts of Z index are computed using the (22x22) transition
matrices. These forecasts are used in turn to compute the PDSI values. The results are
given in Table 3.6 as method # 6. In the following section, the use of the models is

demonstrated with a numerical example.
3.4 NUMERICAL EXAMPLE

EXAMPLE : Monthly PDSI and Z index data (1895-1990) for Tidewater region in
Virginia are given in Appendix III. Use the Box and Jenkins (1976) technique to fit the
time series models to the PDSI and the Z index data. Use the fitted models to forecast
the PDSI for August, September, and October, 1980 given that PDSI value for July
1980 is -2.02 and the Z index values for June and July 1980 are -3.52 and -2.73,

respectively. Compare the results with the empirical data.

Solution : Fixed Parameter Model- PDSI

The following model as described in Eq. 3 is fitted to fransformed PDSI data
PDSI; = .87 PDSIL,.; + a (20)
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The ‘n’ steps ahead forecast using the model is given by Eq. 5 which is
PDSIy(n) = .87" PDSI, (21)
A stepwise procedure to forecast PDSI values using the above equations for August,
September, and October, 1980 with the known value of PDSI for July, 1980 is given
below
Step 1: Transform the PDSI data using the Box Cox transformation ( Eq. 1).
An LS value of 1.115 transforms the PDSI data close to normality. Therefore, the
transformed value of PDSI for July, 1980 will be
PDSIL = ((-2.02+6)"'¥-1)/1.115 =3.29
Step 2 : Subtracting the mean of the series ( Table 3.1 , mean =5.76 ), we get

-2.47.
Step 3 : Compute one step ahead forecast by putting n=1 in Eq. 21.
PDSI}uy 30 (1) = PDSIayg 30 = .87 (-2.47) =-2.15
Step 4: Add the mean to get : -2.15 + 5.76 =3.61
Step 5 : Inverse-transform : PDSIx,, 80 = ((3.61 x 1.115 ) + 1 )""'¥ .6 = -1.75
or class 3
Step 6 : For two steps ahead forecast, we put n=2 in Eq. 21.
PDSIyy 50(2) = PDSIsepe, 30 = .87% (-2.47) = -1.87
Step 7 : Add the mean value to get : -1.87 + 5.76 = 3.89
Step 8 : Inverse-transform : PDSIse, g0 = ( (3.89 x 1.115 ) + 1 )" . 6 = -1.51
or class 3
Step 9 : For three steps ahead forecast, we put n=3 in Eq. 21.
PDSI,u1,80(3) = PDSIoct g0 = .87 (-2.47) = -1.63
Step 10: Add the mean value : -1.63 +5.76 =4.13
Step 11: Inverse-transform : PDSIoe g0 = ((4.13 x 1.115) + 1) .6 = -1.31 or
class 2
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Time Varying Parameter Model- PDSI

A general form of the time varying parameter model is given below
PDSI = ¢, PDSL.; +a, (22)
The value of ¢, for each month is given in Table 3.3 .Equation 11 yields the forecasts
upto three steps ahead. A stepwise procedure using the time varying parameter model is
as given below
Step 1 : Transform the PDSI data for each month using Box Cox transformation
(Use Eq. 1 with LS=1.01). Therefore, the transformed value is
PDSI, =((-2.02+6) " -1)/1.01=3.01
Step 2 : Compute the mean of monthly transformed data and subtract the mean
to get zero mean series. The mean for July month is computed as 4.93. Therefore, the
mean subtracted value of the transformed PDSI for July 1980is 3.01 -4.93 =-1.92
Step 3 : Use Eq. 11 to compute one, two, and three steps ahead forecasts as
PDSThuy 80 (1) = paug. PDSI juiy g0 = .585 x (-1.92) =-1.12
Step 4 : Inverse-transform ((-1.12+4.09) .83 +1)"* - 6=-1.50 or class 3
Step S : Two steps ahead forecast
PDSDuiys0 (2 ) = ®avg Psep. PDSDiuiys0 = .585 x .848 x (-1.92) = -.952
Step 6 : Inverse-transform ( (-.952+3.75).77+1)"" -6=-1.54 or class 3
Step 7 : Three steps ahead forecast
PDSI1uy50(3) = $avg. Osep. Goct. PDSTiurys0=.585 x .848 x 1.375 (-1.92)
=-1.31
Step 8 : Inverse-transform : ((-1.31 +5.08 ) 1.01 + 1)"*! -6 =-1.27 or class 2

Fixed Parameter Model- Z Index

The following time series model is fitted to the Z index.

Zo= 153 Zyy + 082 Zy + 3 (23)
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Given that the Z index values for June and July are -3.52 and -2.73 and the PDSI for July

is -2.02, a stepwise procedure to predict PDSI for August, September and October

months is given below

values.

or;

or;

Step 1 : Z series has a mean of .0105 and subtract this mean from the given Z
Hence, Zjue=-3.52 - .0105 =-3.5305 and Zuy =-2.73 - .0105 =-2.741
Step 2 : One step ahead forecast using Eq. 23 is
Zuyso(1) = 153 Zyypg0 +.082 Zjynerso = .153 (-2.741) + .082 (-3.5305)
=-.7089
Step 3 : Add the mean to get : -.7089 + .0105 = -.6984
Step 4 : Compute PDSI for August, 80 using
PDSIaug g0 = .897 ( PDSIyuy 30) + Zaug s/ 3.0 = .897 (-2.02) + -.6984/3
=-2.053 orclass 3
Step 5 : Two steps ahead forecast is given as
Zyiyso(2) = 153 Zjuyso(1) +.082 Zjuyso
Zyayso(2) = .153 (-.7089 ) + .082 ( -2.741) = -3333
Step 6: Add the mean to get -.3333 +.0105 =-.3228
Step 7 : Compute the PDSI value for September, 80 as
PDSIscp 80 = .897 ( PDSIaug. «80) + Zseprso/ 3.0 = .897 (-2.053) + -.3228/3

=-1.950 or class 3

Step 8 : Three steps ahead forecast is given as

Zsuys0(3) = .153 Zjuyso(2) +.082 Zjyuyso(1)

Zsays0(2) = .153 (-.3333) +.082(-.7089)

=-1098

Step 9 : Add the mean to get -.1098 + .0105 =-.0993
Step 10 : Compute the PDSI value for October, 80 as

PDSIot 30 = .897 ( PDSlsep. :80) + Zoxr's0/ 3.0 = .897 (-1.95) +(~.0993)/3

=-1.78 or class 3
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Time Varying Parameter Model- Z Index

The data are transformed using the Box Cox transformation on monthly basis. The
general form of the model is
Zi=buZyy +onZiata (24)
The stepwise procedure to predict the PDSI for August, September ,and October 1980
using the time varying Z index model is as follows
Step 1: For June and July 1980, the transformed values of the Z index are
obtained as -3.52 and -2.73. From Eq. 24 we write
Zyiyso(1) = Graug. Ziuy'so + d2aug Ziuneso
=.243 (.86 ) +.025 (-2.02) =-.2595
Step 2 : Inverse-transform to get
Zyyso(1) = ((-.2595 +2.51) 385 + 1)¥3% .6 =-.909
Step 3 : Therefore, for one step ahead forecast we write
PDSIaug 80 = .897 ( PDSIuy 80) + Zaug s/ 3.0
PDSIpug 50 = .897 (-2.02) + (-.909)/ 3.0 = -2.12 or class 3
Step 4 : For two steps ahead forecasts, we write
Zsuiy30(2) = G1sep. Zyyso(1) + Pasep. Ziuiyso
Ziuyso(2) = 0806 ( -.2595 ) + .1274 ( -.86) =-.1305
Step 5 : Inverse-transform to get
Ziuyso(2) = ((-.1305+1.75) 015+ )" .6 =-1.14
Step 6 : Therefore, for 2 steps ahead forecast we write
PDSIsep.s0 = .897 ( PDSIaug, 80) + Zsep. 0/ 3.0
PDSIsep. 30 = .897 (-2.12) +(-1.14)/ 3.0 =-2.28 = class 3
Step 7 : For three steps ahead forecast, we write
Zyiys0(3) = d10et Zyaiyso(2) + G20c Zjuy'so(1)
Zyuys0(2) = 256 (-.1305 ) +.0589 (-.2595 ) = -.0487
Step 8 : Inverse-transform to get
Zayso(3) = ((-.0487 +2.10) .195 + 1)1 .6 = - 38
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Step 9 : Therefore, for 3 steps ahead forecast we write
PDSIoa.'so = 897 (PDSI Scp.‘80) + ZOcL’BO/ 3.0
PDSIsepr30 = .897 (-2.28) + (-.38)/3.0 =-2.18 = class 3

3.5 SUMMARY

The results given in Table 3.6 are the forecasted weather classes based on the PDSI
values predicted 3 months ahead of time. For example, the January 1931 weather class
is predicted by the various methods using the October 1930 observed weather class. The
results are given for the years 1931 and 1990 as these represent relatively dry and wet
years in the data record for the selected region. An examination of results obtained using
the various methods reveals that the Markov chain model of PDSI gives the best results
among all the methods. The time varying parameter models for both the PDSI and the Z
index improve the results only marginally. The Z index models give relatively better
results as compared with the PDSI time series models. From the present analysis it is
seen that the time series models have only a limited potential to predict drought severity.
The time series models use the information contained in the data only in the form of its
covariances and the mean in contradistinction to the Markov chain analysis in which the
data is grouped into classes dependent on the severity to compute the class to class
transition probabilities. The latter analysis probes the data better and, with the aid of the
transition matrix, a complete description of the drought characteristics is possible. The

Markov chain analysis is given in the next chapter.
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Table 3.1. Statistics of PDSI Data

Transformed data

Type Mean Median | Standard | Skew Kurtosis
Deviation | coeff.

PDSI data -0.0064 | -0.0300 | 2.0549 -0.1093 2.575

Box-Cox 5.7600 5.6800 2.5040 -0.0007 2.489
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Table 3.2. Time Series Model Forms Fitted to PDSI and Z Index Data

Item Model Model form AIC SEE. of
one step
ahead
Forecast

AR(1) PDSI; = .87 PDSI,.+ a, 3764.1 1.23

PDSI Box Cox

Transformed

Data

Seasonal (1-B)(1-B'%) PDSI,
=(1-.9297 B?) a, 3900.6 | 1.33
Z index AR(2) Z,=.153 Zy+ 082 Zy+ a, | 4677.0 | 1.84
Data AR(1) Zy= 167 Z,+ & 4682.0 | 1.85

B = Backshift operator ; (1-B)PDSI, = PDSI, -PDSI,,, ; S.E.=Standard Error

AIC = Akaike Information Criterion; a, = random term
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Table 3.3. Values of Parameters LS, ¢x and Var [a,] - Time Varying Parameter

AR(1) model
Month Lambda (LS) O Var[a]
Jan. 1.405 0.922 3.956
Feb. 1.410 0.795 4416
March 1.265 0.700 1.941
April 1.245 0.869 2.039
May 1.010 0.559 1.078
June 0.930 0.757 0.756
July 1.010 1.045 1.043
Aug. 0.830 0.585 0.753
Sept. 0.765 0.848 0.468
Oct. 1.005 1.375 0.938
Nov. 1.075 1.068 1.038
Dec. 1.355 1.257 5.167
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Table 3.4. Variance and Covariances of Monthly PDSI Data

Month Variance Pair of Months Co-variance
Jan. 17.2 Jan.-Feb. 13.7
Feb. 153 Feb.-Mar. 10.7
Mar. 94 Mar.-Apr. 8.2
Apr. 9.2 Apr.-May 5.1
May 3.9 May-Jun. 3.0
Jun. 3.0 Jun.-Jul. 3.1
Jul. 43 Jul.-Aug. 2.5
Aug. 22 Aug.-Sep. 1.9
Sep. 2.1 Sep.-Oct. 29
Oct. 49 Oct.-Nov. 52
Nov. 6.6 Nov.-Dec. 83
Dec. 15.6 Dec.-Jan. 14.4
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Table 3.5. Values of Parameters Used in Time Varying AR(2) Model - Z index

Month d1e o Var[a]
January .039 .017 .057
February .075 157 1.57
March .088 .388 465
April 301 -.025 1.11
May 121 -.093 1.49
June .098 .053 .847
July 114 .053 338
August 243 .025 .502
September .081 127 121
October 256 .059 176
November .606 515 .593
December 327 .602 1.32
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Table 3.6 Observed and Three Months Ahead Predicted Weather Classes,

Tidewater Region, VA

Year Observed | #1 #2 #3 #4 #5 #6
1931

Jan. 7 7 6 6 6 7 6
Feb. 7 7 6 5 6 7 6
Mar. 7 7 6 5 6 7 6
Apr. 7 7 6 5 7 7 7
May 6 6 6 6 7 7 7
Jun. 5 6 6 5 6 7 7
Jul. S 6 5 5 6 7 6
Aug. 5 6 5 5 5 5 5
Sep. 5 5 5 5 5 5 4
Oct. 5 5 5 5 5 5 4
Nowv. 5 5 4 4 4 4 4
Dec. 6 5 4 4 4 5 4
1990

Jan. 2 2 3 3 2 3 3
Feb. 3 3 3 3 2 1 2
Mar. 3 3 3 3 3 2 1
Apr. 3 3 3 3 3 2 1
May 2 3 3 3 3 3 3
Jun. 4 3 3 4 3 3 3
Jul. 4 3 4 4 4 3 2
Aug. 4 4 3 3 3 3 3
Sep. 4 4 4 4 4 4 4
Oct. 4 4 4 4 4 4 4
Nov. 4 4 4 4 4 4 4
Dec. 4 4 4 4 4 4 4

Note: Method #1: PDSI Markov chain; #2: AR(1) PDSI model with fixed parameter,
#3: AR(1) PDSI time varying; #4: AR(2) Z index model with fixed parameters
#5: AR(2) Z index model with time varying parameters ;; #6: Z index Markov chain.



CHAPTER IV

MONTHLY NON-HOMOGENEOUS MARKOV CHAIN ANALYSIS

4.1 INTRODUCTION

In chapter III time series forecast models have been developed for the PDSI and the Z
indices. The time series models, however, do not provide information on drought
duration, probabilities of transition between drought severity classes, steady state
probabilities, and times of return to the various classes. In this chapter a Markov chain
formulation capable of achieving these results is presented. Both Palmer (1965) and Karl
(1986) present PDSI values into different classes ideally suited to a Markov chain
formulation. Karl (1986) suggested another version called the Palmer Hydrologic
Drought Index (PHDI) which avoids the backtracking to assign the correct state of
drought dependent on wet or dry spell as done in the PDSI. In this chapter the various
drought characteristics in terms of the probability of occurrence, the time of residence
(duration), and the time of recurrence of various drought classes are presented. Also,

formulations to predict the various drought classes are given.
4.2 MARKOYV CHAIN MODEL

Consider Karl's (1986) seven class delineation of PDSI / PHDI (Table 4.1). Let the
random variable X, represent the drought (wet) class for month n. For example, X; =
X1 = 5 represents the occurrence of class S in January. The underlying stochastic process
is completely described by a Markov Chain if the transition probabilities denoted by
pi;"! for moving from class i in month n to class j in month n+1 and the initial class

vector, f*, describing the probabilities of the seven classes for the beginning month, are

prescribed. A brief note on stochastic processes is given in Appendix II. Based on
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monthly Palmer index data for about 98 years, twelve monthly (non-homogeneous)
transition probability matrices describing the class transfers from months January to
February; February to March; ..., and December to January are formulated for the selected
climatic divisions in Arizona, California, and Virginia. These matrices are assumed to be
cyclic in the sense that there is no yearly variation; the transition probabilities depend only
on the month and not on the year. The transition probability

P ™ =P [Xonn=j| Xa=i], fori,j=1,2,..,7and n=1,2,..., 12 ¢))
is computed as :

pi D = N & / N® @)
in which: N;;™"" = number of transitions from class i in month n to class j in month n+1;
N;® = number of occurrences of class i in month n. IfN;™ is zero for some, i, we define
pi; ™™ =1/7 for all j = 1,2,...,7. Appendices III and IV give the Palmer index data and

the transition probability matrices for Arizona, California and Virginia, respectively.
4.3 MONTHLY STEADY STATE PROBABILITIES

The probability of occurrence of a particular drought (wet) class will indicate proneness to
drought/wet conditions. Let f** be the class probability row vector which lists P[X} =1i]
fori=1, 2, ..., 7 for the seven classes after k transitions given by

9 = [ {9 [P1] [P2] ... [Pi] 3)
in which: f© is initial state probability row vector and P; = (7 x 7) monthly transition
matrix associated with the starting month, say January to February, i.e., P, =P"? =
pU=F) - Of course, the starting month can be any one of the 12 months. Also, due to the
cyclic nature of these matrices, the transition matrix for months 14 to 15 denoted by P"*
19 is the same as P%? = pF*-Mi) the February-March transition matrix.
For the long term, that is as k —oc we would like to know whether £ has steady class

probabilities independent of £”. This will be true if the product of the transition matrices

[P..] through [Py] denoted by ™ called the composite matrix
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¢ = [Pa] [Pan] ... [Pi] @
is a constant stochastic matrix with identical rows (Isaacson and Madsen, 1976) for large
k. For such a constant stochastic matrix it follows from Eq. (3) that f,® will be
independent of f*; furthermore, each class has a steady state probability value
corresponding to that class' (column) constant probability of ¢™. However, because the
beginning month, m, influences the value of $™* the steady class probabilities of £,® will
depend on m. To interpret £,* as k —oc, consider Eq. (4) as follows. The constant
(identical rows) stochastic matrix for January is defined as the product of the sets of the
consecutive 12 monthly matrices with the beginning matrix being that of January which is

¢ =[Jan 1= {[P,] [P,] ... [Py] [Pr2]}

{[P:] [P2] ... [Pu] [Pr2]} ... %)

Because [Jan] is a constant stochastic matrix it follows
row [Jan] = £;© (6)
Now consider

¢™=[Feb 1= {[P2] [Ps] ... [Pu] [Pr] [P:]}

{[P2] [P5] ... [Pu1] [P12] [P1]} ... @)
and we obtain
[Feb] = [P>] [Ps] ... [Pu] [Py2] [Jan] [Py] ®
from which upon manipulation it follows
[Feb] = [Jan] [P,] ®

and therefore
row [Feb] = £ = row [Jan] [P,]
similarly we can show
row [Mar] = £ = row [Feb] [P;]
row [Apr] = £ = row [Mar] [Ps]

row [Dec] = 1, = row [Nov] [P11]
row [Jan] = £ = row [Dec] [P12] (10)
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In general we obtain, row [Month n+1] = row [Month n] [P,]. Eq. (10) provides a means
to evaluate the monthly drought/wet steady class probabilities. It is a system of linear
equations in terms of the monthly steady class probabilities.

Both the PDSI and PHDI data have been used to compute long term probabilities. The
steady class probabilities for various weather classes for one climatic division each in
Arizona, California and Virginia are given in Tables 4.2(a and b), 4.3(a and b) , and

4.4(a and b), respectively. In these tables , two values are reported for each month
corresponding to each class. The top value represents the Markov analysis result and the
bottom one is the result of empirically observed data. For instance, in Arizona the steady
state probability of class 1 in January month obtained using Markov analysis of PDSI data
is .0802 as against an empirical value of .0816. The results show that Markov analysis
yields results which are in close agreement with the empirical observations. In the case of
the PDSI data the sum of 12 months’ average probabilities of drought classes (i.e. classes
5,6 and 7) is highest (37.5%) in Arizona followed by California (28.7%) and Virginia
(24.6%).

Further, the 12 months' average probability using PDSI data for normal weather class
(class 4) is 35.7% for Arizona as against 48.8% in California, and 48.9% in Virginia.
These tables also contain Karl's (1986) estimates of the percent frequency distribution of
PDSI computed across all months and climate divisions which compare well with our
computations. Wallis (1993) and Guttman et al. (1992) give the probability of PDSI being
less than -4.0 (class 7) in January for the northwest climatic division of Arizona between
.01 and .05 which compares well with the value of 0.03 obtained in the present analysis.
For the same region for the month of July, Guttman et al., (1992) give probability of PDSI
being less than -4.0 to be between .01 and .05 and the present analysis gives this value as
.07. 1t is of interest to note that for the Tidewater Region in Virginia for the months of
August through October the probability of occurrence of a drought class (classes 5, 6, or
7) is close to 0.3 which agrees with the results of Van Bavel and Lillard (1957). Wallis
(1993) reports the probability of PDSI being in class 7 for the month of July for Virginia
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as 0.00 - 0.05 and the present analysis yields 0.0208. For the same region, Guttman et al.
(1992) reports the observed probability for class 7 in January as 0.01-.05 and the present
analysis yields .0417. In Arizona, the months of April-July are found to have highest
drought probabilities (40%). In California, the months of February - August (except May)
are observed to have highest probabilities (= 30 %) of droughts. In Virginia for Tidewater
region, the months of July through November are found most sensitive to droughts with
about 27% or more long term probability. A comparison of results obtained using PDSI
and PHDI data reveals that drought probabilities computed based on PHDI are higher in
all 3 states as compared to probabilities computed based on PDSI. This is because PHDI

responds slowly to changing weather conditions as compared to the PDSI.
4.4 EXPECTED UNINTERRUPTED RESIDENCE TIME

An important characteristic of drought is its duration, which is the expected uninterrupted
residence time for a particular drought class. For instance, a process will stay in class i
continuously for 'm' time periods when the following event occurs

{Xi=i=X;=..=Xpn1 | Xo =1} (11)
The probabilities of events specifying uninterrupted stay for different time periods in a
particular class, i, can be computed as follows. For example, one month duration of stay
denoted by m=1 starting with the month of January is given by

P[Xrs#i|Xna=i]=P[m=1| Xsa=i] =1-p;;*? (12)
where: pi;"* = probability of moving from class i in January to the same class i, in
February. Equation 12 says that the drought class ‘i’ is occupied for the thirty one days in
January, i.e. 1 month and then on the first of February the drought class is no longer ‘i’ but
some other j # i. This interpretation also says that transition occurs on the last day of the
given month. For m=2 starting from the month of January the probability can be
computed by

P [m=2 | Xo =11 =P [ Xoar # i, Xo =1 | Xjua =i] (13)
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=P [Xpr=1i|Xpaa=1]P [ Xnar # 1| Xpep =1 ] (14)

=pii” (1-pi™) (15)
Likewise, the probabilities of events defining consecutive stay for higher number of time
steps can be computed. For example, for staying 12 time steps consecutively in class i,
starting in January, the probability will be

P[m=12|Xpm=1] =pii'” pii™ ... pii' " pis "2 (1 - pii'™") (16)
It is readily observed that the computation of probabilities for various events defining an
uninterrupted stay in class i involves the multiplication of i row and i® column entries
(diagonal elements) of the consecutive transition matrices. If any one of these entries is
zero, the computation stops at that point because all the remaining probabilities for higher
durations of stay go to zero. Once the probabilities for uninterrupted stay for various time
periods are computed, the expected uninterrupted residence time for class j, E[Ruj], is
given by

E [R,; | starting month ] = 3° kP [ m=k | starting month ] 17

k

where : R,; = random variable describing uninterrupted stay in class j
Similarly, the variance of residence time i.e. Var(Ry;) can also be computed as below :

Var(Ryj) =E ( Rz.,j) | starting month ) - [E ( Ry | starting month)]* (18)
It is seen that the uninterrupted residence time and its variance is sensitive to the starting
weather class. The expected uninterrupted residence times for various starting months
and classes are given in Tables 4.5(a and b), 4.6(a and b), and 4.7(a and b) for the selected
divisions in Arizona, California, and Virginia, respectively. In each of these tables three
values are reported corresponding to each class and month. The top value represents the
expected value of the uninterrupted residence time, the middle one gives the residence
time as computed using observed data and the bottom figure represents the variance of the
residence time.
For example, for Arizona it is seen that weather will stay uninterrupted in class 2 in
January on an average for 1.7 months computed using PDSI data, which compares well

with 1.3 months as given by observed data. The computed residence time is found to have
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variance of 1.6. It is seen that class 7 (extreme drought condition) has a relatively long
residence time for Arizona as compared to California and Virginia. The computations of
variance of residence times indicate large variability in uninterrupted residence time in
Arizona and California as compared to Virginia. For Arizona and California, the average
uninterrupted residence times for the drier classes (5, 6, and 7) are higher than the wet
classes (1, 2, and 3) indicating that a drought spell once occurred would stay for a
relatively longer period than a wet spell. For example, it is observed from Table 4.7(a)
that by the end of April if one of the drought classes S, 6, or 7 has occurred, then
including the duration of 1 month for April, the drought would continue for another 1.5
months making the total duration to be about 2.5 months. A comparison of results
obtained using PDSI and PHDI data indicate that both data sets give by and large similar

residence time for each class for all the 3 states.
4.5 EXPECTED FIRST PASSAGE AND RECURRENCE TIMES

In characterizing droughts, it is also important to find how frequently the drought classes
are visited in a region. For this purpose, the expected first passage time (mij) can be
defined as the average time period taken for the process to go to a class, j, for the first
time starting from some class, i. The starting month, n, is crucial in computing the
expected first passage time in the case of the non-homogenous chain. Therefore, we let
m;;" as the first passage time for a process to reach class, j, starting from class, i, in month,

n. Mathematically,

m® = (D) p ™+ Y ™ (g™ + 1) (19)

k#j
in which the first term says that class ,j, can be reached in one step in month (n+1) or the

process can go to some class k # j in one step as is indicated by 1 in summation term and it
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takes my;™" steps to reach j. This equation is simplified by combining the first term

probability p;;" with the remaining sum of probabilities in the summation term to yield

mi,j(n)=1 + Z pi,k(n.nﬂ) ka(n+l) (20)

k=zj
For example, for n=1 we obtain

mij(l) = mijhn =1+ Z pi,k(l‘Z) kaFeb (21)

k=)
in which : p;,"*® = January-February transition probability for reaching class, k, from class,
i. The solution of system of linear equations in Eq. 20 yields the expected first passage
times. The average time to return to the same class called the mean recurrence time (m;)

can also be computed from Eq. 19 as

m® = (1) pi™ P+ 3 pu™P (m ™D + 1) (22)
k=i
which simplifies to
m®=1+ Z pur®*D my D (23)

k=i
The expected first passage times to class 4 for the selected climatic divisions of Arizona,
California, and Virginia are given in Tables 4.8(a and b), 4.9(a and b), and 4.10(a and b),
respectively. Each table gives two values corresponding to each class and month. The
top value is computed using Markov analysis and bottom one is empirical. It can be seen
that there is good agreement between computed and observed values. It is observed that
the first passage times to class 4 from both drier (classes 5, 6 and 7) and wetter (1, 2, and
3) classes are the highest in the case of Arizona indicating higher possibility of non-normal
weather in Arizona. If weather happens to be in class 7 ,the driest state, in March it is
observed using PDSI data that it would need , on an average, 23.1 months to go to class 4
for the first time in Arizona, 10.8 months in California and 9.7 months in Virginia. In the
case of transition from class 5 to class 4 in the same month the average time taken is 11.8,

5.6, and 5.7 months in Arizona, California, and Virginia, respectively.
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The transition probability matrices show that, as far as class 5 is concerned, there is a
strong tendency to stay in class 5 because of the high value of pss. The relatively small
values of the off diagonal elements determine the drift towards class 4. An intuitive
substantiation of these first passage times may be gained as follows. From Table 4.12(a) it
takes 21 months to reach class 4 from class 7 in Arizona. From Table 4.13(a) the average
time spent in class 7 is 6.7 months. If we subtract this duration of stay in class 7, we
obtain 14.3 months to reach class 4 which is close to the 14.9 months to reach class 4
from class 6. By the same argument using an average duration of stay in class 6 of 3.7
months, we obtain 10.6 months to reach class 4 from class 5 which agrees well with the
value of 10.2 given in Table 4.12(a). A comparison of results obtained PDSI and PHDI
data reveals that the expected first passage times computed using PHDI are slightly higher
than PDSI based values. This agrees with the observation that once in mon-normal

weather conditions, PHDI returns to normal state slower as compared to PDSI.

4.6 MEAN MONTHLY HOMOGENEOUS MARKOV CHAIN ANALYSIS

Another approach to analyze weather transition patterns in a region is to use mean
monthly homogeneous Markov chain. This can be done by computing transition
probabilities giving emphasis on transitions among classes, irrespective of the months in
which these take place during the year. Suppose Nt is the total number of data points
used and Nij is the number of times the process transits from class i to class j, regardless of
the month, and N; the total number of times the process is in class i, then
pij =(Ni/ Nt )/ (Ni /Nr ) =Njj / N; (24)

denotes the mean monthly probability of transition from class i to class j. In this manner
the mean monthly transition matrix can be defined as P =[ p;; ] forij=1,2, ..., 7. These
matrices are computed for the selected climatic division each in Arizona , California ,and
Virginia and are given in Appendix IV. The mean monthly matrices represent a closed

communicating class of all weather classes (1, 2, ..., 7). This is logical since in reality any
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class of weather is possible in a mean monthly transition. Further, the absence of any
transient or absorbing classes indicates that neither there exists a weather class from which

the system disappears forever nor there exists a permanent weather class in which the

system is trapped.

4.6.1 Steady Class Probabilities

The mean monthly matrix represents an irreducible aperiodic Markov chain which has
limiting probabilities which are independent of starting class. These steady class

probabilities, denoted by the vector A, are computed as the non-negative solution of

(Ross, 1989).
A= 27: Aipij and i A=10 (25)

The steady class probabilities computed using mean monthly matrices are given in Tables
4.2(a and b), 4.3(a and b), and 4.4(a and b) for Arizona, California, and Virginia,
respectively. These probabilities are quite close to the average values computed using the
12 different monthly matices and the empirical probabilities. Overall drought probabilities
are found highest in Arizona and lowest in Virginia. The long term probabilities computed

using PHDI data are found higher than the ones computed using PDSI data.

4.6.2 Mean Recurrence Time

The mean recurrence time, m;, for a class j is defined as the expected number of
transitions until a Markov chain, starting in class j, returns to that class. Since, on the
average, the chain will spend 1 unit of time for every m; units of time in class j, it follows
that

my = 1/) (26)
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Table 4.11(a and b) gives the mean first passage and mean recurrence times of class 4
computed using average of 12 monthly matrices computations, mean monthly matrices,
and observed data. These results agree well. It can be observed that the mean recurrence
time of class 4 ( normal weather condition ) is highest in Arizona. The results computed

using PDSI and PHDI did not show significant difference.

4.6.3 Mean Passage Time

The mean monthly transition matrix can be analyzed to the find the mean passage time
which gives an estimate of the number of transitions the process takes, on the average, to
go from one particular class to another for the first time. The mean passage time is

computed as
m;=1+ Z Pix My 27

k#j
where: m;; = mean passage time to go from class i to j; pi = one step transition probability
to go from class i to k; my; = mean passage time to go from class k to j. Table 4.11(a and
b) gives the comparison of mean first passage times to class 4 as computed using mean
monthly matrix, 12 different monthly matrices, and empirical observations. The results
computed by both techniques are quite close to empirical values. Tables 4.12(a and b)
give comparison of average uninterrupted residence times computed using average of 12
monthly matrices and empirical observations. The results are in close agreement. It is
obvious from the table that weather tends to stay in drought states for longer duration in
Arizona followed by California and Virginia. The drought characteristics obtained using

PDSI and PHDI data did not differ significantly.
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4.7 MONTHLY DROUGHT CLASS PREDICTION

An important aspect of drought characterization is to predict its occurrence. The analysis
using non-homogenous Markov chain can be used to forecast future classes of weather.
Suppose E [ Xs | X = 1] denote the expected weather class for February, given that
during the month of January the observed weather class is, i. Then the conditional
expected class for the month of February can be computed

E [ Xro| Xin-i1= Y JP(Xra=j | Xow=i) = z in® @8

= i=
For the transition from February to March Xg, = NINT ( E [ Xgb | Xjan J,j ), Where :
NINT = the nearest integer. Therefore, _
7
PEXP [ Xuar | Xrw 1= 3 jp™” (NINT (E[Xres | Xomli)  (29)
=]

Also, the mode which has the greatest probability of occurrence may be used as the
predicted value. Therefore,

PMODE [ X | Xges 1 = k*; k* relates to Max(p;,>>) for all k for given j

(30)

These approaches are satisfactory for making predictions for 4 months lead time, which is
considered typical crop growing period. Some results of 4 months' ahead prediction for
years 1931 and 1990 are given in Table 4.13(a and b) for Arizona, California, and
Virginia, respectively. It is noted that for predicting the weather classes in Jan., 1931, the
observed class in Sept., 1930 was used. The predicted values in general agreed well with
the observed values.
In the present chapter the currently observed index values are used in finding the most
probable drought characteristics in the future, i.e., given that a particular drought class has
occurred, we can find information like : What is the most likely occurrence drought class?,
What is the probability that a severer or a milder drought will occur over a chosen period

?, How long such a future drought can persist 7, What are the long term probabilities
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(steady state probabilities) for various drought classes defining the drought proneness of a
region ?; How long will it take to get back to the normal class from a severer drought

class ? These aspects are illustrated through a number of example problems in Appendix

VL
4.8 SUMMARY

The non-homogeneous Markov chain analysis provides useful drought characteristics such
as the most likely state of drought severity at a location, drought duration, and period of
return to various classes. The method is also successfully extended to predict drought
classes, 4 months ahead of time, contingent on present month’s observed state. A
comparison of the results in Tables 4.2 through 4.4 indicates the highest long term
drought probabilities in Arizona, followed by California and Virginia. The drought
probabilities computed using PHDI are found higher than PDSI data which agrees with
the observation that PHDI returns from non-normal weather condition to normal condition
slower as compared to the PDSI. The characterization methodology for droughts
proposed in this chapter should be useful in situations where short term predictions are
needed, such as irrigation applications. While the mean monthly matrix provides simpler
analysis, the monthly non-homogeneous matrices offer more flexibility by conditioning on

the observed weather state in making the predictions.
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Table 4.1. PDSI/PHDI Values and Corresponding Stochastic Classes

PDSI/ PHDI value Weather Spell Stochastic Class
4.00 or more extremely wet 1
3.00to 3.99 severely wet 2
1.50to 2.99 mild to mod. wetness 3

-1.49to 1.49 near normal 4
-1.50 to -2.99 mild to mod.drought 5
-3.00 to -3.99 severe drought 6
-4.00 or less extreme drought 7
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Table 4.2(a). Monthly Steady Class Probabilities (Arizona), Computed and Empirical,
PDSI Data

Classes— 1 2 3 4 5 6 7
Month 4

Jan. .0802 | .0306 1121 4367 2167 .0926 .0308
.0816 | .0306 1224 4286 2143 .0918 .0306
Feb. | .0602 | .0396 1565 .3823 .2481 .0823 .0309
0612 | .0408 .1633 3776 .2449 .0816 .0306
March | .0600 | .0689 .1588 3404 | .2560 .0824 .0309
0612 | .0714 .1633 3367 2551 .0816 .0306
April | .0699 | .0691 2107 .2476 .2686 .0825 .0514
.0714 | .0714 2142 .2449 .2653 .0816 .0510
May | .1094 [ .0798 .1505 2164 2582 1341 .0514
1122 | .0816 1531 2143 2551 1326 .0510
June | .1492 | .0499 1307 2262 2168 1754 .0514
.1530 | .0510 1327 2245 2143 1735 .0502
July | .1095 | .0899 .0608 3475 1342 .1858 .0721
1122 .0918 [ .0612 .3469 1327 .1837 .0714
Aug. | .1096 | .0199 | .1320 .3980 .1855 .0929 .0618
1122 | .0204 | .1327 3979 1836 .0983 .0612
Sept. | .0997 | .0299 | .1017 4080 .2057 .0928 .0618
1020 | .0306 | .1020 .4082 .2040 .0984 .0612
Oct. | .0798 .0201 .1420 3977 2261 0722 .0618
.0816 | .0204 | .1429 3979 2244 .0743 .0612
Nov. | .0599 | .0400 | .0914 4793 1952 0721 .0618
.0612 | .0408 | .0918 4795 .1939 .0714 .0612
Dec. | .0699 | .0503 | .1221 4079 2361 .0618 .0515
0714 | .0510 | .1229 .4082 2347 .0612 .0510

12 Months’
Average | .0881 | .0490 .1308 3573 .2208 .1022 0515

Mean Monthly | .0890 | .0490 1315 3576 2203 .1019 .0513
Matrix

Karl (1986) | .05 .06 17 45 17 .06 04

Empirical .0901 | .0502 1335 .3588 2185 .1012 .0510
12 Months’
Average




Table 4.2(b). Monthly Steady Class Probabilities (Arizona), Computed and Empirical,

PHDI Data
Classes— 1 2 3 4 5 6 7
Month{
Jan. .0804 .0407 1222 3961 2373 .0924 .0307
.0816 .0408 1326 .3878 .2347 .0918 .0306
Feb. .0603 .0397 1755 .3530 2586 .0821 .0308
.0612 .0408 .1837 .3469 2551 .0816 .0306
March .0602 .0689 .1788 3101 .2689 .0823 .0308
.0612 .0714 .1837 .3061 .2653 .0816 .0306
April .0700 .0691 .2209 2374 .2689 .0824 .0513
.0714 .0714 2245 2347 .2653 .0816 .0510
May .1095 .0798 .1606 2061 .2584 .1342 .0513
1122 .0816 .1632 2041 2551 1326 .0510
June .1494 .0499 .1408 .1953 2377 1755 .0513
1531 .0510 .1429 .1939 2347 .1735 .0510
July 1195 .0900 1311 .2466 .1549 .1859 .0720
1224 .0918 1327 .2449 1531 .1837 .0714
Aug. .1097 .0598 .1414 2704 2477 .1032 .0618
1122 .0612 .1429 2755 .2449 .1020 0622
Sept. .0997 .0399 .1923 .2249 .2885 .0929 .0618
.1020 .0408 .1939 .2245 .2857 .0984 .0612
Oct. .0798 .0301 .1920 .2964 2677 0722 .0618
.0816 .0306 .1939 .2959 .2653 .0714 .0612
Nov. .0599 .0501 1519 3777 .2265 .0722 .0618
.0612 .0510 .1531 3776 2245 .0714 .0612
Dec. .0699 .0503 1421 3774 .2469 .0618 .0515
.0714 .0510 .1428 3775 .2449 .0612 .0510
12 Months' .0890 .0557 .1625 2914 .2468 .1031 .0514
Average
Mean Monthly [ .0905 .0565 .1634 .2901 .2449 .1021 .0508
Matrix
Karl (1986) .0500 .0600 .1700 .4500 .1700 .0600 .0400
Empirical .0910 .0570 .1658 .2857 2441 .1020 .0510
12 Months'
Average
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Table 4.3(a) . Monthly Steady Class Probabilities (California), Computed and Empirical,

PDSI Data
Classes—>
Month 1 2 3 4 5 6 7
Jan. .0408 0412 .1028 .5280 2155 .0408 .0306
.0408 | .0408 .1020 .5306 2143 .0408 .0306
Feb. .0409 | .0103 .2245 4072 .2043 .0819 .0306
.0408 | .0102 .2245 4081 2041 .0816 .0306
March | .0205 | .0715 1326 4383 2551 .0716 .0120
.0204 | .0714 1327 4388 2551 .0714 .0120
April .0102 | .0715 .1530 4589 .1938 .0818 .0307
.0102 | .0714 1531 4592 .1939 .0816 .0306
May .0306 | .0408 .1530 .5099 1632 .0613 .0409
.0306 | .0408 1531 .5012 .1633 .0612 .0408
June .0306 | .0408 .1938 .4385 1734 .0817 .0409
.0306 | .0408 .1939 4388 1735 .0816 .0408
July .0306 | .0510 .1938 3977 .2041 .0715 .0511
.0306 | .0510 .1939 .3980 2041 .0714 ..0510
Aug. .0306 | .0204 .1734 4590 2143 .0613 .0409
.0306 | .0204 .1735 4592 2143 .0612 .0408
Sept. .0408 | .0306 .1326 .5100 2041 .0510 .0307
.0408 | .0306 1327 .5102 .2041 .0510 .0306
Oct. .0204 | .0408 1224 6121 1326 .0510 .0204
.0204 | .0408 1225 .6122 1327 .0510 .0204
Nov. .0204 | .0102 .1632 5815 .1837 .0204 .0204
.0204 | .0102 .1633 .5816 .1837 .0204 .0204
Dec. .0306 0.0 .1836 .5101 2245 .0408 .0102
.0306 0.0 .1837 .5102 .2245 .0408 .0102
12 Months’
Average .0289 | .0358 .1607 4876 .1974 .0596 .0298
Mean Monthly | .0290 | .0358 .1609 4881 1977 .0596 .0298
Matrix
Karl (1986) .0500 | .0600 .1700 4500 .1700 .0600 .0400
Empirical .0289 | .0357 .1607 4881 .1973 .0595 .0298
12 Months’
Average
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Table 4.3(b). Monthly Steady Class Probabilities (California), Computed and Empirical,

PHDI Data
Classes—
Month 4 1 2 3 4 5 6 7
Jan. .0508 .0408 .1838 .3887 2424 .0625 .0309
.0510 .0408 .1836 3979 2346 0612 .0306
Feb. .0610 .0102 .2623 .2830 .2582 .0944 .0309
.0612 .0102 .2653 .2857 2551 .0918 .0306
March | .0305 .0810 1715 3143 .3089 .0834 .0103
.0306 .0816 1734 3163 .3061 .0816 .0102
April .0203 .1013 .2024 .3051 2568 .0830 .0312
.0204 .1020 .2040 .3061 2551 .0816 .0306
May .0406 .0506 .2432 .3667 .1952 .0622 .0415
.0408 .0510 2448 3673 .1938 .0612 .0408
June .0406 .0506 .2637 3362 .1847 .0826 .0415
.0408 .0510 .2653 .3367 .1836 0816 .0408
July .0406 .0507 2638 3157 .2052 0722 .0519
.0408 .0510 .2653 3163 .2040 0714 .0510
Aug. .0406 .0203 .2638 3461 2258 .0620 .0415
.0409 .0204 .2653 .3469 2244 .0612 .0408
Sept. .0406 .0406 .2437 .3666 2155 .0619 .0311
.0408 .0408 .2448 .3673 .2042 0612 .0306
Oct. .0203 .0507 | .2133 .4689 .1641 0515 .0311
.0204 .0510 2142 4693 .1632 .0510 .0306
Nov. .0203 .0101 2543 4383 .2253 .0309 .0207
.0204 .0102 2551 4387 2244 .0306 .0204
Dec. .0304 0.0 .2546 .3976 .2452 .0514 .0207
.0306 0.0 2551 .3979 .2448 .0510 .0204
12 Months’
Average .0364 .0422 .2350 .3606 2273 .0665 .0320
Mean Monthly | .0364 .0423 .2353 .3601 2270 .0662 .0318
Matrix
Karl (1986) .0500 .0600 .1700 .4500 .1700 .0600 .0400
Empirical .0366 .0425 .2364 3622 2253 .0655 .0315
12 Months’
Average
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Table 4.4(a). Monthly Steady Class Probabilities (Virginia), Computed and Empirical,

- PDSI data
Classes— 1 2 3 4 5 6 7
Month ¢
Jan. .0104 0521 .2200 .5198 1146 .0417 .0417
.0104 .0521 2187 .5208 .1146 .0417 .0417
Feb. .0104 0314 2299 5411 .1249 .0312 .0312
.0104 .0313 2292 .5417 .1250 .0313 .0313
March 0.0 0627 | .1775 5414 .1666 .0208 .0312
0.0 .0625 1771 .5416 .1667 .0208 0313
April 0.0 .0731 .1669 .5415 .1458 .0417 .0312
0.0 .0729 .1667 .5417 .1458 .0417 .0313
May .0418 .0313 .1669 .5624 1354 .0521 .0104
.0417 .0313 1667 .5625 1354 .0508 .0104
June .0104 .0417 .1668 .5625 .1458 .0625 .0104
.0104 .0417 .1667 .5625 .1458 .0625 .0104
July 0.0 .0626 .2085 4584 .2083 .0416 .0208
0.0 .0625 .2083 4583 .2083 .0416 .0208
Aug. .0104 .0730 .1980 4167 2396 .0625 0.0
.0104 0729 .1979 4167 2396 .0650 0.0
Sept. .0104 .0938 1355 4584 2187 .0625 .0208
.0104 .0938 1354 4583 .2188 .0625 .0208
Oct. .0209 .0625 .2084 .3959 .2604 .0312 .0208
.0208 .0625 .2083 .3958 .2604 .0313 .0208
Nov. .0209 .0521 .2605 3959 .1979 .0417 .0312
.0208 .0521 .2604 .3958 .1979 0417 .0313
Dec. 0.0 .0730 .2084 4688 .1667 .0521 .0312
0.0 .0729 .2083 4688 .1667 .0508 .0325
12 Months' .0113 .0591 .1956 .4886 1771 .0451 .0234
Average
Mean .0113 .0590 .1952 4878 1771 .0451 .0234
Monthly
Matrix
Karl (1986) .05 .06 17 45 17 .06 .04
Empirical .0113 .0590 .1953 4887 1771 .0451 .0234
12 Months'
Average

57



Table 4.4(b). Monthly Steady Class Probabilities (Virginia), Computed and Empirical

PHDI Data
Classes — 1 2 3 4 5 6 7
Month 4
Jan. .0208 .0521 .2405 4574 .1458 .0417 | .0417
.0208 .0508 2396 4583 .1458 0417 | .0417
Feb. .0104 .0418 2714 4265 .1874 .0312 | .0312
.0104 .0417 2708 4270 .1875 .0313 | .0313
March .0104 .0626 .1982 4893 .1873 .0208 | .0312
.0104 .0625 .1979 4896 .1875 .0208 | .0313
April 0.0 .0835 1981 4581 .1874 .0416 | .0312
0.0 .0833 .1979 4583 .1875 .0417 | .0313
May .0417 .0417 .2085 4790 .1666 .0521 | .0104
.0417 .0417 .2083 4792 .1667 .0521 | .0104
June .0104 .0522 .2085 4895 .1666 .0625 | .0104
.0104 .0521 .2083 .4896 .1667 .0625 .0104
July 0.0 .0730 2188 4479 .1978 .0416 | .0208
0.0 0729 2188 4479 .1979 .0417 | .0208
Aug. .0104 .0730 .2501 .3229 .2707 .0729 0.0
.0104 .0729 .2500 3229 2708 .0729 0.0
Sept. .0104 .0938 .1563 3750 2812 0625 | .0208
.0104 .0938 .1563 3750 2813 .0625 | .0208
Oct. .0208 .0625 2188 .3437 2916 .0417 | .0208
.0208 .0625 2188 .3438 2917 .0417 | .0208
Nov. .0208 .0521 .2709 .3437 2395 .0417 | .0312
.0208 .0521 .2708 3438 .2396 .0417 .0313
Dec. .0104 0729 .2604 .3646 .1979 0625 | .0312
.0104 .0729 .2604 .3646 .1979 .0625 | .0313
12 Months' .0139 .0634 .2250 4165 .2100 .0477 | .0234
Average
Mean .0139 .0634 2248 4157 .2100 .0477 | .0234
Monthly
Matrix
Karl (1986) .0500 .0600 .1700 4500 .1700 .0600 | .0400
Empirical .0139 .0634 2248 4168 2102 .0478 | .0235
12 Months'
Average
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Table 4.5(a). Expected Uninterrupted Residence Times (months), Computed and
Empirical, Arizona, PDSI Data

Class— 1 2 3 4 5 6 7
Starting
Month! _
Jan. 6.0 1.7 35 45 4.5 4.1 5.7
9.5 1.3 3.9 5.9 42 3.2 7.3
(24.2) (1.6) (5.7 | (20.5) | (11.2) (9.0) (35.0)
Feb. 6.6 2.1 33 4.8 42 3.9 7.1
11.3 1.8 3.6 6.2 3.8 43 6.7
(21.3) (1 9) 4.8) | (21.8) | (10.6) (8.0) (35.9)
Mar. 6.7 2.2 34 49 40 39 9.1
11.3 2.1 3.7 6.0 3.6 4.5 7.3
(18.1) (1.4) 3.5 | 22.7) | (10.0) 6.7) (26.1)
Apr. 5.7 1.7 2.7 5.8 3.6 39 8.1
11.3 1.6 2.8 7.0 3.1 4.4 8.8
(18.1) (1.0) 3B.0) | 229 | (9.9 (5.0) (26.1)
May 47 1.7 2.4 5.7 33 34 7.1
7.7 1.6 2.5 7.0 3.2 4.1 7.8
(18.0) ( 7) (2.6) | (22.1) | (10.3) (4 3) (26.0)
Jun. 3.7 4 1.7 5.5 3.1 24 6.1
53 1 6 1.8 6.8 3.2 2.8 6.8
(18.0) ( 3) 26) | 214) | (11.4) “4.3) (26.1)
Jul. 4.1 . 25 52 43 1.9 5.1
59 1 1 2.2 6.8 45 2.1 47
(21.5) ( 1) (4.0) | (21.0) | (14.1) (5.0) (26.1)
Aug. 49 23 53 43 2.9 5.8
6.8 1 0 1.8 6.4 4.0 2.8 7.3
(25.1) (O) 4.4) | (20.6) | (14.0) 9.3) (26.8)
Sep. 54 2.7 5.5 4.6 3.4 5.7
10.0 1 0 2.0 6.2 4.1 3.1 7.0
(26.7) (O) (5.5) (19.9) | (13.5) | (11.7) | (26.8)
Oct. 55 .0 25 53 43 43 5.7
11.3 1 0 24 5.6 4.5 39 6.5
(27.5) (0) 6.0) | (193) | (13.2) | (12.7) | (26.8)
Nov. 7.1 34 4.7 48 4.6 4.7
14.0 2 5 4.7 5.0 5.1 3.6 5.5
(25.1) (1.5) 7.7 | (192) | (12.2) | (11.7) | (26.8)
Dec. 6.1 1.6 3.6 4.6 3.9 5.1 4.4
11.6 1.6 42 49 4.1 3.5 5.4
(25.1) (1.4) (6.6) (19.7) | (12.0) (9.0) (28.9
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Table 4.5(b). Expected Uninterrupted Residence Times (months), Computed and
Empirical, Arizona, PHDI Data

Class— 1 2 3 4 5 6 7
Starting
Month{

Jan. 6.0 1.5 40 40 4.1 4.1 5.7
9.5 1.3 42 4.8 4.1 3.2 7.3

(24.5) (1 3) (7.6) (13.2) | (10.7) 9.2) (35.1)
Feb. 6.7 2. 3.5 4.0 40 4.0 7.1
11.3 1. 8 3.6 5.0 3.7 43 6.7

(21.5) (1.9) 7.1 (13.5) | (10.2) 8.2) (35.9)
Mar. 6.8 2.2 3.7 4.1 3.9 4.0 9.1
11.3 2.1 3.8 5.2 3.6 4.6 7.3

(18.0) (1.9) 6.1) (13.8) 9.7 (7.0) (26.1)
Apr. 5.8 1.7 33 4.7 3.6 40 8.1
11.3 1.6 3.1 6.0 3.2 45 8.8

(18.0) (1.0) (5 5) (13.4) (9 5) (5 2) (26.1)
May 4.8 1.7 4.5 . 7.1
7.8 1.6 2 9 5.9 3 5 4 2 7.8

(18.0) | (7 @49 | 127 | ©.7 (4.5) (26.1)
Jun. 38 1.5 2.6 4.1 29 2.5 6.1
53 1.6 23 62 | 32 29 6.8

(18.0) (4) 4.7 (12.4) | (10.2) 4.5) (26.1)
Jul. 3.9 . 2.6 37 | 39 2.1 5.1
5.5 1 1 2.2 5.1 43 2.2 4.7

(20.6) ( 2) (5.0) (12.6) @ (13.5) (5.2) (26.1)
Aug. 49 2 29 36 | 44 2.7 5.8
6.8 1 2 23 4.6 4.0 5.6 7.3

(25.4) (O 1) (5.4) (13.6) | (13.8) (8 8) (26.9)
Sep. 54 . 2.7 4.7 4.5 4 58
10.0 1 0 2.1 54 3.8 3 1 7.0

(27.1) (0) (5.6) (14.7) | (13.4) (11.8) (26.8)
Oct. 55 ) 2.6 438 4.5 43 5.7
11.3 1 3 23 52 44 3.9 6.5

(27.9) (1.3) (6.3) (13.9) | (12.8) (12.9) (26.8)
Nov. 7.2 2.0 28 44 47 47 5.7
14.0 2.2 33 5.1 4.6 3.6 55

(25.4) (1.3) 7.7 (13.5) | (11.5) (11.9) (26.8)
Dec. 6.2 1.6 3.8 43 4.1 5.1 44
11.6 1.6 4.1 5.0 42 3.5 5.4

(25.4) (1.1) (8.6) (13.3) | (11.2) (9.2) (28.9)
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Table 4.6(a). Expected Uninterrupted Residence Times (months), Computed and

Empirical, California, PDSI data

Class— 1 2 3 4 5 6 7
Starting
Monthd

Jan. 3.8 1.9 2.5 3.9 3.1 2.9 4.0
45 1.5 2.0 4.1 3.0 2.5 5.0

(179 | ¢G3) | @9 | a81) | 83) | 4.8 | (140
Feb. 3.7 3.6 2.5 5.0 3.6 2.5 3.0
3.8 2.0 2.4 5.3 3.6 2.8 4.0

(206) | 3.8) | (5.7 1) (8.9) 4.8) | (14.0)
Mar. 54 2.6 3.0 55 3.3 3.0 6.1
55 2.1 2.7 5.7 3.0 27 9.0

(26.7) | (3.8) | (6.7 | (208) | (8.0 (5 z) (17.2)
Apr. 8.7 2.7 3.7 6.4 4.1 2. 5.1
9.0 2.9 3.8 6.1 3.6 2. s 6.7

as.) | ¢4 | 61 | Q76) (s s) (5.2) | (17.2)
May 7.8 3.0 4.1 59 4.5 3.5 6.2
6.0 33 3.9 6.1 4.3 3.8 6.5

asny | @n | ¢G5 | 162 | 65 | 42 | 3.0
Jun. 6.8 2.7 33 5.7 43 3.0 5.2
5.0 2.8 3.4 6.0 45 3.1 55

(15.1) | (1.0) | (3.0) | (143) | (46) | 3.5 | (13.0)
Jul. 5.8 1.7 2.8 55 3.5 27 42
4.0 1.6 2.7 58 3.5 2.6 3.8

(151) | 1.0) | 24 | (125 | @41 | 29 | 130
Aug. 4.8 1.7 22 4.6 2.6 23 4.0
3.0 1.5 22 4.7 2.8 20 3.5

(15.1) ( 7) (20) | (123) | (40) | (2.5 | (13.0)
Sept. 3.8 2.1 4.0 22 2.0 4.0
55 1 3 1.9 4.1 25 1.6 3.3

(15.1) (4) (1.5) | (120) | 42) | (3) | (139
Oct. 55 . 1.6 3.4 2.6 1.7 4.5
9.0 1 3 1.4 3.7 2.6 1.4 3.5

as.n | 2 | a4 | 123) | ¢8) | 28 | (133)
Nov. 45 1.0 1.9 35 2.9 3.4 3.5
8.0 1.0 1.8 3.8 3.1 45 2.5

(15.1) | (0) 20 | (139 | (7.0) | 4.4 | (133)
Dec. 3.5 1.3 1.7 3.9 3.1 2.4 5.0
6.0 0 1.7 3.9 3.1 2.5 3.0

(15.1) | (9) (26) | 164 | (.7 | (44 | (4.0
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Table 4.6(b). Expected Uninterrupted Residence Times (months), Computed and

Empirical, California, PHDI data

Class— 1 2 3 4 5 6 7
Starting
Month ¥
Jan. 55 1.9 29 2.6 3.2 2.7 4.1
5.8 1.5 25 3.1 32 23 53
(30.9) (3 2) (7.9) (8 6) (8 2) 4.7 (15.3)
Feb. 4.5 5 3.2 .6 34 2.5 3.1
42 2 0 29 4 8 3.6 2.7 43
309 | 33) | (0.1) | (12.2) | (8.6) (4.8) (15.3)
Mar. 7.0 25 38 4.1 35 2.7 6.4
6.3 23 3.2 4.6 3.1 2.5 10.0
(378) | 33) | 98) | (13.0) | (89 | (52) | (18.7)
Apr. 8.9 2.5 43 5.0 3.6 2.8 54
8.0 2.5 39 52 33 2.8 7.0
Gol) | G1) | B4 | A1) | 92) | (54 | (188)
May 7.9 2.9 44 49 44 3.6 6.6
6.0 3.0 23 5.2 4.5 4.0 7.0
301 | o) | 63) | 06 | 7.8 | @5 | (13.5
Jun. 6.9 24 39 438 4.6 3.1 5.6
5.0 24 39 5.2 4.6 33 6.0
o) | A4 | 63) | 79 | G 3.7 | (13.5)
Jul. 59 1.7 35 4.5 38 2.8 4.6
4.0 1.6 34 48 3.8 2.7 42
301 | (1L.1) | @45) | (5.6) (4.6) (3.0) (13.5)
Aug. 49 1.8 2.9 3.6 2.8 2.6 45
3.0 1.5 2.8 3.8 29 22 4.0
(30.1) ( 8) 4.0) | 54 (4.6) (2 3) (12.8)
Sept. 52 .6 25 3.0 23 .9 47
6.5 1 5 22 33 2.8 l 5 4.0
(33.4) (4) 68 | G0 | 48 | (2 | (16
Oct. 8.5 2 2.2 2.5 2.7 1.7 3.7
11.0 1 2 20 2.8 3.0 1.4 3.0
(30.9) ( 1) (4.0) | (49 (6.49) (3.0 (11.6)
Nov. 7.4 .0 25 25 3.0 36 4.0
10.0 1 0 24 2.7 3.2 4.7 3.0
(30.9) (O) 63) | 59 (7.5) 4.5) (11.9)
Dec. 6.5 3 2.5 2.8 3.4 2.6 3.0
9.0 0 25 3.5 33 28 2.0
(30.9) (.8) 63) | (714 (8.0) (4.5) (11.9)
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Table 4.7(a). Expected Uninterrupted Residence Times (months), Computed and
Empirical, Virginia, PDSI Data

Class— 1 2 3 4 5 6 7
Starting
Month 4
Jan. 2 1.2 2.6 53 3.6 2.6 40
2 1.2 2.8 6.3 29 29 4.0
©) (.2) 4.2) (17.5) (7.0) (4 7) (4.5)
Feb. 1.0 1.0 2.5 5.1 3.6 2 4.0
1.0 1.0 2.2 6.7 2.8 3 3 4.0
0) 0) “4.3) (16.7) (7.1) 4.3) (2.0)
Mar. 1.2 2.1 2.9 5.0 3.1 33 3.0
- 1.8 2.6 6.1 2.6 35 3.0
(.2) (.9) 4.4) (15.9) (7.0) 2.9 (2)
Apr. 1.2 1.3 2.7 4.6 3.0 23
- 1.1 24 6.0 24 2.5 2 0
(2) (.8) 4.1 (15.5) (7.3) 2.9) (2)
May 1.3 1.9 2.7 42 32 2.6
1.3 1.3 2.7 52 2.5 2.6 3 0
(2) 2.2) (3.8) (15.6) (7 7) 2.3) 0)
Jun. 1.0 2.6 25 39 2.0 2.0
1.0 3.0 2.6 4.7 3 2 1.7 2.0
0) (2.1) (3.6) (16.4) (7.8) 2.1) (O)
Jul. 1.1 2.2 24 43 3.5 2.0
- 22 2.5 5.6 34 1.5 1 0
(1) (1.6) (3.6) (18.3) (7.3) 2.1) (0)
Aug. 1.0 1.7 2.1 47 34 2.0
1.0 1.6 2.2 59 3.5 2.2 -
) (1.4) (3.9 (19.5) 6.9) 2.1) (3.3)
Sept. 25 1.7 2.7 4.6 3.6 2.1 3.7
3.0 1.7 2.7 5.9 3.6 2.2 45
(.3) 1.7 5.1 (20.0) (6.0) 2.1 (11.4)
Oct. 1.5 22 3.1 50 2.8 22 53
1.5 2.0 2.7 6.1 2.8 23 8.5
(.3) (1.8) (5.0 (20.7) (6.0) (1.8) (8.6)
Nov. 1.0 23 2.8 5.7 2.8 1.7 43
1.0 2.0 2.8 6.8 2.8 1.5 53
0 (.8) 4.7 (19.9) (6.6) (1.6) (8.6)
Dec. 1.3 1.7 28 5.7 3.0 1.5 5.0
- 1.7 3.0 6.6 2.6 1.4 6.0
(4) (4) (4.4) (18.4) (7.5) (2.0) (4.5)

Note : — denotes unavailability of data to compute empirical value
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Table 4.7(b). Expected Uninterrupted Residence Times (months), Computed and

Empirical, Virginia, PHDI Data
Class—> 1 2 3 4 5 6 7
Starting
Month ¥
Jan. 1.5 1.2 2.8 43 36 2.6 4.0
1.5 1.2 29 6.0 32 2.0 4.0
(:25) (2) (41 | (12) | (76) | 46) | (45)
Feb. 1.0 . 24 43 33 3.2 4.0
1.0 l O 2.2 6.2 2.6 3.3 4.0
(0) (0) 4.0) | (10.3) (7 3) 42) | 2.0
Mar. 2.9 4.1 33 3.0
1 0 l 8 2.7 54 2 5 35 3.0
© | a9 | @0 | 09 | 02 | 2o | O
Apr. 1.2 1.5 2.7 3.8 3.0 23
-- 14 24 5.0 23 2.5 2 0
(-2) (14) | GO | B9 | (75 | 26 (2)
May 3 2.1 24 3.4 3.1 2.5
1 3 1.5 2.7 4.5 23 2.6 3 O
(2) 22 | G5 | ®9 | G | 20 0)
Jun. .0 22 24 3.1 3.7 2.0 2.0
1 0 2.6 2.5 4.6 3.2 1.7 2.0
(0) (19 | G6 | 03 | B | (17 (0)
Jul. . 2.0 25 3.2 3.8 1.9
20 2.8 52 3.9 1.5 l O
(-1) (te6) | 3.7 | (10.7) (7 8) (1 6) (0)
Aug. 1.7 2.1 3.8 .6 .
1 0 1.6 2.0 6.2 3 9 2 0 -
(0) (14) | 40 | 125 | (72) | (16 | (33)
Sept. 1.7 2.8 3.9 34 1.9 3.7
5 0 1.7 2.7 5.9 3.6 2.2 45
2.1 (1.7) (5.7) (13.3) 6.7) (1.6) | (11.4)
Oct. 2.1 2.1 34 4.2 29 1.9 5.3
2.5 20 29 5.9 3.1 2.0 8.5
2.1) (1.8) (5.2) (13.9) (6.6) (1.9 (8.6)
Nowv. 23 24 3.0 4.7 3.0 1.7 43
2.0 2.0 3.0 59 3.2 1.5 53
(1 7) ( 8) 4.7 (13.3) (7 1) (1.4) | (8.6)
Dec. 2. 2.8 49 . 14 5.0
2. 0 l 7 2.8 6.3 2 9 1.3 6.0
(.3) (4 (4.3) (11.7) | (7.5 (1.7) (4.5)
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Table 4.8(a). Expected First Passage Time and Recurrence Time to Class 4, (months),
Computed and Empirical, Arizona, PDSI Data

Class— 1 2 3 4 5 6 7
Starting
Month 4
Jan. 15.8 12.4 99 3.9 11.0 17.1 20.5
214 12.7 11.3 4.0 18.6 17.3 41.7
Feb. 15.3 13.4 10.4 3.2 11.7 17.8 203
23.3 8.8 13.9 2.6 17.5 223 30.3
Mar. 14.6 13.0 8.9 4.1 11.8 16.6 23.1
243 9.7 12.1 42 17.5 19.5 27.7
Apr. 13.6 12.7 72 26 11.5 13.4 22.1
239 5.6 10.2 2.6 13.5 26.0 28.6
May 12.6 10.6 52 2.1 9.9 12.7 21.1
16.7 78 93 1.6 98 24.6 27.6
Jun. 11.6 7.6 4.6 1.9 92 11.7 20.1
13.8 14.6 5.6 1.3 98 19.6 26.6
Jul. 11.6 10.6 3.8 24 11.1 10.2 19.1
14.5 16.2 2.7 1.5 9.4 17.1 29
Aug. 14.3 16.6 4.1 2.7 10.2 14.7 215
17.7 31.5 3.5 3.5 8.7 23.1 39.5
Sept. 15.6 73 6.8 2.1 94 14.7 21.7
21.0 11.7 5.1 14 10.8 22.7 38.2
Oct. 16.5 13.7 6.3 2.0 8.9 15.5 21.7
236 7.0 5.4 2.0 10.0 31.0 31.2
Nov. 15.6 15.3 9.8 2.7 95 16.5 20.8
252 10.0 8.8 35 15.6 19.1 30.2
Dec. 14.6 14.3 8.4 33 8.9 18.1 20.1
219 11.0 11.3 4.2 14.7 18.7 30.8




Table 4.8(b). Expected First Passage Time and Recurrence Time To Class 4 ,(months),
Computed and Empirical, Arizona, PHDI Data

Class— 1 2 3 4 5 6 7

Starting
Month |

Jan. 20.9 14.5 12.6 4.1 12.1 215 23.6

238 14.0 12.2 2.7 220 324 69.0

Feb. 20.7 17.6 12.2 43 13.5 21.1 233

253 12.3 13.0 4.2 19.8 425 47.0

Mar. 20.0 17.8 10.8 4.9 13.7 20.1 26.5

26.2 13.3 12.9 48 21.6 31.1 55.0

Apr. 19.0 17.8 94 3.0 13.7 17.0 255

26.0 8.9 11.6 2.9 16.7 37.6 53.8

May 18.0 15.1 6.8 23 11.6 16.6 245

19.2 113 10.2 1.6 12.8 32.6 52.8

Jun. 1 170 11.2 6.3 1.9 9.6 15.6 235

16.6 17.2 6.8 1.3 11.8 26.2 51.8

Jul. i 17.1 13.1 39 3.0 10.1 14.4 225

| 163 18.4 2.8 1.7 93 25.3 48.6

Aug. 18.7 12.5 53 4.6 10.5 15.8 249

20.5 13.7 4.5 6.4 95 30.9 61.5

Sept. 215 7.6 6.1 2.9 10.0 16.5 254

23.7 11.3 44 1.7 13.0 29.9 58.8

Oct. 214 17.0 6.6 22 10.6 18.6 255

26.3 83 53 1.9 14.0 40.0 51.8

Now. 22.0 17.8 8.0 3.2 11.0 22.5 23.7

273 12.6 6.8 4.8 17.5 32.6 50.8

Dec. 20.9 14.5 12.6 34 12.1 21.5 23.6

243 15.2 10.9 5.0 18.7 39.8 48.0




Table 4.9(a). Expected First Passage Time and Recurrence Time To Class 4 (months),
Computed and Empirical, California, PDSI Data

Class— 1 2 3 4 5 6 7
Starting
Month ¢
Jan. 5.1 6.0 3.6 32 6.2 56 109
6.5 2.0 2.5 29 11.2 7.5 10.0
Feb. . 55 6.0 43 2.5 6.5 6.1 99
5.8 2.0 3.7 2.5 10.3 8.6 9.0
Mar. 6.5 5.0 49 2.8 5.6 10.2 10.8
5.5 53 55 2.3 7.0 15.4 9.0
Apr. 11.0 5.5 5.6 1.5 6.3 9.0 98
9.0 7.0 5.1 1.7 5.9 16.6 11.3
May 10.0 5.4 4.9 1.7 72 7.7 9.4
93 9.0 43 1.7 8.6 13.0 12.3
Jun. 90 4.6 3.9 1.6 6.0 6.9 8.4
83 75 3.7 13 6.9 11.3 11.3
Jul. 8.0 3.6 3.2 1.1 4.9 5.8 74
73 5.4 29 1.0 4.8 8.7 14.4
Aug. 7.0 5.1 2.8 1.3 4.1 5.1 6.7
6.3 9.5 24 1.3 5.5 7.5 93
Sept. 6.0 22 2.6 1.4 38 52 6.3
8.0 1.7 2.0 1.2 6.4 54 6.0
Oct. 6.4 3.7 1.9 22 50 53 79
9.0 33 1.4 2.0 7.7 6.8 75
Nov. 54 5.4 2.6 2.7 5.6 10.2 6.9
8.0 5.0 2.0 4.0 6.6 19.0 6.5
Dec. 4.4 6.3 32 23 59 92 11.9
6.0 0.0 2.6 2.1 10.2 12.5 11.0




Table 4.9(b). Expected First Passage Time and Recurrence Time To Class 4 (months),
Computed and Empirical, California, PHDI Data

Class— 1 2 3 4 5 6 7

Starting
Month 4

Jan. 13.6 9.4 45 4.5 8.0 9.7 14.0

13.0 53 29 45 12.3 7.7 11.0

"Feb. 12.6 9.6 5.7 3.4 6.8 11.4 13.0

11.7 4.0 4.3 3.6 9.9 112 10.0

Mar. 14.5 8.6 6.4 3.6 6.6 13.4 163

14.0 8.8 6.6 3.1 75 15.0 12.0

Apr. 16.3 8.0 6.8 2.0 6.5 12.4 15.3

13.5 10.1 6.1 22 5.7 18.5 12.3

May 15.3 8.4 5.7 22 8.1 10.8 16.0

17.5 11.6 49 2.0 8.3 14.2 15.5

Jun. 14.3 8.0 5.0 1.8 7.4 10.2 15.0

16.5 9.4 4.6 1.4 7.4 13.1 14.5

Jul. 13.3 7.6 4.4 1.1 6.2 8.9 14.0

15.5 8.2 3.9 1.0 5.6 9.9 17.0

Aug. 12.3 10.6 4.0 1.6 52 9.0 14.0

14.5 13.5 3.3 1.5 6.0 8.8 12.5

Sept. 13.0 6.2 33 1.7 4.8 8.7 15.7

17.8 53 23 1.3 7.1 58 9.3

Oct. 16.6 7.4 3.0 3.3 6.0 9.3 14.7

16.0 9.4 2.0 2.5 7.8 78 8.3

Nov. 15.6 15.6 4.1 4.1 7.0 13.5 13.9

15.0 16.0 3.2 58 6.6 14.7 8.0

Dec. 14.6 9.4 52 3.2 7.9 12.5 12.9

14.3 0.0 3.7 2.9 12.0 11.6 7.0




Table 4.10(a) Expected First Passage Time and Recurrence Time to Class 4, (months),
Computed and Empirical, Virginia, PDSI data

Class—> 1 2 3 4 5 6 7
Starting
Month {
Jan. 8.1 4.7 4.6 1.8 52 6.8 11.2
4.0 3.8 52 1.4 43 8.0 15.5
Feb. 7.1 4.1 4.7 1.9 5.7 8.8 10.7
3.0 93 39 2.4 4.7 93 16
Mar. 6.5 6.1 4.2 1.6 5.7 8.9 9.7
- 52 49 1.8 6.3 9.0 15
Apr. 6.1 6.1 4.4 1.7 5.4 7.9 8.7
- 5.0 4.5 1.8 7.1 7.0 14
May 7.0 36 43 2.0 59 79 7.1
53 2.0 52 24 8.0 11.4 3
Jun. 8.4 7.7 4.5 29 6.2 7.1 6.1
7.0 6.3 6.0 2.5 93 8.0 2
Jul. 6.5 7.4 4.4 26 6.6 6.2 5.1
- 72 52 2.1 72 12.5 3
Aug. 7.2 6.7 49 2.1 5.8 8.2 6.4
5.0 6.7 4.6 2.7 5.1 14.0 -
Sept. 6.7 6.2 4.7 23 5.7 84 6.1
3.0 6.0 6.3 1.9 59 10.7 13
Oct. 5.7 6.0 4.5 2.3 49 9.8 10.1
2.5 6.2 4.6 2.5 5.6 11.3 17
Nov. 35 5.9 438 1.9 5.1 8.7 9.1
4.0 4.0 5.1 1.6 4.5 17 11
Dec. 6.8 5.0 4.6 1.5 52 6.7 12.2
-- 3.6 5.8 1.5 4.0 94 18

Note : — denotes unavailability of data to compute empirical result




Table 4.10(b). Expected First Passage Time and Recurrence Time To Class 4, (months),

Computed and Empirical, Virginia, PHDI Data

Class— 1 2 3 4 5 6 7
Starting
Month 4
Jan. 9.1 6.3 5.2 22 52 8.5 14.2
6.0 438 5.9 1.6 4.6 9.0 15.8
Feb. 9.1 7.0 49 2.1 53 9.6 14.3
5.0 11.0 41 2.8 42 9.0 17.7
Mar. 8.6 8.1 5.1 2.0 6.0 10.0 13.3
4.0 73 53 22 6.4 7.0 16.7
Apr. 79 7.6 4.5 1.7 55 9.0 12.3
0.0 7.1 43 2.1 6.9 6.5 15.7
May 79 6.7 4.1 24 6.0 10.0 14.0
8.8 25 49 2.7 7.8 12.2 5.0
Jun. 9.2 6.9 45 3.1 6.7 9.6 13.0
11.0 6.8 5.6 25 9.4 8.3 4.0
Jul. 7.8 8.2 49 3.6 7.5 8.1 12.0
0.0 8.1 5.7 2.8 7.6 12.8 14.5
Aug. 8.8 8.2 44 2.7 6.5 11.0 8.7
9.0 8.4 4.1 3.6 5.5 13.7 0.0
Sept. 10.5 7.8 5.6 2.7 55 10.6 13.6
10.0 73 6.0 22 5.8 11.2 16.0
Oct. 95 8.0 55 2.8 53 10.7 14.6
8.0 6.7 5.1 2.8 6.0 93 14.5
Nov. 95 75 5.2 23 5.6 99 13.6
8.0 5.0 5.4 2.1 5.0 16.8 13.0
Dec. 10.1 6.9 5.0 1.5 5.6 7.4 15.2
7.0 49 55 1.7 43 9.0 19.7
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Table 4.11(a). Mean First Passage Times and Mean Recurrence Times to Class 4, PDSI

Data
Place { Class— 1 2 3 4 5 6 7
Arizona
12 Monthly Matrices'
Average 14.3 123 7.1 2.7 10.3 14.9 21.0
Mean Monthly Matrix | 13.7 12.1 7.4 2.8 10.7 13.9 19.5
Empirical 19.5 11.3 8.8 2.8 13.2 21.3 31.7
California
12 Monthly Matrices’
Average 7.0 49 3.6 20 5.6 72 8.9
Mean Monthly Matrix | 6.9 4.8 3.8 2.1 58 7.6 9.9
Empirical 73 5.5 32 21 7.6 10.9 103
Virginia
12 Monthly Matrices'
Average 6.6 5.8 4.6 2.1 5.6 7.9 8.5
Mean Monthly Matrix | 6.0 5.9 4.6 2.1 5.8 7.6 8.2
Empirical 4.3 5.4 5.0 2.1 5.9 10.7 13.2
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Table 4.11(b) Mean First Passage Times and Mean Recurrence Times to Class 4, PHDI

Data
Place | Class— 1 2 3 4 5 6 7
Arizona
12 Monthly Matrices'
Average 19.8 147 84 33 11.5 18.4 244
Mean Monthly Matrix | 22.0 169 8.6 34 1.7 175 229
Empirical 219 133 86 35 158 319 53.7
California
12 Monthly Matrices’
Average 143 9.1 4.8 2.7 6.7 10.8 14.6
Mean Monthly Matrix | 144 83 5.0 2.8 7.0 11.7 15.6
Empirical 14.8 9.1 4.0 27 8.1 11.7 12.2
Virginia
12 Monthly Matrices'
Average 9.0 7.4 49 24 5.9 9.5 13.2
Mean Monthly Matrix | 8.9 7.6 49 24 6.1 10.0 13.4
Empirical 7.8 6.8 5.1 24 6.0 10.7 14.8

72



Table 4.12(a) Average Uninterrupted Residence Times (months) and Empirical Average
Residence Times, PDSI Data

Place 4 Class — 1 2 3 4 5 6 7
Arizona
12 Monthly
Matrices’ Average 55 1.6 2.8 52 4.1 3.7 6.7
Empirical Average 5.1 1.6 29 5.1 42 3.3 6.7
California
12 Monthly
Matrices’ Average 53 2.1 2.6 45 33 2.7 5.0
Empirical Average 4.9 2.1 2.6 4.5 33 2.7 5.0
Virginia
12 Monthly
Matrices’ Average 1.3 1.8 2.7 4.8 33 23 3.2
Empirical Average 1.4 1.9 2.7 4.9 3.3 2.2 3.9
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Table 4.12(b) Average Uninterrupted Residence Times (months) and Empirical Average
Residence Times, PHDI Data

Matrices’ Average
Empirical Average

Place ¥ Class —> 1 2 3 4 5 6 7
Arizona
12 Monthly
Matrices’ Average 5.6 1.6 3.1 42 4.0 3.7 6.3
Empirical Average 5.1 1.6 3.2 42 4.1 33 6.7
California
12 Monthly
Matrices’ Average 6.6 20 32 3.7 3.4 2.7 4.6
Empirical Average 6.1 2.1 32 34 33 2.8 6.1
Virginia 1.6 1.8 2.7 4.0 33 22 3.2
12 Monthly 1.6 1.9 2.7 3.9 34 2.0 3.9
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Table 4.13(a). Prediction of Weather Classes, PDSI Data

1931 AZ |Jan. |Feb. |Mar. | Apr. | May |Jun. |Jul. | Aug. | Sep. [ Oct. | Nov. | Dec.
OBS. 4 3 4 3 3 3 2 1 1 1 1 1
PMODE (4 |4 4 4 4 3 4 |4 4 4 1 1
PEXP 4 |4 4 4 4 3 4 13 4 4 1 1
1931 CA

OBS. 4 |5 5 5 5 5 5 6 4 3
PMODE (4 |4 4 4 4 5 5 4 4 4
PEXP 4 4 4 4 4 ) 5 h) 5 5 5 5
1931 VA

OBS. 7 |7 7 7 6 5 5 |5 5 5 5 6
PMODE (4 |7 7 7 6 6 6 |6 6 5 5 5
PEXP 5 |S 5 7 6 6 6 |5 5 5 5 5
1990 AZ

OBS. 7 7 7 7 7 7 7 7 6 7 7 7
PMODE (7 |7 7 7 7 7 7 |7 7 7 7 7
PEXP 7 7 6 6 6 6 7 6 6 6 6 7
1990 CA

OBS. 5 S 5 6 5 5 6 |5 5 6 6 6
PMODE (4 |4 4 5 6 4 4 4
PEXP 4 |4 4 5 6 5 5 5
1990 VA

OBS. 2 |3 3 3 2 4 14 |4 4 4 4 4
|PMODE |3 |3 3 3 3 3 3 |3 4 4 4
PEXP |3 (3 |3 (3 |3 (3 (3 |3 3 |4 |4 |4

OBS.= OBSERVED Class ; PMODE = PREDICTED Class (MODE VALUE) ; PEXP = PREDICTED Class (EXPECTED VALUE)
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Table 4.13(b). Prediction of Weather Classes, PHDI Data

1931 AZ |Jan. |Feb. [Mar. | Apr. | May |Jun. [Jul. | Aug | Sep. | Oct. | Nov |Dec.
OBS. 4 3 4 3 3 3 2 l 1 1 l 1
PMODE |4 |4 4 4 4 3 4 |3 3 3 1 1
PEXP 4 4 4 4 4 3 4 |4 3 3 3 1
1931 CA

OBS. 4 5 5 5 S 6

PMODE |4 4 4 4 |4 5

PEXP 4 4 4 4 4 5 5 |5 5 5 5 5
1931 VA

OBS. 7 7 7 7 6 5 5 |5 5 5 5 6
PMODE |5 7 7 7 6 6 6 |6 6 5 5 5
PEXP 7 7 7 7 6 6 6 5 5 5 5 5
1990 AZ

OBS. 7 7 7 7 7 7 7 7 6 7 7 7
PMODE |7 7 7 7 7 7 7 |7 7 7 7 7
PEXP 7 7 6 6 6 6 7 |7 7 7 7 7
1990 CA

OBS. 5 5 5 6 5 5 6 |5 5 6 6 6
PMODE |4 4 4 5 5 |6

PEXP 4 4 4 5 h) 6

1990 VA

OBS. 2 3 3 3 2 3 4 |3 4 4 4 4
PMODE |3 3 2 3 3 3 3 3 2 4 4
PEXP 2 3 3 3 3 3 3 |3 3 3

OBS.= OBSERVED Class ; PMODE = PREDICTED Class (MODE VALUE) ; PEXP = PREDICTED Class (EXPECTED VALUE)
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Chapter V

DYNAMICAL BEHAVIOR OF DROUGHTS

5.1 INTRODUCTION

Chapter IV dealt with the characterization of droughts in terms of the steady state
probabilities of occurrences of weather classes in various months, first passage times, and
uninterrupted residence times and their variances ; also, a predictive technique for the
weather classes has been suggested. The procedure offers forecasts with good accuracy
up to 4 months in advance. The statistical measures of drought characteristics are derived
as the expected values. To cope with the situations when sudden, extreme fluctuations in
rainfall ( and thereby in Palmer index) occur, two approaches are offered. One is the
dynamical systems approach and the other to enumerate all possible occurrences no matter
how small the probability of occurrence of an event is in terms of a decision tree. The
current chapter deals with the dynamical systems approach while the decision tree
approach is covered in chapter V1. In the dynamical systems approach it is stipulated that
the time series of the variable characterizing the weather states represents a multistable
dynamical system. This stipulation happens to agree very well with the empirically
observed bi-modal / multi-modal distribution of the Palmer index (Alley, 1984, 1985; Eder
et al., 1987; Heddinghaus and Sabol, 1991). Prolonged periods of droughts with abrupt
transition to long periods of moisture abundance as often observed in several parts of the
world also indicate the bi-modal behavior of the weather process.

In the dynamical systems approach, it is argued that certain natural processes have a
tendency to revolve around certain stable states and transitions from one state to another
can be attributed to disturbances of external origin. For instance, in the case of the
bi-modal distribution of the PHDI it can be assumed that the weather tends to stay around

mainly two states; one representing dry conditions and the other wet conditions. An
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external force stochastic in nature can be considered responsible for aperiodic transitions
of weather states between these two states. For example, the global phenomenon of El
Nino- Southern Oscillation (ENSO) can be considered an external factor to account for
greater fluctuations in precipitation in many regions of the world. Precipitation in turn
affects the Palmer index. Hence ENSO phenomenon can be a relevant example of random
force of external origin. Thus in regard to its temporal evolution the Palmer index will
tend to lock itself around the value of one mode, but with a strong enough fluctuation in
the climate it may shift to the other mode and will remain there until a large climatic
fluctuation shifts it back to the previous mode.

In the dynamical systems approach the evolution of a process is represented by a
stochastic differential equation and the solution of an equivalent Fokker Planck equation
gives the probability density function of the process which is used to analyze the stable
states of the system. The goal of the present chapter is, therefore, twofold : i) to explain
the bi-modal behavior of Palmer index using dynamical systems approach and ii) to present
a procedure to analyze the effects of the external forces on drought process in a region.
Since PHDI is better suited for operational applications, we have chosen to use this index

in this chapter.
5.2 FLUCTUATION INDUCED TRANSITIONS

5.2.1 Brownian Motion

In many circumstances the environment impinging on a dynamical system is a complex ,
noisy one. In such an environment spontaneous random variations from the means of the
state variables called the fluctuations characterize the system. For example consider the
Brownian motion of a particle. Let the mass of the particle be m. When this particle is

immersed in a fluid, the fluid will exert a frictional force on the particle. The simplest

expression for such a friction force (F) is given by the Stokes’ law (Risken, 1984):
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F=-a V M
where : a > 0 is a constant which depends on the viscosity of the fluid and on the

particle’s mass and diameter and V = velocity of the particle.
. Therefore, as per Newton’s second law of motion we can write the equation of motion for

the particle as :

dv
—=-aV 2
m— @
or; md—v+aV= 0 3)
dt

Eq. 3 is a deterministic differential equation, and its solution gives how an initial velocity
V(0) of the particle decreases to zero with time. Eq. 3 is valid only if the mass of the
particle is large so that its velocity due to molecular bombardment in fluid is negligible.
For small mass m the effects of molecular bombardment on velocity can not be neglected
and so the solution of the deterministic Eq. 3 can not exactly describe the velocity of the
particle. Instead we need to modify Eq. 2 by adding a fluctuating force F(t), due to the
effect of molecular bombardment, which produces instantaneous random changes in the
acceleration of the particle. Therefore, Eq. 2 is modified as :

dv

m d—t=—a V +F(t) )
: av -
or; it +yV=T() : &)

where: y= 2 and I'(t)= F®
m m

The term I'(t) in Eq. 5 represents fluctuating force per unit mass (stochastic quantity) and
is called Langevin force. Eq. S is called a stochastic differential equation because it
contains the stochastic term I'(t). If a differential equation contains a stochastic term, like
Eq. 5 as above, then the solution to the differential equation can only be described
statistically. For this purpose some properties of the Langevin force I'(t) are required to

be known. In many cases I'(t) is modeled as a Gaussian white noise. For white noise
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process it is assumed that the average of this force over the ensemble is zero. Also, the
correlation function of the force I'(t) is assumed proportional to a & function
or; E(Tr())=0and E(T(t).T{t))=a*5(t-1) (6)
where: q* = variance of T'(t)
The Gaussian white noise idealization of I'(t) can be explained as follows. The quantity
giving rise to this fluctuating force can be assumed to arise primarily from the
superposition of a large number of loosely coupled variables and, using the result of the
central limit theorem, this force can be assumed to follow Gaussian distribution. Further,
the fact that the variables are loosely coupled can be used to ensure statistical
independence of the successive values of the force for different times.
T'(t) is a stochastic quantity in Eq. 5 which varies from system to system in ‘thé ensemble.
As a result, the velocity V(t) will also become a stochastic quantity . Therefore, we may
ask for the probability to find the velocity of the particle in the interval (V,V+dV); or in
other words we may ask for number of the systems of the ensemble whose velocities are in
the interval (V,V+dV) divided by the total number of the systems in the ensemble. For a
continuous variable like velocity V, the answer to this question can be found by computing
the probability density function p(V,t). A stochastic differential equation forced by the
white noise, like Eq. 5 above, defines a class of random processes known as diffusion
process, and the probability density function of the variable of interest, p(V,t|vo,to) in this
case, obeys to an equation called the Fokker - Planck equation as below:

% = ——B%F(v,t)+%% @)
By solving Eq. 7 with proper initial condition, one obtains the probability density
function p(V,t|vo,to) for all later times. The solution to the Fokker Planck equation is the
probability density of the solution to the original differential equation. Mathematically,
Eq. 7 is a linear second order partial differential equation of parabolic type. Roughly
speaking, it is a diffusion equation with an additional first order derivative with respect to

V. This equation is also called a forward Kolmogorov equation.
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The general Fokker Planck equation for one variable x has the form :

2lotrote) -2 g psd Zonesop ®
In Eq. 8, D(x,t) > 0 is called the diffusion function and A(x,t) the drift function.
Nonstationary solutions of the Fokker Planck equation ( Eq. 8 ) are generally difficult to
obtain. A general expression for the nonstationary solution can be found only for special
drift and diffusion functions. It is therefore important to discuss the drift and diffusion

functions and their forms which yield analytical solution of the Fokker Planck equation.

5.2.2 Drift and Diffusion Functions of Continuous Markov Process

Appendix V gives a brief description on continuous Markov process representation. The
propagator random variable for a process X; denoted by K is defined as
K=Xua-X: given X;=x )]

The mean function of K is A(x,t)dt and its variance is D(x,t)dt. The propagator density
function is the same as the Makov state density function p(x,t|xo,to) except the range gets
shifted. If a continuous Markov process is given to be in state x at time t, then its Markov
state density function at time t is just a delta function spike at x. Now at infinitesimally
later time t+dt , the infinite spike will have relaxed to a normal or Gaussian shaped peak,
which is centered on x+A(x,t)dt and which has width of 2( D(x,t) dt)” . Since the drifting
of peak is controlled by A(x,t) function, it is called the drift function of the process. The
diffusive spreading of peak is controlled by D(x,t) and so it is called the diffusion fuinction
of the process. The continuous Markov process X, is temporally homogeneous if A(x,t) =
A(x) and D(x,t) = D(x) ; and X, is completely homogeneous if A(x,t) = A and D(x,t) =D.
The functional forms of drift and diffusion functions dictate the possibility of obtaining
closed form solutions of the Fokker Planck equation. For example, analytic solution of
the Fokker Planck equation can be found for linear drift function and constant diffusion

function. In this case one obtains Gaussian distribution for the stationary as well as for the

81



non-stationary solutions (Risken, 1984). Also, based on the functional forms of the drift
and diffusion functions of a continuous Markov process, moment evolution equations are
derived for computing mean, variance and covariance of the process X;. These equations
can be solved analytically if A(x,t) is a polynomial in x of degree < 1 and D(x,t) is a
polynomial in x of degree < 2. If these rather restrictive conditions on A(x,t) and D(x,t)
are not satisfied, then either a numerical solution is hoped or suitable approximation of
two functions A(x,t) and D(x,t) is done to obtain the solution (Gillespie, 1992).

Most continuous Markov processes of practical interest can be assumed to be temporally
homogeneous which implies that : A(x,t) = A(x) ; and D(x,t) = D(x) (Gillespie, 1992).
Kedam et al. (1994) described a probability distribution model for rain rate assuming it to
follow a temporally homogeneous diffusion process. Temporal homogeneity essentially
means that the first two moments of the propagator random variable (K) do not change
over time. Temporal homogeneity does not restrict the variation of the moments of
process X, over time. For example, the Wiener process is characterized by : A(x,t) = A
;and D(x,;t) = D > 0 ; which in fact is a completely homogeneous continuous Markov
process. The Ornstein- Uhlenbeck process is characterized by A(x,t) =-k x ; D(x,t) =D
( k>0 ;D > 0) and is a temporally homogeneous process. Both the processes have time
dependent moments. The following analysis assumes the process to be temporally
homogeneous.

For some temporally homogeneous Markov processes the state density function
p(x,t|xo,to) approaches, as (t-to) — <= , a stationary density function Ps(x). In such a
circumstance we say that X(t) is a stable process (Gillespie, 1992). The stationary density
function implies that a measurement of the process at any significantly large time t will be
equivalent to sampling a random variable whose density function does not depend upon
time. In the following computation of the steady state density function using the Fokker

Planck equation ( Eq. 8 ) is described.
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5.2.3 Steady State Density Computation

There can be basically two approaches to find the steady state density of the variable of
interest using the Fokker Planck equation. The first one is to explicitly solve the Fokker
Planck equation (Eq. 8) for p(x,t|xo,to) using the proper drift and diffusion functions and
then compute the limit (t-tp)) — = ; that is

Ps(x) = lim @0y — - p(X,tiXo,to) » (10)
Another approach is to put the time derivative in the Fokker Planck equation ( Eq. 8)
equal to zero and then solve the resulting ordinary differential equation. This technique is

discussed in the following. Putting time derivative equal to zero in Eq. 8, we get

-4 Acopsoo]+ L Degpseoy] = 0 (1)
dx 2 dx?

Eq. 11 is an ordinary differential equation for Ps(x) and is relatively easier to solve than
the partial differential Eq. 8. To solve Eq. 11 we write

di[_A(x)ps(x) + 11(D(x)1>s(x))] =0 (12)
X 2 dx

For Eq. 12 to be true, the quantity within the braces must be a constant with respect to x.
Assuming as x approaches boundaries of the process, Ps(x) approaches zero and so the

quantity in the braces in Eq. 12 should be zero at the steady state. That is

-A(x)Ps(x) + l—d—(D(x)Ps(x)) =0
2 dx

di(D(x)Ps(x)) = 2A(x)Ps(x)
X

d(D(x)Ps(x)) _ 2A(x)Ps(x) 13)
D(x)Ps(x) D(x)Ps(x)

Integrating Eq. 13 we get

In (D(x) Ps(x) ) = I%(:))dx +constant (14)
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. _ 2A(x)
or; D(x) Ps(x) = C exp ( [ mdx) (15)

The equation for Ps(x) is then

Ps() = oS exp(—b(0) (16)
where : d(x) =- J %(x);)dx a7
and : % = J D) exp(—¢(x))dx (18)

—-oC

It can be observed that if functional forms of A(x) and D(x) functions are known, the
steady state density function for a temporally homogeneous process of interest can be
evaluated using Eq. 16. In above relationships, the ¢(x) is called the potential function
and K’ is the normalizing constant. It is observed from Eq. 16 that the Ps(x) will exist

only if K’ is defined as a finite, positive number.

5.3 DROUGHT MODELING USING PHDI

5.3.1 Distribution of the Palmer Drought Index

The computation procedure of the Palmer index is an involved one (see Appendix I for
details). While commenting on the ARMA representation of the Palmer index, Alley
(1984) pointed out that the switching among the temporary indices X,, X3, and X3, one of
which becomes the PDSI, (see Appendix I for definitions) during the computations might
cause certain problems. In particular, for an established drought with X(i)=X;(i), the
PDSI for the following month, X(i+1), may be either Xs(i+1) or X;(i+1). If set to
Xs(i+1), then X(i+1) will be computed using Xs(i) as per Palmer equation and will
probably not deviate much from X(i). On the other hand, if set to X,(i+1), then X(i+1) will

be positive and will be much different from X(i). Similar results occur for established wet
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spells. In view of these Alley (1984, 1985) concluded that the conditional distribution of
X(i+1) given X(i) tends to be bi-modal during periods of established droughts or wet
spells and showed the same with the PDSI data of New Jersey and Iowa. Eder et al.,
(1987) reported unconditional bi-modal distribution of PDSI data over south-eastern
United States. Similarly, Heddinghaus and Sabol (1991) reported unconditional bi-modal
distribution of PDSI for 9 climatic divisions in Iowa. In view of the philosophy of the
index computation procedure, the bi-modality in conditional distribution of the index
seems more logical as compared to the marginal distribution. In order to verify this claim,
conditional distribution of PHDI data for selected climatic divisions in AZ, CA and VA are
examined. It is found that the conditional distribution of PHDI,., is bi-modal only when
PHDJ; belonged to class 4. The dot plots of data are shown in Figures 5.1(a, b, and c)
wherein bi-modality of PHDI;.,| PHDI; € class 4 is quite obvious. Figures 5.2(a, b, and c)
show the relative frequency histograms of PHDI;,;| PHDI; € class 4 in respect of each
state. Figures 5.3 and 5.4 show dot plots of PHDI;.; when PHDYJ; is in class 2 and of
PHDI;.; when PHDYJ, is in class 6, respectively. It is observed that these plots do not
exhibit distinct bi-modality and are rather close to unimodal type distribution. The relative
frequency histograms are shown in Figures 5.5(a through c) and 5.6(a through c) which
further support the claim made earlier. Based on these results it is concluded that the
current month PHDI follows a bi-modal distribution only when the previous month it is in
class 4. This seems to agree with the intuition that it is only when the weather is in normal

state (class 4), it has a tendency to go to either a dry or a wet state in next time step.

5.3.2 Modeling of Droughts

Conventionally, the PHDI is computed on a monthly / weekly basis. However, to
meaningfully define an intensity of dryness or wetness, we should be able to assess the
changes (displacements) from a particular drought /wet value over infinitesimal periods.

The Palmer index equation which is used for computing PHDI is
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PHDI,.,; =.897 PHDL + Z,,, /3 (19)
where : PHDI,.,= PHDI at time t+1

Z.) = Palmer’s Z index which represents moisture anomaly conditions

For small time step dt, the Eq. 19 can be written as :

PHDI.4 - PHDI, =-.103 PHDIL; + Z.at /3 (20)
or; dX;=-103 X; + Zn.a/3 21)
where: dX, = total change in the PHDI value as dt goes to zero.

The total change in the PHDI value in the small time interval dt can be assumed to be
composed of two components, namely , i) deterministic component, ii) stochastic
component. The first term in the right hand side of Eq. 21 is a deterministic term at time
(t+dt) and the second term which calls for the precipitation deficit between the current
period t, and the future period , t+dt, is a random term . Therefore, an equivalent discrete
form of Palmer equation (Eq. 19) can be written as :
Xe -aXe =Y:,t=0, 1, 2, 3, .. 22)
where : X: = Drought process as represented by the PHDI
Y. = pure random process with variance ¢ ,> and represents term Z/3 term
a = correlation coefficient between X, and X,
Now we can obtain continuous analogue of Eq. 22 for representing the drought process
as a continuos Markov process using PHDI. Eq. 22 can be written as :
Xe-aXetaX-aXa=Y,
or; Xe(1-a)ta(Xe-X) =Yy

or; (I——a) Xe+tAX = n (23)
a a

dividing by At both sides we get

A_Xt_ + _(1_—&12& = Yt (24).
At a At aAt
Taking At —0; % + /Xt =g(t) (25)
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1-a Yt
here: =—;e(t)=—
v iyvaliOhdye

Eq. 24 is the continuous analogue to the discrete Palmer drought index equation and is
similar to the stochastic differential Eq. S. As we take limit At—0 in Eq. 24, the
parameter 3 is assumed to remain finite. For this to be true , we require ‘a’ to approach
unity as At approaches its limit zero. In other words the correlation between X, and X,.; is
assumed to increase as dt tends to very small number. This is close to what happens in
reality as we expect PHDI values to be correlated strongly if computed on shorter interval.
As an illustration the variation in correlation coefficient with time interval of 1, 2, 3,...,12
months as computed using PHDI monthly data (1895-1992) for California is given in
Table 5.1 which agrees with the stated assumption.
Another way to develop the stochastic differential equation representing the PHDI process
is to relate the instantaneous rate of change of PHDI with the various factors which are
responsible for such a change. For example, rate of change of PHDI can be related to
hydro-meteorologic variables like precipitation, evapotranspiration, runoff, and infiltration
through some parametric relationships. These relationships can be developed using
empirical studies which relate PHDI to these variables.
Eq. 25 can also be written in general form as

dX, = (fx) +F) dt (26)
where : f(x) is the deterministic component and F is the random component.
Because PHDI is a measure of the cumulative deficit/surplus of supply of moisture , the
function f{x) will indicate average rate of change of cumulative deficit/surplus for
instantaneous times. Therefore, f{x) during time interval dt will depend upon PHDI value
as experienced at time t. This is quite obvious in Palmer’s equation (Eq. 19) wherein
PHDI at one time step later includes 89.7% of the PHDI as experienced during previous
time step. However, this functional relationship ( f{x) vs. x) has to be non-linear to

account for the multimodal behavior of the PHDI distribution. The analysis of PHDI, as
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described by Eq. 25, requires the drift and diffussion functions. The following section

contains the appropriate results.

5.3.3(a) Computation of the Drift and Diffusion Functions

The time evolution of the drought process Xt, which is assumed temporally homogeneous
and is represented by PHDI, is completely determined by the forms of its two
characterizing functions A(x) and D(x). The functional forms of these functions will
dictate the steady state as well as the time varying density functions of the drought
process. Therefore, determination of these functions plays a crucial role in analyzing the
drought process Xt using the Fokker Planck equation. Ideally the functional forms of
A(x) and D(x) functions should be determined based on physical considerations
concerning the dynamics of the PHDI process. In the present case we have chosen to use
the long term PHDI data for the purpose and adopted the following procedure to obtain
the A(x) and D(x) functions for the drought process.

The propagator random variable for a continuous Markov process is described in Eq. 9 as

K= Xua - Xi  given X;=x

We know from Appendix V
E[K]=E [ Xoa-X|X=x]=A(x) dt @7)
Var [K]=Var [ Xpa - X | Xe =x ] =D(x) dt (28)
Assuming dt=1.0, Eqs. 27 and 28 become:
E[K]=E[ X -X|X=x]=A®) (29)
Var[K]=Var[ X - X | Xe=x]=D(x) (30)

We use Eqgs. 29 and 30 to fit A(x) and D(x) functions using observed data of PHDI. As
described in section 5.3.1, the distribution of PHDI;., | PHDI; € class 4 is observed bi-
modal while for PHDI;,, | PHDI; ¢ class 4 the distribution is observed unimodal. Since
A(x) and D(x) functions affect the shape of the distribution, we will fit two separate sets
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of functions to model the bi-modal and unimodal distributions. We first discuss the

procedure to fit A(x) and D(x) function for modeling PHDI;., | PHDI; € class 4.

5.3.1.1 A(x) and D(x) Functions for PHDI;; | PHDI; € class 4

Figures 5.1(b) and 5.2(b) show the dot plot and relative frequency histogram of
PHDI;,, | PHDI; € class 4, respectively for the selected climatic division in California. In
order to suitably represent the empirically observed bi-modal behavior as shown in these
figures the drift function A(x) of the process should exihibit the seesaw behavior. In other
words, A(x) should be non-linear function of x and should slow down and initiate process
decay when PHDI reaches its extreme ends. The following form of A(x) function is
adopted for the selected climatic division in California

A)=-x" - 2x°+1.2x (31)
which has the appropriate stable points as defined by the empirical conditional relative
frequency histogram.
Having found the A(x) function we now use Eq. 30 to fit the D(x) function. For this
purpose variance of PHDI;.;- PHDI; | PHDI; € class 4 is computed using PHDI data from
1895-1992. The result turned out to be 1.4. Therefore, a constant function for D(x) is
chosen :

Dx)=D=1.4 (32)
Egs. 31 and 32 give the A(x) and D(x) functions for the PHDI process for (i+1)th month
in California while PHDI is in class 4 range during ith month. Using Eq. 17, the potential

function can now be computed as

60 =- [ 2;‘(()(")) dx (33)

Putting A(x) and D(x) functional forms in Eq. 33, we get

b(x) = - %j (- -.2x% +1.2x) dx
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or: (%) = _T%E[ - 25x*-.066x3+.6x7] (34)

Further, we can use Eq. 18 to compute normalizing constant K’ as

= = [ =—exp (4(x) éx (35)

The value of K’ in Eq. 35 is evaluated by numerical integration between the limits of
variation of PHDI which is taken to vary from -4.5 to 4.5. The result is

K’ =.149 (36)
The value of K’ is finite and positive. Therefore, the steady state density of PHDI process
should exist which is given by Eq. 16. The functional form of Ps(x) is then ’

2x.149
Ps(x) = exp ((-¢(x))
or; Ps(x) = .213 exp (.36 x* -.095 x> +.86 x*) 37
bl
Further, j Ps(x) = 1.0 and Ps(x) >= 0 for al <=x <=bl ; al=-4.5, b1=4.5 which

al
ensures that Ps(x) is a density function.

Figure 5.7 shows comparison of the density function as given by Eq. 37 with the
empirical density. The empirical density function is developed using a conditional
histogram as shown in Fig. 5.2(b). It is seen that the computed density function agrees
well with the empirical density. Both density functions show bi-modality and have similar
mode values.

The Ps(x) function as given by Eq. 37 can be analyzed for maximum and minimum points

as below:

dP(x) _ =213 (-1.44 x* - 284 x* + 1.72 x) exp (.36 x* -.095 x> +.86 x*)

(38)

It can be seen that $= 0 forx=-1.2,0, and 1.0. It can be further seen that
X
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2 2
d—Psz(i) <0forx=-1.2and 1.0 ; and d—Psz(L)
dx dx

Therefore, x=-1.2 and 1.0 are two maxima of Ps(x) function and x=0 belongs to minima of

>0forx=0 (39

the Ps(x) function. Since Ps(x) is a density function the maxima of the function are the
modes of the distribution. Therefore, the values of PHDI=-1.2 and 1.0 can be said to be
most likely states (stable points) of the weather. Having modeled the bi-modal

distribution, we now apply the approach to model unimodal distribution.

5.3.1.2 A(x) and D(x) Functions for PHDI;,; | PHDI; ¢ class 4

It has been discussed in section 5.3.1 and shown in Figures 5.3 through 5.6 that if PHDI
during ith month is not in class 4, then PHDI during the (i+1)th month follows a unimodal
distribution. We now discuss a procedure to fit A(x) and D(x) functions for such a case.
We have again selected the climatic division of California for demonstrating the approach
to fit characterizing functions for PHDI;.; | PHDI; € class 6. As can be seen from Figures
5.4(b) and 5.6(b) that a PHDI value between -3.0 and -4.0 is the mode of the distribution.
Therefore, we select the following form of function to represent the A(x) function

A(x)=-x-3.31 (40)
This function tries to bring the process close to -3.31 value while the process drifts far
away from it. For D(x) function we computed variance of PHDI;,,-PHDI;| PHDI;€e class 6
using the PHDI data from 1895-1992. The result is

D(x)=D=0.36 (41)
Egs. 40 and 41 give the A(x) and D(x) functions for the PHDI process during (i+1)th
month while during ith month it is in class 6.

Using Eq. 17, the potential function ¢(x) is computed as

d(x) =278 x*+18.4x (42)
Similarly, using Eq. 18 the normalizing constant K’ is computed as
K’ =.1027x 107° 43)
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It may be noted that the value of K’ is computed by numerical integration between the
observed limits of -5 to -1. The K’ value is finite and positive and therefore, the steady
stath function will exist and is given by Eq. 16 as

Ps(x) = (2x.1027x107)/.36 [exp (-2.78 x* - 18.4 x )] (44)
Figure 5.8 gives comparison of empirical and computed density functions. A good match
between empirical and computed density functions is observed in Figure 5.8.
The Ps(x) function as given by Eq. 44 can be analyzed for maximum and minimum points

as below
Ps(x) =.571 x 10exp [ -2.78 x* - 18.4 x ]

bl
It is checked that I Ps(x) = 1.0 and Ps(x) >=0 for al <=x <=b1l; al=-1.0,

b1=-5.0 which ensures that Ps(x) is a density function.

%(x) = 571 (-5.56 x-18.4) exp ( -2.78 x* - 18.4 x) (45)
X .
2
It can be seen that dP+(x) |x=331 = 0. Further, d”P(x) [x=331 <O.
dx dx?

The analysis fits bi-modal / unimodal densities of PHDI and results agree well with the
empirical data. Using these density functions the probability of the current month’s PHDI
being in a certain range can be computed given the PHDI of the previous month. An

example problem showing such an application follows.

EXAMPLE : During a particular month the PHDI value of -3.5 is recorded in the San
Jaoquin division, California. Using the classification of weather given in Table 4.1 of
Chapter IV, compute the following :

a) Probability that PHDI will be in between -3.0 and -1.5 during the following month.

b) Can we use Markov chain approach for solving this problem ?

c) What will be the probability of PHDI being less than -1.5 during (i+1)th month if its

value during ith month is -1.1.
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Solution : We will use the density functions developed in above sections to solve the
problem. The stepwise solution procedure follows :
a) Step 1 : Referring to Table 4.1 in Chapter IV, we classify PHDI value of -3.5 to
fall in class 6. In section 5.3.1.2 we found that if PHDI is in class 6 in month ‘1’, then the
steady state density function for ‘i+1’ month will be given by
Ps(x)=.571x 102 exp [ -2.78 x*- 18.4x]; -5< x <-1
Step 2 : Use Ps(x) function to compute probability of PHDI being in between

-3.0and -1.5 as

-15
P[-3.0< x < -15]= [ Ps(x) dx
-3

-15
= f 571x 10" exp[-2.78 x*- 18.4x ] = 231 0r 23.1 %
-3
b) Step 1 : We can use the mean monthly matrix as described in chapter IV. We

know from step 1 of part (a) that PHDI is in class 6 during ith month. The range of PHDI
specified for i+1th month is for class 5 as given in Table 4.1 of Chapter IV. Therefore, the
required probability will be one step transition probability from class 6 to class 5 in the
mean monthly matrix for California given in Appendix IV. The result is

Pes ' =.2597 or 25.97 %
It may, however, be noted that we can not compute probability of PHDI being in any
range in month (i+1) using Markov chain approach unless that range is used as one of the
classes in the Markov chain analysis.
c) Step_ 1 : Given that PHDI during ith month is -1.1 which falls in class 4. We will
use the bi-modal density function in section 5.3.1.1 to compute the probability

Ps(x) =213 exp (36 x*- .095x* + .86 x*);-4.5< x<4.5

Step 2 : Compute probabilty that PHDIduring (i+1)th month will be less than -1.49
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-1.49
P [PHDILw <-149]= [ Ps(x) dx

—-45
-1.49
= j 213 exp (36 x* - 095 + .86 x* ) = .098 or 9.8
—45

This example demonstated that using the current month’s PHDI we can compute the

probability of PHDI falling in any range in the following month.

5.3.3(b) Effects of Fluctuating Force on Steady State Distribution

In this section the significance of the forcing term F is analyzed. Consider Eq. 26 given by
dX,=(f{x)+F)dt
Taking conditional variance

Var (dX, | X=x ) = dt* Var (F) (46)
or; D(x) dt = dt* Var (F)
or; D(x) = dtVar(F) (47)

Eq. 47 indicates that the diffusion function D(x) of the process is dictated by the variance
of the fluctuating force F. Now since D(x) affects the time varying and steady state
density functions of the process, variance of the fluctuating force should also be
responsible for determining the shape of the steady state and time varying density function.
In order to evaluate such effects, the values of D(x) function are varied in computations of
steady state density. The varying values of D(x) simulate varying strength of the
fluctuating force. The effects of D(x) function on bi-modal and unimodal density

functions are discussed separately.
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5.3.3.1 Effects of D(x) on Steady State Distribution of PHDI;,; | PHDI; € class 4

Four different values of D(x)= D (i.e. .05, 1.4, 10, and 100) are used and the resulting
steady state density functions are shown in Figure 5.9. It is seen that with low values of
D(x) function, meaning less variability in external force, unimodal density function is
obtained. Once D(x) function assumes a certain value then bi-modality of distribution is
observed. For very high values of the D(x) a rather flat steady state density function is
observed. This indicates that with small strength of external force the process has a
tendency to stay around one of the stable modes of the distribution. With increase in
strength of fluctuation force the process has a tendency to visit two or more stable states.

The transition between the states can therefore be attributed to fluctuating force strength.

S.3.3.2 Effects of D(x) on Steady State Distribution of PHDI,,, | PHDI; & class 4

Four different values of D(x) = D (i.e. .1, .36, 1.0, and 100.0) are used to compute the
steady state density function. The results are shown in Figure 5.10. It is seen that with
low values of D(x) the process stays close to the mode value. The density function
spreads out with increasing value of D(x). However, unlike earlier case here the density
function remains unimodal. With D(x) approaching very high value a flat densty function

is observed.

5.3.4 Computation of Time Varying Density

A procedure to obtain A(x) and D(x) functions for temporally homogeneous PHDI
process (X ) has been described in section 5.3.3. Using these characterizing functions, the
steady state density functions of the PHDI process have been computed for the following
two cases : i) PHDI., | PHDI; € class 4, and ii) PHDI;,, | PHDI; € class 6. The A(x) and

D(x) functions obtained for these two cases are
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A)= x> - 2x*+12x; D(x)= 1.4 for PHDL., | PHDI; e class 4
and ; Ax)=-x-331; D(x) =.36 for PHDI;,, | PHDI; € class 6
Using the Fokker Planck equation ( Eq. 8 ) we can write the time derivative of the
probability density function of the process PHDI;.; | PHDI; € class 6 as

W - —%(—x ~331)p %5‘?2(.36);; (43)
Similarly, for the case PHDI;.; | PHDI; € class 4 the time derivative of the probability

density function is written as
2

@L’%tw = —%(—7(3-.%(2 +12x)p +%-§7(l.4)p (49)
The time varying density of the PHDI process p(x,t |Xo ,to) can be obtained by solving Eqs.
48 and 49. As discussed in section 5.2.2, the closed form solution of the Fokker Planck
equations can be obtained for linear A(x) and constant D(x) functions. While the latter
condition is met in both the cases the former condition is met only in the case of

PHDI;+, | PHDI; € class 6. Therefore, analytical solution can be obtained for Eq. 48 only.
In case of Eq. 49 A(x) function can be described using combination of linear segments

which can then be used to obtain a solution close to its analytical solution.

5.3.4.1 Time Varving Density of PHDI,,, | PHDI; € class 6 process

The characterizing functions for the process PHDI;.; | PHDI; € class 6 are given as
A(x)=-x-331 ;Dx)=D=.36

The corresponding Fokker Planck equation is given by

op(x,t|xq,t0) ) 1 6%
—_— = ——(-x-331 ———(36 51
a ax( X )p+2ax2( )P (51)

The analytical solution of Eq. 51 is given as

(x—=(=-3.31+xpe™(+710)))2
p(x, tlxg,to) = [MD(1— e 2(tt0))| 03¢ D(I-e”¢710%) (52)
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Putting D = 0.36 we get

[ (x—(-3.314x,e”(*"t0)))?

p(x,tlxqg,tp) =[113(1— e'2(t't°))]'0'5 e 36(1-7210)) (53)
Using Eq. 53 with known values of x, at time to, the probability density function of the
process X, at time t can be computed.
For the situation when (t-ty) — o, the time varying probability density function given by
Eq. 53 should yield the steady state density function given by Eq. 44. In order to examine
this take limit (t-to ) — o in Eq. 53 and we get

Ps(X) = 0y P(X,tXo,t0) = [1.13]"° exp [ (-(x+3.31)%)/.36 ]
or; Ps(x)=.57x 10" exp [ -2.78x*- 18.4 x ] 54)
It is seen that the steady state density function (Ps(x)) computed using the time varying
density function (P(x,t|xo,to) is the same as in Eq. 44.
We will now examine how the time varying density can be used in adaptive forecast. A
careful examination of Eq. 53 indicates that PHDI;.;|PHDI; € class 6 is the normal random
variable with mean -3.31 + x¢ exp(~(t-to)) and variance .18(1-exp(-2(t-to )).
Assuming the interval t-ty to be unity we get

p(x,t | Xo,to) = Density function of N[ -3.31 + .37 x,, .16] (55)
It is seen that the time dependent density function changes with xo. Suppose x, =-3.0
( a value within class 6 ) at time t=ty , then the probability density function of PHDI
process at t=t+1 will be

p(x,t+1 | xo = -3, to ) = Density function of N [-4.42, .16] (56)
Having the pdf of the process known the probabilities of events involving varying values
of PHDI can be obtained contingent on already realized value of the index. In this way
every time a new value is realized the probability density function gets updated

accordingly, a mechanism which can not be introduced in the Markov chain procedure.
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5.3.4.2 Time Varying Density of PHDL.,; | PHDI ; € class 4

The time varying probability density function for PHDI;.; | PHDI; € class 4 process can
not be computed analytically due to the non-linear nature of the A(x) function. One
possible way to find the solution is to linearize the function within its range of variation.
For each linearized section the analytical solution can be obtained using the procedure
descibed in the above section. For example if we represent the third order polynomial

( A(x) ) by two linear functions we can use the analysis given in earlier section to fit
normal density for each of these function and when combined together two normal
distributions can yield bi-modal density function similar to the empirical results.

We have discussed in section 5.3.3 how an external force can affect the density function of
a drought characterizing variable like the Palmer index. In the following section a brief
description of a global phenomenon, called the ENSO, which is known to affect drought
events in various parts of the world is discussed alongwith its relationship to the Palmer

index values in the study region.
5.4 EL NINO SOUTHERN OSCILLATION (ENSO)

ENSO is an acronym which combines two phenomena: the El Nino (oceanic) and the
Southern Oscillation (atmospheric). The term El Nino ( the child Jesus) referred originally
to a relatively weak and warm southward oceanic current that develops almost annually
along the coast of southern Ecuador and northern Peru around Christmas (Philander,
1990) The term Southern Oscillation (SO) was proposed by Walker and Bliss (1932) to
identify a global scale phenomenon characterized by, among other features, a seesaw in
the atmospheric pressure field difference between the eastern and western tropical Pacific.
A measure of the state of the SO is defined by Southern Oscillation Index (SOI), which is
based on standardized sea level pressure difference between Tahiti ( 17°S, 150° W) and

Darwin (12°S 131°E). Figure 5.11 shows nine month running mean of monthly sea level
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pressure anomalies at Darwin and at Tahiti during period of Jan. 1935-May 1991. The
seesaw behavior is quite obvious in the figure. The data shows a correlation of -.75.
While the pressure oscillation associated with the SO has been known for about a century,
it was not until late 1950s and the 1960s that the connection between the SO and the sea
surface temperature (SST) in the western tropical Pacific was demonstrated (Berlage,
1957; Bjerknes, 1966, 1969). Generally, SST along the western coast of south America
and along the equator in the central and eastern Pacific is anomalously cold for its latitude.
These cool SSTs stabilize the lower atmosphere, inhibiting precipitation and giving rise to
the hyperarid climate of coastal Peru. This aridity extends well into the central Pacific,
occupying a wedge shaped region that extends as far west as the dateline and
southeastward from this general vicinity to about the latitude of Santiago, Chile, along the
South American coast. This region is referred to as the Pacific ‘dry zone’. Every few
years this aridity is broken by periodic heavy rainfall episodes lasting several months
associated with a dramatic increase of equatorial Pacific SST. This phenomenon, which
occurs every 2-7 years, is called El Nino.

During an El Nino event Ecuador and northern Peru are particularly susceptible to
flooding. The effects of an El Nino event are actually felt worldwide ranging from
flooding to drought. Table 5.2 gives description of such effects as experienced during the
major El Nino event of 1982-83. The El Nino is sometimes also called the warm event
referring to relatively warm sea surface temperature along equatorial Pacific. The non-El
Nino period is then characterized as the cold event which is called La Nina ( Philander,
1990). Various studies have been reported evaluating the effects of a La Nina event. The
drought of 1988 in the U.S. is attributed to a La Nina event (Trenberth and
Brantator,1992). A number of researchers have tried to identify the occurrences of warm
and cold events in the past several years (Quinn, 1992; Kiladis and Diaz, 1989). The
phenomenon of ENSO is considered to describe both the warm ( El Nino) and the cold
(La Nina ) events. During an El Nino event the southern oscillation (SO) has negative

phase while during a LaNina event SO has positive phase. In other words, during an El
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Nino event the SOI is low negative as a result of reduced westward pressure gradient over
the equatorial Pacific. On the other hand the La Nina event is characterized by a high
positive SOI caused due to increased westward pressure gradient over the equatorial
Pacific. In general ENSO cycle describes the evolution of coupled ocean-atmosphere
system in which El Nino is one phase and La Nina is the other phase.

Various researchers have evaluated tropical and extratropical response to the ENSO
events. Ropelewski and Halpert (1986, 1987, 1989) and Kiladis and Diaz (1989) have
identified areas of the world where the ENSO events are related to the mean temperature
and the precipitation anomalies. Strong increases in precipitation are experienced during
an El Nino event over the central Pacific , in the narrow coastal zone of Ecuador and
Peru, southeastern USA, over a region south of India and over eastern equatorial Africa.
During the same El Nino event, rainfall gets reduced in tropics over the western tropical
pacific ocean, Indonesia, Australia, India, southeastern Africa and northeastern South
America (Peixoto and Oort, 1992). Woolhiser et al., (1993) reported a three month lag
between SOI and precipitation in the western USA and suggested the SOI as a precursor
for daily rainfall prediction. The ENSO events are also related to streamflow responses in
different parts of the world ( Simpson et al., 1993; Dracup and Kahya, 1993, Cayan and
Webb, 1992). A number of indices have been developed to characterize an ENSO event
which are based on number of variables like pressure, rainfall and sea surface temperature

in tropical Pacific region. The following section gives a brief description of such indices.

5.4.1 Indices of ENSO Phenomenon

5.4.1.1 Pressure Indices

A popular way to characterize the southern oscillation phenomenon, the atmospheric
component of ENSO, is to use the atmospheric pressure at Tahiti and Darwin. The

Tahiti-Darwin SO index has been computed in several different ways by different
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investigators (Chen, 1982; Trenberth, 1984). Wright (1984) has noted that the mean
pressure anomaly at Darwin only has also been used as an index of SO. In all such indices,
the annual cycle of pressure at each station is removed by forming anomalies , or
differences , from the long term monthly averages. These monthly anomalies are then
normalized by the appropriate monthly standard deviations to produce standardized
values; zero mean and unit variance. The 1951-80 period is used to as the base period for
computations of mean and standard deviations. The three forms of Tahiti-Darwin indices
as reported by Ropelewski and Jones (1987) are as given below:

A) CAC (Climatic Analysis Center) Version of Tahiti-Drawin Index : In this form of SO
index , the difference of the standardized values (standardized Tahiti-standardized Drawin)
is itself standardized.

B) Trenberth (1976) Tahiti-Darwin Index : In this form of index, the Tahiti and Darwin
pressure anomalies are separately normalized by the mean of the 12 month standard
deviations. This index does not have standard deviation of 1.0.

C) Troup’s Tahiti-Darwin Index : In this form the anomalies of monthly pressure
differences, Tahiti minus Darwin, are standardized by the standard deviation of Tahiti
minus Drawin series.

Roplewski and Jones (1987) report availability of Tahiti-Drawin monthly S.O index for a
period ranging from 1882-1986. Wright (1989) has given Tahiti-Darwin index, averaged
over 3 months, for a period of 1851-1985 which is reproduced in Appendix VII for the
period 1895- 1984. Pressure indices are generally criticized for high month to month
variability and are only useful when smoothed in time or averaged over seasons. Pressure
series also suffer from changes in station location, instrument or time of observation, or

inhomogeneities due to having to combine from different stations over different periods

(Wright, 1975).

101



5.4.1.2 Sea Surface Temperature Index

In order to define an index of SO based on SST, a ‘core region’ in the central and eastern
equatorial Pacific is defined based on studies of Weare (1986). The data used to compute
the index were monthly anomalies in SST (relative to 1949-68) in 4° latitude by 10°
latitude boxes. A provisional SST index as described by Wright (1984) is defined as the
mean SST anomaly over all available 4°x10° boxes in the region 6°N - 6°S , 180-90°W.
The time series of provisional index was correlated with SST time series in each 4°x10°
box and a new core region was defined based on areas showing high correlation values.
Based on these new chosen boxes, SST index was defined as the anomaly over all chosen
boxes. Wright (1989) has given monthly values of SST index from 1880-1986. Appendix
VII contains monthly values of SST index for the period of 1895- 1984. As can be seen
in the Appendix, for January 1898, the index value is -26 which means the SST in this
region is -.26° C below average. For computing annual value of index, the author has
taken average of monthly values from April through March. The SST index does not
exhibit high monthly variability like the pressure indices and are therefore ralatively more
useful. SST indices are, however, subject to inhomogeneities due to changes in method of
measurement.

In order to evaluate the consistency in pressure and SST indices of ENSO, long term
monthly values of these indices are correlated and the results are given in Table 5.3. It is

observed that generally the indices are well correlated except in the month of December.

5.4.1.3 Rainfall Index

A core region ( 160° E - 150° W ) close to the equator is used to compute mean of rainfall
recorded over stations within the area, to be used as an index of the SO. Wright (1989)

has reported monthly rainfall index values from 1893-1983 with some missing values. The
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author has studied the correlation among various indices (pressure, rainfall, and SST) and
used the relationship to fill the missing values. The correlation between the rainfall and
SST index is reported as 0.81 and the correlation between SST index and Tahiti-Darwin
index is reported as .67. Wright (1989) also observed good correlation between SST and
air temperature in many areas of the Pacific and described an air temperature index of SO

defined in the same way as the SST index. However, values of this index are not reported.

5.5 PALMER DROUGHT INDEX AND ENSO INDICES

To assess the effects of ENSO events as reflected by the SST and SOI indices on Palmer’s
drought index, long term data are correlated. The SST and SO index values, as given by
Wright (1989), are correlated with the PHDI values for the selected climatic divisions in
Arizona, California and Virginia. For this purpose monthly values of all indices are chosen
for the period of 1895-1984.

Table 5.4 gives the correlation between Palmer’s index (PHDI) and the ENSO indices
(SST and SOI) for three different regions in the USA. It is observed that there is no
significant correlation between Palmer index and the ENSO indices. For example, the
correlation between Palmer index in January month in Arizona and SST and SO indices is
found to be .063 and .076, respectively which is insignificant. In general, the correlation
coefficients between Palmer index and ENSO indices are found low. The correlation
between consecutive differences (PHDIg., - PHDI,,,) and SST and SO indices was also
performed but no case the correlation coefficient exceeded .3. The Z index data were also
correlated with the SST and SO indices and once again no significant correlation was
found. Based on these results no conclusive observations of ENSO effects as reflected by

PHDI in the chosen areas of study can be made.
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5.6 SUMMARY

The dynamical systems approach is used to explain the bi-modal conditional distribution of
the Palmer index. The conditional time dependent and steady state density functions are
developed for the Palmer index. The functional form of the drift and diffusion functions
affect the shape of distribution. The time dependent density can be used to make the
adaptive forecasts. The effects of external disturbances on the probability density function
of Palmer index are analyzed. A brief description on the ENSO phenomenon along with
the indices which are used to characterize the process is given. A correlation study
between the long term data of ENSO indices and the Palmer index did not indicate
significant correlation in the study region. However, the methodology is general and
could be applied to other regions with significant correlation between the PDSI and ENSO

indices.
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Table 5.1 Variation in Correlation Coefficient between PHDI for Jan. and all other months

Mon. | Feb. | Mar. | Apr. |May |Jun. [Jul. [ Aug. | Sep. [ Oct. | Nov. | Dec.

Jan. | .899 |.794 |[.695 |.640 |.582 |.553 |[.536 |.473 | .422 | .397 | .423

105




Table 5.2 Major ENSO 1982-83 Effects ( Source: NOAA, 1993)

Location Phenomenon Victims Damage

United States

1. Mountain and Storms 45 dead $1.1 billion

Pacific States

2. Gulf States Flooding 50 dead $1.1 billion

3. Hawaii Hurricane 1 dead $230 million

4. Northeaster US Storms 66 dead -

5. Cuba Flooding 15 dead $170 million

6. Mexico- Central | Drought - $600mmillion

America

7. Ecuador and Flooding 600 dead #650 million

Norhtern Peru

8. Sothern Peru- Drought -—-- $ 240 million

Western Bolivia

9. Southern Brazil, | Flooding 170 dead $ 3 billion

Northern Argentina, 600,000 evacuated

Eastern Paraguay

10.Bolivia Flooding 50 dead, 26000 $ 300 million
homeless

11. Tahiti Hurricane 1 dead $50 million

12. Australia Drought, fires 71 dead $2.5 billion

13. Indonesia Drought 340 dead $500 million

14. Philippines Drought - $450 million

15. Southern China | Wet weather 600 dead $600 milion

16. Southern India | Drought --- $150 million

17. Middle East, Cold, snow 65 dead $50 million

chiefly Lebanon

18. Southern Africa | Drought Disease, Starvation | $1 billion

19.Norhtern Drought -- $200 million

Africa,Iber-ian

Peninsula

20. Western Europe | Flooding 25 dead $200 milion
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Table 5.3 Correlation Between Monthly SOI and SST Index of ENSO

Jan.

Feb.

Mar.

Apr.

May

Jun.

Jul.

Aug.

Sep.

Oct.

Now.

Dec.

.822

.810

.708

.667

671

.614

.684

722

761

.806

.338

-.013
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Table 5.4 Correlation Between Monthly SOI and SST Indices And Palmer Index

Sea Surface Temperature Index

Southern Oscillation Index

AZ CA VA AZ CA VA
Jan. .063 141 -.057 .076 131 .02
Feb 112 .166 .064 .148 172 .023
Mar .190 .101 .058 128 .068 -.039
Apr. 216 .058 135 178 .077 .018
May 191 .269 .028 202 .136 -.028
Jun. .102 .190 -.062 -.063 -.073 -.040
Jul. -.052 142 -.162 -.10 -.068 -.159
Aug. -.136 .063 -.216 -.104 -.041 -.210
Sep. 075 167 -.226 -.005 .094 -.217
Oct. .011 .078 -.200 .038 124 -.229
Now. 112 .103 -.080 .101 .102 -.133
Dec. 11 .062 -.077 178 272 -.090
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Figure 5.1(a) : Dot Plot of PHDL,,| PHDJ; is in class 4
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Figure 5.1(b) : Dot Plot of PHDL.,| PHDI, is in class 4
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Figure 5.8 Empirical and Computed Steady State Density, PHDL,|PHDI;cclass 6

124



Ps(x)

Ps(x) functions with varying DX

kg

PANAAANALYL

i axxadaaai

e sshshblarbtadban
TN TR TCTTETTTFYe

—e—dx=.05
—8—dx=1.4
—a— dx=10.
——dx=100.

Figure 5.9 Steady State Density Function of PHDL,,|PHD]; € class 4 with Varying

D(x)

125



-5
-4.6

<42

R 3%

ILORRLLESH RS

FARSERLLESHRE

AL AL IR LR R R IR ALY

© <

N
< §

" (op] o0 <t v—
! — —
] '

PHDI

——dx=36
—a—dx=.1
——dx=1.0
—— dx=100.

Figure 5.10 Steady State Density Function of PHDL,,|PHDI; € class 6 with Varying

D(x)

126



o~ -

o

srequIIN

1940 1945 1950 1955 1960

1985 1990

1970 1978 1980

1965
Year

Figure 5.11 Nine-month Running Mean of Monthly Sea Level Pressure Anomalies

at Darwin, Australia (dashed line) and at Tahiti (solid line)

127



Chapter VI

PALMER INDEX AS A PRECURSOR FOR DROUGHT WARNING

6.1 INTRODUCTION

The objective of the present chapter is to show the practical usefulness of the results
obtained in the previous chapters. The results should be useful in a decision making
context of drought mitigation practices adopted by various agencies. The management
strategies to mitigate the impacts of drought have been formulated in almost every state of
the Union. These strategies generally fall into four categories : i) curtailment of water
usage; ii) supply augmentation by development of wells for groundwater extraction and
storage of surface water in reservoirs; iii) procurement of water either by sale or through
transfer of water rights in the form of a lease or by ownership from the riparian land
owners; and iv) additional procurement by water transfer from neighboring basins under
inter-basin water transfer agreements. While the first two strategies are implemented
widely towards an impending drought, the third and the fourth pose both legal and
political complications in addition to the technical aspects. Except in the case of
California, a concerted effort towards acquiring water usage rights from the owners is not
a major issue. Interbasin transfer has led to special difficulties when the consented parties
face widespread drought in unison. New Jersey, Pennsylvania, and New York have an
agreement which considers such an eventuality (Wilhite, 1990). The aforementioned
matters are fully addressed under the institutional aspects of water allocation( Cox, 1995).
Except for a few cases typically invloving large cities, exercising drought mitigation efforts
is considered a local problem. Currently, there is no federal organization in the U.S.
responsible for monitoring drought conditions. However, in view of the widespread
droughts of the past two decades various state governments have come up with drought

contigency plans (DCPs) including AZ, CA, and VA. All states use the PDSI as a
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measure of drought severity and typically supplement it with other indices. In addition,
PDSI has been used by the Federal Government as one of the principal criteria for disaster
designation, that is, to assess the eligibility to receive federal drought relief (Wilhite et al.,
1986). In the operational mode in a drought emergency, it is the responsibility of a water
availability task force (WATF) to evaluate the status of the supply of water in various
regions. The WATF recommends mitigating measures based on trigger threshold values
for defining droughts. For example, in the Colorado Plan the trigger values correspond to
PDSI values between -1 and -2. In Virginia, drought is indicated when : i) precipitation is
less than 85 percent of the 30 year mean for at least three consecutive months; ii) PDSI is
below -2.00 for at least three consecutive montbhs; iii) streamflow is within the lowest 25
percent of mean monthly flow for at least three consecutive months ; and iv) groundwater
level is within the lowest 25 percent of the average monthly level for three consecutive
months. Based on the above criteria, Table 6.1 (State Water Control Board, 1990) shows
the drought years for the period 1957-1987 for the Tidewater climatic division in Virginia.
The concerned statistics are reported in Tables 6.2, 6.3, and 6.4. These tables contain the
Blackwater river at Luni streamflow data, groundwater level for well # 58B13 data and
PDSI data, respectively. The correlations between the streamflow - PDSI and
groundwater - PDSI are given in Tables 6.5 and 6.6, respectively. Also, the 25th
percentile streamflow values and mean groundwater levels are given in Tables 6.7 and 6.8.
It is clear that level of the threshold plays a crucial role in the Virginia definition of
drought occurrence because of its “wait and see” nature with the waiting period being 3
months. For a “here and now” decision, while the curtailment of water usage at an initial
stage might help to err on the conservative side, it may also impose an undue burden at an
early stage. Therefore, a good predictive model is essential for making responsible
decisions.

In this chapter a decision tree analysis is put forward for making operational decisions
with regard to a progressing drought. The decision tree shows all possible drought state
occurrences in terms of the PDSI. A secondary drought measure, the precipitation deficit
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is also shown in the decision tree (Figs. 1 and 2). The decision tree displays the pathway
to reach the current state of drought along with all possible ways of leaving that state with
the associated probabilities. The decision tree extends over a critical period starting from
a drought trigger month to the end of the water year. The drought trigger month is
chosen to be the month of May. In the ensuing sections a precipitation deficit / surplus
analysis is carried out based on: i) calendar year, and ii) water year which constitutes the

secondary drought measure to accompany the PDSI values. It also serves well to select

the drought trigger month.

6.2 PRECIPITATION DEFICIT / SURPLUS ANALYSIS- CALENDAR YEAR

6.2.1 Analysis of Drought Years

Table 6.9 lists the drought years (based on calendar years) as identified by the SCWB
(1990) analysis. The table also contains the rainfall received and its deficit from long term
average. In order to ascertain the patterns of cumulative rainfall shortage, the drought
years are analyzed for rainfall deficit on a monthly basis. Table 6.10 contains the results
for each drought year along with the observed Z index and PDSI values for the period.
Based on long term average monthly rainfall values, deficit / surplus in rainfall for each
month is computed and is accumulated starting in January for each drought year. For
example, it is seen that during 1965 drought year a deficit of 1.13 inch is experienced
during the month of January. The accumulated deficit upto May 1965 went upto 5.75
inch. Based on the analysis of rainfall deficit for each drought year, Table 6.11 gives
accumulated rainfall deficit upto the months of April, May ,and June and the

corresponding means.
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6.2.2 Analysis of Non-Drought Years

For comparison purposes deficit / surplus characteristics of those years which were not
classified as drought years in SWCB, 1990 are studied. These non-drought years are
listed along with the rainfall received in Table 6.12. The deficit / surplus characteristics of
these non- drought years are given in Table 6.13. It is seen that all non-drought years had
a surplus accumulation of rainfall from the normal. These cumulative surpluses and the
corresponding means upto April, May and June months for each year are given in Table
6.14. It is seen that for non-drought years there has been on an average 5.7 inch surplus

rainfall from January through May.

6.2.3 Analysis of Low Rainfall Years

It is observed that, during the 31 year period, a few years received rainfall less than the
normal, but are not classified as drought years under the criteria described by the SWCB
(1990). Such years are referred to as the low rainfall years here and are given in Table
6.15 along with the rainfall received. The deficit / surplus characteristics of low rainfall
years are analyzed in Table 6.16.

Table 6.17 gives a summary of the accumulated average deficit / surplus rainfall upto
April, May and June months for : i) drought years , ii) non-drought years, and iii) low
rainfall years. It is only during the drought years that the cumulative deficit increases
consistently upto June. For example, upto May end the cumulative deficit is of the order
of 3.10 inch in drought years which rose to 3.6 inch by the end of June. During non-
drought years the cumulative surplus consistently increases. The unique pattern observed
in the accumulation of surplus during non-drought years separates them from the other

drought and low rainfall years.
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6.2.4 Identification of Starting Month For Droughts

To establish the most critical month for the commencement of a drought, the PDSI data of
the region from 1895-1990 are analyzed. A drought event is considered to have occurred
when the PDSI value falls in class 5. For the entire period of record such events were
counted and the results are given in Table 6.18. It is seen that 19 percent of the total
historical drought events began in the month of July and 55 % of drought events began in
the months of June through September. The analysis of steady state probabilities as given
in Chapter IV also indicates July through October as the months having the highest
probability of droughts. Therefore, from the view point of drought monitoring and for
making recommendations for appropriate mitigation measures it is important to watch the
deficit or surplus as it builds from January through May. In other words for the
Tidewater region the Virginia Drought Monitoring Task Force (VDMTF) should examine
the deficit situation at the end of May every year. If the cumulative deficit at this time is
greater than or equal to 3.1 inch (average deficit upto May month experienced during past
drought years), there is a good possibility of drought extending through the coming
months. Of course, the PDSI values do indicate this behavior. Referring to Table 6.10 it
is seen that during the drought years for the month of May the PDSI is consistently below
-1.5 indicating either drought state 5 or 6. Therefore, it can be assumed that during a year
when the cumulative deficit upto May has been of the order of 3.1 inch, the most probable
state during May month would be either 5 or 6.

In the following section a decision tree analysis is presented. It not only shows the
progression of drought upto the current month (period) but also yields further branchings

and the associated probabilities into the future.
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6.2.5 Decision Tree Analysis

Based on section 6.2.4 results, the month of May can be considered the trigger month for
droughts whenever the PDSI values fall in classes 5 or 6. Considering the termination of
crop growing season and the onset of winter, the month of September is chosen to define
a critical period for the issuance of drought warnings. It should be noted that the
technique proposed is flexible and can be used with any other starting month. The
monthly transition matices using PDSI data (1957-87), given in SCWB, 1990, are given in
Table 6.19. It is seen that being in state 5 in May , the weather will transit to either state 5
with .8 probability or to state 6 with .2 probability in June. Avcomplete description of
weather state transitions from May through September along with the associated
probabilities is shown in Figures 6.1 and 6.2 for the starting states of 5 and 6 in May,
respectively.

While the PDSI is a holistic index for interacting moisture related mechanisms, in a
decision making context it is useful to display the other measures of deficits as well. As
pointed out before in this study the rainfall deficit / surplus is chosen to be the secondary
indicator. It is seen in Figure 6.1 that to go from state 5 in May to state 5 in June, there
will be a deficit of .47 inch in June from the normal rainfall. To compute this amount, all
state S in May to state 5 in June transitions for the period are considered as given in Table
6.20. It is seen that first such event took place in May 1967 and the computed deficit for
June 1967 is 1.62 inch. Likewise for the other events occurred in 1969, 1976, and 1981
the deficits are shown. For each month corresponding to the various drought states the
deficit / surplus amounts are computed (Table 6.20) and are shown in Figure 6.1. The
various possible paths of weather transition are also shown. Further, at each level of
transition the expected duration of drought is indicated within curly brackets. Using this
decision tree we can work out total deficit / surplus for each possible path of transition
from May to September and its associated probability level. For example, the event when
May = 5; June = 5; July = 5; August = 5; and September = 6 ( we refer to this event as
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55556) will have a probability of

P [June =5 ; July =5; Aug. =5; Sep.=6 | May =5 ]

= PgsMim pygln il p A poAeSe — 8 67 72 3 =.1158
The event 55556 involves a total deficit of 4.53 inch (.47 inch June; .35 inch July; .56 inch
August; and 3.15 inch September ) and has a probability of 11.58%. Likewise probability
of all possible events and associated deficits / surplus are computed and are given in
Table 6.21. It must be noted that the precipitation deficits shown on Figs. 1 and 2 provide
additional detail and are not the CAFEC (Climatically Appropriate For Existing
Conditions) deficits used to compute the Z and PDSI values. From Table 6.21 it is seen
that there is 62 % probability that there will be a deficit in September when the drought
state is 5 in May. It should also be remembered when a particular branch is followed in
the decision tree the deficits at each node should be added to the May cumulative deficit
to obtain the total deficit at that node (for that month). For example, traversing along the
branch 5-6-6 starting in May in Figure 6.1 yields a total deficit of -3.10 -2.07 +0.26 = -
4.91 inches by the end of July. Considering a typical drought year is declared when the
rainfall shortage is around 8 inches, about 5 inches shortage at the end of July may require
serious consideration.
Figure 6.2 gives the decision tree with the starting state of 6 during May. It is seen that
the information given in Figures 6.1 and 6.2 provides a decision making body like the
VDMTF (Virginia Drought Monitoring Task Force) an in depth analysis of all possible
scenarios should conditions for an impending drought develop. It is obvious that the
analysis can be done starting any month and for any region. The values of deficit or
surplus amounts can be updated by using a longer period of data and can be periodically
updated with the new data. In the following section a second analysis based on a water
year basis is suggested. Also, as a secondary indicator a three month running sum of

rainfall deficits is adopted. With the calendar year and water year based analyses the

observed drought year patterns are well captured.
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6.3 PRECIPITATION DEFICIT / SURPLUS ANALYSIS - WATER YEAR

In this analysis rainfall data are analyzed on water year basis. For example, water year
1981 is considered from October, 1980 to September, 1981. The SCWB (1990) gives
rainfall data for a period from 1958-1987 (water years) for the climatic divisions in
Virginia. This analysis uses these data for the Tidewater division. Based on the 30 year
data, the annual average rainfall is computed as 44.13 inches. The 30 year period is
classified into four category of years, namely, Drought years, Low rainfall years, Normal

years, and Non-drought years. The details are given in Table 6.22.

6.3.1 Analysis of Drought Years

Table 6.23 gives the drought years along with deficit / surplus rainfall accumulated for
selected 3 month periods. The 3 month periods end in October, January, March, and May.
These periods are consistent with the period chosen by the SCWB (1990) for defining
droughts. For example, for water year 1965, which is classified as a drought year, a
cumulative surplus rainfall of 4.66 inch is observed upto October month which includes
deficit / surplus during August, September, and October, 1964. In 1965 water year a
cumulative deficit of 2.45 inch is observed up to January which includes deficit / surplus
observed over November, December, and January months of the water year. In the similar
way, cumulative deficit / surplus figures for all drought years are computed and are given

in Table 6.23.

6.3.2 Analysis of Low Rainfall Years

Table 6.24 gives the surplus / deficit analysis of the years which received rainfall above 40
inches but less than the normal rainfall of 44.13 inches. The deficit / surplus rainfall
amounts accumulated over the 3 month periods are given in Table 6.24.
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6.3.3 Analysis of Normal Years

Table 6.25 gives the surplus / deficit analysis of years which received rainfall close to the
normal rainfall of 44.13 inches.

6.3.4 Analysis of Non- Drought Years

Table 6.26 gives the surplus / deficit analysis of years which received rainfall about 3

inches or more than the normal rainfall.

6.3.5 Summary of Water Year Analysis

Based on the analysis described in Tables 6.23 through 6.26, the average cumulative
deficit/ surplus amounts up to the months of January, March, and May for each category
of years are given in Table 6.27. The values within parentheses in this table give the range
of variation which is chosen to represent most of the analyzed years. It is seen from Table
6.27 that during the drought years the 3 month cumulative deficit consistently increase
from January through May months. On the other hand a consistent pattern of increasing
cumulative rainfall surplus is observed for the non- drought years. Such contrasting
patterns can be used to differentiate a drought year from the other years and hence is
useful in drought monitoring operations.

The water year based analysis has the advantage of incorporating information about
surplus / deficit amounts experienced over the previous water year. For example, it is seen
in Table 6.23 during water year 1981, the cumulative deficit up to October 1980, the first
month of water year 1981, is of the order of 2.58 inches which includes the carried over
deficits from the previous water year’s August and September months. It is further seen
that the cumulative deficit increased to 5.27 inches by January. The year 1981 is reported
to be a worse drought year ( Birch and Ulrich, 1982 ). Similar drought situation occurred
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in year 1966. Therefore, based on this analysis the following two deterministic rules can
be developed for issuing drought warnings.

Rule # 1 : Observe 3 months’ cumulative deficit / surplus rainfall amounts up to
October month. If it is more than 2.5 inch, then observe the 3 months’ deficit up to
January. If this deficit is more than 4.5 inch, issue warning of a possible drought during
the current water year.

Rule # 2 : If 3 month cumulative rainfall deficit upto October is less than 2.5 inch,
then observe 3 month cumulative deficits up to the months of January, March, and May.
If these deficits fall in the ranges of 0.5-2.5 inch, 1-3 inch, and 1-5 inch at the end of
January, March, and May months, respectively then there is a good possibility of drought
extending to the coming months in the current water year.

If the Rule # 1 is satisfied, then the decision maker may like to issue warning right in
February month. For Rule # 2, the warning will be issued in June similar to the case of
calendar year analysis.
Once drought warnings are issued the decision makers would like to know the extent of
shortages the forthcoming months would face. In a way similar to the calendar year
analysis we can use the Markov matrices, developed in Chapter IV, to assign the likely
states of weather for the forthcoming months. In the case of the calendar year analysis the
average amount of rainfall shortage / surplus corresponding to a specific monthly weather
transition is indicated on the decision tree as a secondary indicator of drought progress. In
the water year analysis the Palmer equation ( see Appendix I for details ) itself is used to
compute the average CAFEC deficit / surplus to accompany the transition from one class
to another. An example of such computation is given below
Suppose during the month of May, weather is in state S and then it transits to state 6
during June. Using Palmer equation we can write
PDSIjune = .897 PDShay + Zjune/ 3 (1)
PDSI;ume= weather class 6 = -3.5 ( middle value of class 6; Table 4.1)
PDSIw.y = weather class 5 =-2.25 ( middle value of class 5; Table 4.1)
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Using Eq. 1 we can calculate Z;u. as

Zime =3 (3.5 + .897 (2.25) ) = -4.45
We know from Appendix I (Eq. 8) that

Z=4dk @
where : k = a weighting factor for a month and a region ; d = CAFEC deficit of

moisture from normal demand
Therefore,  diume = Zjunc / Kjune
The values of k are given for some locations in Palmer (1965). The values given for
Scranton, PA are chosen as the representative values for the Tidewater region, Virginia.
The actual values of k for the Tidewater region should be available but could not be
obtained at the time of the analysis. Based on the adopted values of k, the deficit of
moisture for transition from class 5 in May to class 6 in June is then computed as

djune =-4.45/1.17 =-3.80 inch
Table 6.28 gives the deficit / surplus values of moisture, computed using above procedure,
for various possible monthly transitions during the period of drought. For any other
transition not covered in Table 6.28, the computations can be made in the manner
illustrated above. Using the deficit / surplus amounts and the associated probabilities, the
decision maker can make appropriate decisions about the mitigation measures once
drought warnings are issued. An example application for the drought year 1981 is given

in the following section.

6.3.6 Application of Drought Warning Technique to 1981 Drought Year

Birch and Ulrich (1982) reported serious drought conditions in the Tidewater region in
Virginia during 1980-81. As seen in Table 6.23 the accumulated 3 month deficit during
1981 water year up to October month is 2.58 inches which rose to 5.27 inches by
January. Therefore, as per rule # 1 drought warning should be issued in February 1981.
Figure 6.4 shows progression of wet / dry states during 1981 water year starting October
138



1980. The observed weather state during October 1980 is 5 ( see corresponding PDSI
value in Table 6.4). The weather state progression along with associated probabilities, as
shown in Figure 6.4, give amount of expected deficit / surplus (underline values) and
compare these with the actual observed values ( square brackets). The actual deficit /
surplus amounts as computed using values given in Table 6.27 agree reasonably well with
the observed values. The 3 month cumulative deficits are shown within parentheses.
From October upto December the mode probabilities serve as very good predictors. For
Dec. - Jan. transition a deviation from the mode occurs, that is instead of 5—5 transition
5—6 occurs. This could be argued that the high deficit value would warrant the decision
maker to consider this case even beforehand. Figure 6.4 illustrates these scenarios. The
actual states of weather indicated within curly brackets are compared with the mode
weather states (encircled ones). It is seen that out of 12 months, the mode weather states
agree with the actual observed states for 75% of time. From Figure 6.4 for the water year
decision rules 1 and 2, one would have generated a warning in February. From the
calendar year analysis ( Figs. 6.1 and 6.2) a warning is not needed in June 1981 because
the prevailing drought severity is at state 5 and not at 6. For typical crop growing periods
of 3 month duration 1980 June or 1981 June as starting months do not indicate severe
drought. This example shows short term recoveries within a long spell of droughts. Such
droughts may matter only in filling surface water supply reservoirs. From irrigation
consideration the 1981 drought should not have had great impact. It can, therefore, be
concluded that the technique described here describes the past drought events very well

and can therefore be useful for drought monitoring operations.

6.4 SUMMARY

A typical decision making analysis recommends associating a utility function for each
branch of the tree along with the probability, as shown in Figure 6.3. The reward or

penalty is incurred dependent on whether the action of issuing the warning coincides with
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the realization of drought or not. Of course, determining the reward / penalty coefficients
C1, C2, C3 and C4 as shown in Figure 6.3 is a difficult task. Whenever, 0.2 C1 + 0.8 C2
> 0.2 C3 + 0.8 C4 a warning should be issued.

In this chapter a decision tree framework has been put forward for use in issuing drought
warnings. The key advantage is the enumeration of all possible sequences of occurrences.
With such a procedure, a decision maker can observe how the progression of drought has
taken place up to certain stage indicated by a particular month. For any such stage, one is
provided with all possible future scenarios with their associated probabilities. As
recommended before, certain secondary measures of drought can also be associated with
each drought state (node) for a particular month (stage) of the decision tree which should

provide an intuitive feel in deciding the future courses of action.
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C1

NW = no warning
D = drought occurrence JUNE t
ND = no drought

Figure 6.3. Utility Based Decision Tree
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Table 6.1. Summary of Drought Occurrences, 1957 -1987, Tidewater Region, VA

Year |PR | PI SF GW | Year | PR PI SF GW
1957 1973

1958 1974

1959 1975

1960 1976 X X

1961 1977 X
1962 1978

1963 | x 1979

1964 1980 | x X X X
1965 | x X X 1981 X X X
1966 X X 1982

1967 X 1983 X

1968 | x X 1984

1969 1985 X X X
1970 | x 1986 |x X X X
1971 1987 X

1972

x indicates drought condition; PR=precipitation; PI=PDSI; SF=streamflow,

GW= groundwater level
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Table 6.2. Monthly Streamflow (cfs), Blackwater River at Luni, Tidewater Region, VA

Year

Jan.

Feb.

Mar.

Apr.

May

Jun.

Jul.

Aug.

Sep.

Oct.

Nov.

Dec.

1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

695
1022
1042

597

690
1720

802

922

643
40.2

659

976

508

696

254

517

865

894
1092
1252

793
2155
1693
1687
35.6

779

630
1141

541

395
2235

1759
91
487
1392
1404
1271
890
1149
828
406
807
376
959
1092
875
1020
1173
1039
1364
1407
473
782
1200
727
145
1075
1594
1259
1014
992
1539

1499
1386
358
1171
1075
1460
1326
850
954
517
656
919
1370
742
746
703
900
698
2373
518
1298
1575
2145
1154
141
1340
1421
1694
471
616
1202

737
1368
1131

832

810
1126

276

576

747

146

262

471

736
1262

882

723
1168

630
1121

303

434

902
1664

792

166

329
1855
1905

155

243
1731

114
1382
235
383
1015
279
180
543
247
410
257
160
216
597
373
1115
532
159
425
101
409
1376
1346
346
83.1
348
427
442
62.3
68.5
615

297
827
58.9
98.9
478
231
1463
30
87.8
253
41.7
388
270
65.6
307
460
416
116
143
102
128
248
1345
312
796
232
328
403
126
8.6
849

13.2
265
446
201
216
795
178

12
120

16.8

56.9
400
254
518

89.8
517
300

329

1434
4.5
109
107
112
2.6

23.8
204

13.8
314

96.5

6.4

58.6

13.5
920
207
967
393
183
10.6
109
43
146
500
213
1248
115
131
355
141
130
325
0.4
3
820
185
0.1
18.8
807
0.7
328
300
200

333
263
39.6
1507
17.8
29.2
38.4
319
10
8
153
1.9
104
13.2
50.2
141
16.8
419
1678
20.8
11.3
48.2
1893
0.1
60.8
24
0.1
234
625
56
3.6

265
100
330
279
910
254

738
2.7
34.7
63.9
2.9
134
4.9
1097
1528
18.8
254
1041
218
72
35.1
537

12.8
70.7
0.7
23
983
1.7
1.2

475
182
415
287
424
395
147
226
2.8
65.7
56.2
72.7
152
54.3
700
1179
34.8
41.4
721
256
1233
117
1652
0.4
349
252
96.8
13
1274
10.5
19.2

1598
246
584
326

1130
400
396
694

7.66
137
758
140
526
114
620

1450
562
301
719
610
863
832
702

6.19
263

1031
847
183

1192
359
288
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Table 6.3. Groundwater Level Data 1977-1987, Well # 58B13, Tidewater

Region, VA

Year |Jan |Feb |Mar | Apr |May|Jun [Jul |Aug|Sep [Oct |Nov |Dec
77 19.6 |9.7 |79 (9.1 |92 (9.4 |10.6|11.6(12.2|12.4{10.1|7.7
78 |59 |7.4 |54 |72 |69 |79 (9.9 |10.6(11.4(12.2|12.6]12.1
79 (8.1 [54 |59 |65 |51 |75 |82 |8.1 (8.6 [93 (79 |87
80 [69 |7.1 {64 |79 |85 |9.8 [109|11.7(12.5(12.9(13.3|13.3
81 |13.4|126(123|122|11.8(11.2|11.6(12.1{12.4|12.8|13.0|12.3
82 (86 [58 |65 |80 |89 |93 |99 |94 |94 (83 (80 |69
83 |72 |57 (63 |59 |7.7 (82 |9.7 |10.7|10.7|10.6(8.7 [6.9
84 |66 [58 |53 |54 |79 |8.6 |82 9.5 110.4/10.9(11.3|11.0
85 (95 |74 |74 |89 |10.2|103|10.8(11.3|11.5|/109(7.6 |7.3
86 (8.0 |69 (82 [9.0 |10.1|11.0|11.4(11.8(11.9|12.7|13.1|13.3
87 (83 |59 |66 |65 |79 (93 |10.6/11.1{8.9 |10.2(10.5]|10.1

Data represent groundwater level below ground in feet
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Table 6.4 PDSI Data, Tidewater Region, 1957-87, Source: SWCB (1990)

Year

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

1.53
2.64
-0.54
0.91
1.79
2.71
2.03
0.88
-0.27
-4.21
-2.76
-0.94
-2.31
-0.88
0.03
-0.79
3.17
0.93
0.88
3.29
1.62
3.47
241
4.76
-3.56
1.19
1.48
1.96
-2.84
-0.64
2.38

2.04
2.18
0.95
1.35
2.55
2.63
1.98
1.68
-0.58
-3.57
-2.14
-1.58
-1.97
0.95
0.49
0.76
3.1
0.81
1.09
-0.79
-0.28
245
32
3.97
-3.19
1.95
2
2.05
-2.16
-0.73
2.08

224
3.71
-0.88
0.04
2.47
2.17
2.16
-0.48
-0.35
-4.06
-2.52
-1.15
-1.29
-1.23
0.44
0.42
2.79
1.06
2.86
-1.41
-0.39
3.58
3.07
427
-3.45
1.86
2.58
3.47
-2.62
-1.7
1.52

-0.65
3.79
-0.24
-0.61
2.14
292
-1.14
-0.29
-0.5
-4.01
-3.19
-1.34
-1.51
1.29
0.08
0.39
2.88
0.55
2.79
-2.39
-0.94
3.62
3.24
0.05
-3.44
1.65
3.81
3.94
-3.77
-2.23
2.08

-1.17
4.25
-0.98
0.8
3.05
2.17
-1.28
-1
-1.48
-3.14
-2.68
-1.24
-1.79
-0.55
1.14
22
2.7
-0.48
23
-2.09
-0.78
4.21
4.02
-0.05
-2.66
1.2
3.58
4.17
-3.67
-2.56
-0.71

-1.19
4.7
-1.6
0.59
3.81
2.77
1.76
-1.23
0.38
-2.61
-2.8
-0.98
-1.7
-0.67
-0.48
3.58
29
-0.08
1.79
-1.94
-1.13
42
4.11
-1.06
-2.36
1.66
3.39
-0.56
-3.33
-3.3
-0.25

-2.2
3.96
0.89
1.07
2.79
2.84
0.94
-1.46
0.71
-2.88
-2.63
-1.12
0.39
-0.46
-0.96
3.14
-0.62
-0.42
2.58
-2.22
-1.88
3.64
3.87
-1.84
-2.21
1.78
-13
-0.09
-3.21
-3.74
-1.27

0.01
4.834
-0.87
1.3
2.2
2.09
-1.75
-1.45
-0.77
-3.07
-1.66
-1.79
0.93
-1.32
-0.9
22
-0.45
0.09
1.65
-2.67
-2.59
3.1
3.44
-2.98
-2.16
2.08
-2.39
-0.8
-3.09
-2.94
-2.16

0.1
3.62
-1.14
2.38
1.23
1.95
-1.25
0.89
-1.47
-2.49
-1.75
-2.35
0.83
-2.07
-1.16
245
-1.1
0.34
3.43
0.48
-3.11
2.01
55
-3.84
-2.12
1.73
-0.03
-1.41
0.77
-3.67
-1.91

0.8
3.83
0.96
2.61
1.89
1.34
-2.1
1.72

-2.13
-2.42
-2.11
-2.49
0.47
-2.73
1.49
2.88
-1.46
-0.43
3.53

1.7
0.86
1.11
5.14
-2.9

-1.84
1.68
0.12

-2.38

1.3

-3.92

-2.11

1.66
3.31
1.28
1.93
1.3
2.18
0.47
-0.24
-3.28
-3
-2.28
-2.45
0.27
-2.73
1.45
3.8
-2.21
-1.14
3.13
1.57
1.38
1.14
5.79
2.77
-2.35
1.91
0.61
-2.56
2.39
-4.17
-2.09

2.62
3.65
1.12
1.79
2.11
232
0.55
0.33
-4.47
-2.83
-1.01
-2.42
1.34
-2.77
-0.7
3.71
0.86
0.17
3.23
1.73

1.22
4.71
-2.97
0.77
2.13
1.81
-3.14
-0.58
-3.12
-1.93
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Table 6.5 Correlation Between PDSI and Streamflow Data, Tidewater Region, VA

Mon

J-J

F-F

MM

A-A

MM

J-J

J-J

A-A

S-S

0-0

N-N

D-D

CC

72

45

.74

.84

73

45

.50

.58

.64

.60

75

.61

CC = correlation coefficient; J-J = January PDSI & January streamflows
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Table 6.6 Correlation Between PDSI and Groundwater Level Data, Tidewater Region,
VA

Mon |J-J |F-F |MM |A-A |MM |JJ |JJ |A-A |S-S |O-O |[N-N (D-D
cc |-78 (-72 |-83 (-.87 |-84 [-90 [-62 |-79 [-.64 [-.59 |-.65 |-.60

CC = correlation coefficient; J-J = January PDSI & January groundwater levels
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Table 6.7 Lowest Quartile Streamflows ( 25th percentile) , cfs, Blackwater River at

Luni, Tidewater Region, VA
Mon |Jan. |Feb. |Mar. |Apr. |May (Jun. [Jul. |Aug |Sep. |Oct. [Nov [Dec.
Q 496 (695 |642 (530 (175 |83 (29 |19 |11 |9 51 127

Q = lower quartile streamflows (cfs)
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Table 6.8 Long Term Average Groundwater Level in Well # 58B13, Tidewater Region,

VA
Mon |Jan. |Feb. |Mar. | Apr. |[May |Jun. |Jul. |Aug |Sep. |Oct. |[Nov [Dec.
GW |82 (73 |7.37 |8.06 |8.67 |9.41 (10.1 |[10.7 (109 |11.3 |10.8 [10.1

GW = groundwater level ( feet below ground surface)
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Table 6.9. Drought Years and Associated Rainfall( inch), Tidewater Area, VA,

1957-1987

Year 1965 1966 1968 1976 1980 1981 1985 1986
Rainfall [29.26 |[38.10 [35.65 (38.96 (35.73 [42.71 |45.20 [34.59
D./S. [-14.61 |-5.77 |[-822 |-491 |(-8.14 |-1.16 |[1.33 -9.28

D. / S. = deficit / surplus [ minus sign indicates deficit ], Long term average annual

rainfall = 43.87 inch
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Table 6.10. Deficit Characteristics of Drought Years, PDSI and Z Indices

Mon Jan Feb Mar Apr May Jun Jul
Avg. 3.51 3.23 3.93 2.92 3.7 4.52 4.52
1965 2.38 2.07 3.55 2.43 1.11 451 6.40
D./S. |[-1.13 -1.16 -38 -.49 -2.59 .81 1.88
ZD/S -1.13 -2.29 -2.67 -3.16 -5.75 -4.94 -3.06
V4 -1.22 -1.45 35 -47 -3.48 73 1.48
K 1.08 1.25 -.92 .96 1.34 .90 .79
PDSI -27 -.58 -35 -.50 -1.48 .38 71
1966 421 3.64 1.61 2.04 4.58 3.53 3.31
D./S. |[.70 41 -2.32 -.88 .88 -17 -1.21
2 D/S .70 1.11 -1.21 -2.09 -1.21 -1.38 -2.59
Z -1.24 58 -2.55 -.98 1.52 .08 -1.70
K 1.77 1.41 1.10 1.11 1.73 -47 1.40
PDSI -4.21 -3.57 -4.06 -4.01 -3.14 -2.16 -2.88
1968 2.85 97 432 2.40 3.15 3.72 44
D./S. |-.66 -2.26 39 -.52 -.55 .02 -.12
X D/S -.66 -2.92 -2.53 -3.05 -3.60 -3.58 -3.7
zZ -.45 -2.72 .69 -.83 -15 -.15 -.59
K .68 1.20 1.77 1.60 27 -1.5 49
PDSI -.94 -1.58 -1.15 -1.34 -1.24 -0.98 -1.12
1976 14.01 1.66 2.50 0.92 3.73 3.35 3.58
D./S. |.50 -1.57 -1.43 -2.0 .03 -.35 -.94
X D/S .50 -1.07 -2.50 -4.50 -4.47 -4.82 -5.76
V4 .96 -2.84 -1.99 -3.25 23 -.68 -1.45
K 1.92 1.81 1.39 1.63 7.67 1.94 1.54
PDSI 3.29 -79 -1.41 -2.39 -2.09 -1.94 -2.22
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Table 6.10 continue

1980 441 2.02 4.92 3.48 3.54 0.85 3.33
D./S. ]0.90 -1.21 .99 .56 -.16 -2.85 -1.19
2 D/S 0.90 -31 .68 1.24 1.08 -1.77 -2.96
Z 1.42 1-1.31 1.92 23 -.20 -3.52 -2.73
K 1.58 1.08 1.94 0.41 1.25 1.24 2.29
PDSI 4.76 3.97 4.27 .05 -.05 -1.06 -1.84
1981 .64 3.05 6.0 3.07 4.45 3.85 5.15
D./S. -2.87 -.18 2.07 15 75 15 .63
TD/S |-2.87 -3.05 -.98 -.83 -.08 .07 .70
Z -3.27 -.36 -1.81 -.74 1.37 -.57 .01
K 1.14 2.0 -.87 -4.9 1.83 -3.8 .02
PDSI -3.56 -3.19 -3.45 -3.44 -2.66 -2.36 -2.21
1985 3.78 3.78 2.25 0.62 3.38 3.56 4.78
D./S. 27 55 -1.68 -2.30 =32 -.14 .26
£ D/S 27 .82 -.86 -3.16 -3.48 -3.62 -3.36
Z -.09 .8 -2.02 4.1 -.87 -.36 -43
K -.33 1.46 1.20 1.78 2.70 2,57 -1.65
PDSI -2.84 -2.16 -2.62 -3.77 -3.67 -3.33 -3.21
1986 2.74 2.59 1.28 1.63 2.20 1.63 425
D./S. =77 -.64 -2.65 -1.29 -1.50 -2.07 =27
ZD/S =77 -1.41 -4.06 -5.35 -6.85 -8.92 -9.19
Z =75 -91 -3.14 -2.13 -1.93 -3.54 -2.41
K .97 1.42 1.19 1.65 1.29 1.71 8.90
PDSI -.64 -.73 -1.70 -2.23 -2.56 -3.30 -3.74

D. / S. = deficit / surplus (inch); Z=Z index; K=Z/(D./S.), Z D/S =Accumulated deficit / surplus
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Table 6.11. Accumulated Deficit (inch) Upto Selected Months during

Drought Years
Year | 1965 | 1966 | 1968 | 1976 | 1980 | 1981 | 1985 | 1986 | Avg.
April | -3.16 [ -2.09 | -3.05|-4.50]|1.24 |-83 |-3.16|-535|-2.61
May |-5.75]-1.21|-3.60(-447|1.08 [-08 |-3.48|-6.85]|-3.10
June | 494 |-138|-3.58|-482|-1.77|.07 |-3.62|-8.92|-3.60

Avg. = average value of accumulated deficits

156



Table 6.12. Non- Drought Years and Associated Rainfall (inch), Tidewater

Area, VA
Year 1961 1962 1975 1979 1984
Rainfall 49.30 48.27 55.56 60.91 43.52

Long term annual rainfall = 43.87 inch

157



Table 6.13. Analysis of Accumulated Deficits (inch ), Non-Drought Years

Mon Jan Feb Mar Apr May Jun Jul
Avg. 3.51 3.23 3.93 2.92 3.7 4.52 4.52
1961 3.39 5.21 424 2.63 6.29 5.66 2.93
D./S. |-12 1.98 31 -.29 2.59 1.96 -1.59
2 D/S -.12 1.86 2.17 1.88 4.47 6.43 4.84
1962 5.16 3.34 418 416 2.65 5.37 5.39
D./S. |1.65 11 25 1.24 -1.05 1.67 0.87
ZD/S 1.65 1.76 2.01 3.25 2.20 3.87 4.74
1975 5.12 3.81 7.49 3.15 3.12 2.86 8.29
D./S. |1.61 0.58 3.56 0.23 -.58 -.84 3.77
ZD/S 1.61 2.19 5.75 5.98 5.40 4.56 8.33
1979 6.44 5.04 4.01 436 6.75 4.04 5.20
D./S. |293 1.81 .08 1.44 3.05 0.34 0.68
ZD/S 2.93 4.74 4.82 6.26 9.31 9.65 10.33
1984 3.77 3.92 6.81 4.76 5.31 2.23 6.44
D./S. |026 0.69 2.88 1.84 1.61 -1.47 1.92
D/S 0.26 0.95 3.83 5.67 7.28 5.81 7.73

D./ S. = deficit / surplus in inch; £ D/S = accumulated deficit / surplus ; Avg. = long term
average rainfall
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Table 6.14. Accumulated Surplus (inch) Upto Selected Months During
Non- Drought Years

Year 1961 1962 1975 1979 1984 Avg.
April 1.88 3.25 5.98 6.26 5.67 4.60
May 4.47 2.20 5.40 9.30 7.28 5.70
June 6.43 3.87 4.56 9.65 5.81 6.10

Avg. = average accumulated surplus value
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Table 6.15. Low Rainfall Years and Rainfall (inch), Tidewater Area, VA, 1957-87

Year

1963

1967

1970

1974

1977

Rainfall

36.16

38.2

36.63

41.37

41.74

Long term annual average rainfall = 43.87 inch
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Table 6.16. Analysis of Accumulated Deficits (inch ), Low Rainfall Years

Mon Jan Feb Mar Apr May Jun Jul
Avg. 3.51 3.23 3.93 2.92 3.70 3.70 4.52
1963 2.83 3.03 4.74 0.83 2.81 7.62 1.69
D./S. |-.68 -.20 .81 -2.09 -.89 3.92 -2.83
ID/S |-68 -.88 -.07 -2.16 -3.05 .87 -1.96
1967 2.75 3.53 2.14 1.29 3.52 2.08 4.66
D./S. |-76 30 -1.79 -1.63 -.18 -1.62 0.14
ZD/S |[-76 -.46 -2.25 -3.88 -4.06 -5.68 -5.54
1970 2.09 | 3.24 4.01 3.58 2.29 3.14 5.83
D./S. |-1.42 .01 .08 0.66 -1.41 -.56 1.31
ID/S |-142 -1.41 -1.33 -.67 -2.08 -2.64 -1.33
1974 3.96 291 4.58 2.27 3.62 3.87 3.82
D./S. 45 -32 .65 -.65 -.08 17 -0.7
ID/S | .45 13 .78 13 .05 22 -0.48
1977 3.10 2.16 3.57 235 3.88 2.15 3.27
D./S. |-41 -1.07 -.36 -.57 18 -1.55 -1.25
ID/S |-41 -1.48 -1.84 -2.41 -2.23 -3.78 -5.03

D./ S. = deficit / surplus in inch; £ D/S = accumulated deficit / surplus ; Avg. = long term
average rainfall
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Table 6.17. Accumulated Average Deficit / Surplus Rainfall (inch) Starting January

Month
Deficit / Surplus ¥ | Drought Years Non -Drought Low Rainfall
Years Years
April -2.61 4.60 -1.79
May -3.10 5.70 -2.27
June -3.60 6.10 -2.20
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Table 6.18. Percentage of Drought Events Starting Various Months, Tidewater Area, VA,
Data Period 1895-1990

Mon |Jan |Feb |Mar |Apr |May [Jun [Jul |Aug |Sep [Oct [Nov |Dec
% 0 6 11 |4 4 8 19 |17 |11 |8 6 6

Drought event = weather state entering class 5
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Table 6.19. Monthly Transition Matrices, Tidewater Region, VA,
PDSI data, 1957-1987 ( Data Source : SWCB, 1990)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1429
0.3333
0.0000
0.0000
0.0000
0.0000
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1429
0.8000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.3333
0.1111
0.0000
0.0000
0.0000
0.0000

0.1429
0.3333
0.2727
0.0000
0.0000
0.0000
0.1429

0.0000
1.0000
0.1111
0.0000
0.0000
0.0000
0.0000

0.1429
0.2000
0.1667
0.0000
0.0000
0.0000
0.0000

January - February
0.0000 0.0000 0.0000
0.3333 0.3333 0.0000
0.7778 0.1111 0.0000
0.2308 0.6923 0.0769
0.0000 0.0000 1.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

February - March
0.1429 0.1429 0.1429
0.3333 0.0000 0.0000
0.6364 0.0909 0.0000
0.0909 0.8182 0.0909
0.0000 0.5000 0.5000
0.0000 0.0000 0.0000
0.1429 0.1429 0.1429

March - April
0.0000 1.0000 0.0000
0.0000 0.0000 0.0000
0.6667 0.2222 0.0000
0.0000 0.8333 0.1667
0.0000 0.0000 0.3333
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

April - May
0.1429 0.1429 0.1429
0.0000 0.0000 0.0000
0.5000 0.3333 0.0000
0.0769 0.9231 0.0000
0.0000 0.0000 1.0000
0.0000 0.0000 0.6667
0.0000 0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
1.0000

0.1429
0.0000
0.0000
0.0000
0.0000
0.5000
0.1429

0.0000
0.0000
0.0000
0.0000
0.6667
1.0000
0.0000

0.1429
0.0000
0.0000
0.0000
0.0000
0.3333
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1429
0.0000
0.0000
0.0000
0.0000
0.5000
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.1429
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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0.7500
0.0000
0.0000
0.0000
0.0000
0.0000
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.1429

0.1429
0.2500
0.0000
0.0000
0.0000
0.0000
0.1429

0.0000
0.5000
0.0000
0.0000
0.0000
0.0000
0.1429

1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.1429

0.0000
1.0000
0.2500
0.0000
0.0000
0.0000
0.1429

1.0000
0.3333

0.0000

0.0000
0.0000
0.0000
0.1429

0.1429
0.5000
0.0000
0.0000
0.0000
0.0000
0.1429

1.0000
0.0000
0.2000
0.0000
0.0000
0.0000
0.1429

0.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.1429

May - June

0.0000
0.0000
0.7500
0.1429
0.0000
0.0000
0.1429

0.2500
0.0000
0.0000
0.7857
0.0000
0.0000
0.1429

June - July

0.0000
0.3333
0.6000
0.0000
0.0000
0.0000
0.1429

0.0000
0.3333
0.4000
0.7500

0.3333

0.0000
0.1429

July - August

0.1429
0.2500
1.0000
0.0000
0.0000
0.0000
0.1429

0.1429
0.0000
0.0000
0.7143
0.1429
0.0000
0.1429

0.0000
0.0000
0.0000
0.0714
0.8000
0.5000
0.1429

0.0000
0.0000
0.0000
0.2500
0.6667
0.0000
0.1429

0.1429
0.0000
0.0000
0.2857
0.7143
0.5000
0.1429

August - September

0.0000
0.5000
0.6000
0.0909
0.0000
0.0000
0.1429

0.0000
0.0000
0.2000
0.8182
0.3000
0.5000
0.1429

0.0000
0.0000
0.0000
0.0909
0.4000
0.5000
0.1429

September - October

0.0000
0.0000
0.6000
0.2143
0.0000
0.0000
0.1429

0.0000
0.0000
0.4000
0.5714
0.0000
0.3333
0.1429

0.0000
0.0000
0.0000
0.2143
1.0000
0.3333
0.1429

0.0000
0.0000
0.0000
0.0000
0.2000
0.5000
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0.1429

0.1429
0.0000
0.0000
0.0000
0.1429
0.5000
0.1429

0.0000
0.0000
0.0000
0.0000
0.3000
0.0000
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.3333
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.1429

0.1429
0.0000
0.0000
0.0000
0.0000
0.0000
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.1429
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1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.1429

1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
1.0000
0.1667
0.0000
0.0000
0.0000
0.1429

0.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.6667
0.1250
0.0000
0.0000
0.0000
0.0000

October - November

0.0000
0.0000
0.5000
0.2727
0.0000
0.0000
0.1429

0.0000
0.0000
0.3333
0.6364
0.1000
0.0000
0.1429

10.0000

0.0000
0.0000
0.0909
0.7000
0.0000
0.1429

November - December

0.0000
0.0000
0.8333
0.3000
0.0000
0.0000
0.0000

0.0000
0.0000
0.1667
0.7000
0.3750
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.5000
0.5000
0.0000

December - January

0.0000
0.0000
0.7500
0.0909
0.0000
0.5000
0.0000

0.0000
0.3333
0.1250
0.9091
0.2500
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.5000
0.5000
0.0000

0.0000
0.0000
0.0000
0.0000
0.2000
0.0000
0.1429

0.0000
0.0000
0.0000
0.0000
0.1250
0.0000
1.0000

0.0000
0.0000
0.0000
0.0000
0.2500
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.5000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
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Table 6.20. Computation of Rainfall Deficit / Surplus for Weather Class Transitions

Month

M.-J. |55 |56 |65 (66
1967 |-1.62

1969 (-.07

1976 |-.35

1981 |.15

1986 -2.07

1966 -17

1985 -.14
Avg. |-.47 -2.07 |-17 -.14
J-Ju. |54 |55 |66
1959 (4.17

1969 [2.29

1966 -1.21

1967 .14

1976 -.94

1981 .63

1985 .26

Avg. |3.23 -35 .26
Ju-A |44 |45 |54 |55 |56 (65 [6-6
1959 |-2.40

1960 |1.39

1964 |.38

1965 -2.26

1969 {2.17

1970 |-2.25

1971 |.87

1973 1.52

1974 |.88

1984 |-2.09

1963 -2.26

1968 -87

1983 -2.19

1987 -1.75

1957 1.41

1967 291
1976 -1.61
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Table

6.20

cont.

1977
1980
1981
1966
1986
1985
Avg.

A.-S.
1960
1957
1959
1964
1965
1969
1971
1973
1974
1984
1970
1963
1976
1983
1967
1968
1981
1987
1977
1980
1986
1985
1966
Avg.

-.18

453
3.26

3.26

-1.77
44

.82
-.64
2.68
1.86
-.68
-.67
-1.77
.52
-2.19

-.01

1.41

45

-1.89

-1.89

-1.25
-2.43
-41

-.56

54

.81
1.52
.56

.96

-.87

-.87

55

-1.8
-2.83
-1.63
-.01

-1.57

2.87

2.87

56

-2.30
-3.16
-3.98

-3.15

6—4

25

2.5

65

.97
.97
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Table 6.21. Weather Transition Events from May through September,

Deficits / Surplus And Associated Probabilities

Events Probability Deficit / Surplus (inch)
55443 .0169 422
55444 1537 0.95
55445 .0169 -0.93
55454 .0230 1.95
55455 .0306 -0.58
55456 .0230 -2.16
55543 .0067 3.85
55544 .0615 0.58
55545 .0067 -1.30
55554 1158 -0.42
55555 1544 -2.95
55556 1158 -4.53
55564 .0375 0.81
55565 .0375 =72
56656 .0300 -1.87
56655 .0400 -.51
56654 .0300 2.02
56664 .0500 0.79
55565 .0500 -0.74

minus sign indicates deficit
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Table 6.22 Analysis of Rainfall Data ( Water Year Basis )

Non - Drought Drought Years Average Years Low Rainfall Years
Years
Year Rainfall | Year Rainfall | Year Rainfall | Year Rainfall
1958 58.76 1965 36.77 | 1961 44.15 | 1959 40.92
1960 54.00 1966 33.95 | 1969 4425 | 1963 41.72
1962 49.55 1967 36.16 | 1974 45.08 | 1964 40.77
1972 50.46 1968 35.20 | 1983 44.19 | 1971 41.79
1973 47.33 1970 37.93 | 1987 45.03
1975 52.41 1976 37.75
1978 54.23 1977 37.04
1979 60.56 1980 36.16
1982 47.09 1981 42.94
1984 51.87 1985 39.31

1986 36.47

Annual Average Rainfall = 44,13 inch (water year basis)
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Table 6.23 Three Months’ Cumulative Deficit / Surplus (inches) Up To Various

Months; Drought Years

Year October January March May
1965 4.66 -2.45 -2.88 -3.71
1966 -5.93 -4.72 -1.42 -2.57
1967 -.53 -3.21 -2.46 -3.85
1968 -.78 .19 -2.74 -.93
1970 31 -.51 -1.54 -92
1976 427 -21 -2.71 -3.65
1977 2.64 -2.00 -2.05 -1.00
1980 6.34 1.47 47 1.14
1981 -2.58 -5.27 -1.19 2.72
1985 -6.12 -1.49 -1.07 -4.55
1986 4.28 -.16 -4.27 -5.69

minus sign indicates deficit
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Table 6.24 Three Months’ Cumulative Deficit / Surplus (inches) Up To Various

Months; Low Rainfall Years

Year October January March May
1959 3.33 -2.31 -3.7 -.67

1963 -2.53 1.71 -.28 -2.42
1964 -3.96 -.98 .73 -3.36
1971 -5.48 -.49 -.29 1.07

Minus sign indicates deficit

172



Table 6.25 Three Months’ Cumulative Deficit / Surplus (inches) Up To Various
Months; Normal Years

Year October January March May
1961 5.24 -3.12 1.96 2.36
1969 -3.90 -1.27 -.92 -1.77
1974 -.96 1.65 .57 -.33
1983 .02 -.49 .96 4.68
1987 -1.16 5.34 2.02 -.89
Minus sign indicates deficit
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Table 6.26 Three Months’ Cumulative Deficit / Surplus (inches) Up To Various

Months; Non- Drought Years

Year October January March May
1959 3.33 -2.31 -3.7 -.67
1960 57 -91 -.88 24
1962 77 1.67 1.80 .19
1972 5.69 -3.15 -46 52
1973 .81 1.75 -.80 77
1975 -39 18 5.54 2.96
1978 .19 6.12 3.21 5.30
1979 -3.82 443 461 432
1982 -1.10 .08 1.94 -1.25
1984 -.56 3.94 3.62 6.08

Minus sign indicates deficit
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Table 6.27 Three Months’ Cumulative Deficit / Surplus (inches) Up To Various Months

Category January March May

Drought Years -1.7(-0.5t0-2.5) (-2(-1to-3) -215(-1to-5)
Low Rainfall Yrs. -.52 -.90 -1.35

Normal Years 42 .92 .81
Non-Drought Yrs. | 1.2 1.5 1.85

Minus sign indicates deficit; (.) = range of variation
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Table 6.28 Deficit / Surplus Amounts (inches) Associated with Weather State

Transitions

Transition— 455|596 |67 |55 |66 |77 | 756 |65 |54
Month

J.-F. 427]-282|-211|-44 |-68 (-88 [1.02 |1.69 |3.83
F.-M. 453|-299-224|-47 |-72 |-93 [1.08 |1.79 |4.06
M.-A. -491(-324-243(-51 |-78 |[-1.07]|1.17 | 194 |4.40
A-M. 572|-3.77|-282|-59 |-92 |-1.18|1.36 |2.26 |5.10
M.-J. -5771-380(-2.84|-59 |-92 |-1.18|1.38 |2.28 |5.17
J-J. 794-524(-392|-82 |-127|-1.63|1.89 |3.14 |7.12
J-A -631|-416|-3.11|-65 |-1.01|-1.30(1.51 {250 |5.65
A.-S. -582|-384|-287|-60 |-93 |-1.20(1.39 [230 |5.21
S.-0. 5671-3.741-280(-59 |-91 [-1.17]|135 |224 |5.08
O.-N. -567|-3.741-280(-59 |-91 [-1.17]|135 |224 |5.08
N.-D. -490|-323|-243|-51 |-78 |[-1.07(1.17 |1.94 |4.40
D.-J. 466 |-3.07|-230|-48 |-74 |-96 |1.11 |1.84 |4.17

minus sign indicates deficit; J.-F. = January to February
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Chapter VII

SUMMARY and RECOMMENDATIONS

In this dissertation, time series models, a Markov chain approach, and a dynamical systems
approach have been proposed to predict droughts. The time series models reproduce the
statistical moments of the historical data and lend an analytical framework for forecasting
with designated confidence levels. Because they preserve the historical moments, they
may be run for a long period called a generation scheme to mark the worst possibilities. In
the specific application to the PDSI to overcome its bi-modal distribution nature, the Z
index is considered. It is explained that the bi-modality is primarily due to the
backtracking computation procedure. The Z index depends on the monthly deficit and a
region and month dependent multiplying factor. It is shown to have a unimodal
distribution and is recommended for time series analysis.

In the auto-regressive schemes, certain fractions of the past values are summed and a
perturbation solely dependent on the variance of the random shock term is added to yield
the predicted index value. This approach indicates that, no matter how many of the past
realized values one can incorporate, still there is a variability in making the prediction for
the next period. The variance of the random term and the coefficients are determined by
the second order ( covariance) moments of the data series.

In comparison, in the Markov chain approach data is stratified into classes, and class to
class transition probabilities are estimated. These transition probabilities are then
manipulated to obtain the parameters helpful in drought planning such as the occurrence
probability, expected duration, and first times of return. The method also predicts the
most likely and expected drought classes. Within a decision making framework, the
method lays out all possible occurrences with the associated probabilities. This decision
tree enables a decision maker to follow the realized path exactly and from that point to

follow a future branch based on the drought progressive pattern, associated probabilities,
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and some secondary measures of drought. If a value system can be imposed, the decision
on whether to issue a drought warning or not can be decided at each node of the tree.
Such a value assignment should be possible because the government agencies routinely
assess the damage in terms of dollars after certain disasters.

Based on the idea that runoff processes are local in nature but the precipitation process is
determined on a global basis, a dynamical systems formulation is also considered. The
global forcing is brought in through the Southern Oscillation index (SOI) and the Sea
Surface Temperature (SST) index. An important benefit is the determination of the
probability density function of the drought process by analytical means through the Fokker
Planck equation. This should be compared with the time series analysis in which a normal
distribution is assumed and therefore proper transformations to data are necessary; in the
Markov chain a distribution free, frequency interpretation of probability is employed.
However, in terms of the end applications the Markov chain approach and the dynamical
systems approach serve the same purpose because both of them exploit the conditional
probability.

It is also anticipated that the drift and the diffusion functions employed in the Fokker
Planck equation would respond more quickly to sudden changes in the weather as
opposed to obtaining the probabilities from long term data. The dynamical systems
approach and the time series analysis deal with the index values themselves while the
Markov chain deals with the index classes. Note that there is a limit to shortening the
class interval in the Markov chain in order to obtain stable transition probabilities.
However, in the dynamical analysis such restrictions are not encountered, except for the
difficulties faced in synthesizing the drift and diffusion functions. In this dissertation, for
an empirically obtained drift function, a piecewise linear approximation scheme is
suggested. When the linearization interval gets shorter, a segment dependent but constant
diffusion value is acceptable. This scheme leads to the result that by employing suitably
determined Gaussian distribution for each segment, any true distribution (without the

linearization) can be approximated well.
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The practical values of the results are in providing the parameter values for assessing the
drought proneness of a region; for developing buffer resources to cope with the droughts
based on the expected duration and times of return; for deciding then and there what
mitigation measures to be taken during the course of a drought based on the decision tree
analysis.
For future the research in this area the following recommendations are made :
i) In the time series analysis relate the residual term to the physical processes and obtain a
derived distribution. The Palmer CAFEC ( Climatically Appropriate For Existing
Conditions) deficit equation has some difficulties in determining the covariance structure
of certain variables such as recharge and zonal soil moisture storage.
ii) In the Markov chain analysis one may explore weekly chains with larger number of
states. Evaluate reward / penalty functions for the decision tree based on governmental
disaster damage assessment procedures.
iii) a) In the dynamical systems approach develop assessment methods for the drift and
diffusion functions.
b) develop numerical procedure for the general forms of the Fokker - Planck equation.
c) explore various choices of global forcing from appropriate source regions. Note in
this context results from the general circulation models can be combined.
iv) The waterbalance models can be improved to yield more accurate representation of the

index values.

179



BIBLIOGRAPHY

Akaike, H. , 1974. A New Look at Statistical Model Identification. 1LE.E.E. Trans.
Autom. Control, AC-19: 716-722

Alley, WM., 1984. The Palmer Drought Severity Index: Limitations and Assumptions. J.
Climate Appl. Meteor., 23 , 1100-1109.

Alley, WM., 1985. The Palmer Drought Severity Index as a Measure of Hydrologic
Drought. Water Resour. Bull,, 21, 105-114.

Bailey, N.T. J., 1964. Elements of Stochastic Processes, John Wiley & Sons, Inc. New
York.

Bates , C.G., 1935. Climatic Characteristics of the Plains Region. In Possibilities of
Shelterbelt Planting in the Plains region, by M. Silcox, F.A. et al., Washington D.C.

Beran, M.A. , and J. Rodier, 1985. Hydrological Aspects of Drought, UNESCO/WMO
Report, No. 39, Paris.

Berlage, H.P., 1957. Fluctuations in the General Atmospheric Circulation of More Than
One Year, Their Nature and Prognostic Value, Koninklijk Nederlands Meteorologisch
Institut Mededlingen en Verhandelingen, 69, 152 pp.

Birch, SK. and G. Ulrich, 1982. Virginia Beach’s Response to the 1980-81 Drought,
Virginia Water Resources Research Center, Blacksburg, Virginia.

Bjerknes, J., 1966. A Possible Response of the Atmospheric Hadley Circulation to
Equatorial Anomalies of Ocean Temperature, Tellus, 18: 820-829.

Bjerknes, J., 1969. Atmospheric Teleconnection from the Equatorial Pacific, Monthly
Weather Review, 97, 163-172.

Box, G.E.P. and Cox, D.R,, 1964. An Analysis of Transformations, J.R. Statist. Soc., B,
26, 211-252. '

Box , G.E.P. and G.M. Jenkings, 1976, Time Series Analysis, : Forecasting and Control,
revised edition., Holden Day, San Francisco, California.

Bowles, D.S., T.C. Hughes, W.R. James, D.T. Jensen and F.W. Haws, 1980. Vulnerability
of Water Supply Systems to Droughts, Re. UWRL/P-80/08, Utah Water Research

Laboratory, Logan, 67 pp.

180



Cane, M.A., 1992. Tropical Pacific ENSO Models: ENSO as a Mode of the Coupled
System in K.E. Trenberth’s Climate System Modeling.

Cayan, D. R. and R H. Webb, 1992. El Nino/Southern Oscillation and Streamflow in
western United States, In El Nino , Eds. HF. Diaz and V. Markgraf, Cambridge
University Press, Cambridge.

Chen, W.Y., 1982. Assessment of Southern Oscillation Sea Level Pressure Indices, Mon.
Wea. Rev., 110, 800-807.

Colorado Drought Response Plan, 1981. Division of Disaster Emergency Services, CO.

Cordery, 1., 1981. Probabilistic Forecasting of Droughts, J. of Int. Assoc.of Hydrologists,
1&2, 1-7

Cordery, 1., 1983. Forecasting of Hydrological Drought, Hydrology and Water Resources
Symposium, 1983, 8-10, Nov., Hobart, 118-123

Cox, W.E. , 1995. Course offerred on ‘Water Resources Planning’ CE4344, Civil Eng.
Dept., V.P.I. & S.U., Blacksburg, VA.

Davis, JM. and P. N. Rappoport, 1974. Time series Analysis of Palmer Drought Index for
Central Ohio, Dep. of Geography discussion paper # 37, The Ohio St. Univ., 11 pp

Dezman L.E., B.A. Shafer, H.D. Simpson, and J.A. Danielson, 1982. Development of a
Surface Water Supply Index, A Drought Severity Indicator for Colorado, Int. Sym. on
Hydrometeorology, American Water Resources Association, Bethesda, MD , 337-341

Diaz, HF., 1983. Some Aspects of Major Dry and Wet Periods in Contiguous United
States,1895-1981, J. Climate Appl. Meteor,22, 3-16.

Dickerson, W.H. and B.E. Dethier, 1970. Drought Frequency in Northeastern United
States, West Virginia University Agr. Exp. Sta., Bull. No. 595, 20pp

Dracup, J.A,, K. S. Lee, and E.G. Paulson, 1980. On the Definition of Droughts, Water
Resour. Research, 16(2), 291-302

Dracup, JLA and E. Kahya, 1993. U.S. Streamflow Patterns in Relation to the El
Nino/Southern Oscillation, Water Resources Research, 29(8), 2491-2503.

Eder, BK., JM.Davis, and J.F. Monahan, 1987. Spatial and Temporal Analysis of the
Palmer Drought Severity Index over the Southeastern United States, J. Climatology, 7,
31-56.

181



Federer, C.A., 1980. Frequency of Agricutural and Forest Drought in New Hampshire:
1926-1975. U.S. Forest Service Northern Eastern Forest Experiment Station Research
Report no. 26, Durham, New Hampshire. Water resources centre, Univ. of New
Hampshire. 37 pp.

Felch, RE., 1978. Drought Charateristics and Assessment, North American Drought,
N.J. Rosenberg, Ed., Amer. Assoc. Adv. Sci. Selected Symp., 15, Westview Press, 25-42.

Fieldhouse , D.J. and W.C. Palmer, 1965. Meteorological and Agricultural Drought, Univ.
of Delaware, Agr. Exp. Bull. Number 353, 71pp.

Fokker, A.D., 1914. Ann. Physik 43, 810.
Gardiner, C.W., 1985, Handbook of Stochastic Methods, Springer- Verlag, Berlin

Gibbs, W.J., 1975, Drought - Its Definition, Delineation and Effects, Special
Environmental Report no. 5, WM.O., Geneva.

Gibbs, W.J. and J.V. Maher, 1967. Rainfall Deciles as Drought Indicators, Bureau of
Meteorology, Melbourne, Australia, Bull. No. 48.

Gillespie, D.T., 1992. Markov Processes, Academic Press, Inc., San Diego, CA.
Glantz, M.H., 1994. Drought Follows the Plow, Cambridge Univ. Presss, New York.

Guttman, N.B., 1991. A Sensitivity Analysis of Palmer Hydrologic Drought Index, Water
Resour. Bull,, 27, 797-807.

Guttman, N.B. , J. R. Wallis, and J R. M. Hosking, 1992. Spatial Comparability of the
Palmer Drought Severity Index, Water Resour. Bull,, 28, 1111-1119.

Haines , D.A., V.J. Johnson and W.A. Main, 1976. An Assessment of Three Measures of
Long Term Moisture Deficiency Before Critical Fire Period, USDA Forest Service Res.

Pap. NC-131, 13pp.

Haines, D.A., V.J. Johnson and E.F. McNamara, 1978. Forest Fires in Pennsylvania ,
USDA Forest Service Res. Pap. NC-158, USDA Forest Service, 20 pp

Havens, A.V., W.B. Snow, JL. Horowitz and C.S. Liu, 1968. Drought Frequency,

Intensity , and Duration: Its Correlation to Streamflow and Its Impact Upon Synthetic
Hydrology. New Jersey Water Resour. Res. Inst., 49 pp.

182



Heddinghaus, T.R. and P. Sabol, 1991, A Review of the Palmer Drought Severity Index
and Where Do We Go From Here ? In: Proc. 7th Conf. on Applied Climatology, Sept. 10-
13, 1991, American Meteorological Society, Boston, Massachusetts, 242-246.

Herbst, P.H.,, KB. Bredenkamp, and HM.G. Barker, 1966, A Technique for the
Evaluation of Drought From Rainfall Data, J. of Hydro., 4(3), 264-272.

Houghton, J.T., G.J. Jenkins, and J.J. Ephraums, 1990, Climate change, The IPCC
Scientific Assessment, Intergovernmental Panel on Climate Change, Cambridge Univ.

Press, Cambridge.

Hrezo, M.S. , P.G. Bridgeman and W.R. Walker, 1986. Managing Droughts Through
Mechanisms, J. American Water Works Assoc., June , 1986, 46-51.

Isaacson D.L. and R. Madsen, 1976. Markov Chains : Theory and Applications, John
Wiley, New York.

Janowiak, J.E., C.F. Ropelewski, and M.S. Halpert, 1986. The Precipitation Anomaly
Classification : A Method for Monitoring Regional Precipitation Deficiency and Excess on
a Global Scale, J. Climate Appl. Meteor., 25, 565-574.

Jensen, M.E, R.D.Burman and R.G.Allen (Eds.), 1990. Evapotranspiration and Irrigation
Water Requirements, ASCE Manuals and Reports on Engineering Practice No. 70. ASCE,

New York.

Johnson, W.K. and R.W. Kohne, 1993. Susceptibility of Reservoirs to Drought using
Palmer Index, J. of Water Resour. Planning and Management, 119(3), 367-387.

Karl, T.R., 1983. Some Spatial Characteristics of Drought Duration in the United States,
J. Clim. Appl. Meteor., 22,1356-1366.

Karl, T.R.,1986. The Sensitivity of the Palmer Drought Severity Index and Palmer’s Z
Index to Their Calibration Coefficients Including Potential Evapotranspiration, J. Clim.
Appl. Meteor., 25, 77-86.

Karl, T.R. and A.J. Koscielny, 1982. Drought in United States: 1895-1981, J. Climatol.,
2,313-321

Karlin, S. and HM. Taylor, 1975. A First Course in Stochastic Processes, Academic
Press, Inc., New York.

Katz, R'W. and RH. Skaggs , 1981. On the Use of Auto-Regressive Moving Average
Processes to Model Meteoroogical Time Series. Mon, Wea. Rev., 109, 479-484.

183



Kedam, B. , H. Pavlopoulos, X. Guan, and D.A. Short, 1994, A Probability Distribution
Model for Rain Rate, J. of Applied Meteorology, Vol. 33, 1486-1493.

Kibler, D.F., E.L White and G.L.Shaffer , 1987. Investigation of Sensitivity, Reliability,
and Consistency of Regional Drought Indicators in Pennsylvania , Vol. 1, Technical
report, Inst. for Res. on Land and Water Reso. , Pennsylvania State Univ., University
Park, PA,, 132 pp

Kiladis, G.N. and H.F. Diaz, 1989. Global Climatic Anomalies Associated with Extremes
of Southern Oscillation, J. of Climate, 2: 1069-1090.

Klemes, V., 1987. Drought Prediction : A Hydrological Perspective, In Planning for
Drought : Toward a Reduction of Societal Vulnerability, Eds. D.A. Wilhite and W.E.
Easterling, Westview Press, Boulder, CO.

Klugman, M.R., 1978. Drought in the Upper Midwest, J. Appl. Meteor., 17, 1425-1431.

Kogan, F.N., 1987. Vegetation Index for Areal Analysis of Crop Conditions, Proc. of the
18th Conference on Agricultural and Forest Meteorology, P. 103. American
Meteorological Society, Boston.

Kogan, F.N., 1990b. Monitoring the 1988 U.S. Drought from Satellite, Proc. Sth
Conference on Satellite Meteorology and Oceanography, pp. 186-189. London.

Koppen, W., 1931, Die Klimate der Erde. Walter de Gruyter, Berlin

Kottegoda, N.T., 1980, Stochastic Water Reso. Technology, Mcmillan Press Ltd., New
York.

Landsberg, HE., 1975. Drought, a Recurrent Element of Climate, In : Special
Environmental Report No. 5, WMO, Geneva

Lawson, M.P., A Reiss, R. Phillips and K. Livingston, 1971. Nebraska Droughts: A Study
of their Past Chronological and Spatial Extent with Implications for Future. Occasional
Paper No. 1, Dept. Geogr., Univ. of nebraska, 147 pp.

Lee, DM, 1980. On Monitoring Rainfall Deficiencies in Semi-arid Regions, The
Threatened Drylands - Regional and Systematic Studies of Desertification, ( Available
from the Bureau of Meteorology, Melbourne, Australia ).

Linsley , RK. , M.A. Kohler and J.L.H. Paulhus , 1975. Hydrology for Engineers,
McGraw Hill, New York.

184



Loganathan, G.V. , S. Mostaghimi, M.K.Tchaou and V.K.Lohani, 1993, A Stochastic
Characterization of Palmer Drought Severity Index, Proc. Int. Conf. on Hydrology and
Water Reso., New Delhi, Dec. 20-22, 1993

McDonald, N.S., 1989. Decision Making Using a Drought Severity Index, Proc. United
Nations University Workshop, Need for Climate and Hydrologic Data in Agriculture in
Southeast Asia, CSIRO Division of Water Research, Technical Memo. 89/5.

Meyer, S.J., K.G. Hubard, and D.A. Wilhite, 1992a. The Development of a Crop Specific
Index for Corn, I, Model Development and Validation, Agronomy J. (in press).

Meyer, S.J., K.G. Hubard, and D.A. Wilhite, 1992b. The Development of a Crop Specific
Index for Corn, II, Application in Drought Monitoring and Assessment, Agronomy J. ( in
press).

Mood, A.M,, 1940. The Distribution Theory of Runs, Annals of Mathematical Statistics
11 :367-392.

Motha, R.P. and T.R. Heddinghaus, 1986. The Joint Agricultural Weather Facility’s
Operational Assessment Program, Bull. Amer. Meteor. Soc., 67, 1114-1122.

NOAA, 1993. Lecture Notes, Colloquium on Operational Environmental Prediction,
Silver Spring, MD.

Palmer, W.C., 1965. Meteorogical Drought, U.S. Weather Bureau, Research Paper no.
45, 58 pp.

Palmer, W.C.,1967. The Abnormally Dry Weather of 1961-1966 in the Northeastern
United States , Proc. conf. drought in north-eastern United States, Jerome Spar, Ed., New
York Univ., Geophy. Res. lab, TR-68-3, 32-56.

Palmer, W.C., 1968. Keeping Track of Crop Moisture Conditions Nationwide: The New
Crop Moisture Index. Weatherwise, 21(4): 156-161.

Peixoto, J.P. and A .H. Oort, 1992. Physics of Climate, American Institute of Physics, New
York.

Personal Communication, 1995a. Email Communication with Dr. Donald A. Wilhite.

Personal Communication, 1995b. Communication From Ms. Erlinda Patron, Dept. of
Environmental Quality, Commonwealth of Virginia, May 1995.

Philander, S. G., 1990. El Nino, La Nina, and the Southern Oscillation, San Diego,
Academic Press, 293 pp.
185



Planck, M., 1917. Sitzber Preub Akad. Wiss. p. 324.

Puckett, L.J.,1981. Dendroclimatic Estimates of a Drought Index for Northern Virginia,
U.S. Geological Survey Water Supply Paper 2080, 39pp.

Quinn, WH,, 1992, A Study Of Southern Oscillation Related Climatic Activity for A.D.
622-1990 Incorporating Nile River Flood Data, In El Nino , Eds.H.F. Diaz and V.
Markgraf, Cambridge University Press, Cambridge.

Ramdas, L.A.,1950. Rainfall and Agriculture, Ind. J. Met. and Geophy., 1(4), 262-274

Rao, AR. and G. Padmanabhan, 1984. Analysis and Modeling of Palmer’s Drought Index
Series, J. of Hydro., 68, 211-229.

Rasmusson, EM. and T.H. Carpenter, 1982. Varations in Tropical Sea Surface
Temperature and Surface Wind Fields Associated with the Southern Oscillations/El Nino,
Mon.Wea. Rev., 110, 354-384.

Riebsame, W.E., S.A. Changnon, Jr., and T.R. Karl, 1990. Drought and Natural
Resources management in the United States : Impacts and Implications of the 1987-1989
Drought, Westview Press, Boulder, CO.

Risken, H., 1984. The Fokker Planck Equation, Springler Verlag, New York.

Rodda, J.C., 1965. A Drought Study in South-east England, Water and Water
Engineering, 69:316-321.

Roplewski, CF., P.D. Jones, 1987. An Extension of the Tahiti-Darwin Southern
Oscillation Index, Mon. Wea. Rev., 115, 2161-2165.

Ropelewski, C.F. and M.S. Halpert, 1986. North American Precipitation and Temperature
Patterns Associated with the El Nino/ Souhtern Oscillation(ENSOO, Monthly Weather
Review, 114: 2352-2362.

Ropelewski, C.F. and M.S. Halpert, 1987. Global and Regional Scale Precipitation
Patterns Associated with the El Nino/Southern Oscillation, Mon. Wea. Rev., 115, 1606-

1626.

Ropelewski, C.F. and M.S. Halpert, 1989. Precipitation Pattern Associated with the High
Index Phase of the Southern Oscillation, J. of Climate, 2: 268-284.

Ross, S.M., 1989. Introduction to Probability Models, 4th edition, Academic press, New
York.
186



Sakamoto, C.M., 1978. The Z Index As a Variable For Crop Yield Estimation,
Agricutural Meteorology, 19(78), 305-313.

Salas, J.D., JW. Delleur, V.Yevjevich and W.L.Lane, 1980. Applied Modeling of
Hydrologic Time Series, Water Resources Publication, Littleton, Colorado.

Selyaninov, G.T., 1930. Methods of Agricultural Climatology, In Agricultural
Meteorology , No. 22 L

Sen, Z., 1976. Wet and Dry Periods of Annual Flow Series, ASCE, HY10, October,
1503-1514

Simpson, H.J. , M.A. Cane , Herczeg, A.L., Zebiak,S.E. and J.H. Simpson, 1993, Annual
River Discharge in Southeastern Australia Related to El Nino - Southern Oscillation
Forecasts of Sea surface Temperatures, Water Reso. Res., 29(110), 3671-3680.

Skaggs, R.H., 1975. Droughts in the United States 1931-1940. Ann. Assoc. Amer.
Geogr.,65,391-402.

State Water Control Board (SWCB), 1990. Drought Indicator Parameters, Information
bulletin # 582, April, Virginia.

Stockton , C.W., 1984, Projected Effects of Climatic Variation Upon Water Availability in
Western United States, Final report , tree ring lab, Univ. of Arizona, Tucson, AZ.

Strommen, N.D., P. Krumpe, M.Reid, and L.Steyaert, 1980. Early Warning Assessments
of Drought Used by the U.S. Agency for International Development, In : Climate and Risk
Proceedings of a conference sponsored by the Centre for Adavnced Engineering Study ,
Mclean , Virginia, The MITRE Corporation, 8-33 to 8-87.

Tchaou, M K., S. Mostaghimi, and G.V. Loganathan, 1992. A Markov Chain Approach
for Analysing Palmer Drought Index., Proc. Irrigation and Drainage Sessions at Water
Forum, ‘92. ASCE, Baltimore, 2-6 Aug., 1992

Thornthwaite, C.W., 1948, An Approach Toward a Rational Classification of Climate,
Geograpphical Review, 38:55-94.

Thornthwaite , C.W. and J.R. Mather , 1955. The Water Balance, Publ. in Climatology,
8(1),Drexel Inst. of tech., New Jersey, 104 pp

Trenberth, K.E. , 1984. Signal Versus Noise in the Southern Oscillation, Mon. Wea.
Review, 112, 326-332.

187



Trenberth, K.E.(ed.) 1992. Climate System Modelling, Cambridge Univ. Press.

Trenberth, K.E. and Branstator, G.W., 1992. Issues in Establishing Causes of 1988
Drought over North America, J. of climate, 5(2), 159-172.

. Tucker, C.J. and S.N. Goward, 1987. Sattelite Remote Sensing of Drought Conditions, In
D.A. Wilhite and W.E. Easterling, Eds., Planning for Drought : Toward a Reduction of
Societal Vulnerability, pp. 145-151, Westview Press, Boulder, CO.

Van Bavel, CH.M,, 1953. A Drought Criterion and Its Application in Evaluating Drought
Incidence and Hazard, Agronomy journal 45: 167-172.

Van Bavel, CHM. and J H. Lillard, 1957. Agriculural Drought in Virginia, Va. Agril.
Exp. Sta., Tech. Bull,, 128. Blacksburg, VA.

Vellidis, G., B.B. Ross, and D.B. Taylor, 1985. Agricultural Drought in Virginia : 1930-
1983, Virginia Tech College of Agriculture and Life Sciences, Information Series 85-3,
Blacksburg, VA.

Walker, G.T. and E.-W. Bliss, 1932. World Weather V, Memoirs of the Royal
Meteorological Society, 4 : 53-84.

Wallis, J.R., 1993. The National Drought Atlas, Proc. 20th Anniversary Conference on
water management in the 90s, ASCE, Seattle, WA ,455-462.

Weare, B.C., 1986. An Extension of an El Nino Index, Mon. Wea. Rev., 114, 644-647.
Webster’s Dictionary, 1986. Merriam - Webster Inc., Springfield, Mass.

Whipple, W. Jr. , 1966. Regional Drought Frequency Analysis, J. Irrigation Drainage div. ,
ASCE, 92(IR2), 11-31.

Wilhite, D.A. and S.L. Rhodes, 1993. Drought Mitigation in the United States : Progress
by State Government, In Drought Assessment , Management, and Planning : Theory and
Case Studies, Ed., D.A. Wilhite, Kluver Academic Publishers, Boston.

Wilhite, D.A., N.J. Rosenberg, and M.H. Glantz, 1986. Improving Federal Response to
Drought, J. of Climate and Applied Meteorology, 25: 332-342.

Wilhite, D.A. (ed.), 1993. Drought Assessment, management, and Planning : Theory and
Case Studies, Kluver Academic Publishers, Boston.

188



Woolhiser, D.A. , T.O. Keefer and K.T.Redmond, 1993. Southern Oscillation Effects on
Daily Precipitation in the Southern Western United States, Water Resources Res., 29(4),
1287-1295.

World Meteorological Organisation (WMO), 1975, Drought and Agriculture, Tech. Note
No. 138, Report of the CAgM working group on assessment of drought , WMO, Geneva.,
127 pp

Wright, P.B., 1975. An Index of Southern Oscillation, University of East Anglia, Climare
Res. Unit, CRU rp4.

Wright , P.B., 1984. Relationships Between Indices of the Southern Oscillation, Mon.
Wea. Rev,, 112, 1913- 1919.

Wright, P.B., 1989. Homogenized Long Period Southern Oscillation Indices, Int. J. of
Climatology, 9, 33-54.

Yevjevich, V.,1967. An Objective Approach to Definitions and Investigations of

Continental Hydrologic Droughts, Hydrology paper No. 23, Fort Collins, Colorado,
Colorado State Univ,., 18 pp.

189



APPENDIX I

PALMER DROUGHT SEVERITY INDEX (PDSI)

The PDSI was developed by W.C. Palmer in year 1965 . It was published as a research
paper (#45) entitled ‘Meteorologic Drought’ by the U.S. Weather Bureau , U.S. Dept. of

Commerce (Palmer, 1965). A brief description of the index computation procedure is as

below:

PROCEDURE

The computation procedure of Palmer index begins with water balance calculations

(usually done on a monthly or weekly basis) in the area under consideration using historic
record of precipitation and temperature. The soil is divided into two layers, the upper
layer, which is assumed to retain 25 mm of available water, and the lower layer, for which
the local soil conditions determine the water holding characteristics. It is assumed that
moisture cannot be removed from (or recharged to ) the lower layer until all the available
moisture has been removed from (replenished in) the upper layer. Calculations of the
potential evapotranspiration (PE) are done using Thornthwaite’s method (Thornthwaite,
1948) . Whenever PE is greater than precipitation (P) for a month, evapotranspiration
losses occur from the soil. The loss of water from upper and lower layers is calculated

using separate methods as follows. If PE > P, then :

Ls=Min { Ss, (PE-P) } 1)
L,={(PE-P)-Ls}S,/AWC ,L,<S, )
where:  Lg =loss of water from upper layer

L, =loss of water from lower layer
S, = water stored in the lower layer in the beginning of the month

Ss = water stored in the upper layer in the beginning of the month
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Three other terms are computed as a part of water balance , namely , potential recharge
(PR), potential loss (PL) and potential runoff (PRO). Potential recharge is defined as the
amount of moisture required to bring the soil to field capacity or,

PR=AWC-(Sg +Su) 3)
where:  AWC = combined available capacity of both soil layers
Potential loss is defined as the amount of moisture that could be lost from the soil to
evapotranspiration provided precipitation during the period was zero or,

PL=PLs + PLy )
where:  PLs =min( PE, Sg ) = potential loss from upper layer

PLy = (PE-PLg ) Sy /AWC;PLy < Sy

= potential loss from lower layer

Potential runoff is defined as potential precipitation minus potential recharge. Potential
precipitation is taken equal to AWC. Therefore,

PRO= AWC - PR= S5 +Sy %)
Based on long term available records of precipitation and temperature , water balance on
monthly or weekly basis is done and all components as described above are computed for
each month. Having completed the water balance , the long term averages of these

components are computed and four coefficients are defined as given below:

o; =ET/PE

B; =R/PR

v; =RO/PRO

§;=L/PL;j=1.2,...,12 ©6)

The overbar indicates long term average values of respective components. A separate set
of coefficients is determined for each of 12 months which vary from place to place. These
coefficients represent ratio of long term averages of actual and potential values of a
particular water balance component. For example, if @ = .7 for some region for January

month, it means on an average in that region actual ET is 70% of the PE in the month of
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January. These coefficients are then used to compute cilmatically appropriate for existing
conditions (CAFEC) precipitation (P). P°  therefore, indicates the amount of
precipitation that should actually occur in an area to meet normal (average) demands and
is given by ;

P'=a; PE+ B, PR + yPRO - §PL 6(a)
Now based on values of actual and CAFEC precipitation values, water deficiency or
surplus is computed as :

d =P -P'=P-(o; PE+ B; PR + yPRO - §PL) )
where: P = actual precipitation during month
A moisture anamoly index , Z, is then defined as :

Z = d.k ®)
where : ks a weighting factor which varies depending upon the

month and the location
The purpose of the weighting factor is to adjust the departures from normal precipitation
such that they are comparable among different areas and different months. k tends to be
large in arid regions than in humid regions. Therefore, same value of d will give higher
value of Z index in arid region than in humid region which is logical in the sense that a
deficit may not be considered that serious in a humid area as in an arid area.
The Z index, therefore, gives relative departure of weather of a particular month and
location from the average moisture condition of that month in the area under
consideration. Palmer evaluated the accumulation of the Z index for the 13 driest intervals
in his two original study areas (central Iowa and western Kansas) and found a linear
relationship betwen accumulated Z and length of dry period. The accumulated Z values
were considered to represent extreme drought condition and were, therefore, assigned a
numerical drought severity of -4.0. A horizontal line indicated normal condition and the
body of graph between normal and -4.0 intensity lines was arbitrarily divided to represent

mild, moderate and severe drought conditions. Palmer fitted the following equation for

severe drought (index value -4) :
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4 = }l: Z, /(3091 +2.691) ©)

n=1

where : i = duration over which deficit Z_ is to be accumulated. Palmer proposed the
drought index for “i months duration” as
i
Xi= ), Zn/(309i+2.691) (10)
n=] '

From which we obtain :

i i-1 .
S 300i+2.691 :
dXi=Xi-Xi-1 =12, Zn- D, ZnZ3006 1y4z.607 1/(309+2.691)
n=l1 n=1
(11)

If we can approximate the ratio in the second term within the brackets to be unity we
obtain :

dXj = Zj/(309i+2.691) (12)
Specially for unit time period increments , i.e. duration i=1 we obtain :

dXi =2Z;/3 : (13)
which was somewhat arbitrarily generalised by Palmer as :

dX, = (Z/3) + CX,, (14)

If we use Eq. 10, we have :

i
D Zn= Xi (309i+2.691) (15)
n=1
i-1

and, D> Zn = Xi-1(309i-309+2.691) (16)
n=1

From Egs. 15 and 16 we obtain :
Z; = (.309i+2.691) dXj +.309 Xj-1 17
Using Eq. 17 in Eq.14 yields the coefficient C as :

Xi
C =103 {5 -1]-1} (18)
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When Xj = Xj-1, Eq. 18 yields C=-.103 . Palmer chose to use this value as the general

coefficient in Eq. 14. Therefore :
dXj = (Zi/3) -.103 Xj-1 (19)
Xi = .897Xj.1 +Zi3 (20)
Note the dependence of dXj on Xj-1 and the random perturbation in Zj
The weighting factor (k) was earlier computed as the ratio of avarage water demand (PE
+R) and average water supply (P+L) which did not give satisfactory results. It was then
argued that to maintain a severity of -4.0 for 12 months , £ Z should be -25.60 which is
calculated as below:
Xi=-40;i1=12;
So; Z = -40 [2.691 +(309x12)] = -25.60
Now this £ Z of 25.60 when divided by sum of 12 months’ departure ‘d’ should give

avarage k value or;

12
k =-2560/ ) 4 (21)

i=1
Based on information available from 9 different places, a semi-log plot was developed
between k and [ ( PE+R+RO)/(P+L) +2.8] /D and the following equation was fitted:
k= 1.5 log { [ PE+R+RO)/(P+L) +2.8] /D} +.50 (22)
Here, it was assumed that the weighting factor (k) should depend upon average water
supply and water demand but the water demand should also i.nc]ude the avarage runoff
(R). Also, it was assumed that k varies inversely with D, which is the mean of the

absolute values of d . The monthly weighting factor kj was then finally expressed as :

17.67K;

12
D D; .K;

i=1

ji=12,.,12 (23)

b4
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Having established the above equations, Palmer(1965) devised a method to establish the
beginning and end of drought or wet spell. A brief description of various steps involved in

computation of the index is given as below :

Step 1 : Definitions of X;, X, and X;
In order to establish the beginning and end of drought or wet spell , Palmer (1965)

suggested to compute three indices as below:

X, = severity index for a wet spell that is becoming established
X, = severity index for a drought that is becoming established
X, = severity index for any wet spell or any drought that has

become established

Step 2 : Established Spells
Drought spell established means X, or X < -1.00

Wet spell established means X; orX = 1.00 (24)

Step 3 : End of Established Spells
An established drought or wet spell is considered to definitely end when the index reaches

the near normal category which lies between -.50 and .50

Step 4 : Criteria for Ending Established Drought Spell in ith Month
This happens when Z; 2 Zg(i)

where: Z;j = Z index for ith month
Ze(i) = moisture needed to reduce the severity of an established drought spell
to -.5 in a single month. This is computed as below:
Ze(i) = -2.691 X3(i-1) - 1.5 (25)
This equation is obtained by replacing X; by X5; and putting its value as -.5 in Eq. 20.
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Step S :. Criteria for Ending Established Wet Spell in ith Month
This happens when Zj < Zeg(i)

where: Zi = Z index for ith month

Z(i) = moisture to be lost to increase the severity of an established wet spell

to .5 in a single month. This is computed as below:
Ze(1) = -2.691 X5(i-1) +1.5 (26)
This equation is obtained by replacing X; by Xj; and putting its value as .5 in Eq. 20.

Step 6 : ‘Z’ Value for Ending Drought spell

The Z value needed to maintain index of -.50 month to month will be:

-5 = 897(-5) +2/3 or, Z=-15 27
So, Z index value > -.15 will tend to end a drought spell.
Therefore, a term effective wetness (U(i)) is defined as:

U@ = z; +.15 (28)

Effective wetness is used when termination of dryness is probed.

Step 7. ‘Z’ Value for Ending Wet spell
The Z value needed to maintain index of .50 month to month will be:

.5 = 897(5) + Z/3 or, Z=.15 (29)

So; Z index value <.15 will tend to end a wet spell.
Therefore, another term effective dryness (U(i)) is defined as:
U@ = zZj -.15 (30)

Effective dryness is used when termination of wet spell is probed.

Step 8 : Probability of Ending Drought during i Month
Palmer (1965) used the following equation for computing probability of ending of an

established spell:
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J i’
P) = D UG / (Zei +, UG)) @31

=0 =1
In Eq. 31, j corresponds to number of successive values of U(i) computed immediately
prior to the current month. For example, suppose in a particular year established drought
conditions continued till December month. This means the index (X) remained < -1.0
until December. Suppose in January the Z index is >-.15 | so it will tend to end the

drought. Therefore, we will calculate the probability of ending the drought in January as

follows:
Piw=Un/ Zg (putisjan. andj =o0inEq. 31) 32)
= (Effective wetness in Jan.) / (Moisture needed to bring index to -.5)
or; Pow =(Z,, +.15)/(-2.691 X, .-1.5) (33)

Here all values are known so the probability can be calculated. If this value comes out to
be 100% then the drought spell will be considered to have ended in the month of January.
If not, then the probability will be computed for February month as below:

P = (moisture accumulated till Feb. ) / ( Moisture accumulated in Jan. +

Moisture needed to end drought in the month of Feb.) or;

P..= (U, +Urs)/ (U, +Zeras) (puti=febandj’=1inEq. 31) (34)
Similarly; P, = (U,, +Urs+Uy,)/ (U, +Upyt Zensar ) (35)
This way we keep computing P, for all months until we get either zero or 100 value. If
anytime the numerator is less than zero, it is taken zero. In the same way probability of

ending wet spell is computed . Here the effective wetness is replaced by the effective

dryness and Ze as mentioned for the wet spell in step 5 above is used.

Step 9 : Index Assignment Procedure

Suppose, at any particular time, a dry spell is established, which means the index value
Xis £ -1.0. Now, observe the subsequent month’s Z index value. Whenever, Z 2 -

.15, it means the ongoing drought may end. So, start calculating the P¢ for the following
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months. Suppose during these computations, the Pe becomes zero before attaining value

equal to 100. Then for all months the index value is assigned equal to X3 value. If,
however, the Pe becomes 100, then we start assigning index value backwards. We assign
index value equal to X till it has positive value. Once X; becomes zero, we assign X;
value to the index till X; becomes zero. X, and X, can not be zero at the same time only
except the case when a spell is established. When a spell is established, the index value is
equal to X;,
In view of the back tracking procedure involved in computation of PDSI, it is not used as
a real time index for making operational decsions. The necessity for an index that could
be used operationally led to an adjusted PDSI known as Palmer Hydrological Drought
Index (PHDI) ( Karl, 1986). The main differences between PDSI and PHDI are listed in
Table I.1.
In order to illustrate the procedure of assignment of both indices i.e. PDSI and PHDI,
sample computations have been done in respect of a climatic division in California and the
values of indices agree with the data provided by N.C.D.C., Asheville, N.C. These
computations are given in Table 1.2.
It can be observed from Table 1.2 that the Z index during January, 1895 is 4.08.
Therefore, using Eq. 20 the PDSI and PHDI values are computed as 1.36 assuming values
of these indices during previous month as zero. Since index values are > 1.00, it is a
situation of established wet spell. Therefore, only X3 computations are made and we
watch values of Z index in subsequent months to explore possibilities of ending wet spell.
During March 1895 the Z index falls to -1.06 which is less than .15 and as per step 7
above, we will now explore possibility of ending wet spell by computing the probabilty
term P.. The P, for March is calculated as :

P.(March) = Umar / ZeMar = (Zmar = .15 ) / (-2.691 Xspe, + 1.5)

=(-1.06-.15) / (-2.691(1.33) +1.5) =58 %

Now since 0 < P, < 100, we start calculating X;, X3, and X; using Eq. 20. We get

X, =-35;X,=-35and X; = .84. Since X; can not be negative, we put it to be zero.
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For March we assign PHDI = .84 but we can not assign PDSI at this stage since
0 <P, <100. We keep computing P, for subsequent months. For example :
P(April) = (Unar + Uspe ) / (Unmar + Zeage)

={ (-1.06 ~.15) + (0 -.15 )} /{(-1.06 -.15 ) + ( -2.691 Xarae + 1.5 )}

=69 %
The P, becomes zero in the month of June 1895. Therefore, the wet spell did not end and
we assign values of X3 to PDSI. In July of 1896 again the possibility of ending wet spell
arose and once again P, values are calculated. The P. value became 100% in January
1897 which indicated that the wet spell got ended. The PDSI values are assigned
backwards from January 1897 to July 1896. The PHDI value changed sign first time since
P. became 100 %. It can be observed from that Table that most of time the PDSI and
PHDI values are similar. They only differ when we explore possibilty of ending of an
established spell.
Finally, some important points are listed as below:
i) During established spell, P, = 0.0 , and we compute X, only
if) For established drought spell , if Z 2 -.15 , P_ calculations start. For established wet
spell, ifZ < .15, P_ calculations start. If 0 <P_ <100, we compute all X, ,X; and X,.
If X1 comes negative, we put X1=0.0 , if X2 comes positive , we put X2=10.0
iii) For P, calculations, if denominator becomes negative, we put it equal to zero.
iv) If P, becomes 100, then from next month onwards we compute X; and X, only and do
not compute P.. We keep computing X; and X, and when either X; 2 1.00 or X; < -
1.00 we assume the corresponding spell has been established , and compute then X3 only
by transferring the calculations to X3 . Now we monitor the Z index value for the coming
months and as per condition specified in ii) above , P. calculations are started and the

process goes on.

Note: Heddinghaus and Sabol (1991) have reported a procedure that has been introduced
since June, 1989 at N.C.D.C,, Asheville to overcome back tracking difficulty of PDSL
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This method takes the sum of the wet and dry terms after they are weighed by their
probabilities during the period 0 < Pe < 100. For established spells, procedure remains

unaffected.
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Table 1.1 Differences between PDSI and PHDI

PDSI

PHDI

i) It is the original version of Palmer
(1965) index. It can not be used in
operational applications due to its
backtracking procedure.

ii) PDSI abruptly returns to near-normal
levels during first month in a sequence of
months with sufficient moisture to end a
drought.

ili) The PDSI and PHDI are identical
during an established spell. They,
however, differ during the onset and
ending of a spell. The PDSI values are
assigned following the P, values during
these periods.

iv) PDSI is generally classified as
meteorological index.

It is the operational version of the Palmer
index and can be used in operational
purposes as it aviods backtracking
procedure.

ii) PHDI usually more gradual in its return
to near normal levels.

iii) The PHDI does not change sign until
P. equals 100%. The values of PHDI are
regularly assigned while 0 < P, <100 but
PDSI values are assigned only when P, is
either 0 or 100%.

iv) PHDI is generally -classified as a
hydrological index.
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Table 1.2 Index Assignment Calculations, California, San Jaoquin Division,
Jan. 1895- Jan. 1897

Month |Z P. (%) |Xi Xz X; PDSI  |PHDI
Jan.1895(4.08  [0.0 0.0 0.0 1.36 1.36 1.36
Feb. 033 |00 0.0 0.0 133 1.33 1.33
Mar. |-1.06 [58.0  |0.0 -35 84 84 84
Apr. 0.0 690 0.0 -31 75 75 75
May |[.96 290 |32 0.0 1.00 1.00 1.00
Jun. 294 0.0 0.0 0.0 1.88 1.88 1.88
Jul, 214 |00 0.0 0.0 240 240 |240
Aug.  |120 |00 0.0 0.0 255  [2.55 2.55
Sep. 64 0.0 0.0 0.0 250 [250  [2.50
Oct. -1.03  |225 |00 -34 1.90 1.90 1.90
Nov. [-32 340 |00 -42 1.60 1.60 1.60
Dec. |-159 [760 |00 -91 .90 90 .90
Jan.1896 | 2.78 170 |93 0.0 1.73 1.73 1.73
Feb. 263 900 |00 -.88 68 68 68
Mar. |76 750 |25 .54 86 86 86
Apr. (328 |00 0.0 0.0 1.87 1.87 1.87
May 1.1 0.0 0.0 0.0 204 204  |2.04
Jun. 94 0.0 0.0 0.0 248 248 (248
Jul, -79 180 |0.0 -26 196  |-.26 1.96
Aug. |-72 380 0.0 -47 152  |-47 1.52
Sep. 01 280 0.0 -42 136  |-.42 1.36
Oct. -81 710 |00 -.65 .96 -.65 96
Nov. |12 470 |00 -18 126  |-.18 1.26
Dec. -.62 70.0 0.0 -37 .92 -37 .92
Jan.1897 -1.76  '100.0 10.0 -92 0.0 -92 -.92
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APPENDIX IT
STOCHASTIC PROCESSES

A stochastic process is a system which evolves in time while undergoing chance
fluctuations. Such a system can be described by defining a family of random variables ,

{X,, teT}, where X measures, at time t, the aspect of the system which is of interest.
The family {X,, te T} may be thought of as the path of a particle moving randomly in
space S, its position at time t being X. A record of one of these paths is called a
realisation of the process. As an example, X might represent number of cars passing a
particular intersection at time t. As time passes, cars will arrive and leave, so the value of
the random variable X, will change with time. At any time, X, takes, let’s say, one of the
values 0,1,2,.... which are called states of the process and these possible values of X, are

referred to as the state space. The state space is discrete if it contains a finite number of
points ; otherwise it is continuous. If the parameter set T is a set of integers or a subset
thereof, the process is called a discrete parameter process. If T is a subset of real line,
then the process is called a continuous parameter process. The process {X, , te T} may
also be multi-dimensional. For example, X, = ( X, , X,,) represents a two-dimensional
stochastic process where for example, X, represents the maximum and X, represents the
minimum temperature at a place at time t. Conventionally, in case of discrete time , the
parameter generally used with random variable X is ‘n’ i.e. the family of random variables
is represented by { X , n=0,1,2,... } . In case of continuous time both the symbols

{X,,te T} and { X, , te T} are used. The parameter t is usually interpreted as time,
though it may represent such characters as distance, length , thickness and so on. Some

authors call the discrete parameter family as the stochastic sequence, and the continuous

parameter family as a stochastic process. It is of interest to know the relations between
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the random variables (X;s) for different fixed values of t which is studied using the theory
of probability. In some cases , the random variables X , i.e. members of the family

{X,, teT} are mutually independent but most generally we come across processes whose
members are mutually dependent. It is this relationship among the random variables which

is important in studying stochastic processes.

MARKOY PROCESS

The Markov assumption is formulated in terms of the conditional probabilities. If the
ordering of timesis : n 2 n-1 2 ... 2 2 2 1 ; the conditional probability is determined
entirely by the knowledge of the most recent condition, i.e.

P [ Xn= an | Xp-1 = an-1, Xn-2=an-2, ... , X1 =23 ] will be same as :

P [Xp=ap | Xn-1= ap-1] (1)
In other words, the Markov process has the property that, given the present state of the
process, the future state becomes conditionally independent of the past. The Markov
assumption is extremely powerful . For it means that we can define everything in terms of
the simple conditional probability P [ Xn= an | Xn-1= an-1] . For example, the joint
density P [ Xn=an,Xn-1=2n-1, ..., X1=2] ] can be expressed simply as:

P (Xn=an| Xn-1=2an-1). P (Xp-1= an-1 | Xn2= an-2). .. P(X2=a2 |

Xj=a1). P (Xj=a]) - @
A discrete Markov parameter process is called a Markov chain. A Markov chain is said to
be stationary or homogeneous in time if the probability of going from one state to another

is independent of the time at which the step is being made i.e. for all states i and j the

following holds good:
P[Xn=j|Xn1=1i] = P [ Xn+k = | Xn+k-1=1]
for k= -(n-1), -(n-2), ..., -1,0,1,2,... ?3)
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The Markov chain is said to be non-stationary or non-homogeneous if the condition stated

in Eq. 3 fails.
GAUSSIAN PROCESS

If the joint distribution of (X1, Xt2, ..., Xtn) is multivariate normal for all t1,t2,..., tn, the
process [Xt] is said to be a Gaussian process. Two important entities associated with any
Gaussian process [ X; ] are its mean # t and auto-covariance Cs which are defined as:
Ht=E[Xt] and Cis=E[(Xt-#1)(Xs-#s)] (O]
Both of above quantities are defined for all t ,s in T. The knowledge of these two entities
is sufficient to characterise a Gaussian process completely. However, if we know the

mean and auto-covariance of some process [Xt] , it will not necessarily be a Gaussian

process.
STATIONARITY

Many important stochastic processes menifest the same statistical properties at one time as
another, and the ensemble of processes distinguishes no particular time over any other
time. The first order probability density function fy(x,t) of the process i.e. the density
function of a sample X=X(t) taken at an arbitrary time t, then does not depend on t or;

fo) = filx,) , for V't )
The second order joint density function depends only on the interval between sampling
times , or;

fi (x1,t1 ; X2,t2) = fyixa(x1,x2;t2-t1), V (t1,12) (©6)
and not on t1 and t2 individually. What matters is the interval between the sampling times.
In general, the joint probability function of n samples x1,x2,....xn depends only on the
differences between the sampling times or;

fx(x1,t1;x2,t2;... xn tn) = fx(x1,x2,...,xn; t2-t1,t3-t1,..., tn-t1) @)
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Such a stochastic process is said to be stationary process. In other words ; if for arbitrary
t1,t2,...,tn , the joint distribution of the vector random variables (X1, X,...,Xtn) , and
(Xt1+h, Xt2+h,-...Xtn+h) are the same for all h>0 , then the process {Xt , te T} is said to be
stationary of order n. In simple terms , stationarity of a process implies that the
probabilistic structure of the process is invariant under translation of the time axis. In
general terms, a stochastic process is stationary only if all of its moments behave with
regard to time shift.

When the random proces is stationary, its expected value E [X{] and wvariance must be

independent of the time t. The mean value of a stochastic process can be expressed as:

E[X]=Ht = [ xfi(xt)dx ®)

-

Often #t represents a signal and the difference X; - #t represents a random noise which
is ordinarily taken to have expected value zero. The range of values over which the
random variable X is dispersed is measured by the standard deviation O (t) ,which is the
square root of the variance or;

o2(t)= Var (X)) = E[ (X;- #02] = J' x2f (xt) dx - (B2 )

—o

When the stochastic process X; is thought of as the sum of signal and noise, Var (Xy)

represents, in suitable units, the average power of the noise.
The degree of linear auto-dependence of the random variables in a stochastic process is

measured by the auto-covariance function. The auto-covariance Ck between two random
variables X; and Xi+x may be determined by :
1 & . .
Ck= Nk g Xt -X) (Kerc X)) ;0 <k<N (10)

where: Ck = auto-covariance at lag k

k represents the time lag (or distance) between the correlated pairs
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Xt, Xt+k)
X'= sample mean
N = # of observations

Cx in Eq. 10 is the unbiased estimator of population auto-covariance function . A
dimensionless measure of linear dependence is obtained by dividing Cx in Eq. 10 by

estimate of variance C, which gives :
1 N . . .
n=Ck/Co = [xg 2, (e-X) Ke-X)1/[(Xe-X)2 (1)
t=1

where: ry = lag k autocorrelation coefficient or the auto-correlation function (ACF). The
plot of rk vs. k is called correlogram.

When the random process is stationary , its expected value, E (X;) and variance must be
independent of time t. In such case the auto-covariance function Cg will depend on only
the interval k because the joint probability density function fx(X{, Xi+k) depends on the
sampling times t and t+k only through interval k and the mean values #t and #t+k
appearing there are independent of t and t+k. Sometimes a process may have a constant
expected value with auto-covariance function depending upon only the time interval .
This process is called weakly stationary process. However, in such cases the joint
probability density function of n variables may also depend on the sampling times besides
the differences between the sampling times. For most weakly stationary processes the
auto- covariance function drops to zero as the lag time tends to infinity which infers that
samples of most processes taken at times separated by a very long interval tend to be

uncorrelated.
ENSEMBLE MEAN AND VARIANCE

In a stochastic process, when we talk of the statistical properties like mean and standard

deviation of the process, it is the ensemble mean and standard deviation. To clarify the
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point , let’s take an example of unit white noise Gaussian process. This process is a
collection of random variables with zero mean and unit standard deviation. We can get
several realisations of the process using a computer program. Suppose we generate 1000
realisations of the process with each having 100 numbers. Let us index each realisation by
w ; so we have w ranging from 1 - 1000. Let the realisations be denoted as w; , w,
,---»Wiooo. Let the numbers of first realisation be noted as w(1),w;(2),...,wi1(n). Here we
have taken n to be 100 as each realisation has 100 numbers or in other words the time
parameter is a set of 100 integers 1,2,..., 100. Therefore, at a fixed time ‘n’ general
representation of a reaslisation will be wy(n),wz(n),...,Wioe0(n) and specifically
wi(1),wa(1),...,wi000(1) Will be members of the first realisation. Now we can verify the
statistical properties of computer generated random variables using the ensemble of
realisations. It is to be noted that the expectation operator (E) always means averaging
over the ensemble and never over a single sequence (which in this case will be averaging
over 100 numbers of a single realisation). Therefore, to verify that :

E[w2]=0 and Var[ w, ]= 1.0, we would compute :
1 1000
h=1

In other words to estimate mean m,, we will get average over values of all 1000
realisations at time t=2.0. m;, can now be compared with zero for verifying the mean of

the white noise process. For variance we can compute :

1000

Var(w2)=$ D (wah)-my) (13)
h=1

The variance computed as above can be compared with 1.0 for testing the white noise
process. It is therefore emphasized that averaging over an ensemble of many different
realisations of the same random sequence is the only way to measure statistical properties
such as mean and variance. Ensembles have statistical properties , whereas one individual
realisation of a random sequence does not. The need to have ensemble of realisation is

much more when we want to verify independence. Suppose we want to see whether
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random variables w2 and wé are independent. If we had just only one realisation , we
would have one specific value of w2 and one specific value of wé. In this situatuion it is
meaningless to talk whether these two numbers are independent or not. However, if we
had ensemble of 1000 realisations and if we could believe in the Gaussianess of the
distribution , it would be suffice to verify that w2 and wé are uncorrelated. For this

purpose we could compute the sample covariance as:

1000
Ci6= 5a5 Y [Wa@-ma][Wel®) - mo] (14)

w=]

Provided that Ca¢ is suitably near zero , we could reliably conclude that w2 and w6 are

uncorrelated.
ERGODIC PROCESSES

In the earlier example , we had 1000 strings of 100 numbers each. Here the time index
was denoted to vary from 1-100 and the ensemble variable was denoted by w, which was
a discrete variable from 1-1000. Such kind of experiments are possible in computer
simulation when it is easy to genarate many versions of a sequence with the same
statistical characteristics. However, in real world one may not have the luxury of having
more than one realisation of a physical process and therefore the possibility of ensemble
averaging does not exist. In such a situation if statistical procedures are to be involved
with any degree of rigor, it is necessary to assume that the stochastic process under
investigation is stationary and a long time record of the process is available. Now the
basic problem to consider is to find statistical properties of such a process for which only
one realisation is available. Let the process be denoted as { X(t) } . By definition,
Hx @)= E[Xt] (15)

If the mean Hx (t) really varies with time , and if we have only one realisation X(.) to
work with, there is no way to estimate mean , because we can not take ensemble average

over only one realisation. The only option ,however, we have is to take average over
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values of single realisation at different times. The only one assumption that workers in
this field have found useful here is that the process { Xt } is stationary and that the mean
is some constant value, #x . Now if the data record of a continuous parameter process

extends over an interval T1 <t < T2, one possibility of estimating #x is to compute

the time average , or;

T2

X(T1,T2) = ﬁ j X(t) dt (16)
Tl

There is still no mathematical property of stationary Gaussian process that allows one to
conclude , in general , that X has any relation to #x . One, therefore, has to specifically
postulate that the process in question possesses an additional property that permits one to
estimate or approximate #yx by X. This additional property is called ergodicity. In
simple terms , a process first of all has to be stationary in order that the ensemble average
be constant. Ifit is ergodic, then it is legitimate to estimate parameters that are defined as

ensemble averages by computing time averages.
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(a) Arizona, PDSI, 1895-1992 (Monthly)

PALMER INDEX DATA

Year Jan. Feb. Mar. Apr. May Jun.

1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929

1.5
-0.62
-1.37
-0.11
-2.04
-4.73
-4.45
-3.71
-3.55
-3.62

0.64
5.81
4.25
-0.97
0.91
0.79
0.73
-1.17
-0.82
-0.96
0.94
3.53
3.5
0.12
0.2
2.98
-0.63
1.38
-0.61
-0.48
-1.63
-0.77
-0.77
-0.71
-2.72

14 038
-1.2 -1.89
-1.22 -1.18
-0.71 -1.01
-2.3 -2.87
-5.01 -5.43
-3.22 -3.27
-3.91 -3.92
-3.3 -2.86
-3.55 4.1
1.91 3.88
509 53
3.53 3.25
-0.58 -0.7
0.67 1.16
-045 -1
0.79 0.76
-1.8 1.05
-0.37 -0.57
-0.97 -1.17
095 1.03
2.94 296
3.04 242
0.07 0.61
0.43 0.67
297 3.17
-1.04 -1.51
1.19 1.54
-0.88 -0.6
-1.09 04
-2.09 -2.28
-1.4 0.34
0.29 0.51
-0.82 -1.38
273 -2.6

0.8
-2.31
-1.82
-1.63
-3.42
-4.65
-3.62
-4.65
-2.72
-4.76

5.47
5.12
2.96
-0.9
0.99
-1.42
0.49
1.65
-0.89
-1.73
1.77
2.88
3.51
0.46
0.64
3.01
-1.68
1.73
-0.44
0.89
-1.82
2.54
0.76
-1.88
-2.16

1.4
-2.72
-2.28
-1.71
-3.76
-5.12
-3.57
-4.91
-2.74
-5.06

6.79
5.35
3.15
-1.03
0.93
-1.85
0.18
1.63
-1.19
-2.08
231
3.26
4.18
0.24
-0.17
3.07
-1.62
2.03
-0.97
-0.39
-2.18
2.86
0.47
-24
-2.65

1.5
-3.34
-2.67

-2
-3.76
-5.5
-3.78
-5.2
-2.89
-5.39
8.48
532

3.1
-1.33

0.9
-2.02

0.21
1.33
-1.52
-0.04
2.7
3.76
4.11
0.44
-0.6
3.26
-2.11
2.47
-1.35
-0.89
0.22
2.72
0.64
-2.81
-2.87

Jul.
-0.8
-2.59
-3.03
-2.15
-3.99
-5.85
-3.55
-5.51
-3.44
-4.95
7.18
483
-0.08
0.26
0.73
-1.82
0.74
1.79
-1
0.51
3.33
4.32
4.79
0.52
1.64
-0.29
1.02
2.37
0.08
-0.79
0.24
-0.13
0.17
-3.14
-2.65

Aug.
0.0
-2.64
0.04
-1.48
-4.24
-6.24
-3.17
-5.21
-3.65
1.5
6.02
497
0.18
0.21
1.22
-2.01
0.13
1.49
-1.26
0.49
239
3.95
-0.33
0.58
1.41
-0.25
1.83
224
0.83
-1.6
0.27
-0.99
0.56
-2.89
-2.13

APPENDIX II

Sep. Oct.
.56 0.1
-2.16 -2.22
146 1.73
-2.27 -25
-4.84 -4.38
-5.64 -5.44
-3.42 -3.19
-5.46 -5.58
-2.78 -2.85
1.33 1.02
6.55 5.46
3.74 295
-0.7 -0.08
0.56 0.68
0.26 -0.58
-2.18 -2.2
1.35 147
1.66 245
1.75 -1.7
0.55 -0.16
1.58 0.98
4.18 4.66
-03 -0.7
1.06 0091
2.78 2.87
-0.31 041
1.47 1.26
-0.28 -0.6
1.75 1.59
-1.74 -1.42
099 1.58
1.15 -0.51
182 18
-3.37 -3.03
-1.23 -1.51

Nov. Dec.
0.6 -02
-1.97 -2.37
-0.33 -0.54
-2.31 -2.15
-4.39 -445
-4.65 -4.85
-3.53 -3.7
-4.11 -3.75
-3.25 -3.41
038 0.13
6.57 6.07
292 342
-039 -0.7
0.09 046
0.36 0.68
0.27 -0.34
-0.42 -0.61
-0.37 -0.61
-1.11 -1.45
055 04
098 1.21
3.83 3.37
-1.1 -1.62
094 0.73
3.7 3.14
-0.3 -0.57
081 1.04
<0.33 -0.43
1.73 19
-1.69 -1.25
0.03 -0.44
-0.7 -0.22
-0.25 -0.09
-3.04 -2.87
-1.77 -2.12
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1930 0.44 -0.44 0.62 0.63

1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971

0.04
4.29
4.82
-1.86
1.2
-1.54
2.67
2.22
2.13
7.8
8.68
7.67
239
1.28
1.16
3.45
-0.25
-0.52
1.7
-1.48
-3.62
2.12
-0.83
0.38
-1.57
-1.71
-3.68
0.71
-1.61
1.02
-1.66
-2.28
-3.06
-2.55
-2.96
241
-0.11
-0.44
0.33
-1.37
-2.44

1.83
5.84
4.12
-2.1
2.47
-0.56
291
23
2.54
8.13

1.38
5.02
3.35
-3.05
2.69
-0.51
3.6
2.81
2.29
7

9.58 10.42

6.73
2.14
2.44
1.39
2.97
-0.63
0.43
1.6
-1.66
-3.61
1.55
-1.19
0.24
-1.64
-1.87
-3.68
0.73
-1.2
1.05
-2.22
-1.43
-3.05
-2.85
-2.74
25
-0.6
-0.7
1.06
-1.8
-2.25

5.81
2.23
244
227
2.73
-0.92
0.74
1.5
-1.96
-3.74
2.47
-1.63
1.23
-1.87
-2.46
-3.77
1.7
-1.66
-0.49
-2.31
-1.31
-3.13
-2.59
0.13
2.07
-0.97
-0.99
1.06
-1.42
-2.65

1.9
4.6
3.78
-3.41
2.64
-0.77
3.54
2.55
2,54
7.34
11.13
5.42
2.63
2.62
2.25
2.76
-1.06
0.63
1.68
-2.77
-3.27
3.22
-1.7
0.9
-2.09
-2.83
-3.77
2.13
-2.39
-0.72
-2.63
-1.71
-3.13
-2.47
2.05
1.9
-0.8
-13
0.81
-1.41
-2.96

0.96
223
4.91
3.92
-3.81
3.1
-1.09
439
2.64
2.96

11.33
4.65
23
3.01
2.54
2.39
-0.86
0.51
2.27
-3.16
-2.83
3.62
-1.93
0.89
-2.31
-3.25
-3.32
2.32
-2.88
-0.84
-3.01
-1.89
-3.62
-2.62
2.6
2.39
-0.81
-1.72
1.05
-2.04
-2.46

0.89
2.66
5.69
4.43
-3.57

-1.08
5.29
2.65
3.26
8.61

11.85
4.01
1.97
3.53
2.94
1.97

-0.82
0.71
2.89

-3.53

-3.17
4.08

-2.09
1.08

-2.36

-3.55

-3.28

-0.09

-3.26

-1.06

-3.53

-1.84

-3.79
-2.8
2.52
2.63

-0.74

-1.57
1.08

-2.41

-2.87

1.01
3.59
5.33
4.32
-3.64
3.85
-0.22
5.98
2.34
3.69
7.3
11.97
3.43
1.79
3.09
3.99
2.44
-1.26
0.45
-0.25
-2.37
-3.45
3.75
-1.2
-0.28
0.88
-3.29
-3.36
-0.66
-3.32
-1.73
-3.65
-2.44
-4.41
-291
-0.07
-0.27
0.39
-1.19
1.14
-2.49
-34

-0.34
6.35
5.15

-0.43
1.08
4.41

-0.61
5.13
2.33
3.38
6.72

11.16

4.43

1.77

2.57

5.01

2.91

0.72

0.61

0.59

2.79

1.55

0.38

0.92

-0.9

1.67

3.97

-2.8

-1.01
0.64

-2.33

-2.41

-3.11

-3.86

-2.22

-0.62

-0.87
0.64

-1.74

-0.11

-2.01

-2.51

0.33
5.2
4.97
-0.87
-0.68
4.7
-0.99
4.87
1.49

0.05
4.33
4.66
-1.08
-0.94
-0.4
1.48
3.84
1.16

9.99 10.04

9.93

9.94

9.86 10.05

3.37

1.91

1.63

422

2.73

-14
-0.56
-1.01
-2.78

1.09
-0.62
-1.62
-1.35
-0.77
-4.42
-3.29
-0.63

0.25
-1.83
-2.64
-2.67
-3.06
-2.51
-0.92
-1.11

1.39
-2.21
-0.06
-2.26
-2.91

2.78
1.83
0.87
4.56
3.79
0.23
-0.27
-1.13
-3.2
1.32
-1.24
-1.67
-1.78
-1.28
-4.3
1.53
-0.54
0.6
-1.52
-2.67
-2.64
-2.61
-2.97
-1.19
-0.92
1.18
-2.19
-0.24
-2.44
-2.07

0.58
4.7
3.69
-1.11
-0.93
-0.74
0.89
2.96
0.76
9.33
9.11
9.48
2.26
1.21
1.45
3.83
4.36
0.39
-0.68
-1.45
34
1.32
-0.71
-1.91
-2.08
-1.13
-4.33
1.72
-0.5
0.65
-1.02
-2.46
-2.99
-1.93
-2.85
1.58
-0.92
1.25
-2.27
-0.31
-2.15
-2.04

0.16
5.05
4.39
-1.47
0.75
-0.97
2.59
2.87
1.73
8.2
9.36
9.03
2.05
1.29
1.56
3.98
4.44
1.06
0.33
-1.14
-3.82
1.95
-0.26
-2.11
-2.11
-1.5
-4.53
1.28
-1.21
1.08
-1.43
-2.34
-2.89
-2.28
-2.83
2.94
0.91
1.58
-2.3
-0.9
-2.07
-1.5
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1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

-1.9
1.78
-1.26
-2.43
-2.86
-1
1.01
4.07
2.63
-2.76
-2.32
0.72
-0.93
1.97
-1.62
-2.6
-2.17
-3.13
-5.26
-3.84

-2.33 -3.25
1.91 3.38
-1.55 -1.78
-2.41 -1.8
-2.03 -2.01
-1.62 -1.86
1.54 244
394 442
3.54 3.76
-2.95 -2.37
-2.22 -1.89
0.69 1.44
-1.54 -2.22
-0.17 -0.31
-1.82 -1.91
-2.67 -2.81
-2.2 -2.73
-3.29 -3.91
485 -5.1
-4.02 -2.85

-3.43
3.27
2.1

-1.11
-13

-242
2.95
4.19
3.66

-2.73

-2.02
1.63

-2.69

-0.41

-2.47

-3.47

-2.07

-4.83

-5.28

-2.85

-3.75
4.2
-2.54
-1.14
-1.52
-1.81
3.6
5.2
4.22
-2.71
-2.32
1.47
-3.43
-0.41
-3.04
-3.73
-2.56
-5.03
-5.16
-3.08

-3.08

5.26
-2.97
-1.56
-1.89
-2.07

4.15

5.83

4.76
-3.17
-2.71

1.29
-3.67
-0.46
-3.52
-3.86
-2.87
-5.33
-5.21
-3.15

-3.45 046 231 205 275 259

-3.65
-0.16
2.7
-1.55
-1.72
-2.29
3.45
5.51
4.33
-3.28
-3.05
0.83
1.44
-0.6
-3.66
-4.05
-3.29
-5.48
-4.44
-3.43
-0.71

-0.03
-0.76
-3.3
-2.17
-2.5
-2.21
2.49
5.01
-0.74
-3.21
0.67
1.67
1.71
-1.77
-3.77
4.3
-2.59
-5.49
-4.42
-3.96
-1.17

0.16
-1.38
-3.51
-2.28

1.49
-2.42

1.8

3.62
-1.17
-2.71

0.52

1.62

0.91
-1.72

-34
-4.36
-3.11
-5.75
-3.96
-3.87

-1.8

1.27
-1.72
-2.68
-2.37

1.57
-2.49

2.08

2.82
-1.22
-2.05

0.23

1.77

0.53
-1.58
-3.16
-3.38

-3.6
-5.57
-4.11
-3.94

0.57

1.93
-1.42
-2.37
-2.13

-0.4

-2.6

2.95

225
-1.63

-1.9

0.77
-0.06

0.73
-0.56
-2.94
-2.48
-3.56
-5.66
-4.04
-3.85

0.05

1.74
-1.81
-2.27
-2.33
-0.78
-2.66

3.39

1.78
-2.19
-2.41

1.06
-0.23

1.89
-0.96
-2.73
-2.36
-3.55

-5.7
-4.09
-3.66

0.57
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(b) Arizona, PHDI, 1895-1992 (Monthly)

Year
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933

Jan. Feb. Mar. Apr. May Jun.

Jul.

Aug.

152 142 0.84 087 1.46 1.57 0.59 0.55

-0.62
-1.37
1.14

-1.2
-1.22
-0.71

2.3

-1.89 -2.31
-1.18 -1.82
-1.01 -1.63
-2.87 -3.42

-2.72 -3.34 -2.59
-2.28 -2.67 -3.03
-1.71 -2 -2.15
-3.76 -3.76 -3.99

-2.64
-2.68
-1.48
-4.24

-2.04
-4.73
-4.45
-3.71
-3.55
-3.62
-1.94

5.81

4.25
-0.97

0.91

0.79
-0.94
-1.17

0.96
-0.96
0.94
3.53

35
1.17

0.2
2.98
0.99
1.38
0.69
1.22
1.63
0.77
0.67
0.59
2.72
1.46

-5.01
-3.22
-3.91
-33
-3.55
1.91
5.09
3.53
-0.58
0.67
-0.45
-0.72
-1.8
1.22
-0.97
0.95
2.94
3.04
1.01
0.43
2.97
-1.04
1.19
-0.88
-1.09
-2.09
-14
0.89
-0.82
-2.73
-1.75
0.04 1.83
429 5.84
482 4.12

-5.12 5.5
-3.57-3.78
491 -52
-2.74 -2.89
-5.06 -5.39
6.79 8.48
535 532
3.15 3.1
-1.03 -1.33
093 0.9
-1.85-2.02
-0.91 -0.76
1.63 1.33
-1.19 -1.52
-2.08 -1.9
231 27
3.26 3.76
4.18 4.11
0.92 1.05
-0.17 -0.6
3.07 3.26
-1.62 -2.11
2.03 2.47
-0.97 -1.35
-0.39 -0.89
-2.18 -1.74
2.86 2.72
0.9 1.02
-2.4 -2.81
-2.65 -2.87
0.96 0.89

-5.43 -4.65
-3.27 -3.62
-3.92 -4.65
-2.86 -2.72
-4.1 -4.76
3.88 5.47

53 5.12
3.25 2.96
-0.7 -09
1.16 0.99

-1 -1.42
-0.58 -0.72
0.57 1.65
0.85 -0.89
-1.17 -1.73
1.03 1.77
296 2.88
242 351
1.46 121
0.67 0.64
3.17 3.01
1.51 -1.68
1.54 1.73
-0.6 -0.44
0.58 0.89
2.28 -1.82
0.92 2.54
1.04 1.24
1.38 -1.88
-2.6 -2.16
0.95 -0.78
138 19 223 2.66
5,02 46 491 5.69
335 3.78 3.92 443

-6.24
-3.17
-5.21
-3.65
-2.94
6.02
4.97
2.61
-0.86
1.22
-2.01
0.74 0.13
1.79 149

-1 -1.26
-1.2 -1.04
333 239
432 3.95
4.79 3.97
1.07 1.07
1.64 141
263 237
-0.88 1.83
237 2.24
-1.12 0.83
-0.79 -1.6
-1.52 -13
231 1.19
0.17 0.56
-3.14 -2.89
-2.65 -2.13
1.01 0.56
3.59 635
533 5.15
432 345

-5.85
-3.55
-5.51
-3.44
-4.95
7.18
4.83
2.7
-0.93
0.73
-1.82

Sep.
1.03
-2.16
-0.98
-2.27
-4.84
-5.64
-3.42
-5.46
-2.78
-2.65
6.55
3.74
1.64
0.56
0.84
-2.18
1.35
1.66
-1.75
-1.49
1.58
4.18
3.56
1.5
2.78
2.04
1.47
1.73
1.75
-1.74
0.99
222
1.82
-3.37
-1.23
0.83
52
4,97
2.61

Oct. Nov. Dec.
0.12 0.69 -0.29
-2.22 -1.97 -2.37
1.73 1.22 0.85
-2.5-2.31-2.15
-4.38 -4.39 -4 .45
-5.44 -4.65 -4.85
-3.19 -3.53 -3.7
-5.58 -4.11 -3.75
-2.85 -3.25 -3.41
-2.55 -2.83 -2.75
546 6.57 6.07
295 292 342
202 149 099
0.68 0.09 0.46
-0.58 0.36 0.68
22 -1.7 -1.87
1.47 09 0.57
245 1.83 137
-1.7 -1.11 -1.45

-1 -1.3-0.77
098 0.98 1.21
466 3.83 3.37
2.76 2 1.17
1.31 1.29 1.05
287 3.7 3.14
224 1.71 1.24
1.26 0.81 1.04
1.21 1.28 1.03
159 1.73 19
1.42 -1.69 -1.25
1.58 1.44 0.86
1.48 1.09 1.38
1.8 1.37 1.36
3.03 -3.04 -2.87
-1.51 -1.77 -2.12
0.05 0.58 0.16
433 47 5.05
466 3.69 4.39
204 169 1.04
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1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

-1.86
-0.81
1.51
2.67
2.22
2.13
7.8
8.68
7.67
2.39
1.28
1.16
3.45
3.73
-0.52
1.7
-1.48
-3.62
2.12
1.12
-1.51
-1.57
-1.71
-3.68
-1.42
-1.61
-0.71
-1.66
-2.28
-3.06
-2.55
-2.96
241
1.19
0.98
-1.73
-1.37
-2.44
-1.9
1.78
1.19
-2.43

-2.1 -3.05 -3.41 -3.81-3.57 -3.64

247
2.17
291
23
2.54
8.13
9.58
6.73
2.14
244
1.39
2.97
2.94
0.43
1.6
-1.66
-3.61
1.55
0.56
-1.45
-1.64
-1.87
-3.68
-1.18
-1.2
1.05
-2.22
-1.43
-3.05
-2.85
-2.74
25
0.57
0.57
-0.8
-1.8
-2.25
-2.33
1.91
0.66
-2.41

2.69
1.94
3.6
2.81
2.29
7
10.42
5.81
2.23
2.44
227
2.73
2.29
0.74
L5
-1.96
-3.74
2.47
-1.63
1.23
-1.87
-2.46
-3.77
1.7
-1.66
-0.49
-2.31
-1.31
-3.13
-2.59
-2.33
2.07
-0.97
-0.99
-0.6
-1.42
-2.65
-3.25
3.38
-1.78
-1.8

2.64
1.43
3.54
2.55
2.54
7.34
11.13
5.42
2.63
2.62
2.25
2.76
1.81
0.63
1.68
-2.77
-3.27
322
-1.7
0.9
-2.09
-2.83
-3.77
2.13
-2.39
-0.72
-2.63
-1.71
-3.13
-2.47
2.05
1.9
-0.8
-1.3
-0.68
-1.41
-2.96
-3.43
3.27
-2.1
-1.11

4 385
1.37
5.98
2.84
3.69

7.3

11.97
3.43
1.79
3.09
3.99
2.44
0.82
0.45

3.1
0.89 0.69
439 5.29
2.64 2.65
2.96 3.26
8 8.61
11.3311.85
4.65 4.01
23 197
3.01 3.53
2.54 294
2.39 1.97
1.71 1.49
0.51 0.71
227 2.89 234
-3.16 -3.53 -2.37
-2.83 -3.17 -3.45
3.62 408 3.75
-193-2.09 -12
0.89 1.08 0.68
-2.31-2.36 -1.24
-3.25-3.55 -3.29
-3.32 -3.28 -3.36
232 199 121
-2.88 -3.26 -3.32
-0.84 -1.06 -1.73
-3.01 -3.53 -3.65
-1.89-1.84 -2.44
-3.62 -3.79 -4.41
-2.62 -2.8 -2.91
26 252 2.18
2.39 2.63 2.08
-0.81-0.74 0.39
-1.72 -1.57 -1.19
1.05 1.08 1.14
-2.04 -2.41 -2.49
-2.46 -2.87 -3.4
-3.75 -3.08 -3.65
42 526 4.56
-2.54-297 -2
-1.14 -1.56 -1.55

-2.19
441
0.81
5.13
233
3.38
6.72

11.16
4.43
1.77
2.57
5.01
2.91
1.13
0.61
1.74

-2.79

-1.55
2.98

-0.92
-0.9
1.67

-3.97
-2.8
0.66

-2.34

-2.33

-2.41

-3.11

-3.86

-2.22
1.41
1.24
0.64

-1.74
0.91

-2.01

-2.51

-3.3
3.47
-33
-2.17

-2.64
4.7
-0.99
4.87
1.49
9.99
9.93
9.86
3.37
1.91
1.63
4.22
2.73
-1.4
-0.56
1.08
-2.78
-1.68
2.39
-1.62
-1.35
0.74
-4.42
-3.29
0.87
-2.42
-1.83
-2.64
-2.67
-3.06
-2.51
0.9
0.78
1.39
-2.21
0.85
-2.26
-2.91
-2.8
242
-3.51
-2.28

-2.5 -1.49
2.42
2.59
2.87
1.73

8.2
9.36
9.03
2.05
1.29
1.56
3.98
444
1.06
0.33

-1.14

-3.82
1.95
1.92

-2.11

-2.11
-1.5

-4.53

-1.09

-1.21

-0.85

-1.43

-2.34

-2.89

-2.28

-2.83
2.94
1.46
1.58
-2.3
-0.9

-2.7
3.82 3.05
1.48 0.89
3.84 2.96
1.16 0.76
10.04 9.33
9.94 9.11
10.05 9.48
2.78 2.26
1.83 1.21
0.87 1.45
4.56 3.83
3.79 436
-1.02 -0.74
-0.27 -0.68
0.74 -1.45
-3.2 34
-1.16 -0.91
146 1.72
-1.67 -1.91
-1.78 -2.08
-1.28 -1.13
-4.3 -4.33
-1.42 -0.92
081 0.7
-1.79 -1.5
-1.52 -1.02
-2.67 -2.46
-2.64 -2.99
-2.61 -1.93
-2.97 -2.85
-1.19 1.58
0.78 0.61
1.18 1.25
-2.19 -2.27
0.58 -0.31
-2.44 -2.15 -2.07
-2.07 -2.04 -1.5
-1.39 193 1.74
1.68 1.63 0.93
-2.68 -2.37 -2.27
-2.37 -2.13 -2.33
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1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

-2.86
-1
-1.37
4.07
2.63
-2.76
-2.32
-0.86
-0.93
1.97
-1.62
-2.6
-2.17
-3.13
-5.26
-3.84
-3.45

-2.03
-1.62
-0.6
3.94
3.54
-2.95
-2.22
-0.74
-1.54
1.6
-1.82
-2.67
-2.2
-3.29
-4.85
-4.02
-2.64

-2.01
-1.86
244
4.42
3.76
-2.37
-1.89
1.44
-2.22
1.28
-1.91
-2.81
-2.73
-3.91
-5.1
-2.85
2.31

-1.3
-2.42
2.95
4.19
3.66
-2.73
-2.02
1.63
-2.69
1.01
-2.47
-3.47
-2.07
-4.83
-5.28
-2.85
2.05

-1.52 -1.89 -1.72
-1.81-2.07 -2.29

3.6 415 3.45

5.2 5.83 5.51
422 476 4.33
-2.71 -3.17 -3.28
-2.32-2.71 -3.05
1.47 1.29 0.83
-3.43 -3.67 -1.85
0.87 0.69 -0.6
-3.04 -3.52 -3.66
-3.73 -3.86 -4.05
-2.56 -2.87 -3.29
-5.03 -5.33 -5.48
-5.16 -5.21 -4.44
-3.08 -3.15 -3.43
2.75 2.59 1.61

-2.5
-2.21
249
5.01
3.15
-3.21
-2.06
1.67
-1.24
-1.77
-3.77
-4.3
-2.59
-5.49
-4.42
-3.96
0.92

-0.75
-2.42
1.8
3.62
231
-2.71
-1.94
1.62
-1.73
-1.72
-3.4
-4.36
-3.11
-5.75
-3.96
-3.87
-1.8

1.01 -0.78
-2.6 -2.66
2.95 3.39
225 1.78
1.91 1.18 -2.19
-2.05 -1.9-241
-1.97 -1.21 -0.71
1.77 1.53 1.19
-1.85 -14 1.89
-1.58 -0.56 -0.96
-3.16 -2.94 -2.73
-3.38 -2.48 -2.36
-3.6 -3.56 -3.55
-5.57 -5.66 -5.7
-4.11 -4.04 -4.09
-3.94 -3.85 -3.66
-1.04 -14-0.73

1.57
-2.49
2.08
2.82
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c) California, PDSI, 1895-1992 (Monthly)

Year Jan. Feb. Mar. Apr. May
1895 136 133 0.84
1896 1.74 0.68 0.86

1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933

-0.92
-2.45
-4.3
-1.39
1.76
-1.43
0.73
-2.16
-1.38
1.44
5.31
-0.28
3.22
2.75
2.78
-2.02
-0.7
5.27
1.45
5.95
0.84
-3.37
-1.12
-2.61
3.19
1.43
-0.2
-2.41
-0.83
-1.16
1.13
-0.84
-1.68
0.38
-1.17
1.77
-1.15

0.52
-3.1
-5.08
-2.09
24
0.37
0.2
0.73
-1.64
1.26
4.6
-0.25
3.54
-0.61
247
-3.17
-1.29
4.92
2.62
-0.22
1.24
-3.11
0.55
-3.03
2.24
2.16
-0.92
-3.34
-0.72
-1.23
1.81
-1.47
-1.92
-0.43
-1.57
2.11
-1.67

0.83
-3.82
-3.78
-2.41

1.38

0.58

1.12

2.2

-1.1

3.1
6.9
-0.96

3.33
-0.84

3.24

0.26
-1.74

3.5

1.91
-0.45

0.63

0.95

0.57

0.7
1.66
2.1
-1.88
-3.51
-0.83
-2.36

1.45
-0.93

-1.9
-0.43
-2.36
-0.84
-1.85

0.76
1.87
-0.69
-4.5
-4.04
0.43
1.52
0.73
-0.5
23
-1.66
2.99
-0.43
-1.52
-0.73
-1.43
3.21
1.01
-0.05
3.49
1.86
-1.06
0.43
-0.31
-0.56
1.19
1
1.6
1.33
-3.9
0.65
-1.34
1.71
-0.98
0.32
0.04
-2.66
-0.94
-2.18

1
2.04
-1.3
-4.03
-3.67
0.91
1.74
0.79
-0.8
1.79
1.14

4.69

-0.56
0.68
-1.15
-1.93
2.95
1.84
0.29
3.15
4.4
-1.14
0.56
-04
-0.92
0.81
2.09
1.84
0.99
-4.88
1.44
-1.47
1.5
-0.98
-0.36
0.81
-2.78
-0.54
0.59

Jun.
1.88
2.48
-1.73
-4.8
-3.23
1.26
1.9
1.06
-0.99
1.52
1.3
5.32
0.26
0.75
-1.38
-2.35
2.96
2.39
0.47
3.15
4.61
-1.14
0.77
-0.49
-1.3
0.85
2.39
1.8
1.18
-5.67
2.02
-1.59
1.56
-1.07
0.62
1.3
2.7
-0.44
0.97

Jul.
24
-0.26
-2.08
52
-3.18
1.1
1.73
1.04
-1.23
1.11
1.42
6.39
0.38
0.94
-1.5
-2.55
3.01
2.58
0.88
3.09
5.01
0.21
0.74
-0.89
-1.49
0.83
2.35
1.63
1.52
-5.96
2.24
-1.93
1.52
-1.12
0.94
1.51
-2.88
-0.43
1.36

Aug.
2.55
-0.48
-2.14
-5.09
-3.03
0.87
1.54
0.99
-1.2
0.95
-0.07
5.67
0.42
0.65
-1.41
-2.57
0
2.62
1.1
2.82
4.86
0.41
-0.23
-0.96
-1.55
0.92
-0.08
1.44
1.56
-5.64
2.11
-1.93
1.3
-1.11
0.92
1.47
-2.85
-0.39
-0.18

Sep.
2.5
-0.42
-2.3
-4.54
-3.12
0.58
1.72
-0.36
-1.44
247
-0.34
491
-0.15
0.78
0.14
-1.98
-0.19
3.22
-0.32
2.42
4.21
0.36
-0.61
1.66
-1.14
0.63
-0.18
0.87
2.03
-5.47
2.08
-2.08
0.87
-1.37
-0.26
1.63
-2.85
-0.6
-0.48

Oct.
1.9
-0.65
-1.09
-4.25
-1.85
1.09
1.92
0.31
-1.66
3.14
-0.88
3.78
-0.15
0.73
0.43
-1.99
-0.65
3.11
-0.91
1.99
3.18
1.17
-1.19
1.51
-1.22
1.18
-0.61
0.86
-0.19
0.82
1.97
-2.12
1.41
-1.69
-0.82
1.33
-2.99
-1.1
-0.56

Nov.
1.6
-0.18
-1.35
-4.19
-1.3
2.25
0.01
0.79
-0.83
-0.57
-0.79
3.19
-1.09
-0.35
1.33
-2.38
-1.21
2.94
1.12
0.96
247
0.88
-1.48
1.64
-1.84
2.18
-1.27
1.27
-0.98
0.54
-0.19
1.93
1.59
-1.29
-1.7
1.44
0.37
-1.89
-1.5

Dec.
0.9
-0.37
-1.7
-4.6
-1.13
1.41
-0.67
0.23
-1.51
-1
-1.37
4.46
-0.5
-0.97
2.58
-2.58
-1.7
-0.82
248
1.11
2.64
1.49
-2.51
-0.37
-1.51
2.73
1.62
2.31
-1.81
0.71
-0.85
1.55
-0.09
-1.26
-1.61
-1.01
2.02
-2.04
-1
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1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

-1.63
0.66
-1.38
0.69
0.53
-1.51
1.23
1.22
2.01
2.13
-1.59
0.62
-0.74
-0.81
-3
-14
0.31
-0.13
2.4
-0.36
-1.45
-1.01
3.03
-1.86
0.74
-2.61
-3.84
-2.95
-3.37
24
-1.23
-0.2
-0.7
1.5
-1.22
3.21
-0.02
-0.69
-0.84
1.45
-0.04

-1.54
0.31
25
2.01
22
-1.67
241
2.27
1.74
1.82
0.71
1.5
-0.81
-1.2
-3.34
-1.35
-0.16
-0.36
1.93
-1.25
-1.54
-1.05
234
-2.02
1.53
-2
-3.17
-3.54
-0.99
0.06
-2.19
-0.87
-0.98
0.54
-1.73
4.75
-0.44
-1.31
-1.51
2.13

-2.68
0.73
-0.45
2.49
3.82
-1.66
0.05
2.12
1.22
2.78
0.13
21
-0.43
-1.44
0.29
-0.57
-0.31
-0.91
2.74
-1.57
-0.76
-1.83
1.08
-2.21
2.89
-2.88
-3.39
-3.62
-1
0.19
-2.48
-1.23
-1.88
1
-2.05
-0.39
-0.69
-1.6
-2.67
2.36

-3.52
233
-0.54
-0.08
3.94
-2.06
-0.29
2.98
2.06
2.55
0.54
1.44
-1.1
-1.78
1.69
-1.32
-0.35
-0.76
2.6
0.29
-0.98
0.4
1.37
0.01
3.9
-3.28
-3.04
-3.76
-1.65
1.63
-2.55
0.88
-2.41
33
-2.36
-0.09
-0.81
-1.63
-2.79
-0.58

-3.74
-0.24
-0.67
-0.49
-0.15
-1.9
-0.7
2353
2.48
-0.23
0.52
1.39
-0.93
-1.88
2.04
-1.09
-0.42
-0.74
-0.35
0.65
-1.24
0.64
1.88
1.26
3.63
-3.45
-3.02
-3.49
-1.75
1.66
0.02
0.49
-2.84
2.92
-2.49
-0.44
-1.18
0.66
-3.26
-1.02

-3.82
-0.17
-0.42
-0.61
0.14
-1.89
-1.2
2.34
2.76
0.04
0.79
1.63
-1.03
-2.03
243
-1.24
-0.46
-0.6
-0.33
1.34
-1.1
0.84
2.06
1.73
3.58
-3.78
-2.81
-3.5
-1.84
1.93
0.05
0.52
-3.24
3
-2.67
0.19
-1.09
1.05
-3.53
-1.52

-0.74 0.43 0.67 0.27 0.22
-1.57 025 086 126 0.84 0.76

-3.91
-0.3
-0.31
-0.68
0.14
-1.9
-1.62
2.34
2.98
0.31
1.21
1.7
-0.87
-2.06
2.7
-1.39
-0.36
-0.53
0.38
2.29
-1.04
1.03
2.14
1.92
3.56
-4.02
-2.96
-3.63
-1.82
2.14
0.04
0.84
-3.34
3.12
-2.82
0.41
-1.16
14
-3.74
-1.89
0.5
0.67

-3.77
-0.21
-0.44
-0.81
-0.11
-1.84
-1.7
2.19
2.74
0.37
1.37
1.51
-0.8
-1.86
2.7
-1.28
-0.45
-0.51
0.38
2.25
-1.04
1.19
2.01
1.83
3.43
-3.89
-2.95
-3.28
-1.7
2.29
0.15
1.56
-3.17
-0.02
-2.47
0.37
-1.25
1.36
-3.49
-1.86
0.47
1.23

-3.51
-0.56
-0.74
-1.12
-0.23

0.69
-1.84

1.71

2.15
-0.33

1.13
-0.98
-1.91
-0.23
-1.49
-0.43
-0.83
-0.06
-0.32
-1.25
-0.28

1.69

1.51

3.46
-1.99
-3.01
-3.07
-1.79

221
-0.14

1.29
-3.14

0.07

-2.6

0.16
-1.49
-0.12

0.06
-1.99

0.02

0.89

0.28
-0.27
-0.31
-1.48
0.51
0.93
-1.21
1.79
1.45
-0.41
0.97
2.11
0.44
-1.02
-0.48
-1.86
0.73
0.16
-0.8
-0.56
-1.72
-0.9
1.97
1.69
-0.77
2.5
-3.12
-3.27
-1.19
2.38
0.21
0.59
-3.47
-0.54
0.34
0.49
-1.71
-0.45
0.11
0.55
0.51
1.92

0.65
-0.71
-1.23
-1.85
-0.56
-0.91
-1.79

1.18

1.77
-1.04

2.02

2.05

1.36
-1.37
-1.15

-2
2.2

0.21
-0.74
-0.71
-1.62
-0.89
-0.94

1.12
-1.43
-3.25
-2.18
-2.87
-1.91

279

0.81

1.85

0.28

-0.6

0.55
-0.44

1.23
-0.49

1.08

1.09
-0.54
-0.47

0.51
-1.22
0.74
0.74
-1.2
-1.8
1.34
233
1.58
-1.38
1.69
2.64
1.42
-2.01
-1.03
-2.21
2.61
1.61
0.84
-1.39
-1.38
2.86
-1.73
0.95
-2.4
-3.81
-2.54
-3.05
-2.51
-0.78
2.06
2.01
1.38
-0.82
1
-0.7
1.8
0.7
1.03
1.28
-0.8
-1.41
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1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

-2.54

1.26
0.25
1.21
-1.8
1.65
6.76
-1.08
-1.05
0.67
-2.36
-2.28
-2.62
-1.83
-4.67
-2.48

-2.85
-4.82
231
0.96
2.28
-2.27
1.49
7.14
-1.23
-1.32
2.97
-2.29
-2.96
-2.72
-2.01
-5.35
-1.82

-3.53
-5.43
3.1
1.16
1.99
-1.66
2.95
82
-1.77
-0.87
3.29
-2.02
-3.68
-2.32
-2.69
-2.76
-1.74

-34
-6.17
3.98
-0.49
1.64
-1.7
3.8
8.09
-1.85
-1.57
-0.25
-2.58
-3.04
-2.8
-3.1
-2.93
-2.4

-4.14
-5.49

3.23
-0.72

1.67
-1.64

3.09

7.27
-2.11
-1.99
-0.47
-2.78
-2.79
-2.73
-2.56
-2.64
-2.96

-4.94
-6.51
2.87
-1.07
1.67
-1.72
3.21
6.71
-2.19
-2.21
-0.7
-3.04
-2.54
2.8
-2.91
-2.23
-3.31

-5.29
-6.97

2.56
-1.23

2.07
-2.03

3.23

6.19
-2.09
-2.42
-0.82
-3.14

-2.3
-2.85
-3.05
-1.82
-2.83

424
-6.49

2.26
-1.24

-2.05
32
6.58
-2
-2.39
-0.82
-2.92
-2.21
-2.65
-2.97
-1.62
-2.68

-2.34
-6.1
3.73
-14
-0.28
-2.18
4.87
6.82
-2.19
0.44
0.76
-2.96
-2.33
1.38
-2.89
-1.82
-2.82

-2.36
-6.07
-0.78
0.38
-0.77
0.9
57
5.94
-1.44
0.47
-0.58
-2.55
-2.84
1.71
-3.26
-1.06
-1.89

-2.79
-5.77
-0.82
-0.15
-1.56

1.54

6.63

7.31
-0.19

1.51
-1.34
-2.48
-2.28
-0.49
-3.58
-1.59
-2.57

-3.49
0.72
-1.13
-0.48
2.1
1.32
6.59
7.8
-0.32
1.22
-2.05
-2.25
-1.93
-1.57
-3.94
-1.95
0.78
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(d) California, PHDI, 1895-1992 (Monthly)

Year Jan. Feb. Mar. Apr. May Jun.
1.33 0.84 0.76
0.86 1.87 2.04 248

1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933

1.36
1.74
-0.92
-2.45
4.3
-1.39
1.76
-1.43
0.73
-2.16
0.89
1.44
5.31
2.06
3.22
2.75
2.78
-2.02
1.67
5.27
1.45
5.95
1.92
-3.37
-1.12
-2.61
3.19
1.43
1.87
-2.41
-3.74
-1.16
1.13
-0.84
-1.68
-1.06
-1.17
1.77
-1.15

0.68
0.52
-3.1
-5.08
-2.09
24
-0.92
0.2
-1.21
-1.64
1.26
4.6
1.84
3.54
1.86
2.47
-3.17
0.83
4.92
2.62
5.12
221
-3.11
0.55
-3.03
2.24
2.16
0.94
-3.34
-3.33
-1.23
1.81
-1.47
-1.92
-1.38
-1.57
2.11
-1.67

0.83
-3.82
-3.78
-2.41

1.38
-0.57

1.12

22

-1.1

3.1
6.9

0.92

3.33

1.37

3.24
-2.58
-1.74

35
1.91
4.34

1.5

-1.84

0.57
-2.02

1.66

2.1
-1.88
-3.51
-3.17
-2.36

1.45
-0.93

-1.9
-1.28
-2.36

1.06
-1.85

-0.69
-4.5
-4.04
-1.72
1.52
0.73
0.92
23
-1.66
2.99
5.76
-1.52
2.26
0.56
3.21
-1.53
-1.61
3.49
1.86
3.23
1.21
-1.96
-0.56
-1.24
1
1.6
1.33
-3.9
-2.19
-1.34
1.71
-0.98
-1.39
-1.11
-2.66
0.76
-2.18

1

-1.3
-4.03
-3.67
-1.02
1.74
0.79
-0.8
1.79
1.14
4.69
4.99
-0.69
1.53
-1.93
2.95
1.84
-1.15
3.15
44
2.71
1.26
-1.88
-0.92
-1.38

2.09.

1.84
0.99
-4.88
-1.11
-1.47
1.5
-0.98
-1.6
0.81
-2.78
0.99
-1.36

1.88

-1.73
-4.8
-3.23
1.26
1.9
1.06
-0.99
1.52
13
532
4.74
0.75
1.03
-2.35
2.96
2.39
-0.82
3.15
461
232
14
-1.82
-1.3
-1.11
2.39
1.8
1.18
-5.67
2.02
-1.59
1.56
-1.07
-0.81
1.3
2.7
0.93

Jul.
24
1.96
-2.08
52
-3.18
1.1
1.73
1.04
-1.23
1.11
1.42
6.39
4.39
0.94
0.66
-2.55
3.01
2.58
0.88
3.09
5.01
2.29
1.3
-2.08
-1.49
-0.93
235
1.63
1.52
-5.96
2.24
-1.93
1.52
-1.12
0.94
1.51
-2.88
038

Aug.
2.55
1.52

-2.14

-5.09

-3.03
0.87
1.54
0.99
-1.2
0.95
1.21
5.67
4.02
0.65

-1.41

-2.57
2.71
2.62

1.1

2.82
4.86
227
0.94

-2.03

-1.55

-0.65
2.03
1.44
1.56

-5.64
2.11

-1.93

1.3

-1.11
0.92
1.47

-2.85
0.71

-0.78 136 1.04

Sep.
2.5
1.37
23
-4.54
-3.12
0.58
1.72
-0.36
-1.44
247
0.8
491
3.45
0.78
-1.13
-1.98
2.24
3.22
0.67
2.42
421
2.03
-0.61
1.66
1.14
-0.79
1.71
0.87
2.03
-5.47
2.08
-2.08
0.87
-1.37
-0.26
1.63
-2.85
-0.6
0.61

Oct.
1.9
0.96
-1.09
-4.25
-1.85
1.09
1.92
0.31
-1.66
3.14
-0.88
3.78
3.08
0.73
-0.7
-1.99
1.53
3.11
-0.91
1.99
3.18
2.67
-1.19
1.51
-1.22
1.18
1.08
0.86
1.64
-4.09
1.97
-2.12
1.41
-1.69
-0.82
1.33
-2.99
-1.1
-0.56

Nov.
1.6
1.26
-1.35
-4.19
-1.3
2.25
1.72
0.79
-0.83
2.24
-0.79
3.19
1.81
-0.35
1.33
-2.38
0.74
2.94
1.12
0.96
247
2.22
-1.48
1.64
-1.84
2.18
-1.27
1.27
0.65
-3.86
1.57
1.93
1.59
-1.29
-1.7
1.44
-2.32
-1.89
-1.5

Dec.
0.9
0.92
-1.7
-4.6
-1.13
1.41
0.87
0.23
-1.51
1.53
-1.37
4.46
2.11
-0.97
2.58
-2.58
-1.7
1.82
248
1.11
2.64
2.7
-2.51
1.1
-1.51
2.73
1.62
231
-1.81
-3.24
0.73
1.55
1.34
-1.26
-1.61
-1.01
2.02
-2.04
-1
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1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

-1.63
-1.62
-1.38
0.69
-0.96
-1.51
1.23
1.22
2.01
2.13
-1.59
0.62
1.63
-0.81
-3
-1.4
-1.67
221
24
0.84
-1.45
-1.01
3.03
-1.86
0.74
-2.61
-3.84
-2.95
-3.37
-24
1.02
1.65
1.11
-1
-1.22
3.21
1.59
0.92
-0.84
-0.57
1.11
-1.57

-1.54
-1.73
25
2.01
2.2
-1.67
2.41
2.27
1.74
1.82
-0.72
1.5
1.31
-1.2
-3.34
-1.35
-1.66
1.74
1.93
-1.25
-1.54
-1.05
2.34
-2.02
1.53
-2
-3.17
-3.54
-0.99
-2.09
-2.19
0.79
0.64
-1.71
-1.73
4.75
1
-1.31
-1.51

-2.68
-1.1
1.79
2.49
3.82
-1.66
2.21
2.12
1.22
2.78
-1.15
2.1
1.47
-1.44
2.7
-0.57
-1.65
0.97
2.74
-1.57
-0.76
-1.83
1.08
-2.21
2.89
-2.88
-3.39
-3.62
-1
-1.74
-2.48
-1.23
-1.88
-1.02
-2.05
3.87
0.6
-1.6
-2.67

-3.52
233
1.47
2.15
3.94

-2.06
1.69
2.98
2.06
2.55

-0.61
1.44
0.61

-1.78

-1

-1.32

-1.55
0.93

2.6

-1.12

-0.98

-1.25
1.37

-1.97

3.9

-3.28

-3.04

-3.76

-1.65
1.63

-2.55
0.88

-241

33

-2.36
3.73

-0.81

-1.63

-2.79

-3.74
1.85
1.14
1.51
3.38
-1.9
1.08
253
2.48
2.06
0.52
1.39

0.6

-1.88
2.04

-1.09
-1.5
0.77
1.99

-0.62

-1.24

-0.84
1.88
1.26
3.63

-3.45

-3.02

-3.49

-1.75
1.66

-2.27
0.49

-2.84
2.92

-2.49
2.98

-1.18
-0.8

-3.26

2.13 236 1.54 0.88
-0.74 043 0.67 0.27 0.22
-1.16 086 126 084 0.76 0.67 123

-3.82
1.7
12

1.19
3.17
-1.89
-1.2
2.34
2.76
1.88
0.79
1.63
-1.03
-2.03
243
-1.24
-1.43
0.76
1.76
1.34
-1.1
0.84
2.06
1.73
3.58
-3.78
-2.81
-3.5
-1.84
1.93
-2
0.52
-3.24
3
-2.67
2.86
-1.09
1.05
-3.53
-1.52

-3.91
1.38
1.14
0.93
2.86
-1.9
-1.62
234
2.98
1.96
1.21
1.7
-0.87
-2.06
2.7
-1.39
-1.23
0.69
1.96
2.29
-1.04
1.03
2.14
1.92
3.56
-4.02
-2.96
-3.63
-1.82
2.14
-1.8
0.84
-3.34
3.12
-2.82
2.81
-1.16
1.4
-3.74
-1.89
0.5

-3.77
13
0.86
0.64
2.46
-1.84
-1.7
2.19
2.74
1.85
1.37
1.51
-0.8
-1.86
2.7
-1.28
-1.23
0.59
1.79
2.25
-1.04
1.19
2.01
1.83
3.43
-3.89
-2.95
-3.28
-1.7
2.29
-1.5
1.56
-3.17
2.78
-2.47
2.52
-1.25
1.36
-3.49
-1.86
0.47

-3.51
0.8
-0.74
-1.12
2.07
-0.96
-1.84
1.71
2.15
1.33
1
1.13
-0.98
-1.91
2.19
-1.49
-1.13
-0.83
1.55
1.7
-1.25
0.78
1.69
1.51
3.46
-1.99
-3.01
-3.07
-1.79
2.21
-1.49
1.29
-3.14
2.56
-2.6
2.09
-1.49
1.1
-3.07
-1.99
0.02
0.89

-2.88
0.94
-0.31
-1.48
2.36
0.93
-1.21
1.79
1.45
1.08
0.97
2.11
0.44
-1.02
1.7
-1.86
0.73
0.16
0.65
1.25
1.72
-0.9
1.97
1.69
234
-2.5
-3.12
-3.27
-1.19
2.38
-1.12
0.59
-3.47
1.76
-1.99
2.22
-1.71
0.65
-2.7
-1.24
0.51
1.92

-2.18
-0.71
-1.23
-1.85
1.56
-0.91
-1.79
1.18
1.77
-1.04
2.02
2.05
1.36
-1.37
0.8
-2
22
0.21
0.56
0.91
-1.62
-0.89
0.82
1.12
1.35
-3.25
-2.18
-2.87
-1.91
2.79
0.81
1.85
-2.83
1.46
-1.55
1.55
1.23
-0.49
-1.44
1.09
-0.54
1.25

-2.03
-1.22
0.74
-0.92
0.71
-1.8
1.34
233
1.58
-1.38
1.69
2.64
1.42
-2.01
0.72
-2.21
2.61
1.61
1.35
-1.39
-1.38
2.86
-1.73
0.95
-24
-3.81
-2.54
-3.05
-2.51
1.73
2.06
2.01
-1.42
1.03
-0.87
1.09
1.8
0.7
-1.23
1.28
-0.8
-1.41
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1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

-2.54

-3.38
1.64
1.21
-1.8
1.65
6.76
5.91
0.84
0.67
-2.36
-2.28
-2.62
-1.83
-4.67
-2.48

-2.85
-4.82
-1.86
221
2.28
-2.27
1.49
7.14
5.04
-1.32
2.97
-2.29
-2.96
-2.72
-2.01
-5.35
-1.82

-3.53
-5.43
-0.64
2.28
1.99
-1.66
295
82
3.86
-0.87
3.29
-2.02
-3.68
-2.32
-2.69
-2.76
-1.74

-34
-6.17
3.98
1.55
1.64
-1.7
3.8
8.09
3.19
-1.57
2.7
-2.58
-3.04
-2.8
-3.1
-2.93
-2.4

-4.14
-5.49
3.23
1.12
1.67
-1.64
3.09
7.27
2.42
-1.99
2.18
-2.78
-2.79
-2.73
-2.56
-2.64
-2.96

-4.94
-6.51
2.87
0.58
1.67
-1.72
3.21
6.71
1.87
-2.21
1.68
-3.04
-2.54
-2.8
-2.91
-2.23
-3.31

-5.29
-6.97
2.56
-1.23
2.07
-2.03
3.23
6.19
1.55
-2.42
1.31
-3.14
-2.3
-2.85
-3.05
-1.82
-2.83

424
-6.49

2.26
-1.24

-2.05
32
6.58
1.27
-2.39
1.09
-2.92
-2.21
-2.65
-2.97
-1.62
-2.68

-2.34
-6.1
3.73
-14
1.51
-2.18
4.87
6.82
0.74
-1.7
1.74
-2.96
-2.33
-1
-2.89
-1.82
-2.82

-2.36
-6.07
2.56
-0.87
0.84
-1.06
5.7
5.94
1.19
-1.45
0.98
-2.55
-2.84
1.71
-3.26
-1.06
-1.89

-2.79
-5.77
2.18
-0.94
-1.56
1.54
6.63
7.31
2.17
1.51
-1.34
-2.48
-2.28
1.04
-3.58
-1.59
-2.57

-3.49
-4.45
1.56
-1.18
-2.1
1.32
6.59
7.8
1.8
1.22
-2.05
-2.25
-1.93
-1.57
-3.94
-1.95
-1.53
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(e) Virginia, PDSI, 1895-1990 (Monthly)

Year Jan. Feb. Mar. Apr. May Jun. Jul
0.54 151 1.82

1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934

0.98
-24
-1.01
-0.44
1.21
-1.42
-2.53
3.16
2.01
-0.49
0.8

1
1.64
2.84
1.95
-1.73
-0.16
0.24
-1.07
-0.54
1.48
-1.36
-1.01
1.84
0.34
-2.06
2.1
0.28
0.18
0.28
2.69
-2.91
-2.26
-0.49
0.96
-0.17
-5.66
-3.17
1.2
-3.16

0.56
0.47
1.09
-1.22
231
0.61
-2.97
3.69
2.52
-0.43
1.15
0.63
1.33
3.02
1.68
-1.54
-0.58
0.36
-1.36
-0.21
0.02
-1
-1.08
-0.95
0.14
0.68
-0.11
0.78
0.15
0.19
-0.79
-2.37
-2.11
-0.59
1.5
-1.07
-5.81
-3.54
-0.25
0.71

0.89
-0.2
-1.31
3.03
0.77
0.11
-0.38
3.04
-0.7
-0.55
1.23
0.63
2.14
1.62
2.04
0
1.84
0.38
-0.21
-0.59
-1.35
0.66
-1.01
0.17
0.61
-1.16
1.17
0.75
0.62
-1.45
-2.39
-2.81
-0.99
1.15
-1.66
-5.06
-2.68
-0.86

-0.84
-0.51
0.22
-0.37
0.57
1.34
-0.61
3.16
-0.96
-0.62
-0.76
11
1.6
1.52
0.32
0.49
1.55
0.22
-0.31
-1.42
-1.49
0.47
1.23
0.08
0.99
-1.34
0.6
0.92
0.95
-1.74
-2.56
0.67
0.83
1.14
-1.86
-4.34
-2.54
-0.32

-0.82
-0.14
0.55
-0.53
0.09
2.03
-1.11
2.17
-1.25
0.15
-1.02
1.36
1.87
1.65
037
-1.17
1.72
0.46
-1.18
0.24
-0.02
0.2
-0.32
0.64
0.41
0.69
0.63
-0.43
1.88
-1.97
-3
0.28
0.67
1.26
-2.36
-3.18
-2.28
-0.15

141 0.86 1.89

-0.17
03
-0.47
-0.57
-0.96
0.64
1.83
-0.99
2.85
0.42
0.19
0.57
233
1.8
2.26
1.47
-1.49
1.8
0.32
-1.53
0.79
1.1
0.53
-0.26
0.67
0.94
-0.63
1.09
-1.06
2.1
-2.52
-3.1
04
1.05
1.98
-2.27
-2.88
-2.36
-0.95
1.3

-0.05
0.9
-0.15
-0.45
-0.98
-0.68
221
-1.54
2.54
0.87
1.54
1.49
1.76
2.21
-0.44
-0.15
-2.31
-0.27
0.02
-1.75
0.45
2.17
1.43
-0.27
221
1.27
-0.8
2.03
-0.73
1.82
-2.98
277
0.54
0.78
1.59
-3.26
-2.67
-2.69
0.12
1.82

Aug.
-0.67
04
-0.51
-0.32
-0.95
-1.68
3.14
-1.93
2.73
0.75
1.91
3.16
1.64
3.02
-0.33
0.16
-1.58
-0.85
0.03
-2.14
1.15
-0.35
1.05
-0.33
-0.09
2.25
-1.48
2.09
-0.83
1.69
-3.22
-2.49
0.8
22
1.1
-3.96
-1.64
-3.7
1.94
1.6

-Sep.

-1.73
0.82
-1.2

-0.47

-0.88

-1.95
3.21
0.53
231
0.86

-0.05
2.53
2.02
2.75

-0.49

-0.33

-2.09

-0.24
0.17

-2.32

-0.59

-0.36
1.48
0.32
-0.7
2.15

-2.02

-0.45

-0.73
3.19

-3.86

-2.69

0.2
3.8
1.26

-4.51
-1.6

-4.14

-1.21
2.93

Oct.
-1.93
-0.4
0.52
0.74
-0.64
-2.45
2.79
1.31
2.54
0.7
-0.47
341
1.6
3.06
-0.83
0.31
-2.11
-0.71
0.36
-2.39
-0.41
-0.57
2.19
-0.64
-1.46
1.38
-2.57
-0.38
-0.95
2.61
-3.78
-2.81
0.73
2.84
2.25
-4.87
-1.95
0.7
-1.74
2.09

Nov
-2.07
-0.17

0.69

1.06
-1.07

24

2.47

1.57
-0.14

0.69
-0.98

3

2.49

2.53
-1.66
-0.17

0.4
-0.92
-0.36
-2.38
-0.76
-0.98

1.59
-1.16
-1.73

2.07
-2.56
-1.09
-1.05

2.17
-3.63
-2.16

0.67

2.04

2.21
-5.14
-2.94

0.92
-2.13

2.12

. Dec.
2.3
-0.7
0.77
1.16
-1.52
-2.52
3.68
1.97
-.29
1.01
0.85
2.82
2.78
2.64
-1.85
-.06
0.5
-.95
-.52
.59
-.62
-.99
1.20
.09
-2.03
2.26
3.0
.09
-1.55
2.08
-3.68
-1.60
1.35
1.26
-.02
-5.19
-3.66
1.31
-2.62
1.61
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1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976

1.77
4.1
2.46
2.54
2.05
-0.81
-0.84
-5.63
-0.43
0.17
-1.42
3.06
-0.61
0.68
-0.6
-1.19
-1.38
1.68
-14
-1.54
4.3
-0.86
1.61
2.87
-0.71
-0.32
1.74
2.75
1.98
0.92
-0.41
-4.91
-2.99
-0.86
-2.41
-0.46

-0.98
2.74
0.74
0.77
3.05

1.33
4.15
1.96
1.64
2.55
-0.91
-1.26
-5.69
-0.74
0.9
-0.93
2.55
-1.27
0.47
-0.5
-1.84
-1.85
1.81
-14
-2.17
-3.85
-0.35

2.89
-1.24
0.43
241
2.54
1.79
1.6
-0.85
-4.21
-2.48
-1.67
-2.19
0.03
0.35
0.65
26
0.51
0.9
-0.95

0.84
3.89
1.33
1.28
2.36
-1.18
-1.5
-4.34
-0.69
1.9
-2.3
1.44
-1.41
0.14
-0.99
-1.73
-1.82
2.1
-1.27
-1.92
-3.57
-0.49
2.15
3.68
-1.17
0
231
2.64
1.94
-0.49
-0.64
-4.63
-2.82
-1.27
-1.55
0.35
-0.03
03
2.36
0.74
2.51
-1.51

1.63
3.81
24
1.18
241
0.85
-1.45
-5.05
-0.7
1.96
-2.5
1.27
-1.59
0.75
-1.33
-1.98
-1.78
1.95
-0.9
2.2
-3.63
-0.31
-0.59
3.79
-0.47
-0.56
2.02
2.82
-1.08
-0.27
-0.73
-4.48
-3.41
-1.42
-1.7
0.53
-0.32
0.31
2.53
0.17
2.48
-2.44

1.62
-1.09
2.12
1.38
1.24
-0.04
-2.29
-5.5
-0.46
-1.21
0.18
248
-1.8
1.84
0.53
-1.72
-1.92
-0.2
-1.11
-1.25
-3.86
-0.43
-1.18
4.32
-1.28
0.88
3.05
2.02
-1.23
-1.06
-1.82
-3.51
-2.85
-1.32
-2.02
-0.62
1.17
1.13
234
0.17
2
-2.11

1.4
-1.05
2.22
2.73
1.13
-0.83
-2.24
-5.45
-0.85
-2.29
0.68
243
-1.36
1.54
0.29
-2.23
-1.1
-1.05
-1.13
-2.26
-3.12
-0.87
-1.36
4.58
-2.02
0.48
3.61
243
1.56
-1.44
-1.39
-3.12
-3.1
-1.24
-2.08
-0.92
-0.94
242
235
0.33
1.35
-2.12

1.83
-1.39
2.36
3.76
1.86
-1.01
-1.95
-5.34
-0.98
-2.58
3.68
224
-1.47
1.01
0.18
0.99
-1.32
-1.8
-2.14
-2.49
-3.5
0.8
-2.4
3.86
1.09
1.1
2.58
2.54
-1
-1.61
-0.75
-3.36
-2.82
-1.31
0.52
-0.59
-1.37
221
-0.63
0.01
2.39
-2.39

2.04
-2.05
2.68
2.47
2.59
0.72
-2.43
1.13
-1.99
-2.68

238
-2.23
1.51
1.17
0.93
-1.22
-1.71
-1.59
-2.63
1.7
0.56
0.28
5.05
-0.87
1.46
2.13
1.93
-1.74
0.06
-1.41
-3.38
-1.54
-1.9
1.29
-1.38
-1.06
1.36
-0.21
0.29
1.47
-2.71

3.43
-2.27
2.55
3.44
-0.9
0.36
-3.38
1.37
-1.84
-1.88
3.19
-0.02
-1.75
1.22
1.09
1.24
-1.89
-2.08
-1.35
-3.19
2.66
0.71
0.41
3.81
-1.07
2.62
1.23
1.88
-1.17
1.03
-1.99
-2.69
-1.59
-2.4
1.21
-2.05
-1.24
1.78
-0.83
0.6
3.43
0.54

2.76
-2.35
3.23
3.02
0.64
0.15
-4.23
2.6
-1.25
-1.77
2.66
-0.2
-2.17
1.17
0.81
-0.3
-2.03
-2.24
-1.93
-3.42
243
1.84
1.14
4.02
1.02
2.82
1.94
1.32

1.89
2.56
2.57
1.92
2.49
0.85
2.69
1.57
2.38
-1.2
-0.4
3.48

1.7

2.97
-2.95
3.93
2.88
0.86
0.98
-5.07
-0.45
-1.48
-1.19
2.63
-0.45
0.76
24
0.96
-0.54
0.89
-1.38
-2.17
-3.69
2.23
1.85
2.17
3.53
1.5
2.1
1.42
237
0.66
-0.25
-3.64
-3.05
-2
-2.32
0.73
-2.57
1.55
3.5
-1.88
-1.01
3.1
1.6

2.67
0.36
3.04
2.36
-.55
-.55
-5.48
-.08
-1.89
-1.19
3.88
-1.01
0.38
2.92
-4
-.6
1.02
-1.07
-2.38
-3.8
-47
1.64
2.96
3.74
-12
1.84
2.19
2.39
0.69
0.23
-5.01
-2.98
-79
-2.39
1.68
-2.76
-.78
34
75
0.1
3.05
1.66
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1977 -0.03
1978 3.61
1979 2.48
1980 -0.04
1981 -3.76
1982 1.04
1983 1.36
1984 2
1985 -2.88
1986 -0.85
1987 2.25
1988 -1.88
1989 -2.15
1990 3.46

-0.5
2.41
3.16
-0.47
-3.49
1.71
1.78
2.02
-2.31
-1.07
1.84
-1.54
0.74
2.78

-0.66 -1.13
3.41 348
294 3.17
0.64 0.65
-3.73 -3.6

1.6 146

23 355
3.33 3.81
-2.75 -3.83

-2 -2.51
1.27 1.86
-1.85 -1.65
221 2091
233 201

-0.95
4.16
4.08

-0.07

-2.77
0.99
3.37
4.12

-3.73

-2.89

-0.89
-0.8
297
3.06

-1.44
3.96
3.99

-1.24

-2.67
1.27

-0.01

-0.72

-3.46

-3.77

-0.63

-0.92
3.26

-0.97

-2.13
3.45
3.84

-2.02

-2.39
1.54

-1.41
-0.1

-3.25

-4.19

-1.66

-1.24
3.22

-1.34

-2.66
3.04
3.47

-3.05
-2.2
2.03

-2.34

-0.85

-0.03

-3.03

-2.39

-1.57
3.69

-0.36

-3.13
1.95
5.62

-3.87

-2.12
1.72
0.05

-1.42
0.87

-3.74

-2.04

-1.82
3.87

-0.77

0.91
1.09
5.23
-2.9
-1.79
1.7
0.22
-2.36
1.45
-3.96
2.2
-1.64
3.96
-0.6

1.57 232
129 127
598 -57
-2.7 -2.97
-2.24 0.68
2.05 2.16
0.89 1.94
-2.45 -3.17
2.65 -.67
-4.14 0.43
-2.03 -1.96
-1.03 -1.74
425 3.90

-1 -1.01
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f) Virginia, PHDI, 1895-1990 (Monthly)

Year Jan. Feb. Mar. Apr. May Jun.
1895 098 0.56 0.54 1.51

1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933

2.4
-1.01
-0.44
121
-1.42
-2.53
3.16
2.01
1.34
0.8

1
1.64
2.84
1.95
-1.73
-0.16
-1.28
-1.07
-0.54
1.48
-1.36
-1.01
1.84
-0.6
-2.06
2.1
-2.41
-0.7
-1.11
2.69
-2.91
-2.26
0.73
0.96
1.6
-5.66
3.17
-1.48

-1.68
1.09
-1.22
2.31
-0.66
-2.97
3.69
2.52
1.21
1.15
0.63
1.33
3.02
1.68
-1.54
-0.58
-1
-1.36
-0.21
1.35
-1
-1.08
0.7
-0.7
-1.17
1.77
-1.64
-0.63
-1.05
1.62
-2.37
-2.11
-0.59
1.5
-1.07
-5.81
-3.54
-1.58

-1.04
0.78
-1.31
3.03
0.77
-2.55
293
3.04
0.77
-0.55
1.23
0.63
2.14
1.62
-2.04
0
1.84
-0.84
-0.21
0.62
-1.35
0.66
-1.01
-0.58
-1.05
-1.16
-1
0.75
0.62
0.72
-2.39
-2.81
-0.99
1.15
-1.66
-5.06
-2.68
-2.05

-1.77
-0.51
-0.95
2.35
0.57
-1.05
2.36
3.16
-0.96
-0.62
0.59
1.1
1.6
1.52
-1.51
0.49
1.55
-0.87
-0.31
-1.42
-1.49
0.47
1.23
-0.59
0.99
-1.34
-1.34
0.92
0.95
-1.74
-2.56
-1.86
0.83
1.14
-1.86
-4.34
-2.54
-1.39

Jul.

1.82 146 1.42

-1.65
-0.14
0.55
1.91
0.09
2.03
1.55
2.17
-1.25
0.15
-1.02
1.36
1.87
1.65
-1.27
-1.17
1.72
0.46
-1.18
-1.03
-1.36
0.2
0.79
0.64
0.41
0.69
-1.12
-0.43
1.88
-1.97
-3
-1.98
0.67
1.26
-2.36
-3.18
-2.28
-1.11

-1.19
-0.47
-0.57
1.22
0.64
1.83
1.4
2.85
-0.7
0.19
0.57
233
1.8
2.26
1.47
-1.49
1.8
0.32
-1.53
0.79
1.1
0.53
0.73
0.67
0.94
-0.63
1.09
-1.06
2.1
-2.52
-3.1
-1.63
1.05
1.98
-2.27
-2.88
-2.36
-1.81

0.9
-0.15
-0.45
0.98
-0.68
221
0.61
2.54
0.87
1.54
1.49
1.76
221
1.58
1.17
-2.31
1.34
0.02
-1.75
0.45
2.17
1.43
0.62
221
1.27
-0.8
2.03
-0.73
1.82
-2.98
-2.77
-1.28
0.78
1.59
-3.26
-2.67
-2.69
-1.51

Aug.
0.65
0.4
-0.51
-0.32
0.81
-1.68
3.14
-1.93
2.73
0.75
191
3.16
1.64
3.02
1.49
1.21
-1.58
0.6
0.03
-2.14
1.15
1.59
1.05
-0.33
1.9
2.25
-1.48
2.09
-0.83
1.69
-3.22
-2.49
-0.83
22
1.1
-3.96
-1.64
-3.7
1.94

Sep.
-1.73
0.82
-1.2
-0.47
0.7
-1.95
3.21
-1.21
231
0.86
1.66
2.53
2.02
2.75
1.15
0.75
-2.09
1.05
0.17
-2.32
0.66
1.38
1.48
0.32
1.08
2.15
-2.02
1.42
-0.73
3.19
-3.86
-2.69
-1.26
3.8
1.26
-4.51
-1.6
-4.14
1.18

Oct.
-1.93
-0.4
-0.55
0.74
0.78
-2.45
2.79
1.31
2.54
0.7
1.06
3.41
1.6
3.06
0.63
0.98
-2.11
-0.71
0.36
-2.39
0.72
0.99
2.19
-0.64
-1.46
1.38
-2.57
1.3
-0.95
2.61
-3.78
-2.81
-0.58
2.84
225
-4.87
-1.95
-3.02
-1.74

Nov.
-2.07
-0.17
0.69
1.06
-1.07
-2.4
2.47
1.57
2.14
0.69
-0.98

2.49
2.53
-1.66
0.7
-1.49
-0.92
-0.36
-2.38
-0.76
-0.98
1.59
-1.16
-1.73
2.07
-2.56
-1.09
-1.05
2.17
-3.63
-2.16
0.67
2.04
2.21
-5.14
-2.94
-2.41
-2.13

Dec.
23
-0.7
0.77
1.16
-1.52
-2.52
3.68
1.97
1.75
1.01
0.85
2.82
2.78
2.64
-1.85
0.72
-1.19
-0.95
-0.52
-1.55
-0.62
-0.99
1.2
-0.95
-2.03
2.26

-0.89
-1.55
2.08
-3.68
-1.6
1.35
1.26
1.78
-5.19
-3.66
-1.68
-2.62
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1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

-3.16
1.77
4.1
2.46
2.54
2.05
0.81
-0.84
-5.63
-1.33
-1.77
-1.42
3.06
-0.61
-0.89
2.03
-1.19
-1.38
1.68
-1.4
-1.54
43
0.93
1.61
2.87
2.65
0.89
1.74
2.75
1.98
0.92
0.96
-4.91
-2.99
-0.86
-2.41
1.05
-2.48
-0.98
2.74
-0.77
0.77

-2.13
1.33
4.15
1.96
1.64
2.55

-0.91

-1.26

-5.69

-1.55

-0.84

-0.93
2.55

-1.27

-0.94
1.85

-1.84

-1.85
1.81
-14

-2.17

-3.85
1.26

2
2.89
1.77
1.22
241
2.54
1.79

1.6

-0.85

-4.21

-2.48

-1.67

-2.19
0.97

-1.87
0.65

-1.14
0.84
3.89
1.33
1.28
2.36

-1.18
-1.5

-4.34

-1.42

1.9
-2.3
1.44

-1.41

-1.12
1.12

-1.73

-1.82

21

-1.27

-1.92

-3.57
0.96
2.15
3.68
1.53
1.09
231
2.64
1.94
0.95

-0.64

-4.63

-2.82

-1.27

-1.55
1.19

-1.71

03

-1.42
1.63
3.81

24
1.18
241
0.85

-1.45

-5.05

-1.36
1.96
2.5
1.27

-1.59
0.75
0.56

-1.98

-1.78
1.95
-0.9
-2.2

-3.63
0.99
1.34
3.79
1.96

-0.56
2.02
2.82
0.66
1.02

-0.73

-4.48

-3.41

-1.42
-1.7
1.28

-1.83
031

26 236 253
-0.84 0.74 0.17
09 251 248

1.89
1.62
233
2.12
1.38
1.24
-0.04
-2.29
5.5
-1.05
-1.21
-2.06
2.48
-1.8
1.84
1.04
-1.72
-1.92
1.55
-1.11
-1.25
-3.86
0.73
0.55
4.32
0.89
0.88
3.05
2.02
-1.23
-1.06
-1.82
-3.51
-2.85
-1.32
-2.02
-0.62
1.17
1.13
234
0.17
2

1.3
14
2.01
222
2.73
1.13
-0.83
-2.24
-5.45
-1.37
-2.29
-1.33
2.43
-1.36
1.54
0.74
-2.23
-1.1
-1.05
-1.13
-2.26
-3.12
-0.87
-1.36
4.58
-2.02
0.48
3.61
2.43
1.56
-1.44
-1.39
-3.12
-3.1
-1.24
-2.08
-0.92
-0.94
242
235
0.33
1.35

1.82
1.83
1.36
2.36
3.76
1.86
-1.01
-1.95
-5.34
-1.46
-2.58
3.68
224
-1.47
1.01
0.59
-1
-1.32
-1.8
-2.14
-2.49
-35
0.8
-2.4
3.86
-0.72
1.1
2.58
2.54
-1
-1.61
-0.75
-3.36
-2.82
-1.31
-1.35
-0.59
-1.37
221
1.48
0.01
2.39

1.6
2.04
-2.05
2.68
2.47
2.59
0.72
-2.43
-3.66
-2.41
-2.68

2.38
-2.23
1.51
1.53
-0.86
-1.22
-1.71
-1.59
-2.63
-1.43
0.56
-1.88
5.05
-1.52
1.46
2.13
1.93
-1.74
-1.39
-1.41
-3.38
-1.54
-1.9
1.29
-1.38
-1.06
1.36
1.68
0.29
1.47

2.93
3.43
-2.27
2.55
3.44
1.43
0.36
-3.38
-2.93
-2.22
-1.88
3.19
2.12
-1.75
1.22
1.41
1.24
-1.89
-2.08
-1.35
-3.19
2.66
0.71
-1.52
3.81
-1.65
2.62
1.23
1.88
1.17
1.03
1.99
2.69
1.59
24
1.21
2.05
-1.24
1.78
0.87
0.6
3.43

209 212 1.6l
2.76 297 267

-2.35
3.23
3.02
1.92
0.15

-4.23

-1.26

-1.59

-1.77
2.66
1.72

-2.17
1.17
1.11
0.82

-2.03

-2.24

-1.93

-3.42
243
1.84

-0.59

4.02

1.02

2.82

1.94

1.32

-2

1.89

2.56

-2.57

1.92

-2.49

0.85

2.69

1.57

2.38

-1.2

-0.4

3.48

-2.95
3.93
2.88
2.01
0.98

-5.07

-1.58

-1.79

-1.19
2.63
1.27

-1.19

24
1.22

-0.54

-0.93

-1.38

-2.17

-3.69
2.23
1.85
2.17
3.53

1.5
2.1
1.42
2.37

-1.13
1.45

-3.64

-3.05

-2

-2.32
0.73

-2.57
1.55

3.5
-1.88
-1.01

3.1

-2.29
3.04
2.36
1.25
-0.55
-5.48
-1.09
-2.16
-1.19
3.88
-1.01
-1.37
2.92
0.69
-0.6
-0.62
-1.07
-2.38
-3.8
1.53
1.64
2.96
3.74
1.22
1.84
2.19
2.39
-0.92
1.53
-5.01
-2.98
-0.79
-2.39
1.68
-2.76
0.61
34
-0.94
-0.8
3.05
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1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

3.05
1.46
3.61
2.48
4.77
-3.76
-0.76
1.36
2
-2.88
1.29
-1.07
-1.88
-2.15

1.79
0.83
241
3.16
3.84
-3.49
1.71
1.78
2.02
-2.31
0.85
-1.15
-1.54
-1.18

1990 3.46 2.78

0.95
-0.66
341
2.94
4.09
-3.73
1.6
23
333
-2.75
-2
-1.41
-1.85
2.21
233

-2.44
-1.13
3.48
3.17
3.74
-3.6
1.46
3.55
3.81
-3.83
-2.51
1.86
-1.65
291
2.01

-2.11
-0.95
4.16
4.08
3.29
-2.77
0.99
3.37
4.12
-3.73
-2.89
1.26
-0.8
2.97
3.06

-2.12
-1.44
3.96
3.99
1.78
-2.67
1.27
3.02
2.97
-3.46
-3.77
1.3
-0.92
3.26
1.78

-2.39
-2.13
3.45
3.84
0.68
-2.39
1.54
1.3
321
-3.25
-4.19
-1.66
-1.24
3.22
1.13

-2.71
-2.66
3.04
3.47
-3.05
22
2.03
-2.34
2.12
-2.95
-3.03
-2.39
-1.57
3.69
1.85

-1.88
-3.13
1.95
5.62
-3.87
-2.12
1.72
-2.04
1.25
-1.77
-3.74
-2.04
-1.82
3.87
1.22

1.7 16
-1.9 -0.94
1.09 1.29
5.23 5.98
29 -27
-1.79 -2.24

1.7 2.05
-1.66 -0.79
-2.36 -2.45
-0.92 2.65
-3.96 -4.14
-2.2 -2.03
-1.64 -1.03
3.96 4.25
1.18 0.59

1.66
2.32
1.27
4.79
-2.97
-1.33
2.16
1.94
-3.17
1.71
-3.28
-1.96
-1.74
3.9
-1.01
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(g2) Z Index Data, Tidewater Region, Virginia, 1895-1990 (Monthly)
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Year
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929

2.93
-0.99
-1.13
-1.32
0.52
-0.18
-0.8
-0.42
0.73
-0.71
-0.32
0.71
-2.68
1.05
-1.25
-0.18
-0.31
-0.64
-0.67
-0.2
2.86
-2.41
-0.35
23
0.76
-0.73
0.2
0.85
0.3

0.84

2.46

1.18
-2.47
-1.47

-0.95
1.42
3.28

-2.47
3.65
1.83

-2.11
2.56
2.13
0.04
1.29

-0.81

-0.42
1.42

-0.19
0.02
-1.3
0.45

-1.21
0.81
0.05
0.65

-0.54

-2.85

-0.49
2.03

-0.33
1.58

-0.02

-0.17

-2.36
0.72

-0.27

-0.46

0.13 3.06 1.41-0.51 031

1.4 -2.53 -0.19 089 1.9
-0.61 -0.98 0.95 -1.05 0.83
-0.64 0.66 1.07-1.72 0.2
2.89 -1.11 -0.59 -1.47 -0.35
0.66 -0.36 -1.24 1.68 -2.04
034 3.72 2.47 0.04 1.7
-1.14 -0.8 -1.71 0.01-1.94
234 13 -2 2.71-0.03
-0.95 -0.98 -1.17 1.26 1.47
-1.65 -0.38 0.46 0.17 4.1
2.01 -1.56 -1.01 1.71 2.93
-1.69 1.61 1.12 3.33-0.99
-1.73 -0.96 131 037 1.78
034 0.2 0.86 2.34-1.33
-1.96 0.97 0.23 3.42-0.44
0.01 1.45-3.51-1.31-2.92
4.54 -0.31 0.99 0.76 -0.81
1.14 -0.35 0.77 -0.26 -0.82
-0.08 -0.35 -2.7-1.42-1.12
-1.77 -2.67 0.73 1.72-0.77
-1.33 -0.85 -0.07 3.29 3.55
1.99 -0.38 -0.67 1.06 2.86
-0.48 3.7 -0.95 0.07-0.12
0.14 -0.21 1.69 03 4.83

0 133-142 1.71 1.28
-3.17 -0.91 2.07 -1.89 -0.7

1.4 -133 0.26 1.58 3.15
1.85 0.73 -1.28 -2.05 0.69
1.33 1.17 3.09 1.26-0.21
-2.22 -1.32 -1.23 -2.26 -2.14
-0.78 -1.27 -2.09 -1.24 0.03
-2.75 2 -0.95 0.44 0.54
-1.37 249 -022 136 -0.5

-0.52 193 -0.57 031 0.72 2.53-0.54

-1.87 -3.4-1.12-1.02-1.34
-1.24 1.39-1.21 0.58-1.65
-1.13-2.23 1.56 0.67 0.45
0.23-0.55 2.23 1.18 0.62
-0.21-0.07 0.44-1.49-1.68
-3.21-1.33 -2.1-0.62 -1.1
3.46 1.18 -0.26-0.11 4.41
-1.65 1.58 2.52 1.19 1.68
1.36-0.41 1.38-0.41-0.49
-0.08 0.57 -0.22 0.19 1.17
1.57-0.14 -1.28-1.66 2.55
5.49-0.93 3.41-0.17 0.41
0.18 1.63 -0.63 3.16 1.64
3.12 0.15 1.77-0.66 1.11
0.21-0.57 -1.19-2.75 -1.09
0.47 -1 0.92-0.52 0.28
1.46-2.01 -0.71 1.21 0.43
-1.81 1.55 -1.49-0.86 -0.35
0.03 0.42 0.64-1.07-0.61
-1.73-1.19 -0.93-0.71 1.77
2.22-1.09 0.37-1.16 0.16
-1.05-0.15 -0.73 -1.4-0.35
-0.69 1.61 2.59-1.13-0.68
-0.24 0.97 -1.93-1.74 0.27
-0.26-1.87 -2.51-1.25-1.43
3.33 0.4-1.66 2.51 1.21
-2.27-2.07 -2.28-0.77 -2.13
0.81-1.35 0.07-2.24 0.26
-0.55 0.05 -0.89-0.58 -1.83
0.17 5.03 -0.75-0.52 0.41
-1.64-2.92 -0.95-0.71 -1.29
-0.02-1.37 -12 1.1 1.02
0.96-1.56 1.65 0.04 2.27
451 548 -1.7-1.52-1.71
-0.99 0.82 3.38 0.55-0.59
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1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967

0.01
-3.02
0.33
0.07
-2.45
0.97
5.11
6.41
-0.57
-0.2
-0.95
-1.05
-2.14
-1.07
0.51
-1.05
-1.25
0.88
1.03
-1.79
-2.48
-2.54
2.32
-1.32
1.79
-2.67
-1.32
0.4
0.63
-2.12
-0.63
0.27
2.38
-0.51
0.9
-1.22

-1.24 0.58 -2.55 -0.98 1.52 0.08

-0.97

-2.75
-2.21
-2.11
-0.74
2.13
-0.77
1.44
-0.76
-1.89
2.14
-0.55
-1.52
-1.94
-1.07
2.25
1.03
-0.58
-2.16
-0.43
0.1
-2.34
-1.85
0.88
-0.43
-2.39
0.03
1.27
1.68
0.96
-1.82
1.28
2.53
0.22
0.07
2.34
-1.45

0.62

-2.1 -1.11 -2.08 -0.46 -3.65
0.47 0.59 2.13 -0.06 -0.27
1.5 -0.4 -0.03 -0.92-1.74
-19 135 04-245 0.36
2.31 -1.21 3.34-1.17 1.95
-1.07 2.63 0.49 -0.18 1.73
0.48 0.98 -3.26 -0.24 -1.34
-1.28 3.63 -0.1 096 1.11
-0.59 0.1 0.96 4.49 391
0.2 0.88 -2.76 0.07 2.55
-1.07 2.56 -0.13 -2.38 -0.8
-1.12 -0.3 -2.98 -0.54 0.15
2.3 -3.49 -2.91 -1.55-1.36
-0.08 -0.25 0.49 -1.29-0.68
3.28 0.75 -3.63 -3.62-1.58
-441 -1.31 0.54 1.57 9.21
-2.55 -0.07 4.04 0.59 0.19
-0.82 -0.98 -1.12 0.79-0.77
-0.83 1.86 3.5-0.32-1.12
-1.63 -1.32 1.59 -0.57-0.24
-0.24 -1.28 0.17 -2.06 2.98
-0.47 -0.46 -0.94 1.84-0.98
1.45 021 -0.6 -2.6-2.58
-0.03 0.72 -0.92 -0.41 -3.37
0.08 -143 2.16 -3.4-141
-0.34 -13 -1.82 1.03-2.09
-0.52 0.4 -0.46 -1.45 2.41
1.08 -1.78 -1.95 -0.89 -3.55
326 146 2.77 2.1-0.72
-0.18 1.75 -2.6 -2.59 3.26
-0.01 -1.66 2.65-0.93 2.01
0.43 -0.15 3.72 2.63-1.97
1.07 1.38 -1.55 1.88 1.06
1-325-0.78 4.68 -3
-1.46 0.5 -2.47 -1.45-0.95
0.35 -0.47 -3.48 0.73 1.48
-1.7
-1.8 -2.62 0.63 -1.63 -0.14

-3.11-2.88 -2.47-2.33 -1.72
2.26-0.38 -1.53-3.58 -3.05
-3.85-2.48 2.09 09 1.44
5.49-1.66 -1.95-1.72 -2.12
-0.1 4.5-1.63 0.74-0.86
1.19 48-094 149 O
-2.39-1.31 -0.95-2.53 1.09
1.68 0.45 2.82 3.08-1.45
-2.7 3.66 -0.18 0.51-0.67
2.77 -2.7 1.92 0.87-1.65
2.17-0.87 -0.52 2.53 -1.64
-2.02-3.61 -3.59-3.82-2.79
3.39 1.07 4.12-1.35 0.97
-3.32-0.17 1.2-1.09-1.67
-1.09 1.57 -0.23 1.17-0.37
-0.9 1.49 -0.62 0.73 4.56
1.13-0.05 -0.55 -0.8-1.83
-2.71 0.73 -1.79 2.27 -0.9
1.83 -0.4 0.22 4.05 231
3.02 0.12-0.48 0.68 -1.2
0.12 1.22 -0.89-0.82-0.34
-0.12-2.37 -1.02 2.66 0.66
-0.3-1.64 -1.11 1.87 0.5
0.99 0.23 -2.17-1.32-1.28
-1.17-2.51 -1.67-1.88 -1.47
5.11 3.39 0.14 0.16-1.42
-0.49 0.64 3.6 0.59-0.05
0.83 05 23 343 3.06
4.75-2.17 1.82-0.22 1.72
-2.62-0.87 3.06 1.75-0.37

14 393 141-1.29-0.11
-0.55-2.06 2.53-0.97 2.74
-1.02 0.43 -1.1 3.57 0.78
-2.52 1.18 -2.86 1.98 0.29
0.17 2.95 2.89-0.75 0.69
-2.2-2.18 -2.33-4.01-5.26
-1.09 1.04 -0.46-2.25-0.72
2.98-0.63 -1.49-0.81 3.01
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1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

-0.45
-0.8
-1.39
-0.01
-0.83
-0.94
0.2
2.04
0.96
-0.09
4.57
4.04
1.42
-3.27
1.29
-1.71
0.77
-0.09
-0.75
5.6
-0.35
-1.75
-0.12

-2.72
-0.08
0.09
1.05
1.94
0.42
-0.45
0.64
-2.84
-1.42
-2.49
2.8
-1.31
-0.36
234
1.68
0.69
0.8
-0.91
-0.55
0.45
2.22

0.69 -0.83 -0.15 -0.15 -0.59
1.25 -0.93 -1.48 -0.82 1.57
0.97 0.65-1.85 -1.1 0.72
-0.09 -0.88 3.51 -1.96-1.58
-0.84 0.13 2.54 422 0.13
0.09 1.23 0.21 0.76 -1.89
0.85 -1.5 0.08 0.53-0.86
5.11 0.67 -0.68 -1.32 3.52
-1.99 -3.25 0.23 -0.68 -1.45
-0.64 -1.62 0.2-1.77 -2.5
3.76 1.27 3.1 0.69-0.31
0.32 1.59 3.72 0.98 0.79
1.92 0.23 -0.2-3.52-2.73
-1.81 -0.74 1.37 -0.57 0.01
0.2 0.07-097 1.16 1.2
2.12 446 0.55-0.02 -4.2
454 248 2.1-2.17 1.63
-2.02 -4.1 -0.87 -0.36-0.43
-3.14 -2.13 -1.93 -3.54 -2.41
-1.13 2.16 -1.22 0.51 -3.3
-1.41 0.02 2.05-0.62-1.25
463 278 1.08 1.8 0.89

-2.19-2.08 -1.01-0.25 -0.95
245 0.16 -0.71-0.09 3.09
-2.58-2.43 -2.54-0.48 -1.36
0.51-0.86 4.7 0.45-2.34
-1.88 1.7 2.35 4.09 0.79
1.06-1.91 -1.37-2.41 2.24
0.84 1.01 -1.21-1.94 0.31
-2.01 6.32 1.22-0.08 0.81
-1.7 1.63 3.64 0.21 0.68
<227 2.2 2,72 2.28 2.72
-0.16-2.32 -1.99 0.94 0.34
0.06 7.52 0.58 3.86-1.71
-3.73 -3.4 1.71-0.29 -1.65
-0.15-0.44 0.32 -1.9 2.05
1.95 -0.3 0.47 1.58 0.95
-3.23 0.16 0.53 2.08 3.42
-2.29-1.95-3.25 -1-2.94
-0.1 2.62 1.99 4.07 -2
2.18-3.07 -1.81-1.76 1.3
-2.69 0.29 -1.11-0.18 -0.41
-1.38-1.24 0 13-2.44
2.4 1.67 1.48 2.09 0.27

-0.99 -0.47 -0.26 3.8-291 -14 252-133 0.25-1.38-0.32
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0.7500
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.8333
0.2500
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.1429
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.5714
0.0000
0.0000
0.0000
0.0000
0.0000

0.2500
0.3333
0.0833
0.0000
0.0000
0.0000
0.0000

0.1667
0.5000
0.2500
0.0000
0.0000
0.0000
0.0000

0.0000
0.7143
0.1250
0.0000
0.0000
0.0000
0.0000

0.0000
0.4286
0.2381
0.0000
0.0000
0.0000
0.0000

January - February
0.0000 0.0000 0.0000
0.6667 0.0000 0.0000
0.7500 0.1667 0.0000
0.1190 0.7381 0.1429
0.0000 0.1429 0.8571
0.0000 0.1111 0.0000
0.0000 0.0000 0.0000

February - March
0.0000 0.0000 0.0000
0.2500 0.0000 0.0000
0.6875 0.0625 0.0000
0.1081 0.7838 0.1081
0.0000 0.1250 0.7917
0.0000 0.0000 0.1250
0.0000 0.0000 0.3333

March - April
0.0000 0.0000 0.0000
0.1429 0.0000 0.0000
0.8750 0.0000 0.0000
0.1818 0.6667 0.1515
0.0000 0.0800 0.8400
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

April - May
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.7143 0.0476 0.0000
0.0000 0.8333 0.1667
0.0000 0.0000 0.7692
0.0000 0.0000 0.1250
0.0000 0.0000 0.0000

APPENDIX IV

0.0000
0.0000
0.0000
0.0000
0.0000
0.7778
0.3333

0.0000
0.0000
0.0000
0.0000
0.0833
0.7500
0.0000

0.0000
0.0000
0.0000
0.0000
0.0800
0.7500
0.0000

0.0000
0.0000
0.0000
0.0000
0.2308
0.8750
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.1111
0.6667

0.0000
0.0000
0.0000
0.0000
0.0000
0.1250
0.6667

0.0000
0.0000
0.0000
0.0000
0.0000
0.2500
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
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1.0000
0.5000
0.0000
0.0000
0.0000
0.0000
0.0000

0.6667
0.2000
0.0000
0.0000
0.0000
0.0000
0.0000

0.6364
0.4444
0.0000
0.0000
0.0000
0.0000
0.0000

0.7273
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.8000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.5000
0.0667
0.0000
0.0000
0.0000
0.0000

0.2667
0.4000
0.2308
0.0000
0.0000
0.0000
0.0000

0.0909
0.1111
0.0000
0.0000
0.0000
0.0000
0.0000

0.2727
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1000
0.0000
0.1000
0.0000
0.0000
0.0000
0.0000

May - June

0.0000
0.0000
0.8000
0.0476
0.0000
0.0000
0.0000

0.0000
0.0000
0.1333
0.8571
0.0800
0.0000
0.0000

June - July

0.0000
0.0000
0.3077
0.0909
0.0000
0.0000
0.0000

0.0667
0.4000
0.4615
0.8636
0.2381
0.0588
0.0000

July - August

0.0000
0.3333
0.6667
0.1176
0.0000
0.0556
0.1429

0.2727
0.1111
0.3333
0.7941
0.0769
0.2778
0.0000

0.0000
0.0000
0.0000
0.0952
0.7600
0.0000
0.0000

0.0000
0.0000
0.0000
0.0455
0.4762
0.1176
0.0000

0.0000
0.0000
0.0000
0.0882
0.7692
0.2778
0.0000

August - September

0.0000
0.0000
0.4615
0.1026
0.0000
0.0000
0.0000

0.0000
0.0000
0.5385
0.7949
0.1111
0.0000
0.0000

0.0000
0.0000
0.0000
0.1026
0.7222
0.3333
0.0000

September - October

0.0000
1.0000
0.7000
0.0750
0.0000
0.1111
0.0000

0.1000
0.0000
0.2000
0.8500
0.1000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0750
0.8500
0.2222
0.0000

0.0000
0.0000
0.0000
0.0000
0.1600
1.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.2857
0.7059
0.0000

0.0000
0.0000
0.0000
0.0000
0.1538
0.3333
0.1429

0.0000
0.0000
0.0000
0.0000
0.1667
0.5556
0.1667

0.0000
0.0000
0.0000
0.0000
0.0500
0.5556
0.1667

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.1176
1.0000

- 0.0000

0.0000
0.0000
0.0000
0.0000
0.0556
0.7143

0.0000
0.0000
0.0000
0.0000
0.0000
0.1111
0.8333

0.0000
0.0000
0.0000
0.0000
0.0000
0.1111
0.8333
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0.6250
0.5000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.2500
0.0000
0.0000
0.0000
0.0000
0.0000

0.8571
0.4000
0.0000
0.0000
0.0000
0.0000
0.0000

0.3750
0.0000
0.0714
0.0000
0.0000
0.0000
0.0000

0.0000
0.7500
0.2222
0.0000
0.0000
0.0000
0.0000

0.0000
0.4000
0.0000
0.0256
0.0000
0.0000
0.0000

October - November

0.0000
0.5000
0.4286
0.0513
0.0000
0.0000
0.0000

0.0000
0.0000
0.5000
0.8974
0.2273
0.0000
0.0000

0.0000
0.0000
0.0000
0.0513
0.6818
0.2857
0.0000

November - December

0.0000
0.0000
0.6667
0.1277
0.0000
0.0000
0.0000

0.0000
0.0000
0.1111
0.8085
0.0526
0.0000
0.0000

0.0000
0.0000
0.0000
0.0638
0.9474
0.2857
0.0000

December - January

0.0000
0.2000
0.7500
0.0256
0.0000
0.0000
0.0000

0.1429
0.0000
0.2500
0.7949
0.3043
0.0000
0.0000

0.0000
0.0000
0.0000
0.1538
0.6522
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0909
0.7143
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.7143
0.1667

0.0000
0.0000
0.0000
0.0000
0.0435
1.0000
0.4000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.8333

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.6000
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0.7500
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.8333
0.2500
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.1429
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.5714
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.5000
0.0000
0.0000
0.0000
0.0000
0.0000

0.2500
0.2500
0.0769
0.0000
0.0000
0.0000
0.0000

0.1667
0.5000
0.2222
0.0000
0.0000
0.0000
0.0000

0.0000
0.7143
0.1111
0.0000
0.0000
0.0000
0.0000

0.0000
0.4286
0.2273
0.0000
0.0000
0.0000
0.0000

0.0000
0.5000
0.0625
0.0000
0.0000
0.0000
0.0000

January - February
0.0000 0.0000 0.0000
0.7500 0.0000 0.0000
0.8462 0.0769 0.0000
0.0789 0.7632 0.1579
0.0435 0.1739 0.7826
0.0000 0.0000 0.1111
0.0000 0.0000 0.0000

February - March
0.0000 0.0000 0.0000
0.2500 0.0000 0.0000
0.6667 0.1111 0.0000
0.1176 0.7353 0.1471
0.0400 0.1200 0.7600
0.0000 0.0000 0.1250
0.0000 0.0000 0.3333

March - April
0.0000 0.0000 0.0000
0.1429 0.0000 0.0000
0.8333 0.0556 0.0000
0.1667 0.6667 0.1667
0.0385 0.0769 0.8077
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

April - May
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.7273 0.0455 0.0000
0.0000 0.8261 0.1739
0.0000 0.0000 0.7692
0.0000 0.0000 0.1250
0.0000 0.0000 0.0000

May - June
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.8125 0.1250 0.0000
0.0500 0.8500 0.1000
0.0000 0.0000 0.8400
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.7778
0.3333

0.0000
0.0000
0.0000
0.0000
0.0800
0.7500
0.0000

0.0000
0.0000
0.0000
0.0000
0.0769
0.7500
0.0000

0.0000
0.0000
0.0000
0.0000
0.2308
0.8750
0.0000

0.0000
0.0000
0.0000
0.0000
0.1600
1.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.1111
0.6667

0.0000
0.0000
0.0000
0.0000
0.0000
0.1250
0.6667

0.0000
0.0000
0.0000
0.0000
0.0000
0.2500
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

235



0.7333
0.2000
0.0000
0.0000
0.0000
0.0000
0.0000

0.5833
0.4444
0.0000
0.0000
0.0000
0.0000
0.0000

0.7273
0.3333
0.0000
0.0000
0.0000
0.0000
0.0000

0.8000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.6250
0.3333
0.0000
0.0000
0.0000
0.0000
0.0000

0.2667
0.4000
0.2143
0.0000
0.0000
0.0000
0.0000

0.4167
0.1111
0.0000
0.0000
0.0000
0.0000
0.0000

0.2727
0.1667
0.0000
0.0000
0.0000
0.0000
0.0000

0.2000
0.0000
0.0526
0.0000
0.0000
0.0000
0.0000

0.3750
0.3333
0.0526
0.0000
0.0000
0.0000
0.0000

June - July

0.0000
0.4000
0.6429
0.1053
0.0000
0.0000
0.0000

0.0000
0.0000
0.1429
0.8421
0.2609
0.0000
0.0000

July - August

0.0000
0.4444
0.5385
0.1250
0.0000
0.0000
0.0000

0.0000
0.0000
0.4615
0.7500
0.2000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0526
0.4783
0.1765
0.0000

0.0000
0.0000
0.0000
0.1250
0.6667
0.5556
0.1429

August - September

0.0000
0.5000
0.7143
0.2222
0.0000
0.0000
0.0000

0.0000
0.0000
0.2857
0.5556
0.1250
0.0000
0.0000

0.0000
0.0000
0.0000
0.2222
0.7500
0.4000
0.0000

September - October

0.0000
1.0000
0.6316
0.1364
0.0000
0.0000
0.0000

0.0000
0.0000
0.3158
0.7727
0.1786
0.1111
0.0000

0.0000
0.0000
0.0000
0.0909
0.7857
0.2222
0.0000

October - November

0.0000
0.3333
0.5789
0.1034
0.0000
0.0000
0.0000

0.0000
0.0000
0.3684
0.8621
0.1923
0.0000
0.0000

0.0000
0.0000
0.0000
0.0345
0.7308
0.2857
0.0000

0.0000
0.0000
0.0000
0.0000
0.2609
0.7059
0.0000

0.0000
0.0000
0.0000
0.0000
0.1333
0.3889
0.1429

0.0000
0.0000
0.0000
0.0000
0.1250
0.5000
0.1667

0.0000
0.0000
0.0000
0.0000
0.0357
0.5556
0.1667

0.0000
0.0000
0.0000
0.0000
0.0769
0.7143
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.1176
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0556
0.7143

0.0000
0.0000
0.0000
0.0000
0.0000
0.1000
0.8333

0.0000
0.0000
0.0000
0.0000
0.0000
0.1111
0.8333

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
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1.0000
0.2000
0.0000
0.0000
0.0000
0.0000
0.0000

0.8571
0.4000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.6000
0.1333
0.0000
0.0000
0.0000
0.0000

0.1429
0.4000
0.0000
0.0278
0.0000
0.0000
0.0000

November - December

0.0000
0.2000
0.4667
0.1622
0.0000
0.0000
0.0000

0.0000
0.0000
0.4000
0.7838
0.0909
0.0000
0.0000

0.0000
0.0000
0.0000
0.0541
0.9091
0.2857
0.0000

December - January

0.0000
0.2000
0.7143
0.0278
0.0000
0.0000
0.0000

0.0000
0.0000
0.2857
0.8056
0.2083
0.0000
0.0000

0.0000
0.0000
0.0000
0.1389
0.7500
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.7143
0.1667

0.0000
0.0000
0.0000
0.0000
0.0417
1.0000
0.4000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.8333

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.6000
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0.7500
0.2500
0.0000
0.0000
0.0000
0.0000
0.0000

0.5000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.5000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.1333
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.2500
0.0000
0.0000
0.0000
0.0000
0.0000

0.2500
1.0000
0.1818
0.0250
0.0000
0.0000
0.0000

0.0000
0.5714
0.1538
0.0233
0.0000
0.0000
0.0000

0.0000
0.5714
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.7500
0.0667
0.0000
0.0000
0.0000
0.0000

January - February
0.0000 0.2500 0.0000
0.5000 0.0000 0.0000
0.6000 0.4000 0.0000
0.2692 0.5769 0.1538
0.0000 0.1905 0.5714
0.0000 0.2500 0.0000
0.0000 0.0000 0.0000

February - March
0.0000 0.2500 0.0000
0.0000 0.0000 0.0000
0.5000 0.3182 0.0000
0.0500 0.7250 0.2000
0.0000 0.1000 0.8000
0.0000 0.5000 0.0000
0.0000 0.0000 0.3333

March - April
0.0000 0.5000 0.0000
0.1429 0.2857 0.0000
0.5385 0.3077 0.0000
0.1628 0.6977 0.1163
0.0000 0.3200 0.5600
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

April - May
0.0000 0.0000 0.0000
0.2857 0.1429 0.0000
0.6667 0.2000 0.0000
0.0667 0.9111 0.0222
0.0000 0.2632 0.6842
0.0000 0.0000 0.2500
0.0000 0.0000 0.0000

May - June
0.0000 0.0000 0.0000
0.2500 0.0000 0.0000
0.9333 0.0000 0.0000
0.0800 0.8600 0.0600
0.0000 0.0000 0.8125
0.0000 0.0000 0.1667
0.0000 0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.2381
0.7500
0.0000

0.0000
0.0000
0.0000
0.0000
0.1000
0.5000
0.3333

0.0000
0.0000
0.0000
0.0000
0.1200
0.7143
0.0000

0.0000
0.0000
0.0000
0.0000
0.0526
0.5000
0.3333

0.0000
0.0000
0.0000
0.0000
0.1875
0.8333
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.3333

0.0000
0.0000
0.0000
0.0000
0.0000
0.2857
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.2500
0.6667

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
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1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.5000
0.0000
0.0000
0.0000
0.0000
0.0000

0.5000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
1.0000
0.0526
0.0000
0.0000
0.0000
0.0000

0.0000
0.4000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.5000
0.1176
0.0000
0.0000
0.0000
0.0000

0.5000
0.3333
0.0769
0.0000
0.0000
0.0000
0.0000

0.0000
0.2500
0.0000
0.0000
0.0000
0.0000
0.0000

June - July

0.0000
0.0000
0.8421
0.0698
0.0000
0.0000
0.0000

0.0000
0.0000
0.1053
0.8605
0.0000
0.0000
0.0000

July - August

0.0000
0.2000
0.7895
0.0256
0.0000
0.0000
0.0000

0.0000
0.4000
0.2105
0.9744
0.0500
0.0000
0.0000

0.0000
0.0000
0.0000
0.0698
0.9412
0.1250
0.0000

0.0000
0.0000
0.0000
0.0000
0.9500
0.2857
0.0000

August - September

0.0000
0.0000
0.5882
0.0667
0.0000
0.0000
0.0000

0.0000
0.0000
0.2941
0.8889
0.1905
0.1667
0.0000

0.0000
0.0000
0.0000
0.0444
0.7619
0.1667
0.2500

September - October

0.0000
0.0000
0.6923
0.0600
0.0000
0.0000
0.0000

0.0000
0.6667
0.2308
0.8800
0.4500
0.2000
0.3333

0.0000
0.0000
0.0000
0.0600
0.4500
0.2000
0.0000

October - November

0.0000
0.5000
0.3333
0.1500
0.0769
0.0000
0.0000

0.0000
0.2500
0.6667
0.7000
0.3077
0.4000
0.0000

0.0000
0.0000
0.0000
0.1500
0.5385
0.4000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0588
0.7500
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.7143
0.2000

0.0000
0.0000
0.0000
0.0000
0.0476
0.6667
0.0000

0.0000
0.0000
0.0000
0.0000
0.1000
0.6000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0769
0.2000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.1250
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.8000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.7500

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.6667

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
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1.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.6667
0.1429
0.1111
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.1429
0.1111
0.0408
0.0000
0.0000
0.0000

November - December

0.0000
0.0000
0.5000
0.1754
0.0000
0.0000
0.0000

0.0000
0.0000
0.5000
0.6316
0.2778
0.0000
0.5000

0.0000
0.0000
0.0000
0.1930
0.6111
0.0000
0.0000

December - January

0.0000
0.1429
0.2778
0.0816
0.0455
0.0000
0.0000

0.3333
0.1429
0.5000
0.7551
0.1818
0.0000
0.0000

0.0000
0.1429
0.0000
0.1224
0.6818
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.1111
1.0000
0.0000

0.0000
0.1429
0.0000
0.0000
0.0909
0.5000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.5000

0.0000
0.1429
0.0000
0.0000
0.0000
0.5000
1.0000
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1.0000
0.2500
0.0000
0.0000
0.0000
0.0000
0.0000

0.5000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.6667
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.1000
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.2500
0.0000
0.0000
0.0000
0.0000
0.0000

0.5000
1.0000
0.1154
0.0357
0.0000
0.0000
0.0000

0.3333
0.6250
0.1176
0.0645
0.0000
0.0000
0.0000

0.0000
0.5000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.8000
0.0417
0.0000
0.0000
0.0000
0.0000

January - February
0.0000 0.0000 0.0000
0.5000 0.0000 0.0000
0.6111 0.3889 0.0000
0.3333 0.4359 0.2308
0.0000 0.1304 0.6522
0.0000 0.1667 0.1667
0.0000 0.0000 0.0000

February - March
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.5769 0.3077 0.0000
0.0714 0.6429 0.2500
0.0000 0.2000 0.7200
0.0000 0.0000 0.4444
0.0000 0.0000 0.3333

March - April
0.0000 0.0000 0.0000
0.3750 0.0000 0.0000
0.6471 0.2353 0.0000
0.1613 0.6129 0.1613
0.0333 0.2333 0.6333
0.0000 0.0000 0.1250
0.0000 0.0000 0.0000

April - May
0.0000 0.0000 0.0000
0.5000 0.0000 0.0000
0.7500 0.1500 0.0000
0.1000 0.8333 0.0667
0.0400 0.3200 0.6000
0.0000 0.0000 0.2500
0.0000 0.0000 0.0000

May - June
0.0000 0.0000 0.0000
0.2000 0.0000 0.0000
0.8750 0.0833 0.0000
0.1111 0.8056 0.0833
0.0000 0.1053 0.7368
0.0000 0.0000 0.1667
0.0000 0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.2174
0.6667
0.0000

0.0000
0.0000
0.0000
0.0000
0.0800
0.5556
0.3333

0.0000
0.0000
0.0000
0.0000
0.1000
0.6250
0.0000

0.0000
0.0000
0.0000
0.0000
0.0400
0.5000
0.3333

0.0000
0.0000
0.0000
0.0000
0.1579
0.8333
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.3333

0.0000
0.0000
0.0000
0.0000
0.0000
0.2500
1.0000

0.0000
0.0000

0.0000
0.0000
0.0000
0.2500
0.6667

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
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1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.7500
0.5000
0.0000
0.0000
0.0000
0.0000
0.0000

0.5000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.8000
0.0385
0.0000
0.0000
0.0000
0.0000

0.0000
0.4000
0.0000
0.0000
0.0000
0.0000
0.0000

0.2500
0.5000
0.0769
0.0000
0.0000
0.0000
0.0000

0.5000
0.5000
0.0417
0.0000
0.0000
0.0000
0.0000

0.0000
0.2000
0.0000
0.0000
0.0000
0.0000
0.0000

June - July

0.0000
0.2000
0.8462
0.0909
0.0000
0.0000
0.0000

0.0000
0.0000
0.1154
0.8485
0.0000
0.0000
0.0000

July - August

0.0000
0.6000
0.8462
0.0323
0.0000
0.0000
0.0000

0.0000
0.0000
0.1538
0.9677
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0606
0.9444
0.1250
0.0000

0.0000
0.0000
0.0000
0.0000
1.0000
0.2857
0.0000

August - September

0.0000
0.0000
0.7692
0.0882
0.0455
0.0000
0.0000

0.0000
0.0000
0.1538
0.8529
0.1364
0.0000
0.0000

0.0000
0.0000
0.0000
0.0588
0.7727
0.1667
0.2500

September - October

0.0000
0.5000
0.6667
0.0833
0.0000
0.0000
0.0000

0.0000
0.0000
0.2917
0.8333
0.4286
0.0000
0.0000

0.0000
0.0000
0.0000
0.0833
0.4762
0.5000
0.0000

October - November

0.0000
0.8000
0.4762
0.2174
0.0625
0.0000
0.0000

0.0000
0.0000
0.5238
0.5870
0.3125
0.0000
0.0000

0.0000
0.0000
0.0000
0.1957
0.5625
0.8000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0556
0.7500
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.7143
0.2000

0.0000
0.0000
0.0000
0.0000
0.0455
0.8333
0.0000

0.0000
0.0000
0.0000
0.0000
0.0952
0.5000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0625
0.2000
0.3333

0.0000
0.0000
0.0000
0.0000
0.0000
0.1250
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.8000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.7500

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.6667
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1.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.1429
0.0800
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.1429
0.0800
0.0513
0.0000
0.0000
0.0000

November - December

0.0000
0.0000
0.6000
0.2093
0.0455
0.0000
0.0000

0.0000
0.0000
0.4000
0.5349
0.2727
0.0000
0.0000

0.0000
0.0000
0.0000
0.2558
0.5909
0.0000
0.0000

December - January

0.0000
0.1429
0.5200
0.1026
0.0435
0.0000
0.0000

0.0000
0.1429
0.3200
0.6923
0.1304
0.0000
0.0000

0.0000
0.1429
0.0000
0.1538
0.7391
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0909
1.0000
0.0000

0.0000
0.1429
0.0000
0.0000
0.0870
0.6000
0.5000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.0000
0.1429
0.0000
0.0000
0.0000
0.4000
0.5000
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1.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1429
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1429
0.5714
0.0000
0.0000
0.0000
0.0000
0.0000

0.2500
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.2000
0.0952
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.2273
0.0000
0.0000
0.0000
0.0000

0.1429
0.8333
0.1176
0.0000
0.0000
0.0000
0.0000

0.1429
0.1429
0.1250
0.0000
0.0000
0.0000
0.0000

0.5000
0.3333
0.0625
0.0000
0.0000
0.0000
0.0000

January - February
0.0000 0.0000 0.0000
0.6000 0.2000 0.0000
0.6667 0.2381 0.0000
0.1000 0.8400 0.0600
0.0000 0.2727 0.7273
0.0000 0.2500 0.2500
0.0000 0.0000 0.0000

February - March
0.0000 0.0000 0.0000
0.6667 0.3333 0.0000
0.5000 0.2727 0.0000
0.0769 0.8269 0.0962
0.0000 0.1667 0.8333
0.0000 0.0000 0.3333
0.0000 0.0000 0.0000

March - April
0.1429 0.1429 0.1429
0.0000 0.1667 0.0000
0.7059 0.1765 0.0000
0.0769 0.8654 0.0577
0.0000 0.1875 0.6875
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

April - May
0.1429 0.1429 0.1429
0.1429 0.1429 0.0000
0.6250 0.2500 0.0000
0.0962 0.8654 0.0385
0.0000 0.2857 0.6429
0.0000 0.0000 0.5000
0.0000 0.0000 0.0000

May - June
0.0000 0.2500 0.0000
0.0000 0.6667 0.0000
0.6875 0.2500 0.0000
0.0926 0.8148 0.0926
0.0000 0.2308 0.6154
0.0000 0.0000 0.2000
0.0000 0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.5000
0.2500

0.0000
0.0000
0.0000
0.0000
0.0000
0.6667
0.0000

0.1429
0.0000
0.0000
0.0000
0.1250
1.0000
0.0000

0.1429
0.0000
0.0000
0.0000
0.0714
0.5000
0.6667

0.0000
0.0000
0.0000
0.0000
0.1538
0.8000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.7500

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.1429
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.1429
0.0000
0.0000
0.0000
0.0000
0.0000
0.3333

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
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0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1429
0.1667
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.1429
0.0000
0.0000
0.0000
0.0000
0.1429

1.0000
0.1111
0.0000
0.0000
0.0000
0.0000
0.0000

0.5000
0.1667
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.7500
0.0625
0.0185
0.0000
0.0000
0.0000

0.1429
0.6667
0.1000
0.0227
0.0000
0.0000
0.0000

1.0000
0.4286
0.2105
0.0250
0.0000
0.0000
0.1429

0.0000
0.3333
0.2308
0.0000
0.0000
0.0000
0.0000

0.5000
0.5000
0.0500
0.0000
0.0000
0.0000
0.0000

June - July

0.0000
0.2500
0.6250
0.1667
0.0000
0.0000
0.0000

0.0000
0.0000
0.3125
0.6667
0.2143
0.0000
0.0000

July - August

0.1429
0.1667
0.6500
0.0909
0.0000
0.2500
0.0000

0.1429
0.0000
0.2500
0.7045
0.1000
0.2500
0.5000

0.0000
0.0000
0.0000
0.1481
0.7143
0.3333
0.0000

0.1429
0.0000
0.0000
0.1818
0.7500
0.0000
0.0000

August - September

0.0000
0.4286
0.4211
0.0500
0.0000
0.0000
0.1429

0.0000
0.0000
0.3684
0.8000
0.2174
0.0000
0.1429

0.0000
0.0000
0.0000
0.1250
0.6522
0.1667
0.1429

September - October

0.0000
0.5556
0.5385
0.1818
0.0000
0.0000
0.0000

0.0000
0.0000
0.2308
0.7273
0.0476
0.1667
0.5000

0.0000
0.0000
0.0000
0.0909
0.9524
0.1667
0.0000

October - November

0.0000
0.3333
0.7500
0.2105
0.0000
0.0000
0.0000

0.0000
0.0000
0.2000
0.7105
0.2800
0.0000
0.0000

0.0000
0.0000
0.0000
0.0789
0.6400
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0714
0.5000
0.0000

0.1429
0.0000
0.0000
0.0000
0.1500
0.5000
0.5000

0.0000
0.0000
0.0000
0.0000
0.1304
0.5000
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.5000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0800
0.6667
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.1667
1.0000

0.1429
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.3333
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.1667
0.5000

0.0000
0.0000
0.0000
0.0000
0.0000
0.3333
1.0000
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0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1429
0.0000
0.0500
0.0000
0.0000
0.0000
0.0000

0.5000

'0.8000

0.0800
0.0000
0.0000
0.0000
0.0000

0.1429
0.5714
0.0500
0.0000
0.0000
0.0000
0.0000

November - December

0.0000

0.2000

0.6400
0.0789
0.0000
0.0000
0.0000

0.5000
0.0000
0.2800
0.8158
0.2632
0.0000
0.3333

0.0000
0.0000
0.0000
0.1053
0.5789
0.2500
0.0000

December - January

0.1429
0.2857
0.7000
0.1136
0.0000
0.0000
0.0000

0.1429
0.1429
0.2000
0.8864
0.2500
0.2000
0.0000

0.1429
0.0000
0.0000
0.0000
0.5625
0.4000
0.0000

0.0000
0.0000
0.0000
0.0000
0.1579
0.5000
0.0000

0.1429
0.0000
0.0000
0.0000
0.1875
0.2000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.2500
0.6667

0.1429
0.0000
0.0000
0.0000
0.0000
0.2000
1.0000
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0.5000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.2500
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1429
0.5000
0.0000
0.0000
0.0000
0.0000
0.0000

0.2500
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.5000
0.2000
0.0870
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.1923
0.0000
0.0000
0.0000
0.0000

1.0000
0.8333
0.1053
0.0000
0.0000
0.0000
0.0000

0.1429
0.2500
0.1053
0.0000
0.0000
0.0000
0.0000

0.5000
0.5000
0.0500
0.0000
0.0000
0.0000
0.0000

January - February
0.0000 0.0000 0.0000
0.8000 0.0000 0.0000
0.7391 0.1739 0.0000
0.1136 0.7727 0.1136
0.0000 0.2143 0.7857
0.0000 0.0000 0.5000
0.0000 0.0000 0.0000

February - March
0.0000 0.0000 0.0000
0.7500 0.0000 0.0000
0.4615 0.3462 0.0000
0.0976 0.8049 0.0976
0.0000 0.2778 0.7222
0.0000 0.0000 0.3333
0.0000 0.0000 0.0000

March - April
0.0000 0.0000 0.0000
0.1667 0.0000 0.0000
0.7368 0.1579 0.0000
0.0851 0.8085 0.1064
0.0000 0.1667 0.7222
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

April - May
0.1429 0.1429 0.1429
0.2500 0.0000 0.0000
0.6842 0.2105 0.0000
0.1136 0.8409 0.0455
0.0000 0.2778 0.6667
0.0000 0.0000 0.5000
0.0000 0.0000 0.0000

May - June
0.2500 0.0000 0.0000
0.5000 0.0000 0.0000
0.6000 0.3500 0.0000
0.1087 0.7609 0.1304
0.0000 03125 0.5625
0.0000 0.0000 0.2000
0.0000 0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.5000
0.2500

0.0000
0.0000
0.0000
0.0000
0.0000
0.6667
0.0000

0.0000
0.0000
0.0000
0.0000
0.1111
1.0000
0.0000

0.1429
0.0000
0.0000
0.0000
0.0556
0.5000
0.6667

0.0000
0.0000
0.0000
0.0000
0.1250
0.8000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.7500

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000

0.1429
0.0000
0.0000
0.0000
0.0000
0.0000
0.3333

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
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0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.1429
0.1429
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.1429
0.0000
0.0000
0.0000
0.0000
0.1429

1.0000
0.1111
0.0000
0.0000
0.0000
0.0000
0.0000

0.5000
0.1667
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.6000
0.1000
0.0213
0.0000
0.0000
0.0000

0.1429
0.5714
0.0952
0.0233
0.0000
0.0000
0.0000

1.0000
0.4286
0.1667
0.0323
0.0000
0.0000
0.1429

0.0000
0.3333
0.2000
0.0000
0.0000
0.0000
0.0000

0.5000
0.5000
0.0476
0.0000
0.0000
0.0000
0.0000

June- July

0.0000
0.2000
0.5500
0.1915
0.0000
0.0000
0.0000

0.0000
0.2000
0.3500
0.6596
0.2500
0.0000
0.0000

July - August

0.1429
0.2857
0.7143
0.1395
0.0526
0.0000
0.0000

0.1429
0.0000
0.1905
0.5814
0.0526
0.2500
0.0000

0.0000
0.0000
0.0000
0.1277
0.6875
0.3333
0.0000

0.1429
0.0000
0.0000
0.2326
0.7895
0.2500
0.0000

August - September

0.0000
0.4286
0.3750
0.0968
0.0000
0.0000
0.1429

0.0000
0.0000
0.4583
0.7097
0.1154
0.0000
0.1429

0.0000
0.0000
0.0000
0.1613
0.7692
0.2857
0.1429

September - October

0.0000
0.5556
0.5333
0.1944
0.0370
0.0000
0.0000

0.0000
0.0000
0.2667
0.6944
0.1481
0.0000
0.0000

0.0000
0.0000
0.0000
0.1111
0.8148
0.3333
0.0000

October - November

0.0000
0.3333
0.8095
0.2121
0.0000
0.0000
0.0000

0.0000
0.0000
0.1429
0.6667
0.2857
0.0000
0.0000

0.0000
0.0000
0.0000
0.1212
0.6429
0.2500
0.0000

0.0000
0.0000
0.0000
0.0000
0.0625
0.5000
0.0000

0.1429
0.0000
0.0000
0.0233
0.1053
0.5000
1.0000

0.0000
0.0000
0.0000
0.0000
0.1154
0.4286
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.5000
0.5000

0.0000
0.0000
0.0000
0.0000
0.0714
0.5000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.1667
1.0000

0.1429
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.2857
0.1429

0.0000
0.0000
0.0000
0.0000
0.0000
0.1667
0.5000

0.0000
0.0000
0.0000
0.0000
0.0000
0.2500
1.0000
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0.5000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

1.0000
0.0000
0.0400
0.0000
0.0000
0.0000
0.0000

0.5000
0.8000
0.0769
0.0000
0.0000
0.0000
0.0000

0.0000
0.5714
0.0400
0.0000
0.0000
0.0000
0.0000

November - December

0.0000
0.2000
0.7308
0.1515
0.0000
0.0000
0.0000

0.0000
0.0000
0.1923
0.7576
0.2174
0.0000
0.0000

0.0000
0.0000
0.0000
0.0909
0.6522
0.2500
0.0000

December - January

0.0000
0.4286
0.6400
0.0882
0.0526
0.0000
0.0000

0.0000
0.0000
0.2800
0.9118
0.2105
0.1667
0.0000

0.0000
0.0000
0.0000
0.0000
0.5789
0.5000
0.0000

0.0000
0.0000
0.0000
0.0000
0.1304
0.5000
0.3333

0.0000
0.0000
0.0000
0.0000
0.1579
0.1667
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.2500
0.6667

0.0000
0.0000
0.0000
0.0000
0.0000
0.1667
1.0000
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0.8019
0.3559
0.0000
0.0000
0.0000
0.0000
0.0000

0.8037
0.3134
0.0000
0.0000
0.0000
0.0000
0.0000

0.7941
0.0714
0.0212
0.0000
0.0000
0.0000
0.0000

08372

0.0600
0.0144
0.0000
0.0000
0.0000
0.0000

0.1415
0.3898
0.1274
0.0024
0.0000
0.0000
0.0000

0.1963
0.3731
0.1026
0.0029
0.0000
0.0000
0.0000

0.0882
0.5238
0.0688
0.0070
0.0000
0.0000
0.0000

0.1628
0.5200
0.0432
0.0117
0.0000
0.0000
0.0000

0.0000
0.2034
0.6561
0.0911
0.0000
0.0168
0.0167

0.0000
0.3134
0.6821
0.1091
0.0105
0.0000
0.0000

0.0000
0.2143
0.6085
0.1099
0.0086
0.0000
0.0000

0.0000
0.4200
0.6871
0.1408
0.0227
0.0000
0.0000

AZ, PDSI

0.0566
0.0508
0.2166
0.8034
0.1284
0.0588
0.0000

AZ, PHDI

0.0000
0.0000
0.2154
0.7640
0.1324
0.0083
0.0000

CA, PDSI

0.1176
0.1905
0.3016
0.7801
0.1983
0.1286
0.0571

CA, PHDI

0.0000
0.0000
0.2554
0.7089
0.1932
0.0130
0.0000

0.0000
0.0000
0.0000
0.1031
0.7588
0.1513
0.0167

0.0000
0.0000
0.0000
0.1239
0.7561
0.2167
0.0333

0.0000
0.0000
0.0000
0.1030
0.6940
0.1429
0.0571

0.0000
0.0000
0.0000
0.1385
0.6970
0.2597
0.0541

0.0000
0.0000
0.0000
0.0000
0.1128
0.6975
0.1167

0.0000
0.0000
0.0000
0.0000
0.1010
0.7000
0.1167

0.0000
0.0000
0.0000
0.0000
0.0991
0.6286
0.0857

0.0000
0.0000
0.0000
0.0000
0.0871
0.6364
0.1351

0.0000
0.0000
0.0000
0.0000
0.0000
0.0756
0.8500

0.0000
0.0000
0.0000
0.0000
0.0000
0.0750
0.8500

0.0000
0.0000
0.0000
0.0000
0.0000
0.1000
0.8000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0909
0.8108
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0.3077
0.1176
0.0044
0.0000
0.0000
0.0000
0.0000

0.3750
0.1233
0.0039
0.0000
0.0000
0.0000
0.0000

0.5385
0.4706
0.1156
0.0053
0.0000
0.0000
0.0000

0.5625
0.4658
0.1042
0.0063
0.0000
0.0000
0.0000

0.0000
0.3088
0.6267
0.1103
0.0000
0.0192
0.0000

0.0625
0.3973
0.6293
0.1315
0.0124
0.0000
0.0000

VA, PDSI

0.1538
0.1029
0.2533
0.7954
0.2059
0.0769
0.1111

0.0000
0.0000
0.0000
0.0890
0.6961
0.2308
0.0000

VA, PHDI

0.0000
0.0137
0.2625
0.7474
0.2066
0.0364
0.0000

0.0000
0.0000
0.0000
0.1127
0.7025
0.3273
0.0000

0.0000
0.0000
0.0000
0.0000
0.0980
0.5385
0.1481

0.0000
0.0000
0.0000
0.0021
0.0785
0.5091
0.2593

0.0000
0.0000
0.0000
0.0000
0.0000
0.1346
0.7407

0.0000
0.0000
0.0000
0.0000
0.0000
0.1273
0.7407
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APPENDIX V

CONTINUOUS MARKOYV PROCESS REPRESENTATION

The representation of the PDSI process as a continuous Markov process is motivated in
Chapter V. Here it is assumed that changes in state are occurring continually all the time
and the state space is continuous. A continuous stochastic process can be visualised as
family of random variables {X(t), t € T} such that the state of the system is characterised
at every instant over a finite or infinite interval. The system is then defined for a
continuous range of times and we say that we have a family of random variables in
continuous time. A continuous Markov process can be thought of as systems whose
memory time is so small that, on the time scale on which we carry out observations, it is
fair to regard them as being well approximated by a Markov process. Gardiner (1985)
observes that for a Markov process , it can be shown that with probability one, the sample

paths are continuous function of t, if for any e >0 we have

lima. 1/dt j dx p(x,t+dt [z,t) =0 (1)
x-zpe

uniformly in z, t and dt . This means that the probability for the final position x to be
finitely different from z goes to zero faster than dt, as dt goes to zero. Gillespie (1992)
has described a propagator random variable to describe continuous Markov process as
follows. Suppose a process is in state x at time t or, X(t)= x . Then by the infinitesimally
later time t+dt , the system will have evolved to some new state that is displaced from x by
an amount ,say K, where K is given by :
K(@dt;xt) = X(t+dt) - X(t), given X(t)=x 2

Here K, which is a random variable for a fixed x and t, is called propagator of the process
X(t). The propagator tells us where the process will be at the infinitesimally later time

t+dt given that it starts from state x at time t, which in this case will be x+ K(dt;x,t). Here

252



dt is a real variable whose allowed range is the open interval (0,€) , where € is positive
but ‘arbitrarily close to zero’. Let the density of the propagator random variable (K) be
expressed as R(s|dt; x,t). The continuous Markov process is defined using the density
R(s|dt:x,t) which has to follow the following two conditions : i) R(s|dt;x,t) varies
smoothly with each of its three parameters dt, x and t, and ii) R(s|dt;x,t) is practically zero
everywhere outside an infinisimally small neighborhood of s=0

Gillespie (1992) has shown that K(dt;x,t) is a normal random variable with mean and

variance given by functions A(x,t)dt and D(x,t)dt, respectively. Therefore :

R(s| dt; x.t) = 5 exp{-(-AGDAZ/(2 D(xHdN}  (3)

1

(27 D (xt)dt)
It can be noticed in Eq. 3 that the functions A(x,t)dt and D(x,t)dt completely characterize
the continuous Markov process X(t). This is because these two functions completely
determine the propagator density function R(s|dt; x,t) which in turn determines the
Markov state density function P(x,t|xo,to). The state density function will determine the
density of state variable X at time t given that at time tg the state variable has value xo. If
A(x,t) and D(x,t) functions are independent of x and t, then such a process is called
completely homogeneous Markov process. In particular, if A(x,t) = A; and D(x,t) =D 2>
0; such a process is commonly called a Wiener process.

The time evolution equation for P(x,t|xq,to) , for fixed xo and to , for a continuous

Markov process with characterising functions A(x,t) and D(x,t) is given by:

% p(x,tjxo,to) = - % [A(x,t) p(x,t] x0,t0)] +

52
1/25’(7 [D(x,t) p(x,t|xo,t0)] 4)
Eq. 4 is called the Fokker Planck equation. With the known initial conditions; solution of
Eq. 4 gives a time evolution for p(x,t|xo,to), for fixed xo and to. Therefore, this equation

describes a process in which X(t) has continuous sample paths. The origin of the name

‘Fokker Planck Equation’ is from the work of Fokker (1914) and Planck (1917) where
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the former investigated Brownian motion in a radiation field and the latter attempted to

build a complete theory of fluctuations.
Gillespie (1992) observes that most continuous Markov processes of practical interest are

temporally homogeneous which implies :
Axt)= A(x) ;and D(xt)= D(x) &)

Therefore, for a temporary homogeneous process Eq. 4 becomes :

% p(x,tixo,to) = - % [AGY) p(x.t| X0,t0)] +

2
1/26% [D(x,)p(x,thxo,to)] ©)

The temporally homogeneous Markov Processes sometimes approach steady state density
as (t-to) goes to infinity (Gillespie, 1992). The specific conditions for existence of the
steady state density can be described as below:
Steady density function infers :

lim, o p(xtlxoto) = Ps(x) 7
One way to compute the steady state density will be to solve Eq. 6 explicitly for

p(x,t|xo,to) and then compute the limit as given by Eq. 7. Another way is to calculate

Pg(x) such that :

hm t-t0 >

0

— P(x,t[xo,t =0 8
o (x,t|xo,to0) ®)
Substituting the condition as stated in Eq. 8 in Eq. 6 , we get :

=3 [AQPs] + 3 5 D) Ps(x) ]

or; £ [AQP] + 3 = DEPs) ]} = 0 ©®

Eq. 9 implies that the quantity under braces must be constant with respect to x and taking

this constant to be equal to zero, we get :

L DEP® ] = 240 Ps) (10)
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Dividing by D(x)Ps(x) both sides , we get ;

dDPsx)  _ ,  AK)
DePs) > D) (1
Integration gives :
In(D)Ps(x))= 2 %% dx + constant
or; D(x) Ps(x) = constant. exp ({ 2 %%))' dx )
Solving for Ps(x) , we get :
S a
P = Do o (C409) (12)
where: ¢(x) = potential function = - I 2 % dx (13)
and K’ = normalising constant which is equal to :
2
< = | b W) & (14)

Eq. 12 indicates that existence of Pg(x) mainly depends on K’. Therefore, prime
requirement of existence of Pg(x) can then be expressed in terms of the values of K’ which
must exist as a finite non-zero number or;

0 <K <o (15)
It can be observed that as long as K’ is finite, Ps(x) will not only exist but will also be
everywhere non-zero. Here ¢(x) is called the potential function. Differentiating ¢(x) in

Eq. 13 with respect to x, we get :

-2A(x)

D60 (16)

¢‘(x) =

The slope of the ¢(x) curve, therefore, depends upon A(x) and D(x) . Since D(x) is

always positive as it denotes the variance, the slope will mainly depend upon A(x).
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Therefore, if A(x) is positive , the ¢(x) will be sloping downward and the process moves
to the right and if A(x) is negative, the process moves to the left and ¢(x) slopes upward.
The slope of ¢(x) curve will depend upon magnitude of |A(x)|. So the process in state x
at time t has a probabilistic bias to move in the next dt in direction that decreases the
function ¢(x) and with the increase of local slope of ¢(x), this probabilistic bias will also
increase. Therefore, ¢(x) can be taken as analogous to the potential energy function in
classical mechanics.

Now as the process keeps advancing the value of ¢(x) also changes. The process has
stochastic tendency to move toward local minimum of the potential function ¢(x). The
regions where ¢(x) is small corresponds to higher value of Pg(x) . In terms of potential
energy and probability density it can be interpreted that the state corresponding to
minimum values of the potential energy correspond to maximum probability of occurrence
which can then be taken as the ‘Stable States’ of the process. These stable states can be
related to the multi-modal behavior of the distribution of some random variable which in
our case happens to be the PDSI. It can also be noted from Eq. 12 that the values of

Ps(x) will also depend on D(x). However, for a constant value of D(x), the peaks of Pg(x)

will coincide with the minima of the ¢(x).
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APPENDIX VI

NUMERICAL EXAMPLES

1.0 INTRODUCTION

In chapter IV non-homogeneous Markov chain analysis of long term Palmer index data is
presented. In this approach currently observed index values are used in finding the most
probable drought characteristics in the future, i.e. given that a particular drought class has
occurred, we can find information like : What is the most likely occurrence drought class?;
What is the probability that a severer or a milder drought will occur over a chosen period
7, How long such a future drought can persist 7, What are the long term probabilities
(steady state probabilities) for various drought classes defining the drought proneness of a
region ?; How long will it take to get back to the normal class from a severer drought

class ? These aspects are illustrated through a number of example problems in the

following.
2.0 APPLICATION EXAMPLES

EXAMPLE 1 : The monthly PDSI data from 1895-1990 for Tidewater region in Virginia
are given in Appendix III. Compute the following :

a) Steady state probabilities of wet, dry, and normal weather classes for different months
using the three PDSI classes given in Table V1.1 with the aid of the Markov chain.

b) State the empirical steady state probabilites computed from the data directly.

c) Compare analytical and empirical probabilites and identify months that have largest and

smallest probability of droughts on long run as indicated by PDSI data.
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Solution : The stepwise solution procedure using the Markov chain technique, described
in detail in section 4.3 of chapter I'V, is given below :
a) _Step_1 : Allocate PDSI values in respect of Tidewater division in Virginia in
Appendix III into their appropriate classes according to Table VI.1. The results are in
Table VI1.2.

Step 2 : Compute the twelve monthly transition probability matrices with the

transition probabilities given by

PiJ(MH) = Nq("""” / Ni(n) (1)
where: NV = number of transitions from class i in month n to class j in month

nt+l;
N;® = number of occurrences of class i in month n.

The transition probabilty matrices are given in Table VI.3.
Step 3 : Compute monthwise steady state probabilities of each class using
¢™ = [Pa] [Pme] ... [Pi] (1a)
where : ¢ is a constant stochastic matrix with identical rows for large k, and
[Pa] is transition matrix starting month m.
The results are shown in Table VI.4.
b) Step 1 : Compute the empirical probabilities by
EMPROB; =N; /N ;i=1,2,and 3 : j=1,2,3,..., 12. [0))
where :EMPROB;; = empirical probability of class i in month j
N;; = number of occurrences of class i in month j
N; = number of ocurrences of month j in data period
For example to compute empirical probability for class 1 in January ( EMPROB);,,) count
the occurrences of class 1 in January for the ninety six years of data using Table VI.2. The
counts are N;j;,,=27 and Nj,, = 96. Therefore,
EMPROBj,, =27/ 96 = 2813

Likewise empirical probabilities for each class can be computed. Results are given within

brackets in Table VI.4. They are quite close to the analytical probabilities.
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c) Step 1 : For July through November there is more than 27 % chance of occurrence
of a drought. During January - February there is less than 20 % chance of a drought.

This example shows that the non-homogeneous Markov chain approach can describe the
long term behavior of weather well. The key advantage is that a formal analytical
framework is provided by the Markov chain formulation. The agreement with the
empirical probabilities demonstrate that a laborious empirical analysis is not needed.
Besides, the Markov analysis provides additional results merely by the use of transition
martices as illustrated in the following examples such as drought duration and time of
returning to the same drought class after exiting and more importantly forecasting

droughts contingent on the observed severity status of a drought.

EXAMPLE 2: Using the long term PDSI data of Virginia given in Appendix III and the
corresponding weather classes given in Table V1.2, compute the following :

a) Probability that the weather will stay in class 3 ( drought class ) for five months
continuously given that drought class 3 begins in the month of July.

b) Monthwise expected duration (residence time) for each weather class.

c) Variance of residence time for each month and class and coefficient of variation to
compare relative variability.

d) Compare results with empirical observations and draw appropriate conclusions.

Solution : We use the Markov chain procedure to solve the problem in following steps :
a) Step 1 : Compute one step transition matrices for each month following the
procedure as described in step 2 in part (a) of Example 1.
Step 2 : Define the following event in order for weather to stay in class 3 (drought
class ) for 1 month given that it begins in the month of July
[ Xavg#3 | Xm=3]
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The above event will correspond to 1 month duration of drought beginning in July. The
probability of above event can be computed using the July- August transition matrix in
Table V1.3 as follows

P[Xaw#3 | Xu=3]=1-ps"*8=1-.8077=.1923 )]
Similarly, the event defining continuous stay of weather in class 3 for 5 months beginning
in the month of July can be written as

[ Xawg=3, Xsep=3, Xot =3, XnNov=3, Xpee. #3 | Xou. =3 ]
Using the property of Markov chain, the probability of above event can be computed as

[ Xaug=3, Xsep.=3, Xoet. = 3, Xnov= 3, Xpec. #3 | Xpu. =3 ]

(1- p33Nov.-Dec.) p330cL-Nov. p33$ep.-Oct. p33Aug.-Sep. p33Jul.-Aug. 5)
Using the transition probabilities matrices given in Table V1.3, put the appropriate
probabilities in Eq. 5 and we get

P[ Xag=3, Xsep=3, Xoet =3, Xnv=3, Xpec. #3 | Xju. =3 ]=

(1-.7692) (.7667) (.8966) (.8276 ) (.8077) =.1061 (6)
Therefore, the probability of having continuous occurrence of class 3 drought starting in
the month of July is 10.61 %.
b) Step 1 : Following the procedure in step 2 of part (a) we can calculate probability
of continuous stay or duration of “n” months in each drought class. As an illustration, the
probabilities for varying length of uninterrupted residence times in class 3 beginning in July
are given in Table VI.5. Then using Eq. 17 of chapter IV the expected value of
uninterrupted residence time can be computed. The results are given in Table VI1.6.
c) Step 1 : Using the probabilities computed in step 3, we can compute the variance
of uninterrupted residence time using Eq. 18 as given in chapter IV. The results are given
within parentheses(.) in Table VI.6. Divide the standard deviation by the computed mean

value to compute the coefficient of variation. The results are given within square brackets

[.]in Table VI.6.
d) Step 1 : In order to compute average (duration) empirical uninterrupted residence

time, use the following equation
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Nijj
EMPUNRE; = (1/ N )zJ (UNREj), 9
n=1
where :EMPUNRE;; = empirical uninterrupted residence time in class j in month i
UNRE; = length of uninterrupted stay in class i beginning in month j
N;; = total number of occurrences of class i in month j.
For demonstation, we compute empirical average empirical uninterrupted residence time
of weather class 1 given that class 1 begins in the month of February.
From Table V1.2, count occurrences of class 1 in the month of February. It is found as
26. Hence, Nirev =26 . Now for each occurrence of class 1 in February, find the length of
continuous stay in class 1. For example, the first ocuurrence of class 1 in data record is in
February 1899 ( see Table VI.2). At this occurrence weather stayed in class 1
continuously for 2 months beginning February 1899. Therefore, for the first event the
length of continuous stay is 2 months. Likewise compute length of continuous stay for
each of 26 events. Now use Eq. 7 to compute empirical average uninterrupted residence
time as follows
EMPUNRE r, =
(2+1+9+17+5+143+1+1+3+1+3+2+11+7+8+2+1+5+8+10+2+4+4+1+4)/26 = 4.46 mon.
It can be observed from Table VI.6 that analytical value of uninterrupted residence time
for class 1 in February month is 4.4 months which compares very well with the empirical
calculation of 4.5 months.
There are 4 values reported for each month and class in Table VI.6. The first value gives
the expected value of the uninterrupted residence time (duration), the value within the
parentheses gives its variance, the value within square brackets gives the coefficient of
variation and the last value gives the empirical results. For example, it can be observed
that once drought conditions are set in the month of January, these will prevail on an

average for 6.1 months. Based on coefficient of variation it is seen that all the months

have about the same variability for drought durations.
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This example demonstrated application of non-homogeneous Markov chain approach to
assess the duration of drought once it begins. Once again the analytical results agree well
with the observed values. Having computed the persistance time in a drought class, one is
interested to know, how long will it take to the relief situation in terms of normal class or
wet class. Intuitively, by the definition of duration of drought we also imply its
termination. The termination has to be in terms of the normal or the wet class. Because
drought progression is continuous, that is to reach the wet state the process must go
through the normal state. Therefore, the time to reach the normal state must be the same
as the drought class duration. The last columns of Tables V1.6 and VI.7 support this
conclusion. By the same argument first columns of the Tables V1.6 and V1.7 agree for the
wet state. To interpret the time of return to the normal class ( class 4), first of all note
from the transition matrices in Table VI.3 that the staying power of probability of
returning to class 2 or the probability of having unit period ( 1 month ) time of return is
about .8. For a recurrence time period of more than 1 month, the weather class has to
necessarily migrate to the wet class 1 or the relatively dry class 3 which have about .1
probability and the weather lingers in those states about 4 and 6 months, respectively
before returning to the normal class. Therefore, the time of return to the normal class
having left from the normal class is 0.1 (4+6) + 0.8 (1) which is 1.8 months. These results

are formally derived in Example 3.

EXAMPLE 3 : Appendix III gives monthly PDSI data for Tidewater region in Virginia
from 1895-1990. Using the weather classification as given in Table V1.1, compute the
following :

a) Average time of transition from drought class 3 to normal class 2 and from wet class 1

to normal class 2.
b) Average recurrence time for class 2 in each month.

c) Verify the results of parts (a) and (b) empirically and draw relevant conclusions.
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Solution : Markov chain procedure is adopted to solve this problem. The stepwise
procedure is as follows
a) Step 1 : Compute one step transition probability matrices for each month
following the procedure as described in step 2 in part (a) of Example 1.

Step 2 : Say, M;" is the average length of time it takes the weather to transit to

class j, starting from class i, in month n. The equation for M;" is given by

My = ()PP + )0 P (14M™ ) ©)
k#j

Suppose we need to compute Mz, ", for this we write
My = (1) PyFeb-Mae 4 py FebeMar 1 g Mar y p, FeboMar 14 g Mac )
(10)
Substituting values of transition probabilities from Table V1.3 in Eq. 10 we get
M3,"® = 1.0 + 8889 M, 1)
Likewise we can set up similar equation to compute M3, as
M = (1) Py ™4 + Py M4 (14 Mp™™ ) +P3™ 47 (14 M, )
(12)
Substituting the values of the transition probabilities from Table V1.3 we get
M3 = 1.0 + 8571 M (13)
In a similar way we can develop equations for Mn™, MM, ..., Ms,™™ and these
simultaneous linear equations can be solved for the unknowns Ms," and in general M;".
The results are given in Table V1.7.
b) Step 1 : The average recurrence time of class 2 can be computed using similar
procedure as described in step 2 of part (a) above. Equation 23 in chapter IV is written by
Mi® =1+ ) Pp™! M™ (14)
k#i
Substituting i = 2 ; n=Jan. , we get
Mnhn. =1+ lelan.-Feb. MuFeb. + Pnhn.-l"eb. M32Feb. (15)
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Substituting values of transition probabilities using Table V1.3 we get

Mup"™™ =1+ .1 M™ + .06 M,™ (16)
Likewise for i=2 ; and n=Feb. , we get

MzzFeh. =1+ leFeb.-Mu. MuMn. + PBFeb.-Mar. M32Mar. a7
Substituting values of transition probabilities we get

Mz ™ =1+ .0769 M,"™ +.0962 M;,M* (18)
Similar equations can be developed for M, Mu™", ..., M™ and using the values of
M, and M3, computed in step 2 of part (a) for various months we can compute the values
of My, for each month. The results are given in Table V1.7.
c) Step 1 : For empirical computations of M;;, Ms,, and M2, for various months, we

refer to Table V1.2 and compute the first passage time or recurrence time using the

following equation :

Ni®
M;* =(I/N")( D, (PASSAGE;")) (19)
k=1
where : M;" = Average first passage time to go from class i to j in month n.

(PASSAGE;" ) = Number of months to go from class i in month n to j for

the first time for event k

Ni" = number of events in which class i begins in month n.
For illustration, we compute Ms,"> empirically. For this purpose count number of
occurrences of class 3 in February month as observed in data given in Table VI.2. This is
counted as 18. So, N3 = 18. As can be seen from Table V1.2, class 3 during February

was first realized in year 1901. It can also be noticed that in March 1901 weather class

realized is 2. Therefore, for this event :
(PASSAGE;:; ™) =1.0
Likewise length of period for each of 18 events is obtained from Table V1.2 and then

M;," is computed as :
M3,"® =(142+14+2+20+8+6+5+4+3+10+22+10+1+5+10+6+3) / 18 = 7.3
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In the same way, empirical values of M2, can be calculated for each month. The results
are given in Table V1.7 as values within parentheses. It is observed that analytical results
obtained using methodology described in the present study agree quite well with the

empirical observations.

The kind of analysis given in Example 3 should be useful at planning stages. The analysis
provides information on the duration with which a drought state or any other weather
class will repeat itself ( recurrence time ). Of course, the expected time to recover, that is,
the first passage time from a drought state to the normal state can also be obtained. From
Table V1.7 it is noted that the relatively small value of about 2 months for the recurrence
time for the normal class is due to the 80 % probability of staying in the normal class
month after month. However, a drought once occurred may last for about six months.
For a water rich state such a duration may not be an issue if buffer sources are properly
developed as would be required in a planning study.

Example 4 provides a holistic application of Markov chain results. The seventeen month
drought starting from July 1980 occurred in the Tidewater region, VA is analyzed. The

results agree quite well with the observed data.

EXAMPLE 4 : A 17 month long drought occurred in the Tidewater region of Virginia
during 1980-81 . Birch and Ulrich (1982) reported that in the Spring of 1980 drought
conditions emerged in the Tidewater region in Virginia which ultimately turned out to be
the most severe drought in many parts of Virginia in this century. Drought conditions
started in July 1980 and by mid- August, reservoirs serving South-east Virginia dropped
to 65 % of capacity, and mandatory conservation measures were enacted in Virginia
Beach and other southeastern localities. By October, the drought had dropped the
reservoirs to almost half their capacity, and water rationing plans, the first of their kind in

Virginia, took effect for more than 690,000 customers in Norfolk and Virginia Beach. At
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the request of Virginia Beach and Norfolk, Gov. John N. Dalton declared an emergency
under Emergency Services and Disaster Act of 1973. By November 1980, 72 localities
had been declared drought disaster areas. The mandatory conservation measures initiated
in Virginia Beach in August 1980 were not lifted until August 1981. Drought conditions
ended in December 1981. Table VI.8 gives PDSI based weather classes classified as per
the classification given in Table VI.1 during 1980-81 in the area.

Using the analysis presented in Examples 1 through 3, explain / compute the following

a) Beginning of drought event of 1980-81 in the month of July.

b) Expected duration of drought predicted in July 1980 and its comparison with the actual
duration.

c) Predict one to four months ahead weather classes using Markov chain procedure.

Solution : In order to solve this problem, the results obtained in Examples 1 through 3
will be used. A stepwise procedure follows

a) Step 1 : For the commencement of drought in the month of July, consider the
transition matrices given in Table VI.3. As given in Table VI.8, the weather class was
normal

( class 2) in January 1980. Now referring to January- February transition matrix in Table
V1.3, there is 84% probability that weather class will stay normal in the month of February
if the class during Janaury is normal. Likewise the probabilities of staying in class 2 in
subsequent months (upto July) are given in Table VI.9. It can be seen that it is only in the
transition from June to July the probability of staying in normal class reduces drastically
from mid eighty to mid sixty percent. We again refer to transition matrices and observe
that with weather being in class 2 in January 1980, there is only 6% probability of having
drought class in February as per the Janaury-February transition matrix. The probability
of transition to drought class next month having been in normal class in previous month is
given in Table VI.10 for various pair of months. It is seen from Table VI.10 that the

probability of transition to drought class from normal class in previous month suddenly
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increases in June to July transition. Therefore, combining the inferences of results given in
Tables V1.9 and VI.10, we can explain high probability of drought commmencement in the
month of July. This can also be observed in Table V1.4 wherein July is among the months
which have higher long term probability of experiencing droughts. Incidently, the 1980-81
drought did begin in July 1980.

b) Step 1 : The uninterrupted residence times for various weather classes in different
months are computed in Example 2 and the results are given in Table VI.6. It is seen that
if drought state begins in July month, then on an average it will last for 5.6 months. The
probabilities of having one to several months of uninterrupted stay in drought class
beginning July have also been computed in Example 2. The results are given in Table
VLS.

It is observed that there is 2% chance that there will be a drought event of 20 months or
more starting the month of July in Tidewater region in Virginia. The drought event of
1980-81 lasted for 17 months which has 1% probability as per present analysis. If we
were to make prediction of drought duration when it started in July 1980, an expected
value forecast will be of 5.6 months. This is not close to the actual duration of 17
months. However, by referring to part (c) proper forecasts can be made.

c) Step 1 : A procedure to predict PDSI given the current state of weather is
given in section 4.7 in chapter IV. This technique is employed to predict PDSI classes
ahead of time. Table VI.11 gives weather states predicted using Markov chain model
1,2, 3 and 4 months ahead of time from July 1980 to December 1981. It is noted that

in this case the seven weather classes have been based on the classification given in
Table 4.1 of chapter IV. It is seen that the Markov model gives satisfactory forecasts

of weather states for 13 months out of 17 months with a lead time of one month and for

10 months with lead time of 2 months.
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Table VI.1 PDSI Based Weather Classification

Class PDSI Category
1 >1.49 Wet

2 >=.149;<=149 Normal

3 <-1.49 Drought
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Table VI.2 Weather Classes, Tidewater Region, Virginia

2
2
2
2
1
2
3
1
1
2
2
2
2

1
1
3

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3

2

2
3
2
2
2
2
3
1
1
2
2
2

1
1
1
3
2
2
2
2
2
2
2
1
2
3
1
2
2
2
1
3
3
2

Year|Jan| Feb|Mar| Apr| May| Jun| Jul| Aug| Sep| Oct| Nov|Dec

1895
1896
1897
© 1898

1899
1900
1901

1902
1903
1904
1905
1906
1907
1908
1909
1910

1911

1912

1913

1914

1915

1916

1917

1918

1919
1920
1921

1922
1923
1924
1925
1926
1927
1928
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1

2
3
3
2
2
2

1
1
1
1
2
2
3
2
2
2
1
2
2
2
3
3
1

2

3
2
1
1
2
2
1
1
1
1
2
3

2
2
3
3
2
3
1
1
1
1
1
2
2
3
2
2
2

1
2
2
2
2
2
1
2
3
3
2

1
1
2
2
1
1
1
2
2
3

1929
1930
1931

1932
1933
1934
1935
1936
1937
1938
1939
1940
1941

1942
1943
1944
1945
1946
1947
1948
1949
1950
1951

1952
1953

1954
1955
1956
1957
1958
1959
1960
1961

1962
1963
1964
1965
1966
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3
3
3
2
2
2
1
2
2
2
2

1
1
2
3

1
1
1
3
2
1
3
2

1

3
2
3

2

1

2

1
2
1
1
2
3
2
2
1
3

2
1
3

3
1

1967
1968
1969

1970 2
1971

1972 2
1973

1974 2

1975
1976
1977
1978
1979
1980
1981

1982
1983
1984
1985
1986
1987
1988
1989
1990
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Table V1.3 Monthly Transition Matrices, 3 Classes, Tidewater Region, Virginia

Class—> 1 2 3
Jan. —» Feb.

1 7778 2222 .0000

2 .1000 .8400 .0600

3 .0000 2105 .7895
Feb. — Mar.

1 .7308 2692 .0000

2 .0769 .8269 .0962

3 .0000 111 .8889
Mar. —» Apr.

1 .8261 1739 .0000

2 .0769 .8846 .0385

3 .0000 .1429 .8571
Apr. > May

1 1826 2174 .0000

2 .0943 .8679 .0377

3 .0000 .1500 .8500
May — Jun.

1 .6957 .3043 .0000

2 .0926 .8333 .0741

3 .0000 1579 .8421
Jun. —» Jul.

1 7619 2381 .0000

2 .1818 .6545 .1636

3 .0000 .1500 .8500
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ul. - Aug.

.0877 .1923 .0000
1136 .7045 .1818
.0385 1538 .8077
Aug. > Sep.

.7407 .2593 .0000
.0750 .8000 1250
.0000 1724 .8276
Sep. —» Oct.

.8696 .1304 .0000
.1818 7273 .0909
.0000 .1034 .8966
Oct. > Nov.

8571 .1429 .0000
2105 7105 .0789
.0000 2333 .7667
Nov. —» Dec.

.7500 .2500 .0000
.0789 .8158 .1053
.0000 .2308 .7692
Dec. » Jan.

.8148 1852 .0000
1136 .8864 .0000
.0000 .2083 7917
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Table V1.4 Steady State Probabilities, Virginia, Three Classes

Month{ Class —» |1 2 3

Jan, 2820 (2813) 5188 (.5208) 1976 (.1979)
Feb. 2712 (.2708) .5401 (.5417) .1871 (.1875)
Mar. 2397 (.2396) 5404 (.5417) 2183 (2188)
Apr. 2396 (:2396) 5509 (.5521) 2079 (.2083)
May 2395 (.2396) 5614 (.5625) 1975 (.1979)
Jun, 2186 (:2188) 5719 (.5729) 2079 (.2083)
Tl 2705 (2708) 4575 (4583) 2703 (.2708)
Aug. 2809 (.2813) 4159 (4167) 3015 (.3021)
Sep. .2392 (.2396) 4575 (.4583) .3015 (.3021)
Oct. 2912 (2917) | .3951(3958) 3119 (3125)
Nov. 3328 (.3333) 3951 (.3958) 2703 (.2708)
Dec. 2808 (.2813) 4679 (.4688) 2495 (.2500)
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Table VI.S Probability of Various Residence Times for Drought Class Beginning July ,

Tidewater Region, Virginia

Residence Time Probability Residence Time Probability
(months) (months)

1 .19 11 .02
2 .14 12 .02
3 .07 13 .02
4 14 14 .01
5 11 15 .01
6 .07 16 .01
7 .06 17 .01
8 .02 18 .01
9 .03 19 .01
10 .03 >=20 .02

Expected Residence time = 5.6 months ; Variance = 26.6, Coefficient of variation = .92
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Table VI.6 Uninterrupted Residence Times, Tidewater Region, Virginia, (months)

Starting State—
Month 4

Jan.

Feb.

June
July
Aug.
Sep.
Oct
Nov
Dec

4.4(15.8)[.90]{4.9}

4.4(16.1)[.91]{4.5)
4.6(16.4)[.88]{5.0}
4.4(16.5)[.92]{4.7}
43(17.1)[.96]{4.8}
4.7(17.8)[.90]{6.1}
4.9(17.6)[.861{5.6}
4.8(17.3)[.871{5.2)
5.2(16.5)[.78]{6.0}
4.8(15.9)[.83]{4.8}
4.4(15.8)[.901{4.8)
4.6(15.8)[.86]{5.2}

5.4(18.0)[.79]{6.5}

5.2(17.1)[.80]{6.8}
5.1(16.1)[.79]{6.3}
4.7(15.7)[.84]{6.1}
4.2(15.8)[.95]{5.3}
3.8(16.5)[1.07]4.7}
4.3(18.7)[1.01]5.7}
4.7(19.9)[.95]{6.0}
4.7(20.5)[.961{6.0}
5.1(21.2)[.90]{6.2}
5.7(20.4)[.791{6.9}
5.8(18.9)[.75]{6.8}

6.1(29.2)[.89]{7.2}

6.4(28.2)[.831{7.1}
6.1(27.6)[.86]{7.6}
6.0(27.1)[.87]{8.2}
5.8(26.8)[.90]{8.4}
5.8(26.6)[.89]{8.4}
5.6(26.6)[.92]{7.4}
5.7(26.8)[.91]{6.8}
5.7(26.8)[.911{7.2}
5.2(27.1)[1.0]{6.8}
5.5(28.4)[.971{7.0}
5.8(29.2)[.93]{6.7}

(.) = variance , [.] = Coefficient of variation , {.}= empirical

276




Table V1.7 First Passage/ Recurrence Times to/of Class 2, (months)

Month M, Mz, M,

Jan. 4.4(4.9) 1.8(1.4) 6.5(7.4)
Feb. 4.4(4.5) 2.0(2.4) 6.5(1.3)
Mar. 4.6(5.0) 1.6(1.8) 6.2(7.8)
Apr. 4.4(4.7) 1.6(1.8) 6.1(8.4)
May 4.3(4.8) 1.9(2.3) 6.0(8.6)
Jun. 4.7(6.1) 2.8(2.5) 5.9(8.8)
Jul, 4.9(5.6) 2.6(2.1) 5.8(7.7)
Aug. 4.8(5.2) 212.7) 5.7(6.9)
Sep. 5.2(6.0) 2.4(1.9) 5.7(7.4)
Oct. 4.8(4.8) 2.4(2.5) 5.2(6.9)
Nov. 4.4(4.8) 2.0(1.6) 5.5(7.2)
Dec. 4.6(5.2) 1.5(1.5) 5.9(6.9)

M, = Average length of time to go to from class 1 to class 2; (.) = empirical
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Table V1.8 PDSI Based Weather Classes, Tidewater Region, Virginia, 1980-1931

Mon | Jan |Feb |Mar | Apr | May [Jun |[Jul | Aug |Sep [ Oct | Nov | Dec
N

‘80 |2 2 2 2 2 2 3 3 3 3 3 3
‘81 |3 3 3 3 3 3 3 3 3 3 3 2
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Table V1.9 Probability of Transition from Normal to Normal Class

Months

J-F

F-M

M-A

A-M

M-J

J-J

Probability

.84

.83

.89

.87

.83

.66

J-F = January-February
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Table VI.10 Probability of Transition to Drought Class from Normal Class

Months

J-F

F-M

M-A

A-M

M-]

J-J

Probability

.06

.10

.04

.04

.07

.16

J-F = January-February
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Table VI.11 Observed and Predicted PDSI Classes, July 1980 - December 1981

1980 |July | Aug. | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. [Mar.
Obs. |5 6 6 5 5 5 6 6 6
1step |4 5 6 6 5 5 5 6 6
2 steps | 4 4 5 6 6 5 5 5 6
3 steps | 4 4 4 5 6 6 5 5 5
4 steps | 4 4 4 4 5 6 5 5 5
1981 | Apr. [May |Jun. |Jul. | Aug. | Sep. [ Oct. [Nov. | Dec.
Obs. |6 5 5 5 5 5 5 5 4
1step |6 5 5 5 5 5 5 5 5
2 steps | 6 5 S S 5 S 5 5 5
3 steps | 6 5 5 5 5 5 5 5 5
4 steps | 5 5 5 5 5 5 5 5 5

Note : Weather classification as per Table 4.1, Chapter IV
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APPENDIX VII

SOUTHERN OSCILLATION INDEX (SOI) (1895-1984)
Source : Wright (1989)

Year Jan. Feb. Mar. Apr. May Jun.

1895
96
97
98
99

1900

O 0 3O WV Hh W -

0
-1
9
-6
-20
19
8
-2
24
-14
35
22
-7

1
-8
-16
-12
15
4
31
18
-11
-36
-15
17
10
-20
-5
-11
3
-8
31
-10
12
-2
-3
13

0
-1
9
-6
-20
19
8
-2
24
-14
35
22
-7
1
-8
-16
-12
15
4
31
18
-11
-36
-15
17
10
-20
-5
-11
3
-8
31
-10
12
-2
-3
13

-7
4
-1
-14
-1
7

1

7

6
-8
14
2
-1
-7
-9
-17
7

7
-4
10
8
-11
-16
4

8
2
-11
-7
-4
-6
-8
13
-8
-4
-5
7
-6

-7
-4
-1
-14
-1
7

1

7

6
-8
14
2
-1
-7
-9
-17
7

7
-4
10
8
-11
-16
4

8
-2
-11
-7
-4
-6
-8
13

-7
4
-1
-14
-1
7

1

7

6
-8
14
2
-1
-7
-9
-17
7

7
-4
10
8
-11
-16
4

8
-2
-11
-7
-4
-6
-8
13
-8

0

7
-3
-3
15
6

5
19
-8
5

9
-9
2
-1
-18
-14
10
-3
9
17
-13
-28
-26
10
4
-9
-12
-5
-6
-6
7
-1

Jul. Aug. Sep. Oct. Nov. Dec.

0

7
-3
-3
15
6

5
19
-8
5

9
-9
2
-1
-18
-14
10
-3
9
17
-13
-28
-26
10
4
-9
-12
-5
-6
-6

0
7
-3
-3
15
6

5
19
-8
5

9
-9
2
-1
-18
-14
10
-3
9
17
-13
28
-26
10
4
9
-12
-5
-6
-6
7
-1
0

0

7

-2
18
-11
-10
19
1

3
15
-12
10
6
-6
3
-10
-14
-15
14
1
14
26
-14
-30
31
14
4
-2
-2
-7
10
14
18
-8
4
-6
5
14
-7

-2
18
-11
-10
19
1

3
15
-12
10
6
-6
3
-10
-14
-15
14
1
14
26
-14
-30
=31
14

2
18
-11
-10
19
1

3
15
-12
10
6
-6
3
-10
-14
-15
14
1
14
26
-14
-30
-31
14
4
2
2
-7
10
14
18
-8
4
-6
5
14
-7

0]
-1
9
-6
<20
19
8
-2
24
-14
35
22
-7
1
-8
-16
-12
15
4
31
18
-11
-36
-15
17
10
-20
-5
-11
3
-8
31
-10
12
-2
-3
13
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32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
7
72
73
74

6
-7
-23

-13
=27

36
17
-24

-11
-6

10
-18
-26

18

13

-13
-20
-6
20
22
-3
-5
-21

13

12
-15

15
15
-22
-7
22
-35

6

-18
-26
18
13

-13
-20
-6
20
22
-3
-5
-21

13

12
-15

15
15
-22
-7
22
-35

2

-14

2
-5
-5
-8

-14
-6
-7

-12
15
12

-11
-3
-7
-1

-19
13
17

-3
-16

-20

2

-13

-25

<25

=27

-7
-16

-11

-14
15
22
18
-9

-12

-6
14
-12

-18
19

10

24
-11
13

-7
-7

-9
17
-15
24

13
-22
-21

17
-28
-10

-7
-16

-11

-14
15
22
18
-9

-12

-6
14
-12

-18
19

10

24
-11
13

-7
-7

-9
17
-15
24

13
-22
-21

17
-28
-10

-7
-16

-11

-14
15
22
18
-9

-12

-6
14
-12

-18
19

10
-2
-24
-11
13

-7
-7

-9
17
-15
24

13
=22
-21

17
-28
-10

6
-7
-23

-13
=27

36
17
-24

-11
-6

10
-18
-26

18

13

-13
-20

20
22
-3
-5

13

12

15

15

-7

22
-35
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75
76
77
78
79
80
81
82
83
84

-14
-8
15

13
10

23

-14
-8
15

13
10

23

-14
-8
15

1
4
13
10
4
23
2

-26
14
23
-5
-5

4

-11

32
7
3

-26
14
23
-5
-5
4
-11
32
7

3

-26
14
23
-5
-5
4
.11
32
7

3

-28
2
21
5

4

6
-1
39
-6
1

-28

21

-1
39
-6

-28

21

-1
39
-6
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SEA SURFACE TEMPERATURE (SST) INDEX (1895-1984)
Source : Wright (1989)

Year
1895
96
97
98
99
1900

== BN e NV R S VS B S

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Jan. Feb. Mar. Apr. May Jun.

-50

33
169
-26
-67
163

56

52
170
-52

97
142
-45
-58
-83

-117

-69
122
-38
139
133

9
149

-125

111
76
64
-53
-38
36
117
120
48
15
-61
25
147
-22

-85
10
165
-134
-41
137
33
51
117
-5
98
95
-55
42
-129
-82
-72
87
15
106
93
-101
-103
-96
120
111
-17
-18
-84
8
-84
89
30
5
-39
20
102
1

-31
37
65

=52

-64
91

-15
41

101

0
92
48

-65

-23

-46

-107

-63

58
3

168

148

-57

-114
25

141
52

-87
-9

6
26

-36
82

-16

-10

0
18
89

54

-11
6
-79
-48
-15
98
25
70
14
-21
77
110
-42
-32
-49
-123
-80
91
-11
93
111
-109
-24
-8
148
41
-11
31
23
1
-79
88
-44
0
4
28
93
21

53
11
5
-33
-26
108
-1
61
20
-16
155
23
16
-43
-86
78
-14
37
-49
141
104
-107
-76
16
113
57
-12
31
44
-64
8
45
8

8
-23
29
55
67

33
33
-1
-43
-14
92
12
70
-17
19
151
2
20
-95
-81
-82
1
-24
26
93
3
-79
1
16
136
-29
13
-97
10
-58
5
8
12
-29
25
20
36
4]

Jul. Aug. Sep.
21 39 77
84 153 114
28 -17 11
-58 -67 -24
25 58 104
78 83 98
-34 -11 -1
146 110 176
-66 -70 -47
80 87 68
135 82 164
15 -67 -38
-19 0 91
-84 -47 -117
-54 78 -77
-48 -52 -83
53 88 106
19 -58 26
34 21 43
67 53 86
-28 -87 -15
-85 -94 -96
-46 -59 9
58 139 82
32 17 27
91 -13 27
12 23 7
33 25 -52
24 51 83
-97 -69 -63
47 44 70
42 22 -4
25 10 16
23 2 12
11 19 27
70 60 102
31 18 -22

9 17 18

Oct. Nov. Dec.
37 87 47
110 165 176
33 -31 -30
-50 -71 -63
232 164 168
80 19 68
1 10 7
177 172 169
-46 -51 -85
118 100 119
127 112 122
-67 -90 -20
-57 28 46
71 =59 77
-108 -132 -117
-36 -67 -55
111 138 215
-7 29 -18
42 52 106
207 161 148
-175 -125 -70
96 -127 -125
-103 -85 -43
133 82 106
60 -31 40
-14 13 -13
3 -75 36
-84 -94 -17
90 107 68
-98 -99 .51
68 103 144
-47 -55 -50
46 22 24
-8 -10 1
37 52 27
129 164 153
-66 -29 -33
27 5 -8
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33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

-7
48
-53

-47
-56
-63
71
166
67
-126
-63
-33

-6
-2
-42
-104
-45
69
54

-65
-139
-58
141
48
-9
-17
-22
-43
66
-52
110
-42
-76
98
89
-117
-38
159
-144
-44

0
-90
-26

16
-25
-39
-92

75
181

45

-102

-1

-19

21
17
-148
<21
53
32

=27
-64

132
40
-7
29
-16
-36
26
-10
82
-20
-87
67
48
-111
-6
117
-98
-35

-28
-48
-29

-40
-79
102
104
27
-110

-95
10

39
-23
-25
-21

12

37

12
-67
-67

24

98

27

-37

-17

62
-36
-72
60
17
-88

57
-69
-49

15
-16
-35

-7
-39
-13
-21
106

84

45
-68

25
135

32

34
99
-54
15
56
101
-95
-59
-62
60
69
42
23
21
-44
18
-37
13
39
45
34
53
41
-55
48
-10
-54
-30

-25
-9

31
71
80
-1
-19
22

-40
15
24
14

-115
32
-6
56

-73

-98

-57
86
50
29
23

-35

-83
66
-15

-46
103

-47

82
-30
-51
-48

-40
-5
-22
-28
-9
-60

95
89
-7
-35
33

-127
14

-44
-71
33
-20
51
101
-104
-53
86
54
-3
-10
43
-21
27
-92
84
24
23

72
-45
-53

84
-70
-27
-91

-56
.12
44
-5
16
-58
47
71
58
-46

45
-51
-38
-26
-81
-40
-85

98
-10

60
110
-90
-60

98

42
-25

-1
-38

-7

81
-46

92

22
-16

38

38
-90
-54
113
-75
-32
-76

-49
14
22

-18
-3

-69
38
67
60

-71

14
-68
-54
-35
-36
-35
-59
101
-10

16
-92
-64
-72
123

33
-12

22
-35

74
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