THE LADDER LOAD-FLOW METHOD EXTENDED TO

DISTRIBUTION NETWORKS

by

Mikle Val Ellis

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in

ELECTRICAL ENGINEERING

APPROVED:

Vil S ondie

Robert P. Broadwater, Chairman

% \Zé/r %/me)'A j@zge é@

Yilu Liu aime De La Ree Lopez

r N 14 jAﬁ'—mﬁg‘”‘\
Wolter J. Fabryck Terry L. Herdman

July, 1994

Blacksburg, Virginia

THE LADDER LOAD-FLOW METHOD EXTENDED TO

DISTRIBUTION NETWORKS
by
Mikle Val Ellis
Robert P. Broadwater, Chairman

ELECTRICAL ENGINEERING

(ABSTRACT)

The rigorous load-flow analysis of Distribution Networks requires the
modeling of mutual coupling, multiphase possibilities and unbalanced
loading. The Ladder Load-Flow Method meets these requirements, but is
limited to radial systems. The Switch Compensation Method presented here,
extends the Ladder Load-Flow Method to solve Distribution Networks.

A network analysis program has been developed using the Electric
Power Research Distribution Engineering Workstation (DEWorkstation).
The program uses the pointers provided by the DEWorkstation to represent
the connectivity of the system. The use of these pointers increases the speed
of execution while naturally handling the sparsity of the system. The user is
also provided with "on line" attribute and topological data maintenance.

The extension technique is based on Thevenin's Theorem. This
approach allows the accurate determination of the equivalent impedance for
networks which contain series and shunt elements. The equivalent
impedance can be changed during the iterative solution process. This allows
the algorithm to simulate the operation of control devices which significantly
alter the impedance of the network. A transformer model for the forward

and reverse trace of the Ladder Method is also presented.

ACKNOWLEDGMENTS

The completion of this research would not have been possible without
the support of many people. I would like to express my appreciation to the
Electric Power Research Institute which provided the financial support for
this research. I want to express my most sincere thanks and admiration to
my wife, Sharie Sue. The completion of this work would not have been
possible without her support and guidance. She has sacrificed more than
words will ever be able to express. I will always be in her debt.

I want to thank my advisor Dr. Robert Broadwater for his patience and
help. He has always been willing to forfeit his i;ime to provide assistance. I
will always consider Robert a true mentor and friend.

I would like to dedicate this work to my three children, Caroline, Robin

and Jacqueline.

Chapter

TABLE OF CONTENTS

1 Introductionccceeaean ceecsccnnnennena csecscascncs 1
1.1 Problem Statement 5
1.2 Scope of Dissertation i i i i 7
2 Literature Review ceneacan ceecveneeneas seerevasesasnses 9
2.1 OVBIVIBW oo i e e e e e 9
2.2 The Ladder Load-FlowMethod, 12
23TheUseofLinkedListso iiiiiiiiiiiiian.. 15
24TheWorkof Others i i it i 17
2.5 Construction of the Thevenin Matrix 19
26 Contributions e 20
3 DEWorkstationcccceeecaaanaccsacacssnannsasnanncns 23
R T T 8 T2 To7) (T ¢ GO 23
3.2 The DEWorkstation Architecture 24
3.3 Pointers and Load-Flow Algorithm 26
3.4 PointersUsed By Load-Flow i i i, 27
3.5 RadialLoad-Flow 29
36 Validation e 31
4 The Switch CompensationMethod e 36
4 TREONY oo e 36
4.2 Formation of Sensitivity Matrix 38
4.3 Current Injection i 42
4.4 \Voltage Correction e 42
4.5 Implementation 46
5 CalculationExampleand ResultS .. cc.cceeeecancrsancancasnansnce 50
5.1 Determination of Sensitivity Matrix 50
52 Test Network e 54
5.3 Implementation 59
5.3 ReSUNS e e 62

v

6 Conclusions and Recommendationsccvcss cessssssnsensss 15

6.1 Comparisons of Solution Timeso i, 75

6.2 Calculation of Sensitivity Matrix 77

6.3 Updating the Sensitivity Matrix 78

6.4 Absence of Matrix Operations i, 81

6.5 Voltage Correction ...ttt ittt 82

6.6 Recommendations i 83

6.7 Future Considerationso i iiiiiiniiaann.. 84

Appendix

A Unbalanced Three-Phase Transformer Modeling ceacscnns 85
A1 CumentReverse TraCeiiiiiiiiiin i ieiianienenns 86

A2 Voltage Forward Traceciiiiiiiiiiiieiieieieannnnn 92

A.3 Phase Shiftof Wye-Deltac.cciiiiiiiiiiinennnnnn. 94
AdComputerCodettt e e 96

B Network Load-Flow Driverand Modulescccecveccacscanns 102
B.1MainDriver e e 104

B.2 Determination of the Sensitivity Matrix 107

B.3 Initialize Co-tree Currents oo, 109

B.4 Determine Current Change it iiniennnnn... 110
B.5Voltage Change i e 111

B.6 Network CONvergence ittt 112
Referencescicieeeeneencnnnrscansescacscannnannas 114
1 - L 117

Figure 1.1.
Figure 1.2.
Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 5.5.

Figure 5.6.

List of Figures

Circuit Model for Load-Flow 4
Load Flow Solution it 5
Circuit For Illustrating the Ladder Method 12
Currents for Ladder Method, 13
Circuit for Illustrating Reverse Trace Pointers 16
Circuit for [llustrating Forward Trace Pointers 16
Circuit for Illustrating Loop Compensation 18
Resulting Circuit i it 18
DEWorkstation Architecture it 25
IEEE 34 Bus Radial Distribution Test Results 32
Test Circuit Connection Diagram [34
Mutually Coupled Line Model e e 37
Graph Illustrating Two Methods To Calculate Resistance 39
Determination of Thevenin Resistance 40
Example System e 43
Convergence CharacteriStiCsuuiineitinn i, 44
Flow Chart of Initialization of Sensitivity Matrix 48
Flow Chart of Predictor/Corrector Iterative Scheme 49
Thevenin Impedance Test Circuit cciiiiiiiiiiiienaann . 51
Mutually Coupled Impedance Test Circuit 53
Resultant Sensitivity Matrix it 54
Test Network 96
Typical Cable Impedance and Admittance Values 57
Test Network Loads i i, 59

vi

Figure 5.7.
Figure 5.8.

Figure 5.9.

Figure 5.10.
Figure 5.11.
Figure 5.12.
Figure 5.13.
Figure 5.14.
Figure 5.15.
Figure 5.16.

Figure 5.17.

Figure A-1
Figure A-2.
Figure A-3.
Figure A-4.
Figure A-5.
Figure A-G.

Figure A-7.

Radial Part of Test Network

Typical Voltage Magnitude Valuesc..... 63
Typical Current Magnitude Valuesccoo.... 64
Convergence of Complete Algorithm 65
Convergence without Updating Sensitivity Matrix 66
Convergence with changing all three co-tree currents 67
Test Case Comparisoncciuiiirinieieriiiiiiriiieaaaannn. 68
Test Network with Control Devices cciiiiiiaan... 70
Test Network with Control Devices Voltages 71
Test Network with Control Devices Currents/Power Factor 72
Typical Voltage Magnitude Values for Heavily. Loaded Circuit 74
Example Delta-Wye Configurationcciiiiiiinnn.n.. 87
Example Wye-Delta Configurationcccciiinann.n. 88
Superposition Used To Solve Wye-Delta Configuration 89
Wye Connection with Single PhaseLoad 91
Thevenin Equivalent Circuit 92
Voltage Relationships for Wye-Delta Configuration 93
Delta-wye Phase Transformationccciiiieanan... 95

vil

Chapter 1

INTRODUCTION

Electrical utilities in the United States are expected to supply their
customers with continuous electrical power. Electrical power is produced at
generation plants by three phase generators. Since the generation plants are
typically located some distance from the customers, the power must be
transported across a set of three transmission lines. The power system can be
divided into two distinct subsystems: the "Transmission System" and the
"Distribution System".

Large amounts of power are transmitted over long distances at high
voltages (135 kV up to 765 kV) from generaﬁon plants to sites near the
customer called substations. This portion of the system is typically referred to
as the Transmission System. High voltages are used to reduce losses. Several
generation sites frequently supply the same substation. This increases the
reliability of the system by connecting the substations into a looped or
networked system. The power flowing on each of the three transmission lines
1s typically the same. Consequently, the transmission system is
characterized as a "balanced" system.

At the substation the voltage is reduced and the power is dispersed in

smaller amounts to the customers. This portion of the system is referred to as

the Distribution System. One substation will typically supply many customers
with power. Therefore, the number of separate transmission lines in the
distribution system is many times that of the transmission system. Individual
customers are generally supplied from one substation. However, in cases
where high reliability is required, customers are supplied by several
substations. These "Distribution Networks" are typically located in the
downtown areas of large cities. Most customer loads connect to only one of
the three transmission lines in the distribution system. Therefore, the power
flow on each of the transmission lines is typically nbt the same and the system
is "unbalanced". Unbalanced systems are not as efficient as balanced systems
[1].

A "load-flow" study is a computer simulation of the power system which
predicts the amount of power flowing on each transmission line connecting the
generation plants to the customers. "Load studies are essential in the
planning the future development of the system because satisfactory operation
of the system depends on knowing the effects of interconnections with other
power systems, new loads, new generation stations, and new transmission
lines before they are installed [2] ".

The load-flow solutions provide valuable information to the planner,
designer and operator of the system. System planners are interested in

studying the power system 10 or 20 years in the future. A power company

must know far in advance problems associated with the load exceeding either
the transmission or generation capacity. More than 10 years can elapse
between initiating the plans for a new power plant or transmission line and
bringing it on the line.

The designer needs to evaluate quickly and economically design
alternatives for complex systems. The load-flow program provides the
designer with the ability to quickly simulate the operation of the system for
many mutually exclusive design alternatives.

The operator is interested in the reliable and efficient operation of the
existing system. The load-flow program can predict the losses of different
system configurations which are available to the operator. The fast, efficient,
and accurate operation of this program has been the topic of research for
several decades.

The solution of the load-flow problem requires matching the
characteristics of the source and load through the circuit laws imposed by the
transmission lines. Generation plants are regulated to maintain a constant
voltage output. Therefore, power sources are often modeled as constant
voltage sources in the load-flow program. Customer loads are modeled in a
variety of ways. The most common load model is a constant power load. The

transmission lines are modeled as constant impedances. Figure 1.1 illustrates

a simplified circuit model for a single customer load connected to a generator

through a transmission line.

4 R N

Figure 1.1 Circuit Model for Load-Flow
- /

The laws of circuit theory require that the voltage across the

transmission line plus the voltage across the load to be equal to the source
voltage. The voltage across the transmission line can be expressed as the
product of the current through the line multiplied by the line impedance

(Ohm's Law). This results in the following linear relationship:

Ve =IR+ V|
where Vs 1s a constant.

A constant power load may be expressed by the following relationship:

P=V; xI
where P is a constant.

The solution of these two relationships for the model shown in Figure
1.1 is illustrated graphically in Figure 2.1. It should be noted that this simple
example can be solved in closed form. However, as more generators, loads and

transmission lines are added to the system a numerical method will be

required to achieve a solution.

The solution of the load-flow problem is the intersection of the constant
power curve and the linear relationship resulting from the circuit equations.
The curves may intersect at more than one point as illustrated in Figure 1.2.
However, only the point of the highest load voltage is a practical solution for a
power system. The curves may not intersect, in which case no solution is

possible.

v, A

Figure 1.2 Load Flow Solution
N)

1.1 Problem Statement

It is becoming apparent that current Transmission System load-flow
algorithms are inadequate for Distribution Systems. The main differences are
the number of different types of devices, multiphase possibilities, and widely
varying types of loads in Distribution Systems. Distribution Networks are a
good example of all of these differences.

Portions of the network are unbalanced due to single-phase loads and
radial spurs. When the system is unbalanced, the mutual coupling between

phases must be considered. Extremely large networks which consist of over

12,000 different devices are not uncommon. Consequently, the memory usage
and computation time required to achieve a solution become the important
performance criterion. It is the intention of this research to develop an
algorithm that meets the requirements of rigorous load-flow analyses on
Distribution Networks.

Notwithstanding these differences, an important lesson can be learned
from several decades of software development for Transmission Systems [3].
Load-flow programs require topological data and attribute data. The
topological data represents the interconnections aniong the components in the
system. The attribute data represents the transmission line impedances and
load data. Traditionally, topological and attribute data were not directly
available to the load-flow program. Instead, this data was combined before it
was placed in the database (i.e., Y;,o). Consequently, adding, removing, or
switching of components was an off-line maintenance task.

Today the goal is to provide "on line" attribute and topological data
maintenance. Graphical User Interfaces (GUI) provide the user with the
capability to insert, delete and switch components "on line". However, the
GUI data must be converted into a form required by the load-flow program.
This can consume considerable CPU time and memory for a large Distribution
Systems. If the data is in the same form as required by application programs,

the overall system will be faster and use less memory. This is one of the

design goals of the Distribution Engineering Workstation (DEWorkstation)

currently under development by the Electric Power Research Institute (EPRI).
1.2 Scope of Dissertation

Load flow algorithms exist which solve large unbalanced and mutually
coupled radial distribution circuits. One such method is the Ladder
Load-Flow Method. The primary contribution of this research is the extension
of the Ladder Load-Flow Method to solve looped systems.

The Ladder Load-Flow Method has several advantages over algorithms
developed primarily for transmission analysis. The most significant
advantage is that the Ladder Method can be formulated without the use of
matrix operations. Matrix operations consume considerable time and
memory for large systems. This implementation of the Ladder Load-Flow
Method uses "pointers" to represent the connectivity of the system. Such an
approach increases the speed of execution while naturally handling the
sparsity of the system.

This method will be applied to the solution of distribution networks.
The key elements of this new approach are as follows:

1. The extensive use of pointers for reduced processing time and memory
usage.
2. The representation of mutual coupling among transmission lines.

3. On line attribute and topological data maintenance.

4. The representation of controlled devices such as Tap Changing Under
Load Transformers and Capacitors.

5. Run on a personal computer platform.

Chapter 2

LITERATURE REVIEW

A literature search has been conducted in the area of unbalanced and
mutually coupled load-flow algorithms. The application of these algorithms to
large distribution systems was also investigated. Each algorithm is derived
from the circuit law equatipns and the load characteristics. However, the

algorithms differ in the mathematical formation of the load-flow problem.
2.1 Overview

The Newton-Raphson load-flow algorithm has demonstrated excellent
convergence on Transmission Systems for more than two decades. To apply
this method to the solution of load-flow equations the real and imaginary
power at each bus are expressed as a function of the complex voltage and line
admittances. The change in power at each bus is approximated by a Taylor
series expansion of these equations. The higher order terms are generally
neglected and the resulting jacobian consists of the partial derivatives of P
and Q with respect to the change in voltage at each bus. Mutual coupling can
be represented by modifying the line admittance equations [4,5,6].

The Newton-Raphson algorithm has been wused successfully on
relatively small Distribution Systems. However, as the size of the system

increases the memory requirements and computation time of this method

become excessive [7]. The size and unbalanced nature of Distribution
Networks makes the Newton-Raphson approach unattractive [8,9,10,11].
"The major short coming of this method is the requirement that the jacobian
matrix, with rank approximately four times that of Y, be recalculated for
each iteration" [11].

The Gauss-Seidel method is another familiar load-flow algorithm. The
current entering and leaving each node is expressed as a function of the bus
voltage and the real and imaginary power at each bus. This results in a set of
linear algebraic equations which can be solved by the Gauss iterative method.
Mutual coupling can be represented by modifying the line impedances in the
same manner as the Newton-Raphson Method. The Gauss-Seidel method
generally requires more computation time than the Newton-Raphson method.
The method often has convergence difficulties on distribution systems [11,12].

A derivative of the Gauss-Seidel method known as the Z,,, Gauss
approach has been used to solve Distribution Networks [11]. The voltage at
each bus is expressed as a function of line impedance and the load current. If
the loads are modeled as constant currents the resulting equations are linear.
The principle of superposition is used to determine the voltage at each bus
resulting from the voltage source and the load currents. The impedance
matrix is formed by factoring the Y, ,; matrix which includes the mutual

coupling effects. Optimal ordering and L-U decomposition are employed to

10

reduce memory usage and processor time. No comparison of processor time
and memory usage are available.

Several recent methods iterate using circuit models to solve
Distribution Systems [8,10,12]. These methods are characterized by the
absence of matrix operations. Circuits are solved using "traces". The data can
be stored in a dynamically allocated linked-list [13]. The method begins with
an approximation of the voltage at each load bus. The load current is then
determined using either circuit theory or conservation of energy principles.
The resulting circuit is linear. The solution of thié linear circuit will result in
new values for the voltage at each load bus. ‘The process is iterative and
repeated until the bus voltages converge.

Mutual coupling can be modeled in the circuit as current controlled
voltage sources. These methods were developed for radial systems but can be
extended to networks using the principle of superposition [14]. The method
used on radial systems is competitive with other load-flow methods in terms
of total processor time and memory usage for large systems [7]. Modeling
errors can aiso be detected using circuit principles [8,15].

Another method linearizes the load-flow problem about the balanced
operating point [16]. This method uses "distribution factors" to relate the
change in the line loading to a generation. The distribution factors can be

approximated with elements of the Z matrix. These distribution factors can

11

then be used to model any imbalance or mutual coupling in the network. This
method has mainly been employed on Transmission Systems. No comparisons

are available on memory usage or computation time.
2.2 The Ladder Load-Flow Method

Only the trace methods can allow "on line " data attribute and
topological data maintenance for the Load-Flow algorithm. Trace methods are
also well suited for the representation of controlled devices. The other
methods require the construction of the Y, matrix. Changes to either the
attribute , topological or control data requires the reconstruction of this
matrix. Based on this consideration The Ladder Load-Flow algorithm was
selected for the solution of distribution networks. The Ladder Load-Flow
algorithm is a trace method. The algorithm can represent mutual coupling. It
1s competitive with other methods in both memory usage and total processor
time. The basic ladder method will be explained with the aid of the circuit

shown in Figure 2.1.
4

|)
7967v /O 1967V /O 7967v /O 1967V /O 7967v /O 71967V /O
O, ® ® ® ® ®

0.0574j0.122 | 0251+4j0.537 |0.182+j0390 |034s+,'o‘744 | 0.1774j0378 |0.194+j0.415 |

Sbwin [H h K K h b

1967V /O 133kW 650kW 279kW 134kW 1000kW 271kW
96.3kVAR 471kVAR 203kVAR 97kVAR 724kVAR 196kVAR

Figure 2.1 Circuit for Illustrating the Ladder Method

N J

12

In Figure 2.1 bus voltage magnitudes are shown in volts, angles in
degrees, line impedances in ohms, and bus loads in kilowatts and kilovars.
The voltage magnitude and angle are specified at the sending-end or
substation. The iterative algorithm begins by estimating the voltage at each
load bus. The substation voltage may be used as an initial estimate as shown

in Figure 1. With these voltages it is possible to compute the resulting load

currents as I=(S/V)y*.

Once the load currents are determined the resulting line currents can
also be determined as shown in Figure 2.2. The voltage drop across each line
can then be calculated as the product of the line current and line impedance.
This results in a new estimate of the voltage at each bus shown in Figure 2.2.

The process is iterative and repeated until the bus voltages converge.

1922V/-. 8 TI36V /-.96 7638V £1.4 7485V /2.1 7414V£-2.4 7398V /2.5

©) ©) ® ©) ®
382A /35, 9 | 3624 /35.9| 2614 £35.9)217A £35.9196A £35.9] 43A/35)

7967VL¢/> ﬁ

Figure 2.2 Currents for Ladder Method)

&

In principle, the ladder method is based on a circuit approach first
proposed in 1967 [26]. The method begins by converting the nonlinear kVA
This results in a linear circuit. This linear

loads into linear load currents.

circuit is then solved which results in new estimates for the load currents.

13

The process is very similar to a Guass-Seidel iterative method of solving
algebraic equations. However, the iterations take advantage of the circuit
structure.

This circuit structure approach allows the algorithm to use circuit
principles to determine convergence. The currents are summed back to the
source at each iteration. An indication of convergence can be obtained by
comparing the source currents at each iteration. If the source current is
different from that of the prior iteration the algorithm has not reached
convergence. If the source current is the same as that of the prior iteration
then all the voltages in the circuit can be compared to verify convergence.

The detection of bad data may also.be determined using circuit
principles. Line impedances which are too large are determined by comparing
the computed voltages to the nominal value. Load data which is likewise too
large can be detected by comparing the estimated line currents with the rated
values.

These techniques of checking for convergence and bad data are not
mentioned in the literature. However, these simple modifications have proven
to be very valuable. The algorithm's speed is enhanced by eliminating the
need to compare all the voltages in the system from one iteration to the next.
The bad data checks detect the two most common sources of error in data

provided to the load flow program.

14

2.3 The Use of Linked Lists

The implementation of this method into a load-flow program uses
"traces" to perform the two basic operations required by the method: A
reverse trace and a forward trace. A circuit trace is the order in which an
algorithm process the data in the component linked list. The reverse trace
sums the estimated currents back to the source. The forward trace distributes
the voltages out to the ending nodes.

In a linked list each circuit component has a data structure attached
to it. This data structure is accessed by pointing fo a memory location which
is the start of the data structure. Components are linked together by allowing
the data structure of one component to contain pointers to another
component's data structure. This links the data structures together.

The linked list of reverse trace pointers links the components together
in such a way as to facilitate the addition of currents back to the source. This
can be illustrated with Figure 2.3. The only requirement in forming this
linked list is that for a given component all the downstream components
attached to a component must be processed before the given component is
processed. It is possible that more than one linked list may satisfy these

requirements for a circuit.

15

.

|

(
e =
— (N

Figure 2.3 Circuit for Illustrating Reverse Trace Pointers)

The formation of the forward linked list requires all upstream

components of a given component be processed before the given component.

This is llustrated in Figure 2.4.

-

C \/“‘/\
¢ | —

? N

Figure 2.4 Circuit for Illustrating Forward Trace Pointers

16

2.4 The Work of Others

Several authors have explored extending radial trace methods to solve
looped systems. The basic technique used is the principle of superposition.
This same technique has also been used to determine the switching response
of circuits [27].

Consider the two linear radial circuits separated by a switch as shown
in Figure 2.5. The solution of each radial circuit will result in a voltage
difference across the open switch. If this voltage difference is zero, the switch
can be closed without affecting any of the voltages‘and currents in each of the
radial circuits. Consequently, if the voltage difference is zero, the solution of
the looped system has been achieved. This provides the motivation behind
the technique which is simply to determine a current which when added to
the load current at the connection points will make the voltages equal at
these same points. Borrowing terminology from graph theory this switch will
be referred to hereafter as a "co-tree component" . A "co-tree component" is a
component which if removed from the system breaks a loop. Removing all

co-tree components results in a radially connected system.

17

.

N A
Tohm Tohm .
Tohm Tohm Q (1 Ven
=
Figure 2.5 Circuit For Illustrating Loop Compensation

The current that would flow through the closed switch is determined by

applying a fictitious voltage source at the co-tree component which is equal in

magnitude but opposite in sign to the voltage difference across the co-tree

component. In accordance with the principle of superposition all other active

voltage sources are shorted and active current sources are opened. The

Thevenin impedance is determined on both sides of the co-tree component.

The current that would flow through the co-tree component is determined by

solving this resulting circuit shown in Figure 2.6.

e 2
-05V +
M)
+ ~ +
l—»
AV 0.5 ohms 0.5 ohms sz
1
S Figure 2.6 Resulting Circuit

The desired currents at the co-tree components are determined using

the Thevenin equivalent circuit shown in Figure 2.6.

These steps are

18

repeated until the voltage difference across the co-tree component is within

prescribed limits.
2.5 Construction of the Thevenin Matrix

Several different approaches have been proposed for determining the
Thevenin impedance seen by the co-tree component. All of the approaches are
based on the formation of a matrix which is dimensioned by the number of
co-tree components in the system. D. Shirmohammadi determines the
impedance on each side of the co-tree component by injecting a current at
each co-tree component with the source and all loads removed [14]. The ratio
of the voltage and current at the co-tree component is the Thevenin
impedance. The impedance values are then stored in a matrix. As the size of
the system increases this "Preparation" phase which includes the process of
building the linked lists and the Thevenin equivalent matrix requires nearly
half of the total CPU time.

G.X. Luo uses a graph based approach in the formation of this matrix [
9]. The first step in this approach is to find the unique path connecting the
two side nodes of the co-tree component which has been divided into a positive
path and a negative path in the algorithm. Step 2 first establishes the nodal
voltages for the nodes on the path and then the remaining nodal voltages.

Finally the elements of the matrix are calculated.

19

These approaches assume that the shunt components in a power
system such as capacitors and shunt admittance can be neglected. This is
usually a good assumption for the normal operation of a power system. They
also assume that transformer turns ratio remains constant throughout the
solution process. This assumption is violated when the algorithm must
simulate the automatic control of tap changing under load transformers

(TCUL) and other similar devices.
2.6 Contributions

There are three major differences between the algorithms used by
others and the Switch Compensation algorithm proposed here. The first is the
manner in which the Thevenin equivalent circuit shown in Figure 2.6 is
determined and used by the algorithm. The second is the application of the
principle of superposition to change the voltage at the co-tree components as
well as the current. Third the algorithm uses pointers to process the topology
of the network.

The Switch Compensation method uses the forward and backward
traces of the Ladder method to determine a sensitivity matrix at each co-tree
component. The determination of this Sensitivity matrix is also based on the
principle of superposition. Assume the voltage between two terminals in a
linear network is known. If a current is injected at these same two points the

voltage will change. This change in voltage divided by the injected currents

20

determines the Thevenin impedance of the network from the two terminals
specified.

It should be noted this current injection could be the desired current
determined from the calculation of the circuit shown in Figure 2.6.
Consequently, once the process is started the determination of the Thevenin
impedance is inherit in the method. At each iteration a change in current is
determined at each co-tree component. Each radial circuit is converged with
this current injected at the co-tree component. This will result in a change in
voltage at the same co-tree component. This change in voltage divided by the
change in current provides the approximation of the Thevenin impedance at
the co-tree component for the next calculation of current. Control devices
which may change between iterations can be solved in this manner.

The principle of superposition may also be applied to determine the
resulting change in voltage at a co-tree component . The calculation of this
change in voltage due to the injection of current at co-tree components

proceeds directly from the circuit shown in Figure 2.6:
AVy=-25x1I AVy=.25x1

This calculation provides an estimate as to the change in voltage at the
co-tree components, thereby, increasing the rate at which the algorithm will
convergence on each radial circuit. The use of circuit principles to determine

convergence and detect bad data is another unique feature of this algorithm.

21

Load-flow algorithms designed for radial systems which use pointers to
define the topology of the system appear in the literature. The extension of
these algorithms to looped systems is achieved by resorting back to the use of
matrix definitions for the system. Many of the advantages of using pointers
to define the topology are lost with this approach. The goal of this work is to
formulate a load-flow algorithm for looped systems using pointers to process

the topology of the system.

22

Chapter 3

DEWORKSTATION

The Electric Power Research Institute Distribution Engineering
Workstation is a software package which provides a data environment
designed to integrate the analysis, planning, design, and operation needs of
distribution engineers. DEWorkstation has a novel Application Programmer
Interface [17]. The "on line" features of the Application Programmer
Interface provide the motivation behind the design of the load flow
application.

3.1 Description

Several years ago, the Electric Power Reéearch Institute (EPRI) began
development of a software package designed to aid distribution engineers. A
survey was conducted of the needs of distribution engineers to determine the
desired characteristics of the software package. Among other items the survey
determined that users should be allowed to easily experiment with alternative
solutions to a design. The EPRI .Distribution Engineering Workstation
(DEWorkstation) exhibits this characteristic and meets the design and
analysis needs of the distribution engineer [18].

Traditional transmission system software architecture (as used in EMS

and SCADA systems) do not meet the needs of the distribution engineer [3].

23

The primary difference is that the architecture must support a database
which is many times larger than the typical transmission system.

The easy evaluation of alternative solutions requires that system
components can be added and removed "on-line". Adding or removing power
system components has usually been an inconvenient, off-line maintenance
task. Adding or removing components generally requires that an admittance
matrix be reconstructed. This task requires considerable CPU time and
memory.

Another shortcoming of present design practices is that they are
generally not extensible. Utilities prefer to invest in large software products
in stages. This requires that the architecture provide a framework for gradual

evolution of the system over an indefinite period of time.
3.2 The DEWorkstation Architecture

DEWorkstation consists of an Executive, core features, and
applications. The executive manages the user and application interfaces with
the core. The workstation core consists of the data schema and the graphical
user interface (GUI) functions. Finally, applications are provided by software
developers. Figure 3.1 exhibits the general features and interactions of the

DEWorkstation.

24

External
External
Data
Data
Interfaces

Distribution
Database

Application
‘Modules

Graphical
User <: User
Interface

Application

Programmer
Interface

\ Figure 3.1 DEWorkstation Architecture /

The DEWorkstation is being developed as an open architecture system.

The term open architecture implies that programmers who wish to develop
application modules for DEWorkstation have a well defined executive and
core features on which to build their applications.

A key design feature of DEWorkstation is the separation of topology,
attribute, and application data. Attribute data is stored with "Parts" objects.

Application data is stored with application objects. Topological data is stored

25

with system, circuit, and component objects. This separation of data allows
“on line" data maintenance and makes the workstation extensible.

Pointers are used to manage the topological relationships among
workstation objects. They are maintained by the executive and are used to
implement such graphical operations as addition, insertion and deletion of
components. Operations and manipulations can be performed extremely fast.
The addition, insertion and deletion of components is achieved by modifying
four pointers in a linked-list. To further increase workstation speed and to
provide flexibility, all data object pointers are méde available to application

programmers.
3.3 Pointers and Load-Flow Algorithm

The use of pointers to define topology has several advantages for the
load-flow application. Pointers eliminate the need to define and maintain a
system admittance matrix. Consequently, the use of sparsity techniques is
not required. This makes the algorithm simpler and faster.

The use of pointers to define topology can only be fully exploited if the
applications employ the pointers maintained by the executive. The
performance of the workstation is degraded if applications must preprocess
the data provided by the executive. The load-flow algorithm in this

environment must be implemented using pointers.

26

3.4 Pointers Used By Load-Flow

The topology of a given circuit is maintained by pointers to single, two,
or three phase component objects. These pointers are stored with the
component objects themselves. A doubly linked list uses forward and
backward pointers to link components for each circuit.

System objects point to substations and circuits. Substations and
circuit objects contain pointers to starting and ending components. Each
circuit object also maintains a linked list of switches which have been closed
to create loops. |

Two additional pointers are defined that determine physical
connectivity within a single circuit. These pointers are referred to as the
feeder path and brother pointers. For a system of radial circuits, the feeder
path pointer of a given component is the next component toward the
substation that feeds the given component. The brother component for a given
component gives the first component that occurs in the forward trace that is
not fed by the given component. Feeder path pointers are used in a linked
list, where as brother pointers are not.

The load-flow algorithm uses the linked list of backward trace pointers
and the feeder path pointers provided by the core of the DEWorkstation to
sum the currents back to the source. The currents from the previous iteration

are removed. A pointer is provided by the workstation to the first component

27

in the backward trace. This is the first component in the backward linked list
of components.

The algorithm then determines the type of component which is to be
processed. In the case of lines and cables the load current is first added to
given line or cable. The load current is then added to the feeder component.
This component is determined by examining the feeder path pointer of the
given line or cable.

The next component to be processed is determined by examining the
backward trace pointer of the present component. The end of the linked list is
indicated by a NULL pointer.

The load-flow algorithm uses the linked. list of forward trace pointers
and the feeder path pointers provided by the core of the DEWorkstation
distribute voltage drops from the source to the ending components. A pointer
is provided by the workstation to the first component in the forward trace.
This is the first component in the forward linked list of components.

The algorithm then determines the type of component which is to be
processed. In the case of lines and cables voltage drop is calculated by the
product of the current through the line and the impedance of the line or cable.
The resulting voltage at the end of the line or cable is then determined by

subtracting this voltage drop from the voltage of the feeder component.

28

The next component to be processed is determined by examining the
forward trace pointer of the present component. The end of the linked list is
indicated again by a NULL pointer.

At an open switch that closes into another radial circuit, a pointer to
the component in the adjacent circuit is set. If a switch is closed to create a
loop, then adjacent component pointers (co-tree pointers) are set to the closed
switch, and the switch is referred to as a co-tree component. The number of

co-tree components defines the number of loops in the system.
3.5 Radial Load-Flow

The load-flow algorithm in DEWorkstation is a derivative of the
Ladder-Method. This method is implemented directly with the pointers
maintained by the executive. Consequently the user may add , insert, or
delete components on line. The translation of data, such as forming the Y is
not required.

The Load Flow program simulates the automatic control of tap
changing transformers and controlled capacitors. The transformer controller
allows the user to control the customer voltage at a selected point in the
circuit. A load drop compensator is also simulated by the algorithm.
Capacitor control can be time, power factor or voltage control. Power factor

control is available with a voltage override feature.

29

The algorithm uses the circuit principles discussed in Section 2.2 to
simulate automatic control. During the solution process the control variables
in the circuit will change from one iteration to the next iteration. If the
controller is turned on throughout this solution process the control actions
will result from the iterative nature of the algorithm. Controllers which are
allowed to move throughout the iterative process are likely to oscillate
between their maximum and minimum set points. This will increase the
number of iterations required to reach a solution. It is also possible that the
simulation of controllers in this manner will cause the algorithm to diverge.

The current provided by the power source of a radial circuit can be
used to indicate when controllers should be turned on during the iterative
solution process. In a radial circuit, this current provides an indication of
convergence. Once the change in source current between iterations is below
the threshold of the controllers, the controllers can be turned on in the circuit.

The data used by the load-flow algorithm is arranged by the executive
in memory and is immediately available to the application. Consequently,
when the load-flow application is executed no hard disk accesses occur.
Therefore, the application runs entirely in memory, and thus as quick as

possible.

30

3.6 Validation

The DEWorkstation load-flow algorithm is based on the DANE or the
Distribution Analysis and Economic Evaluation Workstation developed at
Virginia Tech. DANE has been used effectively by several utilities and they
have considered it a suitable tool for their work. Arkansas Power and Light
has used the DANE load-flow to analyze 3000 bus systems.

The featureé of the DEWorkstation radial load-flow have been
independently verified on over 35 different circuits [19]. The results have also
been compared to other distribution analysis programs. Figure 3.2 compares
the customer level voltage of the DEWorkstation Load-Flow with RDAP
Version 2.2W. RDAP is a commercial product of WH Power Consultants of
Las Cruces New Mexico. The buses are listed in Figure 3.2 in order of
increasing distance from the substation. Bus 1890 is 34.754 miles from the
substation.

The column labeled "%D" in Figure 3.2 is the normalized Euclidean
between the phasor voltages of the DEWorkstétion and RDAP. The

calculation is performed as follows [20]:

V1401 — V2 £6,|
123.8

The voltage of 123.8 volts is the nominal customer level voltage at the

%D = x 100

substation.

31

Bus PHASE A-N PHASE B-N PHASE C-N
RDAP DEW %D RDAP DEW %D RDAP DEW %D

MAG | ANG | MAG | ANG MAG | ANG | MAG | ANG MAG | ANG | MAG | ANG
800 123.6 0| 1238 0 016 123.6(-120] 1238 -120 0.16 1236 120(1238 120 0.16
802 123.3]| -006]| 123.5(-0.06 0.14| 123.4| -120.1| 123.6| -120.1 0.17(1234 1199 123.5| 1199 0.14
806 123.1 0.1 1233 -0.1 0.13| 1233| -120.1 1235 -120.1 0.16| 123.2]| 11992 1234] 1199 0.16
808 119.6| -091| 1199 -0.9 0.24| 121.4(-120.77| 121.5| -120.8 0.1 1204(11935 1206 1193 0.18
810 121.4-120.77 121.5(-120.8 0.1
812 115.6 -1.9| 1159 -1.86 025 1193|-121.55 119.3(-121.6 0.08 117(118.68| 1173 1186 0.28
814 1123 272 1127| -265 0.34| 117.7(-122.16| 1176| -1222 011 1143(118.14| 1147 118 0.39
850 1236 272 124| -2.65 035(1265[-122.16(1264 -1222| O.11| 1257| 118.14| 1262 118 047
816 1235 272 124 -265 042| 1265(-122.17| 1264 -1222 0.1 125.7] 118.14 126.1 118 0.41
818 123.4(-273| 1239 -265 043
820 1206| -2.78| 121.2| -2.68 0.51
822 1202 -2.78| 1209 -2.68 0.59
824 123| -291| 1234 -2.84 035(1259]-122.34| 125.8| -1224| 0.13| 1249| 117.93| 1253 1178 04
826 125.8(-122.34| 125.7| -1224| 0.13
828 123 -293| 1234 -286 035| 125.8]-12235| 125.7(-1224| 0.12| 1248| 11791 1253| 1173 0.45
854 121.9| -334(1223 -327 0.35| 124.7(-122.67| 124.6| -122.7 0.1 123.2] 11748 123.6(1173 0.45
856 124.7]-122.68 | 124.6| -122.7 0.09
852 120.1| 405 1205| -398 034 122.7|-123.21| 1227 -1233 0.16| 1202| 116.71| 120.7| 1165 0.54
832 1254 -405| 1257 -3.98 0.27| 1243(-123.21| 124.2| -1233 0.18| 1254| 116.71 126 116.6 0.52
858 1252 414 1255 407 0.27 124(-123.29 124| -1234 0.19| 125.1| 116.61| 1257 1165 0.52
864 1252 414 1255 407 0.27
834 1249 -424| 1253 418 034 123.8|-123.38| 123.7| -1235 022 1247 11649 1253| 1163 0.59
860 1249 424 1253 418 0.34| 123.8(-123.38| 123.7| -123.5 022 1246 1165| 1252 1163 0.6
836 1248| 425 1252| 418 035 123.7]-123.38| 123.7| -1235 021 1246 1165| 1252| 1164| 0.52
840 124.8| 425 1252 418 035| 123.7(-123.38| 123.7| -123.5 021| 1246| 1165 1252]| 1164 0.52
862 1248 425 1252 <418 035 123.7(-123.38| 123.7| -1235 021 1246| 1165(125.2| 1164 0.52
838 1248| 425 1252 -4.18 0.35
842 1249 -425| 1253| 418 0.35| 123.8)-123.38(123.7| -123.5 022| 124.7] 11649| 1253 1163 0.59
844 1249 427 1253 4.2 035(123.7]-12341| 1237| -1234 002 124.7(11646 1253| 1163 0.56
846 1249 432 1253 425 0.35| 123.7/-12345| 123.7| -123.6 0.26| 124.7| 11641 1253] 1163 052
848 125 432 1253] 426 026 123.7|-123.46| 123.7| -123.6 0.24| 1247 1164| 1253 1163 0.52
888 122| -481| 1224 474 035 1209|-123.99| 1208 -124.1 0.2 1221 11595| 1227| 1158 0.55
890 120(473 1203| 466 027 1189|-12401(1188 -124.1 017 120 11599 1205] 1158 0.51

Figure 3.2 IEEE 34 BUS RADIAL DISTRIBUTION TEST RESULTS

32

The circuit which was used for this load flow comparison is the IEEE 34

Bus Radial Distribution Feeder [21]. A connection diagram of this circuit is

shown in Figure 3.3. This feeder is characterized by:

1.

Load Types
a. Spot and distributed loads

b. All wye connected

c. All constant kW, kVAR

. Line Types

a. Three-phase overhead

b. Single-phase overhead

. Voltage Regulators - single phase regulators wye connected
. Shunt Capacitors - balanced three-phase

. In-line auto transformers 24.9 kV to 4.16 kV

33

_

-6

B
F—E-E-E-E-E-E-E-E¢

©
®

o]
[\
o

3

DEDED
@ @)D DD

@0 @60
€38)—E62)—(830)

Figure 3.3 Test Circuit Connection Diagram

_/

34

There are several modeling differences between the two load-flow
algorithms. The RDAP voltage angles are referenced to Bus 800. The
DEWorkstation voltage angles are referenced to the substation. This explains
the difference in the results at the first bus in the circuits (Bus 800).

The loads in the RDAP are placed in the center of the transmission line.
While the DEWorkstation places the loads at the end of the transmission line.
The shunt charging reactance of the line is split in half by the RDAP model.
One half of this reactance is placed at the start of the transmission line and
the other half at the end of the line. The DEWorkstation places the total
reactance at the far end of the line.

Despite these modeling differences, the percentage difference between
the two algorithms is less than 0.6 percent. Some of this difference can be
attributed to round-off error. DEWorkstation displays numbers to only two

decimal places of accuracy.

35

Chapter 4

THE SWITCH COMPENSATION METHOD

The primary reason the Ladder Load-Flow method is competitive with
other methods in terms of CPU time and memory usage is the limited use of
matrix operation. In particular, the elimination of the need to form and
invert a matrix dimensioned by the size of the system. The intent of the
Switch Compensation Method is to use the information provided by the basic
Ladder Method to extend the method to looped systems without the use of

matrix operations.
4.1 Theory

The ladder method iterates on a radial circuit structure. If the system
is looped, it may be separated into radial circuits by inserting open switches
into some of the transmission lines. At the open switches the effect of the
remaining network may be simulated by a fictitious load current which makes
the voltage across the switch equal to zero.

The load currents of all three phases at the switch point must be
considered when the circuit is mutually coupled. Figure 4.1 represents the
model of a single phase of two mutually coupled three phase transmission

lines connected through a switch.

36

9 Figure 4.1 Mutually Coupled Line Model)

It is desired to make the voltages on opposite sides of the switch equal

to one another. Applying the principle of superposition this condition can be

achieved by adding a change in voltage to each voltage at the switch.
Van +AVan =Van + AV ay (1)

The difference in the change in voltage is equal to the voltage across

the switch.
AV = AV iy =Vay=Van = Vs ¢))

The change in voltage at the switch point may be related to the change

in current at the same point by the sensitivity matrix.

[AV]usc = [Slasc[Al]asc (3)

[A V..,,c] = [S] abc [AI] abc (4)

37

The currents must be equal and opposite to correctly model the current
flow through the closed switch. This also implies that the an incremental
increase in current on one side of the switch is followed by an incremental

decrease in current on the other side of the switch.

[Alabc = —[Al]asc Q)

Combining the equations 3, 4, and 5 results in the following

expression.

[AV] = [Vs] = [V]asc = [V]abe = ([S]ave + [S]asc)[Al] (6)

This equation relates the voltage at the switch points to the desired

change in current
4.2 Formation of Sensitivity Matrix

The implementation of Equation 6 requires the computation of the
elements in the 3 -by-3 sensitivity matrix. The elements of the matrix relate a

change in current to a corresponding change in voltage:

Sy = AVx!Al,)

38

If the system is linear (no mutual coupling) the sensitivity matrix will
be the Thevenin Impedance Matrix. In a circuit which contains mutual
coupling and non linear loads the sensitivity matrix elements represent the
change in current to the change in voltage at a particular point in the circuit.
These elements represent a linear approximation at a particular point of
operation.

The voltage versus current graph of a linear resistor shown in Figure
4.2 illustrates the calculation of impedance in this manner. Notice that the
value of the resistor may be determined by thé ratio of the voltage and
current at a point on the line. This is Ohm's law. The same result can be
determined by computing the slope of the line. This is Thevenin's theorem.

(Current
55

50 R=200/20=10 or R=400/40 =10

4s e
w0) -~

35 o

30 i pd
25 % /

20
I R S — AV=200__. B
5
Voltage
0 100 200 300 400 500
K Figure 4.2 Graph Illustrating Two methods To Calculate Resistance)

The determination of the Thevenin impedance as the AV/AI will result

in the correct magnitude of the Thevenin impedance of any linear network.

39

The sign of the impedance may be reversed. Consider the example shown in
Figure 4.3. The voltage V will be 2 volts when the switch is open. The voltage
will then drop to 1 volt when the switch is closed and one Amp of load is
applied. The calculation of the impedance using the change in voltage and

change in current at the terminals would result in a negative value.

4)

1 ohm
~~
+
+
2 Volts) 1 Amp
- _ 2-1volts _
RTh ~ 0- lvolts =-lohms
Figure 4.3 Determination of Thevenin Resistance RTh

_ /

The resulting sign of the Thevenin Impedance can be corrected by

assuming the resulting impedance must have a positive real value. This
implies that the impedances of the network are passive i.e., the energy
delivered to any impedance in the network is nonnegative for any excitation.
This is certainly the case for most distribution networks.

Previous work in this area has employed Ohm's law to calculate the

equivalent impedance of the network. The use of the injection of one amp at

40

the co-tree component to determine the impedance of the network is an
example of the application of Ohm's law. A current is injected, the ratio of
resulting voltage and the injected current is used to determine the impedance
of the circuit. The Switch Compensation algorithm uses the change in voltage
divided by the change in current to determine the equivalent impedance of the
circuit.

This relationship between a change in current and a change in voltage
can easily be determined from the simulated connection scheme previously
described. Consider the following example. At a connection point a desired
change in current is determined using equation 6. This current is added to
any existing current at the connection point to simulate the closing of the
switch. The radial circuit is solved using the ladder method. This will result
in a new approximation to the voltage at the connection point. This resulting
voltage subtracted from the initial voltage at the connection point represents a
change in voltage. The corresponding current change is added to the injected

currents to simulate the closing of the switch.

Thus the sensitivity matrix elements are computed as part of the

Ladder-Load Flow algorithm. The information from one iteration is used to
determine the sensitivity matrix elements for the next iteration. The only

other requirement is some way to begin this iterative process.

41

4.3 Current Injection

In order to initialize the iterative process the sensitivity matrix must be
calculated. Traditionally this has been done by simply summing the
impedance matrices back to source. This approach is limited to systems which
contain components that can be modeled as constant series impedances.
Therefore, the current injection method to determine the sensitivity matrix
has been used in order to be able to model different types of power system
components. This modification to the ladder method can be implement in

computer code as a separate module, thus avoiding revisions to working code.
4.4 Voltage Correction

The principle of superposition may also be applied to determine a
voltage correction at each co-tree component. The desired change in the
co-tree currents is determined from solution of Equation 6. These currents
may then be substituted into Equations 3 and 4 to obtain the corresponding
change 1n voltage at the co-tree components.

The rate of convergence of a looped system can be increased by applying
this correction at each co-tree component. This is not an unexpected result
considering this was the basic algorithm of the original ladder method.

This can be illustrated with aid of the example system shown in Figure

4.4. The transmission lines which are shown as dashed lines in the Figure

42

are selected as co-tree components. The loads are converted to constant
impedances by computing the ratio of the voltage and current at each load bus
at the end of each iteration. The Thevenin impedance at each connection

point is then determined.

e e e 6 6 o)

Q57+j01n | 0351+4j0337 | QH2+/03%0 | QM8+ lurmm'l |auujum |

S‘% U N A A A
neTv L9

133kW 650kW 279%xW 134kW 1000kW 271kW i
96.3kVAR 471kVAR 203kVAR 97kVAR 724kVAR 196kVAR :

= ®

019440415

0.015+;0021 | 032+0.TR2 Q0I3+j0025 | Q21140451 |

81w 699 kW 195 kW
neTVv /0 G6kVAR 126 kw - 01 KVAR 141 kVAR

- 133 kVAR

360'0f+ 9100

rST O+ 260

®
e 6o O - ®

000+/0136 | a.0+j0258 lnmojnn-s | 018+j0234 | 0u3+in308 Iammna |

@b “h K K K K K
87kW 236kW 438kW 9.3kxW 636kW 528kxW
A

63kVAR ITIKVAR 317kVAR 4.7kVAR 460kVAR 382kVAR
L

k Figure 4.4 Example System /

The dependence of the looped system on the voltage correction at each
co-tree component is illustrated for three different cases in Figure 4.5. In each

case the percent convergence shown in Figure 4.5 is computed as follows:

| Voltage at Iteration - True Voltage |

True Voltage 100

43

/

~n

(3%

()

% Convergence at Bus 6

.
—

1 2 3 4 5 6 7 8 9 1

Iterations

\ Figure 4.5 Convergence Characteristics /

In each of the cases, the algorithm was considered to have converged
when the difference was less than 0.02 percent. |

The 1st case in Figure 4.5 illustrates the convergence of the iterative
scheme with voltage correction at each co-tree component. These results were
recorded for bus number 6 in the system. The results are typical of every
co-tree component in the system. Convergence is achieved in 8 iterations.

The 2nd case illustrates the convergence characteristics of the method
without voltage correction. The algorithm takes over 40 iterations to converge.

The determination of the Thevenin impedance at a bus will be accurate
only if the co-tree components are not removed from the system. The method
will converge as shown in the 3rd case of Figure 4.5 if this is considered. For

instance, once the current flow is approximated for the co-tree component

44

between buses 6 and 9 , the Thevenin impedance at bus 9 may be corrected
before current at the other co-tree component is determined. Conversely, the
resulting impedances and currents at other connection points will also affect
the approximation of the line current between buses 6 and 9. It should also
be mentioned that case 3 requires considerably more computations than case
1.

Several conclusions can be induced about the behavior of the algorithm
from this illustration. The first and most obvious conclusion is that voltage
correction increase the rate of convergence. Figure 4.5 illustrates how the
calculated co-tree current can be in the wrong direction when voltage
correction is not applied. This behavior can be explained.

It is important to recognize that the co-tree current is calculated from
the voltages at the connecting buses. Consequently, if the voltages at the
connecting buses are vastly different from the true values, the co-tree current

can also be expected to be in error. This may be the case when one co-tree
component serves as a connection point to more than two radial circuit. This
is the case for bus 9 in Figure 4.5.

The second case illustrated in Figure 4.5 corresponds to the
compensation method which has gained some popularity in the literature.
The co-tree currents are determined without considering the effect these

currents will have on the voltage at co-tree buses. The calculation of each

45

co-tree current proceeds without changing the voltage at the co-tree buses.
Thus the co-tree currents are in error for the first several iterations.

The first case in Figure 4.5 illustrates the convergence characteristics of
the algorithm when the change in voltage at each co-tree bus is partially
considered. The co-tree current between buses 6 and 9 is used to determined
a new value of voltage at each bus. This "new" bus 9 voltage is used to
determine the co-tree current between bus 9 and 15. Each co-tree bus is
processed once in this manner.

The third case in Figure 4.5 illustrates the vconvergence characteristics
of the algorithm when the change in voltage at each co-tree bus is considered
more fully. This case makes two passes over the co-tree buses. The first pass
is identical to case one. The second pass repeats the same processing using
the voltages and currents prescribed by the first pass. The co-tree current
between bus 9 and 15 will also result in a change in voltage at bus 9. This
change in voltage will effect the calculation of the co-tree current at bus 6.
This nullifies the order in which co-tree components are processed in the first
pass.

4.5 Implementation

The Switch Compensation method is implemented based on the results

of this experiment. The resulting scheme is a predictor/corrector type of

iterative scheme.

46

8

9

. Converge each radial circuit using the Ladder Load-Flow Method.
. Inject one amp into one phase of the radial circuits at each connection
point.
. Converge each radial circuit using the Ladder Load-Flow Method.
Calculate the Sensitivity Matrix elements as the change in voltage
divided by the one amp current injection. (Repeat steps 2 through 4 for
all phases)
. Calculate for a phase the change current required at each connection
point.
. Calculate the expected change in voltage for all phases and add this to
the connection points.
. Converge each of the connecting circuits.
. Update the Sensitivity Matrix elements.

. Repeat steps 5 through 8 for all phases and until the method converges.

Figure 4.6 is a flow chart of initialization of the sensitivity matrix (steps 1

through 4). Figure 4.7 is a flow chart of the iterative predictor/corrector

algorithm. A more detailed explanation of the algorithm can be found in

Appendix B.

47

~

v

‘ Converge Radial Circuit l

Store Resulting Voltages at co-tree Components

r_

| Inject one amp for phase i at co-tree componentD

I

l Converge Radial Circuit l

| Store Resulting Voltages at co-tree Components l

l Initialize one column of Sensitivity Matrix I

All Phases

All Co-Tree€

All Circuits

Figure 4.6 Flow Chart of Initialization of Sensitivity Matrix

48

l Calculate Current Injection for phase i j

v
CCalculatc Voltage CorrectioxLJ

| Converge Radial CircuiD

l Store Resulting Voltages at co-tree Components |

v_

Update one column of Sensitivity Matrix I

All Co-Tres No

No
All Circuits

Figure 4.7 Flow Chart of Predictor/Corrector Iterative Scheme

49

Chapter 5

CALCULATION EXAMPLE AND RESULTS

A distribution network was established in the DEWorkstation to
validate the Switch Compensation Method. This network contains mutually
coupled lines and is therefore inherently an unbalanced system. The
feasibility of solving distribution networks which contain automatic control

devices is also evaluated.
5.1 Determination of Sensitivity Matrix

Several test circuits where employed to test the ability of the algorithm
to correctly initialize and update the elements of the sensitivity matrix. The
circuit shown in Figure 5.1 illustrates the .abi]ity of the algorithm to
determine the Thevenin Impedance of a circuit. The circuit shown in Figure
5.1 does not contain any mutually coupled elements. The off-dialong terms of

the sensitivity matrix are zero for this case.

50

i10
5100

Figure 5.1 Thevenin Impedance Test Circuit

N /

The values shown in Figure 5.1 are all impedances in ohms. The

algorithm initialized the diagonal impedances in the sensitivity matrix to the
correct values of 11.15 + j20.77 ohms. However, off-diagonal terms were
observed when the algorithm updated the sensitivity matrix. These terms

grew in magnitude for each update of the matrix.
The algorithm checks the magnitude of both the AV and the Al before

updating the corresponding sensitivity matrix element. These checks serve
two purposes. First the checks are done to avoid under and overflow in the
calculation. Second the checks are done to determine if the magnitude of the
change is smaller than the convergence tolerance of the Ladder Load-Flow.
Initially, the threshold of this magnitude change was set equal to the
convergence tolerance of the Ladder Load-Flow method. For the decoupled
test case shown in Figure 5.1 off-diagonal terms of approximately 1.5 where

observed after four updates of the matrix. The algorithm converged in three

51

iterations. These terms started at a much smaller value but grew at each
update of the matrix.

These errors resulted from small differences in the converged solution
at each iteration. A change in phase "A" current should not result in a change
in phase "B" voltage when the system is decoupled. However, each time the
radial circuits are solved using the Ladder-Method a small difference is
observed in the solution.

These small oscillations in the solution values are inherit in any
iterative process which is halted and started again; In the absolute sense, the
solution changes after each iteration. Consequently, a small change in phase
"B" voltage was observed for a corresponding change in phase "A" current for
one iteration. This incorrectly, added an off-diagonal term to the sensitivity
matrix.

This effect grows as the algorithm nears convergence. The change in
current is expected to decrease as the algorithm nears convergence. This
results in division by a small current value. Thus a small error in the voltage
is amplified by dividing by a progressively smaller current value for each
iteration.

This was corrected by raising the threshold at which updates were
performed to 10 times the convergence tolerance. This also decreased the

solution time for the test network in the next section by about 7 seconds.

52

4)

[
S

0.0205 ;.02480 0.0036 j0.0099 0.0036 j0.0081
7 = 00036 J0.0099 0.00208 j0.0243 0.0037 ;0.0092
0.0036 ;0.0081 0.0037 j0.0092 0.0206 j0.0246

\ Figure 5.2 Mutually Coupled Impedance Test Circuit /

The ability of the algorithm to determine the sensitivity matrix in the
presence of mutually coupled components was also tested. The transmission
line sections shown in Figure 5.2 are mutually coupled. The resulting
impedance matrix for this case is also shown in Figure 5.2. The circuit
consists of two three phase sections which are connected in series. The shunt
admittance are smaller than 0.00001 in magnitude.

The resulting sensitivity matrix under these conditions is
approximately the sum of the two impedances matrixes for each line section.
Since the impedance matrixes are equal for each line section the result is
twice value of one sensitivity matrix. The results obtained from the program

are shown in Figure 5.3 .

53

0.041050 ;0.0497 0.007296 ;0.01986 0.007148 ;0.01629

0.007296 ;0.01986 0.0415500.04861 0.007397 30.01832

0.00714830.01629 0.007397 ;0.01832 0.041240 30.04928

Figure 5.3 Resultant Sensitivity Matrix

5.2 Test Network

The distribution network shown in Figure 5.4 was used as a test
network for the Switch Compensation Method. The co-tree components in the
network are the switches. The network consists of six loops, 35 nodes and
four feeders. The cables, transformers, and substation voltage represent
typical values for a distribution network [22].

The nominal voltage at the substation is 7.967 kV line-to-neutral. The
secondary grid is supplied through the network transformers which are Y-Y
connected. The rating of the transformers is 200kVA. The winding losses are
1% and the leakage reactance is 5%. The nominal secondary grid voltage is
125 volts line-to-neutral. Each secondary grid (loop) corresponds to a city
block (6 blocks to a mile).

The cables are single-conductor cables with rubber and synthetic
insulation without lead sheath protection. The conductor cross section is 4/0
circular mils with 19 strands. The current rating of this 4/0 cable is 480

Amperes. The cables are positioned in a vertical fashion under ground. The

54

first conductor phase C is positioned 30 inches below the ground plane. The
remaining conductors are spaced 3 inches apart. The phase positions in the
order they appear under ground are C, B, A, N. This configuration results in
an unequal mutual coupling effect between phases.

The mutual coupling effect is modeled using an equivalent 3-by-3
impedance matrix [4]. A typical impedance matrix for a secondary grid cable
is shown below in Figure 5.5. The charging current of the cable is modeled
using a shunt admittance matrix. A typical shunt admittance matrix is also

shown in Figure 5.5.

55

)

r’

—@
1 o

@

-
TL

N"_.__/

ot

-

@

T

C ®

p

Figure 5.4 Test Network

Series Impedance Shunt Admittance

A B C A B C

Phase | p X | R X | R iX iB iB iB

A 10.0365, 0.0464 (0.0127, 0.0262 [0.0122, 0.0226 |8.3e-7 |-2.8e-7 |-9.2e-8

B]0.0127, 0.0262 (0.0349, 0.0554 (0.0115, 0.0331 |-2.8e-7 |[8.4e-7 |-3.1e-7

C (00122, 0.0226 [0.0115, 0.0331 |0.0340, 0.0604 |-9.2e-8 |-3.1e-7 |7.le-7

Figure 5.5 Typical Cable Impedance and Admittance values

The winding leakage reactance and resistance are represented for each
transformer. Transformers are modeled as three separate units. The concepts
of amp-turn balance and Kirchhoff's law are- employed to model the
transformers under unbalanced loading conditions. This method is similar to
the method of symmetrical components [23]. This method can be used to
correctly model the 30 degree phase shift of Wye-Delta transformer
configurations. See Appendix A for a detailed explanation of this modeling
technique.

Three different load models are available : constant power, constant
current and voltage dependent current. The constant power load model
determines a load current at the bus such that the specified real and reactive
power are maintained. Given a specified power and a voltage at the bus, the

load current is determined as indicated below:
I=P-jQ)/V*

57 .

The magnitude and phase of the current is maintained constant in the
constant current model. The magnitude of the current is determined in the
same manner as the constant power model except for the load calculation the
voltage 1s assumed to be a constant at the bus. Thus, it is necessary to
determine this value only once at the start of the load flow iterations. As the
phase angle of the voltage changes at each iteration the phase of the current
is also adjusted to maintain the specified phase relationship.

In the voltage dependent current model modifies the constant current
by allowing the load current magnitude to vary with voltage magnitude. This
dependency is assumed to be a linear function. The percent difference in
voltage magnitude from the nominal value is determined . This difference is
then multiplied by a voltage dependency factor. The resulting product is
subtracted from the nominal current magnitude. This voltage dependéncy
factor is specified by the user and may be either positive or negative. A
positive value simulates a load which behaves like a constant impedance.
While a negative value behaves similar to a constant power load.

All the loads are attached to the secondary network. The loads are
connected at the end of each of the transmission lines. Figure 5.6 shows the
loading of the network. The loads are initially balanced. The solution will

then reflect the mutual coupling effect.

58

10,2 10,2

10,2 20,4
10,2

10,2 10,2

10,2

10,2 10,2

10,2

10,2 10,2 10,2 10,2 10,2 10,2 10,2 10,2

K Figure 5.6 Test Network Loads (kW kVAR)

5.3 Implementation

The Switch Compensation Method is implemented as indicated in

Section 4.5. The method begins by converging each of the radial circuits using

the Ladder-Method. When the switches are inserted into the network, the
executive attaches them with a feeder path pointer to a radial circuit. The
connection between radial circuits is achieved by co-tree pointers.

The radial circuit which is used to build the network is shown in Figure
5.7. The horizontally oriented switches represent connections between radial
circuits. The vertically oriented switches are attached to the same circuit.

The algorithm treats both the horizontal and vertical switches as co-tree

components.

g > h

A

\ Figure 5.7 Radial Part of Test Network J

60

The next step i1s to initialize the sensitivity matrix. This 1is
accomplished by injecting a current of one amp into both components which
border on a connection point. The radial circuits are again solved using the
basic Ladder-Method. The elements in the sensitivity matrix may then be
determined by taking the resulting difference in voltage and current from
each converged solution.

All the voltages and currents involved in this calculation are complex
numbers. The current that is injected is in phase with the voltage resulting
from the first radial solution. In theory, the injecfed current could have any
magnitude and angle. From experimentation selection of a current which is
in phase with the voltage reduces the number of iterations required to achieve
a solution.

The determination of all the sensitivity matrix elements requires that
currents are injected for one phase at a time. Since components in the circuit
are mutually coupled a current change in one phase is expected to result in a
change in voltage in a different phase. A given phase current injection will
determine one column of the sensitivity matrix.

Once the sensitivity matrix is initialized, the next step is to
approximate the change in current at the connection point required to force
the voltage difference across the connection point to zero. The calculation of

this change in current proceeds as illustrated in Section 4.1. The resulting

61

change in current is added to the one amp current injection on one of the
components at the border of a connection point. This current is then negated
and placed on the other component which borders on the connection point.
This keeps the injected currents at the connection point equal and opposite.

The change in current is determined one phase at a time. This allows
the sensitivity matrix to be updated as described in Section 4.2 The voltage is
also corrected as described in Section 4.4 after each calculation of the change
in current.

Each of the radial circuits which are connectéd are then solved with the
Ladder-Method. This process is repeated for each connection point until the

voltage across each connection point is zero.
5.3 Results

Figure 5.8 shows the resulting voltage magnitudes at the switch points.
The results are shown in volts. The resulting current magnitudes are shown
in Figure 5.9. The nominal voltage is 125 volts in the secondary network. The
resulting currents through the switches vary considerably in magnitude in
the network. This tests the algorithm's ability to converge on both large and

small current injections at the switch points.

62

Figure 5.8 Typical Voltage Magnitude Values

_/

63

0.05 0.07 0.8

0.06 0.1 0.11
0.05 0.9 0.10

\ Figure 5.9 Typical Current Magnitude Values

The convergence characteristics of the proposed algorithm were also
investigated. The number of iterations required to achieve convergence and
CPU time is largely a function of the number of loops in the network. Each
iteration of this program corresponds to one change in all the co-tree currents

in the network. The CPU time is the solution time seen by the user. This time

64

includes calculation of impedances and loads and performing data checks.
The vast majority of the solution time is consumed in two routines.
Approximately 10 percent of the total solution time is consumed converging
the initial radial circuits and initializing the sensitivity matrix elements. The
majority of the remaining time is spent in performing current corrections at
the co-tree components and performing system iterations on the network. A
flat start was used in all the cases. Convergence was achieved when the
change in voltage magnitude and angle was less than 0.000001. Figure 5.10
lllustrates the convergence characteristics of algdrithm as it was originally
proposed. The loads were modeled as constant power loads for the results

shown in Figure 5.10.

\

CPU time (seconds)
1404 130 seconds
(12 iterations)

1201
100 1
80

52 seconds
(11 iterations)

g

20J 19 seconds
(10 iterations) # of loops

0 1 3 6
Figure 5.10 Convergence of Complete Algorithm

65

Several experiments with the algorithm indicated that convergence
could be achieved for the test network without updating the sensitivity matrix
elements. The convergence characteristics without updating the sensitivity

matrix elements after each iteration are shown in Figure 5.11

4 R

CPU Time (seconds)
110, 105 seconds
100 (10 iterations)
90 1
80
]
60 45 seconds
50 (10 iterations)
40

17 seconds
30 (9 iterations)
20-
101

of Loops
0 1 3 6
K Figure 5.11 Convergence without Updating Sensitivity Matrix/

A similar experiment was performed with and without voltage
correction. Three different networks were solved first using voltage correction
and then without voltage correction. The result of this experiment indicated
that the absence or presence of voltage correction had little effect on CPU time

and virtually no effect on number of iterations required to achieve a solution.

66

A difference of 1 second in CPU time was observed on the 6 loop network. No
difference was observed on the 1 and 2 looped networks.

The intent of changing only one of the three phase co-tree currents for
an iteration was to allow the sensitivity matrix to be updated in conjunction
with currents. Since updating the sensitivity matrix elements in this manner
actually increased the solution time, the possibility of changing all three
co-tree currents in an iteration was also investigated. Figure 5.12 indicates
the results of changing all three co-tree currents. The time to initialize the
sensitivity matrix is approximately one-third of 'the total CPU time. The

solution time is reduced by approximately one third.

. - A

CPU time (seconds)

33 32 seconds

30 (7 iterations)

2 5

2 04

154 13 seconds

(6 iterations)
10
51 5 seconds
(5 iterations) # of loops

0 1 3 6
Figure 5.12 Convergence with changing all three co-tree currents

- /

The results of these three tests are summarized in Figure 5.13. The

difference in solution time between the first two cases of 25 = 130 — 105 seconds

67

represents the amount of time which is spent in calculating the sensitivity

matrix elements for each iteration. The difference in solution time for the last
two cases 73 = 105 — 32 seconds is the increase CPU time between allowing one

phase current to change per iteration and allowing all three co-tree currents
to be changed per iteration. This explains why the difference is roughly three

times.

Loops |Complete Algorithm Jw/o Sensitivity Update |Change three currents

1 19 seconds 17 seconds 5 seconds
3 51 seconds 45 seconds 13 seconds
6 125 seconds 105 seconds 32 seconds

Figure 5.13 Test Case Comparisons

The effect of adding control devices to the network was also
investigated. Some of the transformers in the circuit were changed to tap
changing under load (TCUL) transformers and some controlled capacitors
were also added to the circuit as shown in Figure 5.14. The transformers
controllers were set to control the voltage in the secondary network to 125
volts plus or minus 2 volts. The capacitors controllers were set to control the
power factor at the substations to 0.99 plus or minus 0.1.

The four controlled capacitors were added individually to the circuit.

After each addition the program was executed without updating the

68

sensitivity matrix. The addition of these four controlled capacitors did not
alter the performance of the algorithm significantly.

The 12 transformers were changed to TCUL type transformers
individually. After each change the program was executed without updating
the sensitivity matrix. When one of the transformers furthest from the source
was changed to a TCUL transformer the program was unable to reach a
solution. The program was changed to update the sensitivity matrix. After
this change the program reached a solution in 13 iterations and 135 seconds.

The resulting voltages magnitudes are shown in Figure 5.15. The
resulting current magnitudes and power factor on each of the feeders is shown
in Figure 5.16. Some of the resulting power factors not within the specified
control bandwidth. The controlled capacitors are at their upper limit for each

of these cases.

69

o)

© @

W N
U s o
Eﬁ’ lco
k)
ork with Control Devices

e
{

[®

.
%

k

.

Y e o &
Figure 5.14

122.2
1223

o

o/
123.5
123.5
123.8

124.5
)§\ 124.8
124.7

123.5 123.5 123.4
123.8 124.1 124.0
123.7 123.7 1235

Figure 5.15 Test Network with Control Devices Voltages

/

71

36.94
33.85
35.95

s

Power Factor
0.9883
0.9901

.0.9884

o/

30.78
36.87
39.93

43.01

}g\)\\\ 41.10

>

Power Factor
0.9630

0.9573
0.9582

o
43.59
41.72
37.95
59.37
N 58.44
51.72

U

Power Factor
0.9803

09785
0.9744

——.—/

27.69
34.79
29.98

W

\

Power Factor
0.9913

0.9923
0.9923

qure 5.16 Test Network with Control Devices Currents/Power Factor /

72

The loads in the network were increased to test the ability of the
algorithm to converge on a heavily loaded circuit. Each of the loads in the
network was increased to 60kW and 12kVARs. The resulting current in every

4/0 line section in the secondary network exceeded the rated value of 480
Amperes.

The transformer power rating was increased to allow all the lines in the
secondary network to be overloaded. The power rating of each transformer
was raised to 12,000kVA. The leakage reactance was maintained at 5% of the
base value. Winding losses were neglected for this simulation.

The algorithm was allowed to update the sensitivity matrix after each
iteration. Updating the sensitivity matrix is not required for this test
network. However, the objective was to determine if the algorithm would
converge. The solution time was 208 seconds and required 16 iterations. The

resulting voltages at the co-tree components are shown in Figure 5.17.

73

108.3 108.3 108.3

108.6 109.2 109.3
115.4 1153 115.3

Figure 5.17 Typical Voltage Magnitude Values for Heavily Loaded Circuit

N

74

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

The Switch Compensation Method can solve distribution networks
which are mutually coupled and unbalanced. This method is capable of
addressing the modeling challenges required by distribution networks while
running on a personal computer platform.

This method is an extension of the Ladder Load-Flow method with the
emphasis on the simulation of Tap Changing Under Load Transformers and
shunt capacitors with automatic tap controls. The simulation of automatic
control devices in the network requires the sehsitivity matrix be updated
after the control action. The Switch Compensation Method uses the
information and data generated by the iterative Ladder Load-Flow method to

update the sensitivity matrix.
6.1 Comparisons of Solution Times

The absolute comparison of solution times is difficult due to a number
of factors. The solution time depends on the machine on which the system
was solved and the operating system. The algorithms are different in terms of
functionality and modeling capability. The test systems on which the
algorithms are tested are different. The selection of the convergence tolerance

will also affect the solution times.

75

The algorithm proposed by G.X. Luo models P,V Buses but does not
model mutual coupling or shunt admittance [9]. The paper reports that
program was run on a PC/AT (with a 287 coprocessor). The TS1 test system
consisted of 30 Buses, two of which were P,V Buses and three loops. The total
solution time reported is 11 seconds. This time drops to 0.4 seconds when the
program is run on a VAX Micro-2. The convergence tolerance was 0.005 p.u.

These results are comparable to the solution times obtained in Figure
5.14 for the Switch Compensation Method. The program was run on a 486
microprocessor (50 MHz) with a math coprocessor.- The operating system was

0S2.1. However, the convergence tolerance of the Switch Compensation
Method is less than 2 x 1071 p_u.
The algorithm proposed by Carol S. Cheng models mutual coupling,

shunt admittance and P,V Buses. The program was run on a SUN Sparc 10
with a single CPU. The test system features 1418 line sections, 1419 nodes,
20 capacitors and 3 voltage regulators. The solution time for 5 loops and no
P,V nodes is 1.52 seconds. No mention is made of the convergence tolerance
which was used to obtain these results.

The SUN Sparc 10 and the IBM 486 machine are clearly generations
apart in terms of performance and cost [28]. Cross-platform testing is always

complicated by the lack of truly equivalent benchmark tests.

76

The convergence pattern is also an important characteristic of the
algorithm. A nearly monatonic convergence pattern was observed when all
three of the co-tree currents were changed before each iteration. This is the
same result reported by Cheng. Certainly, more experimentation is required

before this result is supported.
6.2 Calculation of Sensitivity Matrix

One of the major differences between the Switch Compensation Method
proposed here and previous algorithms is the manner in which the sensitivity
matrix is determined and used. The work of others in this area has been
based on the use of Ohm's Law to determine the equivalent Thevenin
impedance at the co-tree components. The Switch Compensation Method
uses Thevenin's Theorem to determine the elements of the sensitivity matrix.

There are several advantages to using Thevenin's Theorem with the
Ladder Load-Flow Method. The major advantage is that the Ladder
Load-Flow»Method inherently generates the necessary data to calculate the
elements of the sensitivity matrix as part of the iterative solution process.
Thus the algorithm can accurately determine the sensitivity matrix for more
sophisticated models of power system components than have previously been
employed with this method. This includes mutual coupled lines, shunt

admittance of lines and delta-wye transformer configurations.

77

Another advantage of this approach is that the proposed modifications
can be implemented as a separate module, without revisions to working code.
This makes the code more maintainable. A modification to a component
model in the Ladder Load-Flow algorithm will be inherently reflected in the
calculation of the sensitivity matrix elements.

The Thevenin based approach also allows the algorithm to update the
sensitivity matrix as part of the iterative process. The consequences of this
feature will be explored in detail in the next section.

This approach proved sufficient to converge the algorithm to within
.00001 percent of the correct solution of all cases tested. The CPU time
required to generate the sensitivity matrix in. this manner is typically one
third of the total solution time. This appears to be competitive with other
methods which typically require more than half of the total solution time to

build and factor the sensitivity matrix.
6.3 Updating the Sensitivity Matrix

The use of the Ladder Method to calculate the sensitivity matrix
elements allows the sensitivity matrix to be updated from the information
provided by the previous iteration. This scheme is similar to a predictor /
corrector algorithm. This approach is required when tap changing
transformers and controlled capacitors effectively change the impedance of the

network during the solution process.

78

The determination of the sensitivity matrix as a AV/AI is inherit in the

network solution process using the Ladder Method. This process begins by
converging each of radial circuits to a solution. A current is then injected into
each circuit at the co-tree components. The radial circuits are again

converged to a solution and the process is repeated until the voltage difference
between the connecting circuits is within tolerance. The AV is the change in
voltage on a co-tree component from one radial solution to the next. The
current change Al is the change in the value of the injected current through

the co-tree component from one radial solution to the next.

In a network which does not contain mutually components, this
determination of the sensitivity matrix after each radial solution requires
little additional time and memory. The voltagés and currents at the points
where the radial circuits connect must be storéd in a memory location after
each radial solution. This represents the only additional memory
requirement. In the absence of mutual coupled components each of the three
phase co-tree currents can be determined independently. The only additional

calculation is forming the differences between the voltages and currents and
dividing the differences by one another AV/AL
Updating the sensitivity matrix after each radial solution allows the

method to solve networks with automatic control elements. Recent literature
reports that the sensitivity matrix may be formed only once for circuits with
constant power loads, voltage regulators and capacitors [24]. The results of

the simulations contained in this work confirm these assumptions.

79

However, the inclusion of components in the network which
significantly change the impedance from iteration to next defeats the
approach of forming the sensitivity matrix only once. The inclusion of tap
changing transformers and controlled capacitors in the test network resulted
in 37 iterations without a solution. Previously, the algorithm required 7
iterations to reach a solution. This result is expected as sensitivity matrix
elements change as a function of the transformer tap setting and amount of
capacitance.

The calculation of the sensitivity matrix 'using the Ladder-Method
allows the sensitivity matrix elements to accurately reflect changes to the
network as the algorithm is converging. However, as the results indicate the
solution time increases in a nonlinear fashion as the number of co-tree
elements increases.

The significant increase in solution time is a consequence of modeling
mutual coupled components. When components are mutually coupled all the
elements of the sensitivity matrix must be calculated. This requires the
algorithm to change only one phase of the three phase co-tree currents and
determine the corresponding change in voltage in all three phases. The one
column of the sensitivity matrix is then constructed for each phase current.
This increases the number of iterations by roughly three times that required if

all three-phase co-tree currents are modified between iterations. The

80

additional memory required is a linear function of the number of co-tree

elements.
6.4 Absence of Matrix Operations

The high execution speed of this algorithm can be attributed to two
factors. First the extensive use of the backward and forward traces using
pointers to accomplish most the processing. Second only small matrixes need
to be formed and processed at each of the co-tree elements. These features not
only reduce the solution time but also keep the required computer memory
resources at a minimum. This allows the method to solve large systems on a
personal computer platform.

The work of others in this regard has involved constructing a system
matrix which is dimensioned by the number of co-tree components (loops) in
the network. As the size of the system increases the proportion of time spent
in building and factoring this matrix becomes a greater portion of the total
solution time [9]. The memory required for this operation also increases
sufficiently. Because the proposed method does not use global matrix
operations it does not exhibit the same properties.

Since the method uses the trace based approach to determine the
sensitivity matrix the processing time is expected to increase linearly with the
number of co-tree elements in the circuit. The memory requirement is also a

linear function of the number of co-tree elements.

81

6.5 Voltage Correction

The inclusion of voltage correction at the co-tree buses in the network
solution had little effect on the solution time. This is in contrast to the first
system in which this technique was applied. The difference results from the
manner in which voltage correction was applied in each algorithm.

The algorithm described in Section 4.4 changes all the co-tree currents
in the system before solving the radial circuits. The Switch Compensation
Method changes only one co-tree current then solves the radial circuits.
Voltage correction is helpful in the first case whén one Bus in connected to
two or more co-tree components.

When one Bus serves as the connection between two or more radial
circuits the Bus voltage will be effected by all the co-tree currents.
Consequently, changing the voltage at the Bus as a result of one co-tree
current injection provides a better estimate of the voltage at the Bus. This
voltage is then used in determination of any other co-tree currents at the Bus.
This reduces the large swings in co-tree current magnitude and angle for the
first several iterations.

The Switch Compensation Method uses the Ladder Load-Flow method
to solve each of the connecting radial circuits after each change in co-tree
current. Therefore, the only effect of voltage correction is to provide a better

estimate of the voltage for the Ladder Load-Flow. As the size of the system

82

increases the inclusion of voltage correction does reduce the radial solution
time slightly (1 second).
6.6 Recommendations

Sensitivity matrix elements should only be updated during the solution
process if required. The significant increase in solution time to update the
sensitivity matrix can only be justified if it is absolutely necessary to converge
the algorithm.

The presence of controlled capacitors did not prevent the algorithm
from converging. The presence of Tap Changing Under Load (TCUL)
Transformers in the network prevented the algorithm from reaching a
solution. Consequently the program should update the sensitivity matrix
elements only if TCUL transformers are present in the network. Otherwise,
the sensitivity matrix may be formed only once for each load flow solution.

The inclusion of voltage correction as described in Section 2 does not
result in sufficient time savings in the solution process for distribution
networks. However, this correction can result in sufficient time savings for
other types of problems. The small amount of code, data and processing time

required to implement this correction justify its inclusion in the method.

83

6.7 Future Considerations

A quick and simple method of approximating the sensitivity matrix for
the first iteration would enhance the performance of the algorithm with TCUL
transformers. One third of the total solution time is spent initializing the
sensitivity matrix for the first iteration. The co-tree currents determined from
this sensitivity matrix are only approximation for the first several iterations.
Therefore, the time spent in accurately initializing each of the elements in the
sensitivity matrix does not seem to be justified.

The selection of co-tree components is anbther topic which deserves
further exploration. The selection of co-tree components is not critical in
systems which have been designed for high reliability. This is certainly the
case for Distribution Networks. The loss of one or two feeders will generally
not cause an interruption of service in a Distribution Network.

The improper selection of co-tree components could prevent the radial
load-flow from reaching a solution. This can result when the loading on a
radial circuit is larger than the maximum allowed by the Maximum Power
Transfer Theorem. A selection scheme which would identify the "optimal"
co-tree components in a system would be useful.

Finally, further experimentation with the algorithm is required. The
algorithm should be tested on larger networks and systems. The results of

these tests need to be validated.

84

Appendix A

UNBALANCED THREE-PHASE TRANSFORMER MODELING

The Ladder Load-Flow method models components with a reverse
current trace and a forward voltage trace. The purpose of this section is to
derive a three-phase transformer model for the reverse current trace and
forward voltage of the Ladder Method. This could be accomplished using the
theory of symmetrical components. However, this would involve transforming
the currents or voltages from the phase coordinates into the zero, positive and
negative values. Since the Ladder Method uses phase quantities these values
would have to be transformed back to the phase coordinates. The goal is to
determine a transformer model in the phase coordinates system which is both
simple and requires few calculations. Therefore, symmetrical components will
be employed sparingly.

Three phase transformers are modeled as three single phase units. The
modeling technique presented here is not applicable to three phase
transformers in which the windings are wound on a common core i.e., shell
type and core-type transformers. Each of the three units is also assumed

identical leakage reactances.

85

A.1 Current Reverse Trace

Transformer models must satisfy both the laws of circuit theory and
laws of magnetic theory. Kirchhoff's current law states that the sum of the
current into a node must equal the sum of the current out of the node.
Ampere's law states that the magnetomotive force around a closed path is the

current enclosed by the line integral of the field intensity H around the path.
If the magnetic core of the transformer is ideal (Heor. ¢ /=0), Ampere's law
applied to a path enclosing the primary winding N, and secondary winding N,

results in the following relationship.
IH. dl=N1[1 —Nzlz

The operation of three-phase transformers under unbalanced loading
conditions may be determined by applying these two laws to the resulting
configuration. This will be illustrated with the delta-wye configuration shown
in Figure A-1. For the sake of simplicity N,= N, in Figure A-1. Windings
which are magnetically coupled are drawn in parallel with one another.
Current flow is indicated with arrows. The relative magnitude of the currents

is indicated by the number of current arrows drawn.

86

) S—

—_— —

—

Figure A-1 Example Delta-Wye Configuration

o J

The determination of the currents begins by determining the current

flow that must exist on the secondary of wye side of the transformer. The
application of Kirchhoff's current law indicates fhat the currents must flow in
the secondary windings as indicated in Figure A-l to supply the single phase
load. Next the application of Ampere's law determines the current flow in the
primary windings. A current flow into a secondary winding must flow out of
the primary winding. Kirchhoff's current law is applied again to determine
the current flow in the primary.

It is also important to realize that delta connected windings must
satisfy Kirchhoff's Voltage Law (KVL) which states that the algebraic sum of
the voltages encountered in traversing each loop of a circuit must be zero.
KVL is satisfied for the delta winding shown in Figure A-1 only if the leakage

reactances of the windings are equal to one another. If the leakage reactances

87

are unequal the currents must divide to satisfy KVL. However, if the leakage
reactances are equal the line current can be divided into three equal values.
Two-thirds of the line current will flow through one winding of the delta
configuration. One-third of line current will flow through two of windings of
the delta configuration. This is the case with the wye-delta configuration

shown in Figure A-2.

a)

—>

’ \\\//\"\\ -

—

Figure A-2 Example Wye-Delta Configuration)

_

This approach can be extended to unbalanced three phase currents.

For the delta secondary configuration Kirchhoff's current law requires that
the sum of the line currents must equal zero (4 +/5 +Ic =0). One of the three

line currents can therefore be expressed in terms of the remaining two line
currents. Figure A-3 illustrates how this configuration can be decomposed
into two circuits. The principle of superposition can be then be used to obtain

the resulting primary line flows.

88

-

I, A —

Y s/

I _.\ 1, I, —
e —

51, | I 1, —}
—

S WA\

—

1/31 4 —

T — VA

AN

131, \\ ¢ E
IC
Ia= 1/3 IA- 1/3IC 3
[,= 131, + 23,
[=-230 - 131,

Figure A-3 Superposition Used To Solve Wye-Delta Configuration

/

89

A wye connected secondary makes the current transformation from
secondary to primary a simple matter. In order for current to flow in the
neutral of the wye configuration a zero-sequence component must exist. This
will not be case when the primary is a delta configuration. Consequently, the
delta-wye and delta-grounded wye configurations result in the same
transformation.

The method will also indicate if a transformer configuration cannot
carry a single phase load. This is the case for a wye-grounded wye
configuration. A single phase load connected from line-to-neutral on the
secondary requires current flow through only one of the phase windings of the
grounded wye connection. The application of Ampere's law would require
current to flow only one winding of the wye connected primary. However,
Kirchhoff's law states that current entering the node of this wye configuration
must leave node through one of the other windings. This would violate

Ampere's law because no current flows through this winding on the secondary
i.e., N1]1 * N2Is.

Laboratory experimentation with the wye-grounded wye configuration
indicates that this configuration can carry a limited amount of line-to-neutral
load. This can observed result can be understood by considering the
magnetizing inductance of the transformers [23]. The three-phase

interconnection is shown in Figure A-4.

90

A JX% E::I Z
Y
\ ané
c
jX
N
k Figure A-4 Wye Connection with Single Phase Load /

The leakage flux and losses are neglected in the model shown in Figure
A-4. The secondary load can then be represented on the primary side as
shown in the Figure. If the transformers are supplied from a balanced set of
voltages the neutral point (N) can be determined as the geometric neutral of
the voltage triangle.

If the magnetizing reactances are assumed to be linear, Thevenin's
theorem may be applied at the load terminals to determine the equivalent
circuit shown in Figure A-5. This indicates that the magnetizing reactance

limits the current flow to the load.

91

an

Figure A-5 Thevenin Equivalent Circuit j

A.2 Voltage Forward Trace

The voltage relationship of the primary and secondary windings of a
transformer are governed by Faraday's law. We shall begin our analysis by
assuming that the flux varies sinusoidually in the core and that the
transformer core is ideal, which means that the permeability of the core is
infinite. Faraday's law can then be used to show that the ratio of the primary
voltage to the secondary voltage is the same as the number of turns on the
primary winding to the number of turns on the secondary winding. Kirchhoff's
voltage requires the sum of the voltage around any closed loop to be zero.

The configuration of the both the primary and secondary windings
must be considered in determining the voltage relationships. Figure A-6

illustrates the voltage relationships that result for a delta-wye configuration.

92

f N\
] " A
- + - +
\Y ;
AB - B
VCA v + —\N Vcn
+ BC - \ i Van
C V,
+bn i

Figure A-6 Voltage Relationships for Wye-Delta Configuration y

-

The voltage loop on the primary side specifies that the sum of the
primary line-to-line voltages must be zero (V4z +Vsc+¥Vcs=0). The voltage
loop on the secondary side specifies that the sum of secondary line-to-line
voltages must also be zero (Vun + Vin +Ven =0). The line-to-line voltages on the

secondary are the line-to-neutral voltages on the primary. This leads to the

following relationships:

VAB'*'VBC:"VCA:Van—Vcn:Van+Van+Vbn:2Van+Vbn (A"'l)

Vec+Vca=Von—Van “A-2)
Combining equations A-1 and A-2 results in an expression for the
secondary voltage in terms of the primary voltage Vi, =13V —Vcs). The

remaining secondary voltages can be determined by back-substitution of this
expression.

The unbalanced operation of three phase transformers can also be
described using symmetrical components. When a neutral connection is not

present the zero sequence voltage is zero. Transformer configurations which

93

are grounded on the primary and ungrounded on the secondary will filter out
the zero sequence voltage. For example a wye ground to delta configuration
could have zero sequence currents and voltages in the primary winding but
not in the secondary lines. The zero sequence voltage is filtered by the

algorithm when line configuration changes from 4-wire to 3-wire.
A.3 Phase Shift of Wye-Delta

The American standard for designating terminals H, and X, on
wye-delta transformers requires that the positive-sequence voltage drop from
H, to neutral lead the positive-sequence voltage &op from X, to neutral by 30
degrees, regardless of whether the wye or the delta winding is the high
voltage side [25]. There are several possible phase relationships which can be
used to meet this standard. The phase relationship which was selected for the
DEWorkstation is that phase A on the high side must lead phase A on the low
side by 30 degrees. Similarly phase B on the high side must lead phase B on
the low side etc..

Faraday's law states that the primary and secondary winding voltages
will be in phase. Figure A-7 illustrates how the phases can be labeled in a
delta-wye configuration to achieve the desired phase relationship. This phase
transformation is simple to implement in the forward voltage trace. The
voltages of both the primary and secondary are declared as arrays. Assume

that the primary voltages are stored in the following fashion. V[0]=V,g,

94

V[1]=V,., and V[2]=V;,. The phase transformation shown in Figure A-7 is
implemented in the forward trace as follows: v[0]=-V[2], v[1]=-V[0] and
v[2]=-V[1]. Assuming v[0]=v__ , v[1]=v, and v[2]=v_ .

an ?

Delta High Side Wye Low Side

Figure A-7 Delta-Wye Phase Transformation

\ /

A similar analysis of the Wye High Side to a Delta Low Side will

an ? ¢l

indicate the following results. V,, =V, , V.=V, and V,, =V_ . Where the

Line-to-neutral values are on the wye side.

A.4 Computer Code

This Section provides a listing of the transformer Ladder Load-Flow
routines provided with the DEWorkstation. The transformers are assumed to
be ideal by these routines. The voltage drop across the leakage reactance and
winding resistance is calculated prior to calling the "secondaryVoltsXfromer"
routine.

The routines are written in the "C" programming language. The
routines make use of several library functions. The "next" function determines
the next phase which is present and returns the phase index in "p". The value
of the "next" function is -1 when all phases have been processed. The
"message" function displays text on the screen. The "cadd", "csub", "cdiv", and

"cmult" are complex arithmetic functions.

96

/*

===> Module Name: secondaryVoltsXfromer

4

==> Module Purpose: Computes secondary voltages of different xfromer
=> connections for given primary voltages.

>

>

—> Inputs:

==> pCmp Pointer to transformer

=—=> acxPriV Array of complex primary voltages on transformer

= ad Array of winding to winding turns ratio

_>

==> acxSecV Array of complex secondary voltages on transformer
>

=—=> Explanation: Voltages are: Line-to-Neutral for GROUNDED system
= Line-to-Line for UNGROUNDED system

>

=——=> Notes: For delta-wye connections the phase shift is in accordance
& with the American standard assuming (abc) sequence.

*/

long secondaryVoltsXfromer (struct Cmp *pCmp, struct Cmplx acxPriV([3],
double ad[3] ,struct Cmplx acxSecV[3])
{
struct Cmplx
acxIntermV[3], // Winding voltage on secondary of transformer

acxSeqV[3], // sequence voltages
exSQRT3, // Cmplex value of square root of 3
cxPhaseShift, // Phase shift of 30 degrees
cxZero; /f Complex zero

long p; /Iphase index

exZero.re = 0.0;
exZero.im = 0.0;
if(pCmp->bCmpTyp = XFORMER_CMP)
{
message(ERR_MESS,pCmp,iNoApp,"forwardTraceXfromer rountine called for this",
"COMPONENT which is NOT a transformer");
return FAIL;
}
for(p=0;p<3; p++)
{
acxIntermV[p].re = acxPriV|[p].re*ad[p];
acxIntermV[p].im= acxPriV[p].im*ad[p];

}
switch(@Cmp->pCtr->iXfrmCon)
{

case WYE_WYEGRD:
cxSQRT3.re =SQRT3;
cxSQRT3.im =0.0;
cxPhaseShift.re = 0.866025404;

97

cxPhaseShift.im = -0.5;
for(p=0;p<3;++p)
{
acxSecV[p]=cdiv(acxIntermV[p}], cxSQRT3);
acxSecV[p]=cmult(acxSecV[p],cxPhaseShift);
}
break;
case YGRD_Y:
vtovseq(acxIntermV,acxSeqV);
acxIntermV[0] = cadd(acxSeqV[1],acxSeqV][2]);
acxIntermV[1] = cadd(cmult(a2,acxSeqV[1]),
cmult(a,acxSeqV[2));
acxIntermV[2] = cadd(ecmult(a,acxSeqV[1]),
cmult(a2,acxSeqV[2]));
acxSecV[0] = csub(acxIntermV|[0],acxIntermV[1]);
acxSecV[1] =csub(acxIntermV[1],acxIntermV[2]);
acxSecV[2].re = -acxSecV[0].re-acxSecV[1].re;
acxSecV[2].im = -acxSecV[0].im-acxSecV[1].im,;
break;
case YGRD_DEL:
vtovseq(acxIntermV,acxSeqV);
acxSecV[0] = cadd(acxSeqV[1],acxSeqV[2]);
acxSecV[1] = cadd(ecmult(a2,acxSeqV[1]),

cmult(a,acxSeqV[2]));
acxSecV[2] = cadd(emult(a,acxSeqV|[1]),
cmult(a2,acxSeqVi2)));
break;
case DEL_Y:

acxSecV[0] = csub(acxIntermV[0],acxIntermV[2]);
acxSecV[1] =csub(acxIntermV[1],acxIntermV][0]);
acxSecV|[2].re = -acxSecV[0].re - acxSecV[1].re;
acxSecV|[2].im = -acxSecV][0].re - acxSecV[1].im,;
break;
case DEL_YGRD:
acxSecV[0] = csub(cxZero,acxIntermV[2]);
acxSecV[1] = csub(cxZero,acxIntermV[0]);
acxSecV[2] = ecsub(exZero,acxIntermV[1}]);
break;
case Y_DEL:
acxSecV[0].re = (2.0/3.0)*acxIntermV[0].re +
(1/3.0)*acxIntermV|[1].re;
acxSecV[0].im = (2.0/3.0)*acxIntermV[0].im +
(1/3.0)*acxIntermV[1].im;
acxSecV[1].re = (1.0/3.0)*acxIntermV[1].re -
(1.0/3.0)*acxIntermV[0].re;
acxSecV[1].im = (1.0/3.0)*acxIntermV([1].im -
(1.0/3.0)y*acxIntermV[0].im;
acxSecV[2].re = -acxSecV[0].re -acxSecV[1].re;
acxSecV[2].im = -acxSecV[0].im - acxSecV[1].im;
break;
default:

98

while(next (pCmp, &p))
acxSecV|[p]=acxIntermV[p];
br}eak;
} /l end switch
return SUCCESS;

} // end of secondaryVoltsXfromer()

99

/*

=—=> Module Name: primaryAmpsXfromer

>

===> Module Purpose: Computes primary currents of different transfromer
= connections for given seconday currents.

>

=—=> Inputs

==> pCmp Pointer to transformer

==> acxPriA Array of complex primary currents on transformer
=> ad Array of winding to winding turns ratio

==> acxSecA Array of complex secondary currents on transformer
>

===> Definition:

>

=—=> Explanation:

>

=——> Notes: For delta-wye connections the winding to winding turns
B ratio must be identical for all phases.

*/

long primary AmpsXfromer(struct Cmp *pCmp, struct Cmplx acxSecA[3],
double ad[3], struct Cmplx acxPriA[3])
{
struct Cmplx
cxLineA[3], // Line currents

cxZero, /[Complex Zero
cxWindA[3]; // Winding currents
long p; /l phase index

cxZero.re=0.0;
cxZero.im=0.0;
if(pCmp->bCmpTyp = XFORMER_CMP)
{
message(ERR_MESS,pCmp,iNoApp,"forwardTraceXfromer rountine called for this",
"COMPONENT which is NOT a transformer");
return FAIL;

}
switch(pCmp->pCtr->iXfrmCon)

case YGRD_DEL:

case Y_DEL:
acxPriA[0].re = -(ad[0]/3.0)* (- acxSecA[0].re + acxSecA[l].re);
acxPriA[0].im = -(ad[0}/3.0) * (- acxSecA[0].im + acxSecA[1].im);
acxPriA[1].re = -(ad[1})/3.0) * (- acxSecA[0].re - 2.0 * acxSecA[l]l.re);
acxPriA[1].im = -(ad[1]}/3.0) * (- acxSecA[0].im - 2.0 * acxSecA[1].im);
acxPriA[2].re = - acxPriA[0Q].re - acxPriA[1].re;
acxPriA[2].im = - acxPriA[0].im - acxPriA[1].im;
break;

case DEL_YGRD:

case DEL_Y:

100

cxWindA[O].re = -acxSecA[1].re *ad[1];
cxWindA[0].im = -acxSecA[1].im *ad[1];
cxWindA[1].re = -acxSecA[2].re *ad[2];
cxWindA[1].im = -acxSecA[2].im *ad[2];
cxWindA[2].re = -acxSecA[0].re *ad[0];
cxWindA[2].im = -acxSecA[0].im *ad[0];
acxPriA[0] = csub(exWindA[0], cxWindA[2]);
acxPriA[1] = csub(exWindA([1], exWindA[0]);
acxPriA[2].re = -acxPriA[0].re -acxPriA[l].re;
acxPriA[2].im= -acxPriA[0].im -acxPriA[1].im;
break;

default:
while (next (pCmp, &p))

{
acxPriA[p].re=acxSecA[p].re*ad[p];
acxPriA[p].im=acxSecA[p].im*ad[p];
Mlend of while next
break;
} // end switch
return SUCCESS;

} // end function primary AmpsXfromer()

101

Appendix B

NETWORK LOAD-FLOW DRIVER AND MODULES

The Switch Compensation Method requires the reverse trace of the
Ladder Load-Flow algorithm to process the co-tree currents. If constant load
currents can be attached to any component in the circuit then no
modifications are necessary to the Ladder Load-Flow Method. Another
approach would be to require the co-tree components to be a particular type of
component (i.e. switch or line).

The additional processing required by the Method can be accomplished
with separate modules. The data interface is simply the voltage and co-tree
currents at each component which connects to another radial circuit. The
tasks at each of these components is as follows:

1. Main Driver

2. Determination of the Sensitivity Matrix

3. Addition of two Sensitivity Matrixes

4. Solve a system of three equations

5. Determination of the desired change in co-tree current
6. Determination of the change in voltage (Optional)

7. Initialize Co-tree currents to One Amp

8. Check for Network Convergence

102

Routines which will add two matrixes and solve a system of linear
equations are commonly available as library routines. Therefore the design of
these two modules will not be presented here. The design of the remaining
modules will be presented in Program Design Language (PDL). This is not
working computer code.

The salient variables used and generated by each module will be
defined. The data and operation flow of each module will be outlined. It is
assumed that the voltage and co-tree currents on each connecting component
are available from the Ladder Load-Flow pfogram. The connecting
components connect between two radial circuits. The implementation is only

one of several possible solutions.

103

B.1 Main Driver

Purpose This module controls the program flow and provides the global variables
for all the modules
Global SensMatrix[3][3] |Sensitivity Matrix with complex numbers for each
Variables for element
each
Connecting
Component
LastVoltage[3] |Voltage from last solution with complex numbers for
each voltage
LastCoTreeA[3] |Co-Tree Current from last solution with complex
numbers for each current
Global phase The phase index of the component
Variables
pCkt Radial Circuit in Network which connects to pConCkt
through pCmp
NetConverge A Flag to indicate when a solution to the network is
achieved
pCmp Connecting Component in Circuit pCkt which
connects to pConCmp
pConCkt Radial Circuit in Network which connects to pCkt
through pConCmp
pConCmp Connecting Component in Circuit pConCkt which

connects to pCmp

104

NetworkDriver

{

for(All radial circuits in the Network=pCkt)

{
for (All Connecting Components = pCmp)
{
for (All phases=phase)
{

Call Ladder Load Flow to Solve Radial Circuit
Store Voltages in LastVoltage
Call Module to InitializeCurrent(pCmp, phase)
Call Ladder Load Flow to Solve Radial Circuit
Call Module to DetermineSensMatrix(pCmp,phase)
tend of for All phases
tend of for All Connecting Components
tend of for All radial circuits in the Network

while (network has not converged to a solution)

{
for(All radial circuits in the Network=pCkt)
{
for (All Connecting Components = pCmp)
{
for (All phases=phase)
{

105

Store Voltages in LastVoltage for pCmp
Store Co-tree Currents in LastCoTreeA for pCmp
Call Module DetermineCurrentChange(pCmp,phase)
Call Ladder Load Flow to Solve Radial Circuit pCkt
Call Module to DetermineSensMatrix(pCmp,phase)
Determine Connecting circuit = pConCkt
Determine Connecting component = pConCmp
Store Voltages in LastVoltage for pConCkt
Store Co-tree Currents in LastCoTreeA for pConCkt
Call Ladder Load Flow to Solve Radial Circuit pConCkt
Call Module to DetermineSensMatrix(pConCmp,phase)
tend of for All phases
tend of for All Connecting Components
tend of for All radial circuits in the Network
Call Module CheckNetConverge
tend of while network has not converged to a solution

yend of NetworkDriver

106

B.2 Determination of the Sensitivity Matrix

Purpose: This module initializes the elements of the Sensitivity Matrix and
updates the elements of the matrix after each system iteration.
Internal Voltdiff |Voltage difference between system iterations
Variables
- Ampdiff [Co-tree current difference between system iterations.
Passed pCmp |[A component for which the sensitivity matrix is to be
Parameters determined.
phase |The phase index of the component

DetermineSensMatrix (pCmp, phase)

{

for (all existing elements in the selected column "I" of the matrix)

{

Voltdiff = LastVoltage[I] - Voltage[I] at present

Ampdiff = LastCoTreeA[phase] - Co-Tree Amps at present

if (| Voltdiff| < threshold*Convergence Tolerance)

{

return to the calling module

tend if | Voltdiff| < threshold*Convergence Tolerance

if (| Ampdiff| < threshold*Convergence Tolerance)

{

return to the calling module

tend if | Ampdiff| < threshold*Convergence Tolerance

107

SensMatrix[I][phase]=Voltdiff/Ampdiff
if (| SensMatrix[[][phase] | < Small number)
{
SensMatrix[I][phase] = 0.0
Return to calling module
Yend if | SensMatrix[I][phase] | < Small number
if (the real part of SensMatrix[I][phase] is negative)
{
Change the sign of both the real and imaginary values of SensMatrix[I][phase]
Jend if the real part of SensMatrix[I][phase] is negative

}end for all existing elements in the selected column "I" of the matrix

tend of DetermineSensMatrix

108

B.3 Initialize Co-tree Currents

Purpose This module initializes the Currents of the co-tree currents of the
connecting components
Passed pCmp |A component for which co-tree currents are to be initialized
Parameters
phase [The phase index of the component

InitializeCoTreeCurrents (pCmp,phase)

{

Determine phase angle of the voltage

Set the phase of Co-tree current magnitude to one amp at the same voltage phase angle

tend of InitializeCoTreeCurrents

109

B.4 Determine Current Change

Purpose This module determines the desired change co-tree current to force the

voltage difference between the two connecting components to zero.

Internal SVoltDiff Voltage difference between components pCmp and
Variables pConCmp which is a complex value

pConCmp Connecting Component

ChangeA[3] Desired current change which is a complex value

MatrixSum|[3][3] |Sum of the Sensitivity Matrixes each element is a

complex value

Passed pCmp A component for which the change in co-tree current
Parameters is to be determined
phase The phase index of the component

DetermineCurrentChange(pCmp,phase)
{
SVoltDiff = Voltage on pCmp - Voltage on pConCmp
if(| SVoltDiff| < Convergence Tolerance)
{
Return to Calling Module
tend if | SVoltDiff| < Convergence Tolerance
Determiné connecting component pConCmp

Call module to add Sensitivity Matrixes of pCmp and pConCmp return MatrixSum

Call module to solve system of equations defined by MatrixSum[3][3] and SVoltDiff
return ChangeA[3]

Add ChangeA[phase] to pCmp co-tree current[phase]
Change sign of the co-tree current on pCmp and place this current on pConCmp[phase]
Call module VoltChange(Cmp, ChangeA[3])

tend of DetermineCurrentChange

110

B.5 Voltage Change

Purpose This module determines change in voltage on each phase which
results from a change in all three phase currents
Internal ChangeV Voltage Change which is a complex value
Variables
pConCmp Connecting Component
Passed pCmp A component for which the change in co-tree current is
Parameters to be determined
ChangeA[3] [Change in current at component pCmp which is a
complex value

VoltChange (pCmp, ChangeA[3])

{

for (all phases)

{

Determine ChangeV for phase of pCmp by multipling row SensMatrix by ChangeA

Subtract ChangeV from voltage at pCmp|[phase]

Determine connecting component pConCmp

Add ChangeV to voltage at pConCmp[phase]

tend of for(all phases)

tend of VoltChange

111

B.6 Network Convergence

Purpose This module determines if the network has converged to a solution
Internal phase The phase index of the component
Variables
pCkt Radial Circuit in Network which connects to pConCkt
through pCmp
pCmp Connecting Component in Circuit pCkt which connects
to pConCmp
pConCmp |[Connecting Component in Circuit pConCkt which
connects to pCmp '
SVoltDiff |Voltage difference between pCmp and pConCmp which
is a complex value ‘
SAmpDiff [The co-tree current difference between pCmp and
pConCmp which is a complex value
CheckNetConverge

{

if (Maximum number of iterations exceeded)

{

Display a message

Terminated the program

tend if (Maximum number of iterations exceeded)

for(All radial circuits in the Network=pCkt)

{

for (All Connecting Components = pCmp)

{

112

for (All phases=phase)
{

Determine connecting component pConCmp

Determine SVoltDiff = Phase Voltage pCmp - Phase Voltage pConCmp

Determine SAmpDiff = Phase Co-tree Current on pCmp - Phase Co-tree
Current on pConCmp
if(| SVoltDiff | > Convergence Tolerance)

{
NetConverge = NO
tend if(| SVoltDiff | > Convergence Tolerance)
if(| SAmpDiff | > Convergence Tolerance)

{
NetConverge = NO
tend if(|SAmpDiff | > Convergence Tolerance)

tend for (All phases=phase)
} end for (Al Connecting Components = pCmp)
tend for(All radial circuits in the Network=pCkt)

tend of CheckNetConverge

113

10.

11.

12.

REFERENCES

D.I. Sun, "Distribution System Loss Analysis and Optimal Planning," Ph.D.
Dissertation, The University of Texas at Arlington, May 1980.

William D. Stevenson, Jr., Elements of Power System Analysis, 4 th Edition ,
McGraw Hill Book Company, New York, 1982, p 5.

Jay Britton, "An Open, Object-Based Model As The Basis Of An Architecture For
Distribution Control Centers", IEEE Power Engineering Society 1992 Winter Meeting,
New York, New York, Paper No. 92 WM 184-2 PWRS.

dJ. Arrillaga, C.P. Arnold and B.J. Harker, Computer Modeling of Electrical Power
Systems, John Wiley and Sons, New York, 1983.

Howard A. Smolleck and Raymond R. Shoults, "A Straightforward Method for
Incorporating Mutually-Coupled Circuits in the Bus Admittance Matrix Using the
Concept of Artificial Branches", IEEE Transactions on Power Apparatus and Systems,
Vol. 5, No. 2 May 1990) pp. 486-491.

M.A. Wortman, D.L. Allen and L.L. Grigsby, "Techniques for the Steady State
Representation of Unbalanced Power Systems Part I. A Systematic Building Block
Approach to Network Modeling", IEEE Transactions on Power Apparatus and Systems,
Vol. 104, No 10, (October 1985) pp. 2805-2814.

R.A. Stevens, D.T. Rizy, and S.L. Purucker, "Performance of Conventional Power Flow
Routines for Real-Time Distribution Automation Applications" , Proceedings 18th
Southeastern Symposium on System Theory, IEEE Computer Soc., 1986, pp. 196-200.

R.P. Broadwater, A. Chandrasekaran, C.T. Huddleston, and A.H.Khan, "Power Flow
Analysis of Unbalanced Multiphase Radial Distribution Systems", Electric Power
System Research, 14, 1988 pp. 23-33.

G.X. Luo and A. Semlyen, "Efficient Load Flow for Large Weakly Meshed Networks",
IEEE Transactions on Power Systems, Vol. 5, No. 4, (November 1990) pp. 1309-1316.

Renato Cespedes G., "New Method for the Analysis of Distribution Networks" IEEE
Transactions on Power Delivery, Vol. 5, No 1, (January 1990) pp. 391-396.

Tasi-Hsiang Chen, Mo-Shing Chen, Kab-Ju Hwang, Paul Kotas and Elie A. Cheblj,
“Distribution System Power Flow Analysis- A Rigid Approach", [EEE Transactions on
Power Delivery, Vol. 6, No. 3, (July 1991) pp. 1146-1152.

William H. Kersting and David L. Mendive, "An Application of Ladder Theory to the
Solution of Three-Phase Radial Load-Flow Problems", IEEE Power Engineering Society
Winter Meeting and Telsa Symposium, New York, New York, (January 1975) Paper
No. A 76 044-8.

114

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Robert P. Broadwater, Jeffery C. Thompson, and Thomas E. McDermott, "Pointers and
Linked Lists in Electric Power Distribution Circuit Analysis", Proceedings of 1991
IEEE PICA Conference, Baltimore, Maryland, May 7 1991) pp. 16-21.

D. Shirmohammadi, HW. Hong, A. Semlyen, and G.X. Luo, "A Compensation-Based
Power Flow Method For Weakly Meshed Distribution and Transmission Networks",
IEEE Transactions on Power Systems, Vol. 3, No. 2, (May 1988) pp. 753-762.

Daniel J. Tylavsky and Laxmi Gopalakrishnan, "Identifying Modeling Errors In Mine
Electrical Power Flow Input", IEEE Industry Applications Society Annual Meeting,
1989, Vol. 2, pp. 1509-1515.

G.T. Heydt and W.M. Grady, "A Z-Matrix Method for Fast Three Phase Load Flow
Calculations", Proceedings of the Power Industry Computer Applications Conference,
(June 1973) pp. 168-173.

R.P. Broadwater, Jeffery Thompson, Mike Ellis, Harry Ng, Nand Singh and Darrell
Loyd "Application Programmer Interface For The EPRI Distribution Engineering
Workstation", Paper No. WM94-308 (To be published in IEEE Transactions).

R. Broadwater, P. Dolloff, M. Ellis, N. Singh, T. Corbiﬁ, and H. Ng "EPRI Distribution
Engineering Workstation Design Concepts", EPRICON Conference Proceedings,
Scottsdale, Arizona Dec. 9-11, 1992.

"Test Plan for Distribution Engineering Workstation Phase I Applications", May 1994,
EPRIL

Lee W. Johnson and R. Dean Riess, Numerical Analysis, 2nd Edition
Addison-Wesley, Reading Massachusetts, 1982, pp. 44..

IEEE Distribution Planning Working Group, "Radial Distribution Test Feeders", IEEE
Transactions on Power Systems, Aug. 91, pp. 975-985.

John Zaborszky and Joseph W. Rittenhouse, Electric Power Transmission, The
Rennsselaer Bookstore, Troy, New York, 1969, pp. 18-21.

M. Harry Hesse, Notes For Power Engineering Analysis Course 34.681, Rensselaer
Polytechnic Institute, Fall 1983.

Carol S. Cheng and Dariush Shirmchammadi, " A Three-Phase Power Flow Method
For Real-Time Distribution System Analysis", Paper No. 94 SM 603-1 PWRS (To be
presented at 1994 Summer Power Meeting).

William D. Stevenson, Jr. Elements of Power Systems Analysis, 4th Edition,
MecGraw Hill Book Company, New York, 1982, p 282.

R. Berg, Jr., E.S. Hawkins, W.W Pleines, "Mechanized Calculations of Unbalanced
Load-Flow on Radial Distribution Circuits", IEEE Transactions on Power Apparatus
and Systems, Vol. 86, (April 1967), pp. 415-421.

115

27. Allan Greenwood, Electrical Transients in Power Systems, John Wiley and Sons
Inc. New York 1971 p 6.

28. "Performance Tests: RISC Workstations", PC Magazine, May 31, 1994, p 150.

116

VITA

Mr. Ellis is a Licensed Professional Engineer in Virginia. He has been
an Instructor in Electrical Engineering at Virginia Polytechnic and State
University. He has also been an Assistant Professor in the Electronics
Engineering Technology Department at Weber State University.

He graduated Magna Cum Laude from Brigham Young University in
1983. He received his Masters Degree in Electrical Power Engineering from

Rensselaer Polytechnic Institute in 1984.

Wie V¢l

117

