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Abstract

This dissertation presents a one-dimensional thermomechanical constitutive model for
shape memory alloys based on basic concepts of thermodynamics and phase trans-
formation kinetics. Compared with other developed constitutive relations, this ther-
momechanical constitutive relation not only reflects the physical essence of shape
memory alloys, i.e., the martensitic phase transformation involved, but also provides
an easy-to-use design tool for engineers. It can predict and describe the behavior of
SMA quantitatively. A multi-dimensional constitutive relation for shape memory al-
loys is further developed based on the one-dimensional model. It can be used to study
the mechanical behavior including shape memory effect of complex SMA structures
that have never been analytically studied, and provide quantitative analysis for many

diverse applications of shape memory alloys.

A general design method for shape memory alloy actuators has also been developed
based on the developed constitutive relation and transient thermal considerations.
The design methodology provides a quantitative approach to determine the design

parameters of shape memory alloy force actuators, including both bias spring SMA

force actuators and differential SMA force actuators.
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Chapter 1

Introduction

Since the 1970’s, there has been a worldwide wave of interest in artificial intelligence.
First suggested for computer systems, the idea of intelligence can now be seen every-
where, from intelligent highway systems, intelligent processing methods, to intelligent
material systems and structures. The important aspects of these intelligent systems
include sensing, control, and activation elements. Shape memory alloys (SMAs), be-
cause of their unique characteristics, have been playing an important role in today’s

intelligent material systems and structures.

Numerous investigations into shape memory alloys have been conducted since the
appearance of Nitinol in 1962 (Buehler and Wiley, 1965). Several books have been
published devoted to shape memory alloys (Perkins, 1975; Funakubo, 1984). Most
of the research has been concentrating on the metallurgical aspects of shape memory
alloys. For example, in the Material Research Society Proceedings of 1989, more than
three quarters of the papers were about the microscopic aspects of shape memory al-
loys, i.e., the martensitic phase transformation. A considerable amount of research
involving the mechanical characterization of SMAs has also been done over the past

twenty years (Cross et al., 1970; Jackson et al., 1972; Perkins, 1975). However, today’s



interest in this advanced material has focused on the desperate need for systematic
characterization of the shape memory alloys and a complete material data base along

with practical design methods.

Shape memory alloys have been used in many fields and applications over the past
thirty years. The first major industrial application of a shape memory alloy was a
cryogenic pipe fitting device developed by Raychem Corporation in 1969 (Harrison et
al., 1975). NASA once tried to use this material to design a deployable antenna for a
spacecraft in the 1970’s (Funakubo, 1984). Perhaps the most well-known example of
this material is the prototype heat engine developed in the middle 70’s (Bank, 1975).
Because of its biocompatibility and superior resistance to corrosion, nitinol has been
used in the medical field as a bone plate (Castleman et al., 1975), artificial joint
(Ohnishi et al., 1980) and dental applications (Andreasen et al., 1978). The major
industrial application for this material has been as force actuators and robot controls
(Funakubo, 1984). Rogers (1988) suggested that SMA fibers could be embedded
into composites (known today as SMA hybrid composites) to adaptively control the
performance of the composites or composite structures. The theoretical and experi-
mental study of this hybrid composite has demonstrated a far-reaching potential in
the areas of dynamic and static structural control as well active structural acoustic
control (Rogers, Liang, and Jia, 1989; Rogers and Barker, 1990; Liang, Rogers, and
Fuller, 1990).

Considerable research into the microscopic and macroscopic behavior of shape mem-
ory alloys has been done in the past and is still being undertaken. Many applications

for shape memory alloy have been discovered and many more are yet to be discovered.



However, the design of shape memory alloy products has been very expensive and
difficult because the bridge that connects the material studies and the applications
have not been completed to date, i.e., the design tools of the shape memory alloys
have not matured. Although the behavior of shape memory alloys is very complex,
the essence of shape memory effect is the same for all SMAs. Shape memory alloys
have certain common features. The primary objective of this dissertation is to identify
those common features and establish their relationships in order to create practical

design tools.

The tools for designing shape memory alloy devices are rooted in their constitutive
relations. Constitutive relations provide the stress-strain relations such as Hook’s
law, plastic flow rule, and viscoplastic flow relations. The mechanical behavior of
shape memory alloys is closely related to the microscopic martensitic phase trans-
formation; the constitutive relations developed for ordinary materials such as Hook’s
law and plastic flow theory may not be applicable to describe shape memory alloys.
Therefore, new constitutive relations, which take into consideration the phase trans-

formation behavior of SMA, must be developed.

Several constitutive relations have been developed for shape memory alloys over the
last twenty years (Miiller, 1979; Tanaka, 1982; Cory, 1978). While each is unique
none of the constitutive relations has a strong experimental justification and each
possess distinct limitations. The increasing use of shape memory alloys in the field
of intelligent material systems and structures necessitates the development of unified
constitutive relations for shape memory alloys, which can be utilized easily in engi-

neering practice and satisfy certain accuracy requirements.



There are two approaches in developing material constitutive relations. One is the
macroscopic phenomenological method that requires a significant amount of experi-
mental work; the other is the microscopic or physical method that derives material
constitutive relations based upon fundamental physical concepts. For example, the
macroscopic phenomenological method measures the stress-strain relations using ten-
sile tests and the slope of the linear elastic section represents the Young’s modulus
of the material. Microscopic method, however, would predict the Young’s modulus
based on the information of the micro-structure of the crystal lattice, etc. The macro-
scopic method is straightforward with accurate results but requires extensive material
testing and cannot be used to predict the material response of SMA compositions not
tested. The microscopic method, while seeming to be the ideal and logical way of
understanding and describing material behavior, so far has not been able to predict
and describe material characteristics quantitatively because of the complex nature
of materials. From this example, another distinction of these two approaches is ob-
served; the macroscopic method is used to describe the material behavior while the
microscopic method is used to predict and describe the material behavior. Combin-
ing both approaches will take advantage of each method and yield a more accurate
constitutive model capable of predicting and describing material behaviors of SMA.

This philosophy is supported throughout this dissertation.

This dissertation has six chapters. The first chapter is the introduction and litera-
ture review; the second describes the one-dimensional constitutive modeling of shape
memory alloys; the third presents the experimental verification of the newly derived

model; the fourth is an application case study of the constitutive model demonstrating



its utility as a design tool for shape memory alloy force actuators; the fifth presents
the development of a multi-dimensional constitutive relation of shape memory alloys;

and the last chapter is the conclusion and final remarks.

1.1 Introduction to Shape Memory Alloys

The first observation of the shape memory effect (SME) was made in 1932 with gold-
cadmium (Chang and Read, 1951). The phase transformation associated with the
shape memory effect was later discovered in 1938 with brass (Perkins et al., 1975).
It was not until 1962 that Buehler et al. (1965) at the Naval Ordinance Laboratory
(NOL) discovered a series of Nickel-Titanium alloys that demonstrated this shape
memory effect. The shape memory alloy discovered by Buehler et al. was later
named Nitinol, and has been made commercially available ever since. Today, more
and more materials with shape memory effects have been discovered (Table 1.1) and

considerable effort is still be expanded to discover new SMA materials.

A shape memory alloy is able to “memorize” its original configuration after it has
been deformed by heating the alloy above characteristic transition temperatures. This
unique effect of returning to its original geometry after a large inelastic deformation

(more than 1 percent) is known as shape memory effect (SME).

If steel in a high temperature austenitic phase is quenched it will generally harden.
After polishing and etching, observation with a microscope will show an extremely
fine structure, first named martensite after the German metallurgist Adolf Martens.

Later this martensitic phase transformation involving shear deformation was found



Table 1.1: Materials with Shape Memory Effect

Transformation
Temperature (A,) | Transformation
Alloy Composition Range, °C Hysteresis, °C
AgCd 44~49 at % Cd 190~-50 ~15
AuCd 46.5~50 at % Cd 30~100 ~15
CuAlINi 14~14.5 wt% Al -140~100 ~35
3~4.5 wt% Ni
CuSn ~15 at % Sn -120~30
CuZn 38.5~41.5 wt% Zn -180~-10 ~10
CuZn X few wt% X -180~200 ~10
(X=Si, Sn, Al)
InTI 18~23 at % Tl 60~100 ~4
NiAl 36~38 at % Al -180~100 ~10
TiNi 46.2~51 at % Ti -50~110 ~30
TiNi X 50 at % Ni+X -200~700 ~100
(X=Pd, Pt) 5~50 at % X
TiNiCu ~15 at % Cu -150~100 ~50
TiNiNb ~15 at % N.b. -200~50 ~125
TiNiAu 50 at % Ni+Au 20~610
TiPd X 50 at% Pd+X 0~600 ~50
(X=Cr, Fe) ~15 at % X
MnCu 5~35 at % Cu -250~180 ~25
FeMnSi 32 wt% Mn, 6wt% Si -200~150 ~100
FePt ~25 at % Pt ~-130 ~4
FePd ~30 at % Pd ~50
FeNi X few wt% X
(X=C, Co, Cr)




to be diffusionless due to the corporative atomic movement of the crystal lattice. The
phase transformation is accompanied by a shape change (or surface relief) (Clark and
Wayman, 1970). Different materials have a different amount of surface relief depend-
ing upon the crystal orientation of the parental phase during the martensitic phase
transformation. Shape memory alloys possess a martensitic transformation similar
to steel, but the characteristic transition temperature is much lower than steel. The
lower phase transformation temperature and large amount of surface relief during
the martensitic transformation of SMAs play an important role in the deformation

mechanism operating in the shape memory effect.

The martensitic transformation is the basic characteristic of shape memory alloys
that is involved in all the behaviors of SMAs. The martensitic transformation may
by simply illustrated by the change of martensite volume fraction with respect to
temperature as shown in Fig. 1.1. The four important transition temperatures are
martensite finish (M), martensite start (M,), austenite start (A;), and austenite

finish (Ay).

Shape memory effects are related to the martensitic phase transformation. From
a thermodynamic point of view, internal phase transformations are affected by ex-
ternal conditions, i.e., the phase equilibrium is governed by stress and temperature.
The Clausius-Clapeyron equation given below expresses the temperature and stress

relation at the state of phase equilibrium.

dT _ TAV

do ~ AH (1)



100

Martensite Fraction %

Mf Ms As As
Temperature

Figure 1.1: A Schematic Diagram of the Martensite Fraction vs. Temperature



where o is the stress applied on the shape memory alloy, T is the temperature, AV is
the volume change during the martensitic phase transformation or its reverse trans-
formation, and AH is the enthalpy difference between the martensite and austenite.
The Gibbs chemical free energy, G, that is the internal driving force of the martensitic
phase transformation has a linear relation with temperature (Kaufmann and Cohen,
1958). The enthalpy difference AH can be expressed linearly in terms of temperature
due to the linear relation of Gibbs free energy with temperature. The volume change
associated with the phase transformation is a constant for a given shape memory
alloy. Therefore, Eq. (1.1) can be expressed as

% = constant (1.2)
Equation (1.2) suggests that the characteristic transition temperatures may have lin-
ear relations with applied stress. This is widely referred to as the stress effect on
the phase transformation, and it also explains the thermomechanical basis for stress-
induced phase transformation. This is to say that because the applied external stress
can shift the phase transformation temperatures, the phase transformation involved
in the mechanical behavior of shape memory alloys may be postponed or advanced in
terms of temperature, or the phase transformation may occur at some temperatures

simply due to the applied external stress.

It is necessary to mention that the phase transformation involved in the shape memory
alloys is more complex than what has been discussed above. For example, there is an-
other phase transformation, the Rhombohedral-phase transformation associated with

the shape memory effect (Wayman, 1989). The R-phase transformation occurs before



the martensitic transformation (also called pre-martensitic transformation) and it is
independent of the martensitic transformation. It exhibits a diffusionless strucutral
change and an invariant plane strain shape deformation and shape memory effect. R-
phase and martensite are crystallographically reversible, and can be stress induced.
The R-phase transformation also exhibits some influence during the cooling process
that affects the mechanical behavior as observed by Dye (1990). Usually, the R-phase
transformation accounts for less than one-tenth of the total transformation (Wayman,

1989), so it is not considered in this study.

The mechanical behavior of shape memory alloys is unique. Ordinary materials like
steel do not involve phase transformations in the working temperature range that
affects its mechanical behavior significantly. However, because the associated phase
transformation of shape memory alloys is so unique, the mechanical characteristics
of SMAs are likewise significantly different from other engineering materials. Figure
1.2 shows the stress-strain curves of a nitinol alloy (TissNi) at various temperatures
(Cross et al., 1970). Schematically, these stress-strain curves fall into four categories
as shown in Fig. 1.3. The stress-strain curve shown in Fig. 1.3 (a) shows the shape
memory effect where the heating of the SMA following the linear elastic unloading
results in full shape recovery. The stress-strain curve shown in Fig. 1.3 (b) is a
combination of a pseudoelastic‘ effect and a shape memory effect. The pseudoelastic
effect is represented by the nonlinear unloading, which actually can be explained as
linear elastic unloading with a superimposed shape memory effect. The stress-strain
relation shown in Fig. 1.3 (c) illustrates a complete pseudoelastic effect where un-
loading of the SMA results in total reversion to its initial position after going through

a mechanical hysteresis. The stress-strain curve depicted in Fig. 1.3 (d) indicates

10



that the shape memory alloy has been loaded to its plastic range, some permanent
deformation of crystal lattice has resulted, and therefore, heating of the SMA cannot

restore the material back to its original position.

The two kinds of shape recovery for SMA in terms of the recovery path are the ‘one-
way effect’ and the ‘two-way effect’. Both of these effects are schematically illustrated
in Fig. 1.4. The two-way effect of shape memory alloys can be obtained by ‘training’
SMA which has one-way effect capabilities and is described by (Duerig et al., 1982;
Escher et al., 1990).

The change of Young’s modulus of shape memory alloys is very different from con-
ventional metal materials. For most metals, the Young’s modulus decreases as the
temperature increases. However, the Young’s modulus of shape memory alloys in-
creases within the phase transformation temperature range for the heating process.
The Young’s modulus of nitinol increases by 3 to 4 times from temperatures below

M; to temperatures above Ay. This is shown in Fig. 1.5 (Cross et al., 1970).

The shape memory effect does not simply mean that the previous shape will be re-
stored freely upon heating the SMA. Restraining a deformed SMA wire while heating
the wire above the transition temperatures will generate a large recovery stress as
shown in Fig. 1.6. This unique behavior is one of the fundamental characteristics

exploited in many applications of shape memory alloys.

Shape memory alloys are different from other materials in many other aspects. The

influence of the phase transformation on the electrical resistance is an example and is
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shown in Fig. 1.7. The distinction between the heating and cooling process demon-
strates the effect of the phase transformation. Measuring the electrical resistance of
shape memory alloys is often used to determine the phase transition temperatures as

indicated in Fig. 1.7.

Another important property of shape memory alloys that has attracted a great deal
of attention is the damping characteristics, i.e. the internal friction characteristics of
shape memory alloys. Figure 1.8 shows the change of internal friction of TisoNigokFe,
with respect to temperature for different frequencies. The damping properties of
shape memory alloys may be exploited for passive and adaptive dynamic control ap-
plications. The internal friction, Q~!, shown in Figs. 1.8 and 1.9, represents the
vibrational phase difference of an applied dynamic load and resulting deformation, or
the strain energy dissipation during the loading and unloading process. As described
in Fig. 1.3 (c), the pseudoelastic effect manifests itself in very large stress-strain
hysteresis, indicating the potential use of pseudoelastic SMA as high modulus damp-
ing materials. However, the structural damping effect is related to the structural
vibration frequency as shown in Fig. 1.8. The damping effect and frequency rela-
tion is schematically illustrated in Fig. 1.9. The damping effect of shape memory
alloy is caused by the resistance to the movement of the martensitic and austenitic
interface; 50 percent of martensitic or austenitic phase corresponds to the maximum
phase interface, therefore, the maximum damping effect (the maximum @ ~') happens
approximately in the middle of the phase transformation (Lin et al., 1989). Some of
the shape memory alloys such as TiNiPd and FeMnSi listed in Table 1.1 have wider
transformation hysteresis and would be the ideal materials to perform passive or pas-

sive self-adaptive dynamic control.
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Shape memory alloys are very sensitive to their heat treatment. A great deal of re-
search has been conducted in this field (Tadaki et al., 1987; Todorodi and Tamura,
1987). Figure 1.10 shows the effect of annealing temperatures on phase transforma-
tion temperatures. The sensitivity of shape memory alloys to different heat treatment
is both a shortcoming and an advantage. This means that a proper heat treatment
will provide the material behavior required by a specific application. However, this
also means that certain extreme conditions, such as overheating of a SMA actuator,

may permanently degrade the material properties or damage the material.

In this section, the general concept of shape memory alloys was introduced and some
of the important characteristics of shape memory alloys presented. A detailed discus-
sion of the characteristics associated with the constitutitve modeling of shape memory

alloys will be presented in Chapter 2.

1.2 Industrial Applications of SMA

Shape memory alloys have been used in a wide variety of applications because of the
unique mechanical characteristics discussed above. This section will review some of
the industrial applications of shape memory alloys and shape memory alloy hybrid

composites.
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Figure 1.8: Internal Friction, Q~!, vs. Temperature (Lin et al., 1989)
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1.2.1 SMA Couplings

The first large-scale industrial application of shape memory alloys was by Raychem
Corporation in 1969 (Harrison et al., 1975) as cryogenic aircraft pipe fitting devices
for fuel systems. More than one hundred thousand of these fittings as shown in Fig.
1.11 (a) have been installed in advanced airplanes such as the F-14 and there have
been no reported failures. Similar devices include shape memory rivets (Figs. 1.11
(b)) (Buehler et al., 1969), SMA clamps, and SMA seals (Levinsohn et al., US Patent
3,759,552). Note that all the SMA devices illustrated in Fig. 1.11 are designed for
one time installation and are generally of two-dimensional or three-dimensional con-

figurations.

1.2.2 SMA Heat Engines

Since shape memory alloys produce large forces when subjected to temperature dif-
ferences such as hot and cold water, this basic concept has been used to design SMA
energy conversion machines, i.e., the heat engines. Banks (1975) designed a proto-
type of this kind of machine as shown in Fig. 1.12 in 1973. SMA heat engines can
be roughly divided into (1) offset crank engines (Banks, 1975; Ginell et al., 1979),
(2) turbine (differential pulley) engines (Johnson, 1975; Honma et al., 1978), and (3)
field (gravity) engines (Funakubo, 1984). The Carnot efficiency of SMA heat engines
has been reported ranging from a very few percent to 20~30 percent. The maximum
power output was reported from Trupins’ prototype as about 100 watts (Sanders,

1981). However, these machines have only been used for demonstration purposes.
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1.2.3 SMA Actuators

Shape memory alloys can be used wherever repeated shape, geometry, and positions
are required. The concept of shape recovery of SMA has inspired many inventions

such as the electric switch and temperature switches (Funakubo, 1984).

There are three basic types of SMA actuator (Biometal, 1987). The actuator shown
in Fig. 1.13 (a) is referred to as a one-directional actuator for devices such as SMA
cryogenic pipe fittings and other connectors intended for one-time installation. The
actuator shown in Fig. 1.13 (b) is called a bias force actuator, which uses a spring to
generate the restoring force and thus giving the mechanism a ‘two-way effect’. The
SMA spring or wire is first deformed, i.e., elongated at a low temperature before
installation. When the SMA spring is heated, the recovery force generated by the
shape memory effect pulls the spring to store energy in the spring. When the SMA
actuator is cooled, the potential energy stored in the bias spring is released to strain
the SMA spring (or wire) back to its initial position, resulting in a deformation-
reformation cycle that is accompanied by the martensitic transformation and reverse
transformation of SMA elements. The actuator depicted in Fig. 1.13 (c) is called
a differential force SMA actuator that includes an opposing SMA element used to
create an active bias force and a deformation SMA element with some initially stored
energy (characterized by a thermally unstable martensite and represented by initial
strain). A specially designed cooling and heating strategy of the two SMA elements
can produce a differential motion path. A general design method for the second and
third type of SMA actuator depicted in Fig. 1.13 will be developed based upon the
newly formulated relations that will be presented. The actuator depicted in Fig. 1.13

(a) generally is a 2-D or 3-D solid element in contrast to the wire or 1-D elements used
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in the bias spring and differential force actuators. Based on the multi-dimensional
constitutive model that is developed in Chapter 5, the detailed operating mechanism

of this type of 2-D SMA actuator (such as a SMA pipe fitting) can be studied.

The operating variables for a SMA actuator are the amount of force output, the max-
imum travel distance, or stroke, and the work generated by the actuator. The basic
design variables include the selection of the SMA material (i.e. alloy composition,
cold and hot rolling method, and heat treatment, etc.), the length of the SMA wire(s),
cross-sectional area, and the initial state of the SMA (i.e., its initial martensitic resid-
ual strain, or initial percentage of martensite). The other important parameter for a
bias spring SMA actuator is the bias spring constant. It is assumed in this discussion
that both SMA elements of a differential actuator are of the same SMA material
so that the design variables of a differential actuator are restricted to its geometric

variables and initial states of the SMA elements.

Several methods are used to determine these parameters (Hodgson, 1988; Funakubo,
1984). Figure 1.14 (Hodgson, 1988) shows the stress-strain curves of the high temper-
ature austenitic and low temperature martensitic phase of a shape memory alloy with
a bias spring’s force superimposed. The slope of the dash line represents the stiffness
of the spring. The initial equilibrium position is ‘B’. When heated, the SMA wire
contracts to ‘A’. The lower stress-strain curve corresponds to a temperature lower
than the transition temperature (usually the austenite start temperature A;). The
upper curve is the stress-strain curve of the same piece of SMA wire at a temperature
much higher than A;. Since a complete cycle of the SMA elements involves both the

martensitic transformation and its reverse transformation, the design method shown
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in Fig. 1.14 does not reflect this and can only provide an approximate result. Another
design approach for bias spring SMA actuators is shown in Fig. 1.15 (from Funakubo,
1984). Unlike Fig. 1.14, the stress-strain curves (load-displacement curves here) are
called deformation and reformation curves. The curve OC} is the load-displacement
curve at a low-temperature martensitic phase and the curve OC, is the recovery
stress-strain curve. This method (shown in Fig. 1.15) can provide such information
as the amount of force generated (from C; to C3), the travel distance of ‘X’ (from
Xa to Xj), and the total available work (area formed by C;C3C,). The point C;
determines the initial state of the SMA wire and ‘k’ is the spring constant of the bias
spring. The primary problem in utilizing this approach is the determination of the
reformation curve (or the recovery stress-strain relations) (Liang and Rogers, 1989;

Dye, 1990; Duerig et al., 1989).

Although the design approaches mentioned above are not very effective, they can
still provide information helpful to the design of bias spring actuators. However, the
design of a differential actuator is still very difficult and there has been no published

work describing a general design method for differential force SMA actuators.

1.2.4 SMA Hybrid Composite

Rogers (1988) suggested that shape memory alloy fibers could be embedded into com-
posite materials as active ‘reinforcement’ and actuators (SMA hybrid composites) to
impart adaptive structural modification. The class of the material referred to as SMA
hybrid composites is simply a composite material that contains shape memory alloy

fibers (or film) in such a way that the material can be stiffened or controlled by the
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addition of heat (resistive heating is usually used due to the unusually high electrical
resistance of NiTi shape memory alloys). One of the many possible configurations of
SMA hybrid composites is one in which the shape memory alloy fibers are embedded
in a material off the neutral axis on both sides of the structure in agonist-antagonist
pairs as shown in Fig. 1.16. SMA fibers are embedded in a variety matrix materi-
als such as graphite/epoxy, glass/epoxy, thermoplastic materials, and other moldable
or formable materials. The SMA hybrid composite materials that are presently un-
der investigation include nitinol/graphite/epoxy (graphite/epoxy as the matrix) and
nitinol/glass/epoxy (glass/epoxy as the matrix), silicon/nitinol, APC-2/nitinol, and
PLYTRON/nitinol.

Two active structural modification techniques have been developed: one is called ac-
tive properties tuning (APT), another is active strain energy tuning (ASET) (Rogers,
Liang, and Jia, 1989). The first technique (APT) makes use of the characteristics
of the change of the Young’s modulus (shown in Fig. 1.5) of shape memory alloys
as a function of temperatures. Heating the embedded shape memory alloy fibers
will increase the overall stiffness of the hybrid composite according to the rule of
mixtures. The response of SMA hybrid composites under the same external loading
will be modified in a controlled fashion. This can be either a static response or a
dynamic response. The static response includes buckling and transverse deformation.
Increasing the stiffness of a SMA hybrid composite plate will certainly increase the
buckling strenght and reduce the transverse deformation of the plate. The active
control is achieved by adding heat electrically to the structure rather than altering
the structure by putting a control mass.

This technique usually requires a relatively large volume fraction of shape memory
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alloy fibers (40 %) in order to have an effective change of the stiffness of the material

(Liang, Jia, and Rogers 1989).

The second technique (ASET) requires embedding prestrained shape memory alloy
fibers. The restraint of the prestrained SMA fibers will produce a large recovery stress
if the SMA wire is heated above its transition temperatures as demonstrated in Fig.
1.6, and thereby creating a large increase in the stored strain energy. The recovery
stress of the SMA fibers actually produces a membrane stress and the nature of this
membrane stress (compressive or tensile) is highly dependent on the boundary con-
ditions of SMA hybrid composites (Barker, 1989; Rogers and Barker, 1990). Tuning
the internal stress field results in the modification of the response of the SMA hybrid
composite structures. The name ‘active strain energy tuning’ comes from the concept
that the pre-stored strain energy (represented by the initial strain of SMA fibers) can
be released or activated by heating the SMA fibers to tune the response much like
tuning a guitar string. The objective of tuning the dynamic response of SMA hybrid
composites is generally to change the structural dynamic behavior of the structure,
i.e., the natural frequency and mode shapes. The activated first natural frequency of
a clamped-clamped SMA hybrid composite beam measured experimentally can be as
high as six times the inactivated frequency (Barker, 1989). Lower-order mode shapes
of an SMA hybrid composite plate also can be varied significantly as shown in Fig.

1.17.

The list of scientific areas that can be influenced by this novel approach made possible
with SMA hybrid composites is significant. For example, vibration control can be ac-

complished by using the distributed force actuator capabilities similar to the common

33



SMA Fiber Reinforced Epoxy
ooooooooooooo

Figure 1.16: Schematic Diagram of the Configuration of an SMA Hybrid Composite
Plate

34



First Ten Mode Shape of a Quasi-isotropic Plate
All Activated 0 0. .
Inactivated 90 - Activated 45" Activated
1 6 1 6 1 6
J
2 / 2 7 2 7
v N
: |
3 8 3 8 3 8
1 1S
4 9 4 9 4 9
H il
5 10 5 10 5 10

Figure 1.17: Change of the First Ten Mode Shape Resulted from ASET (After Liang,
Rogers, and Jia, 1989)

35



__ &0 T 1 I

m — Activated

% 50 [ ---- Inactivated —
8 40 - _
§ 30 g
aQ \

= 20 — =
2. \

g 10 —
= % I R N I

0 200 400 600 800 1000 1200
Frequency (Hz)

Figure 1.18: Transmission Loss of Sound Through a SMA Hybrid Panel vs. Frequency
with ASET Technique (After Liang, Rogers, and Fuller, 1990)

36



piezoelectric systems. Other active controls such as buckling control can be achieved
similarly. One of the main applications of SMA hybrid composites is in active acoustic
control. The sound transmission and radiation from a SMA composite structure can
be actively controlled by actively modifying the resonance frequence and mode shape
of the SMA structure (Liang, Rogers, and Fuller, 1990; Rogers, Fuller, and Liang,
1990). Figure 1.18 shows the profile of transmission loss of sound through a SMA
hybrid panel. The experimental study of sound radiation of a SMA hybrid composite
beam has been conducted (Saunders, Robertshaw, and Rogers, 1990) which showed

the overall sound radiation reduction of 50 dB.

Embedding shape memory alloy into conventional composites makes the new SMA hy-
brid composites adaptive materials. The SMA hybrid composites have the capability
to modify their dynamic response, structural acoustic behavior, and static response.
They also have the capability to sense their internal damage possibly due to fatigue or
manufacture imperfection as well as perform active damage control. The application
of SMA in damage sensing and active damage control will have a tremendous impact

OIl many areas.

1.3 Review of the Constitutive Modeling of SM A

The investigation and formulation of constitutive relations of shape memory alloys
has been of considerable interest and intense effort since the 1970’s. Many different
models have been proposed. A full and detailed review of the constitutive modeling
of shape memory alloys will now be presented, starting from a basic introduction to

traditional thermodynamic modeling.
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1.3.1 Traditional Thermodynamic Modeling

The traditional thermodynamic modeling of shape memory effects, i.e., the char-
acteristics of stress-induced martensitic transformations, is based on the Clausius-
Clapeyron equation as given in Eq. (1.1). Conventional thermodynamic state vari-
ables enthalpy, H, and Gibbs free energy, G, are modified by including the potential

energy resulting from applied stress.

H* = U+PV-Fl=H-FI

G* = U+PV-TS—Fl=G-Fl (1.3)

where U is the internal energy, P the pressure, V the volume, F' the force applied
to the specimen, ! the length of the specimen and superscript ‘*’ represents the
modification of adding the potential energy. The minimum of free energy corresponds
to the state of phase equilibrium. The pressure term, ‘PV’, in the above equation can
be ignored for solid materials and the Gibbs free energy is, therefore, the same as the
Helmholtz free energy. If the free energy of the parental phase and the martensitic
phase are denoted as G*f and G*M, respectively, when the phase transformation
reaches equilibrium, the following relation can be derived from the minimization of

the free energy (Reed-Hill, 1973).

38



consequently,

=AS (1.5)

where To(F') is the temperature at which both phases are in equilibrium under a
force F; AH* and AS are the difference between the H* and S of the two phases at
To. The following equation can be obtained by invoking the first and second laws of

thermodynamics,

dG* = VdP — SdT — ldF (1.6)

Under constant pressure, the first term on the right-hand side of the above equation
vanishes. This indicates that the free energy G* can be expressed in terms of the two
independent variables T' and F. If the equilibrium boundary of the parental phase
and the martensitic phase is altered so that T — T + dT and F — F + dF while
the state of equilibrium is maintained, the restriction for the change of equilibrium

position can be derived from Egs. (1.4) and (1.6) as

— SPAT —1PdF = —SMdT — IMdF (1.7)
This leads to the relation

dFF _ ASP—M AH*P—M

ar _ Ao _AHT T 1.
dT ~ ~ AIP=M ~ T To(F)AIP-M (18)
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The stress and strain relation is then expressed as

do _ ASP_’M B AH*P_’M
dT eF-M —  Ty(F)eP—M

(1.9)

This is another form of the Clausius-Clapeyron equation. Since this equation is based
on a strict thermodynamic derivation, it should be able to provide the quantitative
description of the stress-strain and temperature relations. However, because this
equation requires the quantitative measurement of thermodynamic data such as the
free entropy, which is not practical in engineering design, this equation remains as
a qualitative description of the thermodynamic nature of the shape memory effects.
Detailed discussion of this modeling can be found in Funakubo (1984) and Warlimont

(1974).

1.3.2 Muiller’s Constitutive Model

Miiller and his colleagues (1979, 1980 and 1986) proposed another model based on
shape memory effect phenomenology, thermodynamics, and statistical physics. For a
small lattice, the potential energy at a certain temperature is schematically shown in
Fig. 1.19. There are two stable minima corresponding to the martensitic twins and
a metastable center for the austenitic state as shown in Fig. 1.19. The shear length
of each layer of the martensitic lattice is denoted by A, and the stable martensitic
phases are denoted by M+ and M —. If an external force P is applied, the total
potential energy is given by ® — PA as shown in Fig. 1.20. At a lower temperature,
the material particles lie still in their potential well. The yielding from M — to M+

will occur when the applied external load is so large that the potential barrier on the
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left is eliminated as shown on the top of Fig. 1.20. The bottom of Fig. 1.20 refers
to higher temperatures at which particles are fluctuating about their minima with a
mean kinetic energy that is proportional to the temperature. The height of the pools
of the potential wells of Fig. 1.19 indicates the strength of the fluctuation. The figure
indicates that at higher temperatures the yielding from M — to M+ will occur at a
lower load than that at lower temperatures. If there is such a fluctuation, it may be
described using statistical mechanics. Assuming the distribution function of phase
‘k’ is N in a single lattice, the total deformation D — Dy may be written as

D—DO NM_AM_ +NM+AM++NAAA) (1.10)

_ 1 (

V2
The thermcdynamics behind the phase transformation can be described as: “the
energy E tries to minimize by pulling all particles into the depths of the potential
wells and the entropy S attempts to maximize by distributing the particles evenly

over the available range of shear lengths. In this competition, it is the free energy,
b=F-TS - (1.11)

that achieves a minimum” (Miiller, 1986). The free energy and the distribution
function N, can be related using statistical mechanics. Minimization of the free
energy will yield the explicit expression of D — Dy and martensitic volume fraction,
€, in terms of the applied load and temperature. The expression for D — Dy is given

as

7)) T[AeE )] 4 o570 [ Ae P

N (1.12)
V2 ) 7 PR | (- 550 5 o (FEE '

D‘-D():
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Figure 1.19: Potential Energy of a Lattice vs. Shear Deformation Length (After
Miiller, 1986)
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Figure 1.20: Influence of External Force and Temperature on ® — A Relation (After
Miiller, 1986)
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This model gives an excellent physical explanation of the phase transformation and
its related material behavior. However, this model presents only a qualitative picture
of SMA and is too complex to be used for engineering design other than to evaluate

the microstructures associated with different processing schemes.

1.3.3 Falk’s Model

In Miller’s model, the influence of temperature is described as the fluctuation of en-
ergy of the particles in the potential well which is represented by the depth of the
potential wells. With increasing temperature, the height of the potential well will in-
crease. This indicates that a small applied force may cause the transformation from
M— to M+ at high temperatures as depicted in Fig. 1.20. The potential energy from
an applied force is superimposed on the chemical Helmholtz free energy resulting in
the distortion of the free energy-shear length curves. It is difficult for Miiller’s model
to explain why larger forces are needed to induce martensitic transformation at higher
temperatures. Falk (1980) modified the free energy-force-temperature relation and

obtained much simpler results.

In Falk’s model, the relative position of M_ and M, stable and metastable position
A varies as a function of applied force and temperature. Figure 1.21 shows the nor-
malized Helmholtz free energy, ¢, over shear strain, e, (A in Miiller’s model) with
normalized temperature, t, as a parameter. The curve with a higher ¢ has only one
stable phase (austenite) and a very low temperature such as the one corresponding
tot = —5/16 has two stable phases (M_ and M,). At some medium temperatures

like t = 1/24 or 0, there are three stable phases. The metastable (center minimum)

44



corresponding to the austenite phase may vanish as a result of the phase transfor-
mation if force is applied. Falk proposed an expression for the Helmholtz free energy

per volume, ®, as
®(E,T) = aE® — BE* + (6T — 7)E? + ®,(T) (1.13)

where a, 8, v and § are positive material constants. E is the strain and T is temper-

ature. The above expression can be normalized to

¢=e—et+ (t+1/4)e” + ¢o(t) (1.14)

From thermoelasticity, the shear stress ¥ can be derived as

_ 0%(E,T)

1.15
z 5 (1.15)
Normalization of the shear stress yields
9 _ 5 _ 43
o(e,t) = %266 —4e’ +2(t+1/4)e (1.16)

This normalized shear stress, o, gives a qualitative assessment of the stress-strain

relations of shape memory alloys at different temperatures.

With this assumed free energy expression, the model can be used to study the change
of elastic modulus (g—‘;), shape memory effect, temperature and stress-induced phase

transition, latent heat of the phase transition, internal energy, Gibbs free energy, and
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Figure 1.21: Influence of Temperature on Free Energy and Shear Deformation Rela-
tions (After Falk, 1980)
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entropy (the entropy can be expressed as - ®/3T). Since the free energy here can be
scaled to fit any material, a specific material can be characterized as long as the four
scaling parameters a, 3, §, and v are known. These parameters can be determined by
comparison with thermodynamic and mechanical experiments. For instance, 7 is the
Young’s modulus of the material and § somehow represents the influence of tempera-
ture on the Young’s modulus. The reason that this theory has not been widely used
is that it is adapted to a single crystal and the measurement of the scaling parameters

for a general shape memory alloy is very difficult.

1.3.4 Sprekel and Hoffmann’s Model

Sprekel and Hoffmann (1985, 1986 and 1987) have developed a thermodynamic model
similar to Falk’s model. Unlike Falk, instead of assuming an explicit expression for

the free energy, Hoffmann et al. used a generalized free energy expression.

®(€,0) = Bo(0) + ®,(0)e* + P,(¢) (1.17)

where 6 is the absolute temperature and € the linearized strain. Considering a one-
dimensional SMA specimen undergoing a transient temperature and mechanical load-

ing, the general one-dimensional constitutive relations are

s = —®

e = ®+s0

€ = Uy (1.18)
q = —ki0; — ki,



o = & + pe

where ¢ is the heat flow, s the specific entropy, e the specific internal energy, u the
displacement, o the stress, and ¢ the time; p is the viscosity coefficient and k; and k;
are positive coefficients. Notation Y, represents the differential of Y with respect to

z.
The governing equations (first law of thermodynaics and momentum balance) are

€ = oéE—q.+ A

f = uu-o, (1.19)

where ) is the heat source and f is the external load. The system equations in the

spatial and time domain can be derived from the above equations as

f = Uy — (q)c)z — UUizy

A = Bs, — uu;‘:c — k10, — k20, (1.20)
The boundary conditions are specified in this case as

u(x>0) = uO('T)
w(z,0) = wa) (121)

8(z,0) = 6o(z)
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and the initial conditions are

u(0,1)

k109(t)

u(l,t) =0

a(0r(t) - 6(1)) (1.22)

where (2 represents the spatial domain and T" the boundary of the spatial domain; « is
the heat convection coefficient. The above system equations and boundary conditions

satisfy the following variational equations.

T
/0 /Q[astf + pui(en + €&) +  k10:€ + k208 + AE]dxdt +

/OT/F“[(B —0r) + 7]21(01 — Op4|édzdt =0 (1.23)

2

and

T
| [ fwen = (@02n = peen — frldadt = 0 (1.24)

For a set of given f, A, 0r, ug, u;, and 6y, solving the above variational equation may
yield the unknown functions in Eq. (1.17). However, getting a closed-form solution is
very difficult and a numerical technique has been used to solve the above variational
equations. One method is to assume the free energy as a summation of some known
functions weighted by unknown coefficients, those coefficients can be determined by
solving the above variational equations. Spatial domain finite elements and time do-
main finite differences also can be used to solve the displacement, strain and stress

(Tithonen, 1988).
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This model is based on strict mathematical derivations, its numerical simulations
reflect the physics of the martensitic transformation of shape memory alloy and its
related material behavior. However, the complex formulation requires sophisticated

programs and its validity still needs experimental verification.

1.3.5 Modeling of SMA with Internal Variables

Tanaka and Sato et al. (1982, 1985, 1986, and 1988 ) developed a model based on the
concept of the free energy driving force. Tanaka’s model considers a one-dimensional
metallic material of length L that is undergoing either martensitic transformation
or its reverse transformation. The state variables for the material are strain, tem-
perature, and extent of phase transformation, ¢, which is defined as the martensite

fraction. The general state variable is defined as
A=(&T,¢) (1.25)

The Helmholtz free energy defined in Eq. (1.11) is a function of the state variable
A. Like Miiller, Hoffmann, and Falk, the same general constitutive relations can be
derived from the first and second laws of thermodynamics as’

oo
5= poe = 0@ 1,6) (1.26)

1A detailed derivation will be given in Chapter 2
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The stress is a function of the martensite fraction, an internal variable. From the
above equation, the rate form of the mechanical constitutive equation is obtained as
. Oo. 0o, Oo; . . .
0=—€+—=T+—=€6E=De+0OT + 0 1.27

Gt tapl t 855 £ (1.27)

where D is the Young’s modulus, © the thermoelastic tensor, and © the transfor-
mation tensor, a metallurgical quantity which represents the change of strain during
phase transformation. The material properties derived from thermomechanics are

given as

820

D = rogz
820

0 = po-agw (1.28)
B

@ P Seoe

If the expression of free energy is known, the minimization of the free energy may
determine the equilibrium states of phases, i.e., the relation of the martensite fraction
with the applied stress and temperature can be determined. However, instead of
making the effort to find the free energy expression, the martensite fraction, ¢, is
assumed to be an exponential function of stress and temperature based on the study

of transformation kinetics in Tanaka’s model. These functions are

€M—»A = exp[Aa(T - Aa) + Baa]

oy = 1—exp(An(T — M,) + B,,0] (1.29)
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where A,, A,., B,, and B,, are material constants in terms of the transition temper-

atures, A,, As, M,, and My, etc.

Tanaka’s model is simple and yet reflects the thermomechanics of shape memory al-
loy. It has been used to predict and describe the stress-strain relations, pseudoelastic
effects and the energy dissipation of pseudoelastic effects qualitatively. Based on
Tanaka’s work, Liang and Rogers (1990) further modified and extended this model
in order to predict and describe quantitatively the behavior of shape memory alloys
including the shape memory effects and develop multi-dimensional constitutive model

(Liang and Rogers, 1990a; 1990b).

1.3.6 Non-Equilibrium Thermostatic Model

Cory and McNichols (1978, 1985, and 1987) have developed a thermomechanical
model based on what they have termed non-equilibrium thermostatics (NET) sys-
tems. If a thermodynamic system undergoes an equilibrium path, which means that
every position of the path must correspond to an equilibrium state, the process is
required to take place very slowly (i.e., quasi-static). Such processes are likewise re-
versible. Since shape memory alloys involve an irreversible phase transformation and
have macroscopic hysteric characteristics, their thermodynamic paths are described
by a non-equilibrium thermostatic process. For NET systems, instead of using the
inequality form of the second law of thermodynamics, a path-dependent heat gener-

ation term is introduced and the newly modified second law of thermodynamics is

52



given as

TdS = dQ + TdS (1.30)

where dQ is the path-dependent heat into the system, while the newly introduced
term S is the internally generated entropy change for a differential path element
relating directly to the energy dissipation of the hysteresis. Cory and McNichol sum-

marized their model with the following points (McNichols and Cory, 1987).

1. All thermodynamic paths of force, length of SMA wire, and temperature

(FLT) in its state space are limited within a bounded volume.
2. The surface of the bounded volume is the asymtotic boundary of the paths.

3. All observed paths are one of two types, each type having a characteristic
‘direction’ in state space. The two types are defined as AM (austenite to
martensite) and MA (martensite to austenite). Therefore, as shown in Fig.
1.22, the surfaces of the bounded volume are distinguished as AM and MA

surfaces.

4. The direction of the path is related to the increase or decrease of a new state
variable Z defined especially for the NET system. The ‘history’ dependence
of SMA state variables (FLT) is completely determined by the FLT location
(called Fg, Lg, and Tp) of the last change in the sign of the differential dZ,

and is independent of the history of the system prior to that time.

5. The initial slope of each single controlled state variable paths is nearly the

same and is tangent to a set of Z surfaces in FLT space.
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6. There exist reversible paths in the FLT space which are characterized by

the surface of constant Z value.

Figure 1.23 gives a schematic isothermal cut of the SMA state space from which the
phenomenological equations of the stress-strain curves can be determined. First, the

AM surface is given by

Foam(L,T)=(a— )L+ (b+g)T - N (1.31)

where ‘BAM’ represents the ‘boundary surface of the martensitic phase transforma-

tion.” The MA surface is given by

Fena(L,T) = Fan(L,T) — h (1.32)

where ‘BMA’ represents ‘boundary surface of the MA transformation.” The Z surface

that is tangent to the initial slope is described by

Z=al+bT - F (1.33)

The stress-strain AM path is phenomenologically described by

g(T -T;)— f(L - L,)
Fpamz — F:

Fpam — F = (Fpamz — Fr)exp | | (1.34)

where the history variables, (L., Ty, F;), correspond to the minimum Z at Z, =
Z(L,, Ty, F;), and the subscript ‘x’ of ‘Fg4ps’ and ‘F’ indicate their corresponding

values at (L.,T,). For the stress-strain curve of the MA path, the equation is ex-
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Figure 1.22: Schematic Diagram of Nitinol State Space (After McNichols and Cory,
1987)
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Figure 1.23: Schematic Isothermal Cut of Nitinol State Space (After McNichols and
Cory, 1987)
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pressed as:

(To=T)—f(Lo— L)
Fo — Fearao

F — Fepma = (Famao — Fo)exp | Z | (1.35)
where (Lo, Ty, Fy), correspond to the maximum Z at Zy, = Z(Lo, Ty, Fy), and the

subscript ‘0’ of ‘Fga4’ and ‘F’ indicate their corresponding values at (L, o).

In the above equations, ‘a’, ‘b’, ‘g’, ‘f’, ‘h’, and ‘N’ must be measured from from
experiments. Besides the stress-strain relations, this model has been used to pre-
dict the thermodynamic path behavior, heat dissipation and other thermodynamic
parameters. However, the SME behavior is directly related to the martensitic phase
transformation. Cory’s model does not consider the phase transformation as the in-
ternal driving force which results in the hysteresis. The state variable, Z, also lacks a
physical explanation (probably related to the martensite/austenite fraction). Cory’s
model describes only the one-dimensional stress-strain relation of SMA. The other

phase transition characteristics, such as the recovery effects, have not been modeled.

1.3.7 Hysteretic Model

Shape memory alloys present large hysteresis during loading and unloading. Although
this hysteresis is a result of the irreversible aspects of the material phase transforma-
tion, the large hysteretic phenomena of shape memory alloys indicates great energy
dissipation. This characteristic falls into the category of viscoplastic material and the
constitutive relations for hysteretic material may, therefore, be capable of describing

shape memory alloys. This method is developed and presented in detail in Graesser’s
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dissertation (1990) and is briefly described below.

The rate form of stress and strain relation for a hysteretic material is expressed as

¢ = e4en
o L,o—=p
= E+|€|( % ) (1.36)
where
. o—B
= : 1.37
§=aBld " (137)

B is the one-dimensional backstress, E the elastic modulus, Y the yield stress, n
the constant describing the sharpness of transition from elastic to plastic states, and
a is a constant controlling the slope of the ¢ — € curve (given approximately by
a = Ey/(E — Ey) where Ey is the slope of the 0 — € curve after yielding). Su-
perscript ‘e’ means ‘elastic’ and ‘in’ means ‘inelastic’. This expression is very similar
in form to the rate sensitive flow rule of the nonlinear Kelvin-St. Venant (K-V) vis-

coplastic model.

Some modifications for the above equations have been made to describe the cyclic
SMA hysteretic and/or pseudoelastic behavior, and a tensor form analogous to plas-
tic flow theory was derived to extend this model to multi-dimension. However, the
initial assumption of non-change uniform temperature field marks the limitation of
this model. It is only capable of modeling the stress-strain behavior of shape memory

alloys. The shape memory effect which is inseparable from temperatures cannot be
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described.

1.3.8 Plastic Flow Theory Model

Bondaryev and Wayman (1988) suggested a model based on the plastic flow theory
and thermoelastic martensitic phase transformation. Their work can be basically de-

scribed as follows.

The strain tensor is decomposed into elastic strain, €f;, and inelastic strain, €}, as

€i; = ij + C?j (138)

The elastic strain in both martensite and austenite obeys Hook’s law for an isotropic

material.

.1 1
e; = %3,’1- + @0’,35;]‘ (139)
where €; is the strain deviator; é;; is Kroneker’s delta; p, and k, are shear and bulk

modulus, z = M or A denotes martensitic or austenitic state, respectively; s;; is the

deviatoric stress. o, implies a summation over the repeated indices ‘ss’.

The inelastic strain is assumed to be governed by the normality rule as accepted in

plastic flow theory as

« _ 1 9f
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where d) is a finite multiplier related to the martensite fraction. Proper construction
of this parameter leads to the solution to different problems for shape memory alloys
(stress-strain mechanism and shape memory effects). The term f is generally referred
to as the yielding function. f = 0 indicates the beginning of the martensitic phase
transformation and an accumulation of inelastic strain. The yielding function can be

derived from the energy relations involved in the phase transformation.
The beginning of the martensitic phase transformation can be represented by
AGA™M — AGA™M L AGAGM =R >0 (1.41)

where AG4™M and AG43™M are the chemical and nonchemical Gibbs free energy,
respectively. R reflects ‘frictional’ resistance. A — M denotes the martensitic trans-
formation (from Austenite to Martensite). The Gibbs free energy for austenite and

martensite is written respectively as

1 1 2 A
_ g 1.42
G4 = Tin S$ijSij Ty ois+ G&(T) ( )

and

1
Gum = ——s

T, % majs — a;;0i5 + GY(T) (1.43)

where o;; is the maximum inelastic recoverable strain tensor.
ij
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Substituting Eqs. (1.43) and (1.42) into (1.41) yields

11 1 1 1
— — —)si;si; +

1 .. .
Z(ﬂM KA E(H B H)OZ’ +ayoij + AGE™Y = R (1.44)

The nature of the martensitic transformation is primarily shear as there is no signif-
icant change of volumetric properties and volume itself. Therefore, the second term
(0,5 term) of Eq. (1.44) vanishes. Experiments show that the stress field causes the
appearance of crystal variants that provide maximum work with respect to the in-
elastic strain. This means that the unit vector n;; of the maximum recovery strain
tensor, a;;, and the unit stress vector s?j = 8j/8 = 8ij/\/SmnSmn are parallel. There-
fore, a;;0;; can be written as a,/5;;5;; which is much larger than the first term of Eq.
(1.44). A linear approximation is used for the chemical Gibbs free energy. All these

considerations finally yield the following simplified yielding function.

f=oa/s555 - W(T - Ms) (1.45)

A similar yielding function which can be used to describe the inelastic unloading

caused by the pseudoelastic effect was derived based on the same discussion as
fg = a;’jsij - W(T - AS) =0 (146)

where ¢f; is the maximum inelastic recoverable strain tensor caused by the marten-
sitic phase transformation. It is assumed that the maximum inelastic strain tensor is
proportional to the inelastic strain, €;, at any moment. Proper modification to these

yielding functions (Egs. (1.45) and (1.46)) makes this model capable of modeling the
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low temperature and high temperature states.

This model is based on the plastic flow theory with some modification to capture the
essense of the special characteristics of shape memory alloys, i.e., the phase transfor-
mation. The question one may ask is whether we can still use the flow rule to describe
the inelastic strain caused by transformation. The inelastic strain caused by plastic
deformation is different in nature from the one caused by phase transformations. The
second question is the validity of this model in describing the shape memory effect.
For example, the stress generated in a SMA specimen under restrained conditions can

be derived from the discussion assuming a constant total strain, that yields

Si; = i(,‘l’,‘~(T - As) (147)

(a-)2 1

where (a*)? = a};aj; can be viewed as the residual strain prior to the heating. Con-
sidering a special case of one dimension, the stress from this equation is proportional
to the temperature and inversely proportional to the initial strain a*, which is con-

trary to the experimental result shown in Fig. 1.6.

1.3.9 Concluding Remarks

Eight constitutive models of shape memory alloys have been reviewed. These mod-
els can be roughly divided into two categories. One is the thermomechanical model
represented by Miiller’s and Tanaka’s model; another is based on a well-developed
mechanical theory such as plastic flow theory, for instance, the one developed by

Bondaryev and Wayman. Some of these models can only provide qualitative under-
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standing of the characteristics of shape memory alloys. Other models appear to be
able to describe the behavior of a shape memory alloy quantitatively, but require
material constants which are difficult to measure. Almost all these models lack ex-
perimental verification. Among them, Tanaka’s model which was developed to study
SMA qualitatively is found to be modified to predict and describe shape memory
alloys quantitatively. The constitutive relation of SMA presented in this dissertation

is, therefore, based on Tanaka’s early work.
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Chapter 2
Constitutive Modeling of SMA

In this chapter, a one-dimensional thermomechanical constitutive model based on
Tanaka’s early work (Tanaka, 1982 and 1985) is presented. This model is based on
thermomechanics and phase transformation phenominology. We begin with an intro-
duction of the transformation kinetics and some important features of the mechanical

behavior of SMA.

2.1 Transformation Kinetics

The stress-induced martensitic phase transformation is the most important charac-
teristics of SMA materials; therefore, it is necessary to begin the development of the
model with phase transformation relations and effects of stress on the phase trans-
formations. In this model, an internal variable, ¢, is introduced to represent the
extent of a martensitic transformation. This variable is characterized as a martensite
fraction (the ratio of the volume of martensite to the total volume of the material).
Transformation kinetics is the study of the relations of the martensite fraction with

other state variables such as temperature and strain.

64



Martensite Fraction %

100

(Ea.Th)

Mf Ms As At
Temperature

Figure 2.1: Schematic Diagram of Martensite Fraction vs. Temperature
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As illustrated in Fig. 2.1, the martensite fraction changes as a function of temper-
ature for all the materials that can undergo martensitic phase transformation. The
four important temperature parameters in Fig. 2.1 are the martensite finish tempera-
ture (M;), martensite start temperature (M,), austenite start temperature (A,), and

austenite finish temperature (Ay).

There is no direct approach to measure the relations of the martensite fraction with
temperature for shape memory alloys because of the very fine microscopic structures
of SMA, in particular nitinol alloys. However, it is possible to obtain the four transi-
tion temperatures and the relations between the martensite fraction and temperature
indirectly. The four transition temperatures can be measured accurately by using a
differential scanning calorimeter (DSC), by measuring the change of resistivity, or by
measuring the change of the volume in the material during the phase transformation
(Funakubo, 1984). They can also be estimated by examining the mechanical behav-

iors such as the stress-strain relations of shape memory alloys.

Theoretical studies show that the relations between martensite fraction and other

state variables can be obtained by calculating the phase equilibrium (Hillert, 1968)

and transformation kinetics (Magee, 1968).

Considering the calculation of the phase equilibrium of a two-phase alloy where the

two phases are denoted as a and f3, the volume fraction ratio, K*/#, can be expressed

by (Hillert, 1968)

o 1 o a
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where R is the universal gas constant, T' the temperature, and G the chemical poten-
tial or Gibbs free energy. G§ is the molar free energy of the a phase at the standard
state chosen, as is Gg . Subscript ‘E’ means ‘excess’. This equation offers a very
convenient way to calculate the phase equilibrium of two-phase alloys. However, the
material data required to perform this calculation is very difficult to measure and,

thus, limits the use of this equation in engineering design.

The calculation of transformation kinetics is based on the concept of the free energy
driving force. Numerous studies on transformation kinetics, particularly in dynami-
cally stabilized steels, have resulted in knowledge concerning the relationship between
the volume fraction, ¢, and the quenching temperature, T, under standard quenching
procedures. More transformation occurs at lower temperatures, because the driving
free energy favors the formation of martensite, AGA~M and increases at lower tem-
peratures. Moreover, the nature of the nucleation centers is such that more nucleation
events occur at higher driving forces. An expression of the martensite fraction, ¢, and
the quenching temperature, Ty, can be derived based on the fact that the genera-
tion of new martensitic plates per unit volume of austenite, dV, is the result of the
increase of the driving force, d(AG4™M). The simplest relation is

dN = —kd(AGA™M) = -deT (2.2)

dT

where « is a proportionality constant. The change of the martensite fraction, d¢, is

simply related with dN by

d¢ = V(1 - ¢)dN (2.3)
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where V is the average volume of the newly formed martensitic plates. Finally, the
relationship between the martensite fraction, £, and other state variables is derived

from the above equations as

¢ = -V(1- m%ﬂﬂ (2.4)

Integrating from M, where ¢ = 0 to T, assuming V, &, and dACfi;—‘M constant yields

dAGA—»M
K—

In(1 - €) = VxS0 (M, ~ T,) (2.5
A—-M
1€ = explVat0 (M, ~ T,)] (2.6)

The empirical equation from Koistinen and Marburger (1959) is

1 —¢ = expla(M, - Tp)] (2.7)

For ferrous materials, the coefficient a is -0.011 (Koistinen and Marburger, 1959).
The above empirical equation agrees with experimental results for higher quenching
temperatures. However, the equation does not fit with experimental results well
when the quenching temperature approaches the martensite finish temperature (Mjy).
Equation (2.7) provides a smooth transition around the martensite start temperature
(M,) because the integration of Eq. (2.4) begins from M,. Similarly, getting a

smooth transition around the martensite finish temperature requires integration from

68



M;. Equation (2.4) can also be expressed in another form as

¢, ,dAGAM
£ = V'k T dT (2.8)

Integrating from M;, where { = 1, to any quenching temperature T, yields

£ = eXP[ﬂ(Tq - Mf)] (2.9)

The martensitic transformation of ferrous materials occurs in a wider temperature
range, usually several hundred degrees, while the phase transformation of shape mem-
ory alloys, especially nitinol, takes place in a very narrow temperature range (tens of
degrees). It is important to give an accurate expression of £ vs. T' at the beginning
and the end of the phase transformation in shape memory alloys. The middle portion

of the phase transformation can use different approximations such as linear relations.

Tanaka (1985 and 1986) used the expression of Eq. (2.7) to describe the relation
between the martensite fraction, £, and temperature for martensitic transformation
(austenite — martensite) and Eq. (2.9) for the reverse transformation (martensite —
austenite). As discussed above, Eq. (2.7) provides a good approximation around M,

but a poor description around Mj.

It is suggested herein that both Egs. (2.7) and (2.9) may be used to describe the

relationship of the martensite fraction, £, and temperature piecewisely. It is assumed
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that both equations yield a £ of 0.5 at My and Ao where My and Ap are defined as

M, = w (2.10)
and
Ay = % (2.11)

This assumption leads to a = f. For the convenience of our calculation, the relations
of the martensite fraction, £, and temperature for the martensitic transformation and
the reverse transformation are rewritten as follows based on Egs. (2.7) and (2.9).
Considering that Vn(m_c;%:f_ cannot be constant in most cases, some modifications

as shown below are made. The relations between £ and T for the martensitic trans-

formation are assumed to be
E=1- %exp[aM(Mo -7 My >T > M; (2.12)
and
£ = 5 explan(T — Mo)'] M,>T > M, (2.13)
where n is a newly introduced parameter referred to as the phase transformation

coefficient in this dissertation. This parameter, n, is found to be between 0.75 ~ 1,

as determined from the free recovery experimental data discussed later.
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If M; and M, are assumed to correspond to the transformation of 99 percent and 1

percent of austensite, respectively, aps may be solved for as

_ 2"In(2 x 0.01)

ap = (M, _ Mf)" (214)

Similarly, the relations of the martensite fraction, £, and temperature for the reverse

transformation are assumed to be

E=1-— %exp[aA(Ao -1\ A>T > A (2.15)
and

€= 5 exploa(T — Ao)] A>T > Ag (2.16)

where a4 can be derived in a similar manner to ajs as

_ 27In(2 x 0.01)

as = (Af — A_,)" (217)

If the reverse transformation (M — A) begins from a state which has mixed austenite
and martensite phases, denoted by (&ar,Ta) as shown in Fig. 2.1, it is assumed
that there will not be new austenite generated during the heating process until the
temperature is higher than A,. The reverse transformation at a temperature higher

than A, is described by

§=¢&m— %weXp[aA(Ao -T)"] A>T > A (2.18)
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and

£ = %ﬂexp[a,g(T — Ap)"] A; >T > Ap (2.19)
Similarly, if the martensitic transformation begins from a mixed phase state denoted
by (€4, T4) as shown in Fig. 2.1, there will be no new martensite until the temperature

is cooled down below M,. The martensitic transformation is then described by

g=1-1 ’25" explay(Mo—T)"] Mo >T > M, (2.20)

and

£ = -2 explan (T - My)"] M, >T > M, (2.21)
The phase transformation is affected by stress. The influence of stress on the phase
transformation is approximately linear as indicated by Eq. (1.1). This agrees with
the experimental evidence (Goldstein et al., 1987). The two transition temperatures,
M, and A,, are usually linearly related to the applied stress as shown in Fig. 2.2.
However, the change of M; and A; are more complicated. To simplify the model,
it is assumed that the M; and Ay lines are straight and parallel to the M, and A,
lines, respectively, as shown in Fig. 2.2. Two other material constants indicating the

influence of stress on the transition temperatures are given by

Cym = tan(a)
{ o Z o) (2.22)
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Figure 2.2: A Schematic Diagram of Transition Temperatures vs. Applied Stress
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where a and § are shown in Fig. 2.2. Combining both Figs. 2.1 and 2.2, it can
be seen that the martensite-temperature hysteresis loop will move to the right if
external stresses are applied. This is reflected in Eqs. (2.18) to (2.21) by adding
a stress induced phase transition term. From Fig. 2.2, the transition temperatures

under the influence of stress can be expressed as

M}’=M;+ﬁ
M =M, + 5= (2.23)
Mg=M0+5‘i;

and
A=A+ &
Af = A + o (2.24)
Af=Ao+ 7

where the superscript ‘o’ means ‘under the influence of stress’. Replacing the transi-
tion temperatures in Egs. (2.20) and (2.21) with the above stress-affected transition

temperatures yields the kinetic expression for the martensitic transformation as

£ =1- 24 explay(Mo + oo — 1) Mg 2T 2 Mg (2.25)
€= Sl explay(T — & — Mo)"]  M?>T > Mg '
and for the reverse transformation
€= bu — Sexplag(do+ & —T)"] AZ>T > 4 (2.26)
£ = %iexp[aA(T — Ao — 5";)"] A>T > Ag )

The above model for the phase transformation of SMA is referred to as an ‘exp

model’ in this dissertation. Since this model describes phase transformations in a
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piecewise fashion, the calculation may sometimes be very complex; another simpler
model called the cosine model is proposed. In the cosine model, a complete cosine
curve fits the whole martensitic transformation or reverse transformation process. For

a free transformation (no stress influence), the reverse transformation is described as
1
€= §{cos[aA(T - A)]+1} (2.27)
and the martensitic transformation is given by

€ = 5 {coslan(T — My)] + 1} (2.28)

where the two material constants, a4 and ays, are determined from

ap = W/(Af -— As)
{ ans = /(M. — Mj) (2.29)

Similarly, if the starting state of the phase transformation is a mixed phase and some

stress is applied, the transformation kinetics for the reverse transformation is given

by
€M
f = —2—{OOS[GA(T - A,) + bAU'] + 1} (230)
and for the martensitic transformation

£ = ! —2§A COS[G,M(T — Mf) + bMO'] + ! ';€A

(2.31)
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where the two new material constants are defined as

ba = —aa/Cy
2.32
{ by = —apm/Cu ( )

The transformation stress range can be obtained directly from Fig. 2.2. For a specified
ambient temperature, T, the stress range in which the martensitic transformation can

be stress-induced may be given as
Cu(T = My) > 0 > Cu(T — M,) (2.33)
while the stress range for the reverse transformation may be derived as
CA(T = A)> 0> Co(T — Ay) (2.34)

There are two types of SMA materials; one has the typical £-T relation as shown in
Fig. 2.1 in which A, > M,, while the other type is characterized by A, < M,. Since
most commercially available SMA materials belong to the first category, only the first

type of SMA materials is considered in this dissertation.

2.2 Mechanical Behavior of SM A

The typical stress-strain relations of SMAs are shown in Fig. 2.3. The stress-strain
curve can be roughly divided into three sections. The first section is an elastic sec-
tion; o, is the elastic stress limit. The second section corresponds to the martensitic

transformation; the transformation occurs between o, and the yield stress, o,. The
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third section after o, is a plastic section. This model primarily focus on the first and
the second sections. Unlike the conventional definition which defines the yield stress
at the beginning of the stress-strain plateau, the yield stress is defined here according
to the micromechanics which describes the plastic deformation as the movement of
dislocations. The large deformation between o, and o, is caused by re-orientation of
martensitic plates and is different from the plastic deformation which can be viewed
as the slip deformation of crystal lattices. Therefore, the yield stress, o,, is defined
at the end of the martensitic transformation where plastic slip begins to occur. The
unloading is an elastic process at a temperature below A,. The large residual strain
obtained by unloading before o, (dash line in Fig. 2.3) is recoverable by heating the
material above A; (shape memory effect). The maximum recoverable strain corre-
sponds to the yield stress, o,. The deformation after the yield stress, o, is basically
described as plastic deformation and is assumed to obey the plastic flow rule. The

superposition rule of strain for shape memory alloys is
e=€c+e+e (2.35)

where €' is the transformation strain caused by the formation of martensitic de-
twinning and €° the elastic strain. The non-plastic strain €"? = €° + €’ is considered
in this model while the plastic strain is assumed to be simply governed by the plastic

flow rule.

The upper curve in Fig. 2.3 corresponds to a higher temperature (" >> Ay). The
stress-strain curve looks much like the one of a conventional material, but it still can

be divided into three sections. The first section for stress under o, is elastic. The
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Figure 2.3: Schematics of Stress-Strain-Temperature Relations of SMA
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phase transformation occurs between o, and o,. Plastic deformation starts from o.
This classification is based on the experimental evidence that an unloading before a
certain stress level (o, here) can produce complete recovery due to the pseudoelastic
effect, as illustrated in Fig. 2.3. If the unloading occurs after oy, complete recovery is
impossible and the unrecovered portion of the strain is characterized as plastic strain.
The maximum recoverable strain of a nitinol alloy is about 6 ~ 8%, the strain limit
for a complete pseudoelastic effect is usually half of the above strain (3 ~ 4%). This
indicates a nonlinear M; and stress relation. Nevertheless, the linear relations of
transition temperatures and applied stress are assumed in this dissertation. However,
modeling of this nonlinear effect can be easily realized by including some nonlinear

terms in Eqgs. (2.23) and (2.24).

The shape memory effect usually means a free strain recovery effect or a recovery
stress effect. When an elongated SMA sample is heated above its austenite start
temperature, the residual strain of the SMA sample (with no applied load) will be
restored when the temperature reaches the austenite finish temperature. This effect
is called free strain recovery, or simply free recovery, and is illustrated in Fig. 2.4.
The free recovery effect is simply the result of the internal phase transformation, so it
appears that this free recovery curve may very well represent the martensite fraction
and temperature relation. The unknown transformation coefficient, n, introduced in

Eq. (2.12) may be determined from the free recovery experimental results.

Another of the shape memory effect characteristics is the recovery stress effect. When
an elongated SMA sample is restrained while being heated, a large stress can be gen-

erated to prevent the SMA sample from recovering to its original shape or geometry.
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This recovery stress is much higher than the elastic limit, 0., and yield stress, o,.
This effect is schematically depicted in Fig. 2.5. The elongated SMA sample is
characterized by some deformed martensite which is not thermally stable at higher
temperatures (above A,). The heating process corresponds to the reverse transforma-
tion. This transformation starts at about A, (A7 is a little higher than A;) and ends
at A%. The cooling process corresponds to a martensitic transformation as shown in
Fig. 2.5. The hysteresis of this recovery stress and temperature relation is caused
by the irreversible aspects of phase transformations. If the SMA sample is allowed
to have some recovery strain, the recovery stress-temperature relation depicted in
Fig. 2.5 will be different. The new relationship is called the recovery stress-strain-

temperature relation.

2.3 Thermomechanics of SM A

Considering a one-dimensional metallic material of length L which is undergoing
either a martensitic transformation or its reverse transformation, the original reference
state is denoted as X, the current configuration is z, the deformation gradient f is

defined as

or

= — 2.36
f=o2 (2.36)
The deformation velocity v is expressed in terms of the deformation gradient:
f
v== (2.37)
f
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The general governing equations are the first and the second laws of thermodynamics.

Written in the current configuration, the two laws are

pU—a'v—l-—Qﬂ—pq—O
2.38
{PS pE+ (%) 20 (238)

where p is the density, o the Cauchy stress, ¢y, the heat flux from the surroundings,
g the internal heat source, T' the temperature, U the internal energy, S the entropy
and (') denotes a time derivative. Rewriting the above energy balance equation in

the original configuration yields

U _ 1£__‘Ia_ur =0
{ poU — G+ 712 Poq = (2.39)

_1 83!‘7’ "’l sur 8T
poS — pod + [ e — flesge 2L > 0

where variables with subscript ‘0’ are measured with reference to the original config-
uration. The Green strain, €, and the second Piola-Kirchhoff stress, &, are defined

as

o= 29}%
o A4 : (2.40)
2 .

The state variables for SMA are strain, temperature, and the martensite fraction, £.

The general state variable is simply written as

A=(gT,¢) (2.41)

The Helmbholtz free energy, which is the driving force of phase transformations, is a
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function of the above state variables and is given by
®=0AN)=U-TS (2.42)

Taking a time derivative of ® yields

. 0. 00, 0®; . . .
_0%. 0%: 0% o o op 2.43
o 8€6+ aTT+ 356 U-TS (2.43)
Substituting Eq. (2.43) and the first law of thermodynamics (Eq. (2.39)) into the

Clausius-Duhem inequality (the second law of thermodynamics) and expressing every

term in the original configuration yields

o 09.. 0%
(— )6—(5-}-%

= 00; L g, pOT g (2.44)

. 1
)T_ (9£ PoT q9sur 0 X

The Clausius-Duhem inequality represents the change of entropy of two thermody-
namic states. The change of entropy of two states is independent of time, it only
depends on its path. Therefore, the coefficients of € and T should vanish, which

yields the general constitutive equations as

= po—ag (2.45)
and
oo
S = ~a7 (2.46)
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Assuming an adiabatic process or uniform temperature distribution, the Clausius-

Duhem inequality can be written as

09 ;

PR 0 (2.47)

The equal sign is adopted if the process is reversible such as elastic loading or un-
loading. From Miiller’s and Falk’s study of free energy relations, it is impossible to
have 2 % = 0 when { is not zero. This indicates that the martensite volume fraction

will remain the same during an elastic loading or unloading.

The maximum recoverable strain of a piece of SMA wire is is about 6-8 percent for
nitinol, the strain corresponding to the elastic stress limit is generally 0.1 percent
to 0.6 percent. The constitutive model of SMA, therefore, must be formulated to
deal with large deformation problems. Since the Green strain and its corresponding
stress, the second Piola-Kirchhoff stress, are used in the derivation, and the governing
equations are written in the original configuration, the constitutive equations are able

to capture the physics of the shape memory effect with large deformation.

2.4 Modeling of Shape Memory Alloy

The stress in Eq. (2.45) is a function of several internal variables. Therefore, the

time derivative of stress can be written as

. Oo. Oo
5 — el + 24
o _e+ T+a€§ Dé+OT Q{ (2.48)
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where D is the Young’s modulus, © the thermoelastic tensor (it is different from the
stress caused by a temperature gradient), and ) the transformation tensor, a metallur-
gical quantity which represents the volume change during the phase transformation.

These material properties derived from thermomechanics are given by

2
Q= Pogg—aqz

The material variables given above are still functions of the state variables. For
example, Young’s modulus varies as shown in Fig. 1.5. To simplify the expression
of the constitutive relations, assuming constant material properties, integration of
Eq. (2.48) with respect to time results in the following time-independent constitutive

relation.

o —0do=D(E- &)+ Q- &) +O(T —Th) (2.50)

where variables with subscript ‘0’ may be obtained from initial conditions. Higher
strain rates can affect the mechanical behavior significantly. The above equation can

only be applied for small strain rate problems, i.e., quasi-static problems.

The stress from Eq. (2.48) is a function of strain, martensite fraction, and tempera-
ture; the martensite fraction, ¢, is provided by Eqgs. (2.25) and (2.26) or (2.30) and
(2.31). Therefore, an iterating technique must be used to solve for the stress. The
independent variables are now stress, strain, and temperature, giving any two of them

leads to the third. The derivation of this equation allows it to be used in the marten-

86



sitic transformation or the reverse transformation. The selection of the martensite
fraction expression from Eqgs. (2.25) and (2.26) is based on whether it is a martensitic
transformation or a reverse transformation. The cosine model or exp model can be

selected depending on the accuracy required and the material data available.

Shape memory alloys may be used in several geometric forms and utilize various
transduction principles for active control applications. One approach is to use SMA
wire or fiber as distributed force actuators. SMA force actuators are first elongated
at a low temperature and then unloaded to generate some martensitic residual strain;
upon heating the wire, the martensitic residual strain will be restored. The shape
memory recovery generally falls into one of the following categories. The first is
free recovery in which there is no external load on the wire, and therefore, no work.
The second category includes fully restrained ‘recovery’. In this case, the martensitic
residual strain of the SMA wire is restrained from being restored to its original length.
This restraining causes large internal ‘recovery’ stress. The third category is called
controlled recovery. In this case, some residual martensitic strain is restored (the
restored part is called the recovery strain), but the wire is still under some tension
which is required to prevent full recovery of the residual strain. The following models

may be applied to any of these three categories.

2.4.1 Stress-Strain Relations

The constitutive model presented in this chapter considers only one-dimensional sys-
tems; therefore, the material will often be referred to as wire or fiber. To give the

constitutive relations for the SME, we must first consider the stress-strain relations

87



which provide the initial conditions for the recovery process. The ‘cosine model’ is

used in order to simplify our derivation, but the ‘exp model’ may be used similarly.

Consider a piece of SMA wire undergoing an isothermal mechanical loading and
unloading process. It is assumed that the surrounding temperature is below A,,
so no pseudoelastic effect during the unloading can be presented. The initial state of
a piece of SMA wire can range from all martensite to all austenite, depending on the
heat treatment process and the ambient temperature. Here, we consider only the case
which has loading and unloading temperatures between M, and A, and 100 percent
austenite before loading. To ac%ﬁeve the stress induced martensite, the applied stress
must be in the stress range given by Eq. (2.33). In Eq. (2.48), there is no T term for
the isothermal process, and ¢ is zero if the stress _is less than o, = Cp (T — M,), as
given in Eq. (2.33). After z;;piying the initial conditions which are zero stress, zero

strain, and full austenite, Eq. (2.50) changes into the following form.

Q!
I
S

(2.51)

The linear elastic stress limit, &., and its corresponding strain, €., are defined as

5. = Cm(T — M,)
{ e - 6671) (2.52)

When the applied stress becomes greater than ., there will be stress-induced marten-

site, and Eq. (2.50) now becomes

& — o = D(€— &) + Q€ — &o) (2.53)
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with the initial conditions, gy = 7., & = &, and { = 0. Equation (2.53) then simply

becomes

o= De+ Q¢ (2.54)

The loading is a martensitic transformation process, so Eq. (2.31) is used for the
martensite fraction (cosine model). Together Egs. (2.51), (2.54), and (2.31) yield the
stress-strain curve up to the yield strength, o,. To determine the value of Q from a
mechanical engineering point of view, which is concerned with the crystallographic
volume change due to the phase transformation, it is necessary to consider the un-
loading process at £ = 1. From the discussion of Eq. (2.47), the elastlc 1oad1ng and
unloading does not change the martensite fraction. Since the amblent temperature
is below A,: there is no pseudoelastlmty, it is an elastic unloading. After unloading

at £ = 1, the martensitic residual strain (the unloaded phase is completely deformed

martensite), €., or the transformation strain, €;, can be derived as

_ )

€res = — 35 (2.55)
This residual strain is the maximum recoverable strain. Experimental results have
shown that this maximum recoverable martensitic strain, or recovery strain limit, is
almost a constant between M; and A,. The recovery strain limit, €, is therefore,

considered a temperature-independent material constant and it has the following

relation with 2 and D.

€L = —— (2.56)



The maximum recoverable strain is a material property for a shape memory alloy
and it should be specified by manufacturers. The above equation provides an indirect

approach to determine the phase transformation tensor, §2.

If unloading occurs before £ = 1, the SMA material is composed of both the de-
formed martensite and austenite. The residual strain resulting from the martensitic

transformation can be stated as

Ew,z-{%- (2.57)

The martensite fraction, £, which is the initial condition for the recovery process, can

likewise be expressed as

¢ = G (2.58)

A pseudoelastic effect occurs when unloading at a temperature above A,. Equation
(2.34) specifies the stress range in which the reverse transformation occurs. The upper

and lower stress limits for the reverse transformation are

(52887

where ‘u’ and ‘I’ denote ‘upper’ and ‘lower’. As shown in Fig. 2.6, if the unloading

starts from a state (&,, ., {,) (subscript ‘u’ represents ‘unloading’), it is a linear

elastic process before the stress is unloaded to 6%. The reverse phase transformation

starts at . The nonlinear unloading is known as the pseudoelastic effect. The
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Figure 2.6: Typical Unloading Process
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nonlinear stress-strain relation for the pseudoelastic effect may be derived from Eq.

(2.50) with the following initial conditions.

CO — gu — -"TL
Go = & ‘ (2.60)
60 = gu
which yields
d—0,=D(e—¢,)+ Q& —-¢) (2.61)

where ¢ is given by Eq. (2 30) Note that ¢ does not change until the stress is

unloaded to oy It is obvious that the stress-strain relations rely on the history of

loadmg and unloading, just like plastic deformation.

After the stress is unloaded to zero, the residual strain is denoted as €,.,. The total
strain consists of three components: ela,stlc stram plastic stram and transformation
strain. The plastic strain is neghglble 1f the unloadlng occurs at stresses lower than
y- Therefore, the residual strain illustrated in Fig. 2.6 is the strain resulting from

the phase transformation, €. The transformation strain, €, can be obtained from

i)

(2.62)

Il
o
|
Il
o
[

SIEY

This equation leads to the general expression of the martensite fraction as

=t
- 2.63
2 (269)
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The residual martensite fraction for a pseudoelastic unloading (Fig. 2.6) may be

derived from the above equations as
Cu - E1'2‘9
E=¢§, — 2—— (2.64)

where € is the transformation strain component corresponding to €,. If a compres-
sive force is applied after a complete unloading, the stress-strain relation still follows
Eq. (2.61) and the reverse transformation begins at *. If the test temperature is
Ay, a complete unloading is accompanied by a complete strain recovery theoretically
as demonstrated by the dash line in Fig. 2.6. If the ambient temperature is lower
than Ay, the compressive stress required to get a complete strain recovery can also

be derived from Eq. (2.61).

The assumption of homogeneity of SMA in tension and compression is only correct
during a one-time operation. The cyclic behavior of SMA is very complex and is left
for future research. The current model is restricted for complete tensile or compres-

sion only.

2.4.2 Constitutive Relations of SME

The martensitic residual strain or the residual martensite fraction, which is the pri-
mary parameter in the determination of the shape memory effect, appears in the
constitutive relations only as an initial condition. This is to say that in spite of what
happens in the loading and unloading process, the shape memory effect depends only

on the final state of the material, namely, the deformed martensite fraction or the
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martensitic residual strain.

Free Strain Recovery

The external mechanical stress is zero for a free recovery process. Equation (2.50),

therefore, is rewritten as

where the superscript ‘r’ represents ‘recovery’. Assuming no pseudoelastic effect in-
volved in the unloading, the following initial conditions result.
€0 = €res

To=A, (2.66)
fo=¢m =%

Equation (2.66) ignores the thermal expansion effects which are negligible in compar-
ison to the recovery effects. Since free recovery must occur above Ay, the austenite
start temperature is set as the initial condition for the temperature. In Eq. (2.65),
the martensite fraction is governed by Eq. (2.30) in which ¢ is zero. Note that the
recovery strain is still measured in reference to the original coordinate ‘X.” Equations
(2.30), (2.65), and the above initial conditions give the constitutive equation for the
free recovery as

€ = €res — %{G(T - Aa) + %

;'L’ lcos aa(T — A,) — 1]} (2.67)
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Restrained Recovery

In the scenario, the strain is restrained during the recovery process. Therefore, the

constitutive equation from Eq. (2.50), then becomes

6" — &5 = O(T — To) + NUE — &) | (2.68)

The initial state in Fig. 2.1 is (épmr, Tar), where €pr is &o. Tar can be found from Eq.
(2.28) as

cos™1[2(ép — 0.5
Ty = Mf + s [ (§M )] (2.69)
ap
From T)s to A,, there is no new austenite; the recovery stress-temperature relation

is linear and is given by
" -85 =0(T - Tnm) (2.70)

The initial stress, 57, is assumed to be zero at Tys. If there is some stress, the austenite
start temperature will be increased as shown in Fig. 2.2. Defining the new austenite
start temperature as A7, and combining Egs. (2.70) and (2.30) at the transition point
where C4(A? — A,;) = " gives the new transition temperature:

_CuA, - 0Ty

= — 2.71
a = A2 1)
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Substituting this temperature into Eq. (2.70) gives the corresponding stress 7, as

&30 = O(A7 — Tyy) (2.72)

If the ambient temperature is higher than A?, then there is new austenite and the
constitutive relation has the complete form of Eq. (2.68). The initial conditions are
5 =,

Ty = A° (2.73)
60 = §M = ETCS/EL

Replacing o with " in Eq. (2.30), and substituting it and the above initial conditions

into Eq. (2.68), yields the final constitutive equation for the restrained recovery as

Q Eres
2 €

o" -, =0(T—-A%)+ {cos[aa(T — As) + bad™] — 1} (2.74)
The above stress-temperature relation is not explicit. For a given temperature, itera-
tion is needed to converge. When the test temperature reaches a certain level, there
will no longer be any stress-induced martensite for the M — A transformation. This
temperature is denoted as A%. In this case, the recovery stress-temperature relation

will be linear again, giving

& -5, =0(T - Tp) (2.75)
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where Tp is A} and &7 is the recovery stress at T = A$, resulting in

€

%) + &7, (2.76)
L

0" =0y =0O(A} — A7)+ Q0 —

% can be solved for by substituting Eq. (2.76) into Eq. (2.30) as

o _ asA, — bA(_Tz., + 6,060 + bA@Ag 4+

= 2.77
s aA+bA@ ( )

Equation (2.75) indicates that the recovery stress has a linear relation with tempera-
ture after T is higher than A$. This point is observed in the experiment by Cross et

al. (1970).

The recovery stress-temperature relations are different in cooling than for heating
processes. The preceding discussion was devoted to the heating process. Experi-
ments reveal hysteric behavior for heating and cooling cycles as shown in Fig. 2.5.
However, using the above approach, the mathematical simulation will in fact describe

and predict the complete recovery stress-temperature hysteresis.

Let us assume cooling begins when the restrained SMA wire is heated to some tem-
perature, T,. Before the cooling begins, the recovery stress-temperature relations are
given by Eqs. (2.70), (2.74), and (2.75). After cooling starts, the A — M process is

initiated, and Eq. (2.31) must be used with Eq. (2.68) to describe the process. In
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this case, the initial conditions are

~r __ =r
Og = O,

T,=T. (2.78)
60 = €c

where the subscript ‘c’ indicates the initial cooling state. Considering the effect
of stress on M,, the reverse phase transformation will occur at the temperature,
M7, which is higher than M,. Before the temperature reaches this transition point,
there is no new martensite. As in solving AJ for the heating process, the transition

temperature, M? and its corresponding stress, &},,, can be determined from

M° = aMMf e ch‘f; -+ bMGTc + 7

2.79
. PR (2.79)

and
Gy, = 7 + O(MS —T.) (2.80)

The phase transformation occurs for temperatures below M?. Equations (2.31) and

(2.68) yield the governing equation:

1-¢&

& — 33, = O(T - MJ) + Q—

{coslapm(T — My) + by + 1} (2.81)
Similarly, if the SMA wire is cooled to M{, which is higher than M; because of

the stress effect, the M «— A transformation finishes, and the recovery stress and

temperature is again a linear relation. MY and its corresponding stress, G}, are
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calculated from

Ty = O(M] — My) + (1 - &) + 53, (2:82)

and

aMMf — bM&}m — bMQ(l - fc) + bM@Mg
apm + by©

Mg = (2.83)

The linear recovery stress-temperature relation after the temperature drops below

Mg is given by
" —apy=O(T — M7) + Q1 -&) (2.84)

Controlled Recovery

Controlled recovery is defined as the shape memory recovery process in which some
recovery strain is allowed during the heating and cooling cycle. Since the martensite
fraction-temperature relation has been described in a piecewise continuous fashion,
the recovery stress-strain-temperature should also be studied in a similar manner.

For the controlled recovery, Eq. (2.50) can be expressed as
6" —ap=D(€ —€y) + O(T — Tp) + Q¢ — &) (2.85)

The controlled recovery process can be subdivided into two regions defined by the
loading mechanism. The first region assumes that a constant load is applied, e.g., a

piece of elongated SMA wire is loaded by a dead weight. In this case, Eq. (2.85) is
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expressed as
D(€ - &)+ O(T — To) + Q€ — &) = 0 (2.86)

where the stress caused by the dead weight appears in the martensite fraction term.
Transition points can be determined following the reasoning described in the last sec-

tion.

The second loading scenario assumes that the loading is proportional to the recovery
strain and may be modeled as SMA-spring structures. Most SMA force actuators
can also be simplified to this physical model !. Consider a spring-SMA system as
shown in Fig. 2.7, if the spring constant is ‘k’, the length of SMA wire ‘L’, and the
cross section area of the SMA wire ‘s’, then the stress-strain relation for the spring is

described by
0" =0 = —(&es =€) (2.87)
Substituting this equation into Eq. (2.85) yields

(1+ %D)(a’ —50) = O(T — To) + Q¢ — &) (2.88)

This equation can be handled in the same way as the restrained recovery.

1Detailed discussion is presented in Chapter 4
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Figure 2.7: Simplified SMA-Spring Force Actuator
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2.4.3 Influence of Changing Material Properties

The Young’s modulus, D, and the thermoelastic tensor, @, can be measured directly
from experiment; the phase transformation tensor, €2, can be obtained indirectly. The
phase transformation tensor governs the transformation behavior. This material con-
stant is, therefore, assumed to be independent of martensite fraction and is a constant
for a specified material. In most cases, an assumption of constant material properties
can provide satisfactory results. However, it is still necessary to consider the material

properties as functions of the state variables.

The value of O is different for martensite and austenite as observed by Dye (1990).
However, the thermoelastic tensor, ©, is much smaller than the other material con-
stants; it affects the pre-transformation and post-transformation stage and is negli-
gible during the phase transformation. A constant thermoelastic tensor is assumed

here regardless of whether it is martensite or austenite.

The Young’s modulus of a shape memory alloy varies significantly as shown in Fig.
1.5. Comparison between Fig. 1.5 and Fig. 2.1 leads to the following relation of the

martensite fraction and the Young’s modulus.

D=Ds+&Dy—Da) (2.89)

where D, is the Young’s modulus of austenite and Dps is the Young’s modulus of
martensite. The martensite fraction is a function of stress and temperature as given
by Eq. (2.30). This relation is substituted into the integrated constitutive relation,

Eq. (2.50), in order to simplify the derivation. Most expressions for stress-strain
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relations and the shape memory effect will remain the same excluding a very few

relations. For example, the phase transformation tensor, €2, is derived in this case as

Q= -Dyé (2.90)

One of the most important results of considering a changing Young’s modulus is
the variation of the residual martensite fraction. Considering an SMA sample being
loaded and unloaded in the temperature range of M, to A,, the stress-strain relation

before unloading is

o =D(E+)+O¢ (2.91)

where D is given by Eq. (2.89) and the phase transformation strain, €, is given by
Eq. (2.62). After an elastic unloading, the martensitic residual strain, €., (it is now

€¢') and the residual martensite fraction have the following relation.

-DA Eres

_ 2.92
6 -DMEL + (DA - DM)Eres ( )

More generally, the above equation can be expressed as

D4é
= 2.93
¢ DMEL-{'-(DA—DM)Et ( )
For most nitinol alloys, gﬁ is about four, this yields
_ (2.94)
€L + 3€t
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2.5 Concluding Remarks

A mechanical constitutive model for shape memory alloys has been developed. This

model has the following important features.

e This model is derived from thermomechanics; it reflects the essence of shape

memory alloy behavior.

e An internal variable is introduced in this model to represent the extent of the
phase transformations which makes this model more capable of dealing with

phase transformation problems.

e The internal variable, £, can be derived from the transformation kinetics of
shape memory alloys. Two empirical relations for the internal variable are

proposed.

e This model has the capability to cope with the large deformation of shape

memory alloys.
o This model is simple and easy to use in engineering design.

e The material properties required by this model are the Young’s modulus, the
thermoelastic tensor, the maximum recovable strain, the stress influence coeffi-
cients, and four transition temperatures. They can be measured using standard

material testing apparatus (DSC and tensile machine).

Based on the thermomechanical constitutive model, the stress-strain relations and re-
lations between recovery stress, recovery strain, and temperature for shape memory

effects have been developed. An experimental verification is presented in the next
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chapter.
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Chapter 3

Experimental Verifications

Any theoretical constitutive model requires experimental justification. A brief ex-
perimental verification of the thermomechanical constitutive model developed in this
dissertation is presented in this chapter. A detailed description of experimental mea-

surement techniques and procedures is presented in Dye’s thesis (Dye, 1990).

3.1 Experimental Results

The SMA material used to verify this model is a nitinol alloy (NissTi). An extensive
experimental program has been conducted to measure the properties of this shape
memory alloy (Dye, 1990). The experiments include the measurement of stress-strain
relations at various temperatures, free recovery relations, recovery stress-temperature

relations, and recovery stress-strain-temperature relations.

As discussed in Chapter 2, the material properties required to predict the mechanical
behaviors of a shape memory alloy are the four transition temperatures (My, M, A;,
and Ay), two stress influence coefficients (Cy and Cj), the maximum recoverable

strain (er), the Young’s modulus (D), and the thermoelastic tensor (©).
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The four transition temperatures can be accurately measured using differential scan-
ning calorimeter (DSC) accurately. An alternative is to measure the electrical re-
sistivity of shape memory alloys. They can also be estimated by examining the
stress-strain relations and free recovery relations. The phase transformation start
temperatures (M, and A,) are defined at the temperature at which one-percent of
the original phase has been transformed. M; and A; are defined to correspond to
99% transformed phase. Some error may not be avoided when experimentally deter-
mining the transformation temperatures and their related parameters, such as Cys
and C4 by examining the mechanical behavior. However, in order to achieve correct
theoretical prediction, the material properties should be measured strictly according

to their definitions made in the formulation.

A manufacturer of shape memory alloys usually provides its customer with some
transition temperatures. The only data provided by the manufacturer of the shape
memory alloy used in our experiment is its austenite start temperature of 38 °C. There
are two definitions of the transformation temperature of SMA. One is the strict metal-
lurgical definition, which is used in this dissertation. Another is called the mechanical
phase transformation temperature which is estimated from the mechanical behavior
of a shape memory alloy. The transformation temperatures provided by manufactur-
ers are usually from the second definition. The transformation temperatures used in
this verification are obtained by DSC measurement (Abujudon et al., 1989) and are

close to the mechanical experimental estimations.

The stress influence coefficients should also be measured from DSC or electrical re-
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sistivity at different stress level. Unfortunately, no such data for the shape memory
alloy is available; they can only be estimated from mechanical experiments. The
stress influence coeflicient of martensitic transformation, Cps, can be estimated in-
directly by examining the relation of elastic stress limit, 0., and temperature, as
shown in Fig. 3.1. The minimum point corresponds to the mechanical martensite
start temperature and the slope provides the stress influence coeflicient of martensitic
transformation, C), according to Eq. (2.58). Theoretically, the stress-strain curve is
linear in the elastic range and starts to be nonlinear at ., which corresponds to one
percent of martensitic transformation (one percent of austenite being transformed
into martensite). It is difficult to determine the elastic stress limit from stress-strain
curves. Figure 3.1 shows the elastic stress limit determined from the experimental
stress-strain curves. The stress influence coefficient of martensitic transformation,
Cu, is found to be 10.3 MPa/°C. The stress influence coefficients are assumed to be
a constant; i.e., a linear relation of transformation temperature with applied stress,

and Cy is assumed to be the same as Cps. C4 and Cyy are listed in Table 3.1.

The maximum recoverable strain, €z, is measured from stress-strain curves. In the
experiment (Dye, 1990), a piece of SMA wire is elongated by eight percent at different
temperatures below A,. Unloading of the wire leaves about seven percent residual
strain. Heating the wire results in an average of 6.7 percent recovery strain (measured
with respect to the original length). Therefore, the maximum recoverable strain, €r,
for this shape memory alloy is determined to be 6.7 percent. Figure 3.2 shows the

change of the ¢, with respect to temperature.

108



Table 3.1: Material Properties Used for the Theoretical Verification

°C GPa MPa/°C
Mf M, A, Af DM DA Q) CM CA €r, (%) n
9.0 | 184 | 34.5|49.0 | 26.3 | 67.0 | 0.55 | 10.3 | 10.3 6.7 0.85
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The maximum recoverable strain is almost constant for temperatures below A,. Be-
cause of the pseudoelastic effect, the recovered portion of the residual strain when
subjected to heating may not represent the total recoverable strain if the temperature
is higher than A,. The recoverable strain at a higher temperature (> A,) is measured

from an assumed elastic unloading, as shown in Fig. 3.3.

The critical stress for martensitic transformation; i.e., the elastic limit, o., increases
with temperature. Plastic deformation may occur at higher stress. The dislocation
corresponding to the plastic deformation creates an internal stress field which tends
to increase the martensitic transformation and decrease the reverse transformation.
In the experiment, an SMA wire was elongated by eight percent at 50 °C, and then
unloaded as shown in Fig 3.3. The nonlinear unloading provides about 0.7 percent
recovery strain due to the pseudoelastic effect. Heating to a much higher temperature
after complete unloading results in another 4.3 percent recovery strain. Heating to
a much higher temperature may release the internal stress caused by dislocations;
therefore, the rest of the transformation strain may be restored. The total recovery
strain attained at this temperature is about five percent, another two percent is the

plastic strain.

The Young’s modulus of the shape memory alloy is determined from experimental
stress-strain curves. This is not a direct measurement of Young’s modulus. Different
results may be calculated even from the same stress-strain curve if different points
are selected to fit a straight line. The stress and strain points up to the elastic stress
limit are used to least-square-fit a linear function. The slope of the linear function

provides the Young’s modulus.
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Figure 3.1: Elastic Stress Limit, 0., vs. Temperature
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Figure 3.2: The Maximum Recoverable Strain, €y, vs. Temperature
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The Young’s modulus is a function of temperature, as illustrated in Fig. 3.4. An
SMA sample was first electrically heated to a high temperature in order to create 100
percent austenite. The tensile test after the electrical heating is a cooling processes
(the maximum test temperature for elongation tests is 70°C, far less than the temper-
ature reached during the electrical heating). The sharp change of Young’s modulus
in Fig. 3.4 occurs between about 10 °C (M; = 9°C) and 22 °C (M, = 18.4°C).
The change of Young’s modulus is synchronous with the phase transformation. This
supports the assumption that the Young’s modulus of SMA is a linear formulation of
the martensite fraction. The average Young’s modulus of low temperature marten-
site, Dy, is 26.3 GPa (3,810,000 Psi), and the average modulus of high temperature
austenite, D4, is 67.0 GPa (9,710,000 Psi). The ratio of D4 to Dys is about 2.6.
Other experiments (Cross et al., 1970) have shown ratios of austenite to martensite
Young’s modulus for nitinol alloys in the range of about three to four. The difference
of various Young’s modulus ratio described on the literature (cross et al., 1970) and
the experimental results shown in Fig. 3.4 may be due to the selection of different

experimental points.

The Young’s modulus of martensite is less than that of austenite due to different
crystal structures. The stress-induced martensite has the same crystal structures as
thermally induced martensite; therefore, they should have the same Young’s modulus.
The Young’s modulus of stress-induced martensite may be measured from an unload-
ing stress-strain relation. In order to have complete stress-induced martensite, the
unloading must start from the yield strength, o,. The Young’s modulus describing

the unloading process (before o,) corresponds to a mixed martensite and austenite
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and is assumed to follow Eq. (2.89). The Young’s modulus of stress-induced marten-
site is denoted by D, and is shown in Fig. 3.4. The average value of D, is 24.3 GPa
(3,520,000 Psi) close to Das (26.3 GPa). D, is independent of temperature even dur-

ing the pseudoelastic unloading (measured from the initial linear elastic unloading).

The thermoelastic tensor, ©, governs the pre-transformation and post-transformation
recovery stress-temperature relations. The value of this material property varies in
different phases. Nevertheless, since this value is much smaller (approximately four
orders of magnitude) than other material constants such as D and {2, and therefore is
assumed to be a constant. This value of 8 is determined as 0.55 MPa/°C (80 Psi/ °C)
from the experimental result of restraint recovery, as shown in Fig. 3.5. The slope of
the first linear section of the heating process is the thermoelastic tensor according to

Eq. (2.70), as demonstrated in Fig. 2.5.

Table 3.1 lists the basic material properties of the shape memory alloy. The transfor-

mation tensor, (2, is determined from Eq. (2.90) as 1.76 GPa.

3.2 Numerical Studies

This constitutive model developed and presented in Chapter 2 is now used to predict
and describe the mechanical behavior of shape memory alloys. Based on the material
constant given in Table 3.1, the stress-strain curve, free recovery relation, and recov-
ery stress relations are calculated and compared with experimental results. The ‘exp

model’ is used unless otherwise specified.
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3.2.1 Stress-Strain Relations

The stress-strain relations at three temperatures, 25 °C, 32 °C, and 50 °C are cal-
culated. The theoretical and experimental results are compared in Fig. 3.6. The
theoretical prediction does in fact provide a good approximation to the experimen-
tal results. The changing Young’s modulus has been considered in the theoretical
calculations. If Young’s modulus is assumed to be constant, the result will have a
relatively large error at the beginning and end of phase transformation, but a small
difference during the phase transformation. As an example, the stress-strain relation
at 32 °C is calculated based upon the constant material property assumption and is

shown as the dash line in Fig. 3.6.

The experimental stress-strain curves are not as smooth as those obtained from
theoretical analysis. The stress-strain curves at higher temperatures include both
martensitic transformation and re-orientation of martensitic plates. Re-orientation of
martensitic plate is a smooth process, while the martensitic transformation has a so-
called snapping effect. The strain energy is stored and released at an energy threshold
to induce the martensitic transformation resulting in a fluctuation of the stress-strain
curves at higher temperatures. If the test temperature is below My, a SMA sample
is composed of only one phase (martensite already), mechanical deformation results
in the re-orientation of the existing martensitic plates, no phase transformation is
involved. Therefore, the stress-strain relation curves will be smooth as shown in Fig.
3.3 (the stress-strain curve at -10 °C). The snapping effect is not considered in this
constitutive model nor any other models in the current literature, therefore, the the-

oretical results cannot describe this physical phenomenon.
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3.2.2 Free Recovery Relation

Figure 3.7 shows the comparison of experimental free recovery and theoretical pre-
dictions. Different transformation coeflicients, n, are used to predict the free recovery
behavior. The dash line is obtained using a transformation coefficient, n, of 1.00;
the solid line corresponds to n = 0.85. More trials have been done and it is found
that n = 0.85 provides the best theoretical prediction. Therefore, the transformation
coefficient n is determined as 0.85. It is important to note that the constant mate-
rial property assumption has been used. If the Young’s modulus is considered as a
linear function of martensite fraction, the predicted results show the same trend as
the experimental results but with large error. The reason is not yet clear. It may be
due to the assumption that the phase transformation tensor is a constant. The phase
transformation tensor may have a similar relation to Eq. (2.89). Since this property
cannot be measured directly from an experiment, it is very difficult at this moment

to specify the reason. The dotted line is obtained using the cosine model.

3.2.3 Recovery Stress and Temperature Relations

Figure 3.5 shows both the experimental results and theoretical predictions of the
recovery stress and temperature relations for an initial strain of one percent. The
constitutive model developed in this dissertation reflects the fundamental character-
istics, but it does not consider the secondary factors such as R-phase transformation,
snapping effect, etc. The theoretical prediction provides a very good qualitative as-
sessment to the experimental results and a satisfactory quantitative description. One
of the important reasons for the discrepancy in the theory and experiment is the wires

used in this recovery stress test. Virgin wires that do not have stable material prop-
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erties were used. The material properties may be stabilized by some heat treatment
or pre-cycling. The reverse transformation stress influence coefficient, C'4, is assumed
to be the same as Cy, and the slope of Ay-stress relation is also assumed to equal to
Ca. The slope of A;-stress is usually higher than C)ps, which is believed to be another
reason for the discrepancy between the theoretical prediction and experimental re-
sults. A higher C4 of 13.8 MPa/°C (2.0 Ksi/°C) is used to predict the recovery stress
behavior, which provides better results as shown in the Fig. 3.5. Further efforts are

still needed to get more accurate results for recovery stress-temperature relations.

3.2.4 Comparison of the Exp Model and the Cosine Model

The relation of martensite fraction and other state variables derived from transforma-
tion kinetics is correct for steel or other materials having a wide transformation range.
Since some variables are difficult to measure, empirical equations are used such as
those relations used by Tanaka (1986). The exp model described in this dissertation
is also an empirical relation. It describes the transformation kinetics more accurately
because of the newly introduced transformation coefficient, n, and the piecewise de-

scription of the transformation relation.

The empirical cosine model is based on observation of experimental results such as
free recovery. Its expression is much simpler than the exp model. It does not re-
quire the transformation coefficient, n, but is also less accurate than the exp model.
However, it can still provide acceptable results, as demonstrated in Figs. 3.5 and
3.7. The exp model provides superior results at the beginning and the end of the

phase transformation compared with the cosine model. There is not much difference
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between these two models in the middle section of the phase transformation.

The exp model is accurate compared with the cosine model, but it requires more ma-
terial properties, and its expressions are complex. The cosine model is less accurate
at the beginning and the end of phase transformation but can still provide acceptable
results; its expressions are simple and easy to use. The selection of these two models

depends on the nature of a problem and the accuracy required.

3.3 Concluding Remarks

This section has presented some experimental results and comparisons between the
theoretical prediction and experimental results. Some conclusions can be drawn from

the above discussions.

e This thermomechanical constitutive model can provide quantitative predictions
to the thermomechanical behavior of shape memory alloys. It describes suc-
cessfully the basic features of shape memory alloys, including stress-strain-
temperature relations, free recovery behavior, and recovery stress character-

istics.

e Both the exp and cosine models can provide acceptable predictions. The exp
model is more accurate but more complicated and requires new material prop-

erties. The cosine model is less accurate but simple and easy to use.

e The consideration of a changing Young’s modulus may provide better predic-

tion for stress-strain relations and recovery stress-temperature than that of a

constant Young’s modulus assumption.
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o Further investigation is need in the following aspects: (1) pseudoelastic effect;
(2) the influence of changing €; (3) the influence of temperature on the phase
transformation tensor, §2; and (4) establishment of criteria of material property

measurement.
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Chapter 4

General Design of Shape Memory
Alloy Actuators

This chapter describes the design of shape memory alloy force and displacement actu-
ators based upon the thermomechanical constitutive relations developed in Chapter
2. Numerical simulations and design case studies are presented which show the utility
and advantages of this method over design methods currently being used. The types
of actuator described and analyzed include bias spring actuators, differential force
actuators and their hybrid systems. The design approach includes coupling between
the one-dimensional thermomechanical constitutive relations and a lumped capaci-
tance transient thermal analysis. The design approach described herein will provide

a practical and convenient method in the design of shape memory alloy actuators.

4.1 Transient Temperature Response of SMA
Actuators

Consider a bias spring SMA actuator in which the SMA wire is resistively heated
and cooled by natural convection, and assume the temperature distribution along the

wire is uniform. If the initial temperature is Tp. The temperature response of the

125



wire can be expressed as

T—To=Til—-e7) (4.1)

The final stable state temperature, Ty, and thermal time constant,r, are given as

I'R
ndh
dpe
4h

T; =

(4.2)

where ‘I’ is the electric current, ‘R’ is the resistance of the SMA wire, ‘d’ is the diam-
eter of the wire, p is the density, ‘c’ is the specific heat, and ‘h’ the heat convection

coeflicient. It is assumed in this case that all material properties are constant.

After the wire has been heated for a period of time, At, cooling begins. The transient

response for the cooling process can be derived as
T—To=(Ti — To)e ™~ (4.3)

where T; is the temperature at the beginning of cooling.

4.2 Bias Spring SMA Actuators

The stress-strain-temperature relations for a one-dimensional SMA actuator is gov-
erned by Eq. (2.48) and may be rewritten as Eq. (2.50) when only considering a

quasi-static process. The general rate form of the stress-strain relation for the bias
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spring of the actuator yields

0=——¢ (4.4)

where ‘k’, ‘L’, and ‘s’ are the spring constant, length and cross-section of the SMA

actuator wire, respectively.

To completely model an SMA actuator, the working load represented by ‘W’ must be
included. There are several ways to incorporate the influence of the working load such
as modifying the bias spring constant or using a ‘dead weight’. It is relatively easy
to modify the bias spring constant to account for the additional load, but in most
cases, the external load is not linear. It is more appropriate in most cases to model
the working load as a ‘dead weight’ as shown in Fig. 4.1. For a dynamic problem,
the inertia of the “dead weight” should also be considered, however, for our purposes
a quasi-static analysis will be assumed. This reduces the complexity of the problem
and the resulting solution technique. Using the quasi-static assumption reduces the
problem to a first order differential equation and modifying the initial conditions will
be able to incorporate the influence of the working load. Substituting Eq. (4.4) into

Eq. (2.48) results in

: sD_. _ . .
where
06, O,
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From Egs. (4.5), the stress rate is solved as

]
0+ 0%

— T _ 7T (4.7
F) El
1+ -0f

o=

The stress-temperature relation for the above equation which involves the time vari-

able can be arranged to yield the stress-temperature relation as

_ 3
dé @+Qg}

a9 _ T __ 4.8
T 1+ % (4.8)
or
sD o€ . . o¢
—__0= -0 - = = 4.
1+ 57 Qa(_r)da—i—( S aT)dT 0 (4.9)
Since ?3%% = ai:rza%’ a close form solution of Eq. (4.9) can be found if the material

properties (i.e., D, ©, and ) are assumed to be constant. Numerical solutions will
be necessary if the material properties are allowed to vary as a function of {. The

closed form solution of Eq. (4.9) is given by

D
(1+ k—;)& — Q¢ — OT = constant (4.10)
It can be shown that Eq. (4.10) is of the same form as the general quasi-static rela-
tions given in Eq. (2.87) and (2.88). This means that the analysis method described
in Chapter 2 for quasi-static analysis can also be used for the transient response of

a SMA actuator by simply replacing ‘I’ with the transient temperature response as

expressed by Eqgs. (4.1) and (4.3).
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Figure 4.1: A Schematic of a Bias Spring Hybrid SMA Actuator System
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The initial conditions and boundary conditions for a bias SMA actuator are modified
to account for the external load ‘W’ as shown in Fig. 4.1. The initial equilibrium

state of the actuator system is given by

oos=F,+ W (4.11)

where F, is the spring force which can be expressed as

Fs = kL(gres - E) (412)

The reference position from which to measure the strain of the SMA wire is its

undeformed configuration. The initial strain before activation of the SMA actuator

is

€0 = €res + Db (4.13)
where A€, = 6o/D and a, is given by
DW
gy = ——— 4.14
= %L+ Ds (4.14)

The resulting stress of the bias spring is then expressed

5—50= Lz _g) (4.15)

S
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Substituting Eq. (4.15) into Eq. (2.50) yields the general stress-temperature relation

where
Q' = 6’_
{ QO = 1+Q"L (417)
g

If the actuator temperature is lower than the initial state temperature, T, of the
shape memory alloy, then the stress of the SMA wire is 5. When the tempera-
ture is higher than Ty, the stress-temperature relations are given by the following

expressions.

O'(T — Tn) + 60 Ty <T < A7
G={ O(T—A)+ V(6 — &) +5a, A]<T <A (4.18)
O'(T — A%) + 6.4y AT LT

The mechanical transition temperatures and their corresponding stresses can be found
in Chapter 2. The influence of the initial stress o should be included. For example,
the mechanical austenite start temperature and its corresponding stress are modified

as

_ CpaA, — O'Tr + 09

Ad
: Ca—0©
Gas = O'(AJ — Tm) + 60 (4.19)

The cooling process starts at (., T¢, ;) (which are the initial conditions for cooling),
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the process can be described as

O'(T - T.) + . T.>T > M?
6=] OT— M)+ QE—E)+om M >T> M (4.20)
@'(T—M}')-}-&Mf M}’ >T

where the mechanical transition temperatures and corresponding stresses can also be

found exactly as described in Chapter 2.

The strain of the SMA wire, €, can be determined from Eq. (4.15) and easily related
to the travel distance ‘S’ of the ‘dead weight’ from Eq. (4.15). If the temperature-
time response is known, the transient stress and travel distance as a function of time

can also be determined.

In the design of a bias spring SMA actuator, the important design parameters are the
properties of the SMA wire, i.e., the transition temperatures, D, ©, and §); and the
geometric parameters of the SMA spring (or wire) like the length and cross-section
area. The spring constant is the basic design parameter for bias spring actuators.
From Egs. (4.16) and (4.17), all the undefined geometric'variables are normalized
as one term, %, which simplifies the design process. According to different working
requirements such as the amount of stroke ‘S’, it is possible to choose the best ;% and
then the individual k, L, or s according to some other secondary design limitations

such as space restrictions, etc.

The total cycle time of SMA actuators is generally governed by the cooling process
as the heating process is done actively by resistive heating in many active control

applications and the cooling process is typically passive. To reduce the cycle time,
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it is necessary to use other method such as forced convection or conduction using
thermoelectric devices. However, regardless of the active cooling method employed,
the cycle time of bias spring actuators can be reduced further by incorporating an
‘active’ reformation force, i.e., SMA element, to replace the bias spring. This results
in the actuator configuration known as the differential force actuator as illustrated in

Fig. 4.2.

4.3 Differential SMA Force Actuators

A differential SMA force actuator contains two SMA springs (or wires), in which each
SMA spring (or wire) functions as the others reformation or deformation source as
shown in Fig. 4.2. The design parameters for this model are the geometrical variables
of the SMA element ‘A’ and ‘B’ and material constants. Both elements are assumed
to be made of the same SMA material here in order to simplify the analysis. All
the variables with superscript (A) are related to SMA element ‘A’ and superscript
(B) related to element ‘B’. The original length of ‘A’ and ‘B’ are L4 and Lg. It is
also assumed that the material properties remain unchanged with temperature and
martensite fraction. The initial temperature for both element ‘A’ and ‘B’ is the same

as the surrounding temperature Tp. The other initial conditions for element ‘A’ are

& =0
4 =0 (4.21)
& =0
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while the initial conditions for element ‘B’ are

E0 = €res
g =&u 4.22
- (4.22)

where €., is the residual martensitic strain (or the initial strain), €, the maximum

recoverable strain, and W the load that models the working load. The governing rate

form of the constitutive equations for this system are

&A=Dé"+0{f‘+97’jf‘ (4.23)
6% = DE® + OEB + OTB '

The geometric compatibility of elements ‘A’ and ‘B’ and the equilibrium condition of
the system is assured by

A (120
The governing equation and compatibility equation together yields
[La(8" — Q€4 — ©T4)] + [Lp(5” — Q€P — OTP)] =0 (4.25)
From Eq. (4.6), the above equation can be written as
La[(1 — Q&%)do4 + (-0 — 0 85)dT4] +
Lp[(1 — 025)d5B + (-6 — Q%5)dTB] = 0 (4.26)
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The coefficients of L4 and Lg are two exact differentials, which yields the closed form

solution of Eq. (4.16) as

La(6% — Q¢4 — OT4) + Lp(a® — QB — OTP) = constant (4.27)

The typical operation of a differential SMA actuator can be described as: first, el-
ement ‘B’ is heated while the temperature of element ‘A’ is constant. Element ‘B’
is prestrained and the deformed martensite will tend to restore to stable austenite,
thus producing force against the constraining element ‘A’. Element ‘A’ functions as a
nonlinear spring with a high stiffness initially and very low stiffness later during the
deformation process. If the maximum recovery force produced by ‘B’ cannot get ‘A’
over its elastic stress limit, element ‘A’ will simply be straining within its linear elastic
strain range. Once the stress of ‘A’ is above its elastic stress limit, element ‘A’ will
undergo the stress induced martensitic transformation thereby storing energy for the
later recovery of element ‘B’. During the reformation process of the system in which
element ‘A’ is being heated and element ‘B’ is being cooled, element ‘A’ generates a
much greater recovery force that pulls ‘B’ back to its initial position. The external
stress on element ‘B’ will increase its mechanical martensitic start temperature re-
sulting in an earlier martensitic transformation that causes a shorter cycle time for
the differential SMA actuator. The actuator can be activated again by heating ‘B’

and starting a new cycle.
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4.4 Numerical Simulation and Case Studies

In this section, a number of numerical simulations and case studies will be presented
for SMA actuators made of a copper based shape memory alloy. Table 4.1 lists the
material constants used in the simulations. The thermoelastic tensor, ©, is assumed
to be 0.1MPa/° C and the maximum recoverable strain, €L, 1s calculated using Eq.
(2.56) as 1% for the material data given in Table 4.1. The Cosine model is used here

to simplify the numerical simulation and case studies.

4.4.1 Bias Spring SMA Actuator

The analysis of SMA force actuators must take into account the effect of the working
load. The design relations shown in Figs. (1.13) and (1.14) cannot incorporate the
effects of working load as a ‘dead weight’. However, the result can be very different if
the working load is included in the analysis. This is clearly shown in Fig. 4.3 where
the coupled analysis considers the working load a ‘dead weight’ and the decoupled
analysis ignores the influence of the working load. These results lead to the following
conclusions: first, the hysteresis of the coupled analysis is larger than that of the
decoupled analysis; second, the superposition principle cannot be applied during the
phase transformation range. If the material is composed of only one phase, the su-

perposition principle may, however, be applied.
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Table 4.1: Material Constants for a Copper Based SMA (after Tanaka, 1984)

MPa °C MPa/° C

7000 | -70 | -27 | -34 |-25 | -14 |15 | 1.5
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The stress vs. temperature relations of a bias spring SMA actuator for different nor-
malized spring constant, kL/s, are shown in Fig. 4.4. The normalized spring rate
kL/s dominates the stress-temperature relation. The greater the value of kL/s, the
higher the resulting recovery stress. The controlled recovery stress will approach the
restrained recovery stress which corresponds to the infinite spring constant, k. Also,
the larger the kL /s, the higher the temperature that will be required to finish the

transformation due to the increase of stress.

The normalized travel distance, S/L, vs. temperature is shown in Fig. 4.5. Contrary
to the conclusions drawn from Fig. 4.4, the lower the kL/s is, the longer the travel
distance of the actuator, ‘S, will be. It is also possible to determine the highest
temperature required to complete the phase transition and provide the longest travel
from Fig. 4.5. For example, if kL/s is 7000, it is only necessary to heat the wire to
5 °C. Heating beyond 5 °C would not increase the stroke of the actuator, but would

increase the cooling time significantly.

The normalized spring rate, kL/s, is very important in determining the time response
for a bias spring actuator. This is demonstrated in Fig. 4.6. The normalized travel
distance, S/ L, vs. time is very different for three normalized spring rates even though
they have the same heating and cooling process. They are all heated to 12 °C in about
6.5 seconds. A lower kL/s bias spring actuator has a larger stroke but takes much
more time to cool down to return back to its initial position, while a higher kL/s
bias spring actuator has the opposite effect. The relatively flat region of each curve
corresponds to the cooling process before the phase transition occurs. It is impossible

to avoid this flat cooling stage completely but this section can be shortened. It is
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shown from Figs. 4.5 and 4.6 that for kL/s = 1000, the SMA wire only needs to heat
to approximate —5 °C which takes about 3.5 seconds in this case. The total cooling
time will be decreased if the wire is only heated to —5 °C, and the actuator can still
provide about the same amount of travel distance. However, it is true that a higher

kL/s can always reduce cooling time.

Another important technical requirement of a bias spring actuator is the maximum
work output. The work output by the hybrid actuator system, shown in Fig. 4.1, is
the work performed to raise the “dead weight”. The maximum work output is de-
pendent on the stroke of the actuator. Therefore, the normalized spring rate is very
important in determining the work output as shown in Fig. 4.7. The larger the kL/s,
the less work that will be performed because higher kL /s provides less travel distance
for the “dead weight”. Zero kL/s can do the most work, but this kind of device is
no longer a force actuator. Infinite kL/s corresponds to the restrained recovery and

obviously cannot provide any work.

4.4.2 Differential SMA Actuator

The design and analysis of a differential SMA force actuator is more complex than
that of a bias spring SMA force actuators since differential actuator involves more
phase transitions and more design variables. The analysis presented in this section
will reveal some of the important characteristics and behavior of differential SMA
force actuators. In order to simplify the analysis, both SMA elements of the actu-
ator are assumed to have the same length and cross-section area and are made of

the same SMA material. Before activation of the actuator, element ‘B’ has been
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prestrained to 0.6% initial strain which corresponds to 60% of the initially deformed
martensitic phase. Element ‘A’ has no prestrain. The working load (modeled by the
‘dead weight’) causes an initial stress of 6 MPa on element ‘B’ only. The temperature
history of both SMA elements are shown in Fig. 4.8. The temperature of element ‘A’
is held constant as the ambient temperature for the first five seconds while element
‘B’ is heated. Element ‘A’ is then heated starting at t=6 seconds, while element ‘B’
begins cooling. Both the heating and cooling processes follow Egs. (4.1) and (4.2)
with Ty = 10 °C and 7 = 15s. There are two activation stragedies. One is defined as
shown in Fig. 4.8 and is referred to as ‘continuous activation’. Another one has the
same heating and cooling process for element ‘B’, but element ‘A’ is only heated for
five seconds (from t=6 seconds to t=10 seconds) and then maintains that tempera-

ture. The second is referred to as ‘discontinuous activation’.

Figures 4.9 illustrates the stress of element ‘B’ vs. time relation. Each element expe-
riences a martensitic transformation and its reverse transformation during the entire
cycle so the time response shown in Fig. 4.9 can be separated into four processes. The
first sharp increase of stress corresponds to the reverse transformation of element ‘B’,
the following slow increase of stress corresponds to the martensitic transformation of
‘A’, the second sharp increase of stress indicates the reverse transformation of ‘A’,
and finally the decrease of stress indicates the martensitic phase transformation of
element ‘B’. The dash lines in Figs. 4.9 to 4.11 are for the discontinuous activation.

The solid lines represent the continuous activation.

The normalized travel distance, ‘S/L’, vs. time is shown in Fig. 4.10. The continu-

ous activation may reduce the cycle period for a single cycle. However, because this
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kind of activation results in a unnecessarily high temperature for element ‘A’, it will
certainly delay the activation for the second cycle. Element ‘A’ must be cooled back
to its initial tefnperature before the actuator can be re-activated or it will simply

function as a linear spring under higher temperature.

Like a bias spring SMA actuator, the maximum work provided by a differential SMA
actuator provides another index to be used to evaluate its performance. The maxi-
mum work performed by the differential actuator can be determined from Fig. 4.11
which shows the stress of element ‘B’ vs. normalized travel distance, S/L. The area

of the triangle-like geometry represents the work output.

It has been shown from Eq. (4.27) that a differential SMA actuator has the advantage
of separating temperature profiles (i.e. heating and cooling process) for the two SMA
elements. This indicates that this type of actuator can generate a different path if
different heating and cooling strategies are adopted. This is illustrated in Figs. 4.12
to 4.15. Figure 4.12 shows the 3-D plot of the stress of element ‘B’ vs. T4 and T5.
Figure 4.13 shows the normalized travel distance, S/L4, vs. T4 and TB. Figures
4.14 and 4.15 show the martensite fraction of element ‘A’ and ‘B’ vs. T4 and T2,

respectively. The four phase transitions are clearly seen from Figs. 4.14 and 4.15.

4.5 Concluding Remarks

This chapter presents a mathematical model of SMA force actuators based upon the

constitutive relation of shape memory alloys.
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Figure 4.14: Martensite Fraction of Element ‘A’ vs. T4 and T
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This model reflects the most important aspects of SMA force actuators, yield-
ing convenient expressions to determine the basic design parameters for the
two widely used SMA force actuators: bias spring SMA force actuators and

differential SMA force actuators.

The case studies of the bias spring SMA actuator provide fundamental infor-

mation related to their design.

The restriction of applying the superposition principle to SMA actuators is
equally important to other applications of shape memory alloys and general

stress analysis of martensitic phase transition materials.

The numerical study of the differential SMA force actuator reveals its basic be-
havior and characteristics and provides further guidance to the design, heating,

cooling, and operation of SMA actuator systems.
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Chapter 5

Multi-Dimensional Constitutive
Modeling of SMA

Based upon the one-dimensional thermomechanical constitutive relation developed
in Chapter 2, a multi-dimensional thermomechanical constitutive model for shape
memory alloys is further developed in this chapter. Unlike the constituﬁve model de-
veloped by Bondaryev and Wayman (1988), this multi-dimensional constitutive model
begins with the newly introduced internal state variable, martensite fraction, instead
of using the traditional plastic flow theory. This thermomechanical constitutive rela-
tion can reflect the most basic characteristics of shape memory alloys, i.e., the phase
transformation involved in the characteristics of the shape memory effect. To begin
describing the formulations it is necessary to provide some important experimental

evidence that supports the model.

5.1 Experimental Background

Needless to say, the first concern when developing this multi-dimensional model is

whether its one-dimensional version is correct. The verification and discussion in
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Chapter 3 show that the one-dimensional constitutive model can provide a quantita-
tive prediction and description of the mechanical behavior of shape memory alloys.
However, more experiments besides the uniaxial tensile test are still needed to provide
full array of data to substantiate and develop the full and correct multi-dimensional
constitutive relations. These experiments include: (1) the influence of compressive
load on SMA behavior; (2) the cyclic behavior of SMA; (3) the criterion governing
the beginning of phase transformation in multi-dimensional stress state; and (4) the

coupling effect of plastic deformation and the transformation deformation.

One of the important experiments in the development of a multi-dimensional consti-
tutive relation for different materials is the hydrostatic pressure experiment. A multi-
dimensional stress tensor may be decomposed into two parts, a hydrostatic stress and
a deviatoric stress tensor. The hydrostatic stress affects the volume change while
the deviatoric stress causes the distortion of the materials. The effect of hydrostatic
pressure on the material behavior is mainly attributed to the influence of volume
change of the material. The volume change of an elastic body is the summation of all
principal strains, therefore, hydrostatic pressure can affect the elastic deformation.
Plastic deformation, however, is characterized as zero-volume-change deformation,
the Possion’s ratio of plastic strain is 0.5, which indicates a negligible influence of
hydrostatic pressure on the plastic deformation. Therefore, the plastic deformation

1s basically of a shear nature.

Kakeshita et al. (1988) studied the effect of hydrostatic pressure on martensitic
transformations in Cu-Al-Ni shape memory alloys. The purpose of their experiment

was to investigate the influence of hydrostatic pressure on the phase transformation
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mechanics. Previous work (Patel and Cohen, 1953; Gefen et al., 1973) shows the
transformation temperatures decrease in Fe-Ni SMA while increase in Au-Cd SMA
with increasing hydrostatic pressure. The difference is qualitatively explained to be
due to the difference in sign of AV = VM — V4, where VM and V4 are the volumes of
martensite and austenite respectively, being positive for Fe-Ni alloy and negative for
Au-Cd alloy. Generally, the percentage volume change during martensitic transforma-
tion of SMA is around 0.002 (Hsu, 1982), which may be affected by hydrostatic pres-
sure. Figure 51 sho§vs the pressure dependence of the transformation temperatures
for two type of Cu-Al-Ni alloys. The pressure is increased from zero to a relatively
high 1.5 GPa (217Ksi). The transformation temperatures were obtained by measur-
ing the electrical resistivity. The change of transformation temperature demonstrates
a linear relation with pressure. The slope of the transformation temperature-pressure
relation is determined to be 5 °C/GPa. The experiment also demonstrated that there
is essentially no difference between the hydrostatic pressure-induced martensite and

thermally induced martensite.

Two conclusions can be drawn from the above discussions. The first is that the vol-
ume change is almost negligible. The actual percentage volume change is so small
(0.002) that a Possion’s ratio of 0.5 may be assumed for the transformation strain, €.
The second is that the influence of hydrostatic pressure on phase transformation may
also be neglected (5 °C/GPa). Therefore the deformation involved in the phase trans-
formation may also be described as shear distortion. In fact, the orientated growth
of martensitic plates is a result of martensitic twinning or de-twinning process (shear
deformation). Therefore, it is possible to apply the approach used in plasticity to

develop a multi-dimensional constitutive relation for SMA.
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There have been very few experimental investigations which have studied the cyclic
behavior and characteristics of SMA under compressive loads. Shape memory alloys
have always been assumed to be homogeneous and isotropic. However, recent experi-
ments show that the assumption that the SMA is an isotropic material can no longer

be ensured, especially when subjected to a cyclic loading (Graesser, 1990).

Figure 5.2 shows the hysteretic response of a SMA rod sample subjected to a £4.5%
strain cycles. The SMA sample is first elongated, and followed by a nonlinear un-
loading (pseudoelastic effect), leaving some residual strain. The compression starts
with a nonlinear loading rather than a linear elastic loading as expected. The first
smooth nonlinear compressive loading is believed to be accompanied by the reverse
transformation. The reverse transformation finishes at the sharp transition point
from which a linear elastic compressive loading starts. A compressive stress-induced
martensitic transformation starts shortly after the elastic compressive loading. It is
apparent that the stress-strain relation corresponding to the compressive loading is

very different from the one of tensile loading.
The one-dimensional constitutive model presented in Chapter 2 cannot be applied

to study the behavior of SMA under alternate tensile and compressive loading. The

multi-dimensional constitutive model developed here has the same limitation.
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5.2 Generalized Multi-Dimensional Constitutive
Relations of SM A

Considering a three-dimensional body, the original coordinate is denoted by X, and
the current deformed configuration is denoted by x. X stands for (X; X; X3)T where
subscripts ‘1’, ‘2’, and ‘3’ represent the X, Y, and Z coordinate axis and the superscript
‘T’ represents the transpose of a matrix. x can also be written as (z; z; zg)T. The

deformation gradient, f, is given to be

f=(vx")T (5.1)
where
_98
X
v = [ X ] (5.2)
8Xs

The deformation velocity tensor, v, is defined as

v=ff1 (5.3)
The Green strain is defined as
Te
e=! f2 I (5.4)

where I is a unit tensor.
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The Kirchhoff stress tensor can be derived as

)

2f-1e (f1)T (5.5)

Q
> |

where py is the density in the original configuration and p is the density in the current
configuration. o is the Cauchy stress tensor. The reason for using the Green strain
and Kirchhoff stress are: (1) they are invariant under rigid body motion; (2) they
are expressed in reference to the original configuration, therefore, it does not matter
whether the deformation can significantly change the geometry of the 3-D body; and

(3) they are energetical conjugates.

The first and the second laws of thermodynamics can be written in the current con-

figuration as

pU — tr(o v) + divge,, — pg =0 (5.6)
PS + P% + %divqsur - %qaur : gl'ad T >0 .

where tr( ) denotes the trace operator, ‘div’ and ‘grad’ the divergence and gradient
operator in the current configuration. Rewriting the first and the second laws of

thermodynamics in the original configuration yields

pol:J —tr(6€)+DivQ + pog =0 (5.7)
poS — po + $DivQ — %DivQ - Grad T > 0 '

where ‘Div’ and ‘Grad’ are the divergence and gradient operator in the original ref-
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erence, respectively. Q is defined as

Q= ”—;’f"  Qour (5.8)

Similar to Eq. (2.41), the general state variable, A, is defined as
. i=1,2,3
A= (CiJava) { j 1,2,3 (59)

Martensitic transformations are governed by the Helmholtz free energy. The free
energy is the summation of the non-chemical energy such as strain energy and thermal
energy and the chemical free energy. In other words, it is the overall strain energy that
affects the phase transformation rather than individual strain and stress components.
From the experimental study discussed in the last section, the hydrostatic pressure
has a small influence on the phase transformations. The deformation along with phase
transformation is mainly of a shear nature. The strain energy that affects the phase
transformation should be the distortion energy. Therefore, the general state variable

may be expressed as
A= (e, T,6) (5.10)

where ¢, is the equivalent strain. The Helmholtz free energy is given by Eq. (2.42).
Following the same approach discussed in Chapter 2, the Clausius-Duhem inequality
in the original configuration can be derived as

1 0P Oe,, 0. . 09

_ - 1
tr[(p—oa- ~ Be., ¢ el — (S — a_T)T — %é - po_TQ GradT >0 (5.11)
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8 . . . . .
where 52 is a 3 X 3 matrix. The general stress-strain relation based on continuums

mechanics is given by

_ 0P Oe¢
7 =poz——Fp— (5.12)
Oe., O€
The stress and strain vectors are
4 &ll N\
022
_ %
{a}=19 .2 ¢ (5.13)
012
023
l O31 )
and
( E11 )
€22
_ €
{6}=< _33 \ (514)
€12
€23
| €31 )
The new form of the constitutive relation may now be written as
_ . r Zceg N
[og €11
( 1 O¢teq
022 36_22
— €e
o b _ 00 ) g 5.15
{ = (= Po { Geeq ( (5.15)
012 Ot | 32
_ €12
0923 O¢teq
€23
{ 031 ) Oteq
\ OJé3y /
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or simply

v _ 00 Je,
0} = a2

0} (5.16)

The time derivative of stress may be written as

0?® e,

. 0?®  Oe.,, : 0%®  Oe
(5= 2% : :
0e?,

9,06 o 1* T e o7 o

oy Fayriey 4 ' (5.17)

The above relation may be written in incremental form.

o*d 6eeq

L 0® D, 0% O,
(40} = 5 1 d

Fe..0¢ oe 1% BT o

}{66” Y {de} + YT (5.18)

The strain increment is then decomposed into two components, the elastic strain and

the transformation strain, as
{de} = {de°} + {dE'} (5.19)
where the elastic strain component can also be written as
| }{dee} = {£}"{d5} (5.20)

where {£} is the elastic material property matrix. After substituting Eqgs. (5.19) and
(5.20) into Eq. (5.18), Eq. (5.18) becomes

D%y (G (ae)

(1} - D%y Zayr )y ds) = D

167



+Q{%}d§ + @{%egi}dT (5.21)

where ‘D’, ‘Q’) and ‘©’ are the Young’s Modulus, phase transformation tensor, and
thermoelastic tensor used in the one-dimensional model, respectively. They are given
by Eq. (2.49). Note, if the SMA material is in the elastic range and the temperature
is constant, the right side of Eq. (5.21) vanishes. This gives the elastic material

property matrix as

Oe.
¢

6y = pZay Zay (5:22)

As described in Chapter 2, the martensite fraction, £, is a function of stress and tem-

perature, and can be generally expressed as follows for multi-dimensional problems.
E=Z(0e, T) (5.23)

where o., stands for the equivalent stress. d¢, therefore, can be written as

0= o=
_ o= 5.24
d¢ 3o, doe, + 6TdT ( )
and do., can be expressed as
( doyy )
doy,
do., Oo., 0o, Oo0., 0o, 00 do
do., = eq eq eq eq eq eq T33 595
Teq {85'11 86'22 85’33 6612 65'23 3('731 d012 r ( )
dcas
| doa;
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or simply
do. _
doe, = {—dc_: }7{d&} (5.26)

Substituting Egs. (5.24) and (5.26) into Eq. (5.21) and rearranging yields

_ {ac,g }{3€eg }T —t
do = z
{ds} (I} — D{Za}{Za)T (£} Qaizq{ai*}{%q}ﬂ }

O{%} + 0F (%)
{1} - D{Q‘—“‘}{9‘4“}1"{“3}1 Voo {aﬂ}{aﬂ}:’

00eq

+ (5.27)

Equation (5.27) is a general expression of the constitutive relation of SMA. It can
describe both the stress-strain-temperature relations of SMA and the shape memory
effect. Although it is derived based on thermomechanics it is very much similar in
form to the constitutive relations of thermo-plasticity (Liang, 1986). An internal state
variable, £, is introduced in this thermomechanical model to represent the history de-
pendence of the stress-strain behavior of SMA instead of the plastic strain for the
constitutive model of plasticity. In fact, the internal state variable, £, has a direct
relation with the transformation strain, €, which is defined similarly to plastic strain.
Equation (2.63) provides the relation between the phase transformation strain and
the martensite fraction. To use this thermomechanical constitutive relation, the em-
pirical relation of transformation kinetics must be used. Equation (5.27) can predict
and describe the multi-dimensional stress without relying on the input of stress-strain

data.
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Equation (5.27) can be simplified as

{d5} = {D}{de'} + {x}dT

where
D{%2}{%=)T
D
P} = {1} - D{ZG2 M%) {6} — Q= {5 %)
and

0%} + 025 (%)
1 - D& By e) - o (G H G

90eq

{r} =

Solving for the transformation strain yields

{d€'} = {D} {do} — {D} ' {x}dT

(5.28)

(5.29)

(5.30)

(5.31)

The elastic strain, plastic strain, and thermal expansion strain can be added to the

above equation to generate a complete thermomechanical elasto-plastic constitutive

relation for shape memory alloys. The Leévy-Mises model provides a plastic strain

increment as

{de) = -"f‘“g"{ 5)
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where €, is the equivalent plastic strain, {s} the deviatoric stress vector given by

( &ll - &m )
&22 - 6rn
j=4 7B m 4 (5.33)
012
023
[ Oa1 )

»

{

where &, is the hydrostatic stress given by
_ 1 _ _ _
Om = 3(011 + T2 + T33) (5.34)
The thermal expansion strain is given by
{der} = {a}dT = {a ¢ a 00 0}TdT (5.35)

where « is the thermal expansion coefficient. A complete constitutive equation can

be described by

{de} = {de°} + {de'} + {de’} + {der}
(£} {dz} + {D} " {d5} + {D} Y{x}dT (5.36)

3de,
+§ o {5} + {a}dT

Most applications of SMA are in the transformation region. Very few applications
utilize the plastic deformation range. The thermomechanical constitutive relation of

SMA can be further simplified if the plastic strain is neglected here. The stress-strain
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relation thus can be written as

. {7} o _ (D} s} + {o}
do} = de} — dT 5.37
e A G s (530
The {D}~! is zero in the elastic range as can be seen from Eq. (5.29). Therefore,
the above constitutive equation is of the same form as Hook’s law within elastic
region. In case of proportional loading at a constant temperature, Eq. (5.37) may
be integrated on both sides resulting in a total strain theory similar to Hencky’s

stress-strain relation of plastic materials (Chakrabarty, 1987) and given by

I N
AN GEFN IR

(5.38)

In a one-dimensional tensile test the martensitic transformation starts at a elastic
stress limit, o.. It is assumed that the phase transformation in a multi-dimensional

stress state occurs when the equivalent stress, o.,, reaches the elastic stress limit, o..

From the study of distortion energy, the equivalent stress, o,, and equivalent strain,

€cq, May be derived (Slater, 1977). The equivalent stress is expressed as
1. _ _ _ _ _ _ - _ _2 vl
Teq = \/;[(011 —829)" + (002 — 0)” + (G — T1)* + 6(37, + 535 + 03))]7  (5.39)

and the equivalent strain by

V2. _ _ _ _ _ 3 _ _ 2l
€eqg = T[(Cn - 622)2 + (€22 — 633)2 + (€33 — '511)2 + 5(5%)2 + fgs + 6(231)]2 (5.40)
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The equivalent strain has the property that in a state of strain defined by é; = €3 =
—0.5€1; and &, = &3 = €, = 0, there is €¢,, = €;. This implies that the Possion’s
ratio is 0.5. Some modifications are needed in order to describe the elastic strain.
Assuming € = €3 = —ué€y; and €, = €3 = €33 = 0, where p is the Possion’s
ratio, the coefﬁéiént éf Eq. (5.40) must be changed in order to keep €., = €. The

equivalent elastic strain is thus modified as

V2

_ _ _ _ _ _ 3, _ 9\l
€eq = m[(fn —€20)’ + (622 — &33)* + (€3 — &) + 5(632 + &5+ 8,)]7 (5.41)

It is apparent that when an SMA sample is loaded to have some non-elastic defor-

mation such as phase transformation deformation or plastic deformation which both

have a Possion’s ratio of 0.5, the overall Possion’s ratio can no longer be constant.

The following assumption of a varying Possion’s ratio, v, can be employed in the
calculation.

ee

v=05-(05—-p)————— 5.42

O3 —meTa Ta, (5.42)

The non-elastic strain of shape memory alloys is relatively larger than the elastic

strain, therefore, a constant Possion’s ratio of 0.5 may be assumed to simplify the

calculations.

. . . doe
From the equivalent stress and strain expressions, Egs. (5.39) and (5.40), the {522}
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and {9%} may be derived as

€11
€22
€33
A4
Y L5 ( (5.43)
1.5€23
| 1.5€3;

3ecq

{7

2k

Qeeq

and

o
022
60‘eq 1 033
= - : 5.44
6023
6531 )

5.3 Numerical Example

The constitutive relations developed in the previous section are nonlinear and they
depend on the stress and strain state. Moreover, the behavior of SMA usually in-
volves large deformation. Thus creating a material and geometric nonlinear problem.
Solving even a simple problem requires a sophisticated finite element program. Here,
in order to demonstrate the feasibility of using the multi-dimensional constitutive
relation, a simple example is presented, a solid cylindrical SMA bar under torsion.
It is basically a one-dimensional problem, but it is governed by shear stress and the

stress is not constant throughtout the cross section.
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5.3.1 Stress-Strain Analysis

Consider a solid cylindrical bar with the outside radius of a, as the bar is elastic, the
shear stress acting over any cross section is proportional to the radial distance r from
the central axis. The applied torque is the resultant moment of the stress distribution
about this axis. If the angle of twist per unit length of the bar is denoted by # and

applied torque 7, the elastic shear stress may be written as

_oT

wat

F=G5=Grf (5.45)

where G is the shear modulus. The equivalent stress and strain from Egs. (5.39) and

(5.40) are
Oeg = V37 (5.46)
and

1
r = —=7 5.47
¢ 7 \/57 ( )

Since the shear stress has its greatest value at r = a, the bar begins to have stress-
induced phase transformation at this radius. It is assumed that the SMA bar is
austenite before applying a moment. When the equivalent stress, o.,, at the radius

a reaches o, the corresponding critical torque and twist are

T. = i_7ra,3a (5.48)
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and

(5.49)

If the torque is increased further, a transformation annulus forms near the boundary,
leaving a central zone of elastic material within a radius ¢, the stress distribution in
the elastic region is linear with the equivalent stress reaching o, at r = ¢. The shear

stress in the central elastic region is given by

7T o<r<e (5.50)

Vie 0SS

T =

The stress distribution in the transformation annulus obeys Eq. (5.37). Note, the

shear strain + is always rf no matter whether it is in the elastic region or not.

From Egs. (5.43) and (5.44) the terms {%‘;—‘1} and {222} may be determined to be

Oeg, 1

(5.51)

and

{%} -3 (5.52)

The inverse of the elastic material property matrix is simply 1/G in this case. The
Possion’s ratio, g, is assumed to be 0.5. The shear modulus, G, is thus D/3. All

material properties are assumed to be constant herein. Based on the above discussion,
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{D}"! and {«} are given as

—
o=
N

-1 _
{D} = e, Baeq

and

2=
(h=-2F
V30 2=

The stress-strain relation in the transformation annulus is given by

_ G
1 = N2=

80 eq

d7 = 5

or

—

(1 - Q=—)d7 = Gdy

00¢q

Integrating on both sides yields

(7 — 70) = G(7 — 7o) + \%(e &)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

where the variables with subscript ‘0’ are the initial conditions. Assuming the initial

phase of the bar is austenite and it is free of any residual stress and deformation,

and the ambient temperature is between M, and A,, The stress-strain relation can
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be simplified to
T=Gy+ ﬁf (5.58)
= ’7 - ﬁ .
The martensite fraction, £, using the cosine model, is derived from Eq. (2.31) as
1
= E{cos[aM(T — M) + byV/37] + 1} (5.59)
The shear stress distribution in the transformation annulus 7(r) is given by

7=Gor+ [am(T — My) + byV37]+1}  c<r<a (5.60)

2
——{cos
2v3
A numerical iteration acheme is required to determine the shear stress. The equivalent
stress at the elastic interface is the elastic stress limit, .. The radius of the central

elastic zone, ¢, can be determined from the following equation.

Oe

V3G

c= (5.61)

The resultant moment from the distributed shear stress is expressed as

C

c Uer2 a 9
T = /0 i+ / F(r)ridr (5.62)

The above equation provides the relation between the applied torque and the cor-
responding twist. Solving 6(7) (6 as a function of the applied torque, 7) from Eq.
(5.62) and substituting 6(7) into Eq. (5.60) yields the stress-torque relation. With
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increasing torque, the equivalent stress at r = a reaches the yield strength, o,, which
corresponds to a critical torque, T,. A torque higher than 7, will result in plastic
deformation requiring plastic constitutive relations. The applied torque is restricted
to be below 7, in this study. The critical torque, 7, can thus be determined from
oy 9]
— = Gabd(T,)) + —= 5.63
%% = Gan(T,) + —x (5.63)
The martensite fraction distribution, £(r), can be determined by substituting 7(r)

into to Eq. (5.59).

The residual stress-strain distribution may be obtained by superimposing an elastic
stress distribution caused by a torque of —7. It is assumed that the maximum
equivalent stress of the residual stress field is less than o, so the martensite fraction
distribution may not be altered. The residual stress distribution may then be given

by

2Tr
F = F(r) — 5.64
Tres = (1) i ( )
’k\he residual twist, 0,.,, is determined by the same superposition approach.
2T
0res = 0(T) — 5.65
(T) - —os (5.63)
and the residual strain is obtained from the expression:
Yres = rores (566)
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5.3.2 Analysis of the Shape Memory Effect

Some of the residual twist of the SMA bar will be recovered upon heating due to the
shape memory effect. If the boundary condition of the SMA bar is free, heating of
the SMA bar results in a controlled recovery. This is different from the uniaxial free
recovery in which the residual transformation strain is fully recovered and stress is
zero. In the case of the ‘free recovery’ of an SMA bar, the central elastic zone may
generate an internal reactionary force to the transformation of the outside transfor-
mation annulus. Heating the bar results in a certain amount of twist recovery while
storing energy in the central elastic zone. The stored energy will be released upon
cooling the SMA bar resulting in deformation of the outside transformation annulus
(generating new martensite). It is similar to a bias spring SMA actuator or an SMA

bar with two-way effect.

This unique characteristic of an SMA bar (or other similar geometries) may be very
useful. This 3-D SME characteristic is actually a two-way effect by structure rather
than a two way effect by material. A SMA bar itself functions as both a SMA ac-
tuator and a bias spring. Proper design of the size of the central elastic region may
achieve an overall two-way effect. A “smart” blade of turbine compressors which can
adjust its attacking angle according to in-coming flux may be designed based on this

concept.
The theoretical analysis of this “free recovery” of an SMA bar is very difficult. A

numerical technique such as finite element method must be used. On the contrary, it

is relatively easy to analyze the behavior of restrained recovery in this case.
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In the restrained recovery case, the residual deformation is restrained and no defor-
mation is allowed during the heating and cooling process. It is assumed that heating
starts from A, (ignoring the thermoelastic effect) and the temperature is uniform

thoughtout the SMA bar. Equation (5.37) becomes -

L {DYR)
{d5"} = HEE =t (5.67)

where superscript ‘r’ denotes ‘recovery’. In the case of rectrained recovery of SMA

bars, the above equation may be simplified to

= o)
(1-0% g = @+—\/;_23T-dT (5.68)

00¢,
Integrating on both sides yields

L C] 0
T —Ty= %(T —To) + %(f —&o) (5.69)

where Ty is the residual stress obtained from Eq. (5.64), Tp is A,, and o is the
martensite fraction obtained from the stress-strain analysis (Eq. (5.59)). ¢ is given

by
= 52—°{cos[a,,(T — A,) + b4V37) + 1} (5.70)

Substituting Eq. (5.70) into Eq. (5.69) yields the shear stress distribution in the
transformation annulus. Note that the residual stress in the central elastic zone is

not altered due to the restrained boundary condition. The resultant torque from the
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recovery shear stress thus may be calculated using Eq. (5.62).

5.4 Concluding Remarks

A multi-dimensional constitutive model of SMAs based on the newly developed one-
dimensional model is developed in this chapter. The multi-dimensional constitutive
model is based on the thermomechanical aspects of the shape memory alloys and can
be used to study the mechanical behavior of complex structures made of SMA. As
an example of utilizing the constitutive relations, an analysis of a SMA bar has also
presented, which indicates some possible new applications of shape memory alloys as

3-D actuators.
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Chapter 6

Conclusions

A one-dimensional thermomechanical constitutive relation of shape memory alloys

based on Tanaka’s early work is developed in this dissertation.

e This thermomechanical constitutive relation is derived from fundamental as-
pects of materials, i.e., the thermodynamic behaviors. It reflects the physical
essence of the characteristics of shape memory alloys. The final expression of
this constitutive relation is simple, therefore, it is easy to use in engineering

design.

e A new internal variable is introduced to describe the behavior of shape mem-
ory alloys. A relation between the new internal variable, defined as marten-
site fraction, with transformation strain is established. This relation links the

macro-mechanics and micro-mechanics.

e No matter how shape memory alloys behave macroscopically, they are governed
microscopically by basic phase transformation kinetics. Shape memory alloys
may be described by the same transformation kinetics regardless of different
mechanical conditions. Two empirical relations are suggested in this dissertation

to describe the transformation kinetics, i.e., the relation of martensite fraction
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with temperature of shape memory alloys. One is called the exp model, another
is named the cosine model. Both of these models can be used to study shape
memory alloys quantitatively. The exp model can provide more accurate results
compared with the cosine model but is more complex and requires more material

constants.

The thermomechanical constitutive relation uses practical and experimentally
measurable material properties. The material properties required by the ther-
momechanical constitutive relation are four characteristic transition tempera-
ture defined metallurgically, two stress influence coefficient which reflect the in-
fluence of stress on phase transformations, a transformation coefficient (required
by the exp model only), material Young’s modulus, thermoelastic tensor, and
the maximum recoverable strain. These metallurgical and mechanical material
constants may be easily measured from standard experimental equipment such
as differential scanning calorimeter (DSC) and MTS tensile machine. This is

very convenient in engineering design.

An experimental verification of this constitutive model is also presented. Al-
though more experimental verification and theoretical modification are needed,
this constitutive relation is proved to be capable of predicting and describing

the important characteristics of SMA quantitatively.

The multi-dimensional constitutive relation developed based on the one-
dimensional constitutive model has similar features to plastic theory. It is based
on thermodynamic relations rather than the flow rule assumption. This multi-
dimensional constitutive relation can be used to analyze shape memory alloy

structures such as SMA pipe fitting devices. By studying the new features of
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SMA structures, more knowledge of SMA behavior may be attained and more

new applications of SMA may be inspired.

e A general design method based on the constitutive relation is developed for
SMA force actuators, including bias spring SMA force actuators and differential
SMA force actuators. The method can determine effectively the basic design
parameters of an SMA actuator according to the performance requirement of

the SMA actuator.

This dissertation focuses on the development of the constitutive relation of SMA
which can be used easily in engineering design. As an example of utilizing this
constitutive relation, a design method of SMA force actuators has been developed.
In order to consummate this thermomechanical constitutive relation, more work are
still needed in following aspects: pseudoelastic effect, the influence of initial mixed

phase on stress-strain relations, and cyclic behavior of SMA.
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