Appendix A

Derivation of the Real and Reactive Power

From a Pi Equivalent Circuit Model
Depicted in Figure A.1 is the model for the Pi Equivalent Circuit.

![Diagram of Pi-Equivalent Circuit](image)

Figure A.1. Model of a Pi-Equivalent Circuit

Given are the resistance of the line, R, and the reactance of the line, X. We desire to derive the formulae for the real power P, and the reactive power Q. From power systems engineering, the total complex power, S_{kl}, leaving bus k through line $k-l$, can be expressed as:

$$S_{kl} = P_{kl} + jQ_{kl},$$

where P_{kl} is the real power from bus k through line $k-l$, Q_{kl} is the reactive power from bus k through line $k-l$, and $j = \sqrt{-1}$. To derive what P and Q are, we use another relationship that the total complex power is equivalent to the voltage potential from the bus to the ground, denoted \bar{V}_k, multiplied by the total current leaving the bus, denoted \bar{I}^*_k. Formally, we have

$$S_{kl} = P_{kl} + jQ_{kl} = \bar{V}_k \bar{I}^*_k.$$ \hspace{1cm} (A.1)

and for the voltage potential term,

$$\bar{V}_k = V_k e^{j\theta_k}.$$ \hspace{1cm} (A.2)
where V_k is the voltage magnitude, and θ_k is the voltage phase angle at bus k. The total current is also expressed as:

$$I_k = I_k e^{j\psi_k},$$

where I_k is the current magnitude, ψ_k is the current phase angle at bus k, and $I_k^* = I_k e^{-j\psi_k}$ is the complex conjugate of I_k. Now, the total current can be broken up into current through the branch, and current through the shunt, denoted I_{kl} and I_{k-sh}. Substituting in equation (A.1) we get

$$\bar{S}_k = \bar{V}_k (I_{k-sh} + I_{kl})^*, \quad (A.3)$$

where again \bar{Z}^* represents the complex conjugate of \bar{Z}. Now, from Ohm’s Law, we can write the current in terms of the voltage and admittance. Letting Y_{k-sh}, and Y_{kl} represent the shunt admittance and the branch admittance, we rewrite (A.3) as

$$\bar{S}_k = \bar{V}_k (\bar{Y}_{k-sh} + (\bar{V}_k - \bar{V}_l)\bar{Y}_{kl})^* = \bar{V}_k (\bar{Y}_{k-sh} + (\bar{V}_k^* - \bar{V}_l)^*\bar{Y}_{kl}^*). \quad (A.4)$$

In general, the admittance, \bar{Y}, can be written as

$$\bar{Y} = G + jB,$$

where G is the conductance of the line and B is the susceptance of the line. These can be written in terms of the resistance and reactance of the line. Specifically,

$$G = \frac{R}{R^2 + X^2}, \quad \text{and} \quad B = \frac{-X}{R^2 + X^2}.$$
For the admittance of the shunt, G does not exist. Thus, $\bar{Y}_{k-\text{sh}} = jB_{k-\text{sh}}$, and $\bar{Y}_{kl} = G_{kl} + jB_{kl}$.

Expanding (A.4), we get

$$\bar{S}_k = -jV_k^2 B_{k-\text{sh}} + V_k^2 (G_{kl} - jB_{kl}) - (\bar{V}_k \bar{V}_l^*) (G_{kl} - jB_{kl}).$$

From (A.2), $\bar{V}_k \bar{V}_l^* = V_k e^{j\theta_k} V_l e^{-j\theta_l} = V_k V_l e^{j(\theta_k - \theta_l)}$, where $\theta_{kl} = \theta_k - \theta_l$, and using Euler’s formula that $e^{j\theta} = \cos(\theta) + j\sin(\theta)$ yields

$$\bar{S}_k = -jV_k^2 B_{k-\text{sh}} + V_k^2 (G_{kl} - jB_{kl}) - (V_k V_l (\cos(\theta_{kl}) + j \sin(\theta_{kl}))) (G_{kl} - jB_{kl}),$$

or

$$\bar{S}_k = -jV_k^2 B_{k-\text{sh}} + (V_k^2 - V_k V_l (\cos(\theta_{kl}) + j \sin(\theta_{kl}))) (G_{kl} - jB_{kl}),$$

or

$$\bar{S}_k = -jV_k^2 B_{k-\text{sh}} + (V_k^2 - V_k V_l \cos(\theta_{kl}) + jV_k V_l \sin(\theta_{kl})) (G_{kl} - jB_{kl}),$$

or

$$\bar{S}_k = -jV_k^2 B_{k-\text{sh}} + (\Delta + j\Gamma) (G_{kl} - jB_{kl}),$$

where $\Delta = V_k^2 - V_k V_l \cos(\theta_{kl})$ and $\Gamma = V_k V_l \sin(\theta_{kl})$. Using foil, we can finally write the total complex power as

$$\bar{S}_k = -jV_k^2 B_{k-\text{sh}} + \Delta G_{kl} + j\Gamma G_{kl} - j\Delta B_{kl} + \Gamma B_{kl}.$$}

Hence,

$$\bar{S}_k = [\Delta G_{kl} + \Gamma B_{kl}] + j[\Gamma G_{kl} - \Delta B_{kl} - V_k^2 B_{k-\text{sh}}] = P + jQ.$$

Thus, the real power, P, and reactive power, Q, defined in terms of the voltage and phase angle, are expressed as:

$$P_{kl} = [V_k^2 - V_k V_l \cos(\theta_{kl})] G_{kl} + [V_k V_l \sin(\theta_{kl})] B_{kl},$$

$$Q_{kl} = [V_k V_l \sin(\theta_{kl})] G_{kl} - [V_k^2 - V_k V_l \cos(\theta_{kl})] B_{kl} - V_k^2 B_{k-\text{sh}}.$$