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(ABSTRACT)

Modern engineering structures often incorporate new materials and
complex designs for which existing techniques for nondestructive
evaluation prove inadequate, especially for dynamic and in-service
measurements. At the same time, optical fiber sensors have been identified
as an ideal candidate for embedded and attached measurements of
material parameters such as strain, temperature, or state of damage. In
particular, sensors based on optical fiber modal interference phenomena
have been shown to be capable of highly sensitive detection of static and
dynamic strain.

This work reviews known applications of modal domain sensing to
measurement science to date, and discusses the principles behind the
method. A general expression for the intensity distribution emerging from
a multimode fiber is formulated, covering both few mode and highly
multimode fibers, and new expressions for their sensitivity to both radial
and axial strain are derived. Optimized multimode fibers are seen to show
an intrinsic phase sensitivity which rivals or even surpasses that of the
single mode interferometer, especially in the case of applied radial strain.
The use of modal domain sensors for real-time ultrasonic wave
transduction is described as a particular application to NDE, with
experimental results being presented with regard to acoustic emission
monitoring as well as the detection and analysis of shock waves due to
impact. Finally, optimization schemes and alternatives for such sensors
are addressed, and recommendations for future work are raised.
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1.0 INTRODUCTION
1.1 NDE of Advanced Materials

The desire for greater efficiency in the manufacturing of metallic
structures, as well as an ever-increasing emphasis on their performance
reliability, led to many early advances in the field of measurement science.
From the well established practices of penetrant inspection and x-ray
analysis, to the more sophisticated eddy current and ultrasonic methods,
nondestructive evaluation (NDE) still largely focuses on the mission of
inspecting critical metal components for crack formation. However, the
development of more exacting designs and new engineering materials has
in many cases outpaced the development of adequate techniques to
nondestructively test them [1]. For complex structures such as modern
aircraft, which contain many high performance parts and assemblies
requiring regular inspection, a reliable NDE maintenance program can
involve excessive costs. Not only are there often considerable man hours
and down time associated with such inspection procedures, in many cases
the accuracy and consistency of the results are user-dependent [2]. In other
situations, the procedures call for actions which themselves may jeopardize
structural integrity by causing other, undetected damage.

In response to these concerns, recent trends in the area of structural
analysis favor the development of in-service and real time monitoring
schemes. Whereas nondestructive inspection is normally performed
periodically in accordance with fatigue and time-to-failure predictions, an
in-situ (or in the case of an aircraft, in-flight) monitoring system could
allow conventional inspection to be performed only when the presence of
critical damage is indicated. Furthermore, real time sensors could be used
to make critical mission decisions, the typical example being that of an
aircraft wing instrumented with an array of damage monitors. If the wing
suffers critical damage, not only could the pilot be aware of the presence
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and the extent of damage, the control computer could be triggered to
reconfigure the flight surfaces of the plane to reduce further damage and
risk, and to optimize continued operation.

In order for NDE to contain a predictive element, measurements must
go beyond detecting the initiation of cracks. Most often, strain and
temperature levels are to be monitored, and high resolution, high accuracy,
and high dynamic range are all required. Also, in addition to making point
measurements, it is desirable in many circumstances to know the strain
integrated along a particular path, or the total strain in a large,
macroscopically homogeneous section. Not only can insight be gained as to
the dynamic properties of the whole component, such information could
also be used in active control systems designed to initiate structural motion
or damp unwanted movement. Other system requirements include the fact
that the in-service environment is likely to be hostile to the measurement
tools themselves, making readings impossible or unreliable. For example,
elevated temperature and pressure can destroy conventional strain gages
and either acoustic emission or standard ultrasonic transducers, while
electromagnetic noise can render such devices unusable.

Another goal in present NDE research is to develop sensors which can
interrogate the interior of structural components to determine areas where
damage is most likely to form. This is especially true for the increasing
number of parts formed from complex layered media, such as advanced
composites, where internal interface conditions may vary from place to
place. Many types of composite materials now exist for modern
engineering structures, including glass or polymer fibers embedded in
resins, as well as fiber reinforced ceramic and metal matrix composites.
The merits of these various materials are now well established, and include
high strength-to-weight and stiffness-to-weight ratios, outstanding
corrosion resistance, and superior adaptability in part desigri. As
structural members they may reduce part counts and display increased
longevity over high technology metals, while their constituents are often
created from abundant materials, making them potentially attractive from
a financial point of view. Finally, the dielectric nature of glass and polymer
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composites offers advantages considered paramount in importance for
certain applications, such as offering low radar cross-sections.

The inhomogeneous and anisotropic internal structure of fiber
reinforced composites presents new challenges to traditional NDE
techniques, and is much more difficult to analyze than that of metal alloys.
In these materials, location, type, and time of failure under various
operating conditions are still not well understood, making predictions on
system reliability based on periodic conventional NDE measurements
tenuous at best. In addition, whereas breakdowns in metal components
generally result from simple crack formation, failure mechanisms in
composites can be much more complex and extensive, including fiber
breakage, matrix cracking, fiber/matrix disbond, and ply delamination.
Moreover, as in the case of impact damage, often the external appearance
of the composite surface shows little flaw, though the internal damage is
actually quite extensive.

The result of designing more elaborate structures, using new materials
for an expanding variety of applications, and making more demands in
terms of performance, efficiency, and reliability, has been to create a need
for a new generation of measurement tools. Although headway is being
made in acoustic, electromagnetic, thermographic, holographic, and other
techniques, few are well suited to dynamic, in-situ, or internal
measurements. An important new technology emerging in NDE involves
the use of fiber optic sensors to address many of these needs.

1.2 Fiber Optic Sensors for Dynamic Strain Measurement

Optical fibers offer the same advantages to sensing systems as they do to
telecommunications. First, extremely high signal bandwidth and low
attenuation are achievable with fiber optic sensors as compared to even
microwave-based devices. Second, the dielectric nature of optical
waveguides inherently renders them much less sensitive to electrical noise
than traditional signal carriers. This fact drives much of the development
of such sensors, especially in view of mounting concern about both
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electromagnetic interference and electromagnetic pulse weaponry. Their
chemical structure also makes these sensors safe for certain types of
corrosive or high temperature environments which conventional sensors
cannot tolerate. Third, optical fibers can be made responsive to any number
of parameters: electric, magnetic, or acoustic fields, mechanical
displacement, velocity, acceleration, pressure, strain, chemical
concentration, or temperature, to name just a few [3,4]. This often
constitutes the point of separation between fiber sensor and
communications applications. Whereas communications engineers wish
to reduce a fiber's sensitivity to physical perturbations, sensor designers
wish to increase and exploit it. Furthermore, because of their small size,
and more particularly because of the small wavelength of light, optical
sensors can demonstrate extremely high sensitivity and dynamic range.
Other benefits of fiber optic sensors stem from their geometric
versatility. Glass fibers are thin and light, can be made flexible yet rugged,
and can be incorporated into an endless variety of sensor configurations.
This can include extrinsic designs, where light signals are captured by the
fiber and are guided along its path to a photodetector, or intrinsic designs,
where the signal light stays inside the fiber over its entire length until it
exits at the photodetector; the transmission characteristics of the light
within the fiber are changed by the parameter to be measured. Moreover,
because of their common components, fiber sensors and fiber telemetry
systems are highly compatible. Besides the obvious advantage of being able
to construct all-fiber systems, this means that advances in communications
technology often translate into enhanced capabilities in the sensor field.
When considering the measurement requirements for advanced
structures, the inherent advantages and sensing capabilities of optical
fibers make them an ideal candidate for use in real time monitoring. As
attached sensors, fibers can readily be laid singly or in arrays to detect
surface conditions or monitor the environment external to the structure.
Furthermore, because of their small size and compatibility, especially with
graphite fibers, optical fibers may be embedded in graphite/epoxy
composites without introducing significant degradation in material
properties. Thus, rather than relying entirely on external measurements,
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internal inspection of the structure is enabled where damage is most likely
to occur or where measurements are most critical. Also, the dielectric
nature of the material is maintained over the structure, while the fibers
provide their own signal paths.

Attached and embedded optical fibers also offer the possibility of
providing for cradle-to-grave structural health monitoring, as embodied in
the relatively new concept of "smart structures." Fibers placed in a
composite laminate during layup may sense internal conditions such as
pressure, temperature, and density during cure, implying that more
accurate processing control and therefore more structurally sound
composites may be achieved efficiently. Once in service, components
containing optical fibers may be continuously monitored, with sensors
potentially detecting all of the observables which are available through
standard NDE methods and more. For structural materials, focus is often
placed on the measurement of parameters used to evaluate integrity and
fatigue. Optical fibers have been shown to be theoretically capable of
measuring stress-induced strain on the order of 10-12 per centimeter of
gage length, while reported values range to within a few orders of
magnitude of theoretical [5-7]. The broad range of fiber optic sensor types
and configurations offer to measurement science a new class of tools which
may be able to fill in many gaps in conventional NDE. However, a number
of developmental steps must be taken before these tools can be widely
deployed.

1.3 Modal Domain Sensors

In the now well over ten years since research into fiber optic sensors
began in earnest, workers have reported monitoring a host of mechanical
and environmental observables by causing the observable to interact with
one of the fundamental parameters of the light inside a fiber. These
include the optical phase, intensity, wavelength, polarization, propagation
time, and modal power distribution. It is well known that the most
sensitive fiber transduction mechanism generally involves modulation of
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the optical phase of the light in a single mode fiber with respect to that in a
reference path, either external or contained within another fiber. In an
alternate method, herein referred to as modal domain sensing (MDS),
sensing is performed by causing the perturbation of interest to interact with
a fiber which propagates more than one optical mode. In general, any two
nondegenerate modes are affected differently since their phase velocities
and path lengths differ; the phase difference between modes is employed to
infer the amount of physical disturbance.

The most basic modal domain sensor consists of a single mode fiber
operated slightly below its cut-off wavelength, such that only the two lowest
order modes propagate. For ordinary communications grade fiber, this
implies that the LP,; and LP;; modes are employed, generally resulting in
a two lobe interference pattern in the output. It will be demonstrated
analytically that as the fiber is axially strained, power in the output is
transferred periodically from one lobe to the other. That is, a dual mode
fiber can act as a strain sensor by monitoring the intensity of one or both
output lobes. Highly multimode fibers may also be employed as modal
sensors. Assuming the fiber is excited with coherent radiation, the output
will consist of a complex pattern formed by the interference of all modes,
commonly referred to as a speckle pattern. Disturbances on the fiber
translate to local changes in refractive index and geometry, which alter the
differential phase of the modes and thus modulate the speckle pattern.
With dual mode fibers, signal recovery is most often accomplished by
1maging a single lobe, or part of a lobe, onto a photodiode through a pinhole.
With multimode fibers, however, it is usually the average modulation of
several speckles that is detected to infer perturbations.

A number of modal domain sensor applications have been reported in
the literature, starting with the dual mode fiber detection of acoustic waves
in water by Layton and Bucaro [8], followed soon after by demonstrations of
multimode fiber sensitivity to acoustic waves in air [9-11]. Higher frequency
acoustic emissions have also been sensed using few mode fibers embedded
in composite coupons [12], as have acoustic shock waves arising from
impacts to both aluminum and composite panels [13,14]. MDS has been
successfully applied to the measurement of vibrations in large flexible
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structures, such as space station components [15,16], in addition to
subsurface ground vibrations due to human activity on the surface [17,18].
Other researchers have demonstrated the measurement of alternating
electric current [19], induced temperature fluctuations [20,21], and fluid
flow [22], as well as simply induced axial strain [23]. Dual mode, few mode,
and highly multimode fibers have all been employed successfully.

In order for modal domain sensors to be actively deployed in critical
real world applications, a number of issues must first be addressed. One
concern arises from the fact that most of the energy emerging from the
fiber does not reach the detector, but is instead absorbed by a spatial filter in
front of the detector. This leads to obvious needs for higher source power
and output amplification to maintain signal integrity. Also important to
obtaining the highest signal quality is the position of the detector in the
output field; methods to readily find and maintain that position must be
identified. This can present special complications in systems involving
long wavelength radiation, in miniaturized or encapsulated devices, and
particularly in sensors utilizing many modes. Instabilities due to mode
coupling can present a problem, especially when higher order modes are
desired at the exclusion of lower order modes which are allowed in the
waveguide. Lead-fiber sensitivity is also of concern. That is, if a certain
section of fiber is to be perturbed by a particular mechanism, care must be
taken to assure that no disturbances on the rest of the fiber give rise to
signals similar to that caused by the observable under study. This problem
also affects conventional interferometers, and though a degree of stability is
gained by having the interferometer paths within a single fiber, it can still
be a major limitation to practical use. Finally, an issue which is common
to all interferometry is that of the non-linear (periodic) nature of the output
modulation with disturbance. This is of special interest when the sensor
output is being fed into a control system, where signal non-linearities can

be particularly troublesome.
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1.4 MDS for Detection of Damage-Related Acoustic Waves

Although the smart structures concept incorporates a large variety of
situations, the majority of smart structures themselves are still conceived
for aerospace and naval applications. As mentioned above, ever higher
performance standards are being demanded from parts, subassemblies,
and systems, as well as entire vessels and aircraft. As a result, building,
maintaining, and operating costs for these modern craft are climbing out of
sight, while personnel are encountering greatly elevated operating risks.
Hence more emphasis is being placed on total system reliability. This is
evidenced by an increasing desire for the accurate, in-service detection of
damage, upon which many mission decisions are predicated. In turn, it is
hoped that this information can be used to make predictions about the
remaining lifetime of the structure.

Damage in modern engineering structures can be caused by many
factors, notably over-stressing, exposure to extreme environments such as
chemically corrosive or high temperature conditions, or direct impact with
objects ranging from reefs and ducks to torpedos and missiles. At present a
number of methods exist for quantifying different types of damage, though
few, if any, are suitable for in-situ, real time measurements. In many
cases however, rather than focussing strictly on sensing damage itself, it
would be desirable to detect the precursors to serious damage. If suitable
monitors could be devised, parts or whole vessels may be taken out of
service long before dangerous levels of damage are reached, thus avoiding
either costly or even catastrophic failure.

In order for a real time measurement to be useful in predicting future
performance, several steps must by taken. First, research must be
conducted to establish the relationship between the type of damage and the
lifetime of the component. By way of example, consider the measurement
of acoustic emissions (AE) due to stress corrosion cracking (SCC) in a
submarine component. The effect of stress corrosion cracking on
component lifetime must be determined. In some cases, it may be
necessary to know and to be able to simulate actual operating conditions; a
certain amount of SCC is induced, and the part is subjected to realistic
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loading, while time-to-failure data is collected. Obviously, a great deal of
careful modelling and statistical analysis must be performed for these tests
to be useful. Furthermore, if other types of damage or other factors such as
time-in-service or loading cycle are found to affect lifetime and
performance, then the nature of these effects must be assessed, as well as
their relationship to SCC.

Next, a correlation between the type of damage and the measured
quantity, here stress corrosion cracking and acoustic emission, must be
ascertained. It can be imagined, for instance, that not all forms of SCC
would necessarily give rise to what is traditionally classified as AE.
Dependence on AE detection alone might therefore lead to erroneous
conclusions about the level of SCC; some extrapolation or alternate
measurements may be required. Likewise, many other mechanisms
besides SCC could cause the rapid release of acoustic energy, such as small
cracks occurring during normal loading conditions, over-loading, or
impacts. Thus, though it is acoustic emissions which are monitored, not
all AE events are indicative of SCC, or even of damage (as generally
defined), and therefore may not be important as far as the operation of the
submarine component is concerned.

Finally, there is the issue of the measurement itself. As with the
monitoring of any physical quantity, the method of energy transduction
must be examined with regard to its sensitivity, dynamic range, frequency
response, accuracy, and repeatability. In addition, presuming that the
final energy state is electrical, then signal processing techniques and
instrumentation also play a part in determining the accuracy of the
measurement with respect to the actual situation. So if, in our example,
optical fibers are used to detect AE, then the relationship between the true
emission (discovered by the most absolute means possible), and the signal
output must be known in order to eventually make predictions about the
performance of the part.

As with stress corrosion cracking, understanding the effect of impact
damage on future performance requires engaging in the involved research
process described above. In addition, a more detailed analysis would reveal
many difficult questions wailing to be answered. What do we mean by

Chapter 1 Introduction 9



"damage?" How is it qualified? What types of impacts are there? What
characteristics distinguish these types? What role do quantities such as
impact energy, velocity, or surface area play in the amount of damage
incurred? How are these quantities related to the different kinds of
damage? Though these questions are important, and will be discussed
briefly in the following chapters, they go beyond the scope of this work.
Indeed, answering them for even a small range of engineering materials
could be an enormous task. Nevertheless, it is also clear that even in order
to begin investigations, a measurement tool is needed to sense impacts and
provide an electrical signal which can be related to them.

In the discussion that follows, it is assumed that the primary
observable resulting from a crack or an impact to structures is the
generation and propagation of acoustic waves in the material. It is further
assumed that for the amplitude and frequency range of these waves,
conventional processing electronics presently exist which can faithfully
record the most important features of the signals to be measured. Thus,
only a transducer to convert mechanical energy to electrical energy is
sought. In light of the previous sections, it is obvious that a variety of
optical fiber sensors could undoubtedly be applied to this problem.
However, by virtue of their relative simplicity and sensitivity, modal domain
sensors appear to be a suitable candidate for acoustic wave detection and
impact monitoring. Further justification for this notion will be presented
in a subsequent chapter, where results of modal domain sensor
experiments will be discussed.

1.5 Chapter Organization

As noted above, optical fiber modal domain sensors have been applied to
an assortment of problems in nondestructive evaluation, and have been
written about in numerous reports, papers, and master's theses [24-31].
However, it appears that no comprehensive review of MDS has been
undertaken recently, especially in terms of their application to NDE, as well
as the limitations of the method and potential solutions for overcoming
them. It is hoped that this report will at least partially meet that need.
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However, the major objective of the work described was to investigate the
application of optical fiber modal domain sensors to the needs of
nondestructive evaluation; specifically, to examine their use as embedded
or attached to materials to perform structural health monitoring. In the
chapters that follow, the theory and operation of modal domain sensors as a
new NDE tool for dynamic strain monitoring will be developed.

The presentation is organized into seven chapters. In Chapter 1, the
basic philosophy behind this work is introduced, including a justification
for the application of fiber optic sensor technology to strain measurements.
Chapter 2 continues with a review of prior research involving fiber optics in
materials evaluation. While the general methods presented in this chapter
are not the primary focus of the present work, they do serve to set it in
proper perspective. Also, it is fair to say that even given the growing
number of smart structures programs around the country (which often
emphasize or exclusively center on fiber methods for materials evaluation),
a significant portion of the new research has been performed by workers at
the Fiber and Electro-Optics Research Center at Virginia Tech.
Throughout the report, more than 25 publications or patents co-authored by
the present writer are discussed as relevant to modal domain sensing and
smart structures applications, as well as the results of much other
unpublished investigation. References to this author's work and that of
others are clearly marked where applicable.

Chapter 3 opens with a presentation of the theoretical principles of
modal domain optical fiber sensors, starting with a review of the existence
of modes in a dielectric waveguide. Single mode fiber interferometers are
discussed next to lay the foundation for dual mode, few mode, and highly
multimode sensors. In particular, the output intensity pattern for each of
these sensor types is analyzed, and a new expression for the multimode
fiber speckle pattern is derived. In Chapter 4, the issue of the sensitivity of
optical phase in fibers to applied strain is raised. Corrections to the
standard model are made first, and the new expressions for the sensitivity
are applied to the cases of both axially and radially applied strain for each
fiber type for the first time. Results of these theoretical considerations
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suggest that multimode fiber sensitivity can compare well with that of
single mode interferometers especially when subject to radial strain.
Chapter 5 reports the outcome of two particular applications of MDS to
strain measurement which are believed to be unique to this work, that of
acoustic emission detection, and real-time impact monitoring. In the
Chapter 6, a number of considerations for optimizing modal domain
sensors are raised. Source, fiber, and detection concerns are discussed in
some detail, as are potential solutions to individual problems. In some
cases, experiments were performed to assess the effectiveness of the
solutions; these are reported, along with their results. In the final chapter,
recommendations are made concerning future efforts, and conclusions are

drawn.
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2.0 STRUCTURAL HEALTH MONITORING
2.1 Introduction

Optical fiber waveguides have been developed over the past two decades
for primary applications in high speed digital communications. Typical
fiber waveguides used for communications consist of concentric silica glass
core and cladding regions totaling 125 microns or more in diameter,
surrounded by a protective polymer jacketing with a 250 micron outer
diameter. Dopants added to the inner core glass during manufacture
increase its index of refraction over that of the cladding, thus allowing for
total internal reflection and the propagation of guided optical modes over
long distances with low attenuation and low dispersion. Selection of core
and cladding refractive indices and core diameter and geometry for a
specific transmission wavelength allows a degree of control over the
number and polarization of propagating modes in the fiber. In particular,
a single mode is suipported by a waveguide that has the combination of
sufficiently small core and cladding index difference and small core
diameter.

During the past ten years a variety of environmental sensors which
employ such optical fibers as the sensing elements have been developed and
demonstrated. Optical fiber sensors can be configured to measure
environmental conditions such as strain, temperature, magnetic and
electric fields, acoustic waves, and chemical concentrations by determining
the induced changes in the intensity, phase, wavelength, polarization, time
domain characteristics and modal content caused by such external
phenomena. Such sensors may be broadly classified as either extrinsic
devices in which guided light exits the fiber, interacts with the environment
and subsequently re-enters the fiber, or intrinsic devices in which the
propagating light remains within the fiber along its entire length.
Intrinsic sensors offer the advantages of simplicity and potentially low
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profile for embedding applications. Although most fiber sensors are
instrumented to yield a measurement of a single parameter at a particular
location along the fiber length, some multi-parameter, quasi-distributed
and continuously distributed sensor devices have been recently reported
which utilize either special waveguide properties or signal processing
techniques [32].

The use of optical fiber sensors for the evaluation of advanced materials
was proposed by Heyman in 1979 and subsequently demonstrated by Claus
and Cantrell in 1980 [33]. In principle such sensors can be used to directly
measure surface strain, temperature, and chemical concentrations and, if
the fibers are embedded, such conditions can be determined internal to the
medium. As cited in the first chapter, the advantages of optical fiber
sensors for NDE are many. Fibers are relatively small and lightweight
with respect to the active sensing elements of many systems, they may be
configured to respond to a variety of environmental perturbations, have
excellent sensitivity, linearity and dynamic range, and due to their all-
dielectric nature are insensitive to electromagnetic interference.

This chapter will consider the use of optical fiber sensors during the
entire life cycle of a material. First, the effect of embedding fibers upon the
structural integrity of components will be considered. Next, the uses of
fiber sensors will be described in order of their possible use during material
life; specific sensor applications in composite cure cycle monitoring will be
discussed, as will measurement of in-service conditions. Finally, methods
for detecting acoustic wave precursors for material failure will be briefly

reviewed.

2.2 Embedding Optical Fibers in Materials

Early research in the embedded fiber sensor area paralleled the
development of optical fiber sensing systems for non-embedded applications
and demonstrated the ability of different optical methods to measure
particular internal phenomena [34]. In the early 1980's the potential
usefulness of such techniques for the quantitative nondestructive
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evaluation of advanced composite materials was recognized, with much
work directed at the in-situ characterization of graphite-epoxy materials in
particular. Subsequent work more fully developed the capabilities of the
sensor systems to specifically permit multiparameter and distributed
measurements. Much recent work has in addition attempted to integrate
fiber sensor elements into systems for process control, vibration control,
and damage location and possible identification. In this section, the
process of embedding optical fibers will first be considered, followed by a
brief discussion of the fiber-to-matrix interface, and the significant area of
the effect of embedding fibers on the structural integrity of the host
material.

2.2.1 The Fiber Embedding Process

The embedding of optical fiber in materials is limited not only by the
properties of the fiber, but that of the processing conditions required for
material fabrication as well. At present, for instance, laying optical fibers
in particular locations and between specific plies during lay-up requires
care and skill. Embedded fibers and leads must also be capable of
withstanding the effects of applied stresses during fabrication. Otherwise,
the large compressive stresses associated with the processing of materials
such as graphite/epoxy or carbon-carbon composites may simply crush the
fiber inside the specimen, or initiate cracks either internal or on the
surface of the specimen. To date, our most successful method of curing
graphite/epoxy samples without incurring damage to embedded sensors
has been with the use of a hot plate press. At the lead-in/lead-out
interfaces, where the fibers are subject to the greatest mechanical stress,
various fiber protection schemes have been undertaken, including the
addition at the panel edge of silicone rubber, heat shrink tubing, and
damming material used to prevent resin flow. On the other hand, a
standard procedure for autoclave processing has not yet been made public;
indeed a number of engineers involved in such work complain of low
survivability for sensors cured into composites in the autoclave.
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The host material properties also affect embedding effectiveness. For
example, a mismatch in the coefficients of thermal expansion of the fiber
and the material may give rise to large shear strain concentrations at the
fiber-to-matrix interface. This may result in fiber fracture due to stress-
initiated cracking at a surface defect site, either during processing or while
in service. Furthermore, due to the periodic graphite fiber bundle structure
within composites and the regular surface patterns of the scrim cloth
typically used as a backing during the curing of prepreg lay-ups, embedded
fiber is inherently subject to some microbending. The geometry of this
microbending is dependent upon the periodicity of the fiber bundles which
are in contact with the optical fiber, and thus to the orientation of the
adjacent ply layers. Total losses due to such microbending have been
measured to be as much as 1 dB/m although losses of well less than 0.1
dB/m of embedded fiber are typical [35]. Alternatively, macro-bending-
induced stresses caused by incorporation of fiber into a material in a
serpentine geometry, using a technique such as that developed by Jackson,
must be small enough so as not to compromise the long term integrity of the
fiber [36].

Additional complications are created by the need to connect the
embedded fiber sensor to the external transmitter and receiver
instrumentation as well as, perhaps, to connect the fiber-embedded
material to adjacent material components which combine to form a
structure. First, the connector assembly must be integrated into the
material during fabrication. In the case of advanced composites, this
demands that the connector materials must be able to withstand the
required processing temperatures and tool modifications that may be
necessary for press or autoclave fabrication. Second, the mechanical
alignment between optical fibers and thus between connectors must be
maintained on the order of microns, because optical power losses are
substantial if misalignment is on the order of one core diameter, typically
ten microns for single mode fiber at 1300 nm and fifty microns for
multimode fiber. In panels of material intended to be joined in a larger
structure, the connectors may further need to be recessed to avoid the
creation of surface anomalies. Although a few authors have discussed
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options to the embedded fiber connectorization issue [37-40], many problems
are far from being resolved.

2.2.2 The Fiber-to-Matrix Interface

The performance of optical fiber sensors for measuring internal
material phenomena depends upon the effective boundary conditions at the
fiber-to-host material interface. For example, it is often intended for
embedded fibers to detect the strain existing in the host structure. In the
ideal case, strain in the structure is completely transferred to the fiber
through shear strain at the boundary between the two. However, evidence
exists which suggests that weak bonding or highly elastic coatings on the
fiber may in some cases lead to incomplete strain transfer: the structure
deforms, while the fiber does not, or deforms to a lesser degree. Unless
measurements are calibrated, this clearly could result in erroneous
interpretation of the strain data.

In some cases it may appropriate or even necessary to remove the fiber
jacketing prior to lay-up. This is especially true if the fiber is to sense the
change in refractive index along its length as the part cures. Certainly
removing the jacket will result in a reduction in fiber strength; generally
coating is included to protect the fiber from dust and other foreign particles
which can nick the glass and act as crack initiation sites. On the other
hand, if the fiber is intended as an impact or damage monitor, this may be
precisely the objective. At present however, there is no comprehensive
study available documenting the strength characteristics of unclad,
embedded fibers.

Regardless of the sensing method being employed, and the strength,
thickness, and chemical properties of the fiber jacket, it is imperative that
the fiber stay in intimate contact with the specimen along its entire length.
It has been frequently documented with photomicrographs of sectioned
parts however, that voids may form along the fiber during the fabrication
process [37,40]. Voids can also exist due to cracks which may be created at
an interface because of mechanical or thermal loading. It has been
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demonstrated that the addition of extra resin along the fiber during lay-up
can help alleviate voids, though resin-rich areas are often left instead [41].

2.2.3 Structural Effect of Embedded Fibers

Several investigators have studied the effect of embedded optical fibers
upon the structural integrity of the host material. Jeglinski and Rytting,
for example, report that unidirectional graphite-epoxy coupons, embedded
with one or few unclad optical fibers oriented parallel to the graphite fiber
tow direction, exhibit approximately a five percent reduction in their load to
failure level over similar coupons which do not contain optical fibers [39].
Certainly the incorporation of optical fibers between ply layers in such a
structure displaces graphite fibers, and as mentioned above, may cause the
formation of voids, or nearly equivalently, of resin-rich regions, which in
turn cause internal material geometry variations away from the interface.
All of these effects vary as a function of optical fiber, its jacketing material,
and adjacent ply orientation, as seen in Figure 2.1. Udd and co-workers
have reported qualitative analysis of such effects for a variety of such
orientations [40].

Measures [42] recently reported that tensile strength in [0,{90}0,] Kevlar
coupons were unaffected by an embedded array of fiber waveguides.
Measurements of the ultimate compressive strength of 9 ply [90g]
Kevlar/epoxy panels with and without three layers of embedded optical
fibers (orthogonal to the material fibers) suggested the same conclusion.
Similar work has indicated the embedded fiber grids do not have a
detrimental influence on the resistance of the material to delamination [43].

In contrast, quantitative micromechanical analysis and measurement
of the strain concentrations caused by embedded fibers has been reported
recently by Czarnek et. al. at Virginia Tech [44]. Representative results of
those measurements, obtained using Moire interference imaging methods,
are given in Figure 2.2. This interferogram of the side of a symmetric
cross-ply graphite/epoxy laminate, fabricated with a jacketed glass fiber
waveguide embedded between and perpendicular to the center two plies,
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may be interpreted visually to determine the two-dimensional residual
strain field surrounding the fiber. A series of measurements similar to
these but obtained for different levels of load on the composite specimen
indicate strains of approximately 0.05 at the fiber-to-matrix boundary for an
applied load equal to half the failure load of the eight-ply specimens tested.
These large interface strain concentrations may pose significant limits on
the long term structural integrity of materials containing embedded sensor
fibers. As of yet, this issue has not received adequate attention in the smart
structures community.

2.3 Fabrication - Cure Monitoring

The long term reliability of advanced composite material structures is
dependent in part upon proper processing. As structural designs advance
and more complicated geometrical composite assemblies are desired as
integral units, the demands upon process engineering will increase.
Embedded optical fiber sensors offer a possible means to extract
information such as viscosity, modulus, compaction pressure, temperature
and chemical changes during the cure process and as part of a real time
process feedback control system. An idealized system would include fibers
coated with appropriate materials so as to withstand the temperature and
pressure of the cure environment (generally polyimide is used) and, in the
case of autoclaved materials, a method to repeatably interface between the
inside and outside of the autoclave. Most fundamental however, and most
difficult, is to conceive and implement a sensing technique which will yield
accurate, usable information regarding the state of cure within the sample.

Cure monitoring using fiber optrodes was pioneered by Levy, who
employed tool mounted multimode fiber to interrogate the chemical
conditions near the surface of the material to be cured [45]. By injecting
source light into a small volume of material near the fiber-to-material
interface at a specific wavelength, the fluorescence of the matrix material
observed at another wavelength may be used to infer the chemical
composition of the material and thus the degree of cure. Numerous other
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authors have used similar distal end effects to monitor the chemical
properties of materials [46]. One novel fiber concept, discussed by
DiFrancia, employs a modified polymeric fiber cladding and coating to
enhance the sensitivity of such schemes [47].

Other fiber sensor techniques also may be used in-situ to monitor
conditions during composite cure. Reddy and co-workers, for example,
demonstrated both differential interferometric and modal fiber methods for
the measurement of strain, compaction pressure and heat flow during the
cure process, and, for the first time, showed that distributed measurements
of thermoset composite fiber cure process conditions were possible using a
single sensor fiber length [48]. Figure 2.3 depicts a differential system in
which heat flow in various laminates was monitored successfully,
although it was recognized that random temperature fluctuations in non-
laboratory environments may mask the resulting temperature-induced
strain.

Drury reports the use of infrared spectroscopy to track the chemical
state inside curing composites [49]. IR-transmitting fibers conduct light to
a sapphire rod embedded in the sample. A certain amount of light leaks
into the sample, is reflected back into the fiber, and sent to a spectral
measurement system (a monochrometer/cooled detector combination, or an
optical spectrum analyzer). As the chemistry of the resin changes during
cure, differential absorption of the constituent wavelengths changes
accordingly, indicating the degree of cure. Limitations exist due to the
geometry of the sapphire rod, but presumably could be enhanced with the
development of single crystal sapphire fibers, which could later be used to
make in-service measurements.

More recently, Aframowitz has demonstrated an intensity-based fiber
sensor to determine the point at which the composite matrix has been fully
cured [50]. The technique makes use of an optically transmitting fiber
fabricated from pre-cured resin, having an index of refraction slightly
higher than that of the uncured epoxy into which it is embedded. As the
material cures, its index rises to that of the sensor, cutting off more and
more modes guided along its length. When at last the matrix index
reaches that of the pre-cured fiber, input light is scattered into the part and
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the sensor output is negligible. As of yet, it is unclear whether this
approach will be as useful for quantitative measurements of the degree of
cure as for final cure state. Unfortunately the monitor is not sensitive to
different states of cure along its length, thus leaving in question the
homogeneity of the part. Furthermore, after cure, conventional glass fibers
which are used for lead-in and lead-out of the input light are left inside the
part without the possibility of being employed for subsequent NDE
measurements.

Another technique to monitor cure state of epoxy resins has been
demonstrated at Virginia Tech using single mode fiber interferometry.
Predicated on work done by Winfree and Parker [51,52], this method relies
on ultrasonic pulse arrival time delays and amplitude differences to deduce
acoustic velocity, attenuation, and dispersion information as a function of
cure. We consider first the simplest case. Figure 2.4 depicts an ultrasonic
transducer of dimension L insonifying a host material containing a single
mode optical fiber embedded transverse to the direction of sound
propagation. The source is modeled as launching a cylindrical,
longitudinal sound wave at a single frequency, while the material
thickness is considered thin enough that the length of the fiber traversed by
the acoustic wave is also of length L. We also assume that the acoustic
wavelength of the source is long compared to the diameter of the fiber. For
ultrasonic transducers operating in the 1 MHz frequency range, and for
typical composite materials, acoustic wavelengths are on the order of 1-10
mm. This is certainly greater than 10 times larger than the core of the
average multimode fiber, and may be several hundred times larger for
single mode fiber, so that the assumption appears to be justified.

Given these conditions, we may consider the fiber at any instant in time
as surrounded around its radius by a hydrostatic radial pressure field.
Two strain effects result. First, during the compression part of the cycle,
the fiber diameter will be reduced over the length L. The amount by which
it is reduced can be expressed in terms of the radial strain €., and is
calculated from mechanics by knowing the Young's modulus of the fiber
and the amplitude of the acoustic pressure wave emitted by the source. The
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latter can be derived from first principles using the material stress matrix,
requiring only a knowledge of the material constants and the surface
displacement of the piezoelectric crystal, but in practice is more easily
obtained empirically.

The second observable strain effect is seen as an elongation of the fiber,
arising from the Poisson effect. If the fiber were free to extend along its
axis, then it would elongate by a length AL = L €, From Figure 2.4
however, it is clear that the fiber is at least partially constrained by the
surrounding material. On the other hand, if intimate contact and adhesion
is assumed between the fiber and host material, then complete strain
transfer should be accomplished. Thus if the host material itself were
unconstrained, then both it and the fiber would elongate by AL.
Realistically however, the material will always be partially constrained at
least at one surface, and complete strain transfer will not be possible. In
this case the imparted strain will depend in part on the shear modulus of
the material.

Furthermore, when we consider that the acoustic source generates
time-varying compressional waves rather than static, then inertial effects
must be accounted for. In this case, the mechanical vibration frequency
spectrum of both the fiber and the host play a role, usually acting as a low
pass filter, or alternatively, acting to attenuate the strain effect at high
acoustic frequencies. Just how high is "high" and how much attenuation
takes place will vary depending on material properties and geometrical
layout. The extent of the effects is not well characterized in most real world
situations.

The net effect of applied radial strain on the fiber is to change the phase
of the light propagating within the fiber core. The exact mechanisms
leading to phase change and the amount of change expected for a given
level of strain is dealt with at length in Chapter 4. It suffices at this point to
say that the phase change is related to the strain through a fairly simple
expression involving either well known or easily calculated optical fiber
parameters such as the index of refraction, radius, and the optical
propagation constant. Of importance here is that the phase change is
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directly proportional to not only the radial strain, but also the length L.
Finally, we relax the assumption that the acoustic wave imparts only static
strain, and again note that compressions and rarefactions are generated at
the frequency of the acoustic source. When the embedded fiber is
incorporated as the signal arm in an interferometer, phase changes lead to
optical intensity variations which can be interpreted as acoustically
induced strain; all are modulated in turn at the sound frequency.

In a real system, a high voltage pulse is sent to the electrodes of a
piezoelectric transducer. Depending on the way the device is housed, the
voltage rise produces an initial expansion, followed by mechanical ringing
of the crystal at its resonant frequency. This produces a packet of sound
waves which propagates into the material (assuming good acoustic
impedance matching between the transducer and the sample), and across
the fiber. A detector monitors the interferometer output and displays a
modulation which directly follows the mechanical motion of the
transducer.

The amplitude of the detected signal is a function of several factors,
some of which have been mentioned above. First is the acoustic power
which is generated by the source. We take that to be invariant throughout
the course of an experiment, though in practice the height of an individual
pulse may vary somewhat from pulse to pulse due to fluctuations in the
driving electronics. This generally averages out over a number of cycles.
Second is the bulk modulus, B, of the material (Young's modulus for the
solid state), which couples the incident stress field to the amount of strain
experienced by the material and the fiber, and is derivable in terms of the
stiffness matrix components, or alternatively, the Lamé constants. It is the
bulk modulus which acts in conjunction with the material equilibrium
density p, to determine the velocity of sound in the medium: Vg = B/p,. In
the case of a curing composite panel, the bulk modulus will vary widely
from an initially intermediate value for a tacky, room-temperature lay-up,
to a low value as the material softens, and again to a higher value as the
material cures to a stiffened state. Note that at the same time the material
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density also varies, and the net effect is that the velocity rises to a final high
at the end of cure.

The third factor which determines fiber strain is the attenuation due to
absorption of acoustic energy in the material. This is a frequency
dependent effect which also changes as the material properties change
during cure. Because of this effect, the distance between the source and the
fiber is important. Though the fiber may move with respect to the source
from slippage and compression during cure, the absorption over the small
differential distance is considered insignificant, and is ignored. Finally we
have the mechanical resonance effects mentioned earlier. These too are a
function not only of frequency, but also of material state, encompassing
shear modulus, Poisson's ratio, and density. The total response of all of
these effects determines how the sensor will behave during cure.

In order to precisely predict the outcome of an experiment such as
described above, it would be necessary to characterize all of the material
properties and constants at every state in the cure cycle. Though this may
not be an impossible task, it would certainly be cumbersome, and to our
knowledge, it has not been done for the material at hand. Instead,
experiments are performed to determine if the conglomerate fiber response
offers features which can be used to infer the final cure state. These
features include those mentioned above, such as attenuation, sound speed
changes, or frequency dependent changes of either. These possibilities will
all be discussed briefly below.

In the simplest system, a one-point attenuation measurement could be
made with a set-up similar to what was described with regard to Figure 2.4.
At time t,| in the cure cycle, the output of a single fiber sensor might appear

as depicted schematically in Figure 2.5, where the first signal in each trace
represents the main bang of the transducer. At a later time t,, it is
expected that the signal amplitude would decrease due to changing
material properties; the attenuation is inferred accordingly. Problems with
interpreting this type of single point data arise however from the fact that
other mechanisms could be responsible for such signal level changes other
than cure state. Specifically, the very real problem of variable coupling into
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the material arises, as well as the possibility of partial cancelling of
acoustic power due to the summing of multiple reflections of ringing
pressure waves at the transducer face. The latter phenomenon depends on
the sound speed in the changing material and the material thickness, and
is more pronounced for thin samples. It thus varies from sample to
sample, and so could not be easily compensated for in a processing
algorithm. It would be desirable for this system to make use of some type of
referencing to avoid the need for constant calibration.

An alternate scheme makes use of two fiber sensors placed a distance
apart, along the direction perpendicular to the sound propagation vector,
with outputs represented in Figure 2.6. Now rather than a single
amplitude compared against itself, we have two signals referenced against
each other. If only amplitude ratios are considered, then source power or
coupling variations are less of a concern. However, the obvious trade-off is
the need for two sensors and any associated equipment. To avoid this need,
we could configure a single sensor to pass through the sample twice, where
only one trace is obtained, combining the two in the upper figure. An
example of such a measurement will be discussed in the next section.

Drawbacks associated with this scheme have to do with the preferred
method of acoustic excitation. As it is depicted, the sensor(s) passes
through the sample at two different depths, presumably between different
constituent plies. However, except for unusually thick lay-ups, the time
delay At between fiber signals would be much shorter than the gated width
of the ultrasonic pulse, meaning confusing signal overlap would occur.
Also, the differential attenuation between two points spaced so close
together would be small, reducing the signal to noise ratio. The alternative
to this would be to lay the fiber passes laterally along the breadth of the lay-
up, and launch acoustic waves into the sample at an edge. Although this is
a viable technique and has been applied successfully by Miller et. al. [63],
coupling sound into the edge of a panel and propagating to the center of a
sample (where the sensor would presumably be ideally located) will always
involve less power transfer than coupling across the panel plies.
Furthermore, for all but the simplest of part geometries, edge excitation
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could be complicated by panel curvatures, corners, and features, and may
prove intractable.

Another possible measurement technique investigates the changes in
the propagation velocity of sound as the host material cures. A preferred
configuration would be just as described above, where now it is At which is
of primary measurement importance rather than the amplitude ratio. As
alluded to earlier, resulting velocity changes in curing neat resin and
prepreg samples have been detected piezoelectrically and reported in the
literature by Parker and Winfree from NASA Langley Research Center.
However, though this is again a viable method, it is not ideal for embedded
fiber sensors for all the same reasons as mentioned above. Furthermore,
pulse spreading effects reduce the time resolution possible, and vary widely
depending on excitation frequency and sample geometry.

A third measurement possibility derives its reference from the
monitoring of two different acoustic frequency components rather than two
different spatial locations. It was noted earlier that signal attenuation is
frequency dependent through a number of mechanisms. In general it is
safe to say that higher frequency components are attenuated more than
lower frequencies, but the amount of attenuation is again dependent on
exact material properties. Although not fully confirmed, it is believed that
the differential attenuation characteristics at two specific frequencies will
lead to a unique curve from which the cure end could be inferred.

A system to implement this idea appears in Figure 2.7. Two
narrowband ultrasonic transducers with resonant frequencies f; and f,
launch acoustic waves into the host material at times separated by At. At
some time later, these pulses arrive at the embedded fiber, which strains as
described above. The two received pulses are now separated in time by At”,
which in general may be slightly different than At. The modulation
frequency for each pulse is f; and f, , respectively. Therefore, if a Fourier
transform is performed on the time trace, a signal containing two strong
peaks at f; and f, should appear, with their magnitudes indicating the
amount of power detected at each frequency. If at a later time t, the
material has changed, it is expected that the ratio V,/V, will also have
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changed. This is seen qualitatively in Figure 2.8a. It is hoped that a plot of
this ratio over the cure cycle would yield information as to the cure state.

Though this system is easy to understand and offers potentially good
frequency separation, it is troublesome to operate in that it requires two
transducers. An alternative approach is to operate a single broadband
transducer, which by definition emits acoustic energy over a range of
frequencies. To analyze the fiber response, the FFT of the time trace is
again performed, resulting an an output represented in Figure 2.8b. The
magnitudes of the signal at two chosen frequencies are compared as before.
It is noted that since energy here is spread over many unused frequencies,
the signal to noise ratio for this embodiment would likely be lower than the
two-transducer case.

2.4 In-Service Measurements

During the normal in-service lifetime of a structural material
component numerous material properties may need to be monitored. Of
primary importance is the measurement of strain, which may be either
mechanically and thermally induced. Strain due to temperature changes,
as well as some slowly varying mechanical processes is often termed
"quasi-static." On the other hand, "dynamic" strain is vaguely applied to
strain changes which occur at frequencies greater than several Hertz, such
as exists during structural vibrations. Each of these cases will be dealt
with separately as examples of in-service measurements which are
presently in demand.

2.4.1 Quasi-Static Strain

Quasi-static strain measurements in particular have been the subject of
much research during the past several years. These have typically been the
first to be addressed in many research programs, partially because of their
practical importance in real-world applications. The possibility of success
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is also enhanced with quasi-static measurements, because the low
bandwidth requirements allow the use of either highly sophisticated or else
experimental signal processing schemes which operate at relative low
frequencies. As a result, a number of different fiber sensor approaches
have been taken for the measurement of strain, which will be reviewed
below. Although modal domain sensing will be mentioned as appropriate,
the bulk of the discussion regarding new applications of this method will
appear in Chapter 5.

Single Mode Fiber Interferometry

The earliest strain monitors employing optical fiber sensors were
interferometric in nature, appearing after the original paper on the subject
by Butter and Hocker was published in 1978 [564]. Not long after, fiber optic
interferometers were extended specifically to sensing applications in
graphite/epoxy composites, notably by Claus, with sensitivities several
orders of magnitude better than obtainable using conventional strain gages
[33,55-57]. In addition to strain due to mechanical loading, as discussed in
the previous section, absolute and differential fiber interferometry has been
performed to monitor both thermally and acoustically induced strain, again
achieving similar high levels of sensitivity.

By now the number of authors reporting the use of Mach Zehnder,
Michelson, and Fabry-Perot interferometers for strain sensing is
enormous. Though a large number deal more specifically with advancing
interferometer stabilization and signal processing techniques, most could
be readily applied to structures monitoring. By contrast, more and more
researchers with a largely mechanical engineering background are
beginning to apply fiber optic sensor methods, and specifically the single
mode interferometer, to the problem of on-line strain measurement. In one
notable example, a Mach-Zehnder configuration has recently been
employed to accurately isolate strain in one dimension under the case of
biaxial loading [58]. In another case, an interferometer was constructed
using two incoherent optical sources and two multimode fibers; coherence
was maintained by modulating the sources in phase at r.f. frequencies [59].
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With one fiber embedded in a graphite/epoxy coupon, strains in the region
of 1000 pstrain were recorded. Although this is far less sensitive than
obtainable with optical interferometry, the advantages of simpler optical
components may justify its use in some cases.

Differential Methods

Despite their advantages, interferometrically based sensors exhibit an
ambiguity due to the fact that under normal conditions, mechanically
induced and thermally induced strain are indistinguishable. However,
several differential methods have been demonstrated recently which can be
used to overcome such limitations. In the first two methods, two
propagation conditions are used to solve for the two unknowns. For
example, Meltz et. al. have shown that two propagation conditions may be
created using an optical fiber having two single mode cores. Energy
transfer between the cores occurs at a particular beat length along the fiber.
Careful analysis of the energy transfer can yield both strain and
temperature data [60].

Similarly, two modes propagating in a fiber having a low V-number
will exhibit differential propagation effects. As explained earlier, such is
the essence of modal domain sensors. In unpublished work performed in
mid 1986, the present writer demonstrated the ability of few mode fibers to
determine levels of quasi-static strain. As shown in Figure 2.9a, the fiber
was attached to a [145°] composite coupon, which was strained in a
cantilevered fashion. A detector was placed so as to collect light from only
one of the output lobes; the detector position was optimized to receive
maximum intensity before load and some lesser amount upon load due to
changes in the far field pattern. The average photodetector response
resulting from two cycles of the loading micrometer screw appear in Figure
2.9b. Though further loading would likely have resulted in an upturn in
intensity, it can be seen that at least for a limited dynamic range,
monotonic operation can be achieved for the sensor. Duncan has suggested
that such differential mode sensors operated at two distinct wavelengths
simultaneously may give multiparameter measurement capability [30].

Chapter 2 Suuctural Health Monitoring 29



Extrinsic Methods

The alternative to measuring strain and temperature simultaneously
is to monitor each independently. Murphy, for example, has developed an
extrinsic device in which a single mode coupler is cleaved just to one side of
the coupling region; on one fiber core is deposited a film of aluminum to
mirror incoming light and provide a reference signal in a Michelson
interferometer [61]. Light from the remaining core emerges, interacts with
the straining sample, and is reflected back into the core to combine in the
output arm with the mirrored light. Because the two interferometer paths
have the same length in fiber and are in intimate contact, high sensitivity
strain measurements can be made independent of temperature conditions.

In a simple intensity based scheme, Kriz developed a method which
monitors the axial mismatch loss between the cleaved ends of two fibers
facing each other from either side of a crack in a material [62]. By
monitoring loss versus loading conditions, dynamic crack opening
displacements were able to be determined in-situ. Needless to say however,
this method was primarily intended as a laboratory-based tool, and was
used to study stress corrosion crack dynamics.

Polarimetry

In contrast, polarimetric strain sensors are usually intrinsic. Sensing
is performed by first injecting polarized light into the fiber; loading on the
fiber is inferred by analyzing the polarization state of light emerging from a
fiber, and measuring the amount of induced birefringence. Since these
sensors generally make use of polarization preserving fiber, bending or
twisting of the fiber generally does not upset the optimum bias point, as is
often true with conventional interferometers. Furthermore, sensitivity of
these devices depends in part upon the strain-birefringence relationship of
the particular glass used to make the optical waveguides. Using this
method, Meltz and Dunphy demonstrated excellent sensitivity to subsurface
strains and stresses within orthotropic plates and symmetric cross-ply
laminates [63]. The measurement of strain in cantilevered graphite/epoxy
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beams was reported by Brennan, who used not only embedded polarimetric
sensors, but also dual mode embedded sensors [64,16].

Time Domain Techniques

One problem suffered by all the sensors mentioned above is their
general inability to make distributed measurements. As a result, for those
involving intrinsic transduction mechanisms, certain sections of the fiber
must be made insensitive to environmental fluctuations, while the sensing
portion must be exposed to the observable. Often this approach is not highly
effective, leading to relatively low signal to noise ratios, and is at best
complicated to implement. Alternatively, it has been proposed that in order
to sense quantities at different locations, an array of discrete sensors must
be deployed, one for each location. Obviously such a scheme would entail
greater complexity, duplication of parts, and expense.

One of the earliest routes taken towards single fiber distributed
measurements made use of optical time domain reflectometry (OTDR)
techniques. Light generated by a pulsed optical source is coupled into the
fiber to be examined and propagates as one or more guided modes. As the
light propagates along the fiber it is partially backscattered by anomalies in
the waveguide structure. In otherwise unperturbed fibers, uniform
Rayleigh backscatter caused by the intrinsic molecular structure of the
component glasses results in an exponential decrease in optical power
received at the front end as a function of time. Deviations from this
anticipated baseline return signal may be interpreted as being caused by
regions of local fiber perturbation, specifically local variations in fiber
geometry or index of refraction or both. The location of such regions along
the length of the fiber may be determined by measuring the round trip time
of flight of an optical pulse from the source to the backscatter site and back
to the detector.

In what appears to be the first application of OTDR to fibers embedded
in materials, Claus, et. al. demonstrated the ability to locate and monitor
regions of stress concentration arising from loads applied to host
graphite/epoxy panels [65]. In this work, measurements were performed
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using a communications OTDR unit having a spatial resolution (related to
the temporal width of the excitation pulse) of 16 cm; the experimental setup
and representative results are shown in Figure 2.10. Since then,
refinements in commercially available OTDR instrumentation have
increased the possible position resolution to nearly 100 pm, enabling
distinctions to be made between strain levels which elongate the fiber such
small distances. Employing such a unit, quasi-distributed strain was
measured using in-line air gap splices as time (and therefore position)
markers [66,67]. More recent advances take advantage of re-entrant loop
techniques, and promise to better the current resolution limit by as much
as two orders of magnitude [68].

2.4.2 Structural Vibration Measurements

Embedded or attached fiber sensors may also be used to monitor the
vibration of structures. First, sensitive interferometers may be
implemented as discrete sensors and used in a manner similar to that
described above. Second, they may be designed to monitor strain integrated
along the sensor length in order to infer axial deformation, bending, or
structural mode shapes. For applications involving large structures which
need to be controlled but which may be mechanically damaged during use,
such distributed sensors have the advantage of possibly being able to gather
mode shape information independent of the vibration node locations of the
structure and the corresponding locations of discrete sensors.

Recently, the operation of two such line-integral strain sensor systems
have been investigated in detail for the monitoring of structural vibration
modes. The first, developed by Kush and Meffe used the interference
between modes in a multimode fiber to infer structural mode shape
amplitudes [69]. This basic idea was implemented in a number of
configurations by Bennett, Ehrenfeuchter, and co-workers, using primarily
few-mode fibers (V< 5) [70,71]. In their first modal domain fiber sensor, the
optical modal content of the fiber was interrogated and processed to yield a
measure of the dynamic Fourier coefficients of the mechanical vibrational
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modes. A typical set-up and results of such a measurement are shown in
Figure 2.11. A second technique, developed by Rogowski [72], uses an
optical pulsed phase locked loop technique to monitor integrated strain in a
vibrating beam. Results indicate that this method can resolve strains on
the order of 0.1 microstrain. Current work by Rogowski compares the
performance of the modal domain, optical phase locked loop and discrete
resistive strain gage sensors. Additional research, aimed at dynamically
measuring plate mode vibration amplitudes and phases due to the
impingement of low frequency acoustic waves is presently ongoing at the
Fiber and Electro-Optics Research Center at Virginia Tech.

The use of modal domain sensors in monitoring the slewing and
vibration of large, flexible structures has led to the analysis of possible
control system architectures that utilize the inherent and fundamentally
different nature of fiber sensor output signals in feedback control systems.
Conventional control systems accomplish such slewing tasks through the
use of "point" sensors, that is, resistive strain gages which are much
smaller in size than the structure to be controlled, that are generally
attached at predetermined vibration anti-nodes. However, since the fiber
strain sensors yield the strain integrated along the fiber path rather than
strain at a point, control algorithms must be modified. The problem is
further complicated due to the fact that for fiber elongations longer than the
beat length between the participating modes, often as small as 100 um, the
signal output takes on the oscillatory nature characteristic of
interferometers. However, it has been shown that this nonlinear sensor
output will not lead to instabilities in the control system if the latter is
appropriately designed [73]. In addition, this research is being
complemented by the parallel development of embedded shape memory
metal actuators which may be combined with embedded sensors to achieve
total internal sensing and motion control maneuvers [74].

2.5 Material Degradation

When discussing in-service measurements on a given structure, a
healthy condition is generally implied, where strain and temperature
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measurements are expected to fall within the bounds of normal operation.
In contrast, as the structure begins to degrade, either due to ordinary wear
or to external events such as over-stressing or impacts, additional
monitoring may be necessary in order to fully characterize the material
state. The typical example is that of an acoustic emission emanating from
a crack site, which may trigger an AE sensor, but go almost unnoticed by a
conventional strain gage. Thus the mission of fiber sensors for NDE goes
beyond making the types of measurements necessary under normal
conditions; signals which are either precursors of damage, or which
indicated material degradation has already occurred must also be captured
and identified.

Prior work in fiber optic assessment of material damage has basically
fallen into one of two categories. In the first, a straightforward, destructive
approach has been taken which relies on the breakage of embedded or
attached fibers. In the second, acoustic shock waves due to impact or to
material cracking which leave the fiber in tact could be detected. In this
section, fiber breakage sensors will first be reviewed. Acoustic wave
monitoring will also be discussed, though recent measurements
specifically concerning modal domain sensing will be left to Chapter 5.

2.5.1 Fiber Breakage -- Destructive Testing Methods

Optical fiber sensors based on partial or complete fiber breakage offer
the potential advantages of simplicity and low cost. In the case of a single
fiber running through a critical part or structural location, light from a low
cost LED can be injected into the fiber, while the output can be detected
using a low performance photodiode. A break in the light signal can be a
reliable indication of damage in the part, as shown schematically in Figure
2.12a; such simple experiments have been performed in composite samples
at the David Taylor Naval Research Labs, Virginia Tech, and the National
Institute of Standards and Technology. If it is known that strain will be
concentrated in a particular region containing the fiber, then it may even be
possible to locate the damage. Similarly, if fibers of different tensile
strength are embedded side by side, especially in a large specimen under
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uniform load, the magnitude of the maximum strain experienced can be
estimated by determining which fibers are still transmitting at any point in
time. Perhaps the most comprehensive work embracing the idea of both
embedded and attached fibers of various types for damage detection in
composite materials to date has been performed at Messerschmitt-Bolkow-
Blohm in West Germany for application to both railway and Airbus
structures [75].

This idea can easily be extended to large two dimensional structures.
Crane et. al. proposed a damage assessment system consisting of a mesh of
optical fibers embedded orthogonally in composite materials [76]. This was
to allow for determination of damage location by comparing the x and y
coordinates of fibers transmitting no light, represented in Figure 2.12b.
Another two dimensional system recently demonstrated by Measures, et.
al. interrogates transverse leakage of light from broken fibers in semi-
transparent Kevlar composites [77]. In this type of situation, data could be
collected by a scanned detector array feeding a video image. Furthermore,
backlighting the sample and subjecting it to visual inspection even revealed
damaged areas which were undetected by C-scan [78]. Needless to say
however, this technique is largely limited to non-opaque materials.

Other work has been aimed at making the fiber mesh method more
readily applicable in a broad range of situations. For example, it is not
always practical to embed an host of fiber optic lines in a test material.
Instead, it may be more useful to embed them in a thin sheet of low
modulus plastic which can conform to the surface of the workpiece [79].
However, these systems inherently involve a serious trade-off between
complexity and resolution. Locating damage points with high resolution
requires a fine mesh of fibers, increasing also the number of discrete
components necessary for processing light in and out of the fibers. One
methods to reduce the number of light sources would be to fan light out
from source using a multi-port fiber coupler [80]. A similar approach
might make use of single fibers and 2 x 2 couplers in combination with
OTDR. This method would have the advantage of providing the location of
the damage to within the resolution of the OTDR unit, as explained in
Figure 2.13. '

Chapter 2 Structural Health Monitoring 35



In order to eliminate the need for sophisticated OTDR electronics, a
refinement has been designed, built, and tested in which a single source
injects light into a multimode optical fiber, and in which only a single
detector is required to collect the data [81,82]. Furthermore, this scheme
partially processes the data optically and thus greatly reduces the
computing time required to interpret the output. The design relies on a
novel coupling method to ensure that each optical fiber path within the
specimen receives a unique portion of the original input power. This is
accomplished by fabricating a number of 1 x 2 couplers which do not have
the standard 50-50% coupling ratio.

Figure 2.14a presents an example of the idea with a small four channel
array, here depicted as embedded in a composite panel. A single input fiber
passes through three couplers, resulting in four optical paths marked a-d,
which cross through the panel as shown. In Figure 2.14b, the required
splitting ratio for each coupler is seen boxed next to the coupler (in percent).
In addition, the power in watts of each unperturbed line is shown, while
the input optical power is assumed to be 15 mW (arbitrary). It is also
assumed that if any fiber is broken, presumably due to damage incurred in
the panel, it yields an output of 0 mW.

Since light intensities add linearly at a detector surface, if all fibers are
in tact, a total power of 15 mW would be sensed by the detector. In addition,
a tabulation of the output power total for all the combinations of broken or
in-tact fibers results in Table 2.1. It is important to notice that for each of
the sixteen possibilities, the outputs are unique, ranging in 1 mW intervals
from 0 to 15 mW. It also might be noted that the couplers and broken fiber
output need not be exactly as shown; slight variations throughout the
system could be tolerated and still lead to unique values for each
configuration of "good" and "bad" fibers.

In the sense given by the table, this system is essentially a digital to
analog converter. An even simpler arrangement could be conceived to
implement logical AND, NAND, OR, or NOR elements, which could be
useful to monitor any number of processes or even perform computations.
It is believed that any procedure which can be manipulated to express a
Boolean output can be modelled in this way. In terms of the application at
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hand, a digital interpretation of damage in designated areas of a panel may
be obtained rapidly using a minimum of hardware.

Although it is a step in the right direction, problems still exist in the
optical processing system. For one, it may have trouble distinguishing
between strain induced loss in output and outright damage. The splitting
of light most likely will need to be configured such that if light is lost due to
strain, it does not yield the same output as if any one of the fibers had been
broken. Similar consideration should be given to the possibility that a
damaged fiber may still partially transmit light. However, it was
discovered during actual demonstration of the concept that much of the
ambiguity that existed due to non-ideal conditions could be accounted for by
prudent choices of the preset threshold values in the computer data
collection algorithm.

2.5.2 Detection of Ultrasonic Waves -- Nondestructive Testing Methods

One difficulty with the detection schemes above is that they all require a
significant amount of damage to occur to the optical fiber before they will
register. Using these methods, many types of damage, such as cracking
and delamination could go completely unnoticed. Furthermore, they deal
with an irreversible process by which light is partially or completely lost
from the fiber. Thus sensitivity will also be lost to damage in locations
where the lead-in fiber has already been destroyed. For these reasons, such
sensors cannot be thought of as truly nondestructive, and can in no way
predict damage or material failure. One approach to overcoming some of
these disadvantagés was successfully demonstrated by Claus and Wade,
who used a grid array of optical fiber differential interferometers to derive
strain fields integrated in the x and y directions [83]. Although this meant
that a range of damage could be continuously monitored, the complexity of
the system would make it impractical for most applications.

A more promising solution has been to apply fiber optic methods to the
detection of acoustic waves arising from cracks or impacts. Acousto-optic
transduction can be achieved by modulating any of the fundamental optical
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field parameters within the fiber, such as phase, intensity, polarization,
wavelength, or modal content. The first and major thrust in the
development of acoustic sensors has been in the hydrophone area, where
multiplexing of single mode interferometers has been employed to detect
acoustic pressures with sensitivities at or near the "sea-state zero" level
[84,85]. Intensity-based microbend loss hydrophones have also been
developed [86] and direction sensing at frequencies in the kHz range has
been demonstrated [87]. By now a number of research groups have worked
towards the development of rugged, deployable hydrophone arrays; a good
bibliography of important efforts over the last ten years appears in reference
[85].

Underwater acoustic wave power measurements and the
characterization of ultrasonic transducers have also been performed using
polarimetric sensors [88]. Polarization preserving fibers were aligned in a
sound field so that the waves were transverse to either one of the two
polarization axes of the fiber. The sensor output was observed to be a linear
function of the square root of the total power as recorded by a radiation force
balance, or linearly proportional to the acoustic wave amplitude. Fibers
were also scanned across the face of a 1 MHz plane transducer and a 10
MHz focussed transducer in order to map their respective beam profiles;
the results were compared to similar measurements made with a PVDF
hydrophone. It was noted that the fiber, whose dimensions are only a
fraction of the acoustic wavelength for even high frequency sound, does not
suffer from spatial averaging, and could thus give a more accurate
representation of the spatial variation of ultrasonic fields than conventional
devices.

In an example more relevant to the problem at hand, Dunphy and
Meltz have reported using fiber optic polarimetry for the study of very rapid
disturbances in composite materials which are thermally generated using
high power pulsed CO; laser radiation [89,90]. The compressive stress
wave thus produced impinged upon a highly birefringent (polarization
preserving) fiber, inducing added birefringence. This was measured by
monitoring the intensity of light in the two polarization states within the
fiber. Acoustic perturbations in the GHz range were monitored with the
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help of high speed transient recorders; it was suggested that in this way
spatial/temporal stress wave dispersion measurements could be conducted
with the use of multiple wavelengths.

Ultrasonic compressional wave signals from a piezoelectric source
have also been detected using Mach Zehnder fiber interferometry. As
mentioned earlier, measurements of ultrasonic velocity and attenuation
have been performed during composite cure. This methodology is thought
to be directly applicable to the newly emerging NDE discipline of acousto-
ultrasonics, and certainly is of significance in laying a foundation for
acoustic emission and impact shock wave detection.

As an example of the results obtainable with this type of measurement,
Figure 2.15 depicts an aluminum bar measuring 2.5 x 5.1 x 42 cm, in which
two holes were bored through laterally, 14 cm from one end and 7 cm from
the other [91,92]. A continuous length of single mode fiber was threaded
through both holes as shown, and the holes were well-filled with epoxy.
The fiber was spliced into a single mode interferometer, and bulk waves
with a center frequency of 2.25 MHz were injected into the side of the
specimen so as to propagate across the fiber lengths using a transducer
bonded at one end. High speed detection, filtering, gating, amplification,
and signal averaging were applied to the interferometer output.

A typical oscilloscope trace is plotted in Figure 2.16. In this plot, the
upper trace is strictly the acoustic response, that is, the main bang and the
echo off of the back face of the bar. We note that the round-trip transit
distance of the sound in the bar is 84 c¢m, and from the scope, the transit
time is 134 ps. This leads to a longitudinal wave speed of V¢ = 6270 m/s,
which is reasonable for the alloy of aluminum used. Notice that 45 pus after
the pulse is launched, a small reflection is received back from the first hole-
epoxy-fiber combination, marked al. That is, (2 x 14 ¢m)/6270 m/s = 45 s,
as expected. Again, at 112 ps = (2 x 35 cm)/V later, a small reflection a2 is
received from the second fiber. The large end reflection is marked a3. Note
that with each of the above pulses is associated a secondary pulse, always
trailing by 8 us. An adequate explanation for this has not yet been arrived
upon, but it is an acoustically real phenomenon, and may have something
to do with electrical pulse reflections inside the electronic system, or some

Chapter 2 Structural Health Monitoring 39



secondary transducer vibration. Also, it is noted that side reflections as
well as reflection-generated shear waves may play a part.

The lower trace is the output of the photodiode after it has been rectified
and filtered (enveloped detection), and amplified by a broadband receiver
originally meant to amplify acoustic signals but here used for optically
generated signals. The output was averaged 200 times over 2500 sample
points by a LeCroy 9400 digital oscilloscope. The first, large pulse is an
artifact of the previously mentioned noise source. When the laser beam is
blocked from entering the fiber, the smaller peaks disappear, but the first
one remains, indicating that it is not "real" signal. The smaller peaks,
marked o1 - 05, correspond to the acoustic pulse traversing the fiber several
times. Pulse ol is the first crossing, correctly occurring 14 cm/Vg = 22 us
after the pulse initiation. As can be confirmed by simple arithmetic, 02
shows the sound pulse crossing the second pass of fiber, 03 occurs another
22 ps later when the pulse has reflected from the back end and crossed the
second pass of fiber again, 04 shows the sound crossing the first pass, and
05 is after a reflection from the front surface and the first fiber pass is
crossed again. Note now that not only are the associated pulses apparent as
in the upper trace, but even finer structure can be seen.

2.6 Summary

Optical fiber sensors may be used to measure a wide range of physical
observables in-situ. They offer the ability of being embedded or attached,
and are characterized by small size and weight, an all dielectric profile,
high sensitivity, good linearity and dynamic range, large bandwidth, and
the opportunity for sensor signal multiplexing. Sensors have been applied
to the monitoring of observables throughout the lifetime of an engineering
structure, beginning with the strain and temperature effects which occur
during the curing of composite materials. In addition, in-service
measurements such as static and dynamic strain, structural vibrations,
and thermal flow have all been performed using a variety of sensor
configurations. Conditions associated with structural and material
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degradation have been detected, such as acoustic emissions and low energy
impacts. Future developments offer the promise of a class of devices
broadly applicable to current problems in measurement science and
nondestructive evaluation.

It is to be noted that a number of issues relevant to optical fiber
environmental sensors remain to be resolved. At present, the effect upon
long term structural reliability of embedding optical fiber within materials
is unknown . Also unknown for both the case of embedded and attached
sensors is the efficiency of strain coupling between the structure and the
optical fiber. Finally, concerns such as optical fiber interconnection,
methods to achieve full multidimensional distributed multiparameter
sensing, and sensor multiplexing pose significant materials and signal
processing challenges.
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Figure 2.1. Representation of possible interface conditions between an
embedded optical fiber and internal composite plies a) optical fiber parallel
to graphite fiber, and b) optical fiber perpendicular to graphite fibers.
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Figure 2.2. Moire interferogram depicting the u and v displacement fields
in a side view of an eight ply graphite/epoxy panel with an embedded optical
fiber. Specimen was loaded axially to half the calculated failure load [44].
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Figure 2.3. Fiber optic differential interferometric measurement of
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Figure 2.4. Schematic of an ultrasonic transducer insonifying an optical
fiber embedded in a host material. Such a model is applicable to acousto-
ultrasonics, and cure monitoring in particular. The modulus of the
material can be inferred by measuring the attenuation of acoustic energy
reaching the fiber as a function of cure.
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Figure 2.5. Possible sensor output for Figure 2.4 at two different times in
the cure cycle. The first pulse in each trace represents the piezoelectrically
transduced main bang, while the second pulse represents the optical
response (not real data).
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Figure 2.6. Two fibers could be embedded to yield both attenuation and
velocity information as the sample cures. Alternatively, a single fiber could
make two passes through the material.
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Figure 2.7. a) Scheme for detection at two acoustic frequencies. (b) Possible
output for the above. The sources are pulsed at times separated by At; the
first two pulses represent piezoelectrically detected main bang signals,
whereas the next two pulses would indicate optically detected strains in the

material.
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Figure 2.8 a) Example frequency spectrum associated with Figure 2.7b.
b) Example spectrum assuming a single broadband source.
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Figure 2.9b. Quasi-static strain measurement using few fiber sensor.
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Figure 2.9b. Results of experiment outlined above (see text).
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Figure 2.10b) Digitally averaged OTDR signal obtained for a composite
specimen loaded at three locations along the fiber. Slope changes
proportional to the respective loads (350, 700, and 1050 kPa) are observable at
2.2,5.1, and 7.8 [65].
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Figure 2.13. Scheme for using OTDR for detection of damage in structures.
The location and severity of damage to the fibers could be inferred from the
position in time and the amplitude of the backscattered trace.
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Figure 2.14a. Example of a scheme to optically process damage signals.
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Figure 2.14b. Required coupling ratios in percent, and resulting output
power of each fiber, assuming 15 mW input [81].
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Table 2.1. Total detector output for each of the possible sixteen combinations
of damaged fibers. Here, 0 means no through transmission, 1 means
normal light transmission [81].

fibers

output
d c b a (mW)
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 51
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15
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3.0 PRINCIPLES OF MODAL DOMAIN SENSING

In this section the necessary theoretical background for the use of
optical fiber waveguides as phase sensing elements is developed. We begin
with a brief review of the existence of modes in fibers, including basic fiber
optic quantities and nomenclatur%;};::fNext the expressions describing the
interference of modes in fibers are developed. Interference between two
single mode fiber outputs is described first, as a foundation for dual mode
sensors. A discussion of the latter follows, with a treatment of both the
LPy,/L.P,, and the LP,,/LP,, mode combinations. Interference in highly
multimode fibers is considered next, and a new expression for the output
intensity distribution is derived.

3.1 Modes in Fibers

In the discussion which follows, we will consider exclusively the use of

step index optical fibers, such as depicted in Figure 3.1. The fiber consists
of a core of glass of radius a, having a refractive index n;, surrounded by a

cladding of glass of radius b, with index n,; note from the figure that
n; > n,. These glasses are in intimate contact, and are generally
inseparable and indistinguishable without special equipment. Their
difference in index of refraction is finely controlled by the deposition of trace
amounts of dopants to pure fused silica, either in the core or in the
cladding. The degree of difference in indices is characterized by the
parameter A, important in determining fiber performance, where A is

defined such that

A = = , (3.1)

where the approximation applies when n, = n,.
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Though not shown, optical fibers are generally coated with a polymer
jacketing. These coatings are designed to add mechanical stability to the
fiber, and protect them from dirt and nicks which may act as crack
initiation sites. However, as will be mentioned in the next section, they also
may insulate the fiber from any straining mechanism, reducing its
effectiveness.

The standard approach to describing the phenomenon of modes in a
step index cylindrical fiber is outlined below. We start with the modified
wave equation for the axial components of the electromagnetic field
propagating in a fiber oriented along the positive z axis:

+ T @y, = 0. (3.2)

Here y, could be either E, or H,, and the cylindrical coordinates r, ¢, and z

have already been incorporated. The transverse components of E and H are
determined directly once E, and H, are found, and will require that

@ = (kS’n? - p) . (3.3)

Here k, is the free space wave number, determined by 2n/A, , where A, is
the free space wavelength of the optical radiation; n = n, in the core and n =
n, in the cladding, and B is the modal propagation constant. At the outset
we will note that P is restricted in its value by the wave number in the core

and cladding; that is,
nk, 2 B 2 nk, . (34

Throughout the analysis, the dependance of Y on z and time take the form
e )0t - B2) where w is the angular frequency in the hundreds of terahertz.
Following the standard technique for solving (3.2), we apply the method

of separation of variables, and assume that independent solutions can be
written for \, in terms of r and ¢. Thus,

Chapter 3 Principles of Modal Domain Sensing 60



y, (r,0) = R(r) d(9) . (3.5)

Applying this to (3.2), we arrive after some algebraic manipulation at two
separate ordinary differential equations for \_ coupled by a constant [. For

¢ we have

d2
Td;(i@ + C2p@) = 0, (3.6)

while for r we obtain

2
— - - = . q
dr Ty dr q :"'— 0 3.7

2 2
dR() =~ 1dR® [ ( ]R(r)
If both sides of (3.6) are divided by r? and added to (3.7), agreement with (3.2)

is reached as necessary.
Equations such as (3.6) have standard solutions of the form

d@9) = Asinld + Beceoslp . 3.8)

Noting that the cylindrical symmetry of the waveguide demands that
O(9) = P(d + 2n) , then it becomes clear that [ is restricted to integer values.

Equation (3.7) is a form of Bessel's equation, having several
independent solutions. The choice of which solutions apply is dictated by
the fact that fields must be finite everywhere and must die to zero as r goes
to infinity. The outcome of these physical arguments for the cases where
q2 > 0 (core) and q2 < 0 (cladding) results in the combined solution of (3.2):

J" A J/(ur/a) (i:; g] r<a
E, = 3.9
‘ B K/(wr/a) (::; ?2) r>a ,

Chapter 3 Principles of Modal Domain Sensing 61



where

u = koa\/nlz—([i/k(;[
(3.10)

w = kya(B/ky —n,?

and a is the fiber core radius. J ¢ is the Bessel function of the first kind, and
K, is the modified Bessel function of the second kind, both of order [. Either

the sine or the cosine term can be chosen in conjunction with the other
factors as a solution, with other azimuthal possibilities being decomposed
into these components.

Similarly, for H, we have

_ —cos [¢
C J/(ur/a) (sin [¢] r<a
H, = 3.11)
—cos [¢
D K, (wr/a) (sin [¢J r>a

It can be shown that the signs of the ¢ dependent terms which appear in

(3.11) are demanded by boundary conditions and the orthogonal relation
between E, and H,. We are left with unknown amplitude coefficients A, B,

C, D, and unknown B, the latter of which is determined in terms of a single
constant by application of the boundary conditions. Final determination of
the remaining constant can be made given specifications on the source
power and input conditions.

Boundary conditions require that the tangential components of the
electric and magnetic fields be continuous at r = a. For this geometry, it

means
r<a r>a
2 | r=a = E, | r=a
Eo | r=a = Eol r=a (38.12)
z | r=a = H, | r=a
H‘Dl r=a = H¢| r=a
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Eq) and Hq) are evaluated using the relations

_j B aEz aHz
Ey, = 5| — —
o q2 ( r % (TTh, o ) (3.13)
and
— oE B oH
_ 2 z z
Hq, = —qz (coeon _ar + _r —8¢ ] , (3.14)

which result from Maxwell's equations. Here €, and p, are the free space
permittivity and permeability, respectively.

Equations (3.12) comprise a set of four simultaneous equations, which
have a nontrivial solution provided that the system determinant equals
zero. This determinant is usually expanded to form the characteristic or
eigenvalue equation. For the exact formulation, the characteristic equation
is complicated. Solutions are expressed in terms of the "vector" modes (so
called since we are seeking solutions to the vector wave equation), that is,
circularly symmetric TE and TM modes, and hybrid EH and HE modes. If
the approximation of weak guidance is made, matters simplify
considerably. Specifically, if it is assumed that core and cladding indices
n,; = n, or equivalently A << 1, then the characteristic equation takes the

form

ud, ;(u) + w K, ;(w)

0 [=0,1,2,.. (3.15)

Solutions to (3.15) for B are generally derived numerically, with
multiple values of B satisfying the equation for a given value of { and a given
set of fiber parameters n,, n,, a, and L. That is, for specific values of the

principal mode number (, then m unique solutions result, where the mth
solution will be referred to as the propagation constant of the LP;,, mode.

Evidently then, m is simply an integer greater than zero. For each of these
values of [ and m, the value of B which solves the characteristic equation
(3.15) is typically plotted against the normalized frequency V, where
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V = k,a \/nl2 -n,? . (3.16)

As shown in Figure 3.2, it is also useful to plot the normalized propagation
constant b along the ordinate, where

(Bfky)’ = n,?
b = Bn°2_n22 : 3.17)
1 2

With B determined, it is also possible to investigate the behavior of u and
w, useful for later calculations. Figure 3.3 shows u and w normalized with
respect to V, and plotted as a function of b. Note that the maximum value of
both u and w is in fact V, while the minimum is zero. Furthermore, it can
be shown analytically that at the median value of possible propagation
constants, or when b = 0.5, u and w intersect, both taking the value of V/v2.

When the fields which result from the solution of equation (3.15) are
expressed in rectangular components, it is seen that the electric field is
either directed along x or along y, meaning they are linearly polarized. For
this reason, these modes are generally referred to as LP,, modes.
Furthermore, in addition to their counting and naming utility, the
subscripts [ and m also carry geometrical significance; that is, the final
intensity pattern of the mode will display 2/ peaks in the azimuthal
direction (around ¢), while the number of peaks in the radial direction in
the core will be given by m.

Finally then, general field expressions for the transverse components x
and y can be written as

r
I [; :l sin [¢ a
- A, l 5 ) (cos [¢]exp[3(mt—ﬁ[mz+\y[m)] (ﬁyj r<a

=l
-

I}
~~
o
-
0]

o
A

r
K, [a"' sin [¢ ax
A, [ K[(w[m)} [cos [¢]exp[J(Wt—Bth+\lf[m)] [ﬁy] r>a
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and

ﬁ = Y

X Im y x ?

(3.18b)

_—)
Hy=Y[m x' Gy »

where the subscript t refers to either x or y, A, is the generalized

(m
amplitude coefficient (different from the A in equation (3.9) above), the
propagation constant for each mode has been distinguished, and a random
phase factor Y, for each mode has been included for the sake of

« N A A . . . o
generalization. Also, a, and a,, are unit vectors in the x and y directions,

y
and Y = (B/k,) \/ £y/l, is the admittance of the guide,

Modes involving cos({¢) are often referred to as even modes, while those
involving sin({¢) are called odd modes. Thus, for values of [ and m, four
distinct cases result from the four possible combinations of even, odd, x-
polarized, and y-polarized choices. Being all solutions to the same
characteristic equation, these modes are deemed degenerate, though it is
important to note that this does not imply their field distributions are equal.
Also, it is clear that when [ = 0, azimuthal dependence is eliminated, so
that LP,,, modes have only a two-fold degeneracy arising from the two
orthogonal polarization states.

It might be noted that it is possible to derive the characteristic equation
(3.15) directly, by starting with the scalar wave equation. The resulting LP
modes are thus referred to as "scalar" modes. These differ from the modes
which result from the exact characteristic equation, sometimes called
"vector" modes, in that they are based on an approximation, namely that
A << 1. It has been shown that equations (3.15) and (3.18) lead, respectively,
to propagation constants and field solutions which are within one percent of
the exact solutions when A < 0.1 [92], which is commonly true.

The LP modes above can also be considered as approximately equal to

linear combinations of the exact modes. That is, it can be shown that the
characteristic equations for HE,,, ,, modes (/> 0) and EH, ,, modes have

the same form as equation (3.15). Similarly, TE,,, TM,,,, and HE,,, modes
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are seen to have the same characteristic equations, again meaning that
these two groups of modes are degenerate to within the approximation of
A << 1. In fact, the four-fold degeneracy seen in the case of these vector
modes is merely an alternate explanation for the four-fold degeneracy in
the LP modes.

It is vital to realize that the various exact modes in each group above are
not precisely degenerate. Thus they have slightly different propagation
constants and phase velocities, leading to an evolving phase difference as
they travel down the guide. The intensity of a single LP mode then appears
to change periodically as the constituent vector modes move in and out of
phase. Not maintaining a constant power distribution along z, these modes
defy the definition of a mode, and so the LP modes are often called "pseudo-
modes." In fact, it is not the total intensity which changes along z (in
which case conservation of energy may be violated), but rather energy

oscillates between the two orthogonal polarization states. This does not
apply to the LP,,, modes however, which are true modes since they consist

only of HE,, modes. The relationship between the vector modes and the

scalar modes is also shown schematically on the plot of B versus V in
Figure 3.2.

3.2 Interference of Modes -- Two Single Mode Fiber Outputs

We now turn to the interference between two propagating modes. In
this section we treat the case where interference occurs between the outputs
of two single mode fibers. In the following section, expressions for the
interference between the modes propagating in a dual mode fiber are
derived. Once this formalism is established, an understanding of the
interference between modes in a highly multimode fiber is pursued.

Single mode fiber interferometers may take one of several forms,
including the Mach-Zehnder, Fabry-Perot, Michelson, and Sagnac
interferometers. Because of its relative ease in application, the Mach-
Zehnder form is often used to investigate strain in structures, and will be
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the sensor which is analyzed here. As described in Figure 3.4, the most
basic set-up in a practical situation consists of two single mode fiber optic
couplers (usually fused biconical taper types) and a specimen containing a
length of embedded or attached single mode fiber. Monochromatic light is
injected into one of the input ports of the first coupler, and is split into two
portions. One of these passes into the sensor fiber, used to measure the
disturbance under investigation, while the other traverses a reference arm.

The coherence length of the optical source is assumed long enough to
ensure that interference will occur between these two portions when they
are recombined in the second coupler. Light reaching the output ports is
proportional in intensity to the phase difference between the two portions
entering the coupler. It is amplitude modulated by any disturbance which
strains either of the fibers, implying that the output may be used to monitor
the perturbation. The modulation depth depends on the amplitudes of the
waves input to 1 and 2, with the maximum occurring when the amplitudes
are equal. In practical sensors, phase compensation measures are often
taken to hold the interferometer in quadrature, since the output tends to
drift due to random thermal fluctuations, etc. However, such procedures
are not essential to the analysis, and so will not be considered here.

We consider the optical fields propagating in segments 1 and 2 above as
having a single polarization state, and without loss of generality, we assign
it such that the electric field is directed along x. (Recall that no interference
occurs between orthogonal polarizations, and that any field vector may be
broken into two orthogonal polarizations.) Taking the e J®t dependence to
be common to all fields, we may write the electric field distributions for
fibers 1 and 2 as

El - Af e—J(B1Z1 -y 5 _ E, 4
(3.19)
- - - A A
E, = Ayfye I(Bazo - W3) A _ E,8, |
where in general,
67
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r

r J[!ilm ]

J (ua ) r<a
(\YUm
fm = 9 (3.20)
(mY
i
K[(w[m) r>a

Here again it is implicit that u and w, as defined in (3.10), are functions of
either B, or B, (more formally termed B,, and B,,), and the orthogonal H
components are related as in (3.18). Also, z, and z, are the propagation
distances, while y, and v, are the initial random phase angles of the two
single propagating modes. Although it is not strictly necessary to the

formulation to assume equal propagation constants, we do so by noting that
for identical single mode fibers B, = B,. Specifically then, a single value of u

and w result. After combining in the second coeupler, the total fields can
then be expressed as

=2 A
E, = By + Eyay

(3.21)

H, = (Y;E; + Y,Ep)a, .

The intensity resulting from the combination of these two modes is
calculated as the time average of the real part of the z component of the
complex Poynting vector. That is,

I = 3Re((E, x B,*)- a,) . (3.22)

-

- A
Because of the mutual orthogonality of E _, Hy, and a,, the intensity

becomes

1
I = 5Re(Y(E, + Ep(E" + E)N]}
(3.23)
= % Re (Y(EE*+ E,E,* + EE," + E,E™)) .
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In this expression, it has been assumed for simplicity that the admittances
are equal since it can be shown that Y, = Y, even for fibers with slightly

different propagation constants. Substituting the field distributions from
(3.19) we have,

1 ' -. _ . _
I=3Re (YIA2R2+A2E2 + AA fFe 01a ~ VD) 1Pz =D g5,
+ A, L e+j(ﬁ1zl -y e-j(Bzzz - V) ).

Next we combine terms and rearrange the exponentials of the cross

term. If we consider that fiber 2 is a reference and therefore does not
change with perturbations applied to fiber 1, then B,z, is a constant which

can be added to y, — y, to form a composite phase term y. Thus

(3.25)
Applying Euler's identity and taking the real part,

1
I=5YR (A +A2+ 2414, cos (Byz — )] . (3.26)

As mentioned above, the maximum amplitude modulation occurs if
A, = A, = A, in which case (3.26) becomes

Jo (ur/
YA? [%] [1+ cosBz,-y)] r<a
0
I = (3.27)

2

/

YA? [&K%:I [1+ cos(Byz;—-w)] r>a .
w

From equation (3.27) we can gain an understanding of the type of output
one might expect from a single mode fiber interferometer. First we notice
that the intensity has a spatial dependence proportional to the first order
Bessel function, that is, a single, azimuthally symmetric lobe which is
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centrally located. The peak intensity varies between 2YA2/J02(u) and 0,

depending on the value of the phase term in parentheses, and is static in

the event that no perturbation occurs. On the other hand, if a disturbance
is experienced by fiber 1 such that either B, orz, change, then the total

intensity changes accordingly (note that y is set by initial conditions and

does not vary with disturbance).
Finally, defining the phase term 6 = ,z, — y and consolidating the

amplitude coefficient to I, where I, is half the total optical power entering

the sensor, we have

I =1I,[1 + cosO] . (3.28)

The intensity distribution for the static case is represented in Figure 3.5,
and a plot of the intensity at r = 0 as a function of 8 appears in Figure 3.6.

3.3 Interference in Dual Mode Sensors

Next we consider the case of a single mode fiber being operated below its
cut-off wavelength so that the two lowest order modes propagate. For most
fibers, this limits the analysis to focus on the LP,; and LP;; modes, though
this will be extended later to include other scalar modes. In the sensor
formed with such dual mode fiber, a single strand of optical fiber
propagating coherent light is made to interact with a parameter of interest.
As the two modes traverse the fiber, it will be seen that their differing
propagation constants give rise to an accumulating phase difference which
is again related to the distance traveled, as well as the difference in their
values of B. After deriving an expression for the output intensity for the
dual mode sensor, its advantages and disadvantages with respect to the
single mode interferometer will be discussed. Also, a few remarks will be
made on the effect on the analysis of approximating nondegenerate vector

mode combinations with pseudo-modes.
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3.3.1 The LPol and LP;; Mode Combination

Following the same line of reasoning as for the single mode case, we
write the electric field expressions for the two modes:

- - - A
E{ = A/fjcos¢ e J(Prz Wl)ax

LP,: (3.29)
E? = B f;sin¢ e—J(Blz—%) Qx

In this case we must account for both the even and odd LP;; modes, both

being valid solutions to the characteristic equation (3.15). Note that the only
difference between them is the possibility of a different amplitude
coefficient, and the starting point for the oscillating azimuthal dependence.
As before, the corresponding modes polarized along y will not be considered
here. Again the total fields can be expressed as the sum of the individual
mode fields, or

E. = (E,+E%+E%a
x 0T T T (3.30)

Tl

y = (YEy + YE] + YE{)a,

At all points along the fiber the modes interfere. The z component of

their combined intensity is calculated as

1

s Re(Y(E, + E] + EDES + ET" + ETH)

1
= 5 Re(Y[ERE," + EE{* + EEY" (3.31)
+ESES* + ESEY" + E)E§ + EGES"+ E)'E + EgET']) .
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In this expression, it has been assumed that Y, = Y, = Y. Although this is
not strictly true, since Y, and Y, contain different propagation constants B,
and B, respectively, because of the bounds on B, expressed by the relation of
equation (3.4), we assume that Y, varies little from mode to mode,

especially with respect to other factors contributing to the change in mode

amplitude. Thus we will take Y, =Y = n\/ €y/H, where n is given as the

average value of the refractive index. Substituting the field distributions
from (3.29) we have,

1
I = 5Re {YIA £y + A, *f,” cos’ + B f;” sin’0 + 2A B, f;? sin¢ cos¢
+ A, Ty £ cosp (e TP2-W) o +i(Bz-), (3.32)

+ AgB, I, £, sing (e 3PZ-W) 4 Bz-W)y)

where the difference between the two mode propagation constants is defined
as p = By — B, and the initial phase difference is y =y, —y,. Here the tilda is
reserved to designate "the static difference between" for the modes involved.

If the Euler identity is applied, and the real part taken, a simpler form
results, making the r and ¢ dependence more obvious:

Y .

I = AR £’ + 1A £, cos’0 + By £;? sin’¢
+ 2|A,11B,] flzsin¢ cos( (3.33)
+ 2|Agl1A,| £, f; cosd cos (ﬁz -V)

2 |Ayl B,I £, f; sing cos (Bz -§) ) .

+

The first three terms are the self-interference intensities in the LPOI
and the even and odd LP,; modes, respectively. It is clear that the LP,

mode intensity is azimuthally symmetric, leading to a central lobe, while
the LP;; modes give rise to lobe peaks at ¢ = nn/2 for integer n. The

remaining terms arise directly as a consequence of interference between
modes. The fourth term can be rewritten as |A,||B,] flz sin(2¢), showing
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that the intensity contains a contribution which reaches maxima at n/4 and
5n/4, and minima at 3n/4 and 7n/4. These terms are all static with respect
to disturbances.

The last two terms above are especially important for the performance
of a sensor based on modal interference. We see again an antisymmetric
contribution to intensity in the azimuthal direction, this time with maxima
for the two terms at 0 and n/2, and minima at r and 3n/2. Note in addition,
that the strength of these contributions is modulated by the common
cos (Bz — ), which significantly contains both B and z. For one, it says that

disturbances which alter f§, such as bending or pressure on the fiber, cause
phase changes in this factor. It follows that the maximum of these terms
moves about in the output field with the disturbance. It also says that as
power flows along z, the peaks of intensity shift in ¢ around the center axis.
The spatial period of this oscillation, L = A/An, is known as the beat length
between the two modes, and is a direct result of their differing phase
velocities or, alternatively, propagation constants. Here An is the effective
phase index difference between the modes [93]. Furthermore, if the length
z through which the modes travel is modulated by elongating or
compressing the fiber, or if p changes, it will be manifested as an exchange
of power among the output intensity lobes.

Often equation (3.33) is further simplified by making the reasonable
assumption that power is injected in such a way that B; (or A;) = 0. When
the definition for f in equation (3.20) is applied, the intensity pattern from
the fiber core can be described by

3,2 (ur/ J. 2w/
[ - %‘{Aoz 0 2(“01‘ a) N 12(“11’3) cos2
Jo2 (ug) 3,2 (u,)
(3.34)
Jy(ugr/a) J(u,r/a)
Jo(ug)  Jy(uy)

+ 2ApA, cos¢ cos (Bz— )

The pattern in this case consists of two lobes around ¢ instead of four; a

representation of what might be seen emerging from a fiber under typical
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conditions appears in Figure 3.7. Figure 3.8 shows the individual terms of
(3.34), including the sum of the first two, which are unaffected by strain
and are therefore considered a background term. For these plots, 0 = fz —
is taken to be zero, as is the value of ¢, meaning we are looking along the x-
axis as shown in Figure 3.7.

When strain is applied, both B and z change, altering the value of the
cross term at every point. The result is that the lobe of intensity appears to
shift across the center axis, as seen in Figure 3.9, as recent publication
confirms [94]. If a detector is placed at a particular value of r/a, it would
record an oscillating intensity as a function of strain. The modulation

depth is in part determined by the position of the detector. For example, it
can be shown that for the particular values of B, and B, used in this model,

maximum modulation depth occurs at the peak position when 6 = 0, or
r/a=0.42. However, one can guess from equation (3.34) that this position
depends on the proportion of power propagating in each mode, as becomes
evident in Figure 3.10. Finally, when the value of the intensity is plotted for
increasing strain, Figure 3.11 results. The decreasing peak arises from the
fact that B, and B, change with strain (as will be discussed at length in the
next chapter) and because the propagation constants appear in Y, u, and w.

Laboratory demonstration of equation (3.34), and Figures 3.9 and 3.11 is
extremely straightforward to perform. Experimental confirmation of the
usefulness of strain sensors based on LP;, and LP,; interference was
demonstrated first by Layton and Bucaro, who used a dual mode fiber
sensor to detect acoustic waves in water [8]. As will be shown, sensors
based on this mechanism are predictably two to three orders of magnitude
less sensitive than conventional two fiber interferometers, but they offer the
advantages of stability and simplicity, while retaining high sensitivity
relative to many other fiber optic sensor types. That is, because modal
sensing is a diflerential technique where the two light paths are within the
same fiber, random disturbances to the fiber such as thermal fluctuations
affect both modes, unlike the two-fiber interferometer. Though the degree
to which they influence the modes is different, the net effect can generally
be considered small, resulting in a high degree of common mode rejection.

74

Chapter 3 Principles of Modal Domain Sensing



Also, since only a single fiber is used, the need for optical fiber couplers is
avoided, increasing the optical throughput and simplifying
implementation.

3.3.2 Other Dual Mode Combinations

The above analysis considers only one of many possible mode
combinations. It is clear that varying the modal content will lead to
changes in the output pattern. As first pointed out by Layton and Bucaro
for optimum sensor performance, the modes chosen for interference should
exhibit a large difference in B, possess a large cross term in the
interference expression, and have a relatively simple spatial variation in

the output plane. From Figure 3.2, one can see that for a V of
approximately 3, the LP; and LP|, modes have a large difference in B, and

the slope of the LP;, mode at that point is reasonably large. It was shown

before that the output pattern could consist of as many as four lobes which
exchange power, but often contains only two. Also, Safaai-Jazi has shown
that a rotating, one-lobe pattern is possible with these two modes by setting
B, =JjA, in equation (3.33) above [95]. It is noted that rotation of the lobes is
only possible if both the even and the odd contributions are included.

Again referring to Figure 3.2, if V = 4-5, the difference in B is also large
for the LP; and LP,, modes. The spatial distribution of the interference
between these modes is independent of ¢, and can be calculated as a
circularly symmetric pattern with either a central bright or dark circle. To
show this, we write the field expressions for the two modes:

LPy: B, = Afe P1Z ¥
(3.35)

2 1Bz - yy) A

X

Following the same procedure as with the other mode combinations, we
arrive at an expression for the output intensity,
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Y
I = SIA R +A67 + 2A A, f fyco80] . (3.36)
More formally, we could write,

4 o2 (ug,1/2) 5 Jo (ug,r/a)
= 2| Ao T2 + Ay 7
o (1) Jo~ (ugy)
(3.37)
A Jy(uy,r/a) Jy(uy,r/a)
02 Jo(ugy) Jo(ug,)

+ 2 Aq cos (ﬁz—{fl)]

The individual terms appear graphed in Figure 3.12 as a function of
r/a. Note that the criterion for a large cross term is apparently met. The
total output intensity for the cases of maximum and minimum cross term
is shown in Figure 3.13. The form of equation (3,37) and Figure 3.13 can be
readily verified in the laboratory by aligning a fiber intended for single
mode operation at 1300 nm axially in a He-Ne laser beam without the use of
an objective lens, since the latter tends to launch light into the unwanted
LP,, and LP,, modes. Figure 3.14 demonstrates the effect of strain on such
a fiber as seen by a CCD camera. A fiber sensor based on the interference of
these modes has recently been reported [96], which makes use of a mask in
the output plane imaged onto a set of spatial filters to overcome problems

with polarization instabilities. Interestingly, it is also pointed out that in
quadruple-clad fibers, the LP, cutoff frequency is lower than that of the

LP,, and LP,, modes, meaning such a fiber could easily be operated with
the LP;; and LP;, modes in a truly dual mode arrangement.

Selective interference between the LP;; and LP,, modes has also been
analyzed [95]. If the amplitude coefficients are properly chosen in
magnitude and phase, a three-lobe pattern may result. This pattern rotates
with the application of axial strain on the fiber, as was demonstrated by
Duncan et. al. [16]. It is unfortunate however, that while the output is
simple, it is not unique to this mode pair, and other three-lobe patterns do
not necessarily rotate with applied strain. Thus achieving this pattern in
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the lab is generally difficult, and requires off-axis injection to avoid
launching of the fundamental mode. These factors limit the usefulness of
this mode pair in sensor applications.

3.4 Interference in Multimode Optical Fibers

In contrast to the simple output patterns obtained with single and dual
mode optical fibers, few mode, and especially highly multimode fibers
display much more complicated outputs. To understand why, we need only
to consider that each of the propagating modes has its own spatial
distribution which simultaneously interferes with all other modes all along
the guide and in the output plane. If we also recall that most LP modes
consist of four nearly, but not exactly degenerate vector modes, it becomes
clear that even when only a "few" LP modes propagate, many distinct
modes actually exist in the fiber. For V numbers below 5 or 6, patterns
usually appear as a number of lobes of intensity randomly located in the
output. When the fiber is disturbed, the various P s associated with each
propagating mode are altered, changing their differential phase, and
therefore their interference pattern.

If the geometry of the fiber is such that the diameter of the core is much
greater than the wavelength of the light traveling inside, then an
explanation based on geometrical optics is often useful in understanding
the nature of the output pattern from multimode fibers. This is often the
case in typical multimode fibers, where the diameter is from 50-200 pum,
and the optical wavelength is nominally 1 um. Referring to Figure 3.15a,
we may then consider low order modes as those rays which make small
angles with respect to the fiber axis. Their propagation constant P is taken
as the z component of the k vector corresponding to that angle. Higher
modes make larger angles, and so have smaller values of B, in keeping
with the B-V diagram of Figure 3.2.

With any two rays are associated wavefronts, roughly plane waves in a
homogeneous, isotropic core, represented in Figure 3.15b. Total internal
reflection at the core-cladding boundary ensures that these waves arrive at
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the end face, and after propagating to a screen, produce intensity fringes
typical of any two interfering plane waves. Interference from other pairs of
rays occurs simultaneously, and fill the same space on the output screen.
When now rays in the y dimension are considered, and skew rays are
included in addition to the meridional rays shown, the many overlapping
interference fringes appear as a pattern of numerous speckles. As one
would expect, the number of speckles increases with the number of modes
in the fiber, while the individual speckle size decreases. For highly
multimode fibers, the number of modes propagating in a step index fiber N,
can be calculated as approximately [97]

N=~=—. (3.38)

Recalling the definition of the V number in equation (3.16), we note that
the number of modes, and therefore the number and size of the speckles in
the output pattern depends on the static and dynamic values of the core
radius, indices of refraction, and propagation wavelength. This can be
seen qualitatively in Figure 3.16, where the speckle patterns from a typical

50/140 (core/cladding diameter) fiber can be seen. In one case the fiber is
excited with a standard He-Ne laser, A, = 633 nm, in the other, the laser is a

He-Cd with A, = 482 nm. As expected, the latter shows a higher number of
smaller speckles. However, we note that the exact relationship between the
number of modes and the number of speckles has not been stated here.
This will be taken up in the last chapter.

It remains to obtain an expression for the intensity distribution of the
speckle pattern output. As we have seen, in the case where only a few
modes propagate, the resulting interference pattern is relatively
straightforward to describe. As more and more modes are included, we are
forced to express the result in terms of a summation of terms, as described
in a recent paper by Spillman, et. al. [18]. That is, if we wish to find the
total electric field in the fiber, we must sum contributions from all modes in
the general field expression of equation (3.18) over all values of / and m. We
have already established the lower bounds on fand m , yielding [ . =0 and
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m_ .. = 1. To determine the upper bounds for these integers, we note that far
from cutoff, it can be shown that the total number of modes can be

approximated by estimating the number of roots of the equation [97]

J (u,) =0 . (3.39)

Noting that the definition of u and w in equation (3.10) applies for each
mode, and recalling the bounds on B set in equation (3.4), it can be seen that
the upper limit on u,, occurs when B, = n,k, ; in that case u,, = V.
However, from the large argument approximation of the Bessel function, it
can also be shown that [98]

W, =+ 2my . (3.40)

Equating these, we arrive at the conclusion that

Loax = 2n_V and Moay = % . (3.41)

By calculating the area in [-m space representing the number of possible
modes as approximately ;—[maxmmax , and recalling the fourfold degeneracy
for LP modes having [ > 0, we arrive at the approximate number of bound

modes in the fiber given in equation (3.38).
Having established the boundaries on [ and m, we express the total

electric field for the x-polarized even modes as

[l'l

- Tinax . A
By = 2 2 A, f, costé expl-iB,z - v,)] 8 (342)
= XXE, a, (3.43)
[ m
while the total magnetic field for the y-polarized even modes is
Vi)
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o - A A
H, = YIE.la, = Y;%E,may : (3.44)
Again Y, has been approximated by the average admittance Y.

Computing the Poynting vector relation of equation (3.22) as before, the
intensity becomes

I = Yz— Re {()%EE,M) ZXEl. )]} (3.45)
m (' m
- ¥R {(ZZZZ(E,EL,.)] (3.46)
[ m (' o

where the primed dummy variables are introduced to account for the
interference between each combination of modes. The summation limits
for [’ and m’ are the same as those for [ and m, respectively. Substituting
the field distributions in from equation (3.18) and taking the real part, we

have
[mxx mmu [,m m’mn
[ =522 2 T (A, A ff (3.47)
T2 (20 motl (20 m= o Em T Tm ! .

x €08 [(0 + Bg) cos [ (¢ +dg) c08 [B;e 2 — Wyprm] )

where the difference between modal propagation constants and initial
phases is again represented by a tilda:

E[m['m' = Bim = Brm and  Vum = Vm = Yom - (3.48)

Also, the odd modes have been re-introduced by virtue of the added factor of
¢y » which in principle could take on any value, including -n/2.

When the multimode fiber experiences mechanical perturbations,
strain is imparted either along the axis, radially, or both. The
simultaneous changes in fiber length, refractive index, and diameter act to
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alter the differential phase of each mode, dictated by the fiber parameters of
the fiber. Again, it can be seen qualitatively from equation (3.47) that
changes in z, the fiber length, affect the phase of the last cosine factor, as do
changes in fiber radius and index through B. These changes all tend to
modulate the intensity of the output speckle pattern, though it does not
change the general shape of the interference pattern from each mode pair.
Certain types of fiber motion produce a rather regular composite motion of
the speckles; for example, the speckles may appear to rotate clockwise about
in ¢ when the fiber is swung clockwise in a sweeping arc. However, for
most disturbances the changes appear rather random.

A number of terms in (3.47) are stable with respect to perturbations.
Specifically, terms arising from mode self-interaction, which in (3.48)
means that § = 0, are invarient with respect to z. It is not strictly true that
they are unaffected by mechanically induced changes in B however, since A
depends on P by virtue of its dependence on Y, while f depends on B through
u and w. It is generally believed that for practical variations in B, changes
in intensity because of these mechanisms are much smaller than due to the
phase change noted above, though Figure 3.11 suggests that this may not be
completely accurate. Nevertheless, considering that the total intensity
distribution consists of overlapping contributions from many mode pairs,
each with its own sensitivity, as well as from d.c. term, it becomes more
clear why disturbing the fiber results in some speckles shifting wildly,
some only moderately, some hardly at all .

Thus we have in equation (3.47) a relatively simple, closed form
expression for the speckle pattern intensity distribution. Such a form lends
itself well to computer simulation, though to be sure, modelling the output
of a typical multimode fiber would involve a relatively extensive calculation,
especially if the determination of individual propagation constants were
first required. However, this novel form does add physical insight into the
nature of modal interference in a general situation. For example, it can be
easily shown that the intensity distribution of the LPy, / LP,, or LPy, / LP,

sensors of equations (3.34) and (3.37) result when the appropriate choice of
[ .. and m__ are inserted into (3.47).
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The observation of speckle modulation offers a number of advantages to
strain sensing. For one, multimode fiber is cheaper and easier to work
with than single mode round or elliptical core fiber used for single or few
mode sensors. Also, fewer components are necessary to construct a sensor,
and rigid injection requirements, as well as source stability and power
requirements can often be relaxed significantly. At the same time, it will be
shown that highly multimode sensors can retain strain sensitivities which
are competitive with single mode interferometers. However, to date only a
relatively small number of authors have reported the use of modal
interference phenomena in large core fibers for sensing purposes, and even
fewer of those in the last five years [9-11,17-19,22].

Nearly all the early demonstrations concentrated on acoustic wave
sensors, apparently aimed hydrophone applications. One notable example,
described by Culshaw, Kingsley, et. al., clearly shows the flexibility of the
technique, as well as the high sensitivity afforded by multimode fibers over
a broad acoustic frequency range. Originally conceived for a data telemetry
system, their method was termed "fiberdyne" for "fiber-optic self-
homodyne" [99]. Piezoelectric transducers clamped to the injection end of
an optical fiber cable were FSK modulated by information signals; the local
fiber geometry was altered accordingly, rearranging the mode structure of
helium-neon light propagating in the fiber. At the far end, demodulation of
the modal signal was performed to recover the transmitted information.
Such systems have been found to operate acceptably for acoustic modulation
frequencies between 100 kHz and 10 MHz. At the same time, detection of
acoustic waves from near d.c. to over 100 kHz has been demonstrated by
several other authors, thus revealing the wide operating range of the
sensor.

Having covered the basic theoretical foundation for the existence of
modes in fibers, and gained an understanding of their interference, it is
necessary to investigate the degree to which these phenomena can be used
for practical sensing. Accordingly, in the next chapter, we turn to
calculations of the intrinsic sensitivity of single mode, few mode, and
multimode fibers to applied strain.
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Figure 3.1. The refractive index profile and geometry of the step index fiber,
showing the coordinate system used in the present analysis.

Chapter 3 Principles of Modal Domain Sensing 8



ko,

Figure 3.2. Propagation constant versus the normalized frequency V for
the first several modes. Shown are the vector modes and their
corresponding LLP mode designations (after [91]).
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Figure 3.3. Values of u and w (equation (3.10)) as a function of the
normalized propagation constant b. Vanues themselves are normalized
with respect to V, the normalized frequency of the guide.
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Figure 3.4. A typical Mach-Zender interferometer applied to the
measurement of strain in a fiber embedded in or attached to a sample.
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Single Mode Interferometer
Normalized Intensity vs. r/a
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Figure 3.5. Intensity distribution for the single mode fiber interferometer
output as a function of the normalized radial position r/a.
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Figure 3.6. Plot of equation (3.28), single mode interferometer output
intensity as a function of total phase 0, which is itself affected by external

perturbations. Equal amplitudes of the incoming waves is assumed.
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Figure 3.7. Representation of the output pattern observed when a fiber
propagates the LP,; and LP;; modes, for three different values of strain.
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LPO1/LP11 Terms:
Intensity vs. r/a

1.1

ol el 7T
_m;backgr nd / A
0.7 / /LP01 term
' / \

[/ I\

0.1
Htttom
0.1 \
\
-0.3 1 \ / cfoss tedm

-0.5 v v v T

T T 1

-2.0 -1.5 -t.0 -0.5 0.0 0.5 1.0 1.6 2.0

intensity

normalized
i‘

r/a

Figure 3.8. Terms of equation (3.34) describing the interference between the
LP,, and LP;; modes. The self-interference terms and their sum are

shown; these are all static with strain and therefore considered a
background term. On the other hand, the cross term changes with strain.
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Figure 3.9. Intensity distribution of the LP, / LP;; modal domain sensor at
two different values of 0, or equivalently, strain. In this plot, it is assumed

that the two modes carry equal power.
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LPO1/11 Intensity vs. Strain
at r/a = 0.42
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Figure 3.11. LP,, / LP,, sensor output as a function of strain. In this plot,

it is again assumed that the two modes carry equal power.
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Figure 3.12. LPOI'/ LP,, sensor output distribution. Shown are the

individual self-interference terms and their sum, which constitute the
background intensity. Also shown is the interference cross term.
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Figure 3.13. Total intensity distribution for the LP, / LP,, sensor for two

values of 0, or equivalently, strain. The case of 6 = 0 corresponds to

maximizing the value of the cross term, while for 6 = n/2 , the cross term is

eliminated.
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Figure 3.14. Modulation of the LPy,/LP,, mode combination intensity is

seen for four increasing values of axial strain applied to the fiber. The
" appearance of fringe-like details occurs due to multiple reflections in the
cover glass of the CCD processing array used to record the images.

Chapter 3 Principles of Modal Domain Sensing 9%




Figure 3.15a. Optical fiber modes in a multimode fiber from a ray optics
point of view. Higher modes are represented as those propagating at
higher angles with respect to the fiber axis.

X end face

X

interference
fringes

Figure 3.15b. A simplistic representation of modal interference. Two
coherent meridonal rays with nearly planar wavefronts interfere in the
output to produce ordinary interference fringes. When multiple modes and
skew rays are included, the result is a speckle pattern such as seen in
Figure 8.
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Figure 3.16. Typical speckle patterns emerging from a 50 pum core
multimode fiber. The upper figure resulted when 633 nm light from a He-
Ne laser was injected into the fiber, while in the lower figure the fiber
transmitted 482 nm light from a He-Cd laser.
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4.0 STRAIN SENSITIVITY

Up to this point, we have claimed that single mode interferometers, as
well as dual and multimode differential interferometers, are well suited for
the measurement of induced strain in materials and structures. It has
been stated that they offer high sensitivity, in fact greater sensitivity than
all other optical fiber sensors. In this section, we address the issue of
calculating the absolute sensitivity of fiber optic phase sensors to applied
strain.

The analysis will be divided into five sections. In the first, the basic
strain mechanics will be discussed, especially with regard to optical fiber
strain sensors. The next section will consider the change in phase per unit
strain for single mode fibers. These calculations involve a number of
differences with the generally accepted procedure first set forth by Butter
and Hocker in 1978 [54], and will be discussed in detail. With that
foundation laid, the next two sections go on to calculate the phase sensitivity
of dual mode, and highly multimode fiber sensors. Applied axial strain,
important for many sensing applications, will be treated first for each fiber
type. Also addressed for each type is the case of radially applied strain,
such as occurs when a fiber is subjected to longitudinal sound waves
crossing transverse to its axis. Comments relevant to this application will
be mentioned throughout, as it was a primary motivation for the study. A
discussion of the assumptions made along the way, and some intermediate
results will close the chapter.

4.1 Strain Mechanisms in Optical Fiber Sensors
In many applications of optical fiber sensors, and especially those

involving structural measurements, the quantity which is actually sensed
is strain, regardless of the particular observable which may have caused it,
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such as temperature changes or acoustic emissions. As mentioned earlier,
the strain may affect one or more of the basic properties of the light within
the waveguide. Theses include the optical phase, intensity, wavelength,
polarization, modal power distribution, and propagation time. In this
section we outline the basic strain mechanisms to which a fiber may be
subject, and set the stage for a more quantitative discussion of the
sensitivity of the phase in a fiber to strain.

The general strain tensor, applied to a small body in a Cartesian
coordinate system such as appears in Figure 4.1 may be expressed as

€n &2 €3
& = €1 € €3 | (4.1)
€31 €3 €33
Throughout the analysis, we assume that from a mechanical point of view,
the fiber is homogeneous and isotropic. That is, though clearly the optical
properties of the core and cladding differ, the mechanical properties such
as the Young's modulus and Poisson's ratio do not change with respect to

position and direction in the fiber. In that case, the tensor is immediately
reduced to six independent quantities due to symmetry:

€ €12 €3
€i;j = €12 €2 &3 | 4.2)

€13 €3 €33

Finally, modelling the fiber as a right, circular cylinder and considering
the directions 1 and 2 equivalent, the tensor further reduces to

€1 €12 €13

€13 €3 €33
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The four independent strains which result are

€;; — the radial strain

€, — the torsional or rotational strain
€3 — the shear strain along the axis
€33 — the axial strain

These strains are illustrated in Figure 4.2.

It is instructive to note that all possible deformations of the fiber are
included in the strain tensor. For example, bending the fiber may be
considered as comprised of a pure bending term, which amounts to pure
axial strain €33, and a moment, which is shear strain €3 . Likewise other
strain geometries could be accounted for with the four terms above.

In the general case, we assume that imposing each of these strains on
the fiber affect the basic optical properties differently. For example, radial
pressure on the fiber may alter the polarization state of the light within it,
though the overall intensity may be little affected, while on the other hand,
all the strain geometries will simultaneously affect the phase or modal
power distribution. In the ideal case, the coupling between all the
mechanical and optical effects would be known for several representative
fiber types, such as single mode, few mode, polarization preserving, highly
multimode step index, and highly multimode graded index. Theoretical
models exist for a number of the different relations, and many experiments
performed, but to date there appears to be no comprehensive model for opto-
mechanical interaction in optical fibers. A general formulation describing
how changes in strain affect the six optical quantities mentioned above

might appear as

(AL
A6 €n
AP €
_ T. . 12 .
AN 1 €13 4.4)
AM €43
k k
\at /),

Chapter 4 Strain Sensitivity 101



where

= intensity

= phase

=  polarization state
wavelength

= modal power distribution
=  optical pulse time delay

=  optical fiber type subscript

e 2 >
I

and Tij ,

tensor coupling the mechanical and optical properties. It is assumed that

i=1,.,4;)=1,..,6,is chosen to represent the transformation

simple lincar superposition applies, allowing the matrix representation
above. Whether or not this assumption is valid has yet to be confirmed.

In the following sections, our attention will be restricted to only two of
the twenty-four terms in T, namely T,, and T,,, which relate radial and
axial strain in a fiber to the phase change of coherent light propagating
within the fiber. Specifically, we seek to determine the absolute sensitivity
of the phase to strain; this will be referred to as the "phase sensitivity" to
distinguish the results from the other possibilities implied by (4.4). It is
important to realize however, that regardless of the optical parameter
which is employed for sensing, the final signal is most often formatted in
terms of an electrical current proportional to the intensity of light striking a
photodiode. Therefore, although phase sensitivity is the focus of the
discussion, it will be necessary to begin by examining how the interference
intensity pattern changes with the application of strain. Comments
regarding several other terms will be interjected where relevant. Single
mode, dual mode, and three cases of multimode fibers are considered,
though the analysis applies only to step index, round core fibers. Graded
index and elliptical core fibers will necessarily be relegated to future work.
We begin with the most standard case, that of single mode fibers subject to

axial strain.
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4.2 Strain in Single Mode Fiber Sensors

The general approach for finding the inherent phase sensitivity an
interferometer is outlined as follows. We start by recalling the expression
for the peak intensity of the interference distribution, (3.28), repeated here:

I =101+ cosB] . (4.5)

We seek to discover how the intensity I changes with the application of
strain to the fiber. That is, we wish to find

Al = I:a_I]S , (4.6)
o€

where € is the applied strain, and the initial strain is taken to be zero. In
order to evaluate this, it will be necessary to break up the derivative several
times until we can write closed form expressions for all the factors which
contribute to change I when strain is applied. Using the chain rule,
differentiation with respect to 0 is introduced:

o - R

1, si 9[89]8
- 1n - .
0 )

4.7)

€

Obviously the signal is maximized for any given level of strain when the
phase 6 = —1/2 (or odd multiples thereof), which corresponds to setting the
sensor at the quadrature point, marked Q on Figure 3.6. At this point the
slope of the I-0 curve is steepest and the curve is nearly linear, meaning
small changes in 0 produce maximum change in I. This condition is
accomplished in practice by properly choosing or setting y, and vy, in

equation (3.19). In that case,
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Al = 10[%']8 . (48)

We first investigate the case of strain applied along the axis of the fiber,
the z axis. It is useful to consider a simple mechanical model, such as the
section of single .mode fiber illustrated in Figure 4.2. The phase of an
optical wave moving between points A and B advances by an amount

0 =pL-v. 4.9)

When the fiber is strained, not only does L change, but through the Poisson
relationship, the fiber radius (or diameter) also changes. Furthermore, not
shown in the diagram is the strain-optic effect, to be discussed later, which
states that when an optical material is strained, its index of refraction also
changes. That a change in L will affect 6 and therefore the output intensity
is obvious from (4.9). Also, again referring to the definition of the

normalized frequency V in equation (3.16), it becomes clear that any change
in the fiber radius or refractive index will likewise affect 8. With this

intuitive argument in mind then, we state that strain acting on an optical
fiber can change the phase of the light within the fiber by three means:

1) change in fiber length, L,
2) change in fiber radius, a,

3) change in fiber refractive index, n.

It is important to realize at the outset that all of these changes occur
simultaneously regardless of how strain is applied, though the magnitude
and the sign of the individual contributions differ. Thus we can write

Al = [%Iil AL + [%] Aa + [(%IT] An (4.10)
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Lolat]on « [l Rl « (B[]

00 0
= -l sin® { [ﬁf] AL + [-g;] Aa + [g%] An} , 4.12)
and again assuming quadrature,
dJ0 20 20
Al = IO{[E,—L]AL " [35] Aa + ['a‘ﬁ] An} . (4.13)

Each of the terms in brackets will be discussed individually. To
simplify the notation, we define the total change in phase A8 such that

(4.13) can be rewritten in terms of the individual phase change

contributions:

AL = To{ae, + a6, + 28,} = Tyae . (4.14)

4.2.1 Change in Length

Consider first the phase change due to a change in the fiber length,
20
A8 = l:a_L] AL . (4.15)

From the definition of 6 in equation (4.9), it clear that the derivative is
simply B. We note for later use that for uniform strain €, applied along the
fiber axis, AL = €,L.. Thus we state simply that

A8, = BAL . (4.16)
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Immediately it can be recognized that in order to maximize the change
in phase and therefore the change in peak output intensity for a given
strain, the sensor should be operated with the highest B possible, or with
the V number as close to the cut-in of the second mode as possible. This can
be accomplished for a given fiber by altering the propagation wavelength, or
for a fixed source, by either increasing a, making the fiber easier to work
with, or by increasing the parameter A, making the fiber easier to fabricate.

It should be noted that a more general expression for AL is preferable

when dealing with actual measurements of strain in physical structures.
That is,

L
AL = foe(z,t) dz | 4.17)

where this form allows for changes in strain along the length of the fiber as
a function of time [73]. For the present analysis of sensitivity however, the
integral relationship of strain is secondary, and uniform strain will be
assumed throughout.

4.2.2 Change in Radius

Next we consider the effect on the phase of changing the radius, noting
AB, = [g—g] Aa . (4.18)

Breaking the derivative up into three terms using the chain rule,
AB, = [g—g] -{%] -[%; Aa . (4.19)

As before, the first term is merely L. The second term is exactly the slope of
the B-V curve. In practice however, it is much more convenient to work
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with the normalized parameter b, as defined in equation (3.17), since it
varies from 0 to 1, rather than from n,k, to n,k,. This term could then be

further broken into two terms expressing the change of B with respect to b,
and the change of b with respect to V, the latter now being the slope of the b-
V curve. From the definition of b, it can be shown that

P ( 2 2)k2
% - A 2’;32 0 - (m-nyk, (4.20)

i

where the approximation arises from the fact that for a weakly guiding
fiber B = k((n,+n,)/2 ; for typical fiber parameters this introduces an error of

less than 0.006%, and the maximum error that could be incurred can be
shown Lo be (n;—n,)x100 percent, or about 0.5%. This increases to as much
as 3% for multimode fibers since their index difference is generally larger,
indicating that the exact formula should be used in this case. For small
changes in V due to strain, the b-V curve can be considered linear near the
point of operation. Thus, referring to Figure 4.3, we can define the value for
the slope of the B-V curve as

AB b-b'
5% av T (“l‘nz)kO(V—V'J = my-n)kySy , @21

where the primed variables refer to their values after the application of
strain, and Sy is the slope of the b-V curve, defined for future use. Note that

the values of b, b', V, and V' could all be obtained numerically to any
precision desired, though for this argument it suffices to estimate them
from the plots.

The third term in equation (4.19) is clearly just k \/ n2-n,2. The last
term, Aa, is found from basic strain relations using v, the Poisson ratio of

the fiber material:

Aa = ag ; € -VE, , (4.22)
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which leads to

Aa = —avg, . (4.23)

Finally, combining the expressions from above,

AB, = —vSVAL . (4.24)

a

4.2.3 Change in Refractive Index

When an optical material is strained, a change in its refractive index
may be observed. This change, of foundational importance in the operation
of many acousto-optic devices, is due to two principal mechanisms: a
change in the spacing of the crystal lattice planes normal to the direction of
the applied strain, and a distortion of the orbits of the outermost electrons in
the oxygen atoms in the glass [100]. It has been shown that for low
refractive index glasses, the latter effect dominates [101].

When calculating the phase change due to the change in refractive
index, it is important to realize that although in a ray optics model light is
considered as confined to the core of an optical fiber, for single and few
mode fibers, much of the transmitted power actually propagates in the
cladding. Furthermore, as we have seen, the exact value of the propagation
constant for a given mode may very much depend on the operation
frequency, V, which is itself dependent on n, and n,, or alternatively on A.
Finally we note that for an ordinary fiber, it is virtually impossible to impart
a strain that does not involve an index change in both the core and the
cladding. Because of the fiber geometry, the strain in these regions may be
considered the same. Thus, when expressing the phase change as

06
AB, = [%—] An , | (4.25)
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it is evident that the term An should be broken up so as to include the effects
of changing both n, and n,. That is,

d0 ap oV A
AB, = [%] . [W] . (§n—1An1 +§3;An2) . (4.26)

As before, the first two partial derivatives are L and S, respectively. The
derivatives of V with respect to n; and n, are

v _ kQanl

(4.27)
oV —kpan,

Jn - 2 2
2 Vn;“-n,

The change in indices An, and An, are expressed in terms of the

photoelastic constants of the two glass types, and of the strain level.
Because n; and n, are homogeneous and isotropic, and because of the

strain geometry, the strain-optic tensor reduces to only two values, p,; and
P,,, and the Poisson ratio is introduced [54]. Again, it is assumed that the

Poisson ratio for the core and cladding can be considered equal. The
resulting expression for axial strain is then,

1
An, = ez{—§n13 [(1—")1’12—"911]}
and (4.28)
1
An, = 5z{‘§n23 [(I‘V)Plz“’pu]} :

For ease of notation, these will be simplified using the following definitions:

Per = (1-V)pp-vpy, (4.29)
and _
1 3 _ 1 3

a’l = - § nl Pert ’ az = - § n2 pc[f . (4.30)
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Combining terms from above, we find the total phase change due to
refractive index change can be written as

k
A6, = LS J&ezal —Mezaz 4.31)
\jnl — Iy an — 1y
- sv{rll B né%]AL . (4.32)
np —m

If we further define an effective strain-index coupling coefficient:

n,o; — Ny 0O
_ ooy 2%
Oegr = D) 5 ) (4.33)
n, —n,

we finally arrive at a simple expression for the change in phase due to
refractive index changes:

A8 ayr SVAL . (4.34)

n =

4.2.4 Combined Sensitivity

It now remains to gather the results from the previous sub-sections and
substitute them into A of equation (4.14) to find the total phase sensitivity of
the single mode interferometer per unit axial strain per unit fiber length.
Combining (4.16), (4.14), and (4.34) yields the expression

AB
- = [B—VSV+(1,CHSV] . (4’35)

g, L
In order to assess the meaning of this relation, we substitute realistic

values of the associated fiber parameters into the expression. Table 4.1
presents a list of the values used for this study. This gives approximately
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~ [14,500,000 — 5,000 — 13,000] = 1.44x10’ m™! . (4.36)

&

First note that the contribution due to the change in length is three orders of
magnitude larger than that due to the change in index, which is itself twice
as large as that due to radius change. Thus for the case of axial strain, one
may approximate the phase sensitivity per unit strain per unit length by B,
which here is roughly equal to n,k,. Second, we observe that the second
and third terms are negative, meaning that the change in radius and the
change in index tend to partially offset the effect of axial elongation. That
is, whereas elongation leads to a delay in the phase of the signal,
decreasing the radius and the differential refractive index create phase
advance. Qualitatively, elongation means that there is a longer length of
fiber to traverse; on the other hand, a decrease in radius results in a slight
improvement in waveguide dispersion delay, and the net decompression
which occurs when combining the elongation and radius decrease leads to
a decreased effective index for the fiber, thus reducing the optical path
length.

It should also be noted that although most of the values in Table 4.1 are
widely accepted for single mode fiber operation, as pointed out by Bertholds
and Déndliker [102], those for the strain optic coefficients may not be
typical. They empirically determine v, p,,, and p,, to be 0.16, 0.113, and
0.252, respectively. Using these values, the last term above is reduced in
magnitude by about five percent. Although this is not significant here, it
might become so in the case of multimode fiber sensors, where the change
in index makes a much higher contribution to the overall phase sensitivity.

Finally we note by way of example, that for a relatively short sensor
length of 1 cm experiencing 1 microstrain, we could expect to see a phase
change of 0.144 radians, or 8.3 degrees. For transmitted optical powers and
detector sensitivities typical in fiber optic sensor laboratories, such a signal
change would be readily discernable. It can be shown that for a 1 Hz
system bandwidth, SNR's of up to 100 dB can be achieved [100].
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4.2.5 Previous Calculations for Single Mode Fiber Sensitivity

Before moving on to the case of radially applied strain, it is appropriate
to digress and emphasize where the present investigation departs from and
enhances previous models. The first paper to discuss the optical fiber
interferometer was authored by Butter and Hocker in 1978, and virtually
pioneered the way for the advent of fiber optic sensors [54], having now been
referenced thousands of times in the literature. In that paper, the
interferometer phase sensitivity is derived in a manner similar to that
presented above. To our knowledge, the results of that paper have not been
criticized in the literature, except to extend them to a more general case of
strain geometry [58], although the results have been used and repeated over
and over. However, it is believed that those previous calculations contain
minor errors in both their determination of the change in phase due to
radius as well as refractive index changes. For the single mode fiber case,
the magnitude of the errors introduced are not serious from a numerical
point of view, but for both dual mode and multimode fiber sensors, they
become significant.

Consider the term due to the change in the fiber radius. The first
difference is that Butter and Hocker present their discussion in terms of
diameter rather than radius, so for the moment, we follow their
convention. Next we note that in equation (4.20), they do not choose to use
the approximation, which as noted before, makes little difference for single
mode fibers, but should lead to a more precise answer. However they
express the change in diameter as AD = + D v g, rather than as—D v g, (see
equation (4.23) above). It is clear from the rest of their paper that they are
aware of the negative proportionality between axial and radial strain, and
its not being included here appears to be an oversight. Carrying their
method through correctly, if we substitute the values listed in section 4.2.2
into

x6, = [gg].[gg].[g_g].[%] AD 43
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and further note that

oV Kk
5 =3 ~n 2-n,2, (4.38)

then we arrive at an expression for the sensitivity due to radius change:

A0 2v V3 Sb ) (4 39)
a - B D2 ¢
Butter and Hocker list their result as
\Y V3 Sb
A6, = + 5~ AL, (4.40)
BH 2D

which obviously differs from (4.39) by the sign term noted above, as well as a
factor of four. The sign difference indicates that they predict a phase delay
rather than an advance, as explained above. For this single mode case, the
magnitude of the error is inconsequential, and would be impossible to detect
in the laboratory. This probably accounts for why their calculation has
gone uncontested all these years (that is, it is likely that others have noticed
this discrepancy, but being of little or no consequence in single mode fibers,
it has not been reported). Because of its small magnitude, made even
smaller by their factor of four reduction, Butter and Hocker, drop this term
from the final expression. Those following in their footsteps simply do not
bother to calculate it. Lastly, we note that when parameters from Table 4.1
are substituted into (3.39), we find A8, = 5,056, as compared to 5,055 from
(4.24), which was obtained somewhat more simply.

Butter and Hocker's calculation of the phase change due to index
changes involves a more serious difference than that for the term above.
Initially, they state that

dap
=L {an] , (4.41)
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in agreement with equation (55) above. However, nowhere in their analysis
do they differentiate between the core and cladding glasses, nor account for

the fact that the strains effect on each tend to partially cancel. Rather, they
argue that since B = kyn (where n is always taken in the literature to be n, ),

then df/on; = ky = B/n;. Though this appears to be a justified assumption
according to the words of weak guidance, it violates the spirit. That is, it is
well understood that the approximation can be made, in the words of
. Marcuse, "whenever the exact value of B is not important” [103]. However,
in this case, we are specifically investigating p and the way it changes with
a change in index, the fine structure of which is masked by this treatment.
Replacing An with a, e, from above, their formulation then yields for the

parameter values used above
AB o, B

6 -1
= = -3 : 42
— o 3.13 x 10° m (4.42)

which is a factor of nearly 250 larger than the value calculated earlier.
Thus in their work, they estimate the change in index term to be down by
less than an order of magnitude from the length change term, suggesting
that it plays a much more significant role in single mode interferometers
than is true in reality.

A final comment about Butter and Hocker's work regards the
experiment they performed, and their statement that the results stood in
excellent comparison with the expected value. It is noted that when they
added the respective phase terms to get the total sensitivity, all of the
constituent factors were approximated. Compared to the fiber that was
actually used, a number of the approximations were too high: n= 1.5,V =
2.5 (the cut-off frequency to ensure single mode operation is 2.405), v = 0.25,
P11 = Py = 0.3. Furthermore, a number of assumptions were made
concerning the experimental conditions and parameters such as the fiber
length, the most questionable being that the strain in the cantilever beam to
which the fiber was adhered was entirely transferred to the fiber. No
account for the strain in the fiber jacket or cement is offered, though
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extensive experience demonstrates that these elements are important in
effecting an incomplete strain transfer, thereby reducing the detected
strain. Thus, while none of these approximations or assumptions are
unreasonable in themselves, the exact value of neither the predicted nor the
empirical value should be taken as an absolute number. Their agreement
should then be taken in terms of order of magnitude only.

To summarize the previous work then, it is observed that the bulk of
what is reported in the literature rests on the conceptual foundation laid by
Butter and Hocker. Recognizing the importance of their calculations, we
nevertheless note that they appear to be flawed in that they

* reverse the sign of A6, ,
* reduce A8, by a factor of four,

* suggest that dp/dn can be approximated by a constant k,, and

* do not account for differential changes between n; and n, .

Despite the tone of this section, it is meant only to be instructional and not
critical. It is well worth recognizing that the errors introduced above were
numerically small, so that the order of magnitude for the total phase
sensitivity was correctly arrived upon, while their basic procedure provided
an important stepping stone for a plethora of further work.

4.2.6 Radial Strain

We now turn our attention to the case where strain is applied along the

fiber radius rather than the fiber axis. In this model, we will assume that
the fiber is subject to uniform radial strain €, , that is, it is the same at every

point around the radius, and that the ends are free to contract or expand
accordingly. This corresponds to a fiber length through which an acoustic
wave passes, assuming the fiber diameter is much less than the acoustic

wavelength.
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All of the general comments in the beginning of Section 4.2 still apply,
with the result that we are trying to evaluate

AB = A6 + A9, + A9, , (4.43)
again with 8 = BL — y. For the change in length, we have

A8 = [S—EJAL = BLe, . (4.44)

From the basic laws of mechanics and by considering the fiber geometry, it
can readily be shown that

g, = 1= . (4.45)

Thus,

A8 = —(f_"v) BLe, . (4.46)

Notice that the length change contribution has been reduced with respect to
the axial strain case by a factor of 2v/ (1-v) = 0.4 . The negative sign merely
reflects that as the fiber is squeezed radially by the sound, the fiber
elongates in response; that is, compression in r leads to tension in z.

The next term in equation (4.43) is derived in the same manner as for
axial strain, with the difference that Aa is left expressed in terms of .. So,

A8, = SVLe, . (4.47)

The phase sensitivity for changes in index again proceeds as for axial
strain, though for this case the definitions for An; and An, must be altered.

From reference 100, we find the fundamental definitions of the optical
indicatrix terms quoted in simplified form. Repeating them here,
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1
An, = —§n3 [p;, & + Pyy & + Py, €] (4.48)

1
An, = —-2—n3 [p, 8 + Py & + PppE,] (4.49)
1 3

For the fiber geometry given earlier in Figure 3.1, radial strain implies that

€y =€y =, while the expression for €, is given in equation (4.45). Hence
1 3T 2\ ]
An, = —5n’| (py+ Ppy) - (ﬁ)puj% (4.51)
1 3 2v )
Any = _§n3 | (P + Ppp) - (l—v)pIZ & (4.52)
1 3 2v
An, = -0 2Ppp- (ﬁ)pu]q : (4.53)

The modes in a weakly guiding fiber are predominantly transverse,
meaning that refractive index variations in the direction of propagation
may be ignored. Rearranging the bracketed terms in (4.51) and (4.52), and
noting that x and y are both radial directions, we find

1 1-3v
An = —§n3[p”+ (—IT)pn]Er . (4.54)
If simplifying definitions are again made such that
. 1-3v
Pt = Pt (_17) P12 » (4.55)

where the prime is added to distinguish p J from its value under axial

strain. Finally then
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1 3 ., ,
An; = -3 D Py = o) &
(4.56)
1 3 . .
Any = -5 nypygl = 0, .

When these values are substituted into equation (4.26) to find the phase
change due to index change, an equation of the same form as previously
derived results, where primed quantities replace the unprimed. That is,

A8, = aSVLe, . (4.57)

n

Combining the individual terms from equations (4.46), (4.47), and (4.57),
we arrive at the total phase sensitivity of a single mode interferometer
undergoing radially applied strain per unit strain per unit length. This
yields

% = [—(lz_vv)ﬁ + SV + ae'ffSV] . (4.58)

If the new values from Table 4.2 are applied,

& = [-5,900,000 + 30,000 — 18,000] . (4.59)
L

Emphasizing the obvious, we first observe that despite the strain
direction, the length of the sensor and its change with strain still dominate
its sensitivity. Also, it is clear that to make these expressions useful for
predicting the absolute sensitivity to acoustic wave disturbances, the waves
must be specified in terms of the actual radial strain level imparted to the
fiber. Unlike the normal applications for the axial strain expression, this
requires further and often complicated models for acoustic wave
propagation in the material surrounding the fiber.
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Secondly, we are struck by the fact that the signs in front of the terms in
(4.58) look unfamiliar. This is because in the case of axial strain, a tensile
strain was assumed as positive, so that elongation led to a positive phase
retardation in the A9; term. In the radial case, we have assumed a positive
compressive strain. If for the sake of comparison we rather specify tensile
loading as imparting positive strain in the load direction, or alternatively
simply consider fiber elongation as positive, we may write

A® .
oL - [ 5,900,000 — 30,000 + 18000] =~ 59x10°m™! . (4.60)

Note that as in the previous situation, the decrease in radius leads to a
phase advance (the wave arrives at the end a little faster), but now the
radial strain affects the photoelastic coefficients in such a way as to cause a
phase retardation, adding to the elongation term. Also observe that now the
radius term is somewhat larger than the index term, and both are
relatively larger with respect to the total than before, though both are still
down by a factor of 200 or more from the length term.

A further comment is in order to compare the single mode phase
sensitivity for axially and radially applied strain:

AB
—] <~ 15x10'm!,
gL " axial

whereas
AO
—| = 06x10" m!
gL " radial

This says that for single mode fiber, the change of phase is approximately
two and a half times less sensitive to radially applied strain as compared to
axially applied strain. This should be kept in mind whenever the objective
i8 to sense a uniform sound wave traversing an optical fiber. In that case,
it is often assumed that since it is the fiber elongation term which most
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significantly leads to phase change, one may write the equations assuming
applied axial strain and expect to achieve the resulting level of sensitivity.
The analysis above predicts a smaller phase shift than derived in such a
manner, and therefore lower sensitivity. With this foundation laid for the
single mode fiber interferometer, we are ready to move on to investigate the
sensitivity of dual mode fiber sensors.

4.3 Dual Mode Fiber Sensitivity

To derive the sensitivity of the dual mode fiber, we first consider the
expression for the output intensity from the core of the LP,,/LP;, sensor,

which from (3.34) can be rewritten as
212 21 2 2 . A
I = Agdy” + A{"J|"cos“® + 2AjA[J,d,cosdcosb (4.61)

where the arguments of the Bessel functions have been momentarily

dropped, and 6 = Bz—V. Also, the factors in the dominator of (3.34) are

considered constant for small strain levels and are thus absorbed into the
new amplitude coefficients Aj and A[ , as is the factor of Y/2. Recall that

the first two terms are static with respect to disturbances, so that in order to
increase sensitivity, the last term must be maximized, implying that we
should set ¢ = 0. This is equivalent to placing the detector in the output field

along the x axis. Given this condition,
I = [A@Jo(wd) + A2d%(w,D)]
+ 2A5A[Jy(L) J(u; ) cosb . (4.62)
Again we seek to maximize the coefficients of the last term. Noting the

difference in u, and u,, for realistic fiber parameters, the Bessel function

product is maximized when r/a = 0.42. This implies that the detector
should be set in the output field so as to intercept radiation from the point
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(x,y) = (0.42 g , 0), which is simply the rough location of the peak intensity,

as indicated on Figure 3.9. In that case the coefficients become roughly

I = [06A5" + 03A{%] + 0.9AjA cost . (4.63)

Furthermore, for typical injection conditions, it is not unreasonable that the
two modes may be powered equally, that is, we assume Ay =A,; =A.

Combining the numerical values into a single constant, we again arrive at
I = Ij01 + cos BL-%)1] . (4.64)

A sensor length of L. has again been assumed, and the case of axially
applied strain will be treated first. Recall that E is defined as the difference

between the propagation constants of the two modes, or P = Bo—B,. Thisisa

simple, fixed number before the application of axial strain, and may
change only slightly when strain is applied.

To find the strain sensitivity for the dual mode fiber, we proceed as with
the single mode fiber, and similar expressions result. Thus in a manner
similar to equation (4.7) for single mode fiber,

Al = -1, sin(BL-) [3—2]8 : (4.65)

Again, the sensitivity is maximized when the output is set at quadrature,
generally accomplished for the two mode fiber sensor by adding a bias
strain, or conceivably by changing the launch conditions. If quadrature is
not achieved, the principle of the sensor operation remains the same, but
the local, small strain sensitivity will be reduced. Assuming an optimized
situation, we finally arrive at an equation of the exact form as equation
(4.13) before, though with a different definition for 0, as emphasized here,

At = 1] [ 282 ar, o 281 o o [2BL o} | 456

Chapter 4 Strain Sensitivity 121



where the constant phase offset is dropped from the derivative. As before,
we solve for the three phase change terms, again defining them as A@|,

A8,, and A6, .

4.3.1 Axial Strain for the LPy, and LP;, Mode Pair

Considering first the case of applied axial strain, it is clear by
inspection that the first term in the parentheses, the change in phase due to

elongation, is merely § AL. To evaluate A6, , we break it into several

factors, similar to equation (4.19):

00 ]
= m—=1" aB] 3 .
A0, [aﬁ} [av [glal] Aa . (4.67)

The first term in (4.67) is simply L. The second term expresses the
difference in the values of the slopes of the B-V curves for the two modes at

the operating frequency V. These are defined as S and S,, and correspond
to the associated values on the b-V curves, Sbo and Sbl . Therefore,

op A
[a_gf‘] = % = 5-5

(n; -0y ky(Sp -Sp) = § . (4.68)

As before, the third term in (4.66) can be shown to be k, \/ nl2 - n22, while the
last term is — av €,. Combining factors, we find

A0, = —vSVAL . (4.69)

a

Similarly, we suggest that
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d0 JdV
= Jp ] =—A , 4.70
A8, [aﬁ:l [av (anlAn] *on, nz) (4.70)

which by (4.67), leads to
A8, = o SVAL . (4.71)
Here, a, is defined exactly as in (4.33).

Collecting terms, we arrive at an expression for the phase sensitivity of
the dual mode sensor under axial strain per unit strain per unit length:

[B-vEV+auSv]. (4.72)

Table 4.3a presents the fiber parameters assumed for the dual mode
fiber. The major difference with the values in Table 4.1 for single mode
fiber is that the fiber diameter has been increased by 1 pum, raising the V
number enough to allow a second mode to propagate and optimize (4.72).

The values in Table 4.3a have therefore assumed the two modes
propagating are the LP;; and LP;; modes. It is also noteworthy that with

the sign convention that we have established, S will be a negative number.
Since a,; has also been defined as a negative constant, both the phase

change due to radius change and due to index change are now positive,
contributing to the phase retardation created by the change in length,
rather than detracting from it, as in the single mode case. Computing the
sensitivity for these example numbers, we have

AB

~ [22,000 + 2,000 + 6,000] = 3x10*m! . (4.73)
gL LP1/1.Py

Several points should be noticed here. Most importantly, the dual mode
fiber sensor can be seen to be approximately 500 times less sensitive than
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the single mode interferometer. Thus for the advantages of simplicity and
stability, nearly three orders of magnitude are lost in sensitivity. Also,
observe that the radius and index terms now make up a much larger
percent of the total phase change than before, about 8% for the radius term
instead of 0.03%, and about 20% instead of 0.08% for the index term. This
arises because of the fact that the difference in the propagation constants
for the two modes is quite small compared to b itself, where that is much
less true for the slope of the curves. That is,

wn|

= 038 >> 0.0015 = (4.79)

= |t

The relative size of the radius term is thus large enough that it should not
be neglected, as has been done in previous analyses.

We note that the V number in Table 4.3a was specified somewhat
arbitrarily, and that it could have been chosen to be larger. This would
have the effect of decreasing the difference in propagation constants, J,

though S would increase. With a larger S and V, the radius and index
terms would increase relative to the elongation term. This should be kept
in mind when optimizing the sensor for acoustic waves transverse to the
fiber, where these terms are more significant.

4.3.2 The LP, and LP02 Mode Combination

Next we consider the dual mode combination of the LP;; and LP,
modes. As stated in section 3.4.2, the interference of this mode pair results
in an azimuthally symmetric output pattern, the expression for which
appears in equation (3.37). As noted, the interference cross term also
contains a factor of cos6 such as appears in the other mode pairs, and the
functional dependence on A0 is the same. Here however, gains are made in

that both E and S are larger than before. To show this, we obtain the
parameters for a fiber which allows the propagation of the LPj, mode,
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recalculate constituent factors, and substitute them into equation (4.71).
The values appear in Table 4.3b, and they yield

A9 ~ [98,000 + 26,000 + 66,000] = 19x10° m!, (475
€L " LpgyLPy,

which shows a phase sensitivity more than six times greater than the
interference between the first two modes, and now 75 times less sensitive
than the single mode interferometer. In addition to the increased
sensitivity, further advantage is gained from the symmetric output. For
one, it is evidence of the fact that these modes do not exist as being even or
odd; thus there is no fear of the even/odd mode coupling which tends to
rotate the output pattern of the LP(,/LP,, sensor, confusing the magnitude
of the strain. For another, because the point of maximum sensitivity is in
the center of the output pattern, placement of the detector is made more
simple, especially if a miniaturized, enclosed receiver is employed. The
major disadvantage of this mode combination is the need for specialized
quadruple-clad fiber in order to avoid launching of unwanted modes.

4.3.3 Dual Mode Fibers Under Radial Strain

With the groundwork which has gone before, it is straightforward to
extend the analysis to cover the case of radial strain in dual mode fibers. By
analogy to the axial strain case, we may go to equation (4.58) (recalling the
- sign convention established thereafter) and write directly

o= [(E5)8-8V-o0asv] .

With the values prescribed in Tables 4.2 and 4.3a,

a0

= [9,000 + 14,000 — 8300] = 15x10*m? . 477
gL LPy/LPyy
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Of interest in this expression is the fact that the sign of S now leads to
the radius term working in conjunction with the length term to create
phase retardation, while the index term acts against these two. Obviously
the sensitivity is most influenced by the radius term, which is now up from
its value under axial strain by a factor of seven. The length term is reduced
because of the nature of the way in which the strain is applied, whereas the
radius is greater by a factor of 1/v for the same reason. Again, however,
note that for the dual mode LP;,/LP,; case, the phase change due to axial
strain is twice as large as that due to radial strain. Also, the latter is down
by a factor of approximately 400 as compared to the single mode
interferometer under radial strain, being 20 percent better for the radial
strain sensor than for the axial.

Finally we consider the LP,,/LP,, sensor experiencing radial strain.
The only differences with the preceding sensor arise due to the fact that V,
Olopy » [~3 and S take on altered values for this mode combination. Substituting

the numbers gives

46

= [40,000 + 152,000 — 89,000] = 1.0x10° m! .  (4.78)
gL LPg/LPy,

Clearly a sensitivity advantage exists over the LP,,;/LP,, sensor, being up

from it by a factor of more than six. It is also interesting to note how large a
role the change in radius term plays, giving a hint of what is to come with
the multimode sensor. It is to this case that we turn next.

4.4 Sensitivity of Multimode Modal Domain Sensors

It remains to calculate the phase sensitivity of multimode fibers
experiencing strain. We begin with several preliminary remarks. First, it
has been shown in equation (3.47) that the interference between any two

modes in a multimode fiber have a phase term which contains $z, where

again P is the static difference between the propagation constants for the
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two modes. In general the amplitude coefficients in front of the phase
terms will differ for different mode pairs, where these express the spatial
distribution of the output, and the modulation depth of the interference
terms. Though equal amplitudes were assumed for the light in the two
fibers of the single mode interferometer and in the two mode LP,,/LP,,
sensor. it should be kept in mind that in general the power in the fiber will
not be equally distributed among the modes. Thus the modulation depth
will vary for different mode combinations.

Second, though the phase of any particular mode can be calculated as a
function of V, there is no general rule about individual mode combinations
and their value of B. Neighboring modes do not necessarily have a small B,
though this is usually the case, depending on how "neighboring" is defined.
However, the magnitude of the interference term between any two modes
will change with perturbation; thus any two modes can be employed for
sensing. Nevertheless, it will not usually be possible to separate out the
interference between two particular discrete modes in a multimode fiber.
All of the modes which coexist will simultaneously and mutually interfere,
giving the complicated, pseudo-random speckle pattern. It is noted that in
some cases it might be possible to monitor the interference between
particular mode pairs, especially if it is only those modes which are excited.
Specifically we cite the work of Kapany and Burke [104] and Berdague and
Facq [105], who photographed outputs from individual modes by placing
masks at the input specifically targeted to launch specific modes. On the
other hand, Spajer used a filter at the output modes to distinguish the
LP,,/LPy, combination [96]. However, these methods introduce many new
unknowns, and so will not be further discussed.

Third, it could be said that the fiber sensitivity will generally be as
sensitive as the most sensitive mode combination, especially since each
mode intensity distribution fills the whole fiber, even if only weakly in some
cases. A perturbation will cause the most sensitive mode combinations to
change their differential phase, which will lead to a speckle rearrangement
in at least some part of the output field. The modulation depth will again be
reduced, depending on the particular modes and their power levels. The
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situation could be further complicated if the sensitive spot overlaps in the
output plane with a less sensitive spot, which will in effect amplitude
modulate the spot of interest.

The most sensitive mode pairs will be those for which f§ = B, — B, and

S= S, — S, are maximized. For the propagation constant, this implies a low
order mode whose value of  is already near n kg for the given V of the fiber,
and a high order mode just beyond its cut-in frequency, having B near nyk,.
To show this, we make use of the WKB method for analyzing a multimode

fiber having a power-law profile [106,107]. An eigenvalue equation is
derived, for which a "pseudo-solution” for B is arrived upon. The result is

a |1
M
po= mky | 1-28[——B 042 |2 (4.79)
(ﬁ]nlz k02a2A
where the denominator
N = [ )n2k2aaA o \V? 4.80
= o) 00 ® ~ las2) 2 (4.80)

is the total number of modes, and M(B) = (2( + m + 1)2 is the compound mode
number squared, and defined to be the number of modes with values of the
propagation constant that are larger than B. Because the solution for
actually depends on B, it can be seen why this is referred to as a pseudo-
solution; nevertheless it is useful for many practical purposes. Also,
though the WKB method is generally discussed in regard to graded index
fibers, the step index profile is included by setting o = o . In that case,

1
M(B)
B = nk, [1 - 2A(W)]2 ] (4.81)
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Rather than multiplying the A through in the second term in brackets,
and thereby imply that B is independent of n,, we note that for any
particular mode, the fraction in parentheses will always be less than 1. For
low order modes, it will approach 1/N , which may be as low as 1/5000 for a
normal multimode step index fiber. In stating this, we note that though
this expression was derived for a fiber with a large number of modes, that
is not to say that it is invalid for low order modes in such a fiber. Rather, it
implies that for a normal fiber A of 0.01, then on the B-V curve, B will take a
value of 0.999998 n k, at a typical value of V. This corresponds to the
asymptotic value of low order mode propagation constants far out in V,
such as observed in Figure 3.2. On the other hand, for a large order mode,

M
M(@B) - N, or IfIB) — 1. Thus the limiting values of B from this analysis are

Bhi nIkO[I-ZA]”2 = nyk,

B, = nk (4.82)

i

!

confirming what has been previously stated.
Thus the maximum difference between the static propagation constants
of two modes is simply

~

Prax

= (nl - n2) kO . (4.83)

Meanwhile, for low order modes at high V, the slope Sb1 =~ 0, while we
assume from the curves (Figure 3.2), that sz = (.1, meaning

wmt

~ —01(m-nyk, = 10 , (4.84)

max

~ ~ . -1
where both Bmax and Smax have units of m .

It is clear from expression for A in equation (4.72) that besides  and S,
the most important factor for determining total phase sensitivity is V. This
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" means that in general, fibers with high V will be more sensitive than low-V
fibers. From the definition of V, this might suggest lowering the source
wavelength, enlarging the fiber radius, or increasing the quantity n; — n,.
The latter also works to increase B max &nd §m ax through (4.83) and (4.84).

We will consider the interference of modes in three cases. In the first
example, typical step index, multimode fiber such as often used for short-
haul communications will be addressed. In the second case, we examine
the sensitivity of a commercially available fiber which has been used for the
detection of ultrasound, to be reported later, and which has the unusual
property that it is a simple, unclad silica thread, 25 um in diameter. The
final case to be treated is the "optimized" sensor, in which fiber parameters
are all manipulated so as to obtain the highest sensitivity possible. The
values of the assumed fiber parameters for all three cases appears in Table
4.4. We note at the outset that all values are meant to be representative, and
calculations are all approximate so as to appreciate only their order of
magnitude.

Typical Step Index Multimode Fiber

Using the values in the first column of Table 4.4 in equation (4.72), we
have in the case of axially applied strain

A8
EZL

[ 290,000 + 710,000 + 1,770,000 ]
typical
2.8x10° . (4.85)

We are first struck by the fact that the sensitivity is now only a factor of five
down from the single mode interferometer. Also we note that the values of
B and § are significantly higher than for low mode fibers. When combined
with the large V, this means that A8, and A6, now make a much larger
contribution to the total than in the single mode case, even outweighing the

elongation term. The total sensitivity can be seen to be greater than that of
the LP,,,/LP, sensor by nearly two orders of magnitude.
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In the case of radial strain, we use all of the prior reasoning and
substitute values into equation (4.76), and arrive at

A©
8rL typical

[ 119,000 + 4,180,000 — 2,430,000 ]

1.9x10° . (4.86)

This now appears to be a factor of roughly three less sensitive than the
single mode interferometer under radial strain. Also we note that the gain
from single mode to multimode is twice as good for the radial strain case as
the axial strain case, though the actual sensitivity itself is down somewhat.

~Unclad Silica Fiber

For this sensor and the next, the analysis above must be modified. The
fiber under consideration is unclad glass rod which has been drawn down
into very fine fiber. We assume for the moment that the fiber is surrounded
by air of index 1, so that when the fiber is strained axially, the "cladding”
itself is not under stress. So while A8; and A6, remain the same, A0, does
not include a contribution due to a changing n,. This will be true of any

liquid or gas clad fiber. Thus,

0] [45] rov
_ (98], aﬁ}. vy, 487
A8, [BEJ [av [anl] An, (4.87)
- §v [’;‘—0”2] AL . (4.88)

Hence for the fiber parameters at hand,

1ndp
1 f
Oup = —22—02 = —0.4088 . (4.89)
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Interestingly, had n, been included as a changing quantity, then o ¢
would have been reduced by a factor of 25%, in turn reducing A8, and thus
the overall sensitivity. Since here n, does not enter the calculations, o is

on par with that for the typical fiber, leading to a higher sensitivity. It is

possible to understand this qualitatively due to the fact that we have no
compensating n, change to counteract the n; change.

Substituting the remaining parameters from Table 4.4, we find

AB

&L " unclad
fiber

[ 4,500,000 + 10,200,000 + 24,600,000 ]

39x10" , (4.90)

which is well over twice as sensitive as the single mode interferometer
under axial strain.
This fiber under radial strain yields a sensitivity calculated as

A8

erL unclad
fiber

[ 1,900,000 + 59,900,000 — 33,700,000 ]
= 28x10 . 4.91)

Now the sensitivity is nearly five times more than for the radially strained
single mode fiber, and is slightly less than the axially strained case in
terms of absolute sensitivity.

Optimized Sensor

Finally, we consider an optical fiber whose parameters have been
chosen so as to optimize its phase sensitivity. It is recognized that the
parameters appearing in Table 4.4 do not represent any commercially
available fiber, nor are they necessarily convenient; it is believed however,
that they are not unreasonable for the present argument. Furthermore, it
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is assumed that the Poisson's ratio and the photoelastic constants remain
the same as in previous cases, which may not be true for an optimal sensor.
Using the numbers, we have

AB

8zL optimized

[ 9,000,000 + 248,000,000 + 657,000,000 ]

9.1x108 . (4.92)

Most significantly, this displays an intrinsic phase sensitivity of more than
60 times that of the single mode interferometer.

If radial strain is applied to this fiber, we conclude the phase sensitivity
is given by

20

- [ 3,500,000 + 1,461,000,000 — 902,000,000 ]
ErL optimized

5.6 x 10% . (4.93)

This is almost two orders of magnitude more sensitive than the radially
strained single mode interferometer, and is again nearly as sensitive as the
axially strained optimized sensor.

4.5 Discussion .

The basic theory for the existence of discrete modes in optical fibers has
been presented in Chapter 3. The number of modes which are allowed to
propagate in a fiber is determined by the frequency of operation, the
refractive index profile, and the fiber geometry, summarized in the
normalized frequency, V. On the other hand, the particular modes which
exist in a waveguide depend on the injection conditions and on mode
coupling mechanisms which exist along its length. When more than one
mode is present and the light is coherent, the modes interfere along the
fiber, as well as in the output plane. The nature of the interference pattern,
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its spatial description, as well as its response to perturbations along the
fiber, depends on the particular modes in question.

It has been shown that when these fibers are subjected to strain, the
phase of the one or more constituent modes changes in direct proportion to
the disturbance. If the outputs from two single mode fibers are brought
together, an absolute interferometer can be constructed to monitor the
perturbation in one of the fibers. Alternatively, differential phase changes
between coherent modes of a multimode fiber can also be employed to infer
strain. It is generally accepted that whereas single mode interferometers
display the highest strain sensitivity, modal domain sensors offer the
advantage of greater stability and simplicity.

In this study, the absolute phase sensitivity of both sensor types has
been derived. Corrections were made to previous models, and the case of
radially applied strain was treated in addition to the standard case of
axially applied strain. These calculations can be summarized in tabular
form, as seen in Table 4.5. Perhaps the most striking conclusion is that for
the phase sensitivity of highly multimode fibers is seen to rival that of single
mode interferometers, and in some cases, even surpass it by as much as
nearly two orders of magnitude. Also, note that any gains made by using
the specialized multimode fibers are only increased for the case of applied
radial strain, which for the case of acoustic detection is the primary
straining mechanism.

To those with much experience handling highly multimode modal
domain sensors, the mathematical results obtained may not come as a
complete surprise, despite the general impression that the single mode
interferometer is the most sensitive of all optical fiber sensors. For
example, in an early MDS paper, T.J. Hall reports that his multimode
modal domain hydrophone "was found to have a sensitivity, in terms of
phase change per unit pressure, similar to that of a monomode optical fiber
hydrophone of similar construction” [11].

Recent experiments at Virginia Tech confirm these findings [108]. In
one test, plastic clad silica fiber (PCS) was embedded in graphite-epoxy
panels and subject to ultrasonic wave excitation of modal modulation. The
PCS, characterized by a high core-cladding index difference and a large
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core, was seen to show considerable sensitivity improvement over normal
50/125 step index fiber in a similar acoustic environment. Not only does
PCS have a large V number, but also has a compliant polymer coating
which efficiently transfers strain. Analysis similar to the last section
suggests that in the case of radial strain, PCS should be between five and
ten times more sensitive than the single mode fiber interferometer. In
another test, 25 micron, unclad silica fiber such as previously described
was attached to the same panel and insonified. Similar fibers have also
been reported being laid in composite pre-preg for use as damage sensors
after cure of the laminate [75]. Again a sensitivity improvement was
noticed over the PCS, and though not fully quantified, lend agreement with
the analysis summarized in Table 4.5.

Finally, in work recently reported by Indebetouw, et. al., holographic
matched filters were applied to the outputs of both dual and multimode
fibers in an effort to provide full-field signal processing of sensor outputs
[109]. By comparing the plots of the intensity versus strain of the filtered
output, one can again see an increased sensitivity for the multimode fiber,
though not as much as perhaps expected from the prior analysis. It does,
however, give credence to the notion that multimode modal sensors are in
fact more sensitive than their few mode counterparts.

It is vital to bear in mind that the numbers quoted above express, as has
been said so many times, the absolute phase sensitivity of
interferometrically-based optical fiber sensors. We have said nothing about
whether or not it would ever be possible to take advantage of this sensitivity
to make a practical sensor, or what kind of inconveniences doing so might
require. Furthermore, several steps are still needed in order to completely
predict the response of such a sensor to say, ultrasonic waves in a material.
First, and most simply, if we specify detector parameters such as
responsivity and size, a detection bandwidth, and input laser power, a
number for the strain sensitivity can be derived. For values typical in an
ordinary laboratory, such calculations yield a strain sensitivity of roughly
10°!2 for a centimeter of single mode fiber stained axially with no
constraints [5]. This incredibly high strain sensitivity is rarely achieved in
practice because of the "no constraints" assumption, which is violated in
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most real world situations. In addition, these calculations assume that the
fiber is at the quadrature point at all times. The degree to which the fiber
drifts from the Q point will also determine final sensitivity.

The numbers above are however useful for purposes of comparison. We
note that if any of the assumed parameters were changed, this would
clearly affect the final strain sensitivity. Specifically, if the laser power or
the detector sensitivity were increased, the final signal to noise ratio would
be enhanced accordingly. This may be particularly important in the case of
multimode sensors which require at least some power in the high order
modes. Nevertheless, to make the jump from strain sensitivity to acoustic
wave sensitivity, a number of material parameters, interface conditions,
and geometrical considerations must be accurately specified. As noted
early in this report, while that may possibly be done for a particular case,
this in general would be an extremely cumbersome task, and would be
difficult to generalize. However, it is believed that a deeper investigation of
the material properties may show that some of the parameters fall within a
particular range, and that some assumptions may be made to give a band of
expected response for a given input.
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Figure 4.1a. Cartisian coordinate system used in equation (4.1) describing
the general strain tensor.

Figure 4.1b. Geometry of an optical fiber modelled as a right, circular
cylinder in the above system.
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Figure 4.4. Calculating the slope of the b-V curve at a particular value of V
can either be done numerically, or simply approximated from the curve by
estimating the change in b for a given change in V.
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Table 4.1. Typical parameters for single mode optical fibers.

Parameter Definition Value
n, core refractive index 1.458
n, cladding refractive index 1.4532
fractional index difference
A _T_nlz _ n22 _hTm 0.0033
2n, - n, )
a core radius 2.0 pm
Ao free space wavelength (He-Ne) 0.6328 um
ky free space wavenumber 2r/), 9.929 x 10°m™!
normalized frequency
\'% l{oa\}nlz—nz2 2.35
B propagation constant at V 14.45 x 10°m!
normalized propagation constant
(B/ky)® - n;2
b i 2 0.5172
L -m
Sy slope of b-V curve at V 0.265
slope of B-V curve at V
S (n, — ny) k, Sy, 12,650 m’
\Y Poisson's ratio for fused silica 0.17
P L . 0.12
P strain-optic coefficients 0.97
Peft effective strain-optic coefficient
strain-index coupling coefficient -03157 i=
1
o — 50 Py ~03126 i=2
effective strain-index coupling
n, o, — n,o
gy 22 04316
i B
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Table 4.2. Typical single mode fiber parameters for the case of radial

strain.
Parameter Definition Value
coupling coefficient between 0.4096
2v . . .
1=V radial and axial strain
. 1-3v
Pefr P+ ( 1 _V‘)Plz 0.2794
core strain-index coupling
1
o ~50° pgr —~0.4330
cladding strain-index coupling
) 1 3 .,
) —5N) Pegr —0.4287
effective strain-index coupling
n,o; —n,o,
oy =132 —0.5920

n, —n,
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Table 4.3a. Parameters used for evaluating the LP,,/LP,, sensor.

Parameter Definition Value
n, core refractive index 1.458
n, -cladding refractive index 1.4532
a core radius 2.5 um
\Y% normalized frequency 2.94
u, kg a [(n,2 - Byky*1"? 1.76
u, kg a [(n,2 - B,/kp*1"? 2.76
ﬁ propagation difference at V 22,000 m’!
S slope difference of §-V curve at V —4,750
o, core strain-index coupling -0.3157
oy cladding strain-index coupling -0.3126
Clog effective strain-index coupling -0.4316
o off radial strain-index coupling -0.5920

Table 4.3b. Parameters used for evaluating the LP;/LP, sensor.

Parameter Definition Value
n, core refractive index 1.458
n, cladding refractive index 1444
a core radius 2.0 um
\Y normalized frequency 4
B propagation difference at V 98,000 m’!
S slope difference of B-V curve at V - 38,000
a, core strain-index coupling -0.3157
oy cladding strain-index coupling —-0.3067
Ologr effective strain-index coupling —0.4289
o o radial strain-index coupling —-0.5883
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Table 4.4. Parameters for three multimode optical fiber cases examined.

Parameter typical thread optimized

n, 1.458 1.458 17
n, 1.429 1 1
A 0.01 0.5 0.5
a 50 pm 12.5 pm 100 um
Ao 0.6328 um 0.6328 um 0.51 pm
\'4 144 132 1694
E 290,000 4,500,000 8,600,000
S — 29,000 — 450,000 — 860,000
a; axial -0.316 -0.316 -0.500
o', radial -0.433 -0.433 -0.686
a, axial ~0.297 — —
o’y radial -0.408 — —

axial -0.425 -0.409 -0.450
ey

radial -0.582 -0.561 -0.617
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Table 4.5. Comparison of phase sensitivity for various sensor types and
configurations taken up in this report. Numbers in parentheses represent
comparative values with the single mode fiber case taken as the reference

for each direction of applied strain.

Sensitivity in radians/strain-length

Fiber/Sensor Type
Axial Radial
Single Mode 14x10" (1) 0.6x107 (1)
Dual Mode
LPy,/LPy, 30x10* (Yggp 1.5x10* (V490
LP,,/LP,, 19%10° (Yq5) 1.0x10°  (Ygp)
Multimode
Typical 2.8x10° (Vg) 1.9x10° (Vg
Unclad Fiber 3.9x10" (2.7) 2.8x107 4.7)
Optimized 9.1x10% (65) 5.6x 108 (93)
145

Chapter 4 Strain Sensitivity



5.0 APPLICATIONS OF MDS TO ACOUSTIC WAVE DETECTION

In this chapter we review two applications of modal domain sensing to
NDE, both involving the detection of acoustic waves. In the first section,
fiber optic transduction of acoustic emission signals is discussed.
Following that, the subject of real-time impact monitoring is raised. In the
last gection, we outline some of the areas in which modal domain sensors
fall short of either ideal conditions or other sensing methods, and suggest
possible solutions.

5.1 Acoustic Emission Detection

The monitoring of acoustic emission (AE) is an important technique for
nondestructive characterization in strained materials because time and
frequency domain analyses of AE events may yield information about the
type, geometry and location of defects, as well as how material failure may
occur. The quantitative interpretation of AE event signatures is critically
dependent upon the faithfulness of the acoustic transduction and signal
processing system in reproducing localized stress wave amplitude as a
function of time. The usual sensor for acoustic emission is the piezoelectric
transducer, and though they are sensitive and reasonably broadband, these
sensors are not suited for embedded measurements and are highly
susceptible to electrical noise.

As an alternative, several researchers have considered the application
of bulk optical interferometric optical sensing techniques, which offer good
spatial resolution and frequency response [110,111]. A non-intrusive fiber
optic version of this type of probe has also been implemented to detect a
traveling surface acoustic wave [112]. These techniques focus one beam of a
modified Michelson interferometer to a small spot on the surface of a
specimen and measure the time-dependent normal component of surface
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displacement at the location of that spot. However, the similarity in size of
an optical fiber with a graphite fiber tow used in many composite materials
offered incentive to investigate embedding fibers in materials to detect AE.

Experiments

In the first series of tests, optical fiber was embedded between the two
center plies in eight-ply symmetric cross-ply graphite/epoxy laminates and
cured under pressure in a standard heated-platen press [12]. The edges
from which the fibers emerged were insulated with scrim paper during
cure to reduce the embrittlement of the adjacent fiber coating, and
protective quick-cure polyfﬁgr tabs were applied to the fiber-matrix joints
soon after cure to minimize fiber breakage. The specimens were then saw-
trimmed to approximately 6.5 cm. The optical fiber, intended for single
mode operation at 1300 nm, was excited with He-Ne laser light, yielding a
few mode fiber. A photodetector was placed in the output field so as to
intercept only a portion of the total intensity when the lobe-pattern
modulated due to localized strain.

The specimens were tensile loaded in a computer-controlled load
frame, with the fibers aligned in the direction of the applied stress. Special
grips designed to securely hold the specimen without cracking the
embedded fiber sensors. As the specimens were loaded, the optical output
was monitored using a digital storage oscilloscope. The detection system
recorded burst events at the same times that audible cracking events were
noted, as well as smaller amplitude events which were inaudible. Each of
the four specimens tested failed at about 65,000 pounds of load, and before
the internal fiber sensors failed due to load. This may have been due to
partial slippage of the specimen around the fiber.

Typical events recorded for the same composite sample at different
times during loading are shown in Figures 5.1a and 5.1b. Analysis of this
data indicates that the acoustic emission event in Figure 5.1a is very likely
due to the cracking of the composite matrix material. This is evidenced by
the fast initial rise time of less than twenty microseconds (the distance
between two pixels on the digital scope at this sweep rate), a primary
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emission followed by induced plate mode vibrations, and cascading
emissions related to subsequent strain release. The very different
signature shown in Figure 5.1b is typical of an event occurring near the end
of the load cycle, caused by graphite fiber breakage. It consists of a single
relatively long and highly energetic pulse of slow rise time, and does not
exhibit following events.

Events recorded simultaneously using both the optical fiber and a
conventional piezoelectric transducer, manufactured specifically for
detecting AE, were also compared. The piezoelectric transducer was
attached to the specimen in the center of one side, directly above the
embedded fiber. Typical comparison data is shown in Figure 5.2. In some
cases the acoustic pulse reached the fiber before the piezoelectric, while in
others, the sound waves reached the piezoelectric sensor first. Also, we see
that the modal domain sensor exhibits a very large bandwidth ranging
from d.c. up to at least tens of megahertz. (Recall that previously discussed
experiments by Meltz and Dunphy demonstrate optical fiber detection of
waves in the gigahertz frequency range [89].) This stands in contrast with
the piezoelectric, which though termed "broadband" by the manufacturer,
apparently passes only a fairly narrow range of frequencies. It is noted that
the fiber response is in part due to the fact that it is actually a line sensor,
integrating strain all along its length.

In subsequent tests, samples were prepared with optical fiber laid
across the direction of applied load, allowing for the use of conventional
grips, although requiring some care during cure [113]. Also, the use of two
fibers for the location of acoustic events was investigated. A representative
signal arising from a single acoustic event (the standard pencil-lead break)
appears in Figure 5.3. On the other hand, Figure 5.4 compares the output
of two embedded fibers embedded with a distance of approximately 10 cm
between them. Acoustic waves excited above one sensor are detected
immediately, triggering the scope to produce the lower trace. The upper
trace shows the arrival of the pulse at a time later, buried in the response of
the fiber to plate vibrations. In other work, acoustic emissions in composite
cylinders, plywood panels and low-fusion metal alloys have also been
detected using embedded modal domain sensors, with similar results.
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The measurements reported here indicate that acoustic emission
events may in fact be observed and located using optical fiber sensors
applied directly to modern engineering materials. It is known from private
conversations with scientists in the AE field that in the early 1980's, a
certain company conceived the idea of using single mode interferometers to
detect AE. It seems that the project was abandoned because of the
impracticality of making field measurements, owing to instability
problems. Modal domain sensors have much to offer in this regard, since it
is a differential method demonstrating high common mode rejection, while
retaining high sensitivity. Recent calculations presented in the last
chapter suggest that the use of highly multimode fibers might offer even
greater sensitivity. Thus, though fiber optic detection of AE is far from
perfected, prospects for future work are promising.

5.2 Impact Monitoring

In this section, experiments are reported in which ultrasonic shock
waves generated by impacts were detected using optical fiber modal domain
sensors. Such measurements are important in that it may be possible to
predict the amount of damage a structure such as an aircraft will incur
based on the measured accumulation of impact energy. Furthermore, in
many materials, and especially carbon-based composites, impacts from
stones on a runway or even some high speed projectiles may leave no
obvious visible sign of damage on the outside surface, while the interior
surface has suffered serious degradation due to the propagation of the
resulting shock wave [75,114]. Thus great advantage could be gained by
having an on-board, real-time monitor of impacts, which has the ability to
assess the energy and power spectrum associated with each event. As
mentioned in the first chapter, a broad base of knowledge regarding the
behavior of the materials in question must proceed any accurate prediction
of properties such as remaining lifetime using fiber optic impact sensors.
On the other hand, the monitoring tool itself must also be developed and
characterized.
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In the case of a continuous modal domain sensor embedded inside or on
the surface of an impacted specimen, at least three different sound/light
interactions occur. Rigid body motion of the specimen is generally low
frequency, and may be detected as motion of the lead-in and lead-out fiber
portions. The specimen may also vibrate in both linear and nonlinear
combinations of its natural modes. Furthermore, high frequency surface,
shear, and bulk waves may be coupled through the fiber, affecting a change
in the index of refraction of the core, and thus a change in the output.
Again, it might be noted that in comparison to most transducers capable of
in-service measurement of acoustic waves, these fiber sensors are
extremely broadband.

In order to be useful, it is necessary for impacts to be reliably and
repeatably characterized by the signal disturbance they cause. This in turn
may be related to the type and degree of damage that occurs. Integrating
the work done on the specimen in a given time period has been found to be a
more accurate method of estimating impact magnitude than simply relying
on the peak voltage associated with any output. Furthermore, if a basic
knowledge exists as to the geometry, loading, and type of material in
question, frequency analysis of the signal can lead to a meaningful
characterization of the type of impact. Finally, time domain analysis of the
output of two or more sensors can yield impact location information.

The experiments to be discussed in the following section involve the use
of both embedded and attached modal domain sensors, and are applied to
both composites and aluminum samples. In many ways the results
showed surprisingly similar results.

Experiments

In the first experiment to be described, depicted in Figure 5.5, a 1.5 cm
portion in the middle of a two meter length of 1300 nm single mode fiber
was stripped of its polymer jacketing. This was bonded with a small
amount of rigid epoxy to an aluminum panel measuring 40.6 cm wide, 61
cm long, and 1.9 cm thick. Portions of the fiber which were not bonded
were elevated away from the panel and padded to avoid unwanted coupling
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of sound energy to the nonsensitized region. The panel was inverted with
the fiber on the underside, and supported by vibration absorbing foam.

The fiber was operated at 633 nm, yielding a V number of
approximately 4.5 and a four lobe output interference pattern. The output
was spatially filtered and detected by a standard Si photodiode. Acoustic
waves generated in the panel by the impact of a 250 gram stainless steel
sphere interacted with the fiber, causing a modulation of the output modal
domain pattern. Signal changes were collected over the course of an
impact by a digital waveform analyzer and transferred to a micro-computer
for storage.

Six impacts at each of five different heights ranging from one foot to five
feet were performed. In each case the time domain voltage from the
detector was recorded, and the energy measured in the output signal was
calculated as proportional to | [v(t)]zdt. A typical output appears in Figure
5.6. The output voltage, shown as E(t) for 0<t<100 ms was evaluated for
each trial and values for the six trials were averaged and plotted against
drop height, as seen in Figure 5.7.

For the next part of the work, a second fiber was attached 30.5 cm from
the first. Simultaneous detection was performed and monitored using the
two traces of the waveform analyzer. The steel mass was dropped at
several locations between the two fibers, and the arrival time delay was
analyzed for each case. With the aid of a simple algebraic relation,
explained in Figure 5.8, the position of the impact could be determined. A
sample trace appears in Figure 5.9, where the time scale has been
expanded by a factor of 20 from Figure 5.6 in order to resolve the time delay.
It should be noted that considering the plate geometry, it was assumed that
the first wave to arrive at the sensor was the longitudinal wave;
accordingly, the longitudinal wave velocity was used in the calculations. It
was understood, however, that the actual situation was somewhat more
complex because of the surface wave propagation, the multiple reflections
and mode conversions between the longitudinal and shear waves, and the
frequency dependent attenuation of the material. Also, it was determined
that the sensor system was far more capable of resolving impact location
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than were the experimenters trying to accurately position the drop tube over
the plate.

Finally, several impacts were conducted using a blunt-ended projectile.
This allowed for a number of different types of impacts, depending on how
squarely either the flat or the corner of the projectile struck the panel. Time
varying voltages were collected as described above, and a Fourier transform
was performed. Low frequency components less than a few hundred Hertz
resulted in response to what appears to be rigid body motion of the plate on
the supporting foam. Midrange frequencies corresponding to calculated
harmonic plate mode vibrations of the panel also appeared. Both these and
the low frequency vibrations were reasonably insensitive in frequency
content to the type of impact. However, the high frequency content and
power distribution varied widely with impact type. As expected, the more
that the sharp corner struck the panel, the greater the share of power in the
high frequency components.

A second test was conducted which involved impacting a composite
panel containing optical fiber sensors. A 900 um o.d. plastic clad silica
fiber (core, cladding, and buffer) was embedded in a serpentine fashion 5
plies deep in a graphite/epoxy crossply laminate consisting of 30 plies. The
laminate was cut down so as to fit into the restraining fixture of a General
Research Dyn730-I impact test unit, and was clamped on all four sides.
This unit is capable of measuring load, energy, impact time and sample
deflection. However, none are determined from the sample side, that is, all
require measurements of time and strain in the impacting tup, external to
the laminate itself. Embedded optical fiber sensors thus present the
advantage of being able to monitor response from inside the material. An
overview of the set-up appears in Figure 5.10.

Several impacts were conducted, and both the optically and
mechanically generated data were collected and analyzed. A typical optical
signal is seen in Figure 5.11, while Figure 5.12 gives a typical load and
energy versus time trace. It should be noted that the signal in Figure 5.11
corresponds to the initial peak, which was always under 10 ms in duration,
and which was followed by a series of oscillations similar to those observed
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with the aluminum panel. Impacts were conducted from various heights,
representing different input energies. Also, 30 one inch impacts and 10 two
inch impacts were performed towards making a brief analysis of the sensor
response to repetitive impacts. Optical fiber outputs were examined with
respect to impact duration, signal rise time, peak voltage, signal shape, the
detected energy (related to the time integral of the voltage squared), and the
Fourier spectrum of the signal.

Unlike the previous experiment, the detected energy did not correlate
well, or even monotonically with the input energy. This was true
regardless of the time period used for the calculation. It is believed that the
sensor response was saturated by the high input energies imparted by the
heavy tup. Time measurements, both duration and rise time, showed more
repeatable trends, and correlated with the independent measurements
made by the DYN730-1. In both cases, there was a clear downward trend
with increasing energy input, as seen in Figure 5.13. Related to these, the
signal shape also showed a clear tendency to sharpen at the corners with
increasing input energy as the system saturated. The Fourier spectrum
seemed to yield little usable information, but it should be kept in mind that
in this case, only a single type of tup shape was employed. Further tests
should be performed to investigate the effects of changing the shape of the
impact surface.

In the case of the repeated impacts, both the detected energy and the
signal duration increased gradually during the course of the tests. It is
speculated that the rising tendency and the increasingly wide spread in
values were related to damage occurring in the material. At this point in
the test, the composite panel was obviously incurring significant damage in
the form of cracks and delaminations. This suggests that fiber optic
sensors may be able to yield in-situ information about material degradation.

A third experiment was performed which combined the previous two.
A new panel, also measuring six by six inches and containing PCS optical
fibers was subject to relatively low energy impacts. A special impact test
frame was constructed to allow for the greatest flexibility with regard to
drop height, position, sample size, clamping boundaries, and impacting
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projectile mass and shape. An optical interrupt was implemented in order
to measure the projectile velocity directly before impact, as well as trigger
the detection system. A simple spatial filter, photodetector, and digital
oscilloscope were used to record the data as before.

The results of this test appear in Figure 5.14. Most noteworthy is that
the detected energy again takes on a monotonic curve, of similar shape to
that obtained with the aluminum panel. This lends credence to idea that
the non-monotonic curve obtained in the second experiment (not shown)
was more a consequence of the manner in which the sample was impacted
than the nature of the material or the detection system itself. Of further
significance is the fact that the first experiment made use of few-mode
fiber, whereas the third employed highly multimode PCS; nevertheless the
curve shapes were similar. It should be noted however, that nothing can be
said about the sensitivity of the measurements, since different detectors,
amplifier gains, and spatial filter methods were used.

5.3 Conclusions

Optical fiber sensors show considerable promise for detecting and
quantifying impact damage in advanced materials. These sensors may be
either embedded or attached, and display a number of highly desirable
characteristics as an NDE tool. Single sensors may be constructed simply
and inexpensively to monitor catastrophic failure in materials, may be
networked together to locate damage in complicated structures. Modal
domain sensors show particular promise for characterizing impact energy
and related features.

A number of concerns still need to be addressed in the proposed sensing
scheme. For one, as with any interferometric sensor, the dynamic range
for linear operation is fairly limited. Extending the range requires fringe
counting techniques, which tend to be complex. Also, care must be taken to
avoid the introduction of spurious frequency components in the speckle
motion, which can result from irregular strain induced birefringence.
Isolating the lead-in/ lead-out portions of the sensor from noise sources
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external to the workpiece is also essential for accurate signal analysis. In
addition, geometry and frequency dependent effects of the material under
test must be take into account. More work is needed to quantify the
requirements for identifying unknown signals on the basis of their
frequency spectra. In addition, reliable and repeatable methods for
nondestructively quantifying damage still require much investigation, as
does the more difficult task of predicting performance based on the
information obtained. The work spans a broad range of fields from
materials characterization to NDE to sensor technology to signal analysis
and statistics.
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Figure 5.1. Acoustic emission traces output by a modal domain sensor
embedded in a graphite/epoxy composite coupon under tensile loading:
a) emission due to a crack in the matrix material, b) emission resulting
from the breakage of an axially directed graphite fiber [12].
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Figure 5.2. Comparison of acoustic emission events detected by
piezoelectric (top) and optical fiber sensor (bottom) [12].
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Figure 5.3. Signal resulting from fiber optic transduction of a standard
pencil lead break, simulating an acoustic emission [113].
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Figure 5.4. A standard pencil lead break was initiated directly above one
ﬁber; the resulting plate mode vibration signal in the upper trace triggered
the scope. Some 37 ps later, a second fiber located 4 inches away recorded
the arrival of the small acoustic wave from the break, and 248 us sensed the
arrival of the vibrations [113].
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Figure 5.5. Experimental set-up for monitoring impacts to an aluminum

panel using attached modal domain sensors [13].
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Figure 5.6. The time domain output from a typical impact [13].
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Figure 5.9. Typical output for two attached sensors responding to small
level impacts. The scope triggered on the upper trace, the output of the left
fiber, also capturing the right fiber output on the lower trace [13]. .
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Figure 5.10. Block diagram of the set-up used to test fiber sensors embedded
in a composite panel [14].
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Figure 5.10. Typical response of an embedded optical fiber modal domain
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the upper trace and the associated energy [14].
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Figure 5.12. Signal duration and rise time versus input energy.
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Figure 5.13. Results of low energy impacts on composite panel containing
embedded PCS optical fiber. Compare general shape with Figure 5.7 [14].
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6.0 OPTIMIZATION ISSUES FOR MODAL DOMAIN SENSORS

It has been stated throughout this report that modal domain sensing
still cannot be considered a mature method for transducing physical
observables. Despite the advantages of this technique, a number of
difficulties still exist which would ultimately limit its deployment in many
mission-critical situations. The primary shortcoming of modal domain
sensing is simply that not enough is known about it. Fortunately, as
displayed in the previous two chapters, because of its many inherent
similarities to single mode interferometry, much of the body of knowledge
acquired in that discipline can almost certainly be modified or extended,
and applied to modal sensors. Furthermore, a large number of factors play
a role in determining their final sensitivity and practical utility in various
contexts. Thus hope exists that the "right" combination of variables for
particular measurement situations can be found.

Considerations for enhancing or optimizing modal domain sensors can
be broken into three categories: source characteristics, fiber
characteristics, and detection scheme characteristics. Implicit in all of
these is a fourth category, that of the target observable and the environment
in which it is to be measured. A brief discussion of each of these areas
follows.

6.1 Source Characteristics

It is evident from what has been said before, that the optical light source
determines in large part the operating features of a modal domain sensor.
For one, it must be coherent, though coherence length requirements are
much smaller than necessary for single mode interferometers, unless the
latter strictly maintain equal path lengths between the two arms. For few
mode sensors, which have lower sensitivity, source stability requirements
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can also be relaxed somewhat, though at obvious expense. These point to
the conclusion that semiconductor laser diodes, which are sometimes
unstable and display shorter coherence lengths, should offer improved
performance to MDS over conventional interferometry.

Another factor is the source wavelength. It was seen in Chapter 4 that
operation of dual mode and multimode fiber sensors at a particular V
number in part determined their phase sensitivity. For a given fiber,
adjusting the V number is in practice accomplished by altering the
operation wavelength of the laser source. This may mean using a different
source altogether, or using a different line from a multi-line laser. Also, as
shown in Chapter 3, the source wavelength affects the number of speckles
visible in the output pattern from a multimode fiber. As will be discussed,
it may be possible to use this very mechanism as a means for sensing.

The manner in which source radiation is injected into the fiber is also
important in determining the output pattern. For ordinary dual mode
fibers in which the amount of power in the two modes is roughly equal, we
showed that the output consists of a single, off-centered lobe which
oscillates back and forth with the application of strain. However,
experience relates that when off-axis launching occurs, particularly in
round core fibers (as opposed to elliptical core dual mode fibers), significant
power can be excited in the LP,; mode over the circularly symmetric LP,
mode. The result is that two lobes appear which exchange power with
strain; quadrature is reached when power in the lobes is equal. Depending
on the detection scheme, either one of these options could be preferable.

In the case of multimode fibers, maximum sensitivity occurs when
interference takes place between the lowest and highest order modes. In
order to enhance the power in the higher modes, which usually carry less
power, off-axis launching may again be employed. Figure 6.1 illustrates
the type of changes in output pattern which may be expected in this case.
As an alternative, one could imagine a mask to be placed before the input
end of the fiber which consists of an annular ring surrounding a centrally
located hole, which could be used to increase the relative amount of power
injected into the extreme order modes.
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6.2 Fiber Characteristics

One of the major problems with interferometrically based fiber sensors
arises due to their extreme sensitivity, not only to the observable of interest,
but also to the environment. In any practical situation, fluctuations in the
sensor temperature or surrounding air currents must be accounted for. At
a very minimum, these fiber sensors must be carefully designed to be
somewhat insensitive to environmental changes, while simultaneously
retaining sensitivity to the parameter under study.

To demonstrate the sensitivity of an optical fiber interferometer to
temperature fluctuations, we can lean on the expressions in Chapter 4 to
calculate the amount of phase change one might expect when the fiber
undergoes a temperature change. We start with the single mode fiber
sensor. Specifically, when the fiber experiences a hydrostatic expansion or
contraction due to changes in temperature, as a first approximation we
take the corresponding change in phase to be due to a combination of both
axial and radial strain as expressed by equations (4.35) and (4.58).
Furthermore, in order to account for strain in both the x and y directions,
we double the contribution due to radial strain. That is, working through
the previous derivation term by term, it can be shown that A6} ,the change

in phase due to temperature changes, can be expressed as

Aby = [B-vSV+a,,SV]Le,
(6.1)

v

+ [—(14_v )B + 2SV + 2mc}fSV]Lt-:r
This form can be abbreviated so that the final sensitivity values from Table

4.5 can be substituted directly:

a L (6.2)

radi

The change in dimension due to the application of a temperature
change AT is given in simplified for by
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for the axial direction, while for the radial direction,
Aa = 7y aAT , (6.4)

where 7Y is the coefficient of thermal expansion (CTE) for the glass fiber
material. Recalling that from the definition of the strain ¢, and €, , we may

write AL = Le, and Aa = ag, . Equating these different expressions for length

and radius change, we conclude that

g, = YAT = ¢ , (6.5)
which when substituted into (6.2), leads to

This expression then applies to both single and multimode fibers, as long as
the correct expression for A8, ;,, and A6, ;.| are employed.

Assuming a unit fiber length and a one degree centigrade temperature
change, and a CTE for fused silica of roughly 5 x 106 /°C, we have for the
single mode fiber,

A8
L AT " sm

= 130 radians/m°C , (6.7)

while for the typical multimode fiber, the numbers yield,

A9 32 radians / m °C (6.8)
LT om = radians / m , .
These values demonstrate the extreme sensitivity of both single and
multimode fibers to temperature changes. It should be kept in mind that
since fractions of a degree of phase change in a fiber sensor can be resolved
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with ordinary electronics, then temperature fluctuations of roughly 1074
degrees should be detectable.

Several effects tend to at least partially negate this high sensitivity to
temperature. For one, the time constants associated with heat diffusion
will cause much of the random temperature fluctuation to be averaged over
time, meaning that each minute variation will not necessarily be detected.
In addition, this effect will be enhanced with the addition of jacketing
material to the fiber, and naturally, one would expect different materials to
have different heat diffusivities. Specifically, if d is the diffusivity of heat, s
is the specific heat, and p is the density of the coating material, then the

rate of heat dH/dt passing an additional radial distance due to the jacketing
4 is given by

& - ssp %(w dz | (6.9)
where AT is the temperature differential over the jacketing thickness. This
suggests that in order to slow the rate of heat transfer across the jacket, one
could apply a softer, thicker coating material.

In addition to time averaging effects, spatial averaging also tends to
decrease the practical sensitivity of a fiber phase sensor to temperature
changes. That is, whereas random fluctuations may cause elongation in
one portion of fiber, it may cause contraction in another. The net effect will
be at least a partial cancellation of phase change, though observation of a
sensor operating in a practical environment suggests that time-varying
temperature effects still lead to a fair amount of signal instability. Also, by
comparison with temperature variations, which even in laboratory
environments may swing several degrees in a several hour period, normal
atmospheric pressure variations are in the millibar range. Thus, with a
sensitivity of approximately 10 radians/m/bar [100], the dominant
environmental effect can be seen to be temperature variations.

Perhaps the most common temperature compensation scheme applied
primarily to single mode interferometers involves the use of a piezoelectric
cylinder around which the reference fiber is wound [84]. The cylinder acts
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to stretch the reference fiber in response to very low frequency signal
variations such as associated with environmental changes, through a
feedback circuit. It is envisioned that a similar arrangement could be
employed to compensate for fades in multimode fiber outputs, though the
lack of a strictly periodic output may lead to complications. However, it is
interesting to note that for relatively short lengths of fiber, signal fading is
much less problematic than for long lengths, as verified by Crossley [100].
In addition, he reports that increased environmental disturbance (in his
case the application of heat to a fiber using a heat gun) produced more
frequent signal oscillations or fades, as opposed to deeper fades. This
suggests that signal variations could be quantified for a fixed length of fiber.

In this discussion, it is presumed that the signal of interest, such as
that due to an acoustic wave, varies at a frequency much faster than that
due to environmental perturbations. This allows for the ability to separate
the signal responses using standard electronics. In situations where the
"noise" and desired signal are similar in frequency, more sophisticated
techniques must be employed, such as to intentionally measure strain and
temperature effects separately. This may be performed using two different
sensors, or as mentioned earlier in the report, with a single sensor
operating at two different wavelengths, as outlined by Duncan.

Another concern with modal domain sensors which has basically been
ignored so far in this presentation regards the sensitivity to perturbations of
portions of the fiber leading to and from the workpiece under study. For
example, if we are seeking to measure acoustically induced strain in a
section of fiber in a water tank using a multimode fiber, then the sections of
fiber leading to and from the water tank must be isolated from any
environmental effects which could increase the noise floor of the
measurements in the tank, or lead to signals which could be confused with
the acoustic waves of interest. This concern is not unique to modal domain
sensors, in fact all intrinsic sensors need to face this question, but modal
domain sensors do offer some unique solutions.

Since the sensor operates on the principle of differential modulation of
the phases associated with the various modes in the section of interest, it is
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natural to suggest that the lead-in fiber be one that supports only one mode,
thereby defeating noise mechanisms in that section. A single mode fiber
then acts only as a pipe to carry light from the laser to the section of dual or
multimode fiber in the sample; small perturbations in this section can be
tolerated, though that is not meant to imply that the MDS will be totally
insensitive to phase changes in the lead-in fiber. Rather, for small
perturbations, changes in the initial phase y_ will be seen in all the modes
supported by the MDS, but large disturbances such as macrobending could
shift the position and shape of the mode field radius [115], and affect the
amount of power which is injected into the various modes in the sensor
portion. The amplitude modulation which occurs is in general
indistinguishable from the signal of interest.

A single mode fiber could be employed in a similar manner to carry the
sensor signal away to the receiving detector. Instead of placing a spatial
filter in the output field, or allowing the photodetector surface itself limit
the extent of the radiation from the sensor, a single mode fiber in the near
field could perform the same function. Similarly, a smaller core or off-set
multimode fiber could be used to collect even more of the signal light,
provided the receiving detector collects all the radiation from the lead-out
fiber. The use of lead-in and lead-out fibers for multimode sensors was first
reported by Bennett and co-workers [108], and later improved by Murphy et.
al. [116]. In the latter paper, the authors report the use of elliptical core
single mode fiber lead-in, an elliptical core dual mode fiber section for
sensing, and a round core single mode fiber used to collect signal
information. In their method, the use of a fusion splicer in-line proved
invaluable for connecting the fiber sections, while good insensitivity to noise
signals on the lead-in and lead-out portions was demonstrated.

Related to the above discussion is the problem of mode coupling effects,
especially in dual mode fibers. Instabilities due to coupling between modes
lead to fluctuations and rotation of the output intensity pattern, and are
especially troublesome when higher order modes are desired at the
exclusion of lower order modes which are allowed in the waveguide. One
solution to unwanted polarization coupling has been to employ elliptical
core or highly birefringent fiber, as discussed in references 117 and 118.
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These fibers split the degeneracy between the different polarizations
(reducing the possibility of mode coupling), or even disallow one state, but
both involve complications of their own, and do not prevent coupling
between even and odd modes. For an in-depth analysis of mode coupling
mechanisms, see references 93, 119, and 120.

Another possible solution to the problem of rotating lobes is simply to
measure the effect rather than trying to prevent it. Two detectors properly
placed in the output field could make relative power measurements and
determine the amount of rotation which has occurred. Such a monitoring
scheme might actually add insight to mode coupling mechanisms in real-
world applications, as well as compensate for them. Alternatively, a larger
portion of the two lobe output field could be imaged onto the detector surface,
which would make the signal much less sensitive to slight rotations due to
mode coupling. Unfortunately, this would probably lead to a poorer
modulation depth, or fringe contrast.

Another very important concern with respect to dual mode fibers is
maintaining quadrature during measurements. Nearly all the analysis
presented in the previous chapters assumed that the fiber was operated at
the Q-point, though it is well known that during any interferometrically
based measurement, a certain amount of fading and drifting of the signal
will occur due to environmental changes. A great deal of work has been
reported on compensation techniques for maintaining Q-point stability in
single mode interferometer reference arms. As mentioned earlier, the
primary technique has been to sense the drifting signal from the detector,
and use it in a feedback loop to drive a piezoelectric cylinder around which
part of the fiber is wound. As the drift voltage appears, the cylinder
expands or contracts, changing the strain biasing in the fiber and forcing it
back into quadrature. Simple d.c. strain biasing has also proven a useful
alternative for achieving quadrature in a relatively stable laboratory
environment.

When optical fibers are applied to structures for the purpose of strain
sensing, it is always assumed the there is perfect mechanical coupling of
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the strain from the structure to the fiber. Not only does this imply that
intimate contact is maintained between the structure and the fiber the
entire interaction length, but says that the shear modulus of any coating on
the fiber is capable of entirely transferring strain. As mentioned in the
second chapter, it has been observed that this may not always be an
accurate description of the mechanics. Although at least one study has
been performed to determine the ability of certain epoxies to transfer shear
strain, results of a general nature have been lacking in the field. It is
suggested that further experimentation be performed to determine which
coatings and epoxies, or which alternate technology are best suited for
attached and embedded fiber sensors.

A related concern regards the the proper conditioning of fibers to
optimize their sensitivity to acoustic waves. Researchers at the Naval
Research Laboratory have performed much work to determine that
contrary to previous speculation, maximum sensitivity is generally not
achieved by stripping the fiber of its coating before use [121]. Rather, a
compliant polymer jacketing seems to best transfer acoustic wave energy to
fiber strain, as well, of course, as adding protection to the fiber. This result
is suggested in the work using plastic clad silica fiber mentioned earlier.

Finally there is the question of optimized fiber placement, geometry,
and gage length. All of these factors depend in part on the quantity that is
to be measured. For example, if structural vibrations are to be monitored,
fibers may be run in lengths so as to maximize the response to certain
modes of vibration, while minimizing others. Such is the crux of the patent
of Kush and Meffe mentioned earlier [69]; a figure from that document
illustrates the idea in Figure 6.2. Placement of a fiber embedded within a
material is also important. Any directionality existing in the field to be
measured must be accounted for, such as keeping the fiber transverse to
the propagation of acoustic waves. Anisotropies of the part geometry must
be regarded as well. For example, it has been shown earlier that excessive
internal strain concentrations can at least be partially avoided by
embedding fibers parallel to surrounding graphite fiber tows in
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graphite/epoxy materials. This may require special considerations in part
design.

Furthermore, as suggested by the integral relationship of equation
(4.17), the optical fiber actually acts to integrate the component of the strain
field parallel to the fiber. If the strain is not uniform, the response will not
be straightforwgrd to interpret. Figure 5.2, comparing the response of a
piezoelectric transducer with that of a modal domain sensor to an acoustic
emission, demonstrates this point. Whereas the piezoelectric sensor has a
gage length of a few millimeters and was fairly narrowband in its
response, the fiber not only was more broadband, but also interacted with
the traveling and resonating acoustic wave all along its length of nearly 20
centimeters. Depending on the type of information necessary, this type of
response may be sufficient, though certainly not in all cases. Also, the
sensor gage length must be tailored for not only the application, but the
particular acoustic wavelength or bandwidth of interest as well. Shorter
sections of sensitized fiber can localize the wave interaction better, though
at the expense of decreased sensitivity due to smaller interaction length. At
the same time, decreasing the sensor size also reduces the complicating
integration effect over the active sensor section, as well as the convolution of
the signal over time.

6.3 Detection Scheme Characteristics

The primary method for monitoring disturbances to modal domain
sensors consists of allowing a photodetector to intercept light from one or
more sensitive lobes or speckles. One way to do this is to place a spatial
filter such as a pinhole between the end of the fiber and a large area
detector. The pinhole location is scanned so as to find the point of
maximum amplitude modulation, in the case of the LP,,/LP,, sensor, or
for a multimode fiber, a speckle or group of speckles of the desired
sensitivity (note that in some applications the highest sensitivity is not
always the optimal case). Alternatively, a small area detector could be
used, where the extent of the photodiode itself acts to spatially filter the
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output pattern, or a small core fiber could be employed for the same
purpose. In all cases it is most important that not all of the light is
detected. That is, during the course of detecting an event, the lobe, speckle,
or group of speckles will vary in intensity, or equivalently, bright speckles
will move in and out of the view of the detector. As one may expect, as
mentioned above with respect to dual mode fibers, collecting a larger
number of speckles in a multimode output effectively adds an increasing
d.c. bias, reducing the modulation depth of the signal. On the other hand,
individual speckle motion during a periodic perturbation may contain
frequency harmonics which are irrelevant to the problem under study
(physically meaningful somewhere in the fiber, but not representative of the
overall motion of the structure to which the fiber is attached, for example).
Furthermore, monitoring of a single speckle necessarily involves relatively
low signal amplitude, noisier signals, and a need for better electronics.
Thus the "best" number of speckles to monitor, or with dual mode fibers the
optimum detector size varies with each particular situation. No
comprehensive study is available documenting the effects of pursuing
possible trade-offs.

The previous methods all suffer from the fact that in most cases, only a
small proportion of the total energy emerging from the fiber is collected to
infer perturbations on the fiber. This leads to obvious needs for higher
source power and output amplification to maintain signal integrity.
Furthermore, as outlined above, a host of choices exist as to where to place
the detector in the output field (centered, near an edge), how many speckles
to intercept (one, a few, many), and the shape of the detection area (circle,
annular ring to try to increase the contribution from higher modes
perhaps). Thus, there is no guarantee that maximum sensitivity will be
achieved, or having been achieved, that it will remain that way for long
periods of time. Thus efforts have been made to employ full field methods,
that is, to use the entire speckle pattern to infer changes. Clearly if highly
sensitive interference effects are sought rather than microbending, then
simply imaging the entire output field onto a single detector would yield no
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change with perturbations. A method to interrogate the structure of the
speckle pattern while still collecting all the energy is sought.

The first full field method demonstrated to our knowledge, consisted of
a 6 x 6 array of discrete photodetectors analog multiplexed into an A/D
board resident in an IBM personal computer [122]. Used primarily to
process the output from dual mode sensors, this system discretized the
light into 36 pixels, and calculated the location of the centroid of intensity.
As the fiber experienced strain, the processor tracked the motion of the
centroid. It was noted that the number of detector elements could be
increased or decreased depending on the trade-off requirements between
resolution and speed. Furthermore, depending on the application, a faster,
dedicated processing unit could be built inexpensively. Also, low light
levels could be used, and a certain amount of microbending or injection
losses could be tolerated. However, though well suited to the simple dual
mode fiber output, the calculating algorithm would not be expected to
perform well with highly multimode fiber patterns.

A related technique demonstrated by Spillman and fellow researchers
did in fact make use of a dedicated processor reading the output of a
128 x 128 CCD array having a speckle pattern imaged on it [18]. Their
algorithm differed however in that each frame of pixel intensities were first
captured, and then compared pixel by pixel to that of the preceding frame.
The difference in pixel intensity was calculated, the absolute value was
taken, and the sum of these values was computed over the entire array.
The absolute value was necessary in order to avoid the signal cancellation
such as occurs when a single detector collects the entire speckle pattern.
Changes in the computed sum were used to detect both the vibration of a
beam and individual events such as sub-surface ground disturbances. It
was seen to be much less sensitive to injection variations than a spatially
filtered multimode sensor, also tested by the authors. Their sensor also
displayed considerably better harmonic distortion characteristics, though it
suffered from a low operation bandwidth due to the large number of pixels
processed and the frame processing rate of the system.

The only other example of full field detection of modal domain sensor
signals is described in a recent paper by Indebetouw, et. al. [109]. Their
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method relies on holographic matched filtering concepts. Light from a
modal domain sensor output is mixed with mutually coherent light from a
single mode fiber on a photographic plate, thereby forming a hologram of
the sensor output. When the hologram is developed and repositioned in the
output field, the single mode fiber beam is reconstructed to the extent that
the sensor output agrees with what it was at the time the hologram was
recorded. Thus, by monitoring the correlation beam, one can infer changes
to the sensor fiber. This method was applied successfully to both dual mode
and multimode fiber sensors, the latter being characterized by enhanced
strain sensitivity and a generally monotonic output, though suffering from
a small dynamic range and low signal, and required careful repositioning
of the holographic filter.

6.4 Sensing Alternatives for Multimode Fibers

In this final 'section, two alternative methods for using multimode
fibers for sensing are discussed. Both techniques depend on tracking the
coupling of power from one mode to another, and possess unique
advantages over others described in this report. In the first method,
bending in a multimode fiber can be seen to cause a change in the modal
power distribution (MPD), or the amount of power in each mode. Not being
interference-based, it is possible to avoid the use of laser sources, offering a
great savings in cost complexity, and stability, at the expense of sensitivity.
In the second method, it is changes in the number of speckles with strain
which is monitored. Though not fully confirmed, it is believed that this
could be the first interferometrically based sensor to yield a truly linear
output.

6.4.1 Speckle Migration Due to Modal Power Redistribution

In the sections above, it is assumed that throughout a measurement,
the speckle pattern stays roughly confined in numerical aperture, and that

Chapter 6 Optimization Issues for Modal Domain Sensors 182



the distribution of energy across the output takes an approximately
Gaussian shape, as shown in Figure 6.3a. When a fiber undergoes sharp,
or small radius bends however, much more energy is coupled into the
higher order and radiation modes, with the effect that the speckles appear
to migrate away from the center, drastically altering the energy
distribution. This can be seen in Figure 6.3b-h, where a successive amount
of bending was applied to a 50/125 step index fiber propagating He-Ne laser
light. Similar trends can be seen when fibers are highly strained in the
axial direction, though the signal change is not nearly as dramatic as for
bending.

Experiments to quantify this change were performed using the set-up
appearing in Figure 6.4. Both a He-Ne and a He-Cd laser were available as
sources, while detection was performed with a CCD array coupled in an
Imagelab image processing system, yielding roughly 500 x 500 pixel
resolution. Because of the extreme sensitivity of this device, the laser
needed to be signifftantly attenuated to avoid saturation; two variable-angle
polarizers were used to continuously tailor the input intensity. Both fiber
ends were mounted on 5-axis positioners (not shown), the output side
allowing for centering of the speckle pattern on the CCD array, and the
fiber was attached or clamped at two points along its length to be able to
impart axial strain with a micropositioner.

Both in the case of the bent fiber and the axially strained fiber, the
amount of light intensity falling within the circle defined by the unstrained
fiber output was calculated as a function of disturbance. Though the figure
above clearly shows a difference in intensity in this area, the results as
calculated by the computer were somewhat inconclusive. The exact cause
for this is not known, though is is noted that no compensation was made for
the microbending loss which accompanied the speckle migration. Also not
well understood is the clear ring-like features evident with increasing
bending, which seem to imply an underlying trend in the mode coupling
effects. However, the use of individual photodiodes in a monitoring system
using a conventional (A-B)/(A+B) scheme has been reported [24,123].
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6.4.2 Speckle Counting

The motivation for investigating the possibility of counting the number
of speckles to infer fiber strain has its roots in a paper presented at the
Fourth European Conference on Fiber Optics in Genoa, Italy in 1978 by R.
Epworth [124]. In that article, reprints of which were of obtained in 1981,
the author discusses the topic of modal noise. This phenomenon occurs
when multimode fibers carrying coherent light information signals are
imperfectly spliced or connected together, or when the output speckle
pattern does not completely fall on the optical receiver. Variations in fiber
geometry before the splice, etc. result in the modulation of power at the
output, similar to the spatially filtered sensing scheme discussed above. In
the course of his discussion, Epworth presents a simple model of modes in
the fiber resembling Figure 3.15b, and concludes without justification that
the number of speckles § at the output is

4naZn,?-n,?)
= xé 2 (6.10)

This relation was accepted at face value by the present writer for some
years, until it was conceived recently that counting the number of speckles
as a function of strain may provide an alternate full field sensing technique
for modal domain sensors.

Upon further thought however, some doubts arise as to the validity of
this equation. It is first striking that from the definition of V, (6.1) can be
expressed at S = V%/n . This corresponds exactly to the number of modes in
a fiber as given by some authors, and is nearly equal to that given in
equation (3.38); both expressions are recognized to be approximate. Because
Epworth's paper was largely experimental (meaning the emphasis was on
data rather than derivations), and because of the absence of any discussion
of interference, it is believed that he may have confused the number of
speckles with the number of modes. Nevertheless, as pointed out earlier,
the number of speckles visible is surely related to the number modes of
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propagating within the fiber, and so is related to the fundamental fiber
parameters encapsulated within V. Therefore, it should be possible to
construct a sensor based on monitoring the number of speckles in the
output field as a fiber undergoes strain.

Investigation of this idea took two approaches, one analytical, to be
presented first, and one experimental. Since no better guess was
immediately obvious for determining the number of speckles, and since no
clear evidence exists that Epworth was mistaken, the analysis starts with
equation (6.10) and proceeds to find an expression for the sensitivity of the
number of speckles per unit strain. That is, we begin by taking the
derivative of S with respect to strain along the axis, €,, and by considering

the optical wavelength as unaffected by strain, state that

d_.S : %19

Z Z

Being the product of terms which individually depend on strain, this

becomes

ds 47 2 2. da dn, dn,
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The derivatives of a, n, and n, are available from Chapter 4, and can be

expressed as

da _ __, (6.14)
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Substituting these into (6.13) and simplifying, we have

d_S 8 a2

de, - A2

[ m2-nDV + 3 pg (n,* - n24)] (6.17)

Before proceeding, it is interesting to note at this point that (6.17)
predicts a decrease in the number of speckles for a value of positive axial
strain (tension). Also, if the typical values for the constituent parameters
in Table 4.4 are substituted into this relation, it is discovered that the first
term in the brackets is lower than the second by a factor of 2.5. The first
term can be considered that part due to the change in fiber radius, while
the second arises from changes in the refractive index. The base
assumption being the same here as in Chapter 4, namely that the change
in index n; and n, must be accounted for separately, it is not surprising
that the analysis in that chapter also predicts that the radius change term
for phase sensitivity to be greater than the index term by the same factor.

If the factor (nl2 - n22) is factored out of (6.17) and terms are combined,

the speckle sensitivity per unit strain can finally be expressed as

ds 2 .1 1 2 2
d_ez = —n—V [v+§-pcﬁ(nl +n2)] (6.18)

Again, it is important to note that this relation is based on an unconfirmed
expression for the number of speckles in the fiber.

When the same values are substituted into equation (6.18), they suggest
that AS = -7,8000 ¢, , assuming an initial value of strain equal to zero. This
predicts that for a strain of 1%, which is near the breaking point of many
commercial fibers, a decrease of 78 speckles will be observed. For the
parameters listed, the total numbers of speckles given by our formula is
6,573, meaning that a 1% strain would lead to a 1.2% decrease in the
number of speckles.
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Several points become immediately obvious here. The first is that at
best, this sensing method can be considered quite insensitive relative to
many other methods. A 1.2% output change over the total expected range of
use is quite small indeed. Second, in order for the sensor to provide useful
data, it must provide a stable and repeatable value of the number of speckles
at any given moment. The stability should be much better than 1.2%.
Finally, (6.18) predicts that the number of speckles is linearly related to
strain. If this is true, for this reason alone, the sensor may merit further
investigation.

The experimental set-up in Figure 6.4 was again used to try to confirm
equation (6.18). Details of the tests will not be given. The first step was
deciding what to call a speckle. That is, looking at the typical pattern of
Figure 3.16, it becomes uncertain where one speckle stops and the next
begins. Clearly a threshold value has to be set, and pixel groups having
peaks under that value would not count. Tests were performed to find the
threshold value which corresponded most closely with what was observed
visibly on the display monitor, and the threshold set at that point. The
speckle pattern image was scanned, and the number of times the pixel
intensity crossed the threshold setting (rising) were counted. The outcome
for seven horizontal and seven vertical lines from near the center of the
circular image were averaged, and treated as the diameter of circle. The
total number of speckles was calculated as the circle area, or at least
proportional to the same. Next, a base line pixel number needed to be
established; it was found to vary widely, probably due to fluctuating
temperature and air currents in the laboratory.

Finally, axial strain was applied to the fiber and the number of speckles
recorded for each quarter turn of the micrometer screw. Unfortunately,
there was no obvious relationship between the number of speckles and the
amount of displacement. For one, the method of applying strain was found
to likely be deficient. Also, the ability to take and individually process
multiple frames of data was a sorely missed feature of the image
processing software, meaning that a lapse of nearly two minutes between
recorded images occurred. Lastly, as noted above, because the noise floor
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was so unsteady, expected differences of signal change in the 1% range
would be totally buried. At this point, conclusions as to the promise of this
sensor method are tenuous, but not altogether unfavorable.
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Figure 6.1a. Typical speckle pattern from a short section of 50/125 fiber
with laser light focussed with a roughly NA-matched lens onto the center of
the core. Figure 6.1b resulted from slightly off-axis launching. Note that
the favored excitation of higher order modes results in more and smaller
speckles spread over a larger angle, as qualitatively discernable from
equation (3.47).
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Figure 6.2. Illustration from Kush and Meffe patent [69].
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Figure 6.4. The experimental set-up used to test the alternate sensing
schemes involving modal power distribution changes and speckle counting.
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7.0 CONCLUSIONS

This report has focussed on one particular method of performing
nondestructive evaluation, that of modal domain optical fiber sensing. The
need for new sensors was justified on the basis of the many new materials
being developed, and the increased desire for a variety of information
regarding those materials, especially once they are incorporated into
engineering structures. It was pointed out that modal domain sensors are
only one type of fiber optic sensors that could and have been employed for
NDE, particularly for real-time structural monitoring. The use of standard
single mode interferometers, intensity or polarimetric based sensors, and
optical time domain techniques are reviewed with regard to their
application to NDE. It was seen that no one method will provide all the
needs being sought by the measurement science community; real world
schemes for structural monitoring will likely involve an eclectic
combination of both fiber and non-fiber solutions, and perhaps include a
number of different fiber sensor types. Nevertheless, modal domain
sensors were suggested to offer significant advantages over a number of
sensors reported to date.

A theoretical foundation for modal domain sensing was laid, starting
with the standard scalar wave equation and proceeding to explain the
existence of modes in step-index, circular dielectric waveguides. The
nature of the interference between modes was investigated next, beginning
with two LP,; modes in single mode fibers which are brought together in a
Mach-Zehnder configuration. The interference pattern emerging from
dual mode fibers was analyzed, and a computer program was written to
model its output and performance with the application of strain. Finally, a
general expression for the output pattern resulting from the interference of
an arbitrary number and combination of modes in a step index multimode
fiber was derived.

Next, the sensitivity of the phase of light in an optical fiber to applied
strain was investigated. This is the most fundamental step in quantifying
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the final sensitivity that one can expect from any fiber device utilizing
interference phenomena, preceding discussion of other components in a
sensing system, such as detector sensitivity, or electronic detection
bandwidth. A new approach was taken to derive the change the index of
refraction to strain, one which depends on differentiating between change

in the core and cladding indices. These methods were applied to dual and
multimode fibers. The LP,,/LP,, sensor was shown to be as much as seven

times more sensitive than the LP,,/LP,, , with the added enhancement that
it avoids problems with the coupling of power between even/odd modes and
offers a circularly symmetric output pattern; methods to reliably achieve
this sensor were discussed. Analysis of multimode fibers revealed that
their absolute phase sensitivity rivals and in some cases can even surpass
that of single mode interferometers, especially in the case of radially
applied strain. It was seen that in these fibers, the phase change arising
from changes in fiber diameter actually dominate the final sensitivity, as
opposed to the single mode case, where the waveguide dispersion term is
routinely dropped.

The application of modal domain sensing to acoustic wave monitoring
in modern structures was described next. Detection of ultrasonic waves in
the form of acoustic emissions from cracking graphite/epoxy composite
specimens was described, as well as the monitoring of broadband
ultrasonic shock waves arising from impacts to both metal and composite
materials. These sensors were shown to possess an extremely broad
frequency response, especially compared to piezoelectric devices, ranging
from d.c. to into the gigahertz. It is believed that the upper frequency limits
of fiber optic phase sensors will ultimately depend on factors such as the
acoustic spectral attenuation of the host material and sound coupling
efficiency, rather than on inherent insensitivity of the fibers themselves. It
is noted that a recent U.S. patent awarded to the author and his advisor for
the application of modal domain sensors rests largely on their
demonstrated ability to perform in-service monitoring of structural
vibrations, and acoustic wave events such as discussed here [125]. Finally a
few issues were raised regarding the optimization of modal domain
sensors, and suggestions for future efforts made.
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