EVALUATING THE INFLUENCE
OF TESA TRAINING
ON TEACHER BEHAVIOR
IN THE CLASSROOM

by

James J. Harris II

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

DOCTOR OF EDUCATION

in

Educational Administration

APPROVED:

David J. Parks, Chairman

Glen I. Earthman

Wayne M. Worner

Larry J. Weber

Walter D. Mallory

1990

Blacksburg, Virginia
EVALUATING THE INFLUENCE OF TESA TRAINING
ON TEACHER BEHAVIOR
IN THE CLASSROOM

by
James J. Harris II

(ABSTRACT)

During the 1984-85 school year, a metropolitan school system investigated the research on effective schools to determine which program, once put into place, would serve the system in the remediation of low academic achievement. The program chosen for implementation was the Teacher Expectations and Student Achievement (TESA) Program.

This study examined the relationships between the frequency of use of TESA-prescribed behaviors in the classroom and (a) time lapse since TESA training, (b) who taught the TESA classes, (c) training type, (d) training quality, and (e) principal support.

A teacher survey was developed to collect data on the five predictor variables. One hundred percent of the teachers responded. The TESA observation technique was employed to measure the criterion variable—the frequency of use of the TESA-prescribed behaviors in the classroom. Data were collected during the months of May and June in the 1988-89 school year. Correlations, t-tests, and stepwise regression analysis were employed to analyze the data.

Who taught the TESA classes, time lapse since taking TESA training, and training type were found not to significantly predict the
frequency of use of TESA behaviors in the classroom. However, statistically significant relationships were found between specific TESA behaviors and certain factors within the multi-item predictor variables of training quality and principal support.
DEDICATION

This manuscript is dedicated to the memory and strength of my father.
ACKNOWLEDGEMENTS

Many individuals assisted in the completion of this study. First, I would like to thank Glen Earthman for his support throughout my entire Virginia Tech experience. He is responsible for my initial entrance into the doctoral program. My gratitude is also expressed to Glen as he was chairman of my original dissertation committee.

To Dave Parks, my current committee chairman, a sincere thank you for the ideas and encouragement he inspired. Without his diligent counsel the completion of this work would not have been realized.

Thanks extend to Wayne Worner and Larry Weber as members of my dissertation committee. A special thank you to Walt Mallory who also served as a member of my dissertation committee. His guidance was invaluable in obtaining a wealth of critical information. The depth of his technical expertise and wisdom extends far beyond the boundaries of this study.

I want to sincerely thank the many staff members and teachers within the Fairfax County schools. They provided assistance and information during the term of this study.

A special debt of gratitude is expressed to Mike Harrison from the Office of Research and Evaluation for his kind assistance and technical support.

My appreciation is further extended to Frank Freeman, my principal twice, my friend always. His encouragement and understanding led to my completion of the doctoral program.

Blair Robertson deserves a special note of thanks for all her hard work in preparing this manuscript. As one reads this study the quality
of her work is evident.

Although many individuals contributed to this study, the final product is mine and for it I take full responsibility.
TABLE OF CONTENTS

ABSTRACT ................................................................. ii
DEDICATION ............................................................... iv
ACKNOWLEDGEMENTS ................................................... v
TABLE OF CONTENTS ..................................................... vii
LIST OF TABLES ........................................................... ix
LIST OF FIGURES ......................................................... xi

CHAPTER I INTRODUCTION ............................................... 1
  Background ................................................................. 1
  Statement of the Problem ............................................... 4
  Purpose of the Study ................................................... 4
  Theoretical Perspective of the Study ................................. 5
  Research Questions ..................................................... 13
  Hypotheses ............................................................... 18
  Delimitations ............................................................. 19
  Limitations ............................................................... 20
  Organization of the Study .............................................. 20

CHAPTER II METHODOLOGY .............................................. 22
  Variables ................................................................. 22
  Population and Sample ................................................ 22
  Hypotheses Tested ..................................................... 23
  Instrumentation ......................................................... 24
  Measurement of the Criterion Variables ............................ 24
  Measurement of the Predictor Variables ............................. 30
  Measurement of Other Variables ..................................... 33
  Reliability of the Scales .............................................. 35
  Data Collection Procedure .......................................... 35
  Data Analysis Procedure ............................................. 37
  Summary ................................................................. 38

CHAPTER III ANALYSIS AND RESULTS .................................. 39
  Variables and Hypotheses ............................................. 39
  Findings ................................................................. 44

CHAPTER IV SUMMARY, CONCLUSIONS, IMPLICATIONS, AND RECOMMENDATIONS .............................................. 62
  Summary ................................................................. 62
  Findings and Conclusions ............................................. 63
  Implications ............................................................. 65
  Recommendations ....................................................... 71
REFERENCES .................................................. 75
APPENDIX A TEACHER EXPECTATIONS AND STUDENT
ACHIEVEMENT OBSERVATION CODING FORM .......... 80
APPENDIX B TEACHER SURVEY INSTRUMENT ............. 82
APPENDIX C LETTER TO SAMPLE OF TEACHERS .......... 86
APPENDIX D FEEDBACK FORM: TEACHER SURVEY INSTRUMENT .. 88
VITA ............................................................ 90
## LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Alpha Reliability Coefficients for Multi-item Scales in the Teachers' Survey</td>
<td>36</td>
</tr>
<tr>
<td>3. Means, Standard Deviations, Lowest Score, and Highest Score for TESA Behaviors by Behavior, Strand, and Total TESA Score</td>
<td>41</td>
</tr>
<tr>
<td>4. Frequencies and Percentages for Who Taught Classes and Type of Training</td>
<td>42</td>
</tr>
<tr>
<td>5. Pearson Correlation Coefficients and t-test Results for the Criterion Variables and Predictor Variables</td>
<td>43</td>
</tr>
<tr>
<td>6. Correlation of Time Lapse in Years Since TESA Training with TESA Behaviors, Strands, and Total TESA Scores</td>
<td>45</td>
</tr>
<tr>
<td>7. Mean Observed TESA Behaviors for Teachers Trained by Principals and Trainers</td>
<td>47</td>
</tr>
<tr>
<td>8. Pearson Correlation Coefficients for Quality of Training Items with the Subcategories of TESA Strand A, Response Opportunity</td>
<td>48</td>
</tr>
<tr>
<td>9. Pearson Correlation Coefficients for Quality of Training Items with the Subcategories of TESA Strand B, Feedback</td>
<td>49</td>
</tr>
<tr>
<td>10. Pearson Correlation Coefficients for Quality of Training Items with the Subcategories of TESA Strand C, Personal Regard</td>
<td>51</td>
</tr>
<tr>
<td>11. Regression of Training Quality Items and Principal Support Items on Subcategories of TESA Behaviors in Strand A, Response Opportunity</td>
<td>52</td>
</tr>
<tr>
<td>12. Regression of Training Quality Items and Principal Support Items on Subcategories of TESA Behaviors in Strand B, Feedback</td>
<td>53</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>13. Regression of Training Quality Items and Principal Support Items on Subcategories of TESA Behaviors in Strand C, Personal Regard</td>
<td>55</td>
</tr>
<tr>
<td>14. Pearson Correlation Coefficients for Principal Support Items with the Subcategories of TESA Strand A, Response Opportunity</td>
<td>56</td>
</tr>
<tr>
<td>15. Pearson Correlation Coefficients for Principal Support Items with the Subcategories of TESA Strand B, Feedback</td>
<td>58</td>
</tr>
<tr>
<td>16. Pearson Correlation Coefficients for Principal Support Items with the Subcategories of TESA Strand C, Personal Regard</td>
<td>59</td>
</tr>
</tbody>
</table>
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A Model of the Process of Teacher Change</td>
<td>7</td>
</tr>
<tr>
<td>2. Diagram of Relationships Among the Variables in the Study</td>
<td>21</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

Background

In 1983 a large metropolitan school system analyzed 1982-83 school achievement data to determine the status of minority students' achievement. The analysis compared student performance by race and ethnic group on various achievement indicators--standardized test scores, state competency test results, high school drop-out rates, retentions, grades, attendance, program placement, course enrollment, and post-secondary educational plans. The analysis revealed that, in general, black and Hispanic students' achievement was below that of white and Asian students on nearly every indicator examined.

In recommending actions to address this condition, an appointed study group agreed that appropriate strategies to improve minority achievement were contained in the literature on effective schools. The group suggested that student improvement was possible as part of a long-term school improvement effort and that such an effort would require basic changes in individual attitudes, instructional programs, and allocation of resources at every level. A recommendation that the school board create a climate for these changes was implemented in June 1984 when the improvement of minority students' achievement was adopted as a school board priority. Accordingly, an Annual Operating Plan (AOP) objective was initiated to develop a systemwide plan for program and staff development based upon the findings in the research on effective schools and on the recommendations of the study group appointed by the deputy superintendent regarding successful strategies for improving

1
minority students' academic achievement. The recommendations by the study group were that such a plan should include various models for program and staff development and should also include a component addressing communication of high expectations for all students. The program chosen for implementation was the Teacher Expectations and Student Achievement (TESA) Program.

The TESA program was developed by the Los Angeles County (California) public school system and has been used at both the elementary and high school levels. TESA is based on research that indicates teacher interactions with students perceived to be low achievers are less supportive and less motivating than interactions normally produced with students whom teachers perceive to be high achievers. It is the intent of the TESA program to increase the achievement of perceived low achievers by changing the behavior of teachers toward them.

Teachers who participate in the TESA program are trained to use 15 specific interactions with all students in their classrooms in a nondiscriminatory manner. These specified interactions are categorized in three groupings: "response opportunities," "feedback," and "personal regard."

The training of TESA participants consists of five workshops, each scheduled approximately one month apart. Following each workshop, teachers apply newly learned skills, observe each other using a formal observation instrument, and provide feedback to their colleagues.
In this particular school system, personnel from the central office were taught to become TESA trainers by a national representative of the program. This training was offered to teachers and administrators in a course format on noncontract time. The observation component of the TESA program was conducted by participants during teachers' contract time; substitutes were funded by the school system. Taking the course involved no expense to the teachers.

TESA training was also offered to teachers and administrators as part of the human relations course taught through the University of Virginia during the 1984-85 school year. The goal of the TESA staff development program was and is to improve student achievement.

In September 1984, the assistant superintendent, instructional services, requested that the Office of Research and Evaluation (ORE) study and describe the TESA staff development program as it was implemented during the 1984-85 school year (Harrison, 1985). The ORE study is based on data collected about the TESA program from September 1984 to June 1985. It was not the purpose of the ORE study to confirm or deny that the use of TESA improved the academic performance of students. The ORE report was not an evaluation of the program. The study provided descriptive information about the training, implementation, and support provided for the TESA staff development program in the school system and examined how teachers participating in the program perceived its effects.
Statement of the Problem

This study was conducted to identify, describe, and evaluate the TESA program on teacher behavior in the classroom in a large metropolitan school system. The following factors that may have been associated with the presence of TESA-prescribed behaviors in the classroom are:

1. time lapse since TESA training
2. who taught the TESA classes
3. training type
4. training quality
5. principal support

Purpose of the Study

The purpose of this study was to determine if the TESA-prescribed teacher behaviors persisted in the classroom over time. School systems are currently expending great amounts of both human and monetary resources in an attempt to remediate the problem of low academic achievement. For a program to endure, factors must be identified that may be negatively associated with the success of that program. Various factors were identified that may be associated with the presence of TESA teacher behaviors in the classroom. These factors were examined in terms of their relative importance in producing enduring change and may be generalizable to other change situations.
Theoretical Perspective of the Study

Theories of Change

For this study, explaining the variance in the practice of TESA behaviors in the classroom among teachers was a problem of educational change. Educational change, as characterized by Berman (1981), is an implementation-dominant process. In such processes, events that occur after the adoption of a technology--in this case, the adopted technology was the TESA program, a clinical supervision-staff development intervention--and not the technology itself are responsible for the outcomes related to it.

Staff development programs, according to Guskey (1986), vary widely in context and format, yet they generally share a common purpose. That purpose, according to Griffin (1983), is to "alter the professional practices, beliefs, and understanding of school persons toward an articulated end" (p. 2).

In most cases, that end is the improvement in student learning. In other words, staff development and clinical supervision are systematic attempts to bring about change--change in the classroom practices of the teacher, change in their beliefs and attitudes, and change in the learning outcomes of students. Of particular importance to the change process and to efforts to facilitate change is the order of occurrence of these outcomes. Staff development efforts frequently attempt to first initiate some form of change in the beliefs, attitudes, and perceptions of teachers (Fullan, 1982; Harris, 1980). Guskey (1986) counters that notion by suggesting that, "significant change in
teachers' beliefs and attitudes is likely to take place only after changes in student learning outcomes are evidenced" (p. 7).

The classroom practices most teachers employ are determined in the classroom, not in training (Lortie, 1975). Practices that teachers find useful in helping students attain desired learning outcomes are retained; those that do not work are abandoned. Guskey (1986) observes that activities that are successful tend to be repeated while those that are not successful or for which there is no tangible evidence of success are generally avoided. The point is, as depicted in Guskey's model (see Figure 1), evidence of improvement in learning outcomes of students generally precedes and may be a prerequisite to significant change in the beliefs and attitudes of teachers.

Change is a gradual and difficult process for teachers. Lortie (1975) observed that teachers are reluctant to adopt new practices or procedures unless they feel sure they can make them work. To change or to try something new means to risk failure; therefore, teachers do not easily alter or discard the practices they have developed and refined in the demanding environment of their own classrooms (Bolster, 1983).

Years of Teaching Experience and Use of TESA Behaviors

Still another aspect of teacher behavior that may affect the use of TESA-prescribed behaviors in the classroom is the number of years of teaching experience. In examining the Rand Study, McLaughlin and Marsh (1978) found that teaching experience had a strong and significant effect on the success of educational change. McLaughlin and Marsh (1978) also found that the number of years of teaching experience was
Figure 1
A Model of the Process of Teacher Change.
(From: "Staff Development and the Process of Change" by Thomas R. Guskey, 1986, Educational Researcher, 15, p. 7)
negatively related to all of the dependent variables, with the 
exception of teacher continuation of project techniques, when there 
was no relationship. In other words, the more experienced the 
teacher, the less likely the project was to achieve its goals, and 
the less likely the project was to improve program goals. Both the 
field work and the survey analysis suggest that tenure has a 
curvilinear relationship to project outcomes. As explained in the 
Rand Study (Berman & McLaughlin, 1978), teachers tend to peak-out 
after five to seven years of teaching—either they are maintaining 
their level of efficiency or they actually are becoming less 
effective.

Crucial Factors in Local Change Efforts

The change agent study identified four clusters of factors as 
crucial to the successful implementation and continuation of local 
change efforts: institutional motivation, project implementation 
strategies, institutional leadership, and certain teacher 
characteristics. The five dependent measures used in the study were 
percentage of goals achieved, total teacher change, total student 
performance gain, continuation of teacher methods, and continuation 
of project materials (Berman & McLaughlin, 1978).

Characteristics of Successful Staff Development Efforts

Staff development efforts that successfully encourage and 
sustain change have been found to share several common 
characteristics. To be successful a staff development program must 
offer teachers practical ideas that can be efficiently used to
directly enhance desired learning outcomes in students. McLaughlin and Marsh (1978) report that, "A primary motivation for teachers to take on extra work and other personal costs of attempting change is the belief that they will become better teachers and their students will benefit" (p.75).

As noted by McLaughlin and Marsh (1978), the Rand Study identified staff-support activities as necessary to sustain the gains of how-to-do-it training. Considered as staff-support activities was the contribution of classroom assistance by resource personnel and the use of outside consultants. It was found that these staff-support activities had a major positive effect on long-term project outcomes--teacher change and continued use of project methods and materials. It was also noted that not only were staff-support activities important to the success of any staff training effort, the quality of that staff-support assistance was critical. The study found that the amount of classroom assistance from local resource personnel did not matter when teachers perceived their help as useful or very useful. But frequency of classroom visits did have an effect when it was not perceived as helpful. Numerous visits to the classroom by district or project staff were counterproductive when the teacher did not feel they were being helped. Therefore, it would seem that the teacher's perspective as to the quality of the staff development training and assistance after training and during program implementation may have a bearing on the success of the training effort over time.
Endurance of the results of change efforts. The results of the staff development effort must endure. With respect to TESA, Sam Kerman says they will (Kerman, Kimball, & Martin, 1980). He and his colleagues maintain that by the end of the five month training sessions, the teachers will have internalized the 15 behaviors of equitable distribution, individual help, latency, delving, high level questioning, affirming-correcting, praising, reasons for praising, listening, accepting feelings, proximity, courtesy, personal interest and compliments, touching, and desisting to such an extent that they will be automatically incorporated into their teaching behavior from that time on.

In a position paper on inservice education Yarger (1982) questions if it is possible for teachers to integrate skills learned by inservice training into their repertoire of classroom behaviors in such a way as to guarantee survival over the long-term. His paper reinforced the complexity of the issue and the need for further research.

As reported by Mazzarella (1980), one of the useful studies on staff development was the Rand change agent study. While initially focused on staff development, the study examined approximately 300 educational innovations to determine why some innovative projects succeed and others fail. According to Berman and McLaughlin (1978), and cited in Mazzarella (1980), researchers surveyed 852 administrators and 689 teachers and conducted field studies that allowed them to observe projects in operation. Two years after the
initial research, they resurveyed 100 projects and visited 18 to determine which reforms had long-lasting effects. The researchers discovered that several aspects of teacher staff development activities had major, positive effects on project outcomes and continuation. One was training that was hands-on and teacher-specific.

In discussing the Rand Corporation's change agent study, McLaughlin and Marsh (1978) observed that:

Project strategies that fostered staff learning and change had two complimentary elements: (1) staff-training activities; and (2) training-support activities. The study found that well-conducted staff training and staff-training support activities improved project implementation, promoted student gains, fostered teacher change, and enriched the continuation of project methods and materials. These training and support variables alone accounted for a substantial portion of the variation in project success and continuation. (p. 76)

**Skill-specific training.** The staff-training activities were typically skill-specific—much like the TESA program. The Rand Study found that, by themselves, skill-specific training activities had strong, positive effects on the percentage of project goals achieved and on student performance in the areas of both achievement and behavior. However, skill-specific training had only a small and not significant effect on teacher change. This finding is puzzling at first glance. Staff-training activities enhanced student performance during the period of project operation. Why didn't this effect continue after funding was terminated? McLaughlin and Marsh (1978) suggest that skill-specific training activities have only a transient effect because "by themselves, they do not support staff learning and
teacher change" (p. 77). The researchers suggest that training was mechanistic and never really assimilated by the teachers. Thus, when the project funds were discontinued, the teachers discontinued using suggested practices because they never learned them in the first place. In other words, skill-specific training alone influenced student gains and project implementation only in the short run. By contrast to staff-training activities, staff-support activities, such as classroom assistance by resource personnel and the use of outside consultants, had strong positive and direct effects on long-term project outcomes--teacher change and continuation of project methods. As summarized by McLaughlin and Marsh (1978), "well conducted staff support activities not only reinforce the contribution to staff training, but they also make their own important contribution to promoting teacher change and to supporting staff assimilation of project practices" (p. 77).

Sustained assistance. Louis (1981) found that the success of diverse programs of staff development are strongly associated with sustained assistance over long periods of time. Her study was based on surveys of 540 teachers who participated in the Research and Development Utilization Program. Miller and Waddell (1984), Carter (1981), and Williams (1981) support Louis by indicating the need for staff development support systems and training follow up as a component of long-term behavior change.

Teachers must receive regular feedback if the use of new practices are to be sustained and changes are to endure. It is a
human characteristic that successful actions are reinforced while
those that are unsuccessful are diminished. After all, success and
progress make teaching worthwhile. Therefore, plans for implementing
a new program or innovation should include specific procedures by
which teachers can receive evidence of the effectiveness of their
efforts (Guskey, 1986).

Having opportunities to practice a new skill and receive
feedback on performance is helpful for behavioral change. Brophy and
Good (1974) found that just providing feedback to teachers about
their differential treatment of students resulted in significant
changes in teacher-student interaction.

Wood and Thompson (1980) observed that adults will learn
something they perceive as job related and immediately useful and
that they need to see the results of their efforts through accurate
feedback. The authors further suggest that "adults will learn,
retain, and use what they perceive is relevant to their personal and
professional needs" (p. 377). Their suggestion is based upon the
notion that adults may be operating on what Piaget calls the concrete
operational stage of intellectual development. If this is so, these
teachers need to receive immediate information concerning their
classroom interactions with students. This can be accomplished,
according to Wood and Thompson (1980), through the use of feedback.

**Support and commitment of teachers.** Change will not take place
without the support and commitment of teachers. This notion is
supported by Purkey and Smith (1982). In a study by Crandall (1983),
efforts to implement 61 innovative practices in schools and classrooms in 146 school districts nationwide were observed. Crandall discovered that teacher commitment to a program developed after implementation, after teachers were actively engaged in using the new practices.

In discussing his findings, Crandall (1983) reports that:

Our study allows us to offer an alternative image for successful improvement efforts because we discovered commitment developed after implementation, after teachers were actively engaged in using a new practice. We found that with a clear, direct leadership from building and central office administrators, training by a credible person in the use of a practice that was known to be effective, and continued support and assistance, teachers tried new practice, mastered it, saw results with their students and developed a strong sense of ownership. (p. 7)

Principal participation in training. Another conclusion of the Rand Study (Berman & McLaughlin, 1978) was that principal participation in the training was vital. It appeared that principals needed to gain knowledge that would enable them to help teachers with program objectives and to show teachers that their efforts are supported.

Individualized activities. Another study examining what makes teacher inservice effective was conducted by Lawrence (1974). He looked at 97 studies or evaluation reports of inservice education and generalized about successful programs. Lawrence found that education programs that have individualized activities are more likely to accomplish their objectives than programs that have common activities for all participants. This is similar to Berman and McLaughlin's
findings that the most successful strategies are "teacher specific."

Feedback, support, and encouragement. Another finding which echoed the Rand Study was that programs that emphasize demonstrations, trials, and feedback are more effective than those in which teachers merely absorb ideas for a future time. This sounds a bit like Berman and McLaughlin's conclusions about "concrete-ongoing, hands-on" programs. Guskey (1986) maintains that, "if change in teachers' beliefs and attitudes occurred primarily before implementation of a new program or innovation, the quality of the initial training would be of utmost importance" (p. 10). But since, as the model suggests, such change takes place after implementation and evidence of student learning is gained, it is continued support following the initial training that is most crucial. Time and experimentation are needed by the teacher, as suggested by Joyce and Showers (1980, 1982), to fit the new techniques into their teaching strategies. Guskey further suggests that the educational innovation adopted must become a natural part of the teacher's repertoire of teaching skills. For this to occur, continued feedback, support, and encouragement are essential.

Administrator support. After examining the results of the Rand study, Berman and McLaughlin (1978) concluded that the major factor affecting the success of a program was administrative support--from both principals and superintendents.
Principals must persist in their efforts to support a program. In studying the North Carolina Public School System, Dobney (1986) found that the more internal support the principal receives for clinical supervision, the greater the institutionalization of clinical supervision. Dobney's study dealt with principals. In contrast this study is concerned with teacher perception. It may be the case that the greater the degree of interest and support demonstrated by the leader, as perceived by the teacher, the greater the effort shown by the teacher over time.

Lieberman and Miller (1981) emphasized the importance of the principal as instructional leader in bringing about improvements in teaching. They maintain that schools must provide the necessary conditions for improvement and that these conditions are motivated primarily by the principal. According to Lieberman and Miller (1981), "school improvers must: (1) approach teachers as the experts about teaching and learning, (2) provide rewards for teachers for trying something new, and (3) provide the community with the right image of the principal as the school improver" (p. 583). In another study, Stallings and Mohlman (1981) found that teachers improved most in schools where the principal was supportive of teachers and clear and consistent in communicating school policies.

Therefore, it appears that teachers must also be provided with continued support during training and following initial training. Joyce and Showers (1982) suggest this assistance can be provided by administrators. Joyce and Showers further suggest this assistance
take the form of coaching—providing teachers with technical feedback, guiding them in adapting the new practices to the needs of their students, and helping them to analyze the effects on students. Consequently, it can be inferred that without follow up training, learned behaviors will decrease over time.

Berman (1981) argues that internal support is a key component for educational change and that one source of this support comes from central office administrators. However, the building principal, one-on-one with the teacher, seems to have the greatest impact with the teacher. Therefore, it would appear that the degree to which the principal supports the teacher in the staff development effort, as well as the methods the principal employs, may impact both positively and/or negatively on the success of that educational intervention.

Thus, the variables used in this study to explain the variance in the use of TESA-prescribed behaviors in the classroom and drawn from the preceding theoretical perspective are:

1. time lapse since TESA training
2. training quality as perceived by the teacher
3. the degree to which the building principal supported TESA

The two remaining variables of who taught the TESA classes and type of TESA training are used to help explain further the possible variation in the frequency of use of TESA-prescribed behaviors in the classroom. If the principal is seen as the one to affect change in his building, then it seems reasonable to infer that teachers who participated in TESA training view that training as important enough
to use TESA behaviors in their classrooms. Particularly where training in which they participated was taught by the principal. The TESA program was offered in two different modalities. TESA training was offered separately as a course entirely as well as a part of the human relations course. Participation in the human relations course is mandatory as it is required for teacher certification. Data was collected in an effort to control the extraneous variance in these criterion variables.

Research Questions

1. Are the prescribed teacher behaviors in the TESA program retained over time?
2. How does the role of trainer (principal, peer, or other) affect teacher behaviors associated with TESA training?
3. How does the teacher's perception of the quality of training affect teacher behavior?
4. How does the level of perceived principal support for the use of prescribed TESA interactions affect teacher behavior?
5. How does the format (training type) affect teacher behaviors?

Hypotheses

1. The greater the time since the teacher participated in TESA training, the less the frequency of use of TESA-prescribed behaviors in the classroom.
2. Teachers who participated in TESA training taught by the principal demonstrate a greater frequency of use of TESA-
prescribed behaviors than those teachers who participated in TESA training taught by a peer or other resource person.

3. Teachers who perceived the TESA program to be of high quality demonstrate a higher frequency of use of prescribed TESA behaviors than those teachers who do not perceive TESA training to be of high quality.

4. The more the perceived support of the principal for TESA training, the greater the frequency of use of TESA-prescribed behaviors in the classroom.

5. Teachers who participated in TESA training taught as a separate class demonstrate a higher frequency of use of prescribed TESA behaviors than those teachers who participated in TESA training conducted as part of the human relations course.

Delimitations

1. Only one classroom observation was conducted of each of the 50 subjects under study.

2. Only 50 teachers were selected randomly as subjects of the study from a sample of approximately 500.

3. Only the factors listed below were considered in predicting current teacher behavior in the classroom:

   (a) time lapse since TESA
   (b) who taught the classes
   (c) training type
   (d) training quality
   (e) principal support
4. The influence of those observed teacher behaviors in the classroom on student self-concept and achievement was not investigated (see Figure 2).

Limitations

1. There were no measures of TESA behaviors prior to training.

2. There were 50 teachers in this study. This number and the limitation to one school district suggests that generalization beyond this study may be inappropriate.

Organization of the Study

Chapter I contains the background for understanding the variation in the frequency of use of TESA-prescribed behaviors in the classroom. Predictor variables for explaining the variance in the use of the TESA behaviors were derived, for the most part, from theory and supported by research and literature. A model was then developed of the relationships between predictor variables--time lapse since TESA training, who taught the TESA classes, type of training, training quality, and principal support--and the criterion variable, frequency of use of TESA-prescribed behaviors. This chapter also contains the purpose, research questions, and hypotheses.

In Chapter II the methodology is described for testing how well the predictor variables predict, together or alone, the frequency of use of TESA-prescribed behaviors in the classroom. The analysis and results are reported in Chapter III, and summary, conclusions, implications, and recommendations are contained in Chapter IV.
Figure 2
Relationships Among the Variables in the Study
CHAPTER II

METHODOLOGY

An explanation of why variance may exist in the frequency of use of TESA-prescribed behaviors was presented in Chapter I, and variables were identified that could possibly explain this variance. This chapter contains descriptions of the population, the sample, the data collection procedures and instruments, and the data analysis procedures for the study.

Variables

This study was concerned with five predictor variables:

1. time lapse since TESA training
2. who taught the classes
3. type of classes
4. training quality
5. principal support

These predictor variables were used to predict one criterion variable: frequency of use of TESA-prescribed behaviors in the classroom.

Population and Sample

The population for this study was of approximately 500 elementary classroom teachers housed in 120 schools in a large, suburban, predominantly middle class school system. This population had TESA training and was employed by the school division.

A sample of 50 elementary teachers was selected at random from this teacher population. This sample was derived by numbering the
population of teachers from 1 \rightarrow N. A random numbers table was used to select the 50 subjects.

Hypotheses Tested

Hypotheses tested in this study include:

1. The greater the time since the teacher participated in TESA training, the less the frequency of use of TESA-prescribed behaviors in the classroom.

2. Teachers who participated in TESA training taught by the principal demonstrate a greater frequency of use of TESA-prescribed behaviors than those teachers who participated in TESA training taught by a peer or other resource person.

3. Teachers who perceived the TESA program to be of high quality demonstrate a higher frequency of use of prescribed TESA behaviors than those teachers who do not perceive TESA training to be a quality program.

4. The more the perceived support of the principal for TESA training, the greater the frequency of use of TESA-prescribed behaviors in the classroom.

5. Teachers who participated in TESA training taught as a separate class demonstrate a higher frequency of use of prescribed TESA behaviors than those teachers who participated in TESA training conducted as part of the human relations course.
Instrumentation

The Teacher Expectations and Student Achievement Observation Coding Form (Appendix A) was used to record teacher interactions with students. Scores derived from the teacher observations using the TESA Observation Coding Form were used to assess type(s) of teacher behaviors and the frequency of their use. Data on the predictor variables were gathered with a teacher survey (Appendix B).

Measurement of the Criterion Variables

TESA Observation Coding Form

The TESA staff development program provides teachers with the opportunity to examine ways that they interact with students. The program examines 15 motivational and supportive interactions. These interactions are grouped into three strands: response opportunities, feedback, and personal regard.

The first strand, response opportunities, focuses on "how" and "how often" students are called on by the teacher to answer questions and to participate in classroom discussions. Specifically, response opportunity, as specified by Kerman, Kimball, and Martin (1980), is any opportunity provided or permitted by the teacher for a pupil to respond to a question, recite, read aloud, express an opinion, give a report, do a problem on the chalkboard, demonstrate something, confirm a response given by another student, etc. The five interactions in this strand include:
1. Equitable distribution
   The teacher will provide response opportunities to perceived low achievers as frequently as to other students.

2. Individual helping
   The teacher will provide individual help to low achievers as frequently as to other students.

3. Latency (wait time)
   The teacher will provide low achievers with as much time to respond to a task or question as other students.

4. Delving, rephrasing, giving clues
   The teacher will provide additional information to all students in order that they may respond to questions.

5. Higher level questioning
   The teacher will challenge the thinking abilities of low achievers as often as other students by requiring them to do more than simply recall information.

The second strand, feedback, addresses the ways that teachers respond to students' answers and discussion comments. For the purpose of this study and the TESA inservice training program, feedback referred
to when the teacher informed the student who responded to a question, performed in some way, or who worked at his desk that his response or work was or was not acceptable. The five interactions in this strand include:

1. Affirmation or correction
   The teacher will provide low achievers with feedback about their class performance as frequently as they do with others.

2. Praise of learning performance
   The teacher will praise the learning performance of low achievers as frequently as that of other students.

3. Reasons for praise
   The teacher will tell low achievers as frequently as other students why their classwork is acceptable or praiseworthy.

4. Listening
   The teacher will listen attentively to low achievers as well as other students.

5. Accepting feelings
   The teacher will convey to all students that their feelings are understood and accepted in a nonjudgmental manner.
The third strand, personal regard, examines the ways that teachers demonstrate their interest in students as individuals. In this study personal regard was expressed by the teacher whenever he came within arms reach of a student, whether or not the student was aware of his presence. The five interactions in this strand include:

1. Proximity

   The teacher will, in a friendly manner, be within arm's reach of low achievers as frequently as with other students in the class.

2. Courtesy

   The teacher will use courteous words as frequently with low achievers as with other students and as frequently with all students as with adults.

3. Personal interest/compliments

   The teacher will give personal compliments to low achievers as frequently as to other students; express personal interest in the outside activities of low achievers as frequently as to other students.

4. Touching

   The teacher will touch low achievers in a friendly manner as frequently as other students.
5. Desisting

The teacher will be cool and calm when stopping the misbehavior of low achievers just as with high achievers.

Validity

During the 1973-74 school year a national validation project was initiated to determine the effectiveness of the Teacher Expectations and Student Achievement Model (Kerman, Kimball, & Martin, 1980).

As reported by Kerman, Kimball, and Martin (1980):

The objectives of the validation study were to:
(1) determine the degree to which the participating teachers directed the positive behaviors specified in the interaction model toward students they perceived as low achievers more frequently than prior to training and as frequently as those behaviors are directed toward those students perceived as high achievers, and (2) students perceived as low achievers will gain significantly (.05 level) more from pre-to-posttest on standardized reading tests than the perceived low achievers in control classes.

Observation data indicated that the interaction behaviors were directed toward students perceived as low achievers more frequently following training than prior to training. The behaviors were also directed toward low expectancy students equally as frequently as towards "highs" following training.

Utilizing the reading subtest of the Comprehensive Test of Basic Skills (CTBS), it was found that the language arts scores indicated an increase in mean performance of the experimental group over the controls (p<.05). (pp. G1-G19)

Other studies provide supporting evidence that the TESA inservice program is both valid and effective. There can be little doubt that the 15 teacher interactions advocated by the TESA program are more frequently practiced by participating teachers after than before training. Studies by Meehan (1983), Patton (1986), and Forbes and Burkhardt (1988) confirm this. In addition, the participating teachers
used these interactions with significantly greater frequency than did those teachers who had not received TESA training.

But are the effects of TESA training enduring? Kerman, Kimball, and Martin (1980) found gains in the use of TESA-prescribed behaviors after training between experimental groups when compared to observation scores obtained from control groups of teachers who had not taken TESA training. Patton (1986) measured the frequency of use of TESA-prescribed behaviors following a workshop. The teachers had been trained and observed 18 months prior. It was found that the TESA-trained teachers showed a greater frequency of use of TESA-prescribed behaviors after the workshop when compared to their initial observation scores. The time delay in the Meehan (1983) and Forbes and Burkhardt (1988) studies was approximately 12 months.

Teachers who have received TESA training almost always become strong supporters of the program. As reported by Kerman, Kimball, and Martin (1980), evaluations of training show less than 2% of trainees found the program "not helpful," while at least two-thirds rated it "extremely helpful" (p. G-9). Forbes and Burkhardt (1988) made the observation that training was most effective for teachers with less than three years experience, but were quick to point out that the majority of teachers, including those with three or more years of experience, thought that the training was useful and caused them to modify their instructional techniques.
Scoring

The researcher collected the data by recording the observed incidence of use of the TESA-prescribed behaviors using the TESA observation coding sheet. The researcher documented the number of instances of observed positive TESA behavior for each of the 50 teachers during 30 minute observation periods. The number of instances of use of TESA-prescribed behaviors were tabulated by strand, yielding three strand scores and one total score which was the sum of the three strand scores.

Measurement of the Predictor Variables

Teacher Survey Instrument

The perceived influence of TESA training on teacher behavior was assessed by regressing the criterion variables on to the predictor variables. The predictor variables were measured as follows:

Amount of Time Since TESA Training

The variable representing the amount of time since the teacher had taken TESA training was determined by finding the difference in years from the date of the teacher's TESA training and the date of observation. The date of TESA training was requested from the teacher with the following item:

(5) Please indicate when you participated in TESA training:

_________ ________
Month Year
Training Type

Training type was measured by a direct response to the following item:

(6) The TESA training program in which I participated
   A. Was conducted as a separate class by itself
   B. Was conducted as part of the human relations course
   C. Other (please specify) ______________________

Who Taught the Class

Who taught the TESA class--principal, peer, or other--was measured by a direct response to the following item:

(7) My TESA training was taught by
   A. Central office staff
   B. My principal or assistant principal
   C. A teacher
   D. Other (please specify)

Quality of Training as Reported by the Teacher

Quality of training as reported by the teacher, was obtained by using the following Likert-type items. Response scoring weights are (1) Strongly disagree, (2) Disagree, (3) Agree, and (4) Strongly agree.

(8) The instructor of my TESA class demonstrated a thorough knowledge of TESA concepts.

(9) During TESA training sessions the objectives of the program were clearly communicated to me.

(10) The TESA program introduced me to useful new professional ideas.
The methods employed by the instructor(s) were effective.
The TESA program was well organized and managed.
The TESA program effectively provided me with functional practices.
My participation in the TESA program has enabled me to substantially increase the number of positive interactions with students whom I perceive to be low achievers.
I now call on my perceived low achievers to recite and perform more often than I did prior to my participation in the TESA program.
The use of TESA techniques in my classroom has had a positive effect on student behavior.
The use of TESA techniques has had a positive effect on student academic achievement.
The use of TESA techniques in my classroom has had a positive effect on the self-concepts of my students.

The Degree to Which the Building Principal Supports TESA Training

This variable was concerned with the extent to which the building principal reinforces the use of prescribed TESA interactions in the classroom and was represented by the following seven responses measured on a Likert-type scale. Responses and respective scoring weights are
(1) Never, (2) Seldom, (3) Sometimes, (4) Often, and (5) Always.
My principal shows a high degree of interest in the TESA program.
(20) My principal takes the initiative to discuss the TESA program with me.

(21) My principal utilizes the TESA model as part of the teacher evaluation process.

(22) My principal utilizes the prescribed TESA teacher behaviors in his dealings with parents, teachers, other staff, and students.

(23) My principal schedules activities such as staff inservices and/or group discussions designed to reinforce the TESA experience.

(24) My principal has made consistent use of TESA program techniques by the teacher staff as part of the overall schoolwide plan to improve student achievement.

(25) My principal uses TESA techniques as a way to help teachers improve.

Measurement of Other Variables

The remaining portion of the Teacher Survey was designed to gather supplemental information pertinent to the study. Teachers responded to items 1, 2, 3, and 4 which are directed to formal educational background, teaching assignment, years teaching experience, and participation in other staff development programs.

These variables served as covariates and permitted a more complete description of the sample subjects.
(1) My teaching assignment is at the
A. Elementary level
B. Middle school level
C. High school level

(2) Counting this year, I have the following number of years of teaching experience in both this county and elsewhere: ___

(3) I have the following formal educational background:
A. BA/BS
B. BA/BS + 15 semester hours
C. Masters
D. Masters + 30 semester hours, CAGS, Specialist
E. Doctorate

(4) I have participated in the following staff development training program(s) other than TESA:
A. Skillful teacher
B. Fred Jones' classroom management course
C. Other

Validity

The Teacher Survey (Appendix B) was reviewed by four elementary teachers to determine the clarity of the items and the readability of the survey. This was accomplished with the use of a feedback form provided each reviewer (see Appendix D). All four teachers indicated that all items on the teacher survey were relevant to the intent of the research. They also reported that they understood all items. TESA
training coordinators received an advance copy of the teacher survey for review. Suggestions for improvement were solicited.

Reliability of the Scales

Cronbach's Alpha was the measure of reliability (Assessment Systems Corporation, 1987) used with the survey's multi-item scales. Alpha coefficients were .87 for training quality and .94 for principal support (Table 1).

Data Collection Procedure

Data collected for this study included: (1) classroom observations using TESA criteria and techniques and (2) responses from the Teacher Survey. The data for this study was collected in the school setting during May and June, 1988-89.

The principals of those teachers selected with the random numbers table were contacted. Once the principal consented to allow the research to be conducted in his building, the teacher was contacted in person. At this time the nature of the visit was explained. The participating teachers were not made aware, however, that TESA behaviors would be noted. Rather, they were informed that classroom practices would be observed. The participating teacher was then given a Teacher Survey. A date and time was then agreed upon for the 30 minute observation period. Upon completion of the observation, the completed Teacher Survey was collected. The incidence of TESA behaviors was recorded using the TESA coding sheet.
Table 1

Alpha Reliability Coefficients for Multi-item Scales in the Teachers' Survey

<table>
<thead>
<tr>
<th>Scale</th>
<th>Number of Items</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training quality</td>
<td>11</td>
<td>.87</td>
</tr>
<tr>
<td>Principal support</td>
<td>7</td>
<td>.94</td>
</tr>
</tbody>
</table>
Data Analysis Procedure

The initial analysis of the data included bivariate correlations to determine the significance of the relationships, if any, between each predictor variable and the criterion variables (TESA scores) and among predictor and criterion variables.

Stepwise multiple regression analysis was also employed in this study. The following variables were entered into four equations:

1. time lapse since TESA training
2. who taught the TESA classes
3. training type
4. training quality
5. principal support

These variables were used to predict Strand A--Response Opportunity, Strand B--Feedback, and Strand C--Personal Regard. Other staff training and type of training were used as covariates. Other staff training was "dummy coded" as: (1) skillful teacher, (2) Fred Jones' course, (3) skillful teacher and Fred Jones' course, (4) other, (5) skillful teacher, Fred Jones' course, and other, (6) skillful teacher and other, and (7) Fred Jones' course and other. Type of training was "dummy coded" as: (1) separate class and (2) part of human relations class. The covariates were entered into the equation by forced entry. The independent variables were then entered into the equation in stepwise fashion.
Summary

The sample of elementary school classroom teachers was surveyed using the Teachers' Survey to collect data on five predictor variables—time lapse since TESA training, who taught the TESA classes, training type, training quality, and principal support—and four criterion variables, the three TESA strand scores and total TESA scores. Survey information was received from all 50 (100%) of the elementary classroom teachers in the survey sample. Complete information was also gathered from the survey sample of teacher on all four criterion variables.

The relationship between the four criterion variables and the predictor variables of time lapse since TESA training and training type were analyzed using bivariate correlations. The relationships between the four criterion variables and the predictor variable of who taught the TESA classes were analyzed using t-tests. The relationships between the criterion variables and the predictor variables of training quality and principal support were analyzed using bivariate correlations and stepwise multiple regression analysis.

Prior to the statistical analysis of the survey data, reliability coefficients were computed for the two multi-item variables. Alpha coefficients were .87 for training quality and .94 for principal support.

Chapter III contains the results of the analyses.
CHAPTER III

ANALYSIS AND RESULTS

This chapter contains the analysis of the data obtained from 50 elementary school classroom teachers in one Virginia school system on five predictors of the frequency of use of TESA-prescribed behaviors in the classroom.

Variables and Hypotheses

Data for the five predictor variables were obtained from the Teachers' Survey, the components of which were discussed in detail in Chapter II. The predictor variables were (a) when the teachers took the TESA classes, (b) who taught the TESA classes (principal, teacher, or other), (c) training type, (d) quality of training as reported by the teacher, and (e) the degree to which the principal supported TESA training. The criterion variables were: (a) TESA Strand A--Response Opportunity. This strand consisted of five factors of equitable distribution, individual help, latency, delving, and high level questioning; (b) TESA Strand B--Feedback. This strand consisted of five factors of affirming/correcting, praise, reasons for praise, listening, and accepting feelings; and, (c) TESA Strand C--Personal Regard. This strand consisted of five factors of proximity, courtesy, personal interest/compliments, touching, and desisting. Correlations, t-tests, and multiple regression were used to analyze the data. Descriptive statistics for the predictor and criterion variables are shown in Tables 2, 3, 4, and 5.
Table 2

Means, Standard Deviations, Lowest Score, and Highest Score for Time Since TESA Training, Training Quality, Principal Support

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>Lowest</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time lapse in years since TESA training</td>
<td>2.50</td>
<td>1.06</td>
<td>1.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Training quality</td>
<td>3.26(^a)</td>
<td>0.41</td>
<td>1.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Principal support</td>
<td>2.58(^b)</td>
<td>1.06</td>
<td>1.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

\(^a\) Score represents the mean of all scores tabulated for this multi-item variable. Lowest and highest possible scores were one and four.

\(^b\) Lowest and highest possible scores were one and five.
Table 3

Means, Standard Deviations, Lowest Score, and Highest Score for TESA Behaviors by Behavior, Strand, and Total TESA Score\textsuperscript{a}, N = 50

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>Lowest</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand A: Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opportunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equitable distribution</td>
<td>7.78</td>
<td>8.42</td>
<td>0.0</td>
<td>45.00</td>
</tr>
<tr>
<td>Individual helping</td>
<td>3.88</td>
<td>3.95</td>
<td>0.0</td>
<td>19.00</td>
</tr>
<tr>
<td>Latency</td>
<td>6.02</td>
<td>4.19</td>
<td>0.0</td>
<td>15.00</td>
</tr>
<tr>
<td>Delving</td>
<td>9.40</td>
<td>7.00</td>
<td>0.0</td>
<td>27.00</td>
</tr>
<tr>
<td>Questioning</td>
<td>0.88</td>
<td>1.47</td>
<td>0.0</td>
<td>6.00</td>
</tr>
<tr>
<td>Strand B: Feedback</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affirming/correcting</td>
<td>15.06</td>
<td>8.58</td>
<td>2.0</td>
<td>43.00</td>
</tr>
<tr>
<td>Praise</td>
<td>5.68</td>
<td>4.11</td>
<td>0.0</td>
<td>16.00</td>
</tr>
<tr>
<td>Reasons for praise</td>
<td>3.16</td>
<td>3.40</td>
<td>0.0</td>
<td>16.00</td>
</tr>
<tr>
<td>Listening</td>
<td>0.32</td>
<td>0.68</td>
<td>0.0</td>
<td>3.00</td>
</tr>
<tr>
<td>Accepting</td>
<td>5.64</td>
<td>3.86</td>
<td>0.0</td>
<td>17.00</td>
</tr>
<tr>
<td>Strand C: Personal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximity</td>
<td>4.14</td>
<td>4.04</td>
<td>0.0</td>
<td>15.00</td>
</tr>
<tr>
<td>Courtesy</td>
<td>2.46</td>
<td>2.06</td>
<td>0.0</td>
<td>8.00</td>
</tr>
<tr>
<td>Personal interest</td>
<td>1.84</td>
<td>2.06</td>
<td>0.0</td>
<td>9.00</td>
</tr>
<tr>
<td>Touching</td>
<td>0.58</td>
<td>0.84</td>
<td>0.0</td>
<td>3.00</td>
</tr>
<tr>
<td>Desisting</td>
<td>3.38</td>
<td>2.80</td>
<td>0.0</td>
<td>13.00</td>
</tr>
<tr>
<td>Total TESA Score</td>
<td>55.42</td>
<td>22.85</td>
<td>6.0</td>
<td>122.00</td>
</tr>
</tbody>
</table>

\textsuperscript{a}Item scores represent the number of instances that each TESA behavior was observed. The strand scores represent the sum of the item scores. The total TESA scores reflect the sum of the strand scores.
Table 4

Frequencies and Percentages for Who Taught Classes and Type of Training

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who taught TESA classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Base administration</td>
<td>28</td>
<td>56</td>
</tr>
<tr>
<td>Teacher</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Other</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Training Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separate class</td>
<td>46</td>
<td>92</td>
</tr>
<tr>
<td>Part of human relations course</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 5

Pearson Correlation Coefficients and t-test Results for the Criterion Variables and Predictor Variables

<table>
<thead>
<tr>
<th>Predictor Variables</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Since TESA Training</td>
<td>( r = .09 )</td>
<td>( r = .23 )</td>
<td>( r = .12 )</td>
<td>( r = .18 )</td>
</tr>
<tr>
<td>Who Taught TESA</td>
<td>( t = -1.85 )</td>
<td>( t = -1.59 )</td>
<td>( t = -1.73 )</td>
<td></td>
</tr>
<tr>
<td>Training Quality</td>
<td>( r = .05 )</td>
<td>( r = -.21 )</td>
<td>( r = -.09 )</td>
<td>( r = -.07 )</td>
</tr>
<tr>
<td>Principal Support</td>
<td>( r = .20 )</td>
<td>( r = -.02 )</td>
<td>( r = .16 )</td>
<td>( r = .18 )</td>
</tr>
<tr>
<td>Training Type (^b)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

\(^a\) I - TESA Strand A behaviors. II - TESA Strand B behaviors. III - TESA Strand C behaviors. IV - Total TESA scores.

\(^b\) Due to the small number of cases (4) of those teachers who took TESA classes as part of the human relations course, results of the data analysis were not reported.
The following hypotheses were tested:

1. The greater the time since the teacher participated in TESA training, the less the frequency of use of TESA-prescribed behaviors in the classroom.

2. Teachers who participated in TESA training taught by their principal demonstrate a greater frequency of use of TESA-prescribed behaviors than teachers who participated in TESA training taught by a peer or other resource person.

3. Teachers who perceived the TESA training to be of high quality demonstrate a higher frequency of use of prescribed TESA behaviors than those teachers who do not perceive TESA training to be of high quality.

4. The greater the perceived support of the principal for TESA training, the greater the frequency of use of TESA-prescribed behaviors in the classroom.

5. Teachers who participated in TESA training taught as a separate class demonstrate a higher frequency of use of prescribed TESA behaviors than those teachers who participated in TESA training conducted as part of the human relations course.

Findings

The findings reached after testing each hypothesis follow.

Hypothesis 1: Time Since Training and Frequency of TESA Behaviors

No significant relationships were found between time since training and the three TESA strand scores (response opportunity,
Table 6

Correlation of Time Lapse in Years Since TE5A Training with TESA Behaviors, Strands, and Total TESA Scores, N = 50

<table>
<thead>
<tr>
<th>TESA Strands and Behaviors</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand A: Response Opportunity</td>
<td>.09</td>
</tr>
<tr>
<td>Equitable distribution</td>
<td>-.09</td>
</tr>
<tr>
<td>Individual helping</td>
<td>.18</td>
</tr>
<tr>
<td>Latency</td>
<td>.05</td>
</tr>
<tr>
<td>Delving</td>
<td>.08</td>
</tr>
<tr>
<td>High level questioning</td>
<td>.38*</td>
</tr>
<tr>
<td>Strand B: Feedback</td>
<td></td>
</tr>
<tr>
<td>Affirming/correcting</td>
<td>.23</td>
</tr>
<tr>
<td>Praise</td>
<td>.10</td>
</tr>
<tr>
<td>Reasons for praise</td>
<td>.22</td>
</tr>
<tr>
<td>Listening</td>
<td>.09</td>
</tr>
<tr>
<td>Accepting</td>
<td>.14</td>
</tr>
<tr>
<td>Strand C: Personal Regard</td>
<td></td>
</tr>
<tr>
<td>Proximity</td>
<td>.12</td>
</tr>
<tr>
<td>Courtesy</td>
<td>.09</td>
</tr>
<tr>
<td>Personal interest/compliments</td>
<td>-.22</td>
</tr>
<tr>
<td>Touching</td>
<td>.01</td>
</tr>
<tr>
<td>Desisting</td>
<td>-.00</td>
</tr>
<tr>
<td>Total TESA Score</td>
<td>.18</td>
</tr>
</tbody>
</table>

*p < .05
feedback, and personal regard) or the total TESA scores (Table 6). The individual TESA-prescribed behaviors of higher level questioning ($r = .38$, $p < .05$) and accepting feelings ($r = .38$, $p < .05$) did relate positively to the variable of time lapse since TESA training.

**Hypothesis 2: Who Taught the TESA Training and Frequency of TESA Behaviors**

There were no statistically significant ($\alpha < .05$) differences in total TESA scores or any of the TESA strands for groups taught by principals or others. However, significant differences were found for two individual behaviors. Those subjects who received their training from principals exhibited more courteous ($t = -2.21$, $p < .05$) and more accepting ($t = -3.55$, $p < .01$) behavior (Table 7).

**Hypothesis 3: Training Quality and Frequency of TESA Behaviors**

A bivariate correlational analysis (Tables 7-9) found that no significant ($\alpha < .05$) relationships existed between the predictor variable of training quality and the criterion variable of TESA Strand A, TESA Strand B, TESA Strand C, and total TESA scores. Four of the *Teachers’ Survey* items were positively correlated with one or more of the TESA behaviors. Within Strand A, "Response Opportunity," it was found (Table 7) that teachers who perceive the TESA program to be well organized and managed gave students time to respond to a question ($r = .32$, $p < .05$). High level questioning was significantly correlated with the instructor’s knowledge of TESA concepts ($r = .28$, $p < .05$); introducing the teacher to useful new professional ideas ($r = .37$, $p < .05$); and, providing the teachers with functional practices ($r = .30$, $p < .05$).
Table 7
Mean Differences in Observed TESA Behaviors for Teachers Trained by Principals and Trainers

<table>
<thead>
<tr>
<th>TESA Behaviors</th>
<th>Principal Trainer N=28 M</th>
<th>Other Trainer N=22 M</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand A: Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opportunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equitable distribution</td>
<td>7.96</td>
<td>7.55</td>
<td>-.17</td>
<td>.86</td>
</tr>
<tr>
<td>Individual Helping</td>
<td>4.04</td>
<td>3.68</td>
<td>-.31</td>
<td>.76</td>
</tr>
<tr>
<td>Latency</td>
<td>6.39</td>
<td>5.55</td>
<td>-.72</td>
<td>.48</td>
</tr>
<tr>
<td>Delving</td>
<td>10.18</td>
<td>8.41</td>
<td>-.89</td>
<td>.38</td>
</tr>
<tr>
<td>High Level Questioning</td>
<td>.96</td>
<td>.77</td>
<td>-.45</td>
<td>.65</td>
</tr>
<tr>
<td>Strand B: Feedback</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affirming/Correcting</td>
<td>6.39</td>
<td>4.77</td>
<td>-1.40</td>
<td>.17</td>
</tr>
<tr>
<td>Praise</td>
<td>3.50</td>
<td>2.73</td>
<td>-.79</td>
<td>.43</td>
</tr>
<tr>
<td>Reasons for Praise</td>
<td>.32</td>
<td>.32</td>
<td>-.02</td>
<td>.99</td>
</tr>
<tr>
<td>Listening</td>
<td>6.36</td>
<td>4.73</td>
<td>-1.50</td>
<td>.14</td>
</tr>
<tr>
<td>Accepting</td>
<td>.43</td>
<td>.05</td>
<td>-2.21</td>
<td>.03*</td>
</tr>
<tr>
<td>Strand C: Personal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximity</td>
<td>4.14</td>
<td>4.14</td>
<td>-0.01</td>
<td>.99</td>
</tr>
<tr>
<td>Courtesy</td>
<td>3.39</td>
<td>1.41</td>
<td>-3.55</td>
<td>.00**</td>
</tr>
<tr>
<td>Personal Interest/</td>
<td>1.82</td>
<td>1.86</td>
<td>.07</td>
<td>.94</td>
</tr>
<tr>
<td>Compliments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Touching</td>
<td>.55</td>
<td>.64</td>
<td>.42</td>
<td>.68</td>
</tr>
<tr>
<td>Desisting</td>
<td>3.96</td>
<td>2.64</td>
<td>-1.70</td>
<td>.10</td>
</tr>
<tr>
<td>Total TESA Score</td>
<td>60.29</td>
<td>49.23</td>
<td>-1.73</td>
<td>.09</td>
</tr>
</tbody>
</table>

*p < .05
**p < .01
Table 8

Pearson Correlation Coefficients for Quality of Training Items with the Subcategories of TESA Strand A, Response Opportunity, N = 50

<table>
<thead>
<tr>
<th>Quality of Training Items</th>
<th>Strand A Response Opportunity&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OBS01</td>
</tr>
<tr>
<td>8. Instructor knowledge</td>
<td>.20</td>
</tr>
<tr>
<td>9. Objectives communicated</td>
<td>.13</td>
</tr>
<tr>
<td>10. Professional ideas</td>
<td>.09</td>
</tr>
<tr>
<td>11. Methods effective</td>
<td>.11</td>
</tr>
<tr>
<td>12. Organized &amp; managed</td>
<td>.26</td>
</tr>
<tr>
<td>13. Functional practice</td>
<td>.11</td>
</tr>
<tr>
<td>14. Positive interaction</td>
<td>.26</td>
</tr>
<tr>
<td>15. Recite &amp; perform</td>
<td>-.01</td>
</tr>
<tr>
<td>16. Student behavior</td>
<td>-.11</td>
</tr>
<tr>
<td>17. Academic achievement</td>
<td>.03</td>
</tr>
<tr>
<td>18. Self-concept</td>
<td>-.11</td>
</tr>
</tbody>
</table>

<sup>a</sup>TESA Strand A behaviors are: OBS01--equitable distribution, OBS02--individual help, OBS03--latency, OBS04--delving, and OBS05--high level questioning.

*p < .05
Table 9
Pearson Correlation Coefficients for Quality of Training Items with the Subcategories of TESA Strand B, Feedback, N = 50

<table>
<thead>
<tr>
<th>Quality of Training Items</th>
<th>Strand B Feedback&lt;sup&gt;a&lt;/sup&gt;</th>
<th>OBS06</th>
<th>OBS07</th>
<th>OBS08</th>
<th>OBS09</th>
<th>OBS10</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Instructor knowledge</td>
<td>- .06</td>
<td>.21</td>
<td>.01</td>
<td>.14</td>
<td>.40*</td>
<td></td>
</tr>
<tr>
<td>9. Objectives communicated</td>
<td>.02</td>
<td>.19</td>
<td>.24</td>
<td>.15</td>
<td>.37*</td>
<td></td>
</tr>
<tr>
<td>10. Professional ideas</td>
<td>.01</td>
<td>-.22</td>
<td>.14</td>
<td>-.10</td>
<td>.12</td>
<td></td>
</tr>
<tr>
<td>11. Methods effective</td>
<td>-.03</td>
<td>-.12</td>
<td>.31*</td>
<td>-.01</td>
<td>.21</td>
<td></td>
</tr>
<tr>
<td>12. Organized &amp; managed</td>
<td>-.04</td>
<td>-.02</td>
<td>.09</td>
<td>.01</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>13. Functional practice</td>
<td>.08</td>
<td>-.14</td>
<td>.06</td>
<td>.00</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>14. Positive interaction</td>
<td>.06</td>
<td>-.12</td>
<td>.09</td>
<td>.08</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>15. Recite &amp; perform</td>
<td>.16</td>
<td>-.20</td>
<td>.12</td>
<td>-.11</td>
<td>-.12</td>
<td></td>
</tr>
<tr>
<td>16. Student behavior</td>
<td>.01</td>
<td>-.32</td>
<td>-.19</td>
<td>.17</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>17. Academic achievement</td>
<td>-.03</td>
<td>.26</td>
<td>-.01</td>
<td>.02</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>18. Self-concept</td>
<td>.02</td>
<td>-.29</td>
<td>.03</td>
<td>.05</td>
<td>-.03</td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup>TESA Strand B Behaviors are: OBS06--affirming/correcting, OBS07--praise, OBS08--reasons for praise, OBS09--listening, and OBS10--accepting feelings.

*p < .05
There also was a significant correlation between the perceived use of effective feedback and reasons for praise \((r = .31, p < .05)\).

Analysis of Strand C, "Personal Regard" (Table 10), reveals that teachers who perceived their TESA instructor to be knowledgeable \((r = .33, p < .05)\) and who perceived their instructors as having clearly communicated TESA concepts to them \((r = .40, p < .05)\), also used courteous words with students. Teachers who reported that they now called on students to recite and perform more often than they did prior to their participation in the TESA program \((r = .31, p < .05)\) also tended to touch students in a friendly manner.

Stepwise multiple regression was used to predict the frequency of use of TESA behaviors, TESA strands, and total TESA behaviors from the survey items related to training quality. It was found that several training quality items may help explain the variance in the use of TESA-prescribed behaviors in the classroom:

1. Teachers who agreed that TESA training introduced them to useful new professional ideas tended to challenge the thinking abilities of students (Table 11).

2. Teachers who perceived that the use of TESA techniques in their classroom had a positive effect on student behavior tended to praise the learning performance of students (Table 12).

3. Teachers who perceived the instructor of their TESA class as demonstrating a thorough knowledge of TESA concepts tended to tell students why their classwork was acceptable or praiseworthy (Table 12).
Table 10

Pearson Correlation Coefficients for Quality of Training Items with the Subcategories of Strand C, Personal Regard, N = 50

<table>
<thead>
<tr>
<th>Quality of Training Items</th>
<th>Strand C Personal Regard&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OBS11</td>
</tr>
<tr>
<td>8. Instructor knowledge</td>
<td>-.12</td>
</tr>
<tr>
<td>9. Objectives communicated</td>
<td>-.10</td>
</tr>
<tr>
<td>10. Professional ideas</td>
<td>.01</td>
</tr>
<tr>
<td>11. Methods effective</td>
<td>-.01</td>
</tr>
<tr>
<td>12. Organized &amp; managed</td>
<td>.01</td>
</tr>
<tr>
<td>13. Functional practice</td>
<td>.18</td>
</tr>
<tr>
<td>15. Recite &amp; perform</td>
<td>.23</td>
</tr>
<tr>
<td>16. Student behavior</td>
<td>.08</td>
</tr>
<tr>
<td>17. Academic achievement</td>
<td>.03</td>
</tr>
<tr>
<td>18. Self-concept</td>
<td>.19</td>
</tr>
</tbody>
</table>

<sup>a</sup>TESA Strand C behaviors are: OBS11--proximity, OBS12--courtesy, OBS13--personal interest/compliments, OBS14--touching, and OBS15--desisting.

*p < .05
Table 11

Regression of Training Quality Items and Principal Support Items on Subcategories of TESA Behaviors in Strand A, Response Opportunity

<table>
<thead>
<tr>
<th>Regression</th>
<th>Equitable Distribution</th>
<th>Individual Help</th>
<th>Latency</th>
<th>Delving</th>
<th>High Level Questioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^2$</td>
<td>.08</td>
<td>.24</td>
<td>.08</td>
<td>--</td>
<td>.24</td>
</tr>
<tr>
<td>$p$</td>
<td>.02</td>
<td>.00</td>
<td>.03</td>
<td>--</td>
<td>.00</td>
</tr>
</tbody>
</table>

Training Quality Items

<table>
<thead>
<tr>
<th>Item</th>
<th>B/s.e.B</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>--</td>
</tr>
<tr>
<td>11</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>--</td>
</tr>
<tr>
<td>13</td>
<td>--</td>
</tr>
<tr>
<td>14</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>--</td>
</tr>
<tr>
<td>17</td>
<td>--</td>
</tr>
<tr>
<td>18</td>
<td>--</td>
</tr>
</tbody>
</table>

Principal Support Items

<table>
<thead>
<tr>
<th>Item</th>
<th>B/s.e.B</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>--</td>
</tr>
<tr>
<td>20</td>
<td>--</td>
</tr>
<tr>
<td>21</td>
<td>--</td>
</tr>
<tr>
<td>22</td>
<td>1.98/.98</td>
</tr>
<tr>
<td>23</td>
<td>--</td>
</tr>
<tr>
<td>24</td>
<td>--</td>
</tr>
<tr>
<td>25</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 12

Regression of Training Quality Items and Principal Support Items on Subcategories of TESA Behaviors in Strand B, Feedback

<table>
<thead>
<tr>
<th>Regression</th>
<th>Affirming/Correcting</th>
<th>Praise</th>
<th>Reasons for Praise</th>
<th>Listening</th>
<th>Accepting Feelings</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^2$</td>
<td>--</td>
<td>.09</td>
<td>.53</td>
<td>--</td>
<td>.14</td>
</tr>
<tr>
<td>$p$</td>
<td>--</td>
<td>.02</td>
<td>.00</td>
<td>--</td>
<td>.00</td>
</tr>
</tbody>
</table>

Training Quality Items

<table>
<thead>
<tr>
<th></th>
<th>B/s.e.B</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>--</td>
</tr>
<tr>
<td>11</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>--</td>
</tr>
<tr>
<td>13</td>
<td>--</td>
</tr>
<tr>
<td>14</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>--</td>
</tr>
<tr>
<td>17</td>
<td>--</td>
</tr>
<tr>
<td>18</td>
<td>--</td>
</tr>
</tbody>
</table>

Principal Support Items

<table>
<thead>
<tr>
<th></th>
<th>B/s.e.B</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>--</td>
</tr>
<tr>
<td>20</td>
<td>--</td>
</tr>
<tr>
<td>21</td>
<td>--</td>
</tr>
<tr>
<td>22</td>
<td>--</td>
</tr>
<tr>
<td>23</td>
<td>--</td>
</tr>
<tr>
<td>24</td>
<td>--</td>
</tr>
<tr>
<td>25</td>
<td>--</td>
</tr>
</tbody>
</table>
4. Teachers who perceived that during TESA training sessions the objectives of the training program were clearly communicated tended to tell students why their classwork was acceptable or praiseworthy (Table 12).

5. Teachers who perceived the methods employed by the instructor to be effective tended to tell students why their classwork was acceptable or praiseworthy (Table 12).

6. Teachers who perceived the use of TESA techniques in their classrooms as having a positive effect on student behavior tended to tell students why their classwork was acceptable or praiseworthy (Table 12).

7. Teachers who perceived that the instructor of the TESA class demonstrated a thorough knowledge of TESA concepts tended to accept the feelings of their students (Table 12).

8. Teachers who perceived that during TESA training sessions the objectives of the program were clearly communicated tended to use courteous words with students (Table 13).

9. Teachers who perceived the use of TESA techniques in their classrooms as having a positive effect on student behavior tended to touch students in a friendly manner (Table 13).

Hypothesis 4: Principal Support and Frequency of TESA Behaviors

Significant relationships were found between certain items of the Teachers' Survey and specific TESA behaviors (Tables 14-16). In Strand A, "Response Opportunity" (Table 14), it was found that teachers who perceived their principal to use TESA behaviors in his dealings with parents, teachers, other staff, and students tend to provide response
Table 13

Regression of Training Quality Items and Principal Support Items on Subcategories of TESA Behaviors in Strand C, Personal Regard

<table>
<thead>
<tr>
<th>Regression</th>
<th>Proximity</th>
<th>Courtesy</th>
<th>Personal Interest/Compliments</th>
<th>Touching</th>
<th>Desisting</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^2$</td>
<td>.29</td>
<td>.14</td>
<td>.09</td>
<td>.19</td>
<td>--</td>
</tr>
<tr>
<td>$p$</td>
<td>.00</td>
<td>.00</td>
<td>.02</td>
<td>.00</td>
<td>--</td>
</tr>
</tbody>
</table>

Training Quality Items

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Principal Support Items

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 14
Pearson Correlation Coefficients for Principal Support Items with the Subcategories of TESA Strand A, Response Opportunity, N = 50

<table>
<thead>
<tr>
<th>Principal Support Items</th>
<th>Strand A Response Opportunity&lt;sup&gt;a&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OBS01</td>
</tr>
<tr>
<td>19. Degree of interest</td>
<td>.10</td>
</tr>
<tr>
<td>20. Discusses TESA</td>
<td>-.08</td>
</tr>
<tr>
<td>21. Uses TESA model</td>
<td>.20</td>
</tr>
<tr>
<td>22. Uses TESA behaviors</td>
<td>.28&lt;sup&gt;*&lt;/sup&gt;</td>
</tr>
<tr>
<td>23. Schedules activities</td>
<td>.11</td>
</tr>
<tr>
<td>24. Consistent use of TESA</td>
<td>.18</td>
</tr>
<tr>
<td>25. Helps teachers improve</td>
<td>.20</td>
</tr>
</tbody>
</table>

<sup>a</sup>TESA Strand A behaviors are: OBS01--equitable distribution, OBS02--individual help, OBS03--latency, OBS04--delving, and OBS05--high level questioning.

*<sup>p</sup> < .05
opportunity to students \( (r = .28, p < .05) \). Perhaps these teachers feel that where the principal uses TESA behaviors extensively, they perceive the need to extend this practice by providing the opportunity for all students to get involved in the classroom. It was also revealed that where teachers perceived their principal to schedule activities designed to reinforce the TESA experience, they tended to challenge their students more frequently \( (r = .29, p < .05) \). It seems that these teachers understand the TESA concepts to the extent that they are attempting to elevate the level of academic achievement by including all their students in classroom activity.

In Strand B, "Feedback" (Table 15), a significant relationship was found to exist where teachers who perceived their principal to schedule activities designed to enhance the TESA experience tended to be more accepting of the feelings of their students \( (r = .39, p < .05) \).

In investigating the principal support items and Strand C, "Personal Regard" behaviors (Table 16), it was found that teachers who perceived their principals: as using the TESA model as part of the evaluative process \( (r = .29, p < .05) \); using the TESA behaviors in their dealings with parents, teachers, other staff, and students \( (r = .32, p < .05) \); and, using TESA techniques as a way to help teachers improve give personal compliments and express interest in the activities of their students. It may be that when teachers perceive their principals to totally support and use TESA techniques, they more frequently demonstrate to their students that they care.

Multiple regression analysis was used to predict TESA strand scores and total TESA scores from the principal support variables.
Table 15

Pearson Correlation Coefficients for Principal Support Items with the Subcategories of TESA Strand B, Feedback, N = 50

<table>
<thead>
<tr>
<th>Principal Support Items</th>
<th>Strand B Feedback&lt;sup&gt;a&lt;/sup&gt;</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OBS06</td>
<td>OBS07</td>
<td>OBS08</td>
<td>OBS09</td>
<td>OBS10</td>
</tr>
<tr>
<td>19. Degree of interest</td>
<td>-.06</td>
<td>-.25</td>
<td>-.02</td>
<td>-.13</td>
<td>.24</td>
</tr>
<tr>
<td>20. Discusses TESA</td>
<td>-.05</td>
<td>-.15</td>
<td>.04</td>
<td>-.01</td>
<td>.12</td>
</tr>
<tr>
<td>21. Uses TESA model</td>
<td>-.01</td>
<td>-.07</td>
<td>-.03</td>
<td>-.24</td>
<td>.03</td>
</tr>
<tr>
<td>22. Uses TESA behaviors</td>
<td>-.16</td>
<td>-.13</td>
<td>.14</td>
<td>-.29&lt;sup&gt;*&lt;/sup&gt;</td>
<td>.14</td>
</tr>
<tr>
<td>23. Schedules activities</td>
<td>-.15</td>
<td>-.04</td>
<td>-.10</td>
<td>-.23</td>
<td>.39&lt;sup&gt;*&lt;/sup&gt;</td>
</tr>
<tr>
<td>24. Consistent use of TESA</td>
<td>-.16</td>
<td>.12</td>
<td>-.21</td>
<td>-.17</td>
<td>.18</td>
</tr>
<tr>
<td>25. Helps teachers improve</td>
<td>-.16</td>
<td>-.10</td>
<td>-.14</td>
<td>-.15</td>
<td>.16</td>
</tr>
</tbody>
</table>

<sup>a</sup>TESA Strand B Behaviors are: OBS06--affirming/correcting,
OBS07--praise, OBS08--reasons for praise, OBS09--listening, and
OBS10--accepting feelings.

<sup>*</sup>p < .05
Table 16

Pearson Correlation Coefficients for Principal Support Items with the Subcategories of TESA Strand C, Personal Regard, N = 50

<table>
<thead>
<tr>
<th>Principal Support Items</th>
<th>Strand C Personal Regarda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OBS11</td>
</tr>
<tr>
<td>19. Degree of interest</td>
<td>-.04</td>
</tr>
<tr>
<td>20. Discusses TESA</td>
<td>.02</td>
</tr>
<tr>
<td>21. Uses TESA model</td>
<td>-.29*</td>
</tr>
<tr>
<td>22. Uses TESA behaviors</td>
<td>-.33*</td>
</tr>
<tr>
<td>23. Schedules activities</td>
<td>-.37*</td>
</tr>
<tr>
<td>24. Consistent use of TESA</td>
<td>-.21</td>
</tr>
<tr>
<td>25. Helps teachers improve</td>
<td>-.31*</td>
</tr>
</tbody>
</table>

a TESA Strand C behaviors are: OBS11--proximity, OBS12--courtesy, OBS13--personal interest/compliments, OBS14--touching, and OBS15--desisting.

*p < .05
It was found that:

1. Teachers who believed their principal used TESA behaviors in dealings with parents, teachers, and other staff members tended to provide response opportunities to students (Table 11).

2. Teachers who believed their principal made consistent use of TESA-prescribed behaviors by the teacher staff as part of the overall schoolwide plan to improve student achievement tended to provide individual help to students (Table 11).

3. Teachers who believed their principal showed a high degree of interest in the TESA program tended to give students time to respond to a task or question (Table 11).

4. Teachers who believed their principal scheduled activities such as staff inservices and/or group discussions designed to reinforce the TESA experience tended to tell students why their classwork was acceptable or praise-worthy (Table 12).

5. Teachers who believed their principal made consistent use of TESA-prescribed teacher behaviors by the teacher staff part of the overall schoolwide plan to improve student achievement tended to tell students why their work was acceptable or praiseworthy (Table 12).

6. Teachers who believed their principal takes the initiative to discuss the TESA program with them tend to be within arms reach of students (Table 13).

7. Teachers who believed their principal utilized the prescribed TESA teacher behaviors in his dealings with
parents, teachers, and other staff members tended to be within arms reach of students (Table 13).

8. Teachers who believed their principal scheduled activities such as staff inservices and/or group discussions designed to reinforce the TESA experience tended to be within arms reach of students (Table 13).

9. Teachers who believed their principal utilized the prescribed TESA teacher behaviors in his dealing with parents, teachers, other staff, and students tended to give compliments and express personal interest in outside students activities (Table 13).

Hypothesis 5: Training Type and Frequency of TESA Behaviors

Due to the small number of cases (4) of those teachers who took TESA classes as part of the human relations course, results of this data analysis were not reported.
CHAPTER IV

SUMMARY, CONCLUSIONS, IMPLICATIONS, AND RECOMMENDATIONS

Chapter IV contains a summary of the study, conclusions that have been deduced from the correlations, t-tests, and multiple regression analyses, and implications and recommendations from the results.

Summary

The purpose of the study was to provide a probable explanation for the variation in the use of TESA-prescribed behaviors among elementary school classroom teachers in a Virginia school system by exploring variables that were associated with this educational intervention.

Variables thought to predict variation in the use of TESA-prescribed behaviors in the classroom included: when the teachers took the TESA classes; who taught the TESA classes (principal, teacher, or other); training type; quality of training as reported by the teacher; and the degree to which the principal supported TESA training. A Teachers' Survey was developed to collect data on the five predictor variables. The Teachers' Survey was administered to a random sample of 50 public school elementary classroom teachers and all 50 (100%) responded.

The criterion variables had four subcategories. Strand A, Response Opportunity, contained the five factors of equitable distribution, individual help, latency, delving, and high level questioning. Strand B, Feedback, contained the five factors of affirming/correcting, praise, reasons for praise, listening, and accepting feelings. Strand C, Personal Regard, contained the five factors of proximity, courtesy, personal interest/compliments, touching,
and desisting. The fourth subcategory within the criterion variable was total TESA score, which was derived from the sum of the three strand scores.

Bivariate correlations, t-tests, and multiple regression were used to analyze the data obtained from the Teachers' Survey. All three analyses used the frequency of use of TESA behaviors as the criterion variable.

Findings and Conclusions

The variables were used to develop five hypotheses to account for the variation in the use of TESA-prescribed behaviors in the classroom in a public school system in Virginia.

The TESA behaviors of high level questioning (r = .38, p < .05) and accepting feelings (r = .38, p < .05) related positively to the amount of time that had lapsed since the teacher had TESA training. The amount of time since TESA training seems not to make a difference overall in the frequency of use of TESA behaviors in the classroom.

Who taught the TESA classes did not significantly affect the use overall of TESA-prescribed behaviors (t = 1.73, p > .05). However, significant differences were found for two individual behaviors. Those teachers who received their training from the principal exhibited more courteous and accepting behavior to students.

The variables of training quality and principal support were predictor variables. Several significant relationships were found to exist between certain items of the Teachers' Survey and specific TESA behaviors. Stepwise multiple regression analysis was used to predict each strand score and total TESA scores based upon the Teachers' Survey
items relating to the predictor variables of training quality and principal support. Although the data do not lead to any clear conclusions, it may be that teachers who perceived the TESA program to be well organized and managed gave students more time to respond to a question. It seems that teachers who view some aspect of the TESA program positively may be more inclined to allow students time to think before they respond. It may also be true that these same teachers use this latency behavior more frequently as part of their overall classroom behavior.

It was also discovered that teachers who perceived their TESA instructor to demonstrate a thorough knowledge of TESA concepts were more likely to exhibit behaviors that were accepting of the feelings of their students. Therefore, it may be that teachers who tend to understand TESA concepts would be nonjudgmental in their approach to the feelings of all students.

The investigation further revealed that where teachers perceived the TESA program to provide them with functional practices there was a high incidence of high-level questioning. It may be that these perceptions had such an impact on the teachers that they tended to challenge the thinking of students more frequently. It may also be this TESA behavior was seen by teachers as more useful to them through functional practice as a result of TESA training.

Finally, the study noted that teachers who reported that they now call on students to recite and perform more often as a result of their TESA training tended to touch students in a friendly manner. Perhaps these teachers identify the need to further involve each student to the
extent that calling on them is not enough. It may be that these teachers view both touching and calling on students as effective strategies for involving each student.

Implications

The conclusions presented have implications for Guskey's model, used as a basis for this study, and for the other literature from which variables of this study were derived and justified.

Guskey's (1986) model suggested that teachers' practices and attitudes change after changes in student outcomes are evidenced. Reinforced teacher practices, as noted by Guskey (1986), tend to be repeated, while those that are not, tend to be discarded. Perhaps this notion is supported by the disparity in the use of the TESA behaviors among the observed teachers. As evidenced by the results of this study there appeared to be a greater incidence of use of certain TESA-prescribed behaviors than others. This disparity in the frequency of observed use of the TESA behaviors may be associated with other factors such as teaching style or subject matter taught. The authors of the TESA program maintain that the TESA program will endure through the sustained use of TESA-prescribed behaviors (Kerman, Kimball, & Martin, 1980).

Berman and McLaughlin (1978) concluded from the Rand Study that the major factor affecting the success of a program was support from principals and superintendents. Dobney's study (1986) affirmed internal support as that support and commitment provided by the central office. Teachers improved most, according to Stallings and Mohlman (1981), where the principal was supportive of teachers and consistent in communicating
school policies. The literature contains many other authors who report that the principal and his support are vital to program success (Lieberman & Miller, 1981; Joyce & Showers, 1982). This contention was not supported by the results of this study. It may be that the operational definition of principal support used in this study may have differed from that found in other studies.

The notion that both systemwide and individual principal support are a major factor affecting the success of an intervention program was expressed in Harrison's (1985) descriptive TESA report. Harrison points out that because TESA training was funded and offered systemwide, teachers perceived the TESA program to be a school system priority. When asked to comment on the degree of interest in the program shown by the principal, 88.6 percent of the respondents indicated that the principal had shown some interest in the TESA program. Harrison suggests that because participation in the TESA program was voluntary, it would seem that the interest and support of the principal would have an impact on whether or not teachers participated in the staff development program.

Of the 50 teachers surveyed in this study, the mean response on the variable of principal support was 2.58 (Table 2). The results of this analysis indicate that the degree of support shown by the principal was perceived as seldom to sometimes. If, in fact, the success of the TESA program was dependent on a high degree of principal support, it may be surmized that the TESA program never had a chance to succeed.

This study was designed to investigate the influence of the factors of time lapse since TESA training, quality of training, and
principal support on the frequency of use of TESA-prescribed behaviors in the classroom. The amount of time since the teacher had TESA training seemed not to make a difference in the frequency of use of TESA-prescribed behaviors in the classroom. The factor of training quality attempted to measure the extent to which the frequency of use of TESA-prescribed behaviors was influenced by the perceived quality of the TESA training. McLaughlin and Marsh (1978) noted that the quality of staff training had long-term positive effects on teacher change and continued use of project methods and materials. Harrison (1985) found through his teacher survey that an overwhelming majority of respondents indicated their training to be adequate and would use TESA techniques in their classrooms. Results of this study indicated similar findings. Nine significant relationships (p < .05) were identified and found to exist between specific items of training quality and individual TESA behaviors.

McLaughlin and Marsh (1978) noted that the Rand Study identified that staff support activities had a major positive effect on long-term project outcomes--teacher change and continued use of project methods and materials. It was found that the quality of staff support (training activities) was critical. Results of this study do not support the hypothesis that teachers who perceive the TESA program to be quality training demonstrate a higher frequency of use of TESA behaviors than those teachers who do not perceive TESA training to be a quality program. It may be that insufficient statistical power was used to detect significant relationships. It may also be the case that the
Theories noted in this study may not generalize to the population studied.

The remaining variables of who taught the TESA classes and whether or not the TESA classes were taught separately were added to the analysis but proved not to be statistically significant. It was found that a positive relationship did not exist between the predictor variable of time lapse since TESA training and the frequency of use of TESA-prescribed behaviors. Perhaps the teachers who participated in this study need to be observed after a greater time lapse since their initial TESA training.

None of the three predictor variables supported theory and literature from which they were derived. This implies that the predictor variables actually do not predict the frequency of use of TESA behaviors and other factors that may offer a plausible explanation for the variation in the frequency of use of TESA behaviors have not yet been identified.

What is puzzling was the number of significantly negative relationships (p < .05) between specific items within the predictor variable of principal support and individual TESA behaviors. The data indicated that where a principal: (a) uses the TESA program as a model for the evaluative process (r = -.36, p < .05); (b) utilizes the TESA behaviors in his dealings with parents, teachers, other staff, and students (r = -.42, p < .05); (c) schedules activities designed to reinforce the TESA experience (r = -.39, p < .05); (d) makes consistent use of TESA techniques as part of the schoolwide plan to improve student achievement (r = -.44, p < .05); and, (e) uses TESA techniques as a way
to help teachers improve \( r = -.40, p < .05 \), there appears to be less frequent use of the TESA-prescribed behavior of providing individual help to students. A plausible explanation for this finding lies in the amount of time the teachers were observed and the teaching methodology they employed. While the data from the Teachers' Survey indicates a relatively low degree of principal support for the TESA program, instances of use of TESA-prescribed behaviors were noted.

Harrison (1985) reported that when asked, "In what manner, at all, did you modify TESA techniques to fit either your own or your students' needs?", most TESA participants who responded to his survey indicated that they did not modify the techniques of the program. Some teachers did indicate that the nature of their teaching responsibility influenced their ability to use some parts of the TESA program. For example, a typing teacher reported that oral participation in class occurs infrequently, and as a result the "Response Opportunity" strand (Strand A) of the TESA program was difficult to practice or use. In response to this the teacher concentrated on the "Feedback" (Strand B) and "Personal Regard" (Strand C) strands of the program. During the data gathering phase of this study, it was noted that, by chance, the majority of elementary school classroom teachers were observed teaching 30-minute blocks of instruction in math and language arts where a low frequency of Strand A, "Response Opportunity" behaviors was observed.

A negative relationship was found between the Teachers' Survey of uses TESA behaviors and the TESA-prescribed behavior of listening \( r = -.29, p < .05 \), which suggests that teachers who perceive their principals to utilize TESA-prescribed behaviors in their dealings with
parents, teachers, other staff, and students use the TESA-prescribed behavior of listening less frequently than other teachers. This correlation may be spurious.

Results of the data analysis also revealed several negative relationships to exist between the TESA behavior of proximity and the Teachers' Survey items of uses TESA model, uses TESA behaviors, schedules activities, and helps teachers improve. These suggest that teachers who perceive their principal to utilize the TESA model as part of the teachers' evaluation process ($r = -0.29$, $p < .05$); use the TESA-prescribed behaviors in his dealing with parents, teachers, other staff, and students ($r = -0.33$, $p < .05$); schedule activities designed to reinforce the TESA experience ($r = -0.37$, $p < .05$); and, use TESA techniques as a way to help teachers improve ($r = -0.31$, $p < .05$), utilize the TESA-prescribed behavior of proximity less frequently. Results of the descriptive analysis revealed that 74% of the observed teachers used the TESA behavior of proximity five times or less. Harrison (1985) found that when teachers indicate that they made modifications in the use of TESA techniques, the area most often mentioned was that of touching. The TESA program maintains that everyone likes to be touched in a friendly manner by the right person in the right setting. This behavior as well as that of proximity is part of the TESA Strand C, "Personal Regard." The TESA program (Kerman, Kimball, & Martin, 1980) defines proximity and touching as prudent teacher conduct. Perhaps the observed teachers felt it more prudent not to use these TESA behaviors in light of community and school system concern for recent incidents of child abuse. Social context may mitigate against touching. Results of
the descriptive analysis revealed that 60% of the teachers observed showed no incidence of use of the TESA behavior of touching. It may also be the case that the observed instructional methodology of the participating teacher such as lecture with questions may have been in use during the observation periods. If so, the lesson typically is math or language arts whereby the student, not the teacher, becomes mobile. This environment also typically lends itself to a lack of proximity on the teacher's part.

While findings are significant, they are not sufficiently substantial to warrant any but the most tentative conclusions.

Recommendations

Future researchers should consider other research designs. Perhaps a test-retest design would afford the research baseline data by which to assess future results. Many studies involving the TESA program found that teachers practiced the use of TESA-prescribed behaviors with greater frequency than before training. Meehan (1983), Patton (1986), and Forbes and Burkhardt (1988) confirm this. Patton (1986) measured the frequency of use of TESA-prescribed behaviors following a workshop. In other words, the teachers were observed following an intervention. The teachers had received their TESA training 18 months prior. It might be prudent to replicate such a study by observing the teachers after initial training, just before the follow-up training, and after the teachers received their follow-up training.

Future researchers may also wish to consider the use of other interventions in the school setting that may have a positive, enduring affect on the frequency of use of TESA-prescribed behaviors in the
classroom. Such interventions as Teacher Assistance Training (TAT), peer coaching, and mentor program are being introduced in an effort to positively reinforce the teaching experience.

It would appear that the TESA program did not really have a chance. In both theory and literature, principal support is vital to the success of any change effort. In this study, the teachers perceived their support to be seldom to sometimes. What implication does this have to both the school division and staff development training? As evidenced by the results of this study, perhaps the building principals need some type of experience that would enhance their perspective regarding their support of such teacher behaviors.

Another aspect of teacher perception of support for the use of TESA-prescribed behaviors in the classroom is concerned with the "message" given teachers by the central office. Many other teacher inservice programs have been introduced concurrently into the school division. The question is then raised as to which program is most important.

As stated by Joyce and Showers (1988):

Administrators need to examine carefully their priorities for staff development and their allocation of funds. Few staff development budgets can sustain both intensive, ongoing training and numerous one-shot activities that dominate most programs. Decisions must be made regarding the outcomes expected of a staff development program. When the desired outcome is simply increased awareness of a subject, funding might legitimately support the occasional two-hour speaker. However, when the expected outcome of staff development is change in the instruction children receive, funding probably will have to be focused to support the magnitude of the training necessary to bring about that change. (p. 91)
All school division personnel need to understand the goals and objectives of that division. Those goals and objectives must be clearly communicated.

The mean number of years since initial TESA training among the subjects in this study was 2.5 (Table 2). Although this may not seem like a long time for experienced teachers (16.5 years of teaching experience) in this study, research evidence does point to the success of feedback and follow-up training in any staff development effort. Perhaps the answer lies in the nature of that follow-up effort. As summarized by McLaughlin and Marsh (1978), "well conducted staff support activities not only reinforce the contribution to staff training, but they also make their own important contribution to promoting teacher change and to supporting staff assimilation of project practices" (p. 77).

Follow-up training is important. But what would the nature of that training be? As Fullan (1982) has pointed out so carefully, an innovation is not sustained unless there is a shared understanding of its purposes, rationale, and processes. It would seem prudent to suggest that training for central office staff and building administrators include a high degree of communication skill orientation.

Teachers, building administrators, and other TESA trainers should be required to attend follow-up inservice training in order to reinforce previously learned techniques and skills. Based on the results of the Patton (1986) study, the frequency of use of the TESA-prescribed behaviors increased after participation in a follow-up workshop. Time lapse between the initial TESA training and the follow-up workshop was
18 months. The average time since participating in TESA training for
the teachers in this study was 2.5 years. If the school division deems
the TESA program to be important to the academic and social success of
its students, it seems reasonable to initiate follow-up training as soon
as possible.

As recommended by Joyce and Showers (1988), an appropriate
training design should consist of demonstrations, practice, feedback,
and coaching. As expressed by Joyce and Showers (1988), "coaching
provides support for the community of teachers attempting to master new
skills, provides technical feedback on the congruence of practice trials
with ideal performance, and provides companionship and collegial problem
solving as new skills are integrated with existing behaviors and
implemented in the instructional setting."

Since the coaching component is relatively new, it is recommended
that the peer coaching concept be considered for implementation by the
school division. Peer coaching would be of benefit to the school
division not only as a component within the TESA program, but as a
clinical supervision model within itself.
REFERENCES


APPENDIX A

TEACHER EXPECTATIONS AND STUDENT ACHIEVEMENT OBSERVATION CODING FORM

80
APPENDIX B

TEACHER SURVEY INSTRUMENT
APPENDIX B

Teacher Survey Instrument

Teacher Expectations and Student Achievement

TESA

DIRECTIONS: Please answer each question by writing the letter of your response in the space provided to the left of the item number. Your responses to this survey are anonymous. Do not put your name or the name of your school on the survey form.

1. ___ My teaching assignment is at the
   A. Elementary level
   B. Middle school level
   C. High school level

2. ___ Counting this year, I have the following number of years of teaching experience in both Fairfax County and elsewhere:

3. ___ I have the following formal educational background
   A. BA/BS
   B. BA/BS + 15 semester hours
   C. Masters
   D. Masters + 30 semester hours, CAGS, Specialist
   E. Doctorate

4. ___ I have participated in the following staff development training program(s) other than TESA:
   A. Skillful teacher
   B. Fred Jones' classroom management course
   C. Other

5. ___ Please indicate when you participated in TESA training:

   __________ Month   __________ Year

6. ___ The TESA training program in which I participated
   A. Was conducted as a separate class by itself
   B. Was conducted as part of the human relations course
   C. Other (please specify) ____________________________________________________________________
7. ____ My TESA training was taught by
   A. Central office staff
   B. My principal or assistant principal
   C. A teacher
   D. Other (please specify)

For each statement below decide which of the following answers best applies to you. Place the number of the answer in the space at the left of the statement:

   1. Strongly disagree   3. Agree
   2. Disagree           4. Strongly agree

8. ____ The instructor of my TESA class demonstrated a thorough knowledge of TESA concepts.

9. ____ During TESA training sessions the objectives of the program were clearly communicated to me.

10. ____ The TESA program introduced me to useful new professional ideas.

11. ____ The methods employed by the instructor(s) were effective.

12. ____ The TESA program was well organized and managed.

13. ____ The TESA program effectively provided me with functional practices.

14. ____ My participation in the TESA program has enabled me to substantially increase the number of positive interactions with students whom I perceive to be low achievers.

15. ____ I now call on my perceived low achievers to recite and perform more often than I did prior to my participation in the TESA program.

16. ____ The use of TESA techniques in my classroom has had a positive effect on student behavior.

17. ____ The use of TESA techniques has had a positive effect on student academic achievement.

18. ____ The use of TESA techniques in my classroom has had a positive effect on the self-concepts of my students.
For each of the statements below decide which of the following answers best applies to you. Place the number in the space at the left of the statement:

1. Never  
2. Seldom  
3. Sometimes  
4. Often  
5. Always

19. ____ My principal shows a high degree of interest in the TESA program.

20. ____ My principal takes the initiative to discuss the TESA program with me.

21. ____ My principal utilizes the TESA model as part of the teacher evaluation process.

22. ____ My principal utilizes the prescribed TESA teacher behaviors in his dealings with parents, teachers, other staff, and students.

23. ____ My principal schedules activities such as staff inservices and/or group discussions designed to reinforce the TESA experience.

24. ____ My principal has made consistent use of TESA program techniques by the teacher staff as part of the overall schoolwide plan to improve student achievement.

25. ____ My principal uses TESA techniques as a way to help teachers improve.
APPENDIX C

LETTER TO SAMPLE OF TEACHERS
APPENDIX C

Letter to Sample of Teachers

Dear Teacher:

We are presently involved in studying the instructional practices of teachers. The study includes a 50 minute observation of classroom practices of teachers. We hope that you will be willing to help in this study by allowing me to observe in your class at your convenience. I have tentatively scheduled the observation for __________. If this is not convenient for you or you do not wish to participate in the study, please contact me as soon as possible at 978-0113 at Kings Glen Elementary. If I have not heard from you by April 1989, I will assume that this time is convenient and that you have agreed to participate in the study.

If you agree to participate in the study, you will be asked to complete a short survey. All observation data and survey results will be kept strictly confidential.

We will be happy to share the results of the study with you. The successful completion of this study is dependent on your help. Thank you for your cooperation.

Sincerely,

Jim Harris, teacher  
Fairfax County Public Schools

David J. Parks  
Associate Professor of Education  
Virginia Polytechnic Institute and State University
APPENDIX D

FEEDBACK FORM
TEACHER SURVEY INSTRUMENT
APPENDIX D

Feedback Form:
Teacher Survey Instrument

Are the items on this teacher survey relevant to the research intent?

Did you understand all the questions?

Is there anything that I have overlooked?
VITA

I. GENERAL INFORMATION

Name: James Jordan Harris II

Home Address: 12813 Flagship Avenue
               Herndon, Virginia 22070

Business Address: Mark Twain Intermediate School
                  4700 Franconia Road
                  Alexandria, Virginia 22310

Telephones: (703) 435-4321 (Home)
            (703) 971-2600 (Work)

II. EDUCATIONAL BACKGROUND

Virginia Polytechnic Institute and State University, Blacksburg,
Virginia, 1986, Certificate of Advanced Graduate Study
George Mason University, Fairfax, Virginia, 1979, M.Ed.
Morehead State University, Morehead, Kentucky, 1966, B.A.

III. PROFESSIONAL EDUCATIONAL EXPERIENCE

1989-Present  Fairfax County Public Schools
              Mark Twain Intermediate School
              Intermediate Assistant Principal

1978-1989    Fairfax County Public Schools
              Fairfax, Virginia
              Elementary School Teacher

1973-1974    Fairfax County Public Schools
              Thomas Edison High School
              High School Teacher--History, Psychology

1966-1967    Raceland High School
              Raceland, Kentucky
              High School Teacher--Science, Coach

James Jordan Harris II