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(ABSTRACT)

An optical image feedback system utilizing a cavity with a phase-conjugate mirror
(PCM) has been studied. A new theory, based on operators, is developed to describe
the steady-state output of the cavity. The use of operators allows one to describe
the various optical operations and transformations needed in the optical implemen-
tation of iterative algorithms. The characteristics of the cavity are discussed using

an expansion of the cavity fields in the cavity eigenfunctions.

Several image processing applications using a PCM cavity are proposed and are
studied using computer simulations. These theoretical studies indicate that a PCM

cavity can be useful in many applications.

Optical phase conjugation was realized using a single crystal of photorefractive
BaTiO; in a degenerated four-wave mixing geometry. The reflectivity gain from the
PCM was optimized experimentally by the geometrical parameters and by the beam-
intensity ratios. The ability of the PCM to remove phase distortion as predicted

theoretically, was demonstrated experimentally.

The output of a PCM cavity can be substantially influenced by self-oscillations of
the cavity above threshold. This was experimentally studied by observing the time
evolution of the input. To avoid the influence of self-oscillation, the cavity must be
operated below threshold. It is found that the cavity decay time constant diverges at
and about threshold. This can be used as an indicator to show whether the cavity

has crossed the threshold or to measure how close to threshold the cavity operates.

To verify that a PCM cavity can be used in iterative image processing, an exper-

iment was set up to implement an image restoration scheme based on the Gerchberg



algorithm. It is shown that an optical implementation of the Gerchberg algorithm
is feasible for objects made of few pixels. The experiment confirmed that image it-
eration in a PCM cavity is possible. The limitations of the cavity and the technical

difficulties are discussed.
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Chapter 1

Introduction

The purpose of this study is two-fold : to explore the possibility of using a Fabry-
Perot cavity with one phase-conjugate mirror (PCM) for iterative image processing,
and to test this possibility experimentally by implementing a specific image restora-

tion algorithm.

An optical system with feedback makes spatial image processing analogous to the
use of electronic feedback possible [1, 2]. Such a device would offer the possibility
of performing two-dimensional iterative processing in real time. Some of the itera-
tive algorithms have shown outstanding performances in solving signal recovery and
restoration problems [3, 4, 5, 6] as well as in accomplishing signal recognition and

selection tasks [7, 8, 9].

An optical implementation of iterative algorithms requires feedback and gain. The
performances of passive, conventional feedback systems are limited by cavity losses
and by accumulation of phase error from each round-trip [10]. Several methods have
been used to achieve optical gain. They include stimulated emission amplification [1,
11, 12], and two-wave mixing in photorefractive materials [13, 8, 9, 14]. The problem
of phase error accumulation, however, remains formidable, especially in devices with

feedback operating close to threshold of self-oscillation.

In this project, a PCM is used in an optical feedback loop to alleviate some of these
1



problems simultaneously. In principle, a PCM can introduce gain to the feedback
signal, compensate for the cavity losses, and restore the phase of the wavefront after
each pair of round-trips [15, 16, 17]. It thus provides an environment to implement

feedback algorithms without accumulation of phase errors.

To build such a cavity, a semi-transparent mirror, a PCM, and other intra-cavity
elements such as lenses and filters are used as the basic components. The mirror and
the PCM act as the image feedback devices. The intra-cavity elements are used to im-
plement the necessary optical transformations and filtering for different applications.
Due to the use of a PCM, the properties of the cavity differ from a conventional cavity
in many aspects. It is therefore important to understand the characteristics of a PCM
cavity, and how these characteristics affect the implementation of image-processing

algorithms.

Optical phase conjugation can be realized using many media and methods [18, 19].
Among them, the four-wave mixing geometry in photorefractive material [20, 21] is
chosen to implement the PCM. The criteria for this choice will be discussed. Since
optical gain is required in the feedback, the performance of the PCM is evaluated.
The optimization of its gain will be studied experimentally and its ability to restore

phase aberration will be demonstrated.

To demonstrate that a PCM cavity can be used in iterative processing, an image
restoration algorithm based on the Gerchberg algorithm [22] will be implemented
optically in such a cavity. This experiment serves as a test of this idea. Some of the

limitations of the cavity will emerge and will be discussed.

This chapter serves as an introduction to the present study. In section 1.1, the
motivations for using optics in general to process data is discussed. An optical system
with feedback is found to have many uses, and its classification and some of the
applications are summarized in section 1.2. Some of the limitations of implementing
iterative procedures in a conventional cavity are discussed in section 1.3. Some of the
basic properties of a PCM will be discussed in section 1.4. In section 1.5, the outline

of this dissertation is described.



1.1 Why optical signal processing ?

Processing signals by optical means was first motivated by the vast amount of
data obtained by radars and used in making maps, and by the similarity between
the technique used to process these data and optical processing techniques [23]. The
field greatly benefitted from the invention of the laser and the development of off-
axis holography in the early 1960s [24]. Many successful coherent optical processing
techniques are direct consequences of these inventions. Some of the outstanding
achievements, to name just a few examples, are found in pattern recognition [25, 26],

numerical processing [27], and optical transformation [28, 29].

While many of the above processing techniques can be performed by an electronic
computer, several merits still make optical signal processing appealing [30]. First,
the two-dimensional format is suitable for image handling and manipulation. There
is no need for image sampling and quantization as in digital electronic computers.
Secondly, a typical optical processor has two (spatial) degrees of freedom. Massive
optical communication in a parallel sense is possible, avoiding the bottle neck of a
conventional Von Neumann type of computer [30]. The trade-off in using an optical
processor is usually in the lack of flexibility in implementing optical processes (it
cannot be easily programmed) and the lower accuracy (analog devices cannot deal

with noise as efficiently as digital computers).

1.2 Coherent optical feedback and iterative processing

The term “feedback” in an electronic circuit is well known : It means that a
portion of the output electrical signal is being combined with the input signal and
returned to the circuit. In an optical feedback system, a portion of the output image is
modified by a feedback optical system, combined with the input, and then returned
to the forward optical system [1]. The closed-loop feedback system thus produces
transfer characteristics which would be impossible or would be difficult to achieve in

a non-recursive optical system.



1.2.1 Optical feedback system in information processing

The methods for processing an image optically can be classified into coherent,
incoherent, and hybrid optical processing techniques. In a coherent optical feedback
system, the coherence length of the light source is many times longer than the round-
trip path length of the cavity. This allows a definite phase relationship between
the feedback and the input fields. In a conventional feedback cavity the phase re-
lationship depends on the round-trip length of the cavity. To vary the phase of the
feedback signal, the cavity length is tuned to provide a positive, negative, or complex
feedback [6]. Both positive and negative feedback have been found useful in image
processing [31, 3]. Several applications in image restoration, contrast control, the
analog solution of partial differential equations [6, 32, 33|, and matrix inversion [34]

have been demonstrated optically.

In an incoherent optical feedback system, the coherence length of the source is
shorter than the round-trip length of the cavity. Therefore the feedback image is

added to the input in intensity, not amplitude. These systems are limited to positive
feedback [35].

In a hybrid feedback system, incoherent or coherent light is used in the processing
and electronics is used in the feedback loop. The use of television electronics or spatial
light modulators can easily achieve contrast reversal and can therefore implement
positive or negative feedbacks. These hybrid implementations of optical and electronic
elements have a wide range of applications. Some examples are found in space-variant

processing, ghost image elimination, and in edge and contrast enhancement [36, 37,

38).

It is difficult to determine whether a coherent imaging system is superior to an

incoherent or a hybrid system. The result of any such comparison depends on the ap-
| plications {39]. However, from the standpoint of linear filtering operations, a coherent
illumination is often simpler and more flexible [39]. Furthermore, positive and neg-
ative feedback can be more easily achieved in a coherent system without additional

pieces of equipment. It is for these reasons that the work mentioned here focuses on

4



the coherent feedback option.

1.2.2 Coherent optical feedback system

The relation of the output E,(z',y’') of an optical system to an input field E;(z,y)
can be described by

()= [ [ Siewe v) Bz y)dedy, (L)

where the kernel S)(z,y;z’,y’) of the integral is called the impulse response of the

optical system. For simplicity, the integral is represented by an operator

. o
Si=f /A iy )dedy. )

An optical system is said to be space-invariant if its impulse response Si(z,y;z’,y’)

depends only on the distances (z — z’) and (y — y’). The kernel is written simply as :
Si(z,y; 2 y") = Si(z — ',y — ¢'). (1.3)

The physical meaning of this equation is that the image of a point-source object

changes only in location, not in functional form, as the point source spans the object

field [39).

Using these notations, an optical feedback system can be represented by the block
diagram of figure 1.1. The two-dimensional field amplitude distribution E; is the input
to the system, which consists of the forward operator S ¢ and the feedback operator S,
The optical operators are assumed to be linear and space-invariant optical systems
which may include lenses, filters etc. The output E, of the feedback system is related
to the input by the simple relationship

Eo = S_f(Ei + ﬁSon) ’ (14)

where f is the feedback parameter of the system. In image processing applications,
it is assumed that these optical operators contain imaging elements such that the
output FE, is re-imaged pixel to pixel onto F;.

5



Figure 1.1: A block diagram of an optical feedback system. It consists of a forward
and feedback optical system represented by operator S ¢ and S, respectively. The
transfer characteristic of the feedback system is difficult to achieve or not assessable
in a linear-optical system



If we assume that these operators commute (with some justifications in sec-
tion 2.3.3 and 3.3.3) and that their eigenfunctions ¢, form a basis for a class of

functions that includes E; and the output E, of the feedback system, then
Ej = Z ejnd)n ) .7 = i, 0, (15)
§1¢n = Alﬂ¢'n ) l= fab

On substituting equations 1.5 into equation 1.4, the relationship between the input

and the output coeflicients is given by

€on = An€in, (1.6)
where the eigenvalues ), of the closed loop system are given by
Afn
Ap = —— . .
1 — BAsnAbn (1.7)

The conditions for this analysis to be valid are that the eigenfunctions of the operators
must be orthogonal and form a complete set. Furthermore, to be able to process
more or less arbitrary inputs, the mode structure of the cavity must be rich enough
to represent arbitrary field amplitude distributions. One way of insuring this in a
conventional resonator is to require that the eigenvalues (Ay, and Ap,) are all positive
and nonzero [31, 40]. This means that the kernel of the integral equation is Hermitian.
If A4, and A, are not single signed, then according to equation 1.7, the feedback may
be negative for some modes and positive for others, depending on the sign of the
product of the eigenvalues [31]. In this case, the cavity will support only eigenmodes
with positive product Ay, - Ay, thus restricting severely the type of input that can be

processed.

1.3 Difficulties and limitations of a conventional feedback

system

The performance of a passive, conventional feedback system is limited by the
cavity losses and by the accumulation of phase errors in each round-trip. These two

points are elaborated in the following sections.

7



1.3.1 Limitation due to losses

In a passive feedback system, the feedback signal is extracted from the cavity either
by plane mirrors [6] or by spherical mirrors [41, 42, 43]. The output of the feedback
system is usually through the same semi-transparent feedback mirror. As a result,
only a fraction < 1 of the cavity field is being fed back and combined with the input.
A similar situation occurs at the input mirror plane. These losses, together with the
losses in the intra-cavity elements, grow geometrically with the number of round-
trips. In systems where diffractive elements (such as holograms which typically have
less than a few percent efficiency) are needed, the performance of an optical feedback

system is severely limited by small effective number of round-trips.

Several methods have been proposed to achieve optical gain. They includes stimu-
lated emission amplification [11, 12], two-wave mixing [13] and four-wave mixing [8, 9]

in photorefractive materials.

1.3.2 Limitation due to accumulation of phase error

Since the feedback image adds coherently to the input, the phase errors in the
feedback image become important. At each round-trip in the cavity, these phase
errors accumulate and propagate to the next iteration. The sum of these phase
errors modifies the transfer function of the optical feedback system and limits the

performance of the optical processor.

Some improvements have been made in optical feedback system design in order
to reduce the effect of phase errors. An example is the use of a spherical mirror to
replace the combination of a plane mirror and a lens as the feedback device [41, 44].
By reducing the number of optical elements in the cavity, the amount of phase error
accumulated in each round-trip can be reduced to less than = /5 in each round-trip [43].
This limits the number of effective round-trips to about 10 since a phase error of
7 is unacceptable. In applications which require a large number of iterations, the
problem of phase errors remains. Examples which require many iterations include

super-resolution [10], and restoration of noisy images [4].

8



1.4 Optical phase conjugation

Optical phase conjugation is a process which produces a wavefront reversal (fig-
ure 1.2) via non-linear optical effects. A device which performs optical phase con-
jugation is called a PCM (phase-conjugate mirror) or a wavefront reversal mirror.
The “reflected” beam from a PCM is a phase-conjugate version of the incident beam

which propagates backward.

The main attractive feature of a PCM is its ability to remove phase distortion.
This ability can be understood through the following example. A forward-propagating

plane wave can be represented by
1 -
Eq(7)t) = §Af(7")e’(k"_“") + complex conjugate (c.c.), (1.8)

where A(7) is the slowly varying complex scalar amplitude of the field E¢(7,t). Math-
ematically, the reversed wavefront E,(7,t) is represented by the complex conjugate of

the spatial part and is given by
E,(7t) = %A;(neﬂ’?f‘wﬂ +ecc. (1.9)

The reversed wavefront will have an amplitude distribution the complex conjugate
of that of the incident wave and it propagates in the reversed direction. Comparing
equation 1.8 and equation 1.9, one can also obtain E, by replacing t by —t. This is the
reason why the optical phase conjugation is sometimes referred to as a time-reversal

operation.

The distortion removal property of a PCM is illustrated in figure 1.2. A monochro-
matic plane wave (1) is incident on a non-uniform medium described by the electric
permittivity (7). Assume that e() is real, which represents a passive, non-absorptive
medium (for example, a lens or turbulent atmosphere). After passing through the
distorting region, the distorted wave (2) enters the PCM. The phase-conjugate wave
(3) returns through the same distortion and emerges from the medium without dis-
tortion (4). The ability of this time-reversal wavefront to correct the phase distortion

can be visualized by realizing that both the forward and reversed wave satisfy the

9
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Figure 1.2: An illustration of the removal of phase distortion by a PCM. The PCM
is assumed to be ideal with infinite dimension, so that all the scattering can be
returned back to the scatterer. The PCM’s amplitude reflectance is assumed to
be homogenous and is being represented by a complex number r,., and a complex
conjugate operation.
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same wave equation in the region on the left of the PCM. The wave equation in this

region can be described by

V2E + Wue(F)E = 0. (1.10)

On substituting £ from equation 1.8 into equation 1.10, and using the slowly

varying amplitude approximation, the equation is simplified to
V2As + [wpe(F) — k*As — 2k - VA; = 0. (1.11)

Since the field E, also satisfies the same wave equation and propagates in the re-
verse direction of Ey, the emerging field from the distorting medium is, therefore,

undistorted.

1.5 Dissertation outline

In chapter two, the theory of a Fabry-Perot cavity with one ideal PCM is de-
veloped. The steady-state output of this feedback cavity is studied. By making
appropriate assumptions, the transfer characteristics of the cavity are determined.

The properties of a PCM cavity are illustrated by using some realistic examples.

One of the ways to study the possibility of using a PCM cavity in image processing
is by studying some applications. Some examples are discussed theoretically in chap-
ter three. These examples serve to demonstrate the use of a PCM cavity in a large
variety of applications but they are not exhaustive. These applications include con-
trast enhancement, inverse filtering, and restoration of a band-limited image. Among
these examples, a restoration scheme based on the Gerchberg algorithm [22] is studied

in detail. The results of computer simulations are presented.

In chapter four, the realization of the optical phase conjugation is demonstrated
experimentally. A theory of the generation of the phase-conjugate beam in photore-
fractive materials using a four-wave mixing geometry is outlined, and the experimental

setup for the PCM is shown. Since gain is necessary in an optical feedback system,
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the reflectivity gain from the PCM needs to be optimized. The optimization proce-
dure includes geometrical and parametrical factors which are studied separately. The
ability of the PCM to remove phase distortion is demonstrated. Since a long term
stability of the reflectivity of the PCM is desired, methods are discussed to achieve a
relatively stable output.

The presence of a PCM in the feedback cavity alleviates problems of losses and
phase errors in the use of feedback in optical processing. However, due to the gain
from the PCM, the cavity becomes active. Since this is also a non-linear feedback
system, it has a potential for self oscillation and can exhibit chaotic behavior. This
is clearly not a desirable attribute in image processing. In chapter five, the effect
of self oscillation to the output of the cavity will be shown. Another interesting
phenomenon concerning the dynamics of this cavity is that the decay time of such
a cavity diverges near the threshold of self-oscillation. Some observations of this
interesting phenomenon are made. This cavity behavior can be used to indicate

whether the cavity is above threshold.

The experimental details of an optical implementation of an iterative algorithm
in a PCM cavity is described in chapter six. The iterative algorithm is based on the
Gerchberg algorithm to improve the resolution of a low-pass image. The results of the
experiment indicate that some improvements are achieved. Some practical aspects

and the limitations of the system are identified.

Finally, chapter seven summarizes the project. Some of the limitations of the cav-

ity are stated which may provide some guidance for the continuation of this project.
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Chapter 2

Theory of a cavity with a PCM

2.1 Introduction

There is not much written in the literature on the use of a PCM cavity in iterative
image processing. General descriptions of the cavity do not go far enough to incor-
porate the image processing capability of such a cavity [15, 16, 17]. It is therefore
the objective of this chapter to develop a general theory of the cavity with a PCM,
based on operators (section 2.2). The use of operators accommodates various opti-
cal operations and transformations needed in the optical implementation of iterative

algorithms.

Some of the characteristics of a PCM cavity useful to image processing have al-
ready been discussed by other authors. For example, AuYeung et al [15] and Belanger
et al [45] have pointed out that if the PCM is perfect, any distribution which can be
phase conjugated is able to oscillate and is thus an eigenmode of the cavity. Thus the
cavity allows an arbitrary input image to oscillate and is well suited to implement
image processing algorithms. AuYeung et al [15] have pointed out that an arbitrary
field used as input to the cavity will reproduce itself after two round-trips, which in-
dicates that a PCM cavity needs to be described using a two-path geometry (as will

be shown in section 2.3) when it is used in image processing. Lam and Brown [46]
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have shown that the phase of the feedback does not depend on the cavity length
but on the relative phase due to the PCM. Therefore, to change the phase of the
feedback, one needs to alter the phase of the amplitude reflectance from the PCM
(section 2.2.2), and not the cavity length as in a conventional cavity. In section 2.3,
additional characteristics due to the presence of the PCM in the cavity are discussed.
The cavity’s peculiarities and characteristics are demonstrated with examples. Some

limitations of using such a cavity in the area of image processing are presented.

2.2 Cavity with one PCM : Operator Theory

In this section, an analysis leading to the steady-state field equations and the

transfer function of the cavity is presented.

2.2.1 Steady-state fields equations

A Fabry-Perot cavity with one conventional mirror M and a PCM is shown in
figure 2.1. The input E;’ is from the left and the output FE, is the field transmitted by
the cavity. The transmission and reflection on the input mirror, which may include
2-D masks or filters, are represented by the operators 7 and R respectively. The
PCM, which is assumed ideal, is represented by a reflectivity operator f;, with : =1

or 2 at locations 1 or 2 :

ﬁi = Tpemi I;c = Irpcmi| exp(¢PMf)ﬁc 1= 172 (21)

In this expression, r'pem; is the steady-state, complex amplitude reflectance of the PCM
at the locations ¢ = 1 or 2, and %y, is the phase term introduced by the PCM.
The operator pc denotes a phase conjugation operator. The phase %,.,; depends
on the phase conjugation mechanism. For example, in degenerate four-wave mixing
(section 4.3) using a photorefractive material (e. g. BaTiO;s), the phase of the

PCM reflectance, with negligible absorption and assuming a real coupling constant,
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Figure 2.1: Schematic diagram of a cavity with a PCM. The transmission and reflec-
tion on the mirror are represented by the operators 7 and R the reflectivity of the
PCM is characterized by the operators f;. The operators f,it describe the transfer of
the optical field from the input mirror to the PCM and back along the primary and
the secondary path, respectively.
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is simply given by the sum of the phases of the pump beams [47] :

Vpemi = P1i + dai. ’ (2.2)

An expression for the steady-state output of the cavity shown in figure 2.1 is now
derived. It is assumed that the field propagates in the cavity along two separate
paths. The primary path contains the counter-propagating fields E; and F;. The
secondary path contains the fields E3 and E4. These fields are defined at the entrance
plane of the PCM. Note (from figure 2.1) that the field E; results from the summation
of field contributions which have been phase conjugated an even number of times while
the field Ej is the sum of contributions having experienced an odd number of phase
conjugations. As will be discussed in the next section, the purpose of the two distinct

paths is to allow for the spatial separation of these two fields.

The field transformations from the entrance mirror M to the PCM and back along
the primary and the secondary paths are described by the four linear operators [th ,
1=1, 2. These operators may include e.g. : free space propagation, Fourier transfor-

mations, spatial masks or spatial frequency filters...etc [3].

The steady-state fields satisfy the following boundary conditions :

E, = E;+LIRL;E, (2.3)
E, = ﬁlEl

Es = LIRLTE,

Ey = jqks,

where E; is related to the input field E;’ defined at the input mirror M by
E; = LYTE!. (2.4)

On substituting in equation 2.3, the following fields equations for E; and FEj; are

obtained :

Ey = Ei+LiRL;pliRLTmE,, (2.5)
Es = LiRLTmE,. - (2.6)
16



If the output is taken as the field E; transmitted by the PCM at location 1, that is :
E,=r7E;, ‘ (2.7)

where 7 is the PCM transmittance, the steady-state output expression is found to
be :

E,=1E;+ LIRL; j, LIRLT i E, . (2.8)
Figure 2.2 shows the conventional block diagram of the feedback system described by

equation 2.8.

2.2.2 Feedback parameter of the cavity

In this section, the feedback parameter 3 of the cavity with a conventional semi-

transparent input mirror is determined.

The input mirror M combines the input image with the feedback image. The
phase of the feedback 1) determines the type of feedback. As in electronics, ¥ = 2mn
is positive feedback and ¢ = (2m + 1)7 is negative feedback, where m is an integer.

For other values of 1, complex feedback is achieved.

If the input mirror M is a conventional semi-transparent mirror with transmission

and reflection coefficients ¢ and r respectively, equation 2.8 takes the simpler form

E, = tE;+BL{L;pcLiLipcE,, (2.9)
E, = 1E;+BOE,.

where the operator O is recognized as the feedback loop operator which consists of a

double round-trip in the cavity, and the feedback parameter S is defined as
B = IrlPrsemiTpemz = |7*|Fpom1|[rpemale™. (2.10)
The phase 1 of the feedback parameter is given by ¥ = —9pem1 + Ypemz, Where Ypemy

and YPpcmz are the phases of PCM reflectance at location 1 (primary path) and 2
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Figure 2.2: Block diagram of the feedback cavity with a PCM.
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(secondary path), respectively. On substituting equation 2.2 into the phase of the
feedback parameter (equation 2.10), the phase ¥ is found to be

Y = $12+ ¢22 — b1 — Pa1- (2.11)

It is seen that the phase ¢ of the feedback is composed of the phases of the pump
beams at location 1 and 2. This offers the possibility of controlling the phase of the
feedback parameter through the phase of the pump beams.

2.3 Characteristics and limitations

In this section, three unique characteristics of the PCM cavity of figure 2.1 are

highlighted and their consequences discussed.

2.3.1 Double-path feedback loop

The feedback loop operator in equation 2.9 includes two round-trips in the cavity.
In the PCM cavity of figure 2.1, where the two paths are spatially separated, the
output given by equation 2.7 includes only the field contributions which have been
phase conjugated an even number of times. If the two paths overlap, the output must
be taken as the superposition of the fields F; and E3. In general, these two fields

interfere and the output is not a simple function of the input.

An example is shown in figure 2.3. If the lens inside the cavity is one focal length

away from the input mirror and from the PCM, the transfer operators are given by

£ ) g 212
where F is a Fourier transform operator, and I1(-) is the cavity optical length for the
forward (backward) path.

On substituting from equation 2.12 into equation 2.5, using an input mirror with
transmittance and reflectance t and r respectively, and using the fact that the succes-

sive application of two Fourier transform operators FF is nothing but an inversion
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Figure 2.3: Common path geometry of the Fabry-Perot cavity with a PCM. The
output of the cavity is E, = 7 ( E; + E3 ), and E, is proportional to the input while
E; is proportional to the phase conjugate of the inverted input.
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of coordinates, the cavity fields are found to be
Ey(z,y) = Ei(z,y)+ B Ea(z,y) | (2.13)
E3($, y) = r"‘pcmleiHEl‘( -z, '—y)

where | = I* + I~ is the round-trip optical path length of the cavity, and 3 is given
by equation 2.10. The output of the cavity is the sum of the cavity fields F; and Fj; :

Eo(x,y) = T[El(m,y)‘*_ES(z’y)] (2'14)
tkL
T TTTpem1€ Ei(—z, ).

7 _ﬂEi(w,y) t1 5

It is seen that the output is a superposition of a field proportional to the input

E;(z,y) and a field proportional to the phase conjugate of a coordinate inverted input
E;*(—z,—y). This particularity of a PCM cavity output has been found very useful
to realize self-referencing and inverting interferometers [48]. It can also be used to

produce holograms, or to perform multiple transforms simultaneously.

In image processing, however, this superposition of several fields at the output is,
in general, not wanted. One way to avoid this problem is to provide for two distinct
and spatially separated paths in the cavity, as was assumed to be the case in the
previous section (figure 2.1). Another way is to use an input which occupies only
one quadrant of the input field and to synthesize a Hermitian cavity input satisfying
E{(z,y) = E*(—z,—y). The third way is to use a unidirectional ring cavity as
described by Klumb et al [49].

2.3.2 Feedback parameter

The second important characteristic of the PCM cavity is that the phase of the
feedback parameter is determined by the phase difference of the PCM reflectance at
two different locations (equation 2.10), unlike that of a conventional cavity in which

the feedback parameter depends only on the cavity length.

In principle, it is possible to control the phase of the feedback parameter by
controlling the phases of the pump beams at the two locations 1 and 2 (figure 2.1). In
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practice, however, it may not be easy to change the phases of the amplitude reflectance
at these locations independently. It is particularly difficult for a cavity which uses a
photorefractive BaTiOj crystal as the PCM. In a typical four-wave mixing experiment
to realize optical phase conjugation in a photorefractive material (section 4.3), only
one interaction region is established by the set of counter-propagating pumps. The
phase of the reflectance will be the same at location 1 and 2 because they share
the same pumps in the interaction region. If the PCM reflectance of the primary
and the secondary path have the same phase, the feedback parameter becomes § =
|7|2|7pem1||Tpema| » Which is a real positive number. Thus, in this particular case, the

cavity feedback is always positive.

One possible geometry, which may make it easier to control the phase of the PCM
reflectance independently for the two paths, is obtained by unfolding the cavity into a
two-PCM cavity, as shown in figure 2.4. The steady-state output of this cavity is again
given by equation 2.9. The only difference is that, in the expression of the feedback
parameter (equation 2.10) the beam-splitter transmittance replaces the input mirror

reflectance.

2.3.3 Phase cancellation

The third characteristic of the PCM cavity to be discussed is a direct consequence
of the phase healing property of the PCM. As already mentioned, this is necessary
to avoid phase error accumulations in the cavity, but it seriously restricts the kinds
of operations that the system can perform since it also cancels the phase included in

the operations

For example, any phase filtering operation will be canceled. To show this, let us
assume that the transfer operators in both paths represent complex spatial filtering
operations, that is :

O O FSF i=1,2 (2.15)

where I} =) is the forward (backward) optical path length along path ¢ and S;is and

operator representing the transmission of the field through a filter with a complex
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Figure 2.4: Unfolded cavity with two PCMs allowing for the independent control
of the reflectivity fi; and fi, and thus for the control of the phase of the feedback
parameter.
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amplitude transmittance ¢;. In the following, the operator S : is defined as representing

the transmission through a filter with the complex conjugate transmittance ¢}.

On substituting from equation 2.15 into equation 2.9 and using the following

relationships :
R A1
Fpc = pcF (2.16)
f’ﬁf(:c, y) = ZIf(z,y) = f(—=z,—y),(coordinate inversion operator),
pcpc = I, (identity operator),
and Sipc = pc 3: ,

the following steady-state output of the cavity is obtained :
E,=7F; + ﬂ.ﬁcélszg;g;ﬁ—l Eo, (217)

where £~ is the inverse Fourier transform operator. As defined, $1 and S, obviously
commute and have a common set of eigenfunctions {¢x} with complex eigenvalues
Aik,2=1,2:

31(2)¢k = /\1(2)k¢k- (2-18)

Assuming that the {¢,} are orthogonal and form a complete set, the fields F; and

E, can be expanded as
Eio) =) €i(o)Pr- (2.19)
k

On substituting from equation 2.19 into equation 2.17, and comparing the coef-
ficients of ¢, the following relationship between the input and output coeflicients is

obtained :
1

= 1= Bl axl?

€ok TECik . (2.20)

Clearly, only the magnitude square of the eigenvalues of the filter operators &, and
S, enter this transfer relationship. If they were phase-only filters (there eigenvalue
is unit amplitude and they can be represented by the functional form of €*), their

effects would be perfectly canceled after each round-trip pair. Therefore iterative
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algorithms which call for a phase filter in the feedback loop cannot be implemented
with a cavity having a PCM.

It is interesting to contrast this result with some general conditions that the op-
erators must satisfy to allow an expansion of the input and the output in series of

their eigenfunctions, something which so far is assumed valid without justification.

Indeed, for the operator analysis to be valid, the eigenfunctions of the operators
must be orthogonal and form a complete set. Furthermore, to be able to process
more or less arbitrary inputs, the mode structure of the cavity must be rich enough
to represent arbitrary spatially band-limited field amplitude distributions. In a con-
ventional cavity, this means that the eigenvalues of the system are all positive and
non-zero (section 1.2.2). The PCM cavity, with its phase cancellation property will
automatically produce closed-loop PSF which are real. It therefore seems that, to
the extent that the transverse eigenmodes of the PCM cavity are degenerate, there
is no restriction to the class of signals that can be processed. More realistically, the
cavity can accommodate a broad class of suitably band-limited functions. Since the
closed-loop operator is self-adjoint Hilbert Schmidt, the solution of equation 2.9 has
the general form [31]

T/\n <E¢,¢n >
E0=TE“+zn: (ﬂ_l—Ak)

where < -,- > indicates an inner product and it is assumed that 3! is not one of the

&n (2.21)

eigenvalues of the operator O.

2.4 Conclusion

An operator theory to describe a cavity with a PCM is developed. Some of the
characteristics and limitations of the cavity are discussed. They include the need for a
double-path geometry in the cavity when it is used in image processing, the feedback
parameter of the cavity does not depend on cavity length but on the phase of the

PCM, and only operations with real eigenvalues can be accommodated by the cavity.
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Chapter 3

Application of a cavity with a
PCM in image processing :

Theoretical study and simulation

3.1 Introduction

In this chapter, some applications of a cavity with a PCM in image processing
are discussed theoretically. These examples serve as a demonstration of the wide

spectrum of use of a PCM cavity in the area of image processing.

Using the operator theory developed in chapter two, it is demonstrated that a
PCM cavity can be used in many areas of image processing. These include contrast
control, inverse filtering, and image restoration. A possible optical setup to realize
each application and the simulated results are included. The actual implementation of
an image restoration algorithm and the experimental results are presented in chapter

SiX.
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3.2 Contrast control of an image

The contrast of an image recorded on film or captured by an optical system and
read by a spatial-light modulator (SLM) should sometimes be altered in order to
extract useful information. For example, the contrast of an X-ray photograph often
needs to be enhanced, whereas the contrast of an aerial picture often needs to be
reduced. An optical feedback cavity with a PCM can be used to accomplish this
task. It will be shown in this section that such a cavity will transmit light according

to the input intensity at each pixel and thereby achieving a contrast control.

Figure 3.1 shows a PCM cavity which can be used to control the contrast of an
image. The input mirror M is placed at the front focal plane of the lens L,. The
transparency or SLM which contains the image is inserted at the back focal plane of
the lens L,, and its amplitude transmittance is represented by f(z,y). The image
transparency and the PCM entrance plane are placed in the front and back focal
plane of L3. In a coherent system, this configuration optically implements a Fourier
transformation F of the image f(z,y) on the PCM plane (back focal plane of lens
Ly) [39]. The optical setup between the mirror plane and the PCM plane form a
so-called 4- f (4 focal length) system, in which an inverted image of the mirror plane
is formed on the PCM plane. The system is illuminated with a unit amplitude plane
wave E;,. The transmitted beam at the back of the PCM is re-imaged on the output
plane. This setup is similar to the one proposed by Jablonowski and Lee [6] except

that the end mirror is replaced by a PCM.

The transmittance of the front mirror and of the PCM are ' and 7 respectively.
The forward and backward operator to be used in the analysis developed in the

previous chapter are defined as :

£ = e Ef(a,y)F (3.1)
GO~ emif,

where [; is the optical path length along path :. On substituting from equation 3.1
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Figure 3.1: Diagram of a setup for the optical implementation of contrast enhance-
ment. F;, is a plane wave of unit amplitude. The object f(z,y) is placed inside the
cavity. The output of the cavity is extracted behind the PCM.
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into equation 2.9, the steady-state output of the cavity is found to be :
E, = 1E: + BF|f(z,y)?F " E.. (3.2)

where E; = t'ﬁ: .7:'E.-n. To obtain the field distribution E,,; at the output plane,
E; is substituted back into equation 3.2 and both sides of the equation are Fourier

transformed :

f’Eo = Tt’jff(z, y)fz'E.-n + ﬂi’lf(m,y)]sz_lEo . (3.3)

The operator I represents the coordinate inversion operator and the following rela-

tionships hold :

i1 = f,(identity operator), (3.4)
If(z,y) = f(-=,-y)1,
IF = £

Using these relationships to transform equation 3.3, and using F,,; = F E,, the output

is found to be _
_ Tt f(—z,—y) e*h
1-Blf(—z,—y)*’

where F;, = 1 is used since a plane wave illumination is assumed. The phase term

E out

(3.5)

e'*! appears only in the numerator and will not affect the output when the intensity

Iout = |Eout|? is recorded, hence it can be dropped from equation 3.5.

The relation between the output I,,; and the intensity transmittance I;,, = |f(—z, —y)|?
of the input is non-linear. A calculation of the output intensity versus input intensity
for positive (8 = 1), negative (§ = —1), and no feedback (B = 0) situation is shown
in figure 3.2 using 7 = 0.55 and t' = 0.32. The solid line represents the intensity
transmittance of the input without feedback. The two dotted curves represent the
two extreme cases when the phase of the feedback is ¢ = 0 (positive feedback) or =

(negative feedback). It is seen that when 3 = 0(7), the contrast increases (decreases).
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Figure 3.2: The theoretical calculation of the contrast control using feedback. The
amplitude transmittance 7 is 0.55 for the PCM and t' is 0.32 for the mirror. The solid
line represents the intensity transmittance of an input without feedback (reference)
(8 =0). The dotted lines represent the two extreme cases when the feedback of the

cavity is positive (8 = 1) or negative (8 = —1).
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3.3 Image Restoration

The second application of a PCM cavity is on image restoration. Prior to the
discussion of the implementation of image restoration algorithms, the relationship
between the observed, distorted image g(z,y) and the original image f(z,y) needs to
be defined. In general, the original function f(z,y) is transmitted through a distorting
channel, and is being recorded as g(z,y). Many kinds of distortions or degradations

can be described by a Fredholm integral equation of the first kind [50, 51],

/D h(z,y; ',y ) f(z',y')dz'dy’ = g(z,y), (3.6)

where h(z,y;z’,y’), defined in the domain D, is a known kernel which relates f(z,y)
to g(z,y). A partial list of physical and mathematical problems modeled after equa-
tion 3.6 (for example, antenna de-smoothing in radio astronomy, reconstruction of
pictures from their projections in medical dignostics, deconvolution in spectroscopy,

etc) is given in reference [50].

When the domain D spans the linear space Ly, the Fredholm integral equation 3.6
for a space-invariant imaging system takes on the form of a two-dimensional convo-
lution of the object image with the point-spread function :

[ ba-2y -1 y)dz'dy' = g(z,9). (3.7
If the Fourier transforms of the functions f(z,y), g(z,y) and h(z —z’,y —y’) are rep-
resented by their respective spatial spectra F(&,7), G(¢,n), and H(,7n), where (§,7)
are coordinates in the spatial frequency domain B, then by invoking the convolution

theorem, the spectra F(£,n) and G({,n) are simply related by
H(¢,m)F(&n) = G(&n). (3.8)

At this point, the method of recovery depends on the nature of H(¢,n). If H(€,n)
does not have zeros in the linear subspace L, then restoration is achieved simply by
multipling the distorted spectrum G(&,7) by the inverse of H(¢,7)

1
H(¢,n)

F(¢,n) = G(&,n), (1) € B. (3.9)
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It is seen that the spectrum of the object and of the distorted image, are related
by the multiplication inverse of the kernel’s spectrum. The technique of restoring a

distorted image using equation 3.9 is called inverse filtering.

If the spectrum H(€,n) has zeros over (£,7) € B, direct inversion cannot be used,

therefore iterative methods are needed to recover f(z,y).

3.3.1 Inverse filtering

To implement the restoration scheme of equation 3.9, two kinds of operations are
required. They are Fourier transformation and ordinary multiplication. Through
the use of a coherent light source, a lens, and a photographic transparancy mask,
these two operations are easily performed by coherent optical means. Inverse filtering
has been demonstrated using a spatial filtering technique and a conventional feedback
cavity [6, 32]. The recovery of a distorted image through the use of a spatial filter alone
1s strongly limited by the dynamic range available with photographic film or spatial
light modulators which are used to store the spatial mask. In general, a feedback
cavity provides a larger dynamic range than spatial filtering alone. Therefore, a

feedback cavity is perferred in implementing the inverse filtering.

To implement the inverse filtering in a cavity with a PCM, only one filter S(¢,7) is
needed in the primary path. The secondary path does not need a filter. The geometry

of this implementation is shown in figure 3.3.

In calculating the transfer function of the cavity, it is more convenient to work in
the spatial frequency domain than to define the fields at the front surface of the PCM
as was done in chapter two. The cavity field E; is defined immediately behind the
spatial filter S, and E! immediately behind H as shown in figure 3.3. In steady-state,
the cavity field F, is given by :

E, = E; + SFrFFp,FFrFSFinFE, . (3.10)
Using the relationships in equation 2.16 and defining the feedback parameter as g =
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Figure 3.3: Diagram of a setup for the implementation of inverse filtering. H repre-
sents the degradation filter, and S represents the restoration filter.

33



|r|2r;cm1rpcm2 as before, a simple form of the cavity field E; is obtained :
E, = E; + B|S|*E,, | (3.11)

where E; is related to E! by E; =t/ SFF E;. The transfer function T of the cavity is
thus given by : X
E, t'ST

T=—=——7— 3.12

E = 1= AISP (312)

where 7 is the coordinate inversion operator.
To proceed with the calculation of the filter S, note that the condition for a

complete restoration is that the product of the transfer function of the cavity and the

degradation filter is equal to a constant c,

TH =c. (3.13)
Thus S must satisfy )
t'SH

—_— = 3.14

1-AISF ~ © (319

where H represents the coordinate inverted H. For negative feedback, set 8 = —1;

the equation becomes
SH
= : (3.15)

14152 t
- c
SH = Z(1+ISP).

If H is real, then S has to be real to satisfy the above equation. Therefore, the
spatial filter S can be calculated simply as :

11 10 2
s=tH, CH)—1. (3.16)

2¢ 2¢

Since H is an amplitude-only filter, thus S is also an amplitude-only filter. The
restoration is, therefore, not subject to the limitation due to phase cancellation dis-

cussed in chapter two (section 2.3.3) and it can be realized in a PCM cavity.
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3.3.2 Extrapolation of a band-limited function

If the distortion is due to a low-pass or a band-pass system where H & mn) =0,
(&,m)inB, the recovery of f(z,y) is much more complicated. In the following analysis,
only one class of such a recovery problem will be considered, in which its elements
are either objects having a limited spatial extent or objects having a limited spatial
frequency spread. Although the terminologies are different, these two elements are
basically the same. For instance, a function with a limited frequency spread has
an infinite spatial extent, while a function with a limited spatial extent has spatial

frequencies extending to infinity.

The theoretical foundation establishing that a resolution beyond the low-pass limit

is possible, rests on two mathematical theorems [39]. They are :

Theorem 1 The two-dimensional Fourier transform of a spatially bounded function

s an analytic function in the spatial frequency domain.

Theorem 2 If any analytic function in the spatial frequency plane is known ezactly
in a small (but finite) region of that plane, then the entire function can be found

(uniquely) by means of analytic continuation.

The concept of analytic continuation of a function is most easily understood by using
an example invoking the sampling theorem in one-dimension. Let the function f(z)
be space limited with a spatial extent [—K, K|. Then, by the sampling theorem, the
object spectrum F'(£) can be represented exactly by an infinite set of discrete samples
at n/K, where n is an integer,
> n n

PO = 35 F()sinclK(E— ), (3.17)
where the sinc(z) = sin(z)/z. This equation means that the spectrum of F' at a
spatial frequency ¢ # n/K is represented by the sum of all the contributions from
every sampling point. The smoothing function is a sinc function being offset to each

of the sampling locations, and the weighting factor is the value of the spectrum at
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each sampling point. A low-pass filter transmits only a finite range of frequencies,
say up to n = £N. If this finite set of samples is used to reconstruct the image,
some resolution will be lost. But if the spectral information between the sampling
points is also known, it can be used to determine the sample values outside the pass-
band (extrapolation). This is because data at £ # n/K contains information from all
the samples outside the pass-band since the sinc functions attached to these samples
extend into the pass-band. Therefore the spatial frequency F'(£) contains non-zero

contribution from the sampling points outside the pass-band.

Several iterative algorithms have been proposed to extrapolate the spectrum of a
function with known limited extent. They have been shown to offer convergence, at
least in a noise-free environment. Many of them are based on amplitude-only filtering.
They are thus not affected by the limitations discussed in chapter two, and should be
realizable with a PCM cavity. One such algorithm, namely the Gerchberg algorithm,
is briefly reviewed in the next section to provide a means of comparison with the

operation of the PCM cavity used in the experiment described in chapter six.

3.3.3 Gerchberg Algorithm

The aim of the Gerchberg algorithm is to iteratively recover a function f(z,y)
defined in the spatial domain D from bandlimited data g(z,y), which means that its

spatial spectrum G(¢,7) vanishes outside the spatial frequency domain B.

The spatial and spatial frequency truncation operators Tp and Ty are defined as

f(z,y) ,¥(z,y)€ D

TDf($7 y) = (318)
0 ,otherwise
’ 0 ,otherwise.

In this expression, the Fourier transform Fofa complex function f is defined by

Ff(z,y) = //:: f(z,y)e 2" Es+m) dody . (3.19)
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Similarly, the inverse Fourier transform F ™! of a function F (&,7n) is defined by

F- F({,n) // F(&,n) ‘"“‘”"y)dfdn | (3.20)

The mth estimate of f(z,y) is obtained by adding a part of the spectrum that extends

beyond the domain B to the (m — 1)th estimate, according to the recursive relation
m 7 F—1rs R =/ 8 m—
g( )(:l:,y) = TD{g(z’y)'l'f [I—TB]fTDg( ])(x’y)}' (321)
In this expression, [f — TB] is a complementary operator defined as

s 0 ,V(¢,n) € B
I —Tg)G(£,n) = 3.22
I TelGtem) {G(E,n) V(&) € B, 42

and the first estimate is
a A A=l &
¢V (z,y) = Tog(z,y) = ToF TsFf(z,y). (3.23)

Figure 3.4 is a pictorial description of the algorithm.

A comparison of equation 3.21 with equation 2.8 shows that this algorithm can

be implemented with a PCM cavity having a round-trip operator

O = Tpﬁ_l[j—TB]j_TD (3.24)
= [[-3lTp,

where (_.';' = Tpﬁ—lff};.’ﬁ‘.

The eigenfunctions {¢; } of the operator G are assumed to be complete in the space
of functions with a limited domain D, with ¢ ¢r = A\r¢k, and one can then substitute

the expansions
Tpg("‘) = Eeﬁm)qﬁk (3.25)
k
into equation 3.21 and obtain the recurrence formula for the expansion coefficients of

the mth Gerchberg estimate [52] :

m 1_(1_’\k)m 1
= L2 A" g
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Figure 3.4: Pictorial description of the Gerchberg algorithm. (a) input object, (b) dis-
torted object (after low-pass filter), (c) frequency distribution of the low-pass object,
(d) coherent addition, (e) output of the coherent addition at the spatial frequency
domain, (f) restored object after mth iterations, (g) part of the feedback operation
which includes the truncation in the space domain and the high-pass operation in the
spatial frequency domain.
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Before carrying on the discussion, two short remarks are in order.

The first is that in an optical implementation of the algorithm described by equa-
tion 3.21, it will not be possible to terminate the process after a prescribed number
of iterations. In that sense, the feedback algorithm implemented in a cavity with a
PCM is not, strictly speaking, iterative. When the number of iterations is large,

ef™(m — 00) — /\ikeg), (3.27)

indicating that the final estimate is similar to the output of an inverse filter.

The second remark concerns the expansions in series of eigenfunctions. A spe-
cial case, corresponding to a simple rectangle function for the truncation operators,
has been extensively studied. In this case, the eigenfunctions {¢,} are the prolate
spheroidal wave functions [53] which satisfy :

. '
/ z %—) $i(z')da’ = Medi(z), (3.28)
where ) is real, < 1, and Ay — 0 as k — oo. The integral, with its limits [— K, K],
is exactly represented by the operator G =1TpF _1TB.7E' used before. A summary of
the properties of the spheroidal wavefunctions and their applications to optics can be
found in [53, 54]. Of particular importance to image restoration are the orthogonality

and the completeness of the set [54],

. K /\i 77'=.7
orthogonalit i i(z)dr = 3.29
(orthogonality) [ 4(e)¢s(c) 0 iz (3.29)

(completeness) > A;'¢k(z)¢i(z’) = 6(z —2'), for z,a’ € D,
k=0

where 6(z — z') is the Dirac delta function. These relationships justify the expansion

in equation 3.25.

However, even in this simple case, the eigenfunctions are very tedious to calculate.
The main advantage in trying to implement these algorithms optically is that the
eigenfunctions need not be calculated or even known. With the appropriate operators

in the cavity, the eigenfunctions will automatically be the cavity eigenmodes.
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3.3.4 Simulation of the Gerchberg algorithm

A computer program was written to simulate the extrapolation of the spectrum of
a distorted image based on the Gerchberg algorithm. A two-point object f is used as
the original function. The object is assigned to a complex array f[z] of 128 elements,
only the sixty-first and the sixty-seventh elements are non-zero, and f[61] = f[67] = 1.
The spectrum F[] of the object is therefore represented by a cosine function. The
low-pass operation is performed by a truncation in the spatial frequency domain B.
The object is Fourier transformed to and from the spatial frequency domain using a
variant of the Cooley-Tukey complex forward (backward) fast Fourier transformation
algorithm (FFT) [55]. A low-pass operation [56] is performed in the spectrum F[¢]

with the nineteenth element to the one-hundred-and-tenth element set to zero.

The low-pass spectrum G is fed into the iteration loop according to equation 3.30 :
G™ = G + [[ — Tg|FIpF ' GmD (3.30)

The mth iteration result of the restoration is shown along with the original object in
figure 3.5. For the first 10 iterations, the rate of convergence is high and it then slow
down and it continuous to slow down as the original spectrum is being approached. In
fact, it is predicted that the estimated spectrum approaches the original spectrum only
after an infinite number of iterations [10]. The power spectrum of the extrapolated

function is shown along with the original spectrum in figure 3.6.

The sum of the absolute spectrum error is calculated according to the following
equation and shown in figure 3.7
128
error sum = y_ |F[k] — G™[k]|. (3.31)
k=1
In a noise free environment, it can be shown that the sum of the absolute error

approaches zero after a very large number of iterations [57].

It is interesting to ask whether the Gerchberg algorithm could be used to restore
more complex objects. Santis et al [10] have shown that the iterative algorithm is less

effective on an object with a larger space-bandwidth product (more complex). In an
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Figure 3.5: A comparison of the two-point object with the restored objects after
various numbers of iterations.
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Figure 3.7: A plot of the sum of absolute spectral error against the number of it-
erations using the Gerchberg algorithm. The curves for a two-point object and a
three-point object are shown together for comparison.
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attempt to verify this, an extra point inside the two-point object was added to make
it a three-point object, f[61] = f[64] = f[67] = 1. The rest of the array elements
were set to zero. The spectrum of this object is a cosine function with amplitude of
two units added to a dc term of amplitude equals to one. The same low-pass window
was used as before, the result is shown in figure 3.8 and figure 3.9. The sum of the
absolute spectrum error is plotted against number of iterations in figure 3.7. It is
seen that the sum of the absolute error drops monotonically but at a slower rate than

for the two-point object. This is in accord with the predictions of Santis [10, 54].

3.3.5 Optical implementation

The optical system considered for implementing equation 3.21 is shown in fig-
ure 3.10. It is similar to the set-up of Marks et al [5, 58] except that a PCM is
replacing his conventional mirror. The input data g(z,y) is placed in the front focal
plane of lens L;. The input mirror of the cavity, placed in the back focal plane of L;,
has a transparent opening representing the spatial frequency truncation operator Ts.
The transmittance and reflectance operators 7 and R of that mirror are thus given
by

T=Ts, R=r[l-Ts, (3.32)

where r is the amplitude reflectance of the mirror. A slit, of width equal to the spatial
extent of the object representing the spatial truncation operator TD, is placed at the
back focal plane of L,. No operator is needed in the spatial domain of the secondary

path. The output field equation of this cavity is found to be

Ey, = E; + BTpF[I — Tp|Fpc F|I — Tp)|FIppcEy, (3.33)
where
Ei = TDﬁTBﬁg(zv y) ’ (334)

and 8 = |r|2r;cmlr,,cmg as before. The other operators are as defined in chapter two.

Using the relationships of equation 2.16 together with the fact that Tp, Tg and [f -

TB] are projection operators P satisfying P?¢ = P¢ and Ppc = pc P, equation 3.33
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TD in plane P. The secondary path is empty corresponding to an identity operator

I.
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takes the form

Ey = E; + BTpF|I — Ts)F ' TpE:, (3.35)

which is equivalent to equation 3.21 if g™ (m — co) — E; and if the high-pass filter
[I — T'g] is spatially inverted. It can be shown that if T is defined as the coordinated

inverted TB and

Tg(¢,n) = Ts(—¢,—n), (3.36)
then
FUf - To)F = F[I - Tp)F. (3.37)

It is assumed that the eigenfunctions {¢;} of the truncation/low-pass operator

G =TpF -ITB]A: form a complete set

¢¢k = Ak¢k ’ (338)

where A is the eigenvalue when C; operates on ¢,. On expanding TDEl and TDE; in

terms of {¢;} :
ToEigy = 3 e1inds (3.39)
k

and substituting these expansions into equation 3.35, the expansion coefficients of the

output are found to be
1

€1k = ]_——meik .
If the feedback parameter is close to unity (cavity near threshold), the output coeffi-

(3.40)

cients become

1
ek X /\—e,-k(ﬂ — 1) y (341)
k

showing that the output of the cavity approaches that of an inverse filter.

3.4 Conclusion

In this chapter, the application of a PCM cavity to contrast control, inverse fil-

tering, and image restoration was discussed from a theoretical point of view. The
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optical implementations of these three applications was also discussed. The feasibil-
ity of image restoration using the Gerchberg algorithm was tested by a numerical
simulation. A set-up for implementing this scheme optically was proposed and some

of the requirements and limitations were discussed.
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Chapter 4

Realization of a PCM with
photorefractive BaTiOj5 : Theory

and experimental investigation

4.1 Introduction

One of the key elements in a PCM cavity is the PCM itself. The ability of a PCM
to “heal” phase errors and the possibility of introducing some gain into the cavity
give the PCM cavity substantially different characteristics from that of a conventional
cavity. For the experiments, degenerate four-wave mixing (4WM) in photorefractive
BaTiO3 was selected to achieve optical phase conjugation with gain. In this chapter,
the characteristics of this PCM are tested experimentally. In particular, its abilities

to produce gain and remove phase distortions are investigated.

The photorefractive effect describes a phenomenon in certain materials which ex-
hibit change of refractive index n when light passes through them [20]. Materials
that exhibit such changes are referred to as photorefractive materials. In section 4.2,

the ability of photorefractive media to record a real-time index grating due to the
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photorefractive effect is explained. A theory based on the band transport model is
outlined to explain this effect. The dependence of the index grating on material pa-
rameters is demonstrated for BaTiO3. Using this index grating in photorefractive
material, a four-wave mixing (4WM) geometry is used to realize the PCM. In this
geometry, a third beam is scattered from the real-time phase grating to produce the
phase conjugate signal. The geometry and the coupling of the beams are outlined
in section 4.3. In section 4.4, the optimization of the PCM using various design
parameters is discussed. In sections 4.5 and 4.6 the capability of the PCM is inves-
tigated experimentally. The ability of the PCM to provide optical amplification is
demonstrated, and the reflectivity of the PCM against various beam intensity ratios is

measured. In section 4.6 the ability of the PCM to heal a phase distortion is observed.

4.2 Photorefractive effect

Light-induced refractive changes in nonlinear, frequency doubling crystals was, at
first, called “optical damage” in the late 1960’s [59, 60, 61]. These changes can persist
in the dark from picoseconds to days, depending on the materials, and can be erased
by flooding the medium with light. Light-induced phase gratings are produced by the
interference fringes of two coherent beams in these materials. It has been proposed

to use these gratings for high density holographic optical storage [62, 63, 64].

The interest in photorefractive materials was renewed in the late 1970’s because
of the possibility of using the light-induced phase grating in these materials to obtain
coherent optical gain and to construct PCMs. This section is used to outline the
band-transport model to explain the formation of a phase grating in photorefractive
materials. The understanding of the theory enables us to optimize a PCM using these

materials.
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4.2.1 Band-transport model

There are two physical models currently being used to explain the photorefractive
effect. They are the band-transport model developed by Kukhtarev et al [65] and the
charge-hopping model developed by Feinberg [20]. Since the charge hopping model
is a special case of the band-transport model when the lifetime of the free charge

carriers is short, only the band-transport model will be discussed.

In the band-transport model, it is assumed that impurities X, which can exist
in two valency states, are present in the materials and their energy levels are in the
band gap. These impurities provide donor and acceptor sites for the light-induced
free charges. The photo-excited charge carriers can be electrons or holes (or both)
depending on the material. For example, if the dominant charge carriers are electrons
(holes), then the donor sites are X (X*) and the acceptor sites are X* (X). For
simplicity, electrons are assumed to be the dominant charge carriers in the following

calculations.

In the band-transport model, it is assumed that photo-excited electrons are ejected
from filled donor sites to the conduction band. The charges migrate through diffusion
or drift and recombine with acceptor sites in the dark regions. This mechanism is
illustrated in figure 4.1 (extracted from reference [66]). In this figure, an interference
pattern is formed by two coherent beams, called the signal beam E, and the pump

beam E;. Let the two beams be represented by

E; = %“,-Aje‘(k;'?'“’t) + cc., j=1,s, (4.1)
where the A; are the slowly varying electric field amplitudes, the é; are the polariza-

tion vectors, and the ic}- are the wave vectors. The intensity of the interference fringes
I(Z) is

I(Z) = L(1 + mcosk, - &), (4.2)
where I, = |A;|? + |Ao|?, k, = k, — k; = grating wave vector. The dimensionless
modulation index m is

2A7A,,. .
m= Il (és-é€1). (4.3)
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Figure 4.1: The band-transport model after Kukhtarev et al [65]. (a) Photo-electrons
are excited into the conduction band, and re-trapped into empty donors in other sites.
(b) The space charge field E,. created by this redistribution of charge creates a index
grating via the linear Pockel effect. Notice that there is a phase shift between the
index grating and the interference fringes. This phase difference results in one of the
beam being amplified at the expense of the other beam.
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The bright fringes create a larger photoproduction rate of electrons at the fringe
locations. These electrons migrate to the dark regions through diffusion and/or drift
and are trapped by the acceptors. The charge density p(7) in the bright regions is,
therefore, positive relatively to the dark regions. The charge distribution induces a
space charge field E,.(7), and this field distorts the index ellipoid and induces a change
of refractive index An via the linear electro-optic effect [67]. For small modulation,
An is found to be

1
An = —Eniery , (4.4)

where r.s; is the effective electro-optic coefficient which describes the change of the
index ellipsoid with the space charge field along the direction of E,.. In general, the
Tefs 1s maximum along a direction which is dictated by the structure of the electro-
optic tensor and geometrical parameters such as the incident angles of the mixing
beams. A more detailed calculation of r.ss will be discussed in section 4.2.2, and its
optimization will be discussed in section 4.4.1. Under the assumption that the change

in refractive index is small, one writes An and F,. as first order modulation

An = %n;e‘k;'?+ c.c., (4.5)

1. x.-
E,, = §E,ce‘k9"+ c.c.,

then, on substituting equation 4.5 into equation 4.4
1 ~
ny= —é—nirejfE_,c . (46)

In general, the phase grating has a phase shift ¢ (spatial shift of the grating) with
respect to the interference fringes and depends on m. Therefore, the index grating

modulation can be written as [68]

1 - .
n(r) = n, + §rqe”°”"me"'qb + c.c. (4.7)
Using the band-transport model, E,, and ¢ are found to be [65]
. E? 4 E? 1/2
E. = ,[ o + "4 ] , (4.8)
E} + (Eq + E,)?

Ed(Ed + Ep) + E02
E.E, ’

54




where E, is a spatially uniform field applied in the direction of E,., E4 and E, are the
electric field characteristic of diffusion and the maximum space charge field achievable

with the available number of traps, respectively,

kpTk,

Ed = e (49)
_ _€Pd
E = ok,

In this equation k;, = |k_;|, kg is the Boltzmann’s constant, T" is the absolute temper-
ature, e is the electron charge, €, is the permittivity of free space, € is the dc relative
permittivity of the material (which is geometry dependent, and will be calculated in

section 4.2.2), and pg is the density of traps.

On substituting equation 4.7 into the wave equation 1.10 and using the dielectric
constant (at optical frequency) (7) = [n(7)]?, the wave equation becomes explicitly

dependent on n(7) :

2 w? 2 9
V°E + g[n(f")] E - yaEaE =0, (4.10)

where o is the conductivity of the material, F is the sum of all the optical frequency

electric fields in the material,
E=E3+E1. (411)

On substituting £ and equation 4.1 into the wave equation 4.10, and extracting the

components that match the phase of E, and F,, the wave equation is split into two

parts :
w? w? .
V?E, + gan, + -gnonzme_"bEl + w0k, =0, (4.12)
w? w? )
V2E, + §H§E1 + c—znonIm‘e"’sE, + wp,0FE, =0.

The phase matching condition is imposed to select the non-vanishing terms. This
condition can be understood by realizing that the wave equation 4.10 can also be
expressed in an integral form with integral limits equal to that of the interaction length
l in the material. Under the assumption that 27 << (k, — I::'g) -7, and (Eg — k1) 7, the

terms with these phase terms vanish under the integrations. A more physical picture
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of the phase matching condition is shown in figure 4.2. In this figure, the field E,
and F; induce a phase grating with the wave vector Eg. To produce a field from the
total field F illuminating on the grating, the vector sum of the wave vectors of the
incident field and the grating vector must matches the wave vector of the field. For
example, to produce E;, E, is scattered from the grating, the wave vector ky is the

combination of

ky=F,—k,. (4.13)

Therefore, the field E, scattered from the modulation m* will produce a wave in the
direction of E;. Similarly, the field F; scattered from the modulation m produces a

wave in the direction of E,.

The equations 4.12 can be simplified by using the slowly varying envelop approx-
imation (SVEA) [18]. In SVEA, the amplitudes A; are assumed to be varying slowly
both in time (comparing with one cycle) and in space (compared with one wavelength)

1 ; - 1 ; . . . . .
such that — =2 << |k;| and ——% << w,j = 1, s. Using this approximation, the

A; Or; A; Ot
terms (;sz can be neglected. Further simplification can be made by assuming that
the angles of incidence of the beams are roughly the same for the two beams, such
that a, = a3 = o and o = cos a'g. The coupled wave equation 4.12 is then
simplified to :
aai’ - i2ccu<:s alnfme""t’Al +ad, = 0, (4.14)
0A . w

1 nym*e®A, + ad; = 0
0z 2ccosal T s T oy ’

where a = is the linear absorption coefficient. The phase shift in equation 4.14

2011o
is an important variable in determing the energy exchange of the interacting beams.
A phase difference ¢ # 0 leads to energy coupling between the two interacting beams,
and the exchange is maximum when ¢ = /2 [69]. As a result, a weaker beam can be
amplified at the expense of the stronger beam. This provides a means for coherent
image amplification of the weaker signal beam of up to more than 1000 times using

a single crystal BaTiO3 [70]. This phenomenon is generally referred to as two-wave

mixing (2WM) in photorefractive media since two interacting beams are present inside
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Figure 4.2: Wave vector diagram for two-wave mixing. The grating wave vector
k = k — k1 To obtain k from kl, the field E, with wave vector k; is scattered from

the grating with wave vector k



the interacting region.

4.2.2 Photorefractive effect in BaTiO;

To demonstrate the dependence of r.s; on geometrical factors, the example of

photorefractive BaTiOj is chosen.

A single crystal BaTiO; has a tetragonal structure at room temperature, and it
belongs to point group 4mm (symmetry Cy,) (a detailed description of its structure
and properties relevent to our discussion can be found in Klein [71]). It has a large
coeflicient in its electro-optic tensor which results in a large r.;s and a large index
grating modulation when the grating direction is properly selected. It also has a
large dielectric constant which results in slow response time [71]. A list of material

constants of BaTiO3 for the following calculation is shown in table 4.1.

The effective electro-optic coefficient r.s¢ is given by (20, 68] :

L6 ER -6 - &), (4.15)

Teff =
"=

where n, is either n. or n, depending on whether the mixing beams have either
extraordinary or ordinary polarization. The dielectric tensor (at optical frequency)
£, is diagonal in a coordinate system attached to the crystal principal axes. In the
following calculation, the optical axis ¢ is along the y direction, and the z axis is out
of the plane of the paper (figure 4.3). €, is the grating unit vector, €, = Eg/liu:gl. R is
the third rank electro-optic tensor. Using the coordinate system in figure 4.3, R for
BaTiOj is given by [67]

T Yy =z
TT / 0 0 rys \
vy 0 0 ry

R 2|0 0 s (4.16)
Yz 0 reo O
zz reg 0 0
zy 0 0 O

58



Table 4.1: Material parameters used for the calculations

| parameter I value j description j
n, 2.424 extraordinary refractive index at 514nm
n, 2.488 ordinary refractive index at 514nm
£l 4300 DC dielectric constant (electric field parallel ¢)
€1 106 DC dielectric constant (electric field perpendicular ¢)
Pd 2-10%m=3 | trap density

59



Amplified signal

Pump y = c crystal axis

Figure 4.3: Two-wave mixing Geometry. The two interacting beams are the signal
beam A, and the pump beam A;. The angles a, and a, represent the angle between
the signal beam and the pump beam with the z-axis respectively. These angles are
defined inside the crystal.
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and thus
T13€42 0 T42€9x

R - ég = Z Tijk€gk = 0 T33€g; T42€gy | - (4.17)
k=z,y,2
T42€gz 7‘42693/ T13€42
The values of 73, 733, 742, in the unit of 10~2V/m are 8, 23, and 820 respectively at

30°C. It is to be noted that the r4; is much larger than the other two coefficients.

To find an expression for r.s; in which the beam incidence angles appear ex-
plicitely, two angular parameters are commonly defined. They are the angle 20 be-
tween the signal and the pump 1 and the angle 8 between the grating vector and the

crystal axis :

9 = a’;o"’, (4.18)
a; + o,
IB 2 b

where o, and a, are the angles between the signal and the pump with the z-axis

respectively, as shown in figure 4.3.

Ordinary-polarization beams : When ordinary polarized beams are used (polariza-

tion normal to the plane of figure 4.3), and using the coordinate system defined in

figure 4.3, the polarization vectors and the grating vector are given by

1
ég =é3= 0 y (419)
0
0
ég == _COSIB 9
—sin
n2 0 0
e, =] o0 n? 0
0 0 n?

On substituting these relationships into equation 4.15, a simple form for the effective

electro-optic coefficient is found :
Teff = T138inpf. (4.20)
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Extraordinary-polarization beams : When extraordinary polarized beams are used in

the two- or four-wave mixing (polarization in the plane of figure 4.3), the following
expressions for the polarization vectors, in addition to the grating unit vector €, given

in equation 4.19, are used :

0 0
é&2=1| cosa, |; €= cosa, |- (4.21)
—sin oy —sin a,

On substituting these vectors into equation 4.15, the effective electro-optic coeflicient

is calculated as

Teff = Qn}jne (nira3sin B cos a, cos ap +4n2nry, cos Bsin 28+ niry3 sin Bsin a, sin a;,).

(4.22)
In comparing equation 4.20 and equation 4.22, it is seen that when the interact-
ing beams have ordinary polarization, r.s; does not contain the large electro-optic
coefficient r45. Therefore, it is concluded that the interacting beams have to be in
extraordinary polarization in order to construct a PCM with gain using photorefrac-
tive BaTiO3. In addition to that, the grating €, cannot be parallel or perpendicular

to the ¢ axis.

The relative permittivity in equation 4.9 depends on the grating direction €,, and

it is given by
€=¢&; € -8 =¢e, cos’ B+ ¢ysin® B, (4.23)
where € is the DC relative permittivity tensor. In the coordinate system given in

figure 4.3, € is diagonal, and the non-zero elements are given by €1; = €33 = €, = 106

and 5, = ¢ = 4300 [67].

4.3 Phase conjugation using degenerated four-wave mixing

in photorefractive BaTiOj;

The idea to use a phase-conjugate signal to remove phase errors by means of a

hologram was first introduced by Kogelnik in 1965 [72]. In this method, the in-
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terference fringes of the signal and the reference beam are recorded on film. The
phase-conjugate signal is generated by reading the hologram with a beam propagat-
ing in the reverse direction of the reference beam. The disadvantages of this method

are that the process is not real time, and a new hologram is needed for each signal.

Since the two-wave mixing in photorefractive media can produce a real-time holo-
gram of the signal and the reference beam, it is natural to extend this method to
generate a real-time phase-conjugate signal. The four-wave mixing geometry used
to produce phase conjugation is shown in figure 4.4. To generate a phase-conjugate
signal, the signal beam E4 and the pump beam F,; (the reference beam) first induce
an index grating inside the medium. A third beam E, is incident at the Bragg angle
(therefore it is counter propagating with the pump beam F;) on this grating. F, will
diffract off the phase grating and generates a phase-conjugate beam which propagates
in the reverse direction of the signal beam. The term four-wave mixing (4WM) refers
to this physical process by which four interacting fields couple with each other in
the medium. In the particular case when all four interacting beams are of the same

frequency w, then the process is referred to as degenerate four-wave mixing.

Let the electric field associated with the jth beam be

E;(F) ) = &;A;(P)e® ™) ¢+ cc., (4.24)
where é; is the polarization of the beam, Ej is the wave vector, j = 1,2,3,4. The
signal beam is A4, and A;, A; are the two counter-propagating pump beams. The
phase conjugate signal A; propagates in the reverse direction of A4. All the angles

are defined inside the crystal as shown in figure 4.4.

The wave-vector diagram of the interacting beams is shown in figure 4.5. The
phase conjugate beam Aj is produced by the scattering of pump beam A, off a phase
grating with grating vector Eg formed by the interference of A; and A4. This phase
grating consists of two elements I_c'_q = I& - El = E3 - ]-‘;2. The first element is produced
by the interference of pump A; and signal A4. The second element is produced by
the interference of pump A2 and phase conjugate As;. There are three other sets
of gratings with grating vector EH = El - ]-6;3 = E4 - Ez, EUI = El - Eg,and I-c'lv =
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Phase-conjugate
Signal

v
Pump 1 y = Crystal ¢ axis
I

Figure 4.4: Degenerate four-wave mixing geometry. The four interacting beams are
A;, 7 =1,2,3,4. A, and A; are counter propagating pump beams usually referred
to as pump 1 and pump 2 respectively, A, is the signal beam, and Aj is the phase
conjugate beam. «, and «, are the angle of the signal beam and the pump A; with
the z-axis respectively. These angles are defined inside the crystal.
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Figure 4.5: Wave vectors diagram for four-wave mixing. In the transmission grating
only approximation, the grating wave vector k =ky—ky = k3 — k2 B is the angle of
the grating vector make with the crystal axis. 20 is the angle between the signal and
the pump A;. If A4 has ordinary polarization, é4 is pointing out of the paper. If A4
has extraordinary polarization, é, is on the plane of the paper.
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k3 — k4. They are formed by the interference of the various beams present inside
the interacting region. These grating vectors all have magnitude larger than that
of Ey, |ict,| > Ilz;yl ,J = I1I1,1I1,1V. The resultant index gratings generated by these
grating vectors all have a smaller magnitude than that of I?g. In the single grating
approximation, it is assumed that these gratings do not give rise to strong beam
couplings, thus they are neglected. The approximation is usually appropriate under
circumstances in which only one particular direction of the space-charge field leads
to a strong electro-optic effect. This can be achieved either by an appropriate choice
of the beam incidence angles so that the coupling coefficients of all the other gratings
are small, or by the application in some cases of an electric field that enhances certain
gratings. Another alternative is to use a pump A, which is incoherent with A; and

A,

Assuming that the beams have the same polarization, the dimensionless modula-

tion index m, in 4WM, is
2(AjA4 + A243)
1, '

In the transmission grating only approximation (that means Eg dominant and I-c;-

(4.25)

j = 11,1111V are negligible), the index grating with grating vector Eg is given by
replacing m in equation 4.7 with that in equation 4.25. This leads to [68]

nre=*1 A A A5
I 17 Ag + A2As e L e

2 T , (4.26)

4

where n, is the ordinary refractive index, and I, = ZIJ-, with I; being the intensity
i=1

|A;|? of the jth beam. For photorefractive BaTiO; in which diffusion is the dominant

mechanism for the charge transport, the phase ¢ is 7 /2 [65] when no external electric

field is applied. The expression for n; is given by [65] (without externally applied

field)
_ reffng EpEd
2 E,+E,

where E; and E, are given by in equation 4.9. In the wave equation governing the

ny= (427)

propagation of the beams in the crystal, it is customary to define a coupling coefficient
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_ = 4.28
2ccosa’’ ( )

where it is assumed that the angles of the signal and the pumps with the normal
of the crystal faces are the same : a, = a, = ¢, w is the angular frequency of the
laser beam, and c is the velocity of light. The coupling coefficient is therefore real in

photorefractive BaTiO3; without external applied field (¢ = 7/2).

To obtain the coupled-wave equations similar to the one in equation 4.12, SVEA
and the phase matching condition are employed. The incident angles of the signal
and the pumps are assumed to be the same. On substituting equation 4.24 into the

scalar wave equation 4.10 [68], we find
dA,

E = —’7mA4 — ozA1 N (429)
% = _7m*A3 + aA2 )

dz

% = 7mA2 + aAS ’

dz

d

% = ym*A; — aA,.

4.4 Optimization of the PCM gain

To optimize the PCM gain, one needs to maximize the photorefractive effect. This
can be achieved in two ways : optimization of the geometry and of the polarization

of the incident beams, and of the intensity ratios of the beams.

4.4.1 Optimization of the geometry

The optimization of the PCM geometry includes the selection of the polarization
of the beams used in the four-wave mixing and the choice of incident angle for the

interacting beams. The importance of these two factors is shown in this section.

In comparing equation 4.20 and equation 4.22, one concludes that the photore-

fractive effect is maximized if one makes use of the large electro-optic coefficient

67



r42. For this reason, extraordinary polarization of all the beams was used in all the

experiments reported in this work.

The photorefractive effect can also be enhanced by appropriate geometrical ar-
rangement of the interacting beams. By setting the incident beam angles for the
pumps and the signal beam to specific values, the energy exchange of the pumps to
the phase conjugate beam can be optimized. Physically, this geometrical optimiza-
tion consists of maximizing the magnitude of the phase grating n; in equation 4.27.
This maximizes the transfer of energy from the read beam A, to the phase-conjugate

beam As;.

On substituting the material parameters from table 4.1 into equation 4.27, 4.28,
and 4.26, the coupling constant 4 can be calculated and plotted against the angle 8
for various values of the angle 26. This is shown in figure 4.6, adapted from Fainman
et al [70]. It is seen that maximum coupling occurs for grating vector angles
between 30° and 50° and for small values of §. However, large grating angles inside
the crystal are not achievable without index matching immersion because of the large
refractive index of the crystal. This can be visualized by an example. Using the
definition of # and 6 in equation 4.18, the condition for optimum beam coupling
(from figure 4.6) implies that values of @, and a, have to be roughly between 40° and
45°, and that their difference is small. However, one can only achieve angle «, and
a, smaller than the critical angle (which is 24.4° for extraordinary polarization and
23.7° for ordinary polarization) It is therefore concluded that optimum beam angles
(B ~ 40°,0 ~ 2° — 5°) are not achievable under normal circumstances. Two methods
have been suggested to attain these optimum beam angles; one is to use a specially
cut crystal, the other is to use immersion of the crystal in index-matching oil. The
specially cut crystal method was first suggested by Fainman et al [70]. The cutting
of the crystal is along the (1 0 0), (0 1 1), and (0 1 1) crystallographic planes [70].
Such a crystal cut will allow an orientation of the incident beams leading to 8 = 45°.
The second method to achieve optimum conditions is to immerse the crystal in an
index-matching oil [49]. In this method, a prism coupler device is used to introduce

the beams at the appropiate angles into the oil and then into the crystal. Using this
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Figure 4.6: Plot of the coupling coefficient v against the grating angle 8 used as the
parameter (after Fainman et al [70]).
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method, a steady-state phase-conjugate reflectivity of 50x has been reported [49].
However, optimum coupling does not necessarily lead to optimum performance. A
large coupling constant does not amplify the signal only, it will also amplify the
scattered noise. Very strong “fanning” effects (beam diffracted off grating resulting
from the interference of amplified scattered light) have been shown to occur with the
45° cut crystal [73]. The fanning effect increases the speckle noise and may decrease
the quality of the phase-conjugate image in addition to draining energy in “noisy
channels”.

In our experimental arrangement, the incidence angle 6, of pump 1 at the air-
crystal interface was 48° to the normal of the crystal surface. From figure 4.7, it is
seen that the optimum angle for the signal beam «, is approximately 10° to the normal
of the crystal surface. The optimum signal incident angle 6, is therefore calculated

to be approximately 25° to the normal.

In conclusion, the geometrical factor for the optimization of the beam coupling
constant have been studied and maximally exploited. In our experiment, the largest
beam coupling constant was obtained with the selection of extraordinary polarization

beams and with beam angles a, = 18.3° for the pump 1 and a, = 10° for the signal.

4.4.2 Optimization of the intensity ratios of the interacting beams

To find the optimum beam ratios leading to the highest PCM reflectivity, the
following analysis is outlined which follows closely the theoretical model given by

Cronin-Golomb et al [68].

In the general case the coupled-wave equations 4.29 cannot be solved analytically.
They have to be solved by numerical integration. However, in the case of negligible
absorption and with the transmission grating only approximation, an analytical solu-
tion has been found by Cronin-Golomb [68]. The intensity reflectivity Rpcar = |u|?

of a PCM is defined as (
_ A3(0)A5(0)
Rpom = 43(0)44(0)’ (4.30)
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coupling coefficient y(mm'™)

20

Figure 4.7: Plot of the coupling coefficient against the signal beam angle a, with the
normal to the crystal surface. The pump 1 angle o, is 18.4°. This curve shows that
the optimum a, is around 8° to 10°.
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where Az and A4 are defined at the entrance surface of z = 0, and it is found to be

given by
4cl®

Beom = o7+ Loy

(4.31)
where
= /A? +4|c[?, (4.32)

- tanh(7lQ/2Io),
= L(I) - L(0) — L(0),

4
I = 3L, Ii=Al,
i=1

B 85 O
Il

and |c|? is given by the root of the equation
[lel* = L(O)L(DI(Q/T + A)* + 4lc’[L(1) + Q/T]1,(0) = 0. (4.33)

Equation 4.33 is solved numerically using the Muller’s method [55]. The result is
substituted into equation 4.31 to obtain the PCM reflectivity. To determine the

optimum beam intensities, it is convenient to define the beam intensity ratios

signal-to-pump ratio,r = T (4.34)
1
: I
pumps ratio,q = -—.
L

A contour plot of the PCM reflectivity is shown in figure 4.8 in the log r— log ¢
plane. The coupling strength 4! was chosen to be —4 for the calculation. It is seen
that there is a spur of reflectivity for small signal-to-pump ratio at logr ~ —3 to
—4 and pumps ratio at logg ~ —2. Some slices of this contour plot are shown in
figure 4.9. It is seen that each reflectivity curve for different r reaches a maximum
for a different ¢. This indicates that there is an optimum pumps ratio for each
signal-to-pump ratio. The reflectivity peak is higher and shifts toward smaller pumps
ratio for smaller signal-to-pump ratio. This indicates that large PCM reflectivity is
obtainable with low signal intensity, roughly three to four orders of magnitude smaller

than the intensity of pump 1, and with low intensity of pump 2. The peak of the
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RPCM =3

Figure 4.8: Contour plot of the PCM reflectivity versus log of signal-to-pump ratio
and log of pump ratios. This contour plot is used to assists in the determination of
the best beams ratio in four-wave mixing,.
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PCM reflectivity

Figure 4.9: PCM reflectivity curves for various log signal-to-pump ratio. Notice that
the peak of the PCM reflectivity curves slowly levels off for small signal-to-pump
ratio. The peaks of these curves also shift towards smaller pump ratios.
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PCM reflectivity gradually levels off with even smaller signal-to-pump ratio. Thus,
an optimum signal-to-pump ratio is around logr = —3 to —4. With even smaller
signal-to-pump ratio the signal-to-noise ratio (SNR) decreases as the signal strength

becomes comparable to scattered noise.

4.5 Experimental measurement of the PCM reflectivity

An experiment was set up to measure and optimize the PCM reflectivity. The

experimental setup is shown in figure 4.10.

A single domain crystal of photorefractive BaTiO3 with dimension 6mm X 5mm x
5mm is used as the PCM. The crystal was grown by and purchased from Sanders
Associates. The crystal c-axis is parallel to the long edge of the crystal. The crys-
tal appears to be transparent with a pale yellow colour. The absorption coefficient
for extraordinary polarized light at 514nm is measured to be 0.11mm™=!. The large
absorption coefficient is an indication that the analytical solution discussed in sec-

tion 4.4.2 may not predict accurately the performance of the PCM.

The incidence angles of the various beams are shown in figure 4.11. The angles
inside the crystal are calculated, using Snell’s law, to be a, = 3.3° and o, = 18.4°
for the signal and pump 1 respectively. The corresponding coupling coefficient -+,
determined using figure 4.7, is found to be approximately 0.7mm™! about 6 times

larger than the absorption coefficient a.

The phase-conjugate signal I.,,; is extracted using a pellicle beam splitter (PBS),
and its intensity is measured by a power meter equipped with a silicon photodiode.
The PBS is set at an incident angle § = 28°. At this angle the reflectivity Rpps() of
the PBS, for the extraordinary polarization, is 0.104.

The powers of the beams I;, I, and I; are measured using another power meter

before they enter into the crystal. When I,,,; reaches a steady state, the intensity
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H Argon Laser at 514nm
M
Polarization .
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§ =Sl meter

Figure 4.10: Experimental setup for the measurement of the PCM reflectivity. All
the four interacting beams A;, : = 1,2,3,4 have extraordinary polarization. Their
intensity were controlled either by the combination of a half-wave plate and a calcite
polarizer, or by the combination of a polarization rotator and a calcite polarizer.
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y = Crystal ¢ axis

Figure 4.11: Expanded geometry of the interacting beams in four-wave mixing. 0,
and 6, are the incidence angles of the signal and pump 1 respectively.
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reflectivity Rpcas of the PCM is determined using

Teonj 1

. 4.35
I, Rpps(2se) (4.35)

Rpem =

In the following sections, the phase conjugate reflectivity with various signal-to-pump

and pumps ratios is determined experimentally.

4.5.1 PCM reflectivity versus pumps ratio

For this measurement, the power of the signal I, was fixed at 0.33uW. The diame-
ter of the laser beams was about 2mm. The power of the beams was measured instead
of the intensity. In the case where the angles of all the beams with the normal to the
crystal faces are roughly the same, the ratios of the power are approximately equal
to the ratios of the intensity in equation 4.34. The PCM reflectivity was measured
with various powers of the pump 2 (I;), and the power of pump 1 (/;) was used as
a parameter to generate different PCM reflectivity curves. These curves are given in

figure 4.12.

When comparing figure 4.12 with figure 4.9, it is seen that the theoretical plot
shares some common features with the experimental data in figure 4.12. These fea-
tures include (1) a peak PCM reflectivity for each curve; and (2) the peaks of the

curves reaches a plateau of maximum reflectivity as the signal-to-pump ratio becomes

small.

While these two figures share some similarities, some disagreements between the-
ory and experiment are visible. Two discrepancies between the experimental data

and the theoretical calculation can be identified.

First, the peaks in the measured reflectivity curves appear at different location
from that of the theoretical curves. For example, the experimental PCM reflectivity
curves display a maximum reflectivity at pumps ratio of log ¢ ~ —0.4. The theoretical
PCM reflectivity curve, with the same signal-to-pump ratio r, peak at logg = —1.3.
This indicates that a higher pump 2 intensity is needed in experiment than the the-

oretical prediction to achieve the peak reflectivity. Secondly, the peaks of the PCM
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PCM reflectivity

Figure 4.12: Experimental measurement of PCM reflectivity against log pump ratios
for fixed signal-to-pump ratio. These curves show a saturation of the PCM reflectivity
when logr < —2.5.
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reflectivity curves appear for the same pumps ratio for the range of signal-to-pump
ratios used. This is different from the theoretical curves in which the peaks shift to
a smaller pumps ratio for smaller signal-to-pump ratio. Furthermore, the measured
reflectivity curves show a narrower range of signal-to-pump ratio, from log r = —2.36
to —2.5, to produce peak height saturation. The range of signal-to-pump ratio in the

analytic solution show peak height saturation is at log r < —4 (figure 4.9).

4.5.2 PCM reflectivity against signal-to-pump ratio

In the second set of measurements, the intensity of pump 1 and pump 2 were fixed
at 110uW and 50uW respectively. The PCM reflectivity was measured with various

input intensities for the signal.

The results of the measurements are shown in figure 4.13. Several theoretical
plots are shown in the same figure. It is seen that the trend of the falling PCM
reflectivity with increasing signal-to-pump ratio is roughly the same as that obtained
from the theoretical model. However, the corresponding pumps ratio does not match
what is calculated from the theoretical model. Again, there is roughly one order of
magnitude difference in the pumps ratio between the theory and the experiment for

the corresponding PCM reflectivity.

4.5.3 PCM reflectivity against total beam intensity

In the third set of measurements, the signal-to-pump power ratio was fixed at
logr = —2.5. The reflectivity of the PCM was measured as a function of the pump

ratio, and the total intensity of the beams is used as the parameter.

The results of the measurements are shown in figure 4.14. Two sets of measure-
ments were made with I; fixed at 110uW and 220pW, and I, at 0.3uW and 0.6xW
respectively. It is observed that the shapes of the two curves are similar, and the
locations of the peaks are about the same, at log(ly/l;) = —0.36. However, the
reflectivity curve with I; = 110uW is higher than the one with I; = 220uWW by
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Figure 4.13: Experimental measurement of PCM reflectivity against log signal-to-
pump ratio for fixed pumps ratio. The reflectivity curve shows a decrease in reflec-
tivity with increasing signal-to-pump ratio, which is consistent with the theoretical

curve.
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Figure 4.14: Experimental measurement of PCM reflectivity against total beam inten-
sity for a fixed signal-to-pump ratio. The curves show that the reflectivity decreases
with increasing the total beams intensity.
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17%. This indicates that the PCM reflectivity also depends on the total intensity
I, of the beams interacting inside the crystal. This dependence is predicted theo-
retically by the relationship 7' = — tanh(4!Q/21,) in equation 4.32. As I, increases,
lim tanh(z) = z. The theory thus predicts a decrease of reflectivity as I, increases.

z—0t
The same trend is shown by the experimental results.

Some theoretical curves are plotted along with the experimental data in figure 4.14.
The peak reflectivity of log r = —2.5 is larger than the experimental values by roughly
30%. This can be accounted for by the absorption that was not incorporated in the
theory. The peak location is at logqg = —1.28. When comparing the peak location
with the experimental data, I, is approximately one order of magnitudevlarger for the

peak. This discrepancy is consistent with the last two sets of experiments.

In conclusion, the shape of the experimental curves are found to be similar to the
analytical solution. However, in the experiments, the PCM reflectivity is consistently
lower than expected. And the intensity of pump 2 needs to be approximately ten

times stronger than the theoretical model predicts to reach the peak reflectivity.

To account for these discrepancies, the absorption coeflicient appears to be one
of the important factors. With absorption, the phase-conjugate beam is attenuated.
Therefore, the PCM reflectivity as defined in equation 4.30 will take smaller values.
This accounts for the lower peak reflectivity values measured in the experiments. To
account for the discrepancy in the location of the reflectivity peaks, one has to note
that the phase conjugate signal is generated by reading with pump 2 the hologram
written by the signal and pump 1. If absorption is present, then a larger pump 2
intensity is needed to generate the same phase-conjugate signal intensity by diffraction

on the grating. This may explains the shift of curves in figure 4.13 and figure 4.14.

From the experimental data in section 4.5.1, it is seen that the optimum pump
ratio for a given set of parameters (for example geometry, absorption coefficient, etc.)
is near logg ~ —0.3 to — 0.4. This pump ratio provides maximum phase-conjugate
reflectivity through-out the other experiment, as for example in section 4.5.3. One of

the possible reasons for the different between the expected results and the measured

83



result may due to the fact that power was measured instead of intensity. The power
ratio is different from the intensity ratio because the angle a, of the signal is not
the same as a, of the pumps. Another source of discrepancy is that the interacting
beams are plane wave in the theory while beams of gaussian shape were used in the

experiments.

4.6 PCM fidelity and stability

In the previous two sections, the ability of the PCM to amplify a beam optically
was investigated. The second attribute of a PCM which is essential for iterative
image processing is the ability to heal phase distortion. In this section, the ability to
cancel phase errors is experimentally investigated. The stability of the PCM is also

investigated.

4.6.1 PCM fidelity

The experimental setup is shown in figure 4.15. To demonstrate the phase healing
ability of the PCM, a distortion glass was inserted in the optical path between the
object on the figure and the PCM. An airforce resolution chart was used as the object.
A lens was placed before the crystal to focus the beam into it. Another lens was placed
behind the crystal to reimage the distorted image. The phase-conjugate signal was
extracted with a beam splitter as shown in figure 4.15. The phase-conjugate signal

and the distorted image were recorded on photographic film.

The distorted image and the phase-conjugate image are shown in figures 4.16 a
and b respectively. The quality of the phase-conjugate image is good and shows that
almost all the phase distortions have been cancelled as the image propagates back
through the distorting glass. The phase conjugate image shows a resolution of about

10 lines/mm.

While the PCM shows capacity of removing phase errors, it is not without limita-

tions. The first limitation is that only a small interaction area is available due to the
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Figure 4.15: Schematic experimental setup for the restoration of phase distortion. A
phase distorting glass is placed between the object and the PCM. The pellicle beam
splitter (PBS) is placed in between the object and the distorter to extract the phase
conjugate image.
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(b)

Figure 4.16: Demonstration of a phase distortion “healing” by a PCM. The size of
the image area is 1.5 mm?. (a) Distorted image behind the distortion glass. (b)
Phase-conjugate image which showing that the phase distortion has been removed.
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small size of the crystal. In the theory of chapters two and three, it was assumed that
the interaction area on the PCM is infinite and that the reflectivity is uniform over
the entire area. In reality, the interaction region is limited by the physical dimension
of the crystal. Since BaTiOj is hard to grow in large dimension, only crystals of
small sizes are available (typically in linear dimensions of 5mm to 10mm). Due to
the small size, one has to focus the signal beam into the limited interaction region of
the crystal by a lens. If the focal plane of the lens is at the interaction region, only
the spatial frequencies within this region are reflected. The rest of the higher spatial

frequencies of the signal are lost resulting in a lower quality of the image.

The second limitation is that only the phase distortion can be cancelled. If the
distortion contains amplitude attenuation and phase distortion, only the phase dis-
tortion is recovered. Therefore, any irregularity and scratches on the surface of the

crystal or other optical elements cannot be compensated for.

4.6.2 PCM stability

Another critical aspect for the success of the experiment is that a long term stabil-
ity for the light source is needed for a slow material such as BaTiOj to reach a steady
state. Since the phase-conjugate signal travels in the reverse direction of the incident
signal beam, some of the light signal will re-enter the laser source and interfere with
the beam produced in the laser cavity, inducing intensity fluctuations. To avoid fluc-
tuations of the laser caused by this external feedback, a non-reciprocal device called
a Faraday isolator should be placed in the optical path. This device will rotate the
polarization of light in one direction by 45° when light enters into the device from one
side. If light enters from the other side of the device, the polarization will be rotated
by 45° more. This makes the polarization of the feedback perpendicular to that of
the laser beam and thus it can be blocked by a polarizer. The isolator achieves this
rotation by the Faraday effect (see for example [74]). A good Faraday isolator can

reach a rejection ratio of 1000:1 between the signal and the feedback.

In the experimental setup, since a Faraday rotator was not available, a neutral
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density (ND) filter was used instead. This neutral density filter acts as a loss filter in
both the forward and the backward direction and thus reduces the amount of light
fed back into the laser. In the forward direction, the laser intensity is attenuated by a
factor equal to the transmission coefficient T of the filter. When the phase-conjugate
signal goes through the filter in the backward direction, it is again attenuated by the
same amount before entering the laser so that the ratio feedback intensity to laser

output drops by T2.

By trial and error, a ND filter of optical density 1 (intensity transmission coefficient

= T =0.1) was used. This was found to be sufficient to stabilize the PCM reflectivity.

4.7 Conclusion

In this chapter, a PCM using degenerate 4WM in photorefractive BaTiO; was
investigated theoretically and experimentally. The reflectivity of the PCM was op-
timized with respect to both the geometrical parameters and the interacting beam
intensity ratios. The quality of the phase-conjugate image was found to be good and
the ability of the PCM to cancel phase distortion was verified. The stability of the
phase conjugation was improved by placing a loss filter at the output of the laser

source.
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Chapter 5

The transient behavior of a PCM

cavity

5.1 Introduction

A PCM cavity is a non-linear feedback system in which self-oscillation and chaos
in the cavity field have been observed [75]. These features are common to other
nonlinear feedback system such as laser oscillators [75, 76, 77]. The self-oscillating
output can interfere substantially with the use of a PCM cavity in iterative image
processings. The effect on the output of a PCM cavity when it is above the threshold
of self-oscillation is shown in section 5.2. Some of the precautions of using the PCM

cavity in iterative processing are identified.

Due to the slow response time of the photorefractive PCM, the cavity dynamics
can be easily observed. This study shows some interesting phenomena in a PCM
cavity. For example, the cavity shows a critical slowing down of the cavity decay
time near the transition to self oscillation. The experimental results are presented in

section 5.3.
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5.2 Effect on the output image quality when the PCM cav-

ity is above the threshold of self-oscillation

Self-oscillation in a PCM cavity is defined as a state in which a finite output exists
without an external input signal. In other words, a PCM cavity above threshold will
start resonance oscillation just like a laser cavity. The threshold condition in a PCM
cavity is obtained when the gain from the PCM compensates the losses in the end
mirror and intra-cavity optical elements. In terms of the feedback parameter 3 (de-
fined in chapter two), this condition implies that |3| = 1. This section experimentally
investigates the effect of self-oscillation on the input image in a PCM cavity when it

is above threshold.

The schematic diagram of the experimental setup is shown in figure 5.1. The
reflectivity of the dielectric mirror was 95%, and the steady-state PCM reflectivity
was about three. The high PCM reflectivity ensures that the cavity is above threshold
initially when the mirror is aligned with the optical axis. The PCM reflectivity was
measured with the dielectric mirror tilted farther off the optical axis so that the signal

is only reflected once from the PCM.

An airforce resolution chart was used as the input image to the cavity, and the
phase conjugate image was extracted from the cavity by a pellicle beam splitter. A
portion of the phase conjugate image is magnified and is shown in figure 5.2. A time
sequence of pictures of the phase conjugate image shows the evolution of the image

in a PCM cavity above threshold.

It is seen that the airforce chart image appears momentarily at the beginning.
This indicates that the input signal has a faster rise time than other modes inside the
cavity. Subsequent pictures show that a random speckle pattern eventually builds
up and resonates alone with the input image. The cavity modes (speckle pattern)
interfere with the input image and greatly degrade the quality of the input. This
time sequence of pictures show that although the input image has a faster build-up

time, its field is not large enough to suppress the build up of the other modes when
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Figure 5.1: Schematic diagram of the experimental setup to observe the effect on the
input image when the cavity is above the threshold of self-oscillation.
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(a) Without cavity (b) With cavity (c) 3 sec
time = 1 sec

(d) 5 sec (e) 9 sec () 16 sec

(g) 23 sec (h) 1 min 3 sec (i) 2 min 34 sec

Figure 5.2: Time sequence of evolution of the image in a PCM cavity above threshold.
(a) The phase conjugate image without a cavity. (b) With the mirror aligned with
the optical axis, the input has been launched into the cavity for 1 second. (c)-(i)
Evolution of the input and the build up of the cavity modes (speckle pattern). This
time sequence pictures show that a PCM cavity above threshold cannot be used in
image processing because the cavity mode greatly distort the input image.

92



the cavity is above threshold.

In conclusion, the cavity modes greatly distort the input object when the cavity
is above threshold. This shows that a PCM cavity cannot be used as an image

processing device when it is above threshold.

5.3 Decay time of PCM cavity

The decay time of the cavity is defined to be the time ¢ required for the cavity
field to decay to 1/e of its value when the input is cut off. It is assumed that the

—t/T

decay curve can be approximated by an exponential function e™*7  where 7 is the

decay time constant.

Examples of the cavity build-up and decay curve when the cavity are above and
below the threshold is shown in figure 5.3. The steady-state cavity field intensity is
found to increase as the cavity approaches threshold. The transition to self-oscillation

is shown to be progressive, and depends on the PCM reflectivity.

The experimental measurements of the decay time constant is shown in figure 5.4.
The diverging decay time constant is observed to occur for a log (pumps ratio) between
0.4 and 0.5. In collecting these data, the backward propagating pump I, was fixed at
a power of 1.66rnW | while the power of the forward propagating pump I; varies to
change the pumps ratio. The change in pumps ratio alters the reflectivity of the PCM
and varies how close the cavity is to the threshold condition. The incident angles of

the signal and pump were 6, = 1.5° and 6, = 40.5° respectively.

The increase in the decay time as one approaches threshold can be understood
qualitatively in the following way. The signal field that induces the grating at location
1 (refer to figure 2.1) inside the PCM consists of a part from the input field and the
other part from the feedback field at location 2. As the input is cut off from the cavity,
the signal field that induces the grating at location 1 comes from the field at location
2 only. Without the feedback, the gratings at both these locations are washed out by
the pumps. With feedback, these gratings are sustained by their mutual feedback.
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Figure 5.3: Typical rise and decay of the cavity field in a PCM cavity. In (a), the
cavity is below threshold, the final field drops to zero after the input is cut off. In
(b), the cavity is above threshold.
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Figure 5.4: Experimental measurement of the decay time constant in a PCM cavity
versus the log of pumps ratio. The reflectivity of the PCM is increasing when the
pumps ratio is smaller.
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When the cavity is close to threshold, the feedback is strong enough to sustain the

gratings for a longer period of time. Therefore, the decay time constant is lengthened.

One can also understand the lengthening of the decay time constant through the
concept of the resonance of an eigenmode inside the cavity. An ideal PCM cavity
without noise supports any input transverse field as a resonant eigenmode. Near
threshold, the input mode is near resonance, corresponding to a stronger cavity field

which takes a longer time to decay.

The effect of this increase in the time constant may sometimes be found useful. A
two-PCM cavity has been suggested to be used as an optical image storage device [78].
This feature does not affect the usage of the PCM cavity as an image processing
device, since the output of the cavity is recorded once steady state is reached while

the input is being launched into the cavity continuously.

5.4 Conclusion

In conclusion, the threshold of the self-oscillation is reached when the PCM gain
compensates the cavity losses. If a PCM cavity is to be used in image processing,
it has to be operated below threshold. This conclusion is clear from the results of

section 5.2 which show how self-oscillations affect the quality of the image.

It is also found that the decay time of a PCM cavity diverges as the cavity ap-
proaches threshold. The lengthening of the decay time constant may be used as an

indicator of whether the cavity is above threshold.

96



Chapter 6

Image resolution enhancement/
extrapolation : an example of the
use of a cavity with a PCM in

iterative processing

In this chapter, an image resolution enhancement/extrapolation algorithm is op-
tically implemented using a cavity with one PCM. The restoration algorithm is based
on the Gerchberg algorithm which uses iterations to recover an object from the band-

limited image collected (see chapter 3 for a detailed theoretical description).

There are several reasons for implementing this algorithm rather than other restora-
tion algorithms. First, this optical implementation can serve as a test of whether it-
erative algorithms can be implemented in a PCM cavity. The fact that the algorithm
requires iterations to achieve enhancement provides a factor to determine whether it-
erations have been performed. If an enhancement of the distorted image is observed,
then one knows that iterative processing has been performed. Second, this algorithm

is suitable to be implemented in a PCM cavity because it only requires truncation op-
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erations (spatial and spatial frequency truncations) which do not require phase filters
and thus are not limited by the characteristics of the cavity (section 2.3). Third, the
algorithm can be implemented conveniently because of the intrinsic positive feedback
of the cavity. There is no need for tuning the phase of the feedback parameter in a cav-
ity which uses four-wave mixing in photorefractive materials as the PCM. In the most
usual experimental configuration for optical phase conjugation using photorefractive
BaTiO3, the primary and secondary paths share the same optical pumps inside the
crystal so that the cavity automatically provides a positive feedback. This can be
understood by noticing that the sharing of the same pumps means that ARG[rpem1]
= ARG(rpem2) (equation 2.10), which means that the feedback parameter § is real
and the cavity provides a positive feedback. The intrinsic positive feedback of the
cavity enhances the ease of the optical implementation of the Gerchberg algorithm
because a positive feedback is required by the algorithm. It also means that the
tuning and the determination of the phase of the feedback is not required in such a

cavity configuration.

In section 6.1 the components of the optical implementation are described. The
actual experimental setup and the results are described in section 6.2. Finally, section

6.3 contains the discussion of the results.

6.1 Experimental setup

6.1.1 General description

Figure 6.1 is a block diagram of the experiment which implements the Gerchberg
algorithm. It consists of a unit which produces a suitable input to the system, the
PCM cavity with optical elements representing some operators in the forward and
feedback branches, an observation and recording port, and a forward output port to
measure the forward amplification of the image. The forward output is needed to

observe and determine when the steady-state of the cavity is reached.

98



Object
generating
unit

v
Low-pass
filter

v Forward
Input | PCM cavity ] amplified —» TOWer

. meter
signal
Output extracted using

intracavity elements
(e.g. beam splitters)

v

Image/spatial spectrum
observation and
recording

Figure 6.1: Block diagram of the experimental setup. The object generating unit
produces an input object to be used for processing. The low-pass filter degrades the
object. The restored output and its power spectrum are extracted using intra-cavity
elements (beam splitters). A power meter at the output of the PCM cavity measures
the forward amplification of the PCM cavity to determine when the steady-state of
a PCM cavity is reached.
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6.1.2 Object generation

Very simple objects were used in the experiment. They were genérated using a
combination of grating, cylindrical or spherical lens, and a slit. These objects are
either line objects with two or three lines, or point objects with two or three points. a
line object (one-dimensional) can be easily generated by a combination of a cylindrical
lens, a grating and a slit as shown in figure 6.2. Without the grating, the cylindrical
lens focuses a plane wave to a line. To produce several lines, a grating is inserted
between the cylindrical lens and the slit, which diffracts the focusing beam onto the

slit. The separation y between the lines is given by (small angles)
Ad
y~— fora>> A (6.1)
a

where X is the wavelength of the laser source, d is the separation between the grating
and the slit, and a is the line spacing of the grating. The line separation is adjusted

by varying d. The slit S; selects the number of lines used in the experiment.

Point objects are generated using the same technique with the cylindrical lens
replaced by a spherical lens. The separation of the points is, again, given by equa-

tion 6.1.

6.1.3 Low-pass filter

The low-pass operation is achieved by using a spherical lens and a slit (in our
case, a slit mirror M) in the spatial frequency plane of the object. The object, which
is on the slit S; (figure 6.2) plane, is placed at the front focal plane of the spherical
lens. This optical configuration accomplishes a two-dimensional Fourier tranform of
the object [39]. At the back-focal plane of the spherical lens, spatial frequencies f, f,
of the object are defined as

fx=;”—}; fy=§’—}, (6.2)

where (z¢,y¢) are the co-ordinates at the mirror plane; and f is the focal length of

the spherical lens. If a spatial frequency filter (a slit) is placed at this plane to select
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Figure 6.2: Diagram of the setup used to generate objects consisting of several lines.
A cylindrical lens is used to focus a plane wave into a line. Several lines are generated
by inserting a ronchi grating of 100 lines/inch between the lens and the slit. The
separation of the lines is determined by the distance between the grating and the slit.
The opening of the slit selects the numbers of lines.
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a particular set of frequencies, a low-pass or band-pass operation is accomplished. If

the opening t(z¢, y¢) of the slit is given by

1 ,if|z¢| <o
t(ze,ye) = - (6.3)
0 ,otherwise,
o ..
then the slit represents a low-pass operation of cutoff spatial frequency T line/mm

along the z—direction.

6.1.4 The PCM cavity

Figure 6.3 shows a schematic diagram of the setup for the PCM cavity that im-
plements the Gerchberg algorithm. The input mirror has a transparent slit in it,
representing a low-pass filter Tg. In the feedback loop, the slit mirror also serves
as the complementary high-pass filter which is required by the algorithm. A slit ad-
justed to the size of the object and representing the truncation Tp is placed in the
back-focal plane of L3. Since both the primary and the secondary paths pass through
the slit, the secondary path contains an additional operator Tp. This contrasts with
figure 3.10 where only the primary path contains T, and no operation is performed

in the secondary path.

Since the opening representing the truncation operator Tp is symmetrical, we have
A A A—1 a—1_» 2 . . :
FIpF =F TpF, and the output E,, using the notation and symbols defined in

section 3.3.5, can be written as

E, = 7E; + B{TpFlI — Ts)F '}2E,, (6.4)

*

where 8 = |r|*r;.,

Tpem2 as before.

On expanding E, and E; in a complete set of eigenfunctions {¢;} of the operator
G = TpF[I-Te)F "' as in section 3.3.5, one can relate the kth coeflicient of expansion
of the output to that of the input by
1
kT T8I M)

mwik, for f— 1 and SIGN [f] =1

2 TEik (6.5)

1R
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Figure 6.3: Schematic diagram of the optical cavity used to implement the Gerchberg
algorithm. This diagram is similar to figure 3.10 except that the secondary path
has an additional slit which represents one more truncation operation in the spatial

domain in the feedback loop.
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It is interesting to note that the contributions of the eigenfunctions corresponding to
large eigenvalues (A ~ 1) are approximately the same as in an inverse filter, while the
contributions of small eigenvalues (A << 1) are attenuated by a factor of two when
compared with their contributions in an inverse filter. This could be interpreted as

some kind of regularization (a reduction of sensitivity to noise).

6.1.5 Observation and recording of the image

There are two outputs for the cavity, output ports 1 and 2. They are extracted
from the cavity using two pellicle beam splitters PBS; and PBS, (figure 6.5). Output
port 1 is used to observe the extrapolated spectrum on mirror M. Output port 2 is
used to observe the distorted and the restored object. Film was used to record the
intensity distribution of the images and their spectra. In recording the distorted and
the restored objects, both images were recorded on the same roll of film to insure
that these data were recorded with the same contrast. Kodak T-max 100 film with
D-76 developer was used in the experiments. A standard developing procedure was

closely followed to ensure constant density and contrast of different rolls of film.

The procedure to convert the density of the film back to an intensity scale is
described below. A step wedge target of known optical density (O.D.) from 0.D.=0.3
to O.D.=3 in ten steps is photographed using back-lighting. This produces an optical
density variation on the developed film which was measured. This was used as a

look-up table to convert the density on the film back to an intensity scale.

Figure 6.4 is a plot of the optical density of the film T-max versus the input
intensity. The solid line represents a third-order polynomial curve fitting result. Note
that the film density saturates at some larger intensity. In the experiment, different
exposures of the same image are taken to insure that a properly exposed picture is
obtained. In the case where point objects are used, which is likely to result in an
image with a dynamic range larger than the response of the film, a cylindrical lens
is used to spread out the object spatially in the vertical direction so that proper

exposure can be obtained. Therefore, the film records of the objects are always in a
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Figure 6.4: Plot the photographic density versus input intensity for T-max film de-
veloped in Kodak D-76 developer. The solid line is a third-order polynomial curve
fitting result, which serves as a look-up table to translate the recorded density back
to the image intensity distribution.
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one-dimensional spread-out format regardless of whether the object is a line or point

object.

In the process of converting the density of the film back to intensity, a micro-
densitometer from Elmer-Perkin was used to scan the density of the film. The film is
scanned in two dimensions. The vertical dimension is averaged to obtain the intensity

in one dimension.

6.2 Experimental results

The experimental setup is shown in figure 6.5 which lumps together the compo-
nents described in the last section. The PCM in the setup of figure 6.5 is an externally
pumped single crystal of BaTiO3 (5x5x 6mm from Sanders) in a degenerate four-wave
mixing configuration as described in chapter 4. The laser is a single mode Argon laser
from Coherent operating at 514mm. The incident angle between the pump beam and
the signal beam with the crystal normal were 6, = 47.5° and 0, = 15.8°, respectively
(these incidents angles were measured in air, at the air-crystal interface). Polarization
was extraordinary for all the beams. The pump beams had powers of the order of
26uW for I; and 14uW for I,. The pump beam diameters were about 1mm in the
crystal. The signal-beam power was of the order of 20nW. With these parameters,
a PCM reflectivity of about 1.7 was achieved. In the experiments, the reflectivity
was adjusted to bring the cavity close to but not above threshold. This condition of
course depends on the losses introduced by the various intra-cavity elements (pellicle

beam splitters, mirror M, lenses).

The lenses L, and L3 had 16mm focal lengths which provided a 1:1 imaging of
the data and of the slit S; onto the truncation slit 7p which was 0.11mm wide. The
adjustment of the size of the slit S, was done (with M removed) by placing a mirror
behind the slit and looking at slits S; and S; at the same time through a microscope.
This provides a means to match the size and orientation of the two slits. After the

alignment, mirror M is re-inserted into the spatial frequency plane of the input. The
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slit in the input mirror had an opening of 1.21mm which acted as a low-pass filter with
a cutoff spatial frequency of about 7.4 lines/mm. The truncation slit was re-imaged

onto the PCM with additional lenses L,.

The main reason for using a line input is to provide for two well separated paths

in the cavity while still using a small interaction region in the crystal.

Figure 6.6 shows some results for an input consisting of two sharp points. Both
input and output data were recorded on the same roll of film and with the same

exposure time, ensuring that both data sets were recorded with the same contrast.
The visibility V' of the peaks is defined by [74]
Loz — Imi

V= I:aa: + Im.': ’ (6.6)
where I,,,, 1s the maximum intensity of the spot on the left and I,,,;, is the minimum
intensity between the two spots. Figure 6.6 shows an improvement of visibility of the
two peaks by a factor of about 30% (from a value of 0.6 in the input to a value of
0.8 in the output). A three-point object did not show a noticeable difference in the

visibility using similar set-up.

Figure 6.7 shows a trace through the extrapolated spectrum which for a two-peak
object should resemble a cosine function. Figure 6.7 shows that the part of the low-
pass spectrum which with a sharp cutting edge, and the part of the extrapolated
spectrum. The extrapolated spectrum shows a drop in intensity near the edges of
the low-pass spectrum. This is because these edges of the slit in the input mirror
were not perfectly sharp because of the way it was evaporated, thus providing little
feedback in these regions of the mirror. The extrapolation becomes increasingly noisy,

as expected, as one extends further toward higher spatial frequencies.

In a one-path geometry, the characteristics of the cavity impose a restriction on
the type of objects that can be used (section 2.3.1). The restriction is that the
object must satisfy the condition E(z,y) = E*(—z,—y). In a one-dimensional case,
this restriction implies that the object has to be symmetrical. To demonstrate the
restoration of a symmetrical object in a cavity with one-path geometry, a nearly

symmetrical object is used (a power meter has to be used to determine the intensity
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Figure 6.6: Trace through the intensity distribution of the degraded image of a two-
pixel input (dotted line), and through that of the restored image (solid line). The
restored image shows a 30% improvement in visibility.
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Figure 6.7: Output at port 1 showing the extrapolated spatial frequency spectrum.
The center portion is the input spectrum. The low intensity at the boundary of the
band-limiting slit are due to the soft edges of the mirror leading to low gain in these
regions.
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of these peaks). The object consists of two sharp points which have been low-passed
with the slit mirror. To achieve a one-path geometry, the mirror M is aligned normal
to the optical axis so that the primary path overlaps with the secondary path in
figure 2.1. Figure 6.8 shows a trace through the object and the restored object.
The output shows an improvement of visibility of about 140% in spite of an obvious
departure from the required symmetry. The humps on the left of the restored-object

trace are due to diffraction of noise by the slits, which also shows some asymmetry.

Figure 6.9 shows a trace through a three-point object and the corresponding re-
stored object. The visibility of the three points does not show a significant improve-
ment. This experimental result confirms the computer simulation (section 3.3.4) that
a more complicated object requires a larger number of iterations than a for simpler
object, to achieve the same degree of visibility improvement. Also the effect of noise

becomes more critical.

6.3 Discussion

The results shown in the last section may not appear very spectacular. One must
keep in mind, however, that the restoration algorithms discussed have very severe
fundamental limitations and that their implementation with an analog optical device

such as that shown in the last section raises serious technical challenges.

The fundamental limitation comes from the ill-posed nature of the problem (which
means that the results of its solution are very sensitive to a change in the initial data).
Indeed, even if it is generally agreed that super-resolution and analytic continuation
are feasible with noise-free data, the extent to which they are feasible in the presence
of noise is debatable. The fact that significant improvement was observed on a two-
pixel image but not on a three-pixel image may be due mainly to this limitation. Some
authors [79] would even claim that they are not physically realizable at all unless the
data contain no more than a single pixel. In this case, of our, one could argue that the
problem has shifted from a problem of resolution to that of mere detection. Whatever

the conclusion, there is still plenty of room for debate on the subject.
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Figure 6.8: Trace through the intensity distribution of the degraded image of a two-
pixel input (dotted line), and that of a restored image (solid line) using a one-path
geometry. The restored image appears to be better resolved, however this does not
necessarily mean that a one-path geometry is more successful than a two-path geom-
etry (see discussion in section 6.3).
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Figure 6.9: Experimental result of the restoration of a three-pixel object using a one-
path geometry. The improvement in resolution is not significant. The low intensity
in the right pixel of the restored image may be due to the nonuniformity of the PCM
reflectivity.
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In trying to implement these ill-posed algorithms with analog devices, one must
face the fact that noise is unavoidable. Thus, at best, the expectation for spectacular

or even just successful results must remain modest.

These are the reasons for choosing the simplest possible object for which the
concept of resolution is still meaningful (i.e. a two-pixel object). Experiments with
more complicated objects did not lead to reproducible results. This may be due
to some fundamental limitations or, more likely, to some technical difficulties such
as that of determining the exact phase of the feedback parameter and the limited

coherence length of the laser.

A number of experimental challenges had to be faced in the implementation de-
scribed in section 6.2, the most important one being that one needs a cavity with
positive feedback operating close to threshold. This is the most unstable situation for
an optical cavity. In our experimental setup, the fact that we used a cavity with pho-
torefractive gain in BaTiO; (a slow material, inherently difficult to control) enhanced
these difficulties. They showed up in many different ways. For example, when the
gain of the PCM is increased to bring the cavity closer to threshold, a critical slowing

down is observed (section 5.3).

For reasons probably tied to the above observations, it was also found difficult
to maintain the phase of the PCM reflectivity constant over a long period of time.
If that phase changes differently for the two paths in the cavity, the phase of the
feedback parameter changes, drastically altering the transfer function of the feedback

system.

A second technical difficulty is that the laser had a limited coherence length. As
had been shown in the computer simulation in section 3.3.4, a very large number of
iterations was required to achieve dramatic restoration enhancement, and it took even
more iterations for more complicated objects. However, the number of iterations was
limited by the coherence length of the laser. To increase the number of iterations,
one may shorten the cavity length. However, it is not realistic to hope to achieve the

tens of thousands of iterations required to produce a very dramatic improvement for

114



complicated objects.

A third difficulty is that the edges of the high-pass mirror M were soft and did
not reflect much of the information back into the cavity. This information is critical
to the success of the algorithm because of the progressive nature of the algorithm. In
the algorithm, the output of the next iteration depends upon the result of the last
iteration. The soft edges of the mirror added noise into the iteration because they
reflect much less light, and the first iteration is mainly from these signals. To narrow
the soft edges of the mirror, one may use evaporation methods that produce collimated
coating beam (or better masks). Additional analyses are required to determine the

exact nature of the influence of the soft edge on restoration.

It was also observed that when the two paths (primary and secondary) share the
same interaction region in the photorefractive crystal, a competition takes place. The
primary-path beam is usually much stronger than the secondary-path beam which
contains the extrapolated data. Independently the weaker beam has a higher reflec-
tivity, as expected. In the presence of the stronger beam, however, the reflectivity
of the weaker one drops sizably. This drop of gain for the secondary path indirectly

limits the amount of extrapolation achievable.

To understand more about the nature of this competition, an additional exper-
iment, as shown in figure 6.10, was carried out without the cavity mirror. Two
signal beams of different intensity were used to simulate the primary-path and the
secondary-path beams. These beams were produced by an unexpanded laser beam
diffracted from a grating of 100 lznes/mm. Only the zero-order beam of about 0.96 W
power and one of the first-order beams of 0.5uW power were selected. These signals
were collimated by placing the grating in the front focal plane of lens L,, and were
re-imaged into the crystal by the lens L,. The crystal was located at the back focal
plane of L, to make sure that they overlapped and shared the same interaction region
in the crystal. The strong beam entered into the crystal at an incident angle 6, of
14.5° and the weak beam entered at an incident angle #; of 16.0°. The small difference
in these incident angles ensured that the phenomenon was not due to a change in the

coupling coeflicient (section 4.4). The phase-conjugate signals were extracted from
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Figure 6.10: Diagram of the setup used to observe the competition of two sets of
gratings in the same interaction region of the PCM. A grating is used to generate two
signal beams with different intensities. These beams are collimated and then focused
inside the crystal by lens L; and L,, respectively. The phase-conjugate signals are
extracted from the cavity by a pellicle beam splitter and are measured by two photo-
detector connected to a computer for recording.
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the beam path by a pellicle beam splitter, and the phase-conjugate reflectivities of
these two beams were measured using two different photo-detectors connected to a
computer for data acquisition. During the experiment, one of the beams was turned
on at the beginning, and when its steady-state reflectivity was reached, the second

beam was then turned on. The result of the measurements is shown in figure 6.11.

Figure 6.11(a) shows that when the strong signal beam S; is turned on first,
the phase-conjugate reflectivity of the weak signal beam S; levels out at about 1.6.
However, in figure 6.11(b), if the weak signal beam is turned on first, it reaches a
reflectivity of about 2.5. When the strong beam is turned on afterward, the reflectivity
of the weak beam drops back to 1.6. Other experiments with different strong and
weak beam intensity ratios confirmed this behavior. These results show that a strong-
signal beam will have a larger phase-conjugate reflectivity than a weak-signal beam
when the two beams share the same interaction region, independently of whether
the strong grating is initially present in the region or not. Furthermore, the results
show that this competition is due to mechanism in the PCM, and not due to the
competition of the cavity modes. This phenomenon is likely due to the coupling of
the beams inside the crystal. Additional analysis is needed to better understand the

physics behind this phenomenon.

These results also provide an insight as to why the results of the restoration
in a one-path PCM cavity (figure 6.8) appear to be better than those of a two-
path PCM cavity (figure 6.6). In a one-path geometry, the primary path overlaps
with the secondary path, and both the images from the primary (inverted) and the
secondary (upright) paths superimpose on the input image. Since the primary-path
image has the stronger intensity, the presence of the secondary-path image may not
be significant. Therefore, the output of the cavity is essentially the overlapping of the
input and its inverted image. When using an unsymmetrical object this superposition

may result in an appearent improvement of resolution.
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Figure 6.11: Results of an experiment showing the competition between a strong and
a weak signal sharing the same interaction region in the PCM. In (a), the strong beam
S, is first turned on, and the weak beam S, is then turned on when S; has reached
its steady state. In (b), the weak beam S, is first turned on, and the strong beam
S; is then turned on when S, has reached its steady state. These results show that a
photorefractive PCM favor the strong grating at the expense of the weaker one.
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6.4 Conclusion

An optical implementation of the Gerchberg algorithm was described, the exper-
imental result of which seems to indicate that recovery using Gerchberg-type algo-
rithms is feasible optically but only for a class of objects consisting of very few pixels.
These limitations were to be expected from the nature of the problem. Some techni-
cal problems, such as the finite coherence length of the laser and stabilization of the
phase of the feedback, were also identified. In addition to these problems, the PCM
displays a competition when multiple beams are present in the interaction region.

Additional studies are needed to understand this phenomenon quantitatively.

119



Chapter 7

Summary

To explore the possibility of using a PCM cavity in iterative image processing, a
new theory, based on operators, was developed to describe the steady-state output
of the cavity. Using an appropriate expansion of the cavity fields into eigenfunctions
of the forward and feedback operators, the transfer characteristics of the cavity were
found. These characteristics make a PCM cavity different from a conventional cavity.
The three most significant characteristics were identified. They are the need for a
two-path geometry, the dependence of the feedback on the PCM phase rather than
cavity length, and the cancellation of phase operations. The first two characteristics
have been discussed elsewhere, and the third characteristic is a new discovery of
this dissertation. The cancellation of operations using phase-filters in the cavity
automatically ensures a closed-loop operator with real eigenvalues. It therefore seems
that there are no restrictions to the class of signals that can be processed, and that

the cavity can accommodate a broad class of band-limited functions.

To delineate further the potentials of a PCM cavity in image processing, several ap-
plications of the cavity were described under the framework of the (idealized) steady-
state theory. It was shown that contrast enhancement, transfer function synthesis to
achieve inverse filtering, and image restoration based on the Gerchberg algorithm can
probably be implemented in this kind of cavity. In the computer simulation of the

Gerchberg algorithm, the results showed that a band-limited image could be restored
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using iterations at least in a noise-free environment. However, the results also showed
that it took a large number of iterations to achieve a substantial enhancement, and

the more complicated the objects the larger the number of required iterations.

An experimental investigation of the PCM cavity was then carried out. The cavity
was built using a PCM that can achieve gain and restore phase errors. For this PCM,
a four-wave mixing geometry using a photorefractive BaTiOj; crystal was chosen. The
advantages of using BaTiO3 for the PCM are that it requires low pump-powers, and
that it has large electro-optic coefficients when compared with other materials. Using
the extraordinary polarization in all the beams, a maximum reflectivity of about
seven was achieved with external angles of incidence of 8° for the signal and 50° for
the pump beam. The powers of the pumps were 110uW for I; and 50uW for I, with

an unexpanded beam diameter of about 1mm.

A stable output of the feedback cavity requires a stable feedback and a stable PCM
reflectivity. To achieve a stable feedback environment, an optical table and a plastic
box were used to minimize the influence of the external mechanical vibration and the
effect of air current. The reflectivity of the PCM was stabilized by inserting a neutral-
density filter in the beam path. The neutral-density filter acted as a double-loss filter
to the signal which re-enters the laser and perturbs its output. It was found that a

neutral density filter of optical density 1 was sufficient to stabilize the reflectivity of
the PCM.

A PCM cavity is a non-linear feedback system in which self-oscillation and chaos
in the cavity field have been observed [75]. Chaotic outputs appeared when the cavity
was above threshold of self-oscillation. These chaotic outputs were shown to interfere
and degrade a cavity image and should therefore be avoided by tuning the cavity
below self-oscillation. The tuning was achieved by adjusting the power of one of the
pumps of the PCM, which changed its reflectivity. One indicator showing how close
the cavity is to the threshold was the decay time of the cavity. It was found that the
cavity field decay time diverges when the cavity is close to threshold. Therefore by
monitoring the decay time of the cavity, one can determine how close the cavity is to

the threshold.
121



To verify the theoretical prediction that the cavity can be used in iterative image
processing, an experiment was set up to implement an image restoration scheme
based on the Gerchberg algorithm. The experimental results showed that optical
implementation of the Gerchberg algorithm is possible but it is limited to objects
with a few pixels. The results agreed with the conclusion of the computer simulations
that the resolution of very simple objects (such as two pixels) can be improved.
The spectrum of the improved image showed an extrapolation beyond the low-pass

frequencies of the input.

Experiments with a more complicated (three-pixel) object did not show such pos-
itive results. This could be due to several factors. First, it was difficult to maintain
the phase of the PCM reflectivity constant over a long period of time, because the
cavity with a positive feedback was close to threshold. Second, a more complicated
object requires a larger number of iterations to produce the same degree of resolution
enhancement, but the number of iterations was limited by the coherence length of the
laser. Third, the edges of the high-pass mirror were soft and did not reflect much of
the information back into the cavity. Finally, with noise present, even the simulation

predicts very limited improvement [4].

The experiments also revealed limitations of the PCM itself. It was found that
the reflectivity over the PCM may not be uniform as was assumed in the theory. This
was particularly noticeable when the objects were comparable in size to the diameter
of the pump beams. The nonuniformity may be due to the gaussian distribution of
the intensity of the pump beams. One possible method to improve the uniformity of

the PCM reflectivity would be to expand and collimate the pump beams.

In conclusion, the optical implementation of iterative algorithms in a PCM cavity
seems to be feasible, but it is limited by the restricted class of operations and by the

effective number of iterations achievable.
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7.1 Recommendation

A system which may be more practical for implementing iterative processing could
be a cavity with two PCMs (figure 2.4). Several advantages of a two-PCM cavity
make it more attractive than a one-PCM cavity. For example, the reflectivities and
the phases of the two paths could be adjusted independently. This would make it
possible to achieve negative feedback (by varying the phase of one of the pumps)
which is not possible in the one-PCM cavity with one interaction region. Finally, a
two-PCM cavity would not have the problem of grating competition which occurs
in a one-PCM cavity, because the two sets of gratings would then be located in two

different crystals.

The problem of competition in a one-PCM cavity may turn into an advantage
in other considerations. For example, signal selection as well as recognition require
competition between modes. This competition could be provided by the PCM coupled
with an optical cavity. However, more study is needed to better understand the

phenomenon of mode competition before it can be implemented and used.
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