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(ABSTRACT) 

The nonlinear dynamical behavior of a laterally compressed, flat, composite panel sub- 

jected to a high supersonic flow is analyzed. The structural model considers a higher-order 

shear deformation theory which also includes the effect of the transverse normal stress and 

satisfies the traction-free condition on both faces of the panel. The possibility of small 

initial imperfections and in-plane edge restraints are also considered. Aerodynamic loads 

based on the third-order piston theory are used and the panel flutter equations are derived 

via Galerkin’s method. Periodic solutions and their bifurcations are obtained by using a 

predictor-corrector type of numerical integration method, i.e., the Shooting Method, in con- 

junction with the Arclength Continuation Method for the static solution. For the perfect 

panel, the amplitudes and frequency of flutter obtained by the Shooting Method are shown 

to compare well with results from the Method of Multiple Scales when linear aerodynamics 

is considered and compressive loads are absent. It is seen that the presence of aerodynamic 

nonlinearities could result in the hard flutter phenomenon, i.e., a violent transition from 

the undisturbed equilibrium state to that of finite motions which may occur for pre-critical 

speeds also. Results show that linear aerodynamics correctly predicts the immediate post- 

flutter behavior of thin panels only. When compressive edge loads or edge restraints are 

applied, in certain cases multiple periodic solutions are found to coexist with the stable



static solution, or multiple buckled states are possible. Thus it is seen that the panel may 

remain buckled beyond the flutter boundary, or it may flutter within the region where buck- 

led states exist. Furthermore, the presence of edge restraints normal to the flow tends to 

stabilize the panel by decreasing the flutter amplitudes and the possibility of hard flutter. 

Nonperiodic motions (i.e., quasiperiodic and chaotic) of the buckled panel are found to ex- 

ist, and their associated Lyapunov exponents are calculated. The effects of transverse shear 

flexibility, aerodynamic nonlinearities, initial imperfections, and in-plane edge restraints on 

the stability boundaries are also studied. It is observed that the classical plate theory over- 

predicts the instability loads, and only the shear deformation theory correctly models the 

panel which is flexible in transverse shear. When aerodynamic nonlinearities are considered, 

multiple flutter speeds may exist.



ACKNOWLEDGEMENTS 

I would like to thank: 

My co-advisors Dr. Liviu I. Librescu and Dr. Raymond H. Plaut for their constant guidance, 

encouragement, and invaluable support throughout the duration of my research work and 

graduate studies at Virginia Tech. 

The members of my graduate committee, i.e., Dr. Mark S. Cramer and Dr. Eric R. Johnson 

for the many useful discussions and suggestions, and Dr. Robert A. Heller and Dr. Scott 

L. Hendricks for serving on the committee. 

All my teachers at the Indian Institute of Technology (New Delhi) and Virginia Tech. 

Dr. Balakumar Balachandran and Dr. Tony J. Anderson for many helpful discussions. 

Mr. Ravi Shankar Boppe for staying awake many nights to help me with the typing of the 

manuscript and eventually putting it all together. 

Mr. Weiquing Lin, Mr. Anand V. N. Rau, Mrs. Anuradha Rau and Mr. Suresh Subra- 

manian for helping me with the manuscript and the presentation, and most of all for the 

moral support when I needed it the most. 

Mr. Duane Taylor and Mr. Tim Tomlin, who run the ESM computer lab, for helping me 

out with the computers on which all of this work was done. 

The Engineering Science and Mechanics Department for its continued financial support. 

All my friends in India and the USA for their friendship and moral support, especially those 

at the ESM computer lab, i.e., Mr. Vikas Juneja, Mr. Reza Karkehabadi, Dr. Gustavo O. 

Maldonado, Mr. Mohammad §S. Rohanimanesh, and Mr. Madhu K. Sreedhar. 

And last but not the least, my parents, grandmother, and family for their constant support, 

understanding and encouragement without which this goal could never have been achieved. 

iv



TABLE OF CONTENTS 

1 INTRODUCTION 

2 LITERATURE REVIEW 

2.1 Panel Flutter .............0. 0... 02 eee ee ee eee ee ee 

2.2 Nonlinear Dynamics ............ 0.2. eee eee eee et eee ee 

3.1 

3.2 

3.3 

4.1 

4.2 

4.3 

2.2.1 Dimension of attractors ...........0..500 0500 ee ewes 

2.2.2 Lyapunov exponents ...........2.2.2.2.2. 2.000 eee eee 

2.2.3 Routes tochaos.............0. 000 cee eee eee eens 

PROBLEM FORMULATION 

Governing Equations .... 0... .. 0... 2 eee eee ee tee ee ees 

3.1.1 Strain-displacement equations. ...............2.0000- 

3.1.2 Constitutive equations ............. 2.2.00 ee ee ee eee 

3.1.3 Governing equations of motion ................-.20-4- 

3.1.4 A mixed formulation of governing equations.............. 

3.1.5 Alternative representation of governing equations........... 

Boundary Conditions. ........... 0.2.0.0. ee ee eee ee ee ns 

Derivation of the Panel Flutter Equations ................6-. 

SOLUTION METHODOLOGY 

Determination of Static Displacement Amplitudes .............. 

Dynamic Solutions Using the Method of Multiple Time Scales (MMS) ... 

Dynamic Solutions Using the Numerical Integration Method (NIM).... . 

4.3.1 Shooting technique to obtain periodic solutions (NIM2) ....... 

19 

19 

21 

23 

25 

25 

25 

27 

29 

30 

32 

33 

35



CONTENTS 

4.3.2 Stability and bifurcation behavior of periodic solutions. ....... 58 

4.4 Characterization of Motion .............. 0.0 ee ee eens 60 

5 NUMERICAL RESULTS AND DISCUSSIONS 64 

5.1 Stability Boundaries .........0. 2.0... ee eee ee ee tt ee ee 64 

5.2 Effect of Aerodynamic Nonlinearities on Post-Flutter Behavior ....... 67 

5.3 Effect of In-plane Edge Loads and Flutter of Buckled Panels. ........ 71 

5.4 Effect of In-plane Edge Restraints on Post-flutter Behavior. ......... 77 

6 CONCLUSIONS AND FUTURE RESEARCH 136 

6.1 Conclusions ... 2... ee 136 

6.2 Recommendations For Future Research .............-..-+86- 139 

A COEFFICIENTS IN GOVERNING EQUATIONS 140 

A.1 Expressions of Rigidity Quantities ..............02. 2.0002 eae 140 

A.2 Reduced Mass Quantities ... 1.2.2... 2.02.02. ce eee eee ee ene 141 

A.3 Expressions of Coefficients b,c, d,and6,é,d ............0000. 141 

A.4 Rigidity Coefficients for Symmetrically Laminated, 

Transversely Isotropic, Composite Panels ...............-+-.--. 142 

A.5 Coefficients Appearing in Equation (3.29) ................06.. 143 

B COEFFICIENTS IN PANEL FLUTTER EQUATIONS 144 

B.1 Expressions of Coefficients Appearing in Cy Solution ............. 144 

B.2 Definitions of Non-dimensional Quantities ................0..- 145 

B.3 Coefficients in Galerkin Equations ..............-2 0000280 145 

C RELEVANT LINEAR SYSTEMS THEORY 150 

C.1 Solvability Conditions for Linear Algebraic Sytems .............. 150 

C.2 Stability of Linear Differential Systems with Periodic Coefficients— 

Floquet Theory ........... 2. eee ee ee ee ee 151 

Vi



3.1 

3.2 

4.1 

5.1 

D.2 

5.3 

5.4 

5.5 

5.6 

5.7 

LIST OF FIGURES 

Cross-section of a symmetric laminate................2.-e-e+2085 

Panel with air flow and compressive edge loads................. 

Bifurcation behavior determined by how Floquet multiplier leaves the unit 

circle. .. 0... eee te te et tt tt tt tt tw tt wee 

Stability boundaries for perfect panel; CPT; all edges movable (4;=G2=0, 

6mi=Sm2=1). .. 2... ee 

Stability boundaries for perfect panel; HSDT; E;/G{ = 40; all edges movable 

(6m = 6m2 = 1,4, =G2=0).... 2... ee ee ee ee ee ee 

Effect of transverse shear flexibility on stability boundaries for perfect panel; 

all edges movable (6471 = m2 = 1, @; = G@2=0)................ 

Effect of edge restraint on stability boundaries for perfect panel; CPT; edges 

z1 = 0, movable (64, = 1,4, = 0), edges 22 = 0,l2 movable 

(5s¢2 = 1, G2 = 0) or immovable (§y2 =0,a@2=1). ............. 

Effect of edge restraint on stability boundaries for perfect panel; HSDT; 

E;/Gi, = 40; edges 21 = 0, 1, movable (534, = 1, & = 0), edges zg = 0, lz 

movable (6s¢2 = 1, &2 = 0) or immovable (§42 =0,a@2=1). ........ 

Effect of transverse shear flexibility on stability boundaries for imperfect 

panel (411 = 0.2); all edges movable (51 = 5y2 = 1, G1 = G2 = 0). 

Effect of edge restraint on stability boundaries for imperfect panel 

(G11 = 0.2); edges 2; = 0, 1; movable (541 = 1, G1 = 0), edges 22 = 0, ly 

movable (6y72 = 1, G@2 = 0) or immovable (642 =0,d2=1). ........ 

Vil 

63 

80 

80 

81 

81 

82 

82



LIST OF FIGURES 

5.8 

5.9 

5.10 

5.11 

5.12 

5.13 

5.14 

5.15 

5.16 

5.17 

5.18 

5.19 

5.20 

5.21 

5.22 

Effect of aerodynamic nonlinearities on the stability boundaries for imperfect 

panel (@;; = 0.2); all edges movable (641 = m2 = 1, G, = G2 = 0). 

Effect of imperfections on the stability boundaries; all edges movable 

(6m = 6m2 = 1,4, =G2=0). 2. ee 

Comparison of flutter amplitude for perfect panel obtained by MMS and 

NIM2; flow past both faces (6f = 0, or = 2); linear aerodynamics; 

SB-symmetry broken periodic motion. ..............50-0+0005 

Comparison of flutter frequency for perfect panel obtained by MMS and 

NIM2; flow past both faces (6 = 0,67 = 2); linear aerodynamics; 

SB-symmetry broken periodic motion. ..............+2-22e085 

Flutter amplitude and bifurcation behavior for perfect panel; flow past both 
a 

faces (5 = 0 , 56y = 2); linear aerodynamics; stable periodic motions are: 

SS (stable symmetric), SB (symmetry broken), P2 (period-2); US—unstable 

symmetric; QPM-—quasiperiodic motion. ............-0+0+.-2+e00. 

Phase trajectories: symmetric and symmetry broken limit cycles. ...... 

Frequency spectrum of z, for symmetry broken motion (A = 78.8410). ... 

Phase trajectories: period-2 limit cycle (A = 81.3410). ............ 

Frequency spectrum of z; for period-2 motion (A = 81.3410). ........ 

Poincaré section showing quasiperiodic motion (A = 81.365498)........ 

Poincaré section showing quasiperiodic motion (A = 81.365507)........ 

Frequency spectrum of z, for quasiperiodic motion (A = 81.365507). .... 

Poincaré section showing existence of strange attractor (chaotic motion) for 

A= 92.5410... 0 ee ee 

Frequency spectrum of z, for chaotic motion (A = 92.5410). ......... 

Variation of non-dimensional flutter speed with thickness ratio; perfect panel; 

A = 0°; 4x1 mode analysis............ 0.0.00 eee eee eens 

Viil 

83 

84 

84 

85 

85 

86 

86 

87 

87 

88 

88 

89 

89 

90



LIST OF FIGURES 

5.23 

5.24 

5.25 

5.26 

5.27 

5.28 

5.29 

5.30 

k / k for various thickness ratios—shows that aerodynamic nonlinearities may 

yield hard flutter; flow past upper face (67 = bp = 1); perfect panel; A = 0; 

4x1 modeanalysis. ........... 20 ee ee eee eee ee eee ns 

k / k for various thickness ratios—shows that only aerodynamic nonlinearities 

may yield hard flutter motion; flow past both faces (r = 0 , 5p = 2); perfect 

panel; A= 0; 4x 1 mode analysis. .............. 2.000 eee 

Variation of non-dimensional flutter speed with thickness ratio; perfect panel; 

A = 30°; 2 x 2 mode analysis... 2.2... 2.2... ..2. 0022 eee eee eee 

k / k for various thickness ratios—shows that aerodynamic nonlinearities may 

yield hard flutter; flow past upper face (6 = bp = 1); perfect panel; A = 30°; 

2x2 mode analysis. .... 2... 2. eee ee ee ns 

k / k for various thickness ratios—shows that aerodynamic nonlinearities may 

yield hard flutter; flow past both faces (§f = 0, 6r = 2); perfect panel; 

A = 30°; 2 x 2 mode analysis... 2... 2... 2... 0. eee eee ee ee 

Flutter amplitude and bifurcation behavior for perfect panel; flow past both 

faces (5 = 0,6 = 2); nonlinear aerodynamics; A = 30°; 2 x 2 mode 

analysis; l;/h = 100; stable periodic motions are: SS (stable symmetric), SB 

(symmetry broken); US—unstable symmetric; QPM-quasiperiodic motion. . 

Flutter amplitude and bifurcation behavior for perfect panel; flow past 

upper face (6- = bp = 1); nonlinear aerodynamics; A = 30°; 2 x 2 mode 

analysis; J, /h = 100; stable periodic motions are: SN (stable nonsymmetric), 

P2 (period-2); UN-unstable nonsymmetric; QPM-quasiperiodic motion. . . 

Flutter amplitude for perfect panel—subcritical Hopf bifurcation and result- 

ing unstable symmetric (US) periodic motion; flow past both faces 

(6- = 0, bp = 2); nonlinear aerodynamics; A = 30°; 2 x 2 mode analy- 

sis; /h=50... 0... 0... ce ee 

91 

91 

92 

92 

93 

93 

94



LIST OF FIGURES 

5.31 Flutter amplitude for perfect panel—subcritical Hopf bifurcation and result- 

ing unstable symmetric (US) periodic motion (insets); flow past both faces 

(6 = 0, d¢ = 2); nonlinear aerodynamics; A = 0°;1,/h=50......... 

5.32 Static displacement modal amplitudes; CPT; imperfect panel (4:1; = 0.2); 

H-supercritical Hopf bifurcation point....................26. 

5.33 Phase trajectories: period-1 up to period-8 motions that exist beyond 

supercritical Hopf bifurcation point (cf. Fig. 5.32)..............-. 

5.34 Frequency spectra of z; for period-1 up to period-8 motions that exist beyond 

supercritical Hopf bifurcation point (cf. Fig. 5.32)............... 

5.35 Motion beyond region of period-32 motion (cf. Figs. 5.32, 5.33); Poincaré 

section for A = 45.106600 showing existence of strange attractor (chaotic 

motion following period-doubling sequence). ...............002. 

5.36 Frequency spectrum of z, for chaotic motion (A = 45.106600, cf. Fig. 5.35). 

5.37 Static displacement modal amplitudes; CPT; imperfect panel (41; = 0.2); 

H-supercritical Hopf bifurcation point; TP1—, TP2- turning point. ..... 

5.38 Phase trajectories: Nonsymmetric periodic motion about TP1 (cf. Fig. 5.37). 

5.39 Static displacement modal amplitudes; CPT; imperfect panel (41; = 0.2); 

H1(subcritical)—, H2(supercritical)—, H3(supercritical)—Hopf bifurcation point; 

TP1—, TP2—turning point. ............ 2.2.2.0... eee eee 

5.40 Static displacement modal amplitude (y,); CPT; imperfect panel (411 = 0.2); 

H-supercritical Hopf bifurcation point; TP1—, TP2- turning point. ..... 

5.41 Motion beyond region of period-8 motion (cf. Fig. 5.40): Poincaré section 

for A= 43, L} = —6.2353164, showing existence of strange attractor (chaotic 

motion). ©... ee ee 

5.42 Frequency spectrum of z,; for chaotic motion (cf. Fig. 5.40): A = 43, 

L* = -6.2353164... 0 eee eee eee eee eee 

95 

95 

96 

97 

98 

98 

99 

99 

100 

101



LIST OF FIGURES 

5.43 

5.44 

5.45 

5.46 

5.47 

5.48 

5.49 

5.50 

5.51 

5.52 

5.53 

5.54 

5.55 

Static displacement modal amplitude (y,); HSDT; imperfect panel 

(411 = 0.2); H-supercritical Hopf bifurcation point; TP1-, TP2- turning 

point. 2.2... ee ee 102 

Static displacement modal amplitude (y,); HSDT; imperfect panel 

(41. = 0.2); H-supercritical Hopf bifurcation point; TP1—, TP2— turning 

point. 2... ee ee 102 

Static and dynamic displacement modal amplitudes; CPT; perfect panel; 

H-supercritical Hopf bifurcation point... .................64. 103 

Static displacement modal amplitude (y,); CPT; perfect panel; TP-turning 

point. 2... ee 103 

Motion past TP (cf. Fig. 5.46): Poincaré section for A = 36.845568, 

i= —5.8, indicating periodic behavior. ...............-+-2+-- 104 

Motion past TP (cf. Fig. 5.46): Poincaré section for A = 36.945568, 

L} = —5.8, showing existence of strange attractor (chaotic motion). ..... 104 

Frequency spectrum of z, for periodic motion past TP (cf. Fig. 5.46): 

A= 36.845568, DJ =—-5.8.. 2.0... 0... ee 105 

Phase trajectory: Periodic motion past TP (cf. Fig. 5.46): A = 36.845568, 

DE = 5.8. 1 ee ee ee 105 

Frequency spectrum of z, for chaotic motion past TP (cf. Fig. 5.46): 

\=36.945568, DX=-5.8....0. 0000. ce ee ee ee ee 106 

Motion past TP (cf. Fig. 5.46): Poincaré section for A = 34.873906, 

i= —6.2, showing existence of strange attractor (chaotic motion). ..... 106 

Frequency spectrum of z; for chaotic motion past TP (cf. Fig. 5.46): 

A= 34.873906, LI=-6.2... 0.0.0.0... 0. eee ee ee tt ee 107 

Static displacement modal amplitudes; CPT; perfect panel; 

H1(supercritical)—, H2(subcritical)—, H3(subcritical)—Hopf bifurcation point; 

TPl1-, TP2- turning point. ............ 2.00.2. ee eee ee ee 107 

Static displacement modal amplitudes; CPT; perfect panel; TP-turning point.108



LIST OF FIGURES 

5.56 

5.57 

5.58 

5.59 

5.60 

5.61 

5.62 

5.63 

5.64 

5.65 

5.66 

5.67 

Motion past TP (cf. Fig. 5.55): Poincaré section for A = 34, Lj = —6.5155240, 

showing existence of strange attractor (chaotic motion). ........... 108 

Frequency spectrum of z, for chaotic motion past TP (cf. Fig. 5.55): A = 34, 

DY = —6.5155240.. 2 ee ee ns 109 

Static and dynamic displacement modal amplitude (y1, 21); HSDT; perfect 

panel; TP-turning point; stable periodic motions are: SS (stable symmetric), 

SB (symmetry broken); QPM-quasiperiodic motion. ............. 109 

Comparison of flutter amplitude obtained by MMS and NIM2: HSDT; perfect 

panel; Lj = —4.8; SS-stable symmetric periodic motion; QP M-—quasiperiodic 

Motion. 2.2... ee ee 110 

Comparison of flutter frequency obtained by MMS and NIM2: HSDT; perfect 

panel; Lj = —4.8; SS-stable symmetric periodic motion; QP M-—quasiperiodic 

Motion. ©... 1. ee ee 110 

Motion past TP (cf. Fig. 5.58): Poincaré section for A = 26.854302, 

i= —5.0, showing existence of strange attractor (chaotic motion). ..... 111 

Motion past TP (cf. Fig. 5.58): Poincaré section for A = 26.944302, 

i= —95.0, indicating periodic behavior. ..............205820.4. 111 

Frequency spectrum of z, for chaotic motion past TP (cf. Fig. 5.58): 

A = 26.854302, LF =-5.0.........0. 2.0.2... 0 2 eee eee ee ee eee 112 

Frequency spectrum of z, for periodic motion past TP (cf. Fig. 5.58): 

A= 26.944302, LF =-5.0... 0... 2... ee ee ee ee 112 

Phase trajectory: periodic motion past TP (cf. Fig. 5.58): A = 26.944302, 

EU=—-5.0. 2... ee ee ee 113 

Static displacement modal amplitudes; HSDT; perfect panel; TP1-, TP2- 

turning point... 2... ee ee ee 113 

Static displacement modal amplitudes: co-existence of isolas with solution 

branch displayed in Fig. 5.66; H1l-, H2-— Hopf bifurcation point; 

TP1-, TP2-, TP3-, TP4- turning point..................... 114



LIST OF FIGURES 

5.68 Static displacement modal amplitudes;HSDT;perfect panel;H1(subcritical)-, 

5.69 

5.70 

9.71 

5.72 

5.73 

5.74 

5.75 

5.76 

H2(subcritical)—, H3(subcritical)—, H4(supercritical)— Hopf bifurcation point; 

TP1-, TP2-, TP3—, TP4-, TP5- turning point..............-.. 

Hard flutter phenomenon: Poincaré sections indicating quasiperiodic motions 

past H1 (cf. Fig. 5.68). 2... ee ee ee ee 

Hard flutter phenomenon: Poincaré sections indicating quasiperiodic motions 

prior to H1 (cf. Fig. 5.68)... 2... ee ee 

Static displacement modal amplitudes; HSDT; perfect panel; TP-turning 

point. 2. tt tt te ee ee ee 

Effect of edge restraint on flutter amplitude and type of flutter (hard or soft): 

edges z2 = 0,12 movable (642 = 1, G2 = 0), edges 21 = 0,1, movable 

(61 = 1,4, = 0) or immovable (64; = 0,4, = 1); HSDT; perfect 

panel; periodic motions are: SS (stable symmetric), US (unstable symmet- 

ric); QPM-quasiperiodic motion. ............-.-.-++50++ 000 

Static displacement modal amplitudes; CPT; imperfect panel (4); = 0.2); 

edges z, = 0, 1; movable (M), edges z2 = 0, [2 movable (M) or immovable 

(I); H-supercritical Hopf bifurcation point. .............-...2-.- 

Static displacement modal amplitudes; CPT; imperfect panel (41; = 0.2); 

edges z; = 0, 1; movable (M), edges z2 = 0, l2 movable (M) or immovable 

(I); H-supercritical Hopf bifurcation point. .............-.--06- 

Static displacement modal amplitudes; HSDT; imperfect panel (411 = 0.2); 

edges z; = 0, 1; movable (M), edges z2 = 0, lz movable (M) or immovable 

(I); H-supercritical Hopf bifurcation point. ..............0.000- 

Static displacement modal amplitudes; HSDT; imperfect panel (4); = 0.2); 

edges z; = 0, l; movable (M), edges z2 = 0, Jz movable (M) or immovable 

(I); H-supercritical Hopf bifurcation point. ..............-.4. 

114 

115 

115 

116 

116 

117 

117 

118



LIST OF FIGURES 

5.77 

5.78 

5.79 

5.80 

Static and dynamic displacement modal amplitudes; CPT; perfect panel; 

edges z; = 0, 1; movable (M), edges z2 = 0, l2 movable (M) or immovable 

(I); H1-, H2- supercritical Hopf bifurcation point; US—unstable symmetric 

periodic motion. ......... 0... ce eee eee ttt ee ee ee 

Static displacement modal amplitude (yi); CPT; perfect panel; edges 

z, = 0,1, movable (M), edges z2 = 0, 2 movable (M) or immovable (I); 

H1(supercritical)-, H2(supercritical)—, H{0}(subcritical)— Hopf bifurcation 

point. 2... ee ee es 

Static and dynamic displacement modal amplitudes; HSDT; perfect panel; 

edges z, = 0,1, movable (M), edges z2 = 0, 1, movable (M) or immov- 

able (I); TP-turning point; SS-stable symmetric periodic motion; QPM- 

quasiperiodic motion. ... 1... . 0... eee eee te ee eee ee ee es 

Static and dynamic displacement modal amplitude (y1, 21) ; HSDT; perfect 

panel; edges z; = 0,1, movable (M), edges z2 = 0,l2 movable (M) or 

immovable (I); TP-turning point; stable periodic motions are: SS (stable 

symmetric), SB (symmetry broken); QPM-quasiperiodic motion. ...... 

119 

119 

120 

120



5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

5.10 

5.11 

5.12 

5.13 

5.14 

5.15 

5.16 

5.17 

5.18 

5.19 

5.20 

LIST OF TABLES 

Motion past H (cf. Fig. 5.32)... 00000000 cece eee ee 121 

Motion about TP1 (cf. Fig. 5.37), 2... 2... ee ee ee ee 121 

Motion past H (cf. Fig. 5.37)... 0.0.0.0... 0... ee eee ee ee eee 122 

Motion prior to H1 (cf. Fig. 5.39). 2... 2. ee ee ee 122 

Motion prior to H2 (cf. Fig. 5.39), 2... 2... ee ee ee eee 122 

Motion past H3 (cf. Fig. 5.39). 2... 2 ee ee eee 122 

Coexisting unstable motion about H3 (cf. Fig. 5.39).............. 123 

Motion past H (A = 37, cf. Fig. 5.40). 2... . 2 ee ee eee 123 

Motion about TP1 (cf. Fig. 5.40). 2... 2... 0.2.2... ee ee ee ee 123 

Motion past H (A = 43, cf. Fig. 5.40), 2.2... ee ee ee ee 124 

Motion past H (Lj = —5.3, cf. Fig. 5.43). 2... 2... 0. eee ee ee ee 124 

Motion past H (Lj = —5.4, cf. Fig. 5.43). .............---06. 124 

Motion past H (A = 32, cf. Fig. 5.44). 2... ee ee ee ee 125 

Motion about TP1 (cf. Fig. 5.44). .........2..0000000 eee 125 

Motion past H (A = 42, cf. Fig. 5.44). 2... ee ee ee ee 125 

Motion past supercritical Hopf bifurcation point, i.e., motion beyond AF; 

HSDT; imperfect panel (411 = 0.2); Lj = 0 (cf. Fig. 5.9), ........0.. 126 

Motion past supercritical Hopf bifurcation point, i.e., motion beyond A ;; 

HSDT; imperfect panel (4@,; = 0.2); L} = —5.3, linear aerodynamics (cf. Fig. 

oe ) 126 

Motion past H{0}(Zj = —5.8, cf. Fig. 5.46)... .............00.% 126 

Motion past H1 (cf. Fig. 5.54). 2... 2 2 ee ee 127 

Motion past H2 (cf. Fig. 5.54). 2.2... 2. ee ee ee ee 127 

XV



LIST OF TABLES 

5.21 

5.22 

5.23 

5.24 

5.25 

5.26 

5.27 

5.28 

5.29 

5.30 

5.31 

5.32 

5.33 

5.34 

5.35 

5.36 

5.37 

5.38 

5.39 

5.40 

5.41 

5.42 

5.43 

5.44 

5.45 

5.46 

Motion prior to H3 (cf. Fig. 5.54). 2... ee ee ee ee ee 127 

Motion past H{O}(cf. Fig. 5.55). 2... 2 ee ee ee ee 128 

Motion past H{0}(supercritical), i.e. motion beyond Ar; CPT; perfect panel; 

A = 39 (cf. Fig. 5.1 or Fig. 5.3). 2... 2 2. ee ee ee ee ee ee 128 

Motion past H{0}(LT = —5.0, cf. Fig. 5.58)... ............0224. 128 

Motion past H{0}(cf. Fig. 5.68). 2.2... . 2. ee ee eee ee ee 129 

Unstable motion prior to H1 (cf. Fig. 5.68)..............02.24. 129 

Motion past H1 (cf. Figs. 5.68,5.69). 2.2... 0... eee eee ee eee 129 

Motion past H2 (cf. Fig. 5.68). 2... 2... ee ee ee ee 130 

Motion prior to H3 (cf. Fig. 5.68). . 2... 6. ee ee ee ee 130 

Motion prior to H4 (cf. Fig. 5.68). 2... 0... ee ee ee ee ee ee 130 

Motion past H{0}(cf. Fig. 5.71). 2... 2... ee ee ee ee es 130 

Motion past H (edges z2 = 0,1, are movable, cf. Fig. 5.73). ......... 131 

Motion past H (edges z2 = 0,l2 are immovable, cf. Fig. 5.73)......... 131 

Motion past H (edges z2 = 0,l2 are movable, cf. Fig. 5.74). ......... 131 

Motion past H (edges z2 = 0,2 are immovable, cf. Fig. 5.74)......... 131 

Motion past H (edges z2 = 0,12 are movable, cf. Fig. 5.75). ......... 132 

Motion past H (edges z2 = 0,1, are immovable, cf. Fig. 5.75)......... 132 

Motion past H and past turning point of dynamic solution (edges zz = 0, l2 

are movable, cf. Fig. 5.76). 2... 6. 2 ee ee ee en 132 

Motion past H (edges 22 = 0,l, are immovable, cf. Fig. 5.76)......... 133 

Motion past H1 (cf. Fig. 5.77), 2... 2... ee ee ee ee ee 133 

Motion prior to H2 (cf. Fig. 5.77). 2... 2 ee ee 133 

Motion prior to H{0}(edges z2 = 0,12 are movable, cf. Fig. 5.78)....... 133 

Motion prior to H{0}(edges z2 = 0, lz are immovable, cf. Fig. 5.78). .... 134 

Motion past H1 (cf. Fig. 5.78)... 0... ee eee 134 

Motion prior to H2 (cf. Fig. 5.78). . 2... ee ee ee eee 134 

Lyapunov exponents and Kaplan-Yorke dimension (dz). ........... 135 

Xvi



Chapter 1 

INTRODUCTION 

The dynamic behavior of laminated composite structures is currently a topic of widespread 

research. This is largely due to the fact that such composites have been successfully used 

in secondary aircraft structures and hence are likely to play a significant role in the devel- 

opment of the next generation of aeronautical and aerospace structures. 

Composite material systems are preferred in design applications requiring maximum 

strength and stiffness with minimum weight. However, in contrast to their metallic coun- 

terparts, these advanced composite structures are characterized by weak rigidities in trans- 

verse shear. This necessitates the inclusion of transverse shear deformation effects when 

modelling their dynamic behavior. 

Another important aspect of the problem is the effect, on the response, of nonlinearities 

arising from the modelling of the aerodynamic loads. These aerodynamic nonlinearities are 

more pronounced at high supersonic speeds (M > 1) and are generally of the hard type, 

i.e., they having a destabilizing effect (which increases with the flow speed) as opposed to 

the geometric nonlinearities which tend to stabilize the structure. Thus the presence of 

these aerodynamic nonlinearities could, in certain cases, result in a violent transition from 

the undisturbed equilibrium state to that of finite motions, and this could occur for flow 

speeds (M) lower than the critica] (flutter) velocity (My). This phenomenon is known 

as hard flutter. It should be noted that so far only a few researchers have considered 

this refinement to the problem. However, since their effect would be more pronounced in 

the future generation of aircraft (e.g., the NASP flying at M > 15 ), these aerodynamic 

nonlinearities should be incorporated in the structural model. 

Furthermore, the application of an in-plane compressive edge load (e.g., one resulting
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from aerodynamic heating) can significantly alter the dynamic behavior of the panel, es- 

pecially when the load is greater than the Euler buckling load. This could result in a 

transition to complicated motions, both periodic and non-periodic, for small variations of 

the control parameters (i.e., compressive load and flow speed). Moreover, multiple buckled 

and dynamic states of the structure are possible for certain combinations of the control 

parameters. A similar effect may result due to the edges being restrained from in-plane 

movement. Therefore, to correctly predict the complicated dynamics, and hence the fatigue 

life of the panel, any applied in-plane edge loads and existing edge restraints should be 

included in the structural model. 

The presence of the unavoidable initial geometric imperfections (e.g., manufacturing 

defects) suggests that they also be incorporated in the analysis. These imperfections, along 

with the aerodynamic nonlinearities, have a pronounced effect (both qualitative and quan- 

titative) on the stability and response characteristics of the structure. 

In the present study, the nonlinear dynamical behavior of a flat composite panel sub- 

jected to a high supersonic gas flow of arbitrary orientation is analyzed. For flow speeds in 

excess of the critical (flutter) velocity predicted by the linear theory, membrane forces are 

induced. These forces tend to limit the amplitude of oscillation, and thus the flutter speed 

can be exceeded without immediate failure of the plate. Thus the need for a nonlinear 

analysis arises. The analysis considered herein includes the effects of aerodynamic and ge- 

ometric nonlinearities, transverse shear flexibility, in-plane edge loads and edge restraints, 

and small initial geometric imperfections. 

The literature review in Chapter II serves as a background for the present study. From 

this, we see that even though the nonlinear panel flutter problem has been widely researched, 

very few studies incorporate aerodynamic nonlinearities and in-plane edge restraint condi- 

tions in their structural model. Notable among these are the works of Bolotin (e.g., [1]), 

which contains the first published results regarding the hard flutter phenomenon for flat pan- 

els. As for the presence of initial imperfections and transverse shear deformations, presently 

there are no publications available that include these in the structural model when analyz-
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ing the post-flutter behavior. Furthermore, a few recent analyses of the flutter of buckled 

panels (having infinite span length) reveal limited results concerning the complicated dy- 

namics and onset of non-periodic motions. Moreover, it appears that these results have 

been arrived at by straightforward numerical integration methods without much emphasis 

on a systematic investigation of the bifurcation behavior. Finally, an overview of relevant 

concepts from nonlinear dynamics is also presented in the latter part of this chapter. 

Chapter III presents the formulation of the panel flutter problem. Here, the governing 

equations are derived on the basis of a higher-order shear deformation theory. This also 

accounts for the transverse normal stress and satisfies the in-plane traction-free conditions 

on both faces of the panel. The case of a simply supported, symmetrically laminated 

panel composed of transversely isotropic layers is considered. The equations describing the 

evolution of the transverse displacement coordinate u3, which appear in their uncoupled 

form, are considered along with the Galerkin method, and the panel flutter equations are 

obtained. 

In Chapter IV the time-dependent modal amplitudes are represented in terms of their 

static and dynamic components, and the associated equations describing the static buckled 

state and motions about it are derived. The static solution is obtained using the Arclength 

Continuation Method which is described in Chapter IV. Periodic solutions are obtained 

by using a numerical integration technique—called the Shooting Method—which consists 

of an augmented initial value problem (the predictor) and a Newton-Raphson iteration 

procedure (the corrector). Floquet theory is then used to obtain the stability of these 

periodic solutions, and hence bifurcations to new solutions (periodic and non-periodic) can 

be predicted. A straightforward numerical integration of the original initial value problem 

is considered when non-periodic motions are sought. A number of tools, such as Poincaré 

sections and Lyapunov exponents, are used to characterize the various types of motion. 

Periodic solutions for the perfect panel are also obtained by a perturbation method, i.e., the 

Method of Multiple Scales, and results are compared with those obtained by the Shooting 

Method whenever possible (see Chapter V). However, this method has inherent limitations
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which are discussed within this chapter. 

Chapter V presents results and discussions concerning the stability boundaries and the 

effects of aerodynamic nonlinearities and in-plane edge loads and edge restraints on the 

post-flutter behavior of perfect and imperfect panels. Comparison of results obtained using 

the higher-order shear deformation theory and the classical plate theory is also presented, 

whenever possible. Finally, conclusions and recommendations for future research are pre- 

sented in Chapter VI.



Chapter 2 

LITERATURE REVIEW 

2.1 Panel Flutter 

It is well known that a steady wind blowing over a flexible elastic structure can induce 

and maintain large-amplitude oscillations. This phenomenon is easily observed as flutter 

of flags, galloping of ice-coated power cables, and flutter of aircraft wings. The destruc- 

tion of the Tacoma Narrows suspension bridge was caused by flutter oscillations of the 

superstructure. 

Most of the voluminous theoretical literature on this problem is focussed on the study 

of these flutter ( limit cycle) oscillations that could eventually lead to structural failure. 

However, a few publications on the complicated dynamics associated with this phenomenon 

occurring for the broader class of self-excited systems are also available. Among the first 

studies concerning the flutter of panels were those of Bolotin et al. [1] , Bolotin [2] and 

Makarov [3]. In [1], a simply supported isotropic panel with a steady supersonic flow 

past its upper surface was analyzed. Quadratic nonlinearities arising from unsymmetric 

aerodynamic forces (i.e., for flow past one surface only) are neglected since the authors 

consider that in a self-excited system such as this, the primary effect of nonlinearities 

manifests itself through cubic terms. The ordinary differential equations (ODE’s) describing 

modal amplitudes are solved by the Harmonic Balance Method (HBM) considering single- 

mode flutter. Results are obtained for a two-dimensional panel of infinite span. They 

indicate that for immovable edges (i.e., in-plane motion restrained ) parallel to the span 

direction, soft flutter oscillations occur for M > Mr (M = Mach number, Mr = Mach 

number at flutter) as compared to hard flutter when those edges are movable. However,
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since only a two-mode approximation was used during spatial discretization, the amplitudes 

of hard flutter oscillation could not be obtained. 

In [2] Bolotin included the effect of a temperature field which remains uniform through 

the thickness of the panel. Equations governing small but finite oscillations about the 

thermally buckled static state are derived. Numerical results for the amplitude of flutter 

are obtained via a perturbation solution ( similar to the Linstedt-Poincaré Method) for 

the non-thermal problem. However, due to an inconsistency in the ordering of the modal 

amplitudes, the effect of quadratic aerodynamic nonlinearities is completely lost ( even 

quantitatively ) while cubic nonlinearities appear in the first order perturbation equations. 

The variation of My with the plate aspect ratio is presented and the qualitative nature 

of this flutter boundary ( i.e., whether dangerous or benign ) is also discussed. Makarov 

[3] extended the analysis of [2] to include boundary conditions where all four edges are 

fixed and where two opposite edges are fixed and the other two are simply supported. 

He concluded that a higher limit cycle amplitude exists for the latter case of boundary 

conditions. Similarly, the case of movable edges yielded higher amplitudes of oscillation 

when compared to that of immovable edges. 

The role played by aerodynamic nonlinearities is described by Bolotin [4]. In this mono- 

graph he states that their effect is in general destabilizing and it becomes more pronounced 

as the flow speed increases. Thus in certain cases when Mf is high enough their effect may 

be such that undamped oscillations ( i.e., divergent modes of static equilibrium ) may exist 

for M < Mr. In such cases Mr as determined by the linear theory is only an upper bound 

for the actual critical flow speed. This results in hard ( dangerous ) flutter when Mpf is 

exceeded. It corresponds to a sub-critical Hopf bifurcation of the modal-amplitude solution 

( i.e., a reversed pitchfork bifurcation of the limit-cycle amplitude solution ). In a related 

work, Librescu [5,6] determined the nature of the flutter boundary (described in the Mr 

versus aspect-ratio plane). The analysis was carried out by using a method due to Bautin 

(see Bautin [7], Malkin [8] ) based on Lyapunov’s Direct Method. The results obtained 

agree well with those of [2,4], while providing a better insight into the specific problem
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of determining the nature of flutter . In both [5,6] an orthotropic, laminated composite 

panel was considered, and in [6] the effects of initial curvature, physical nonlinearities, and 

different boundary conditions were also included. These results were also incorporated in 

Librescu’s monograph [9]. 

Ventres and Dowell [11] analyzed the effects of in-plane edge restraints on the flutter 

behavior of plates exposed to transverse pressure loadings or buckled by uniform thermal 

expansion. It was shown that the stability boundaries of low aspect ratio plates without 

edge-restraints are more sensitive to pressure loads than are those when complete edge 

restraints are considered. Furthermore, for panels with aspect ratio less than unity, the 

boundary support flexibility decreases the stabilizing effect of the pressure load (i.e., lowers 

the critical speed). The opposite behavior is exhibited by panels with aspect ratio larger 

than unity. For unloaded plates it was concluded that the ratio of limit cycle amplitudes 

for plates with and without in-plane edge restraint decreases as the aspect ratio increases, 

this ratio always being greater than unity (see Bolotin [1]). Numerical results were also 

presented for the existence of sustained flutter motions below the linear stability boundary 

for a clamped, thermally buckled, pressure loaded plate. 

The effect of aerodynamic damping on the flutter of thin panels was analyzed by Voss 

and Dowell [10]. They point out that when the panel is exposed to a flow at an arbitrary 

angle, a certain range of values of the flow angle exists which yields flutter involving modes of 

nearly identical frequency but weak aerodynamic coupling. This results in the aerodynamic 

damping having a pronounced effect on the stability boundary. 

The problem of a panel subjected to air flow and constant in-plane edge loads has been 

studied by various authors. Fralich [12] presented a supersonic flutter analysis for a simply 

supported, rectangular panel subjected either to specified in-plane compressive edge loads 

or to specified total in-plane end shortenings and a uniform temperature field. Linear, static 

aerodynamic strip theory was used and linearized equations governing small motions about 

the static (buckled) equilibrium state were obtained . Hence the analysis, which yields a 

complete picture of the flutter and buckling boundaries, cannot be used to study the flutter
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oscillations. 

Analytical studies of the flutter of buckled, simply-supported panels were presented by 

Kobayashi [13]. It was shown that the relationship between streamwise and spanwise stress 

components has a significant influence on the flutter boundary of square panels. For most 

cases considered, the addition of spanwise tension to a bi-axial, equal, uniform compression 

(due to aerodynamic heating alone) lowers the critical speed. In the case of bi-axial, equal, 

uniform compression alone, the boundary above which no buckled equilibrium exists is not 

represented by a constant flow speed (i.e., independent of the streamwise compression), but 

instead rises along with the streamwise compression. This result is different when com- 

pared to that for the two-dimensional panel. Thus a given region of dynamic instability of 

the linearized system (i.e., flutter oscillations) occurs only between two values of streamwise 

compression, i.e., two values of temperature. This means that as the aerodynamic heating is 

increased the flutter motion would start and then cease. Kobayashi [14] obtained simplified 

approximations of the amplitude and frequency of steady flutter motion for thermally com- 

pressed two-dimensional panels, under the assumption of small damping. It was observed 

that for small flow speeds and moderate streamwise compression, a buckled equilibrium 

co-existed with flutter motion around the flat state (see Holmes[49]). This indicates that 

the buckled equilibrium may not be stable in the large. Periodic motion about the buckled 

configuration was not obtained for any combination of the loading parameters. For moder- 

ate flow speed and compressive load the motion was non-simple harmonic (see also Dowell 

[45,22] and Shiau and Lu [48] ). For large compressive loads, the buckled equilibrium (for 

small flow speeds) is stable in the large, whereas the periodic vibrations (for moderate to 

large flow speeds) are of the breathing type . In a subsequent paper, Kobayashi [15] consid- 

ered a clamped panel with initial geometric imperfections and a static pressure differential. 

It was shown that the initial geometric imperfections do not always raise the flutter bound- 

ary. In particular, the case of imperfections in the second mode yielded a new type of flutter 

boundary, defining a region of dynamic instability (of all obtained equilibria) enclosed by the 

region of buckled states. This new flutter boundary occurs well below the more traditional
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flutter boundary that separates static configurations from periodic motions. The existence 

of this region was further clarified through experiments in which steady periodic motions 

of small amplitude were measured at comparatively small flow speeds. The amplitudes and 

frequencies of flutter were obtained by the HBM. 

Kobayashi [16] studied the bending-torsion flutter of wings subjected to thermal stresses 

at high supersonic speeds. Linear piston theory aerodynamics, including the effect of an 

angle of attack, was considered along with a linear bending mode and a nonlinear torsional 

mode. The HBM was used to obtain periodic solutions around the flat and deformed 

(buckled) equilibria. The angle of attack, the effect of which is similar to a constant pressure 

load, was shown to have a significant influence on the stability boundaries. 

Voss [17] considered the flutter of thin cylindrical shells using Goldenveizer’s equations. 

It was determined that the tangential inertia forces are important particularly when con- 

sidering small values of circumferential and axial mode numbers — i.e., in membrane-type 

flutter. 

Evensen and Olson [18, 19] considered the flutter of a circular cylindrical shell subjected 

to a constant, axial, in-plane edge load which is lower than the static buckling load. Two 

types of limit cycle solutions are obtained by the HBM: (a) two-mode standing-wave flutter 

and (b) four-mode circumferentially travelling-wave flutter. For the type (b) solution the 

analysis indicates that flutter oscillations can occur for M < Mp. This implies that a 

nonlinear structural shell model with linear aerodynamic loading could exhibit the same 

softening behavior as is produced by nonlinear aerodynamic loading for flat panels (e.g., 

also Bolotin[4]). Moreover, the type (a) solution was found to be very sensitive to small 

amounts of structural damping. In an earlier work, a pressure differential was also included 

by Olson and Fung [20]. They used Donnell’s equations and obtained a two-mode standing- 

wave solution for the flutter oscillations by the Krylov-Bogoliubov method. The results 

indicate that for practical purposes flutter in a standing-wave mode does not occur below the 

critical speed. Regarding the influence of the internal pressure differential on the stability 

boundary, it was noted that among the various aerodynamic theories considered, piston
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theory yielded results that were closest to experimental observations. 

Gordon and Atluri [21] reconsidered the problem presented in [19], performing the analy- 

sis using the Method of Multiple Scales (MMS). However, their assumed spatial mode shapes 

only satisfy, exactly, the simply-supported boundary conditions on the normal displacement, 

while the continuity ( periodicity ) condition on the circumferential displacement is fulfilled 

in an integral-average sense. This yielded discrepancies in their results when compared with 

those of Evensen and Olson [19]. An interesting conclusion from their MMS analysis is that 

the quadratic nonlinearities only have a secondary effect on the limit cycle amplitudes, and 

they decrease the hardening effect of the cubic nonlinearities. 

Dowell [22] considered the problem of two and three-dimensional plates undergoing limit 

cycle oscillations. The effects of constant in-plane edge loads and a static pressure differ- 

ential are also included in this analysis. Limit cycle amplitudes are determined using the 

NIM for a prescribed edge load ( considered greater than the classical Euler buckling load ). 

The results indicate a buckling branch for lower M and a flutter branch for higher M. 

Non-simple harmonic (but periodic) and symmetry broken solutions were also obtained. 

The stability boundaries obtained are in close agreement with [12] and they also include an 

additional region where non-simple harmonic oscillations exist. For a prescribed M (> Mr) 

and in-plane edge load, the variation of the dynamic component of the limit cycle amplitude 

with static presure differential is also presented. Convergence studies indicate that 4 to 6 

chordwise modes are required for quantitative accuracy of the results. The analysis in [22] 

considered linear, quasi-steady aerodynamics since it assumed that: (1) Mr would be of the 

order of one, and (2) the plate amplitudes are limited to a few plate thicknesses. However, 

when either of the conditions (1) or (2) is invalid, the effect of aerodynamic nonlinearities 

becomes important and should be included in the analysis. Furthermore, if the flutter oc- 

curs in the transonic-low supersonic ( M < 1.5 ) regime, then quasi-steady aerodynamic 

theory cannot be considered and one must re-consider the problem using the full linearized 

(inviscid, potential flow) theory which retains the effects of memory and three-dimensionality 

of the flow. This was done by Dowell [23]. Further details on the applicability of different 

10
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aerodynamic theories can be found in Librescu [9] and Dowell [24,25] . In both [24,25], 

results concerning the regimes of flutter ( i.e., single-mode flutter, coupled-mode flutter, 

travelling-wave flutter, and divergence or low-frequency flutter) are presented in the M 

versus ¢ (plate aspect ratio) plane. 

Dowell [26] considered the shallow shell equations (von Karman) to study the flutter of a 

two-dimensional plate with streamwise curvature. It was shown that the static aerodynamic 

loading due to streamwise curvature has a detrimental effect both in lowering the speed at 

which flutter begins and in increasing the amplitude of the ensuing motion. The flutter 

amplitudes obtained were of the order of the rise height of the plate. It was also demon- 

strated that the static aerodynamic loading and aerodynamic damping must be considered 

in order to avoid obtaining the unrealistic result of zero critical speed for certain values of 

streamwise curvature. An important observation made here was that for large curvatures, 

i.e., when the product of Mach number and rise-height /length exceeds 0.1, nonlinear aero- 

dynamic effects would become important. In a subsequent paper, Dowell [27] analyzed a 

three-dimensional curved panel where it was concluded that three-dimensional plates with 

streamwise curvature are more significantly affected by pre-flutter static deformations than 

two-dimensional ones. Furthermore, the degree of in-plane edge restraints has a pronounced 

effect on the stability boundaries and subsequent flutter oscillations of three-dimensional 

curved plates with spanwise curvature. 

Eastep [28] presented a variational analysis for the problem of a panel under the influence 

of both random excitation ( turbulent boundary layer ) and aerodynamic loading. Linear 

piston theory aerodynamics was considered and the spatial discretization was done using 

a Rayleigh-Ritz modal approximation. Random excitation in the form of a pressure with 

known spatial and temporal correlations was introduced. The forced response was calculated 

by using Fourier-transform techniques and the method of equivalent linearization for flow 

speeds below and above the flutter speed. The supercritical response was obtained from 

a numerical integration of the derived coupled homogeneous Mathieu equations. When 

the effect of the random load is neglected and applied in-plane edge loads are considered, 

11
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the results obtained by the HBM are similar to those of [12] and [22] . An interesting 

conclusion obtained in [12] but emphasized by Eastep [28] is that for a buckled (initially 

flat ) panel, flutter occurs at a critical speed for which the only static equilibrium state is the 

dynamically unstable flat panel. Thus aerodynamic forces cause a sudden flattening of the 

panel, which for any increase of M represents the static configuration about which flutter 

motion will occur. In a related study, Eastep and McIntosh [29] analyzed a simply supported 

two-dimensional panel with aerodynamic loads obtained from the nonlinear second order 

piston theory. This included a nonlinear aerodynamic damping effect. The limit cycle 

amplitudes obtained by the NIM indicate a symmetry broken solution due to the presence 

of quadratic nonlinearities. The effect of aerodynamic nonlinearity on the stability boundary 

was investigated and the ‘nonlinear stability boundary’ was obtained. This represents the 

lowest flow speed (< My) for which limit cycle oscillations are possible for a prescribed edge 

load. The method used in [29], first suggested by Dimantha and Roorda [30], is based on 

calculating an upper bound on the total energy of the system such that any initial conditions 

producing a greater energy would yield an unstable motion. McIntosh [31] investigated the 

effects of hypersonic nonlinear (second-order) aerodynamic loading on panel flutter. By 

introducing a single interaction parameter which represents the importance of the nonlinear 

aerodynamic terms in comparison with the geometric nonlinearities, it is concluded that the 

presence of in-plane edge restraints could result in amplitude-sensitive instability similar to 

that caused by aerodynamic nonlinearities (see also Eastep and McIntosh([29]). 

Friedmann and Hanin [32] studied the flutter of a simply supported, orthotropic panel 

subjected to a coplanar air flow of arbitrary orientation using a quasi-steady, linear aerody- 

namic theory. However, when performing the spatial discretization by the Galerkin method, 

only two chordwise modes were considered. The amplitude of flutter oscillations was deter- 

mined by the NIM and results concerning the effects of the flow orientation and aerodynamic 

damping on Mr were presented. Dzygadlo [33] considered the harmonically forced vibra- 

tion of a two-dimensional panel subjected to air flow. The primary forcing-flutter resonance 

was examined and the aerodynamic forces were considered on the basis of a second order 

12
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potential theory for supersonic flow. Limit cycle amplitudes were obtained by using the 

Method of Averaging. The detailed analysis was done after neglecting quadratic and inte- 

gral terms ( i.e., reduction to linear piston theory aerodynamics ). Therefore the results 

are not affected by this seemingly incorrect application of the Method of Averaging which 

cannot handle quadratic nonlinearities. Frequency response curves near primary resonance 

were obtained and it was concluded that for M > Mr, the forcing-flutter interaction was 

the cause of the new bubble-shaped solutions. The presence of material damping resulted 

in a softening-type behavior for a system with hardening elastic characteristics. 

Morino [34] considered the flutter of a curved panel using linear quasi-steady aerody- 

namics and used the MMS to obtain the flutter amplitude. In that paper it was concluded 

that if exceptional cases ( e.g., autoparametric resonance ) are disregarded, quadratic non- 

linearities do not have a qualitative effect on the solution. A similar conclusion was obtained 

by Smith and Morino [35], where the state equations are solved by the MMS and general 

conclusions regarding the conditions for dangerous and benign flutter in autonomous sys- 

tems are re-derived. Steady-state solutions obtained by the MMS are shown to compare 

well with solutions obtained by the HBM. It is also shown that MMS can handle the case 

of zero frequency at Mr ( i.e., a non-oscillating system ). 

Kuo et al. [36] studied the problem of nonlinear panel flutter with quasi-steady, linear 

aerodynamics using the MMS, HBM and NIM. Results obtained by these three methods 

compared well with each other for both simply supported two-dimensional and clamped 

three-dimensional plates. The stability analysis of limit cycle solutions was done by consid- 

ering slowly varying disturbances only. It was also concluded that aerodynamic damping 

stabilizes the panel by reducing the amplitude of flutter, while in-plane compressive loads 

and viscous and hysteretic structural damping destabilize the panel by increasing the am- 

plitude of flutter, thus making it more dangerous. Morino and Kuo [37] extended the MMS 

analysis of [36] to study the problem considered by Evensen and Olson [19] which contains 

fifth-order geometric nonlinearities. This refined analysis revealed an unstable, bent-back, 

high-branch curve of limit cycle amplitude versus M, thus indicating that fifth-order ge- 

13
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ometric nonlinearities have a destabilizing effect. The analysis in [37] also includes the 

problem of flutter-buckling interaction. The case of zero flutter frequency ( which occurs at 

the intersection of the flutter and buckling stability boundaries ) was studied. Furthermore, 

the problem of small damping coefficients was also analyzed by the MMS. Kuo et al. [38] 

considered the forcing-flutter interaction for two-dimensional panels using the HBM. It was 

found that the flutter speed is higher if forcing excitation is present. Thus pure forced 

response may exist well above the pure flutter stability boundary, i.e., Mr. Beyond the 

flutter stability boundary, coexistence of pure forced response and forcing-flutter interac- 

tion response was observed. Eslami and Ibrahim [39] reconsidered the problem presented 

in [36] for the case of orthotropic panels and used the HBM for their analysis. Conclusions 

similar to those in [36] were realized. 

Sipcic and Morino [40] presented a Lagrangian Mechanics formulation for the aeroelas- 

tic analysis of a maneuvering aircraft, by modelling it as a fluttering two-dimensional plate 

undergoing a pull-up maneuver. Linear quasi-steady aerodynamics and geometric nonlin- 

earities, as well as coupling between rigid body rotation and the elastic degrees of freedom, 

were included in the formulation, and the solutions were obtained by the NIM. The effects of 

a maneuver load factor, in-plane compressive load, and static pressure differential were stud- 

ied. A new type of limit cycle representing snap-through buckling and oscillations around 

four equilibrium states was obtained. It was shown that chaotic motions could occur during 

a maneuver for system parameters in the actual flight range. The presence of a maneuver 

load factor could transform the response from the fixed point to a periodic or even a chaotic 

state, and vice versa. The case of a time-dependent maneuver (i.e., angular velocity is not 

constant ) was also analyzed. Further studies on this problem were done by Sipcic [41]. 

By increasing the maneuver load factor, chaotic motions were observed via the well known 

routes of Intermittency, Torus-Bifurcation (Ruelle-Takens scenario), and Period-Doubling. 

An uncommon route to chaos was also observed. This involves a sequence of period dou- 

bling, followed by a sequence of period demultiplying bifurcations, and culminating in a 

sudden transition (‘jump’) to a chaotic state. 

14
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Yuen and Lau [42] analyzed the effects of in-plane compressive loads on the limit cycle 

motion of a fluttering plate by considering linear quasi-steady aerodynamics. They used 

the Incremental Harmonic Balance Method to obtain the amplitudes of flutter oscillations. 

The amplitude versus M curves indicated various loops, which was the main discovery of 

the study. This indicates that a multitude of stable and unstable limit cycles coexist at a 

particular M. Aperiodic and chaotic motions were also observed using the NIM. 

Weiliang and Dowell [43] were the first to study the oscillations of a fluttering can- 

tilevered plate. They considered linear, quasi-steady aerodynamics and used the Rayleigh- 

Ritz method for spatial discretization. Convergence studies indicated that the chord-to- 

length ratio has a great effect on the flutter amplitude obtained by the NIM. As this ratio 

increases, the number of chordwise modes required to accurately predict the flutter ampli- 

tude increases. 

Dowell [44] reconsidered the problem of flutter of a buckled plate [22]. He observed 

certain regions in the parameter space of M versus in-plane compressive load where chaotic 

motions occur. By increasing the static pressure differential, chaotic motion is suppressed, 

then re-appears, and finally the limit-cycle degenerates to a point and all motions cease. 

An intuitive explanation suggests that the interaction of the two parameters ( i.e., M and 

in-plane compressive load ) which govern the two instabilities, flutter ( Hopf bifurcation ) 

and buckling ( static bifurcation ), causes chaotic motions. Limit cycle plots, Poincaré 

maps, and power spectra were obtained to verify the type of motion. In a subsequent work, 

by increasing the in-plane compressive load for a fixed flow speed, Dowell [45] observed the 

following route to chaos: the static solution undergoes a Hopf bifurcation and a periodic 

solution is born; this then undergoes a period-doubling bifurcation yielding a period-2 

solution; then it undergoes a secondary Hopf bifurcation creating a quasi-periodic solution 

composed of incommensurable frequencies ( bifurcation to a T? torus, see Seydel [46] ); 

the frequencies become commensurable once again ( frequency locking ) and the period-2 

solution is recovered; another period doubling occurs and a period-4 solution exists; and 

chaotic motions alternate with periodic motions which finally prevail. While comparing 
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this phenomenon of chaos to the one occurring in the Lorenz model, Dowell conjectures 

that chaos appears to be the result of all equilibria ( static and dynamic ) being unstable 

to infinitesimal perturbations; nevertheless, the global solutions are still bounded. What 

remains to be done, however, is to determine whether chaos appears directly after this 

type of local instability. Among the many scenarios of chaos discussed in Seydel [46] and 

Thompson and Stewart [47], the one observed by Dowell [45] appears to be a combination 

of the Torus-Breakdown and Period-Doubling routes. 

Shiau and Lu [48] studied the effects of aerodynamic damping, anisotropic properties 

(i.e., fiber orientation and elastic modulus ratio), static pressure differential, and in-plane 

compressive load on the flutter amplitudes of a two-dimensional, simply supported, compos- 

ite laminated plate. The effect of these parameters on modal convergence characteristics and 

spatial location of the maximum limit cycle amplitude were obtained by direct numerical 

integration. Periodic motions were obtained for moderate to high flow speeds and moderate 

in-plane edge loads. It was revealed that chaotic motions could occur for moderate flow 

speeds and high in-plane edge loads (see also Dowell [44]) 

Holmes [49] studied the behavior of a two-dimensional fluid-loaded panel subjected to 

compressive loads. The model considered nonlinear structural damping, and the Galerkin 

method was used for spatial discretization. The modal equations thus obtained were an- 

alyzed qualitatively, by way of a center manifold reduction, to obtain the local behavior 

about the Bogdanov-Takens bifurcation point (i.e., double zero eigenvalues where the flut- 

ter and divergence boundaries intersect). The most interesting result here is the existence 

of two contiguous regions, in the control parameter space, in which the panel can either 

remain buckled or flutter about its flat configuration. Furthermore, two contiguous regions 

where non-sinusoidal oscillations exist (Dowell[22]) have been clearly demarcated and it 

is shown that the transition from a buckled state to these regions, or vice-versa, occurs 

through a sudden jump. This is in contrast to the smooth onset of flutter when crossing the 

flutter boundary. In a subsequent paper, Holmes and Marsden [50] considered the infinite 

dimensional analysis of this problem by applying the center manifold reduction technique 
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directly to the governing partial differential equations. Holmes [51] reconsidered this prob- 

lem by studying two cases in which divergence and flutter are coupled. For the first case, 

which involves the Bogdanov-Takens bifurcation (Holmes [49]), application of the center 

manifold theorem shows that the coupling is qualitatively captured locally by reduction 

to a two-dimensional essential model i.e., a single-degree-of-freedom nonlinear oscillator. 

The Method of Normal Forms was then employed to simplify the nonlinear terms. The 

second case involves a Simple and Hopf bifurcation (i.e., one zero and two purely imagi- 

nary eigenvalues). For this case, the same techniques show that the essential model is now 

three-dimensional, and quasi-periodic as well as chaotic motions can occur. 

Dowell and Virgin [52] reconsidered the flutter of a buckled, two-dimensional panel by 

investigating the region in control parameter space where chaotic motions occur. As this 

region is entered, a loss of temporal correlation occurs, i.e., temporal chaos. When the 

region is penetrated deeper, by increasing the compressive edge load, more higher modes 

become increasingly prominent, resulting in a loss of spatial correlation also. Thus it was 

proposed that for systems with temporally chaotic but spatially deterministic modes, low- 

dimensional ones exhibit temporal chaos only, whereas higher dimensional ones exhibit 

spatial and temporal chaos (i.e., turbulence or displacement localization). 

Zhao and Yang [53] analyzed the chaotic motions of a linearly viscous-damped, two- 

dimensional airfoil with cubic pitching stiffness in an incompressible flow. The boundaries 

demarcating buckling and different types of flutter motion (i.e., simple harmonic, general 

periodic, and chaotic) were obtained in the parameter space of flow speed versus elastic- 

axis /focus-distance ratio. It was observed that chaotic motions occur in a narrow parameter 

range, through a sequence of period-doubling bifurcations, and only when the flow speed 

is higher than the linear divergence speed. It was also concluded that a buckled panel in a 

supersonic flow is more susceptible to chaos than an airfoil in an incompressible flow. 

Mei and Dixon [54] developed a finite element formulation to study the large-amplitude 

flutter of arbitrarily laminated, anisotropic composite, thin plates. The equations of mo- 

tion were solved by linearizing the nonlinear stiffness matrix. They considered cross-ply 
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laminates with various number of layers as well as three layered angle-ply laminates with 

varying ply angles. The effects of simply supported and clamped boundary conditions were 

also examined. Gray et al. [55] considered the finite element approach to determine the 

nonlinear panel flutter characteristics of two-dimensional panels using third-order piston 

theory aerodynamics (which included second-order aerodynamic damping terms as well). 

Comparison between the first-, second-, and third-order piston theory revealed that the 

quadratic, gradient term has the most significant influence. Results also showed that the 

third-order piston theory aerodynamics produces a destabilizing effect. Dixon and Mei [56] 

studied large-amplitude panel flutter of arbitrarily laminated composite plates subjected 

to a uniform temperature change, by using the finite element method. The temperature 

effects were modelled by applying the quasi-static thermal-stress theory. The equations 

were solved by employing a Newton Raphson procedure for the static component and a 

Linearized Updated Mode with Nonlinear Time Function approximation for the dynamic 

component of transverse displacement. Immovable in-plane boundary conditions were con- 

sidered, and it was observed that the limit cycle amplitudes are higher in the presence of 

the thermal loads. 

Tezak et al. [57] considered the response of a nonlinear multi-degree-of-freedom system 

having a repeated natural frequency and subjected to a parametric excitation. The study 

was applied to a panel flutter problem in which frequency-coalescence flutter occurs due 

to aeroelastic coupling when the damping is assumed small. Here the Jordan form of the 

linearized system is non-diagonalizable (i.e, non-semisimple 1:1 resonance). The modal 

equations were solved using the MMS with special attention to the ordering of the various 

terms. The main feature of the analysis is that the modal amplitudes are ordered differently 

since it is expected that one of them (i.e., the one which is linearly coupled) is of a higher 

magnitude than the remaining ones. Different cases of auto-parametric (e.g., 3:1) and 

parametric (e.g., 1:1) resonance are studied (see Tezak [58]). However, a detailed study of 

this work reveals that the ordering scheme imposes certain restrictions on the magnitudes 

of coefficients associated with nonlinear terms, and it appears that the physical applications 
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of this method would be limited (e.g., restricted to moderately thick plates with thickness 

ratios between 50 and 100). 

Fu and Nemat-Nasser [59] were the first to analyze the response of a lightly-damped, 

parametrically-excited nonlinear dynamical system for the special case when the correspond- 

ing autonomous linearization has a non-diagonalizable Jordan form. Two cases of paramet- 

ric resonance were considered and the method of Krylov, Bogoliubov, and Mitropolsky was 

used to show that certain steady-state solutions exist, whose description involves fractional 

powers of the small (perturbation) parameter. 

Recently, Namachchivaya and Malhotra [60] studied the effect of periodic parametric 

excitations on a four-dimensional system exhibiting a Hopf bifurcation with 1:1 internal 

resonance along with subharmonic parametric resonance. The linear operator was assumed 

to have a generic non-semisimple structure. They investigated the stability and local bi- 

furcational behavior of the trivial and nontrivial equilibrium solutions obtained from the 

reduced normal form equations (these equilibria correspond to periodic solutions of the orig- 

inal normal form system). Various bifurcations were located, i.e., Simple (divergence), Hopf, 

Bogdanov-Takens (Simple+Hopf), Double Hopf, Simple and Hopf, and Bogdanov-Takens 

and Hopf. Their numerical results indicate a sequence of period-doubling bifurcations lead- 

ing to chaotic behavior. 

2.2 Nonlinear Dynamics 

2.2.1 Dimension of attractors 

It is well known that for dissipative systems an infinitesimally small volume of initial 

conditions gets mapped onto an even smaller volume as time progresses (e.g., Eckmann [61], 

Moon[62]). Moreover, if for a given initial condition the long-time evolution of the phase 

trajectory confines itself to a bounded set of points, the motion is said to have converged 

to an attractor. Hence, we may define an attractor as a closed set, A, having an open 

neighborhood such that almost every trajectory starting in this neighborhood ends up in 
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A and passes arbitrarily close to every point in A. Other more formal definitions of an 

attractor and its properties may be found in Eckmann [61] and Seydel [46]. A chaotic 

attractor experiences contraction in some directions and expansion in at least one direction. 

Since the attractor, by definition, is bounded, this results in a stretching and folding of the 

attractor, as time unfolds, into a sheet-like, unfamiliar, complex structure called a strange 

attractor. 

Farmer et al. [63] review various definitions of the dimension of an attractor (i.e., ca- 

pacity, Hausdorff, information, pointwise, correlation, and Lyapunov) and discuss various 

aspects regarding their numerical computation (see also Parker and Chua [64]). These defi- 

nitions fall into two categories, i.e., those that depend on metric properties of the attractor 

and those that depend on the frequency with which a trajectory visits different regions 

of the attractor. Generally, all dimensions obtained using the former definition take on 

the same value called the fractal dimension, and those based on the latter definition take 

on a common value termed the dimension of natural measure. The Lyapunov dimension, 

defined in terms of dynamical properties, does not fall into either of these two categories. 

Its definition, due to a conjecture presented by Kaplan and Yorke [65], uses the Lyapunov 

exponents and is the one considered in this thesis. Starting with the definition of the ca- 

pacity dimension, Farmer et al. [63] provide a heuristic plausibility argument supporting 

the Kaplan- Yorke conjecture (see also Parker and Chua [64]). The Lyapunov dimension is 

generally the most feasible to compute, whereas the numerical algorithms for the remain- 

ing ones, although more straightforward, are impractical for all except low-dimensional 

attractors. Grassberger and Procaccia [66] conducted an extensive study of the correlation 

dimension. They proposed an efficient algorithm for its computation from experimental 

data obtained as a time series of a single variable. This is based on the embedding pro- 

cedure for phase space reconstruction (Packard et al. [67|). They also pointed out the 

relationship between the capacity, correlation, and information dimensions. 

Froehling et al. [68] gave a physical interpretation of the fractal dimension of a chaotic 

attractor, i.e., it measures how ‘closely packed’ the sheets of the attractor are. However, it 
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should be noted that this topic is as yet an active research area and relationships between, 

and physical meaning of, the different definitions of dimension are as yet unclear. Moreover, 

it has been shown that in addition to the dimensions discussed here, there exists a countably 

infinite set of dimensions called the Renyi dimensions (Parker and Chua [64)). 

One of the main uses of dimensions is to quantify the complexity of an attractor, i.e., 

to measure its strangeness. The dimension of an attractor also provides a lower bound on 

the number of state variables needed to accurately describe the dynamics of an attractor. 

Hence, when obtained using experimental data, the dimension can serve as an estimate 

of the minimum number of degrees of freedom required to correctly model the physical 

phenomenon. Strange attractors usually have a fractal dimension, whereas non-strange 

attractors always have an integer dimension. However, merely calculating the dimension of 

an attractor is not sufficient to classify it as chaotic. Other tools, e.g., Lyapunov exponents, 

Poincaré sections, and frequency spectra, must also be considered. 

2.2.2 Lyapunov exponents 

Goldhirsch et al. [69] demonstrated that, under certain assumptions, the real parts of 

the stability exponents (i.e., eigenvalues of the stability matrix appearing in the variational 

equation) equal the corresponding Lyapunov exponents plus an error that decreases with 

increasing simulation time. This observation yields a method of extrapolation which has 

been used to obtain Lyapunov exponents from finite amounts of data. The above conclusion 

was verified in their numerical applications wherein it was also noted that the Lyapunov 

dimension (Kaplan- Yorke) converges much faster than the individual exponents. This tech- 

nique (see also Berge et al. [70]) was employed by Aboudi et al. [71] to study the dynamic 

stability of homogenous, viscoelastic plates subjected to periodic in-plane loads. There the 

stability was determined by calculating the largest Lyapunov exponent. 

Wolf et al. [72] presented two methods and accompanying Fortran codes for determining 

the Lyapunov spectrum. The first one, used in this thesis, is based on the technique 

developed independently by Shimada and Nagashima [73] and Benettin et al. [74] which 
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uses the phase-space plus tangent-space approach. Here a primary trajectory is defined 

by integrating the nonlinear equations of motion for some initial condition. Neighboring 

trajectories evolving from points on the surface of an infinitesimal hypersphere surrounding 

the initial condition are defined by the action of the variational equations. The points on 

the hypersphere (i.e., initial conditions for the variational system) are chosen to represent 

an orthonormal set of basis vectors. This ensures the generation of principal axes defined 

by the evolution via the variational equations. The stretching or contraction along the 

principal directions is then computed at each specified Lyapunov time step, thus yielding 

the Lyapunov spectrum. Then a Gram-Schmidt re-orthonormalization of the principal axes 

is carried out to prevent divergence in their magnitudes. These are then used as the new 

set of orthonormal basis vectors for the next Lyapunov time step. 

The second method developed by the authors in [72] is used for estimating all non- 

negative Lyapunov exponents from an experimental time series. In this method the long- 

term exponential growth rate of small hyper-volume elements in an m-dimensional recon- 

structed attractor (obtained by using the concept of delay coordinates advanced by Packard 

et al. [67]) is monitored. Here m (an input parameter) is an estimated relevant dimension 

of the infinite-dimensional system. For the largest positive exponent, A,, the evolution of 

a single pair of nearby reconstructed orbits is monitored. Whenever their separation be- 

comes large, a Gram-Schmidt re-orthonormalization is done, and the primary and newly 

reconstructed secondary trajectory are monitored from there on. At the end of a specified 

Lyapunov time step, the exponential growth rate of the line element separating the orbits is 

calculated, thus yielding an estimate of A; . Similarly the exponential growth rate of an area 

element, defined by monitoring points on three reconstructed orbits, provides the estimate 

for the sum of the first two exponents, i.e., A; + A2 . Although it seems that the process 

could be repeated analogously to obtain the remaining non-negative exponents (Wolf et 

al. [72]), numerical problems inherent in this method limit its use to the determination of 

the largest two exponents only (Parker and Chua [64]). It is worthwhile mentioning that 

Packard et al. [67] showed that the method of phase space reconstruction preserves the 
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Lyapunov exponents. 

Pezeshki and Dowell [75] used the two methods described above to calculate the Lya- 

punov exponents for the one-, two-, three-, and four-mode approximations of a magnetically- 

buckled cantilevered beam that is parametrically excited at the support. By obtaining con- 

vergence of the Lyapunov dimension for the two- and three-mode analyses when chaotic 

motions exist, they infer that modal convergence has occurred. The concept of using the 

Lyapunov dimension as an estimate of the number of necessary modes required for modal 

convergence was successfully tested. The effect of the forcing amplitude on the Lyapunov ex- 

ponents was also studied. The monographs of Parker and Chua [64], Moon [62], and Seydel 

[46] provide further details and discussions on Lyapunov exponents and their calculations. 

2.2.3 Routes to chaos 

When varying the control parameter (e.g., edge load, flow velocity) in a dynamical 

system, the solution may undergo a bifurcation and hence a transition from one attracting 

state to another. The appearance of a chaotic attractor is usually preceded by a sequence 

of such bifurcations which can be considered as a route to chaos. Some of the frequently 

encountered routes are outlined here (Seydel [46], Berge et al. [70], Eckmann([61], and 

Swinney [76]). However, we note that there is no unique set of ways in which chaos ensues, 

and other routes may exist. 

In the Torus-Bifurcation route, proposed by Newhouse, Ruelle, and Takens [77], it is 

conjectured that only two bifurcations precede the onset of chaos. These are a Hopf bifur- 

cation, yielding periodic motion, followed by a secondary Hopf (or Niemark) bifurcation, 

resulting in quasi-periodic motion on a two-frequency torus (2-torus). As the control pa- 

rameter is varied further, the system undergoes a transition to an unstable 3-torus with the 

simultaneous appearance of a (bounded) strange attractor. However, Grebogi et al. [78] 

have shown through numerical experiments that chaotic attractors rarely appear along with 

a 3-torus for systems with moderate nonlinearity. They reason that this may be due to the 

fact that the theorem of Newhouse, Ruelle, and Takens [77] considers a very specific type of 
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small perturbation to show instability of the 3-torus. An alternative theory regarding this 

scenario is that the appearance of wrinkles on the 2-torus is a sign of impending chaos (see 

Swinney [76]). 

In the Period-Doubling route the periodic state undergoes a sequence of period-doubling 

bifurcations as the control parameter is varied. This process accumulates at a critical value 

of the parameter beyond which the motion becomes chaotic, with infinite period and a 

broadbanded freqency spectrum. A universal number, known as the Feigenbaum number, 

exists which describes asymptotically the ratio of successive intervals (expressed in terms 

of the control parameter) between bifurcation points. 

Chaos through Intermittency, also known as the Pomeau-Maneville scenario (Seydel 

[46]), is characterized by the transition to chaotic behavior occurring through repeated 

intervals of periodic and chaotic motions. As the chaotic regime is penetrated deeper (by 

varying the control parameter), the periodic intervals decrease, making it more and more 

difficult and finally impossible to recognize the periodic motion. This scenario occurs at a 

turning point where a stable and unstable fixed point collide. 

The Torus-Breakdown route is characterized by the transition from a 2-torus quasi- 

periodic state (i.e., motion described by two incommensurate frequencies) to a frequency- 

locked state (i.e., periodic motion with one basic frequency). This implies that a breakdown 

of the torus has occurred. Then, as the control parameter is varied further, the frequency- 

locked periodic solution undergoes a well-defined transition to a chaotic state. 

Another scenario for chaos (see Swinney [76] and references therein) arises due to a 

phenomenon known as Soft Mode Instability. This occurs as a result of the nonlinear 

competition between a symmetry-breaking linear instability and an oscillatory instability, 

i.e., coexistence of symmetry-broken- and symmetric- unstable solutions. In general it is not 

possible to classify the motion resulting from this nonlinear competition when the number of 

unstable modes is greater than or equal to three. This then could result in chaotic behavior 

for systems of dimension equal to three or more. 
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PROBLEM FORMULATION 

3.1 Governing Equations 

Consider a rectangular flat panel (ld, x I2) of uniform thickness h, symmetrically lam- 

inated with 2! + 1 transversely isotropic layers. It is assumed that the plane of isotropy 

at each point is parallel to the reference plane (selected as the mid-plane of the laminate). 

The points of the undeformed reference plane (z3 = 0) are referred to a set of Cartesian or- 

thogonal axes z,, (w = 1, 2), with the z3 axis normal to the reference plane (see Fig. 3.1). 

Throughout this work the Einsteinian summation convention is implied unless otherwise 

stated, with Greek indices ranging from 1 to 2 and Latin indices ranging from 1 to 3. 

3.1.1 Strain-displacement equations 

The higher-order representation for the displacement field (Reddy [79]) is given as, 

Valu, £3; t] Ua|Zw, t] + t3Ha[tu, t] + 23 NalZw, t] + 23Caltw, t] 

V3[zu, 23, t] = us(2u, t] (3.1) 

Within the framework of the von Karman theory for the large deflection of plates, only the 

nonlinearities associated with the transverse displacement (and its gradients) are retained. 

Hence the Lagrangian strain tensor e;; is written as, 

2ei5 = Vig + Vie + VaiVs,; (3.2) 

The above representation of e;; can be shown to correspond to the small linear strain and 

moderate rotation concept (Librescu and Schmidt [80]). Following Reddy [79] and Librescu 
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and Stein [81], the exact fulfillment of the tangential static conditions on the bounding 

planes z3 = +8, in the absence of tangential surface loads, requires that, 

+h/2 

—h/2 

+h/2 
_h/2 = (3.3) Pa = |sas| > Pa= [sas] 

Here 8,3 denotes the transverse shear components of the symmetric second Piola-Kirchhoff 

stress tensor 8;;, while pa, pa denote the tangential surface loads and load couple com- 

ponents, respectively. Substitution of (3.1), (3.2) into the constitutive equation for saa, 

i.e., 

$a3 = 2Ea3w3€w3 (3.4) 

considered in conjunction with conditions (3.3) and the symmetry of the laminate, yields 

Na=0 5 Ca=— a5 (tae + Ha) (3.5) 
Here, e,3 denotes the transverse shear strain components and E,3,3 denotes the transverse 

shear components of the elastic moduli tensor Ejjmn. 

Thus it is observed that the dependent variables in the displacement field when consid- 

ering the higher-order transverse shear deformation theory (HSDT) are the same as those 

appearing within a first-order transverse shear deformation theory (FSDT) formulation, i.e., 

Ug, Ua and #,. Substitution of (3.1), (3.5) into (3.2) yields the following expressions for the 

components of the strain tensor, 

Cap = EaB + t3Kap + 23Cup ) €a3 = €a3 + 2 Nas (3.6) 

where the strain measures are defined as, 

2606 = Uap + Up,a + U3,0U3,8 : 2kap = Yap + 06,0 
4 

2€a3 = Wa + U3,a ) 2Na3 = nz (a + U3,a) (3.7) 

4 
2Cap = — 5h 375 (2t3,08 + Ya,6 + ¥6,a) 

The tracer 6; assumes the value one or zero according to whether the HSDT or FSDT is 

being considered. The specialization for the classical plate theory (CPT, based on Kirchhoff- 

Love constraints) is obtained by considering ~. = —u3,q and 6); = 0. 
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3.1.2 Constitutive equations 

The 3D constitutive equations for a monoclinic elastic material are, 

Ea 
Sap = Eapwpewp + 54 i. $833. , §8a3 = 2Ea3u3€w3 (3.8) 

where, 

~ Eag33 E33, 
Eapwp = Eapwp — —9883 "sie (3.9) 

E3333 

Using the third equation of motion from 3D elasticity theory (i.e., (3.16)3) along with the 

displacement representation (3.1), and integrating over the transverse dimension 23, we 

obtain the transverse normal stress component as, 

$33 = — [03.0 + (806V3,8) + (83aV3,a) ~ pVs6p }des + K[z.] (3-10) 

Here the tracers 54 and 5g identify the overall and dynamic-only contributions brought 

by 833, respectively, with p[z3] being the mass density of the panel. When performing 

the above integral equations, (3.1), (3.6), (3.7) and (3.4) are used, and following the von 

Karman concept, nonlinearities involving the in-plane displacement field quantities u, or 

tw are neglected. The elastic moduli tensor components and mass density are constant for 

each homogeneous laminate, hence they are represented by a superposition of weighted step 

functions in the z3 coordinate. Furthermore, an order of magnitude analysis shows that 

the contribution due to the third term in the integral may be neglected in comparison with 

the remaining terms. The constant K[z,,| is determined from conditions on the upper and 

lower bounding planes of the panel. Thus the transverse normal stress component may be 

expressed as, 

$33 = shoes + shyz3 + shy)23 + K[z.] (3.11) 
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where, 

sh) = — ESR (Wuat tsa) + SBpck>iis , 869) = ESAS. a 3045,0 

6D = BS 5(tont Yawa) | K (ee) = 1 - (2) a> 
2 = Pat Pe , pt = a (3.12) 

Here the symbol < k > implies that the material property is evaluated for the k** layer. 

Furthermore, an order of magnitude analysis shows that the term Z,, appearing in (3.12), 

may be neglected from here on. 

The stress-resultants are defined as the moment of order zero of the in-plane and 

transverse-shear-stress components, whereas the stress-couples are defined by the first order 

moment of the in-plane stress components. For a symmetric laminate these are given as, 

amt pher> <m+1> 
Lap = DI 8x5 daz = — 2 sxatl? das 4 ay sxn dzs 

her-1> rai Vh<rti> 

2m+1 pher> <m+i> Qe = De “J 853? dzs = 2 [ Smt > deg + 2D LS sS>dzs (3.13) 
her-1> hertt> 

2m+1 

M.a= > her> siz d 2) hem eet d > 85> d 
ap = 3423 = t3dz3 + T3023 

paythcr-i> pai Vaceti> 

Equation (3.13) considered in conjunction with (3.8), (3.6), (3.7), (3.11) and (3.12) yields 

the following expressions for the stress-resultants and stress-couples: 

1 4 
Lap = 9 Fabup (to,p + Upw + Us,u%3,p) + 5, 6H 73 Kapupt3,wt3,p 

+264 K[zw]Qaga3 

Qas = | Rasus — bn h2 Pasws| (vo + ug w) (3.14) 

Map = Fz aBwp — Shara 3 - Sapwe| (duro + Pow )-6 h3 - ATp Iahwpt3,wp 

-64[Kapup — Sna;z Nason] (Vow + ¥sup) + Eabalapssils 
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The expressions for the rigidity quantities Fogup, Kapwp, Dapwp, SaBwo, Napwp: Vass; 

T4633, Ra3w3 and Px3,3 are defined by equations (A.1) in Appendix A. 

3.1.3 Governing equations of motion 

For a 3D continuum, after neglecting body forces, the equations of motion are expressed 

as, 

[sje(Sie + Vie)] ; = eV; (3.15) 

Here 6;, denotes the Kronecker delta. Neglecting nonlinearities containing the in-plane 

displacements V, (i.e., the von Karman concept) and using the displacement representation 

(3.1) for the transverse displacement V3, the three equations of motion are written as, 

$8a,8 + §3a,3 = pV 

833,3 + 8a3,0 + (Sa6V3,6) 4 + (S30V3,0)3 = pV3 (3.16) 

The governing equations are derived by taking moments of order zero of the equations of 

motion (3.16), and moments of order one of (3.16); 2 . Considering (3.1), (3.5), (3.13) and 

neglecting tangential inertia terms (i.e., those containing t,), the five governing equations 

for a symmetric laminate, in the absence of tangential surface loads, are obtained in terms 

of the five unknowns u,, q and ug as, 

Lope = 0 

Qa3,a + Lagu3,ap + p3 — Motz3 = 0 (3.17) 

. 4. “ 

Mas,6 ~~ Qa3 _ 5c |matba _ m4 579 (tis, + ¥a)| = 0 

It should be noted that (3.17), is considered when deriving (3.17)2 . Here p3(= pi — p3) 

represents the transverse normal surface load, i.e., the aerodynamic load in this thesis. The 

tracer 5¢ identifies the effect of the rotary inertia terms, i.e., all inertia terms arising from 

the first order moment of in-plane inertias V,. It takes on the values one or zero according 

to whether the contribution of rotary inertias is considered or disregarded. The reduced 

mass quantities mp, m2, mg are defined by equation (A.2) in Appendix A. 
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3.1.4 A mixed formulation of governing equations 

The governing equations are now specialized for the case of a composite panel with 

transversely isotropic constituent laminae. For this case the expressions for the reduced 

elastic moduli in terms of the engineering quantities are (Librescu [9]), 

E 71 p 
EaBwp — l+p [5 (Saw bap + bxp5Bw) + Tj haeFr| 

  

Ew 'E p33 _ be 6 _ fl Tae = E(t? 1 Bates = G'baw (3.18) 

Here E and p represent the Young’s modulus and Poisson ratio in the plane of isotropy, 

respectively, whereas E’, yp’ and G’ are the Young’s modulus, Poisson ratio and shear 

modulus in the planes normal to the plane of isotropy, respectively. Substituting (3.18), 

(3.7); and (3.12)4 2 into (3.14), and using the fact that Z, may be neglected on the basis 

of an order of magnitude analysis, we obtain the result, 

4 
Lap = béag + COaBEww + b4bH 75 PaptisvU3,w (3.19) 

The coefficients b, c, and d are defined by (A.3) in Appendix A. Performing a contraction 

on (3.19) to obtain ¢,,, and using this result when inverting (3.19) to solve for egg results 

in, 

Eap = bLap + CbagLuw + 64617 d5.,8U3, U3, (3.20) 

The coefficients 6, ¢ and d are defined by (A.4) in Appendix A. 

The in-plane stress-resultants, Lg, are expressed in terms of a stress function C[z,,, t] 

as, 

Lap = Eaw€BpC wp (3.21) 

thus implying that the first two governing equations, i.e., (3.17)1,2, are identically satified. 

Here €,,, denotes the 2D permutation symbol. For the remaining three governing equations 

(3.17)3.45 we proceed as follows. Substituting (3.21), (3.14)s, (3.18), (A.1) and (3.14)23, 
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(3.18), (A.1) into (3.17)3 and (3.17)45 respectively, we obtain, 

Eaw €8pC wpt3,af + Ba(haw + U3 ww) +p3—™Motz3 = 0 

Bovgap + Bsta,ep — Bitiz,a6p — 54 Bs(¥6,06 + 43,086) (3.22) 
4... 4. 

— Bala + tg.a) + (6466 Be + Boma )tis,a — 6¢(m2 — M4 3) ba = 0 

The coefficients B, — Bg are given by (A.5) in Appendix A. Thus the reduced governing 

system (3.22) consists of three equations expressed in terms of the four unknowns tq, ts 

and C’. The fourth equation is obtained by considering the compatibility equation in terms 

of the in-plane strain components, obtained from (3.7) as, 

1 
€aw€Bp leap up + 53,0p49,0p| =0 (3.23) 

Within a displacement formulation, equation (3.23) as well as the remaining compatibil- 

ity equations are identically satisfied by virtue of the strain-displacement equations (3.7). 

However, for the mixed formulation the in-plane mid-surface displacements, u,, have been 

eliminated from the reduced governing system (3.22) and hence (3.23) should be explicitly 

satisfied by any solution which satisfies the reduced governing system. Therefore, upon 

substituting (3.20) and (3.21) into (3.23) we obtain, 

- l - 
(6 + E)C wwe + 9 (U3,ew 3m _ U3 wxtt3,we) + 26 46H d( U3 wwwtt3,x + Us xwt3,xw) = 0 (3.24) 

Equations (3.22), 23 and (3.24) in the four unknowns ¥,, ug and C’ govern the large- 

deflection theory of shear-deformable flat panels, symmetrically laminated with transversely 

isotropic layers. They incorporate the effects of transverse shear deformations and the 

transverse normal stress, and fulfill the static conditions on the bounding planes of the 

plate. Their FSDT conterpart is obtained by considering 64 = 6y = 0 and GL, — 

K?G‘.,5, where K? denotes a transverse shear correction factor. The von Karman equations 

for a symmetrically laminated composite with isotropic laminae are obtained, within the 

framework of the CPT, by specializing their FSDT conterpart for K? — 00, tq > —Us.a- 
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3.1.5 Alternative representation of governing equations 

Following the procedure considered by Librescu and Stein [81], Librescu and Reddy [82], 

and Librescu and Chang [83, 84], an alternative form of the governing system, i.e, (3.22)123 

and (3.24), is derived. Introducing (3.21) into (3.22)1, .. is expressed as, 

1 1 7 
Dosw = —— Lu ptt3wp + —(moiis _ Ps) — U3 ww (3.25) 

Bg Ba 

Equation (3.22). can be re-written as, 

(B2 + Bs)bg,08 + Bs(%a,66 — ¥p,08) — Bitiz,ape — 64 Bs(¥p,06 + U3,ag8) (3.26) 
4... 4.» 

— Ba(ta + ts,a) + (645B Be + Soma 3 )iis,c — 6¢ (m2 - M4 5) Va = 0 

Defining, without loss of generality, the potential function [z,,, ¢] as, 

B3 Bg 

Exp? = B, (28 ’we Pe Bp = B, Ya.86 — ¥e,06) (3.27) 

results in a system of five equations, i.e., (3.22)12.3, (3.24) and (3.27) in the five unknowns 

ta, ug, C and ®. The remainder of the procedure consists of eliminating the two unknowns 

Wa from the governing system. Towards this end we solve for ~ by introducing (3.25) 

and (3.27) into (3.26) and considering a harmonic time dependency of the form ¥,[z,,, t] = 

a[z~le*. The result is, 

Bat Bs 
Bg 

—(B, + Bo+ B3)t3 wwa— Bats,a+ (6455 Be + 5cmaars ils 

a B a 
ta( Bat Soma") = ( —5,4 B) | Motis,a— P3,a— (Lurpt3,wp) — Bsepo® p (3.28) 

Substitution of (3.28) into (3.22), considered in conjunction with (3.21) and the above 

harmonic time dependency for ug yields the result, 

D U3 wwaa — faw€Bp [Cupts,a8 -S (Cwptts,a6) nn] _ (ps _ SP3,aa) 

M1™Mp :: ( 7 n 1 oe 

ug —- (mM 

Ba 3 4 

+ Mi )ti3 ax _ BaP? = Q (3.29) 

4 

  . 4 
+mo(iti3 _ Tti3 aa) + 5c Sh2 
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The coefficients mi;, D, S and T are given by (A.6) in Appendix A. Introducing (3.25), 

(3.28) into (3.26) and considering the above harmonic time dependency for y,, and @, we 

obtain, 

@— 6), -fc $= (3.30) 

Thus the governing system (3.22): 3 and (3.24) has been transformed into a system con- 

taining two coupled equations in the variables ug and C, and a third uncoupled equation 

expressed in terms of a potential function @, i.e., equations ((3.24), (3.29)) and (3.30), 

respectively. This tenth-order system of partial differential equations (PDE’s) governs the 

large motions of a shear deformable composite panel made up of transversely isotropic 

laminae, subjected to constant in-plane edge loads and a transverse load. Its FSDT and 

CPT counterparts can be obtained by the procedure described in the previous section. The 

CPT related equations derived in this way coincide with von Karman’s results. We note 

that equation (3.30) defines the boundary layer effect on the overall solution, this effect 

diminishing away from the edges of the panel (e.g., Librescu and Stein [81]). 

3.2. Boundary Conditions 

For a simply supported panel, the five boundary conditions associated with the tenth- 

order governing system, represented by (3.22) and (3.24), are: 

Case A : Edges z, = 0,1, freely movable in the in-plane direction normal to the edge, and 

subjected to biaxial compressive loads La: 

  

ug = vp = Maa = Lap =90 , Law = —L, where, + (3.31) 
a 

Case B : Edges za = 0,1, immovable in the in-plane direction normal to the edge, and 

unloaded: 

us = 06 = Maa = Lap =0 , ta=0 where, (3.32) 
a 

  

In equations (3.31) and (3.32), and henceforth where applicable, the symbol x means that 

summation over the index a is not implied, and the index ( is chosen different from a. 
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Moreover, the underlined terms are associated with the out-of-plane boundary conditions. 

Considering equations (3.14)2 in conjunction with (3.18), (A.1) and (A.5), we obtain 

the result, 

Map = Bs(¥aa t+ Yea) + [Sap{B2 — Bs} — 64064 Bs] Po 
+4B7u3 ap + [26.6Bs _ §.,54 Bs |Us ww + §.8945B Betz (3.33) 

The coefficients Bz and Bg are defined by (A.5) in Appendix A. Representing the unknowns 

uz, v1 and 2 as, 

1 > 2, Amn(t) SIN YmZ1 Sin Byz2 

"oo 
v4 = > dX Bmn(t) cos Ym21 Sin Bnz2 (3.34) 

=lIn=1 

mT oo 

2 = S > Crmn(t) SIN Ym21 cos Bnz2 

3 i = a I a 

where ¥m = "7™ and §, = 5, and considering (3.33), it is verified that the out-of-plane 

boundary conditions in (3.31) or (3.32) are satisfied. The in-plane boundary conditions are 

satisfied in an integral-average sense (see Section 3.3). 

As regards the tenth-order transformed governing system, i.e., (3.24), (3.29) and (3.30), 

we note that the potential function @, although uncoupled in the governing equations, 

remains coupled with the other two variables, uz and C’, via the boundary conditions. 

However, as noted earlier, the solution of (3.30) represents a boundary layer effect which 

can be neglected when dealing with global problems such as vibration and stability (e.g., 

[81, 82, 83, 84]). Therefore, in the forthcoming analysis we neglect the equation (3.30) and 

consider only the eighth-order transformed governing system (3.24) and (3.29). 
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3.3. Derivation of the Panel Flutter Equations 

Introducing the effect of viscous structural damping, i.e., c, and initial geometric imper- 

fections into equations (3.24) and (3.29), neglecting the contribution of rotary inertia, and 

based on discussions in Sections {3.1.5} and {3.2}, the relevant equations describing flutter 

of an imperfect panel subjected to a high-supersonic coplanar airflow are, 

D3 wwaa — €Caw€Bp Cwolts,a8 + tt3,0p} ~ S(Cwelts,ag + tis,a6}) we | 

—(ps ~ SD3,ac) + ™o its + cUg ~~ T (ti3,aa + cils,a0)| = 0 

(3.35) 
- ~ 1 a a 

(6 + C)C wwan + 5 (U3 owtt3 wm + 2U3 ww 3 wx — U3 wr U3,ue — 23, wxtt3 we) 

+2645 7 d(U3 xwwtts,x + U3 xww U34 + U3 xww3,x + U3 zw U3 aw + 2us xwtl3,xw ) = 0 

Here, t3 represents an initially unstressed, geometrically imperfect state of the panel, which 

is measured from the flat configuration. Its magnitude is small compared to the motion of 

the panel, i.e., u3, which is measured from the imperfect state. Therefore, consistent with 

the small imperfection assumption, in the following derivations we discard quadratic and 

higher-order terms in tj. For a simply supported panel, we can express %t3 as, 

oo co n 

tz = > S Amn SiN Ym21 SiN BnZ2 (3.36) 
m=1n=1 

The transverse load due to aerodynamic forces is given by the quasi-steady, third-order 

piston theory (Ashley and Zartarian [85]). This theory gives the aerodynamic load on a 

panel by relating the local pressure generated by the panel motion to the local normal 

component of fluid velocity. In general, piston theory may be employed for large supersonic 

Mach numbers, whenever the flow angle of attack is not too large. Furthermore, for high- 

supersonic flows the effects of viscous forces can be neglected. Thus, the transverse load, 

35



CHAPTER 3. PROBLEM FORMULATION 

p3, is expressed in terms of the aerodynamic operator, i.e., A[.] as, 

ps = Alug+ ts] 

(3.37) 
At = ~xpey} 2 [2d + cor AE + He sin a SE 

+Xo*5 pM? |cos? A( 5 a1)’ +sin 2h oe si 2? a(2)’) 

ee é M3 cos! A( atl)" + cos" Asin (5) Be, 
+3.cos Asin” ast (gly + sin? a(S) || 

In equation (3.37), x is the polytropic gas coefficient, p., the pressure of the undisturbed 

air, C.. the speed of sound through air at atmospheric pressure, U,, the flow speed, A the 

in-plane flow orientation (see Fig. 3.2), M(= Yon.) the flight Mach number. Here §;, § f are 

the tracers identifying whether flow occurs past both upper and lower faces (6 = 0, § f = 2), 

or whether it occurs past the upper face only (57 = § f = 1). 

Derivation of stress function, C 
  

Based on (3.35)2, we can write the solution of the stress function C as, 

homogeneous soln. 

rn, 
1.- ~ 

C[z., t] = C;[zq, t] + 5 (lit + L22?) (3.38) 

particular soln. 

We now satisfy the in-plane boundary conditions in an integral-average sense by imposing 

the following conditions on C\: 

    z2=—V,t2 

(3.39) 
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Considering (3.38) along with (3.39) shows that £,, Lz acquire the meaning of average 

in-plane edge loads (considered positive in tension). These are given as, 

~ 1 ly ~ 1 ly 

[y= a C22 dz. ,~ tz  f C11 
lo Jo hh 

Introducing (3. 4) (3.36) and (3.38) into (3.35)2, C; may be expressed as, 

=i ¢ SDS (502 cosl (7m — 76)21] c08[(Bn — B5)20] + 
m=1 n=1 i=1 j=1 

dz, (3.40) 
22=—0,l9     21-0, 

AC?) (2) - cos[(Ym — 74)#1] C08|(Bn + B;)22] + 

Ae) ce). cos|(Ym + 7i)21] cos|(Bn — B;)z2] + 

AA) (0); 08[(4m + 7:)21] cos[(Bn + B;)z2] } x 
(dmndij + Omndi; + dmn dis) (3.41) 

Here, the coefficients ae, KO), etc. are defined by (B.1) in Appendix B; the non- 

dimensional quantities, i.e., modal- and imperfection- amplitudes, aj, and Gmn, and panel 

aspect ratio ¢ are defined in (B.2). It can be seen by inspection that C, as given by (3.41) 

fulfills the conditions (3.39). 

In order to solve for the average in-plane edge loads 1, and I, we define the average 

in-plane displacements between the edges as, 

I; Ty h L. _ _hh _ deo = 2 (3.42 Ai -rz f f mrdaydz,= - | [ U2,adeidz2= 7" (3.42) 
Depending on the level of in-plane restraint at the edges z,; = 0, 1, we take a; = 0 or 

a, — oo according to whether the edges are movable or immovable. For partially restrained 

edges a, takes on intermediate values which may be determined from experiments. Similar 

statements can be made regarding the edge conditions at z2 = 0, lz and the coefficient ag. 

The counterparts of (3.7); and (3.20) for an imperfect panel are obtained by considering 

the replacement uz — u3 + %3 and the small imperfections assumption. These are then used 

along with (3.21) and (3.42) to obtain the result, 

L hy " 

oe- atl [(5+.2)C 22+ €Ca1 + (54d — 0.5)(us,1 + 2u3,a4%s,1) 

64d(us,2+2us,2%%3,2)| dz,dzr2 ’ =2 (3.43) 
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Here and henceforth, usage of the symbol = means that by interchanging the accompanying 

indices the second corresponding equation is obtained. Using (3.34)1, (3.36), (3.38) and 

(3.41), and adding possible applied edge-loads (see Fig. 3.2), ie., Lj* and L3*, we obtain, 

  

~ oe . Ls* 

— = — (b+ @)L; — Lo + bmn 
ay a1 

Ta) >» Xt 6,d—0.5)m?+476,dn* (42, +2AmnAmn) 

“= (1=2 , man , $—-¢7') (3.44) 

The tracer 5), assumes the values 1 or 0 according to whether the edges z; = 0, I, are 

movable or immovable/partially restrained, respectively. Similar statements can be made 

regarding the edge conditions at 22 = 0, lz and the tracer Sy. Solving (3.44) for L, and 

  

            

  

  

Lz results in, 

. 2,22 i, - _ nh a , 

ab +) f - _{se) “a 

B= (64d—0.5)n?} (02,,, + 24mndmn) 
€ mal n=1 

_ = =e losd-onymaaede) (a2, , + 2¢mndmn) 
m=1in=1 

4-.. 1—- ad * ¢ ~ * 
+7 (6 + é)D( 6mi Lj — wari - &2]5m2L3) 

(3.45) 
. 2,2 -~ 
i, _ - xh a2 5 Cc 

4l2(6 + @)[1 — (,25) ards] 
C = Bo (Q1—G2 , mn , §mi L3=6m2L3) 

where, 

. _ (b+ 8a, . _ (b+é)az 
Qa, => — FF O”r— OD» S882 = 

14+ (b+ é)a; 1+ (b+ é)azg 

and the non-dimensional applied edge loads Lj and L3 are defined by (B.2) in Appendix B. 

It is easily verifiable that a1 = 0, di = 1 and 0 < dG < 1 imply that the edges 21 = 0, 
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are movable, immovable and partially restrained, respectively. Similar statements can be 

made regarding the edge conditions at zz = 0, I, and the coefficient a2. 

Spatial Discretization Using Galerkin’s Method 
  

The aerodynamic load given by (3.37) and the stress function given by (3.38), (3.41), 

(3.45) are introduced into equation (3.35); which describes the transverse motion of the 

panel. The assumed modal expansions (3.34), (3.36) are substituted into the resulting 

non-dimensional equations (see (B.2) for definitions of the non-dimensional parameters) 

and the residual thus obtained is minimized by using sinrz€, sinswf2 as the weighting 

function and integrating over the area of the panel. Extending the procedure considered by 

Friedmann and Hanin [32], the resulting non-dimensional Galerkin equations derived for an 

arbitrary number of spanwise and chordwise modes are, 

dr, + les + EAGrs|Grs + RrsQrs _ [Pr.6mi Ly + Ors5M2L3](Grs + Ges) _ 

k l 

» > [Z-emn + Veen] (Or sOan + a + 24+s2mn4mn) _ 

m=1n=1 

k tl k i k ft 

S35 YS DS DDS Drapgmniz(@pqdmn dij + Gpgdmn diz + Apgdmn diz + dpq2mndiz) + 
p=1 q=1 m=1 n=1 t=1 j=1 

k I 

5; | cos A S > Urep( aps + Gp.) + sinA > Wraq(@eq + arg)| + 

p=1 qg=1 

. k lL ek tl 

55d” > > » > E+ emnij(@mn4ij + Omnaiz + Amn4;;) + 
m=1n=1 t=1 j=1 

k i k I 

ive EY 
p=1q=1 m=1n=-1: 

F  spqmnij( @pq4mn4ij + @pq4mn4ij + Apg4mn Gi; + pg 2mn G;;) 

k 

= 1 

l 

1j= 

=0 

r=1—k , s=1—l (3.46) ’ 
r,s 

The coefficients De aspgmnij; Evamnij; F rspqmnij; Gre; Ree, Pras Ors; Ursp, Wee Zremn; and 

Jrsmn are defined in Appendix B. Here A, €s, and €,4 are the non-dimensional flow speed, 

39



CHAPTER 3. PROBLEM FORMULATION 

structural- and aerodynamic- damping coefficients, respectively, which are defined in (B.2). 

The overdots denote differentiation with respect to the non-dimensonal time, 7, also defined 

in (B.2). However, for convenience in notation, henceforth we continue to use the symbol t 

in place of 7 with the understanding that from here onwards t denotes the non-dimensional 

time. 

Equations (3.46) represent a system of ordinary differential equations (ODE’s) describing 

the motion of a fluttering, composite panel composed of transversely isotropic laminae. They 

incorporate the effects of aerodynamic nonlinearities, transverse shear deformations, applied 

in-plane edge loads and/or edge restraints and initial stress-free imperfections. Written in 

a compact form, they read as, 

Gr, + €T Oy, + 0? ar, + F; [a;;; A, ?, Dn Guy] + 

F[a;japq3 47, A®, Guw] + Fs[aijapg@mn; A*] + Fo[A, Lx, Guy] = 0 

», r=1l—ok , s=1—ll (3.47) 
rs 

In equation (3.47), F,, F2, Fs are linear, quadratic and cubic functions of the non-dimensional 

modal amplitudes, respectively ; Fo is a constant term arising due to initial imperfections; 

and ey represents the total ( aerodynamic and structural ) damping. The detailed form of 

(3.47) was derived using MACSYMA by considering two cases of modal truncation (k x I 

where & = number of chordwise modes and / = number of spanwise modes), i.e., the (2 x 2) 

and (4 x 1) cases. Introducing the state vector w of dimension 2N (N = kl), we can write 

equation (3.47) as, 

w = f[w; A, ZL] (3.48) 

The components of w are the displacement amplitudes and their time derivative. For the 

two cases of modal truncation considered herein we have, 

(4x 1)case : w= {ay1, G21, 431, G41, 411, G21, G31, 4x}? 

(3.49) 
. _ . . . . T 

(2 x 2) case: w= {ay1 » 412, 221 , 222, @11, 412, 421, G22} 
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The 2N-dimensional vector f is a nonlinear function of w. A and Lj are the control param- 

eters of the system. 

4Xs 
  

Layer! + (1) 

(2) 

(3) Rgyeh/2 

(m) Ress) 
4 4 

(m+) ff | fhmen > 
rimen) thine? 
(m+2) -Nimee) 

  

  
  

        

      
  

  
  

“hiamet) 
  

, 

| (2m) 
Layer 2m+| -+(2m+l) 
          
  

Figure 3.1: Cross-section of a symmetric laminate. 

  

  
  

  
Figure 3.2: Panel with air flow and compressive edge loads. 
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SOLUTION METHODOLOGY 

As a first step towards obtaining a solution of the panel flutter equations (3.46) or (3.47), 

we write a;;[t] as, 

a;;[t] = a5; + ai5[t] (4.1) 

where 4,;; and a,,;[¢] represent the static and dynamic components of the displacement am- 

plitudes, respectively. Considering the case of temporally constant edge loads, the static- 

buckling equations are derived from (3.46) as, 

Res drs _— [PredmiL3 + Qr25M2L5|(Grs + dys) _ 

k I 

> > [Zramn + Vromn|(Grsd2 in + a, ,a?,,, + 2Grsdmn4mn ) ~ 

m=1n=1 

k k [ k tl 

p=1 q=1 m=1 n=1 i=1 j=1 

k l 

64[cos A) Urep(Gps + Gps) + Sin A D> Weagl rq + Grq)| + 
p=1 q=1 

ke Ut k tl 

BA? D7 DODD Evemnig(Gmndtiz + dmndiz + Gmnaij) + 
m=1n=1 1=1 j=1 

k I ke l k il 

BgpM YY YS YL YS YE Frepqmnij (Gpqdmn dij + Apgdmndijz + Gpgdmndij + Gpgdmn aij) 
p=1 q=1 m=1 n=1 i=1 j=1 

r=1—k , s=1—l (4.2) 
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Introducing (4.1) into (3.46) considered in conjunction with (4.2), we obtain, 

Ors + [Es + EAGrs|Ors + Rradrs _ [Predmi Li + O,s6M2 L3|Grs _ 

k l 

So [Zremn + Veomn](2dmndmndrs + 2dmndmndes + Grinders + 2amnGredmn + 
m=lin=1 

G? Gre + OpsG2,, + 2bpsQmndmn + 2amndrsdmn + 

2amndrs@mn + G21, 2rs) — 
k lt k Ut kl 

S55 DS DE DDE Drapamnij (Gijdmndpg + Fijdmndpg + EmndijGpq + Emndijapg + 
p=1 q=1 m=1 n=1 t=1 j=1 

@ijAamnGpq + GijApg@mn + Imndpg4ij + FijamnGpgq + 

GpgijGmn + Bpghijamn + AjjApg4mn + Apghmn diz + 

Gj;2pq4mn + SmnFpqhij + SmnGpqGiz + ijEmnGpq) + 
k I 

6;| cos A > Urspdips + sin A) Wragdrg| + 

p=1 q=1 

. k Lt k t 

8p? D> DD DS Evamnij(Gijdmn + Gijdmn + Gmndiz + Gmndiz + Gijdmn) + 
m=1n=1 i=1 j=1 

k ol it k t 

5° > > S > Fapqmnij(4ij4mn pq + 4;j;4mn4pq + Amn ij Ipg + Amn ij Apq + 

p=1 q=1 m=1 n=1 t=1 j=1 

G;jamndpg + Oijapqamn + mn apqij + FijZmndpg + 

Bg Gi; mn + Bpg4ij@mn + 4j3apgamn + Apgamn Giz + 

GijApqdmn + FmnApqdij + Smndpgtij + 4ijamn@pq) 

r=1—k , s=1—l (4.3) ? 

r,s 

Equation (4.3) can be writtten in compact form as, 

a 

ay, + er a,, + 0? a,, + F, [a;5; A, 3, i}, De Quv; Gq] 

+ Fo[Gijdpqg; A”, A®, Guv, Gea] + Fs[GijApq@mn;A*] = 0 

+ , r=1—k , s=1—I (4.4) 
r,s 
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Equation (4.3) (or its compact form (4.4)) describe the motion of the panel (represented 

by a,,) about the static buckled state (represented by a,,). Introducing the state vectors y 

and z of dimension N and 2N respectively (N = kl), we can write equations (4.2), (4.3) as 

fly;A, Lt] = 0 (4.5) 

z = f[z;A, L*] (4.6) 

The components of y are the static component of the displacement amplitudes, i.e., a,,, 

whereas those of z are the dynamic component of the displacement amplitudes and their 

time derivative. For the two cases of modal truncation considered, we have, 

(4x 1)case: y= (G1, Gai, G31, Gq, }7 

z = {G11, Gar, Gai, G41, G11, Gai, Gai, Gai}? 

(4.7) 

(2x 2)case: y= {G1, G12, Go], Gon}? 

z= {G11, Gi2, Gor, G22, G11, G12, Gay , Goa}? 

The N-dimensional vector f is a nonlinear function of y and the 2N-dimensional vector f is 

a nonlinear function of z. 

4.1 Determination of Static Displacement Amplitudes 

The Arclength Continuation Method (ACM, e.g., Nayfeh and Balachandran [85]) is used 

to determine the solution of y from equation (4.5). By allowing for the variation of only one 

control parameter, e.g., 4, and using the arclength s along a solution branch as a parameter, 

we consider the functional dependencies y = y[s] and A = A[s]. Thus we can write (4.5) as, 

f[y[s]; A[s]] = 0 (4.8) 

In order to solve (4.8) for the (N+1) unknowns, i.e., y and 4, we augment it with an 

additional equation, e.g., the Euclidean arclength normalization, which is written as, 

yy'+\?=1 , where ()'= a) (4.9) 
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Let (y* , A*) and (y, A) denote solutions for parameter values s* and s(= s* + ds) respec- 

tively. Thus (4.9) can be rewritten as, 

(yi: — yt)? + (v2 — y2)? +++ + (yw — yy)? + (A—A*)? — ds? = 0 (4.10) 

The continuation scheme is initiated by obtaining a solution of (4.5), i.e., y for a specified 4, 

and using it as the starting values of y* and A*. Then, for a specified ds the system ((4.8), 

(4.10)) is solved for (y, A) using the Newton-Raphson method. Thereafter we consider 

y* = y and A* = X for the next arclength step. In this manner the solution branch 

is generated for a specified number of arclength steps. The direction of continuation is 

dictated by the initial guess for any one unknown, e.g., 4, provided in the Newton-Raphson 

scheme. In general, a reasonably good initial guess for A would be A*+ds where the choice of 

the + or — sign would determine the direction of continuation. By monitoring and suitably 

altering the direction of continuation, turning points of the solution are easily negotiated. 

At turning points and branch points, the Jacobian J, defined as, 

- O(.) A(.) 0(.) 
J, =Vyf , where Vy(.)= |2—-,3—-)°°°°"° >_> 4.11 1 y T y( ) EE Oyo S| ( ) 

is singular with rank N — 1 (Seydel [46]). Moreover the (N + 1) x N ‘augmented matrix’ 

A defined as, . 

of 
Or 

has rank WN at a turning point and rank < N at a branch point. Therefore, by monitoring 

A= \vyF | f, | , where f, = (4.12) 

the eigenvalues of J,, the passing of a turning point or branch point can be detected. 

Similarly by monitoring the eigenvalues of the matrices formed by eliminating the i** column 

(i = 1 —> N) of A, we can differentiate between the passing of a turning point or branch 

point. For all cases considered herein, no branch points were detected. 

After the static equilibrium solution (y , 4) is obtained by the ACM, its stability (in the 

small) is determined by examining the eigenvalues of the Jacobian J2 defined as, 

Jo = Vat (4.13) 
leo 
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When all eigenvalues of Jz possess negative real parts, the static equilibrium is asymptoti- 

cally stable, whereas if any eigenvalue possesses a positive real part, the static equilibrium 

is unstable. If, for a solution (yg , Ao) the Jacobian J2 has a simple pair of purely imaginary 

eigenvalues which exhibit a transverse crossing of the imaginary axis as the control param- 

eter (or arclength parameter) is varied, and no other eigenvalue of J2 has zero real part, 

a Hopf bifurcation occurs. This results in the static equilibrium state losing its stability 

beyond the bifurcation point and the birth of a periodic solution at the bifucation point. 

A supercritical Hopf bifurcation occurs when a stable periodic solution exists beyond the 

bifurcation point, which results in soft (or benign) flutter. When an unstable periodic so- 

lution exists before the bifurcation point, a subcritical Hopf bifurcation occurs, resulting in 

hard (or dangerous) flutter oscillations. The values of the control parameters at the Hopf 

bifurcation are henceforth referred to as the critical- or flutter- values. 

4.2 Dynamic Solutions Using the Method of Multiple Time Scales (MMS) 

The MMS is used to obtain the amplitudes of flutter oscillations about the static equi- 

librium state, i.e., the solution of @,, from (4.4) after obtaining G,, by the ACM. We note 

that the MMS, being a perturbation method, is applicable only to the class of weakly- 

nonlinear systems, which in effect implies the assumption of small-but-finite motions in its 

usage. Hence its applicability is restricted to the region (in control parameter space) in 

the vicinity of the flutter boundary as defined by the critical values. However, the static 

displacement amplitudes are not necessarily small-but-finite near the flutter boundary and 

hence the MMS cannot be applied directly to equations (3.47). For convenience in notation 

we define the N-dimensional vector a, with components @,,, as (see (4.7)), 

a= {z,22,---, zn}> (4.14) 

Following Nayfeh [86], we consider an asymptotic expansion for a in terms of unknown 

functions (denoted by the N-dimensional vectors v‘)) of multiple time scales T; (= €'t), 

where ¢€ is an arbitrarily small parameter denoting the order of @,,. Consistent with the 
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small-but-finite motions and small imperfections assumptions, we consider G,, = O(e) and 

a,, = O(e”) when ordering terms. For the total damping coefficient we consider er = O(1). 

Moreover, due to the fact that (4.4) contains quadratic and cubic nonlinearities in 4,,, 

in order to obtain its first-order approximate solution the asymptotic expansion takes the 

form, 
3 

alt; «] = >> ev) (To, Ti, Ta] + higher order terms ( H.O.T. ) (4.15) 
i=1 

Similarly, the control parameter which is varied, e.g., A, and differential operators are 

expanded as, 

2 . A= 0414+ 4.07 
s=0 

4) i . _ 4.) 
D(.) = “dt. = du D;(.) + H.O.T } D;(. = dT; (4.16) 

d?(. D.)= et) — D2(.) + 2eDoD1(.) + €2D2(.) + 2e?DoD2(.) + H.O.T. 

In equations (3.10), Ao is the critical flutter speed (Ay) corresponding to a Hopf bifurcation 

of the eigenvalues of J2. Upon substituting (4.13) and (4.14) into (4.4) and following [86], 

the corresponding equations of O(e), O(e?), and O(e*) are obtained. The detailed form of 

these equations was obtained using MACSYMA and will not be displayed here. In what 

follows, only the essential features of the method are discussed. 

The O(e) system 

The O(e) system may be represented as, 

Ole) : Mv) + Cv + (K + Hv = 0 (4.17) 

Here M, C, K and H are the N x N mass-, damping-, stiffness- and circulatory- matrices 

respectively. M is equal to the identity matrix, I, and C is diagonal. K and H repre- 

sent geometric- and aerodynamic- linear terms. However, although K and H represent 

terms which are linear in v‘!) (and hence in @,,), they contain nonlinear geometric- and 
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aerodynamic- terms in a,,. Upon introducing, 

wv) 
=voe“# , st=v-l (4.18) 

y(1) 

into (4.17), and considering the resulting generalized eigenvalue problem (EVP), i.e., 

—-M"'C -M"1(K+H) 

I 0 
Vo = WVo (4.19) 

the complex eigenfrequencies and eigenmodes are obtained. By varying the control param- 

eter (e.g., A), its flutter value (e.g., Ag) and corresponding eigensolution (henceforth termed 

the critical eigensolution) are obtained when the Hopf bifurcation condition is satisfied. 

At flutter, one of the eigenfrequencies, henceforth denoted as w, (= wr), is real while the 

remaining are complex with positive imaginary part. At this point we note that the eigenso- 

lution of the EVP defined by Jz (also equivalent to the EVP obtained after linearizing (4.6)) 

would also yield the flutter quantities. However, since the ordering scheme 4@,, = O(e?) is 

implied in the EVP (4.18) it is not equivalent to the EVP defined by Jo, i.e., the terms 

representing the influence of initial imperfections are absent in the former. Therefore, the 

solution of (4.18) yields true flutter quantities only in the case of perfect panels. In par- 

ticular, for imperfect panels the value of A» obtained through (4.18) is lower than its true 

value obtained from the EVP defined by J2, the difference increasing with the magnitude 

of a,,. Further, using the true flutter quantities, obtained from the EVP defined by Ja, in 

the perturbation solution would result in divergent solutions of the O(€) problem. Hence 

the MMS is applied to perfect panels only. 

Thus, the solution of (4.17) can be written as, 

N 

vOIT, ) T, ; T2| = Soe(T ’ Ta]e%iT + C.C. (4.20) 

t=1 

where c; is proportional to the (complex) eigenvector €; associated with the eigenvalue u;, 

and C.C. denotes the complex conjugates of all preceding terms. 
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The O(e?) system 

Substitution of (4.20), considered in conjunction with the critical eigensolution, into the 

O(e?) system yields, 

O(e): 

where, 

Mv?) 4 CV) 4 (K 4 H)v@) = 
N 

»— [Ar (ABH; + Agh; + h; ey + h; Dy[eis]] ewiTo 4 

1 41 

~ — ~w.)T, ~ _ _oe 7 . _ _o.T, 

B1C41C41 elwa-Ha)To 4 Boes1G41 et(ws—F4)To 4 Bacn1C41 e(wa—a)To 4 

w1—W4)To 4+w3)To u(w4 +w2)To + 
Baciitar et + &scarea: el + 8gC41C21 € 

~ T, we _ —~oa)T, . _ _o3)T, 

87C41C11 etwator) Oo 4 &s¢31031 etlws w3)To + &9C21031 etlwa ws )To + 

—@3)T t(w3+w2)To t(w3 +1 )To 4 
810011631 ells + £11¢31C21 € + £12¢31¢11 € 

213C21C21 et(w2—w2)To + B14C11C21 e'(w1—H2)To + B15C21C11 et(w2tw )To + 

B16C41 erwaTo 4 1731 esto + Bisca err To +. B19Ci1 emi To + 

B20011011 3+ CC. 

(4.21) 

B = AB; +ARBs+B 2» | FG =1— 20 

Here, the constant, N-dimensional vectors hy, h,, h;, h; and &;, &;, &; depend on the 

critical eigensolution and system coefficients. The coefficients g;, g;, and h; vanish for 

the case of a trivial static equilibrium, i.e., @,, = 0, whereas h; depends explicitly on the 

modal-damping coefficients. The explicit forms of these vectors are lengthy and hence they 

are not displayed herein. The operator D,[ | is defined in (4.16)3 and the long overbars (-) 

denote the complex conjugate of the overbarred term. 

The underlined quantity in (4.21) represent secular terms whereas the remaining terms 

on the r.h.s. are non-secular terms. In order to obtain a uniform expansion of the type 

(4.15) the secular terms are eliminated by deriving the solvability in the following manner. 

Pertaining to the secular terms in (4.21), we seek a particular solution of the form, 

N 

v)ITo ) T; ; T2| = > é;[T; ’ To]e@i7 + C.C. (4.22) 

s=1 
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Inserting (4.22) into (4.21) considered without its non-secular terms, and equating coeffi- 

cients of e“*7> yields the systems of linear algebraic equations, 

Ag=& , %i=1ON 

where, (4.23) 

A; = —-w?M + w,C + (K+ H) 

é; = (2), h; + NoAih; + Arhy)en + h; Dy [es] 

Now, considering (4.20) and (4.17) it is easily verified that for non-trivial solutions of 

(4.17) the A; must be singular. Let B; denote the N x (N + 1) augmented coefficient 

matrix of the system (4.23), obtained by augmenting A; with the column vector ¢;. A 

well-known result from linear algebra states that a necessary and sufficient condition for 

(4.23), to possess a solution is that A; and B; should have the same rank. Using this result, 

the solvability conditions are obtained by replacing the k‘* column of A; with é; and then 

imposing the condition that the resulting matrix be singular. Since i = 1 — N we obtain 

N solvability conditions, each of which is unique for any choice of k : 1 < k < N (except in 

certain cases involving repeated frequencies—see Appendix C for further discussion on this 

point and a more formal derivation of the solvability condition for linear algebraic systems). 

The solvability conditions obtained in this manner are, 

de; 
dT; 
  = Ay key ; t= 13N (4.24) 

where k; are complex constants depending on the system coefficients, critical eigensolution 

and Ag. In order to obtain a bounded but non-trivial solution of the form (4.20), which 

implies a bounded but non-trivial solution for c,,, based on (4.24) we conclude that, 

M=0 = —=0 (4.25) 
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Introducing (4.25) into (4.21), the solution for v'?) may be expressed as, 

-1 _ 
vT>,T2] = — (wa — W4)?M + o(w4 — W)C + (K + H)| 21041041 et(wa—W4)To 

-1 
Tesetes + — (Qu )?M + 4(201)C + (K + H)| Biochem 

~1 
+|K+H] gent: + CC. (4.26) 

We note that in writing the solution for v'?) the homogeneous solution has been omitted 

since it has the same form as (4.20), hence it can be absorbed into v“). 

The O(eé*) system 

Following the same procedure as for the O(e?) problem, i.e., after introducing (4.20), 

(4.25), (4.26) and the critical eigensolution into the O(e*) system, we obtain, 

O(e?) » Mv) 4 Gy) 4 (K + H)v') 

N 

dO [Ac(ABhs + Ack + he)esr + +h; Dales] + (A8k: + ABL + diess + 
t=1 

(Aa{t; + t;} + rt; + t; + tent: eviTo + C.C. + N.S.T. (4.27) 

where N.S.T. denotes the nonsecular terms appearing in the O(e*) system. Their explicit 

form is not required for a first-order approximate solution. The constant, N-dimensional 

vectors ¢;, t;, t;, ¢;, t;, i, 1, and 1,, whose explicit forms are not displayed herein, depend on 

the critical eigensolution and system coefficients. The coefficients 1; vanish when considering 

a perfect panel, whereas 1; and 1; vanish when a trivial static equilibrium exists and/or when 

considering a perfect panel. The operator D,[ | is defined in (4.16)s3. 

Following a procedure similar to that used for the O(e?) system, the secular terms in 

(4.27) are eliminated and the resulting solvability conditions are, 

de; 

dT» 
  =Aegkent+ktieica , i=l 3N (4.28) 

At this stage it is worth mentioning that the fact that the critical eigenfrequencies w; (t £ 1) 

are complex does not allow us to conclude that the asymptotic behavior (i.e., whether growth 
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or decay) of the modal components of v(1) is the same as that obtained for the c;; solution 

through a linearization of (4.28). Introducing the representation, 

e1[T2] = Ti[T]je*!™l] , i=14N (4.29) 

into (4.28), we obtain the following equations describing the evolution of the phase J; and 

amplitude YT; pertaining to the modal components of v“ : 

  
dT; _ w g 2 

dT» —_ A2k:T; + kT; TY; 

dd; r 2 . T:i— = AkT+hY?7T; », t=15N (4.30) 
dT» 

The complex constants k;, &; and real constants k;, k;, k;, &; appearing in (4.28) and (4.30), 

respectively, depend on the system coefficients, critical eigensolution, Ao, and implicitly a,,. 

Hence, at each value of the control parameter 4 the solution of (4.30) is obtained after 

determining a@,, by the ACM. However, as noted previously the MMS is consistent only 

when applied to cases involving perfect panels, for which numerical results reveal that flut- 

ter oscillations occur about the trivial equilibrium only. In such cases equations (4.28) or 

(4.30) independently describe the amplitude and frequency of the ensuing flutter motion in 

terms of A. 

Solution of the Evolution Equations 
  

Equation (4.30), with i = 1 reads as, 

dT, 
diy Aoki Ti + es Y?7T1 (4.31) 

The fixed point solutions of (4.31) are, 

2 ky T2=0 , —stAg (4.32) 
ky 

For convenience we shall denote the trivial and non-trivial fixed points as {0} and {+1}, 

respectively. Further, assuming that the onset of flutter occurs as 4 increases, i.e., Az > 0 

(this is usually the case for flat panels), we conclude from (4.31) that ki > 0. Upon 
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considering the variational equation derived from (4.31), the stability of the fixed point 

solutions is ascertained. For the {0} solution we conclude that it is stable or unstable 

according to whether A2 < 0 or Az > 0. For the {+1} solution two cases arise. These 

represent the supercritical (subcritical) Hopf bifurcation for which we consider ki < 0 

(ky > 0) and hence obtain real fixed point solutions only when Az > 0 (A2 < 0) which are 

stable (unstable). As regards the remaining modes, using the result (4.32) we conclude that 

only trivial fixed point solutions exist for T; (t= 2— MW). 

The solution of T, is obtained from (4.31) as, 

7/0] T?[T2] = il 2 e—2k1AaTa — Y?[0) (1 _— e~2ki 27a) 

271 

  (4.33) 

Based on the solution (4.33) and considering non-trivial initial conditions, i.e., T[0] # 0, 

we conclude the following for the four cases involving ky > 0: 

  

  

ki <0,A2>0 : lim 1? - —*), 
Es * tc0 ky 

ki <0,A2 <0: lim T? =0 (4.34) 
Tor __ £9 00 

a 2 [. 

ky >0,A2>0: at et=— t In | T10]h1 Y ’ Ti? = 00 

A a 2biAg | T2[O]k: — Agks 
; i 210)4 
ki >0,A2 <0: if Y?[0]—->1 thenat t= - > In | Ti [Ola - , Ti 
OO A2k, 2kir2 T?[0] ky — Agk; 

if 1?(0) 1 <1 then lim T?=0 
A2k t—+00 

We see that only the first case shown above admits a non-trivial steady state solution for 

T1, this being identical to its stable, non-trivial fixed point solution. Thus, only fixed point 

solutions of T, need be considered in future. 

Considering (4.30)2 written for 1 = 1 in conjunction with the non-trivial fixed point 

solution for T,, we obtain, 

- kik #,(T2] = (ks - =) ale (4.35) 
1 

Similarly, considering (4.30)1,2 for i = 2 > N, and using the non-trivial solution (4.32) we 
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obtain, 

Ti[T2] = T:[OJe (ito ) roms 
ws 

0; = (ki — iz) A2T? , i=25N (4.36) 
ky 

Finally, introducing the non-trivial solutions (4.32), (4.35) and (4.36) into (4.29) and con- 

sidering (4.15) in conjunction with (4.20), we obtain the first-order approximation for a 

  

    

as, 

y kA Lat wv ¥ ia,t a= ¢ “Fe 1 +€>_&T; [Oe ‘ + C.C. 
1 i=2 

where, (4.37) 

AN = @r.=A-Me 

on ys 
Wy = (i - by )A +e 

o = (Bw -eE Vite , is2on 2 —_— t hy 2 hy 2 ? 

For small absolute values of A, i.e., confining the analysis to the region near the flutter 

boundary, it is observed that the imaginary parts of @; (i = 2 — N) are positive. In that 

case the steady state modal amplitudes of the flutter component of motion are given by 

discarding the summation term in (4.37). 

At this point it is worthwhile to make the following remarks concerning MMS analysis 

as carried out herein: 

e The MMS can be used to predict the modal ampitudes of the flutter component of 

motion only when flutter ensues as a result of a Hopf bifurcation. 

e Since the MMS is a perturbation method, results obtained by it are accurate only in 

the region (defined in control parameter space) near the flutter boundary. 

e Based on the present analysis, a Hopf bifurcation cannot occur for the system of evolu- 

tion equations (this corrresponds to a secondary Hopf bifurcation of the system (4.6)). 
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Hence periodic solutions of the evolution quantities which would yield non-periodic 

motions (i.e., solutions of z or a) cannot be obtained by the MMS as considered herein. 

e The case of negligible total damping has not been considered. In this case the O(e) 

system (4.17) is free of damping, thus yielding real eigenfrequencies and flutter due to 

frequency coalescence. For certain special values of the system parameters, e.g., h, A, 

d, etc., this could result in certain commensurability relations being satisfied between 

the eigenfrequencies at flutter, hence giving rise to the phenomenon of autoparametric 

resonance. Upon examining (4.21), we see that in the presence of an autoparametric 

resonance some of the quadratic, non-secular terms would then become small-divisor- 

producing terms and hence the solvability condition (4.24) (hence (4.25)) would no 

longer be valid. 

4.3. Dynamic Solutions Using the Numerical Integration Method (NIM) 

After obtaining the static equilibrium state a, by the ACM, the amplitudes of flutter 

oscillation about the static equilibrium, i.e., @,,, are obtained by numerically integrating 

(4.6). The first method used here is the usual one that considers the initial value problem 

(IVP), defined by (4.6) and some well chosen initial conditions, which is then numerically 

integrated for a sufficiently long time until transients have decayed. Henceforth, we term 

this as NIM1. The drawback of this method is that the convergence to steady state may 

be very slow. Moreover, depending upon whether the choice of initial conditions lies within 

the basin of attraction of the solution sought, we may or may not converge to it. The 

second method considered here is the shooting technique originally proposed by Aprille and 

Trick [87]. This is more efficient and applicable only when limit cycle (periodic) solutions 

are sought. This method is henceforth termed NIM2 and is described in the following 

sub-section. 
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4.3.1 Shooting technique to obtain periodic solutions (NIM2) 

In order to obtain a periodic solution (i.e., the state and period) of the autonomous 

system (4.6), we seek an initial condition yv (a 2N-dimensional vector) that lies on the limit 

cycle. Denoting the period of the solution as T, and imposing the periodicity condition, the 

IVP is transformed into the following two-point boundary value problem (BVP): 

z=f[z;A, L*] 

z[(0;v)=v , 2a(T;v)=v (4.38) 

where, z= z{t; v] 

The algorithm to solve the BVP (4.38) is initiated by providing initial guesses v9 and To for 

v and T, respectively. Then we seek corrections dy and 6T by requiring that the periodicity 

condition be satisfied, i.e., 

2(To + 6T 3 vo + Sv] = 9 + Ov (4.39) 

Performing a Taylor series expansion of (4.39) and retaining only linear terms, we obtain, 

Oz 
ello: Vo|6T + [Viz [To; Yo] — 1] Sv = V9 — 2[To; Vol (4.40) 

where, due to (4.38),, we have, 

Oz = * 
ay tte Vo] = £[2z[To; vo]; A, Li] (4.41) 

Here I is the 2N x 2N identity matrix and Vyz is the 2N x 2N Jacobian matrix of the state 

taken with respect to the initial condition we seek. Equation (4.40) represents a system 

of 2N linear algebraic equations in terms of the 2N + 1 unknown corrections Sy and 6T. 

In order to solve the system (4.40) for the 2N + 1 unknowns, the criterion of Mees [88] is 

considered. This requires that 5y be normal to f, i.e., 

f' [2[To; vo]; A, Li] dv = 0 (4.42) 
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It should be noted that other criteria for augmenting (4.40) with an additional equation 

exist (e.g., arbitrarily setting one of the corrections dv; = 0; see Nayfeh and Balachandran 

[85] for further details) 

The components of Vz, required in the corrector, are obtained by differentiating (4.38), 

with respect to » in conjunction with the functional dependency indicated in (4.38),. Thus 

we obtain a system of linear ODE’s in Ba i.e., 

Further, using the initial condition given by (4.38). and integrating (4.38), the state can 

be expressed as, 

2[t;v)=uvt+ [ fdt* (4.44) 

from which we obtain the result, 

t —_ 

Vypz=I+ / V2f Vpz dt* =—>> Vypz [0; v| =I (4.45) 
0 

The algorithm for obtaining a periodic solution can now be stated as follows: 

Step 1: Obtain 2[To; vo] and Vyz[To; vo| by numerically integrating the augmented 

IVP defined by the (2N)?+2N ODE’s (4.38); and (4.43)2 subject to the initial conditions 

(4.45)2 and (4.38) (evaluated for the initial guess v9), i.e., z[0] = vo and Vpz [0] =I. This 

numerical integration scheme constitutes the predictor part of the algorithm. 

Step 2 : Using z[To; wo] and Vpz[To; vo], and (4.41), solve the system ((4.40) , (4.42)) 

to obtain the corrections Sy and ST. 

Step 3 : If the absolute values of the corrections are below a specified tolerance, then we 

accept %o and To as yw and T, respectively, i.e., we have converged onto the limit cycle. 

Otherwise, we consider the new initial guesses as 6v+vp— vp and 6T+T)— Tp and repeat 

the above procedure. This Newton-Raphson iteration procedure constitutes the corrector 

part of the algorithm. 
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Regarding the NIM, the following points should be noted: 

e Unlike the straightforward integration method (NIM1), the shooting technique (NIM2) 

can also be used to converge onto unstable limit cycles. In fact even in the case of 

stable limit cycles the rate of convergence is much faster when using the NIM2. 

e The NIM2 cannot be used when non-periodic solutions are sought. Moreover its 

convergence characteristics are very sensitive to the initial guesses and step size of 

numerical integration, especially when multiple solutions co-exist. Hence, when seek- 

ing periodic solutions, the NIM usually consists of applying the NIM1 to get onto the 

solution branch and then the NIM2 to continue on that branch. Non-periodic (i.e., 

quasi-periodic or chaotic) motions are obtained by using the NIM1. 

e Stability and bifurcation behavior of the solution is obtained as a by-product when 

using the NIM2. This is discussed in the following sub-section. 

e Unlike the MMS, the NIM is not restricted to the class of weakly-nonlinear systems 

and hence it is applied in the deep post-flutter range also. 

The relevant derivations for the NIM, i.e., obtaining the explicit forms of (4.5), (4.6) 

and the associated Jacobian matrices were done using MACSYMA. These expressions are 

not displayed herein. The numerical integration was carried out using the fifth and sixth 

order Runge-Kutta-Verner method (IMSL-DVERK). Further discussions of algorithms for 

shooting methods and continuation methods to obtain dynamic solutions appear in, e.g., 

Seydel [46] and Nayfeh and Balachandran [85]. 

4.3.2 Stability and bifurcation behavior of periodic solutions 

After a limit cycle solution z[t] (= z[t + T]) and its period T are obtained by the 

shooting technique, its stability is ascertained using Floquet theory (see Appendix C). 

Comparing (4.43)2, (4.45). with (C.8)1,2, respectively, and considering (C.5), we see that 

the monodromy matrix ¢ is identical to Vyz [T ; vo]. Hence, after the shooting technique 
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has converged to a periodic solution we can determine its stability as a by-product by 

obtaining the Floquet multipliers, i-e., rj (j = 1— 2N), which are the eigenvalues of 

Vyz [T; Vo. 

As the control parameter is varied, bifurcations of the periodic solution Zz (see Appendix 

C) occur for certain control parameter values (henceforth referred to as bifurcation values). 

These bifurcations are determined based on how the critical Floquet multiplier >, leaves 

the unit circle in the complex plane (see Fig. 4.1) as the control parameter is varied. This 

in turn determines—at the bifurcation values—the nature of the non-decaying (oscillatory) 

disturbance z* which, when superimposed on 2Z, results in a bifurcating solution z = #+2*) 

The various bifurcations encountered are: 

Symmetry Breaking Bifurcation : For a stable limit cycle possessing inversion symme- 
  

try, i.e., z[t] = —z[t+ 7), a symmetry breaking bifurcation occurs when A, leaves the unit 

circle through +1. Stable, symmetry broken (unsymmetric) limit cycles co-exist with the 

unstable, symmetric limit cycle beyond the bifurcation point. The period of these solutions 

is preserved, locally, beyond the bifurcation point. 

Tangent Bifurcation : When the stable limit cycle is symmetric (unsymmetric), a tangent 
  

bifurcation occurs when A, leaves the unit circle through —1 (+1). A branch of unstable 

limit cycles meets the branch of stable limit cycles at the bifurcation point. This is also 

known as a cyclic-fold bifurcation and the bifurcation points are called turning points. Be- 

yond the bifurcation point the solution jumps to another periodic or non-periodic state. 

For the case when periodic solutions exist beyond the bifurcation point, the period and 

symmetry are locally preserved. 

Period-Doubling Bifurcation : When the stable limit cycle is unsymmetric, a period- 
  

doubling bifurcation occurs when A, leaves the unit circle through —1. Stable, period- 

doubled solutions co-exist with the unstable, periodic solution beyond the bifurcation point. 

The period-doubled solutions have a period that is, locally, equal to twice that of the un- 

stable periodic solution. 
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Secondary Hopf or Neimark Bifurcation : As discussed earlier, a Hopf bifurcation of 
  

a fixed point solution yields a periodic bifurcating solution containing a new (non-zero) 

frequency. Similarly, a Hopf bifurcation of a stable periodic solution introduces an addi- 

tional frequency into the bifurcating solution. Depending on whether the two frequencies, 

i.e., the newly introduced frequency and the frequency of the periodic solution prior to the 

bifurcation, are commensurate or incommensurate, the bifurcating solution is periodic (i.e., 

phase-locked) or two-period quasi-periodic (QPM), respectively. Phase-locked motions are 

rare and were not observed in this study. This bifurcation is also called a Neimark bifur- 

cation and occurs when two complex conjugate Floquet multipliers leave the unit circle 

transversely. Since quasi-periodic motions are non-periodic, only the NIM1 can be used to 

obtain them. Beyond the bifurcation point, the original periodic solution branch is unstable, 

whereas the QPM (also known as motion on a T? torus) is stable. 

4.4 Characterization of Motion 

The various types of dynamic solutions obtained, i.e., periodic (symmetric, symmetry 

- broken, period-doubled), and non-periodic (i.e., quasi-periodic and chaotic), are charac- 

terized by obtaining phase trajectories, frequency spectra, Poincaré sections, Lyapunov 

exponents and associated Lyapunov dimension. 

Phase Trajectories 
  

These are obtained for the periodic solutions in the z,;—zs plane. The symmetric, symme- 

try broken and period-doubled (up to period-4 motion) solutions are clearly distinguishable. 

Frequency spectra 
  

These are obtained using the Fast Fourier Transform (FFT) routine in the software 

IGOR. For a symmetric limit cycle the frequency components are the fundamental (flutter) 

frequency and its higher harmonics. The unsymmetric solution is characterized by the ap- 
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pearance of an additional zero-frequency component (DC component) and the 

period-doubled solution contains additional sub-harmonics of the fundamental frequency 

and its higher harmonics. The QPM contains additional sidebands around the fundamental 

frequency, its sub-harmonics and higher harmonics, whereas chaotic motion is characterized 

by a broadband frequency spectrum. 

Poincaré Sections   

These are defined by holding z; constant (e.g., zero as considered herein) and z; > 0 (or 

z < 0). For most applications the sections were defined using t = 6. 

Lyapunov Exponents and Lyapunov Dimension 
  

The Lyapunov exponents measure the average exponential rates of divergence or con- 

vergence of nearby phase space trajectories. The Lyapunov exponents corresponding to an 

initial condition z are defined as (Parker and Chua (64)), 

oF = jim “In| B[t]}|} ,», %jgul—aNn (4.46) 

where j;[t] are the eigenvalues of the fundamental matrix solution Z*[t] obtained by inte- 

grating the IVP (C.8) with A[t; A, L*] = Vail... As shown earlier, the ji;{t] are also 

the eigenvalues of Vpz|[t; vo] which is obtained by integrating the IVP defined by (4.38), 

and (4.43) subject to the initial conditions z[0] = z) and Vpz([0] = I. 

Another equivalent definition (e.g., Wolf et al. [72]), used in computational algorithms, 

considers the evolution of an infinitesimal 2N-dimensional sphere of initial conditions. As 

time evolves, the sphere expands or contracts along its 2N principal directions and gets 

transformed into a 2N-dimensional ellipsoid. The j‘* Lyapunov exponent is defined in 

terms of the length of the j** principal axis of the ellipsoid, i.e., d;[¢], as, 

$ 1 d;{é] 

A5= 2 71°82 a, (0) 
  , g=l—2N (4.47) 

The algorithm and program by Wolf et al. [72] was used for calculating the Lyapunov 

exponents. The value of dj depends upon input parameters such as the Lyapunov time 
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step and Runge-Kutta integration time step. Moreover, since dj is a statistical property we 

need to integrate (4.38), and (4.43)2 over a long time to obtain an acceptable value for it 

(Moon [62]). Due to these reasons, for some cases, the Lyapunov exponents oscillate about 

a mean value instead of converging. 

For an autonomous system (e.g., (4.6)), one Lyapunov exponent is always zero, except 

in the case of a stable equilibrium point. Moreover, since (4.6) is a dissipative system, 

contraction of an attractor must outweigh its expansion and hence the sum of the exponents 

must be negative. For a stable equilibrium point all exponents are negative. Periodic 

solutions are characterized by one zero exponent, the remaining 2N —1 being negative. 

When K exponents are zero and the remaining 2N—K are negative, the motion is K-period 

quasi-periodic (i.e., K incommensurate frequencies are involved). Chaotic attractors possess 

at least one positive exponent (say ;) which indicates an exponential expansion in the 

corresponding principal direction (say d,[t]). Since, by definition, an attractor is bounded, 

this implies that a folding process occurs in the principal directions corresponding to the 

positive exponents. Thus, each positive exponent represents a principal direction along 

which we have a repeated stretching and folding process that decorrelates nearby states on 

the attractor. This implies an exponential loss of correlation between two orbits initially 

separated by an infinitesimal distance, i.e., sensitivity to initial conditions. 

The Lyapunov dimension of the attractor was determined according to the following 

procedure due to Kaplan and Yorke [65]. We order the Lyapunov exponents of the attractor 

  

as Ay > Ag Dees > Aon and define m as the largest integer which satisfies the relation 

Mi tdgt--ee: + Am > 0. Then, the Lyapunov dimension is defined as, 

dp =mytaate + Am (4.48) 
| Am+1 | 

If no such m exists, as is the case for a stable equilibrium point, we have dz = 0. Thus, it 

can be easily shown that dz, = 0 for a point attractor, dz = 1 for a periodic attractor and 

dy; = K for a K-periodic attractor. A chaotic attractor has a non-integer dz. 
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Figure 4.1: Bifurcation behavior determined by how Floquet multiplier leaves the unit 
circle. 
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Chapter 5 

NUMERICAL RESULTS AND DISCUSSIONS 

The numerical applications considered herein are for a composite panel made up of three 

layers (i = 1, 2,3) with the indices 1 and 3 representing the outer layers. The following data 

are common to all the cases considered: 

Pressure of still air ( i.e., atmospheric pressure ) : po = 14.63 psi 

Speed of sound at sea level: Coo = 1082.5 ft.sec™? 

Polytropic gas coefficient : x= 1.4 

Structural damping (assumed) : Es = 0.1le, 

Relative thickness of layers : hei> = hesy = 0.5he25 

Total thickness of panel : h=1in 

Nondimensional imperfection considered : Gi; = 0.2 (unless stated otherwise) 

Mass density of panel layers : P<i> = 0.00013 Ibf.sec?.in=4 

In-plane Young’s moduli of panel layers : Ee1> = Ee3> = 20.83 x 10° psi ; EFeo> = 

Transverse Young’s moduli of panel layers : | F<i> 

Transverse shear moduli of panel layers : Gris = E<i> (unless stated otherwise) 

In-plane, transverse Poisson’s ratio of panel layers peiy = pe; = 0.25 

5.1 Stability Boundaries 

A 4x 1 mode analysis was performed for a square panel with thickness ratio 4 = 50, 

subjected to a uniaxial compressive edge load Lj, and flow past both faces (6; = 0, § f = 2) 

in the z; direction (A = 0°). Unless stated otherwise, aerodynamic nonlinearities were 

included in the simulations. 
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Perfect panel 

The stability of the trivial static equilibrium {0} was analyzed and the associated sta- 

bility boundaries were obtained by following the eigenvalues of J2 (eqn. (4.13)). Depending 

on the number of real and complex eigenvalues residing in the right-half complex plane, 

denoted R and C, respectively, the A-Lj plane is divided into regions I-IX on the basis of 

[R, C] (see Fig. 5.1 for details). 

Figs. 5.1 and 5.2 display the stability boundaries obtained for a panel with movable 

edges, within the framework of the CPT and HSDT, respectively. The {0} solution is 

stable in I and loses its stability by divergence when going across the divergence boundary 

into II, and by flutter when going across the flutter boundary into IV. When going across 

into IV flutter occurs as the result of a Hopf bifurcation. However, as will be seen later, this 

is not the only mechanism for flutter. Stable non-trivial (buckled) equilibria {+1} exist in 

regions II and III. The critical buckling load for the CPT, obtained for A = 0, is 4 (i.e., the 

classical Euler buckling load). 

Results obtained by the CPT and HSDT for various values of gee are compared in 

Fig. 5.3 where only the principal stability boundaries are shown. We see that the CPT 

overpredicts both instability loads (i.e., divergence and flutter), and is not sensitive to 

variations in the transverse shear flexibility of the panel. Furthermore, in contrast to the 

CPT results, those obtained by the HSDT show that an increase in the transverse shear 

flexibility of the panel (i.e., higher ge) yields lower instability loads. This behavior 

conforms to physical expectations. Figs. 5.4 and 5.5 obtained for the CPT and HSDT, 

respectively, show the effect of in-plane edge restraints applied along the edges z2 = 0, lg. 

We see that for a given A, divergence occurs for lower values of —L] when the edges are 

immovable. This is due to the fact that the edge restraint induces in-plane compressive 

loads in the z2 direction, thus causing the panel to buckle at a lower —Lj. Furthermore, 

the flow speed required to return a buckled panel to its flat stable configuration is higher 

when the edges are immovable. For this case, where the induced edge load is normal to the 

flow direction, the edge restraints have no visible effect on the flutter boundary. 
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Imperfect panel 

Figs. 5.6-5.9 show that for low values of —Lj the (non-trivial) equilibrium becomes 

unstable as the result of a Hopf bifurcation and flutter ensues. For high values of — Lj, the 

loss of stability results in a jump either to flutter or a new buckled state (snap-through). 

This region is marked with dots in Figs. 5.6—5.9. Results obtained by the HSDT in Fig. 5.6 

show that for a given flow speed the compressive load at which instability occurs is higher 

for a panel possessing greater transverse shear rigidity. As in the case of perfect panels, 

the CPT predicts the highest instability loads and does not model the effect of variations 

in transverse shear rigidity. An interesting feature is that for a certain range of L} three 

distinct flutter speeds exist. 

Fig. 5.7 shows that for low values of compressive loads (< 4.0) the flutter speeds are 

slightly lower when the panel is restrained along the edges parallel to the flow. This is in 

contrast to the results obtained for the perfect panel for which the edge restraints had no 

visible effect on the flutter boundary. The effect of aerodynamic nonlinearities are displayed 

in Fig. 5.8. Here we see that for small edge loads the inclusion of aerodynamic nonlinearities 

yields higher flutter speeds. However, for high edge loads, as the flow speed is increased, the 

flutter speed predicted by the aerodynamically nonlinear model is lower than that obtained 

using linear aerodynamics. Moreover, the aerodynamically linear model does not yield 

multiple flutter speeds. These may occur when considering the aerodynamic nonlinearities 

in which case, starting from different stable points in the \-Lj plane for a given compressive 

load and then varying the flow speed could result in more than one speed at which flutter 

instability occurs. This is physically possible, e.g., when starting from various values of the 

flow speed which are held constant while the edge load is varied upto a certain common 

value and subsequently varying only the flow speed for each case. Fig. 5.9 shows that as 

the flow speed is increased, a panel with a greater imperfection (in the first mode) flutters 

at a lower speed when the compressive load is small to moderate (except, for the HSDT 

case, within a small region of Lj, i.e., between the leftmost points of vertical tangency of 

the two curves). For higher edge loads this trend is reversed, with marginal differences in 
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the instability speeds. 

5.2 Effect of Aerodynamic Nonlinearities on Post-Flutter Behavior 

The amplitudes and frequency of flutter were obtained by using the HSDT model for a 

panel with movable edges. Unless stated otherwise, the results discussed within this section 

pertain to a nonlinear aerodynamic model of a perfect, rectangular panel (¢ = 0.5) without 

edge loads. The amplitudes and frequency of flutter obtained by the MMS (eqn. (4.37)1,2,3) 

are compared with those obtained by the NIM2. Henceforth, in the discussions, figures, 

and tables the flutter amplitude is loosely referred to as 2. 

The results shown in Figs. 5.10-5.21 were obtained using a 2 x 2 mode analysis, an 

aerodynamically linear theory with flow past both faces, flow orientation A = 30°, and 

a = 24. Upon comparing the results obtained by the NIM2 and MMS, displayed in 

Figs. 5.10 and 5.11, we see that the NIM2 yields higher amplitudes and lower frequency of 

flutter. This conforms to the work of Morino and Kuo [37] wherein the flutter amplitudes 

obtained by a 5‘*-order perturbation analysis (which, just like the NIM2, is more accurate) 

are higher than those obtained via a 3"¢-order analysis. Moreover, as \ increases, the non- 

linearity becomes stronger, thus yielding bigger differences in the results predicted by the 

two methods. In Fig. 5.11 the frequency variation predicted by the NIM2 is almost linear 

whereas the MMS result is exactly linear. This trend seems typical for flat panels exposed 

to a supersonic flow (see Dowell [22], Kuo et al. [36]) but not for shells (see Gordon and 

Atluri [21]). Since bifurcations of the periodic solution cannot be predicted by the MMS 

for the problem considered herein, the comparison between the two methods is terminated 

at the symmetry breaking bifurcation point. 

The results displayed in Figs. 5.12-5.21 were obtained by the NIM2. Fig 5.12 shows 

the z, versus A curve, going into the deep post-flutter range. Flutter oscillations start 

at Ar = 57.9410 at which point the trivial equilibrium y undergoes a Hopf bifurcation 

and a symmetric limit cycle z is born. At A = 68.3410 a symmetry breaking bifurcation 

67



CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS 

occurs with the stable symmetric solution (SS) losing its stability to a stable symmetry 

broken (SB) solution. Fig. 5.13 shows the phase trajectories of typical SS and SB solutions. 

Fig. 5.14 shows that the frequency spectrum of the SB solution includes the fundamental 

frequency (~ 3.0079 Hz) and its second harmonic. We note that the frequency spectrum 

also includes the higher harmonics which do not appear in Fig. 5.14 due to the frequency 

range considered therein. A small DC (zero frequency) component is also present but this is 

only visible when the amplitudes in the frequency spectrum are plotted in the logarithmic 

scale (not shown here). At A = 78.9410 a period-doubling bifurcation occurs with the SB 

solution losing its stability to a period-doubled (P2) solution. Figs. 5.15 and 5.16 show the 

phase trajectory and frequency spectrum for a typical P2 motion. The frequency spectrum 

contains the fundamental frequency, its sub- and higher- harmonics, and the DC component 

which is more pronounced now. 

At A = 81.365497 the P2 solution loses its stability as the result of a transverse crossing 

of the unit circle (in the complex plane) by two complex conjugate Floquet multipliers, 

and quasiperiodic motion (QPM) ensues. Thus we revert to the NIM1 in order to obtain 

the QPM. The Poincaré sections and frequency spectrum of typical QPM’s are shown in 

Figs. 5.17-5.19. Fig. 5.17 shows the transition from P2 motion to QPM, i.e., the trans- 

formation of two discrete points into two closed loops. Fig. 5.19 shows that the frequency 

spectrum for QPM contains sidebands around the fundamental frequency and its higher- 

and sub- harmonics, thus indicating the presence of additional, incommensurable frequen- 

cies. The Lyapunov exponents and associated dimension, shown in Table 5.46, indicate that 

the motion is 2-period quasiperiodic, i.e., motion on a T? torus. 

Continuing along the unstable symmetric solution (US) that exists beyond the symmetry 

breaking bifurcation point, we see that it regains its stability at A = 92.6404 which is the 

second symmetry breaking bifurcation point. For a reverse sweep of A, at A = 92.5410 the 

NIM2 converges to the US solution only. However, the NIM1 yields a phase trajectory (not 

shown) which shows bounded, non-periodic motion between the US and two neighboring 

unstable symmetry broken (USB) limit cycles. Figs. 5.20 and 5.21 show a Poincaré section 
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and frequency spectrum for this case. The Poincaré section has a pattern emerging and the 

frequency spectrum is broad-banded. Furthermore, the Lyapunov exponents and associated 

dimension shown in Table 5.46 indicate the motion to be chaotic. This type of chaos 

conforms to the conjecture advanced by Dowell [45], which states that chaotic motion could 

emerge when all coexisting equilibria (static or dynamic) are unstable. 

Results displayed in Figs. 5.22-5.24 pertain to the 4 x 1 mode analysis of a panel with 

flow orientation A = 0°. Fig. 5.22 shows the variation of nondimensional flutter speed 

(Ao) with thickness ratio (3) for the cases of flow past the upper face and flow past both 

faces. We note that even though Apo increases with 4 the actual dimensional flutter speed 

decreases (see (B.2)4). The coefficient B, appearing in the MMS solution (4.37)1, is shown 

in Fig. 5.23 for flow past the upper face, and Fig. 5.24 for flow past both faces. Based 

on discussions in Section 4.2, the regimes of hard (soft) flutter are demarcated on the basis 

of whether n is positive (negative) which corresponds to a subcritical (supercritical) Hopf 

bifurcation. Fig. 5.23 shows that hard flutter is only possible for 4 < 15. A comparison of 

the aerodynamically linear and nonlinear theories presented in Fig. 5.24 indicates that linear 

aerodynamics does not yield the hard flutter phenomenon, whereas the aerodynamically 

nonlinear model yields hard flutter for 4 < 75. As 4 increases, the difference in ep predicted 

by the aerodynamically linear and nonlinear models diminishes. This implies that the 

aerodynamically linear model correctly predicts the immediate post-flutter behavior of thin 

panels only. The result that thick panels experience hard flutter was also obtained by 

Librescu [5,6] based on a method due to Bautin [7]. 

Figs. 5.25-5.27 show the corresponding results for a 2 x 2 mode analysis of a panel with 

flow orientation A = 30°. Comparing Figs. 5.25 and 5.22, we see that for thin panels the 

variation of Ap with 4 is small when A = 0°, but quite large when A = 30°. Fig. 5.27 shows 

that for flow past the upper face, hard flutter occurs only within the range 45 < a < 55. 

The flutter amplitude and bifurcation behavior, obtained by the NIM2, for a 2 x 2 

mode analysis with A = 30° are shown in Figs. 5.28-5.30. Figs. 5.28 and 5.30 pertain 

to the case of flow past both faces for panels with thickness ratio 100 and 50, respectively. 
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Fig. 5.28 shows that a supercritical Hopf bifurcation occurs at A = Ao = 84.25; the resulting 

SS solution undergoes a symmetry breaking bifurcation at 1 = 139.45; and the resulting 

SB solution undergoes a secondary Hopf bifurcation at A = 148.15, yielding QPM. The 

US solution regains its stability at A = 155.65, which is the second symmetry breaking 

bifurcation point, and the resulting SS solution appears to approach a turning point at 

A = 160.45. However, the continuation of this branch around the turning point could not be 

obtained. Fig. 5.30 shows that a subcritical Hopf bifurcation occurs at A = Ag = 74.49 prior 

to which US motions coexist with the stable {0} state. This implies that hard flutter motion 

occurs for X > Apo, although the steady state solution describing it could not be obtained by 

either the NIM1 or NIM2. However, we see that if the {0} state is appropriately disturbed, 

violent motions could occur for pre-critical speeds, i.e., for A < Ag. This is in contrast to 

the results obtained when the similar case is analyzed using linear aerodynamics, in which 

case hard flutter motion is not possible. 

Fig. 5.29 reconsiders the case presented in Fig. 5.28 for flow past the upper face of 

the panel. Soft flutter, i.e., stable nonsymmetric (SN) periodic motion, ensues as the result 

of a supercritical Hopf bifurcation occurring at A = 161.03. A period-doubling bifurcation 

occurs at A = 195.13 and the resulting P2 solution undergoes a secondary Hopf bifurcation 

at A = 202.83, thus yielding QPM. Continuing on the unstable nonsymmetric solution past 

the period-doubling bifurcation, we see that it approaches a turning point at A ~ 202.83, 

i.e., the same value as that at which the secondary Hopf bifurcation occurs on the P2 

solution. However, both the NIM1 and NIM2 did not yield a continuation of this branch 

around the turning point, nor could they yield any periodic states for \ > 202.83. 

Fig. 5.31 presents a comparison of results obtained by a 2 x 1 and 4 x 1 mode analysis 

of flow past both faces with A = 0° and 4 = 50. Both analyses indicate that hard flutter 

motion occurs, although the steady state solution describing it could not be obtained. An 

interesting result of the 4 x 1 mode analysis is that, for 67.11 < A < 99.81, a secondary 

US branch coexists with the primary one that starts from A = Ao = 170.89. Unstable limit 

cycles for A = 90.09, obtained by integrating from initial conditions on the primary and 
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secondary US branches, are shown in the insets. 

Results for a 4 x 1 mode analysis of a square, imperfect panel, with 4 = 50, subjected to 

flow past both its faces in the z, direction and an in-plane compressive load Lj = —5.3, were 

obtained using nonlinear and linear aerodynamics. For the aerodynamically linear model a 

supercritical Hopf bifurcation occurs at 1 = 39.980088 with y; = 0.1164. The corresponding 

result obtained by using nonlinear aerodynamics will be seen in Fig. 5.43. The results for 

the ensuing motion using nonlinear and linear aerodynamics are summarized in Tables 5.11 

and 5.17, respectively. For both cases the motion starts off as stable nonsymmetric (SN) 

and then goes through a sequence of period-doublings. Although a true comparison of 

flutter amplitudes cannot be made, since the flutter speeds are different for the two cases, 

it appears that the aerodynamically nonlinear model yields higher amplitudes. 

5.3 Effect of In-plane Edge Loads and Flutter of Buckled Panels. 

Unless stated otherwise, the results discussed in this section pertain to a 4 x 1 mode, 

aerodynamically nonlinear analysis of a square panel with movable edges and a = 50, 

subjected to flow past both faces (with A = 0°) and a unidirectional compressive edge load 

Lj}. Both perfect and imperfect panels were analyzed using the CPT and HSDT, and results 

were obtained by the NIM2 and NIM1. 

Imperfect panel 

The region in the A-Lj plane where the transition from Hopf-bifurcation instability to 

jump-type instability occurs was studied (i.e., transition to the region marked with dots in 

Fig. 5.6). 

CPT results 

Fig. 5.32 shows the static equilibrium state of the panel as A is varied, with 

Li = —6.1. As the flow speed is increased, the panel tends to flatten out until a Hopf 

bifurcation (H) occurs, resulting in soft flutter oscillations about the non-trivial static equi- 

librium. The periodic motion starts off as stable nonsymmetric (SN) and undergoes a 
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sequence of period-doubling bifurcations, yielding period-2 (P2) up to period-32 (P32) mo- 

tion. These results are summarized in Table 5.1. Fig. 5.33 shows phase trajectories for 

typical P1 up to P8 motions, and Fig. 5.34 shows the corresponding frequency spectra. Fig. 

5.35 shows a Poincaré section for a value of X just beyond the P32 motion value, and Fig. 

5.36 shows the corresponding frequency spectrum which is broad-banded. The Lyapunov 

exponents and associated dimension for this case are shown in Table 5.46. Based on these 

results, it appears that chaotic motion has resulted after a sequence of period-doublings. 

Fig. 5.37 shows the static solution for Lj = —6.3. Motion about TP1 and motion past H, 

summarized in Tables 5.2 and 5.3, respectively, show that multiple periodic solutions and 

the static solution coexist within the range 40.4544 < A < 41.0225. Holmes [49] made sim- 

ilar observations when analyzing the cylindrical bending of a perfect panel. He concluded 

that a region in the A-Lj plane exists in which multiple attracting solutions coexist, i.e., the 

panel can remain buckled or flutter. Fig. 5.38 shows phase trajectories for nonsymmetric 

motion about TP1. 

The static solution for A = 35 with Zj varying is shown in Fig. 5.39. Table 5.4 

summarizes the UN motion obtained prior to H1, thus indicating that violent flutter motions 

are possible. Table 5.5 summarizes the motion prior to H2, which starts off as SN before 

bifurcating to QPM. Table 5.6 summarizes the motion past H3, which undergoes a sequence 

of period-doublings. An interesting feature is that UN motion about H3, summarized in 

Table 5.7, was found to coexist with the stable motions in Table 5.6. Bounded motions 

about TP1 could not be obtained. Fig. 5.40 shows the static solutions for A = 37 and 43. 

For A = 37, motion past H and motion about TP1 are summarized in Tables 5.8 and 5.9, 

respectively. Table 5.10 shows that the motion past H, for A = 43, undergoes a sequence 

of period-doublings as Lj is increased. A Poincaré section for a value of ZL{ which is well 

past the P8 motion value is shown in Fig. 5.41. Fig. 5.42 shows the associated frequency 

spectrum which is broad-banded. Based on these results and the Lyapunov exponents and 

associated dimension shown in Table 5.46, it appears that the motion is chaotic. 
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HSDT results 

Fig. 5.43 shows the static solution for L] = —5.3 and — 5.4 with A varying. The 

motion past H for these two cases, summarized in Tables 5.11 and 5.12, undergoes a se- 

quence of period-doubling bifurcations. Furthermore, for Lj = —5.4, when going past TP1 

the solution obtained by the NIM1 was the same as that obtained for motion past H. 

The static solution for 4 = 32 and 42 with L{} varying is shown in Fig. 5.44. For A = 32, 

the motions past H and TP1 are summarized in Tables 5.13 and 5.14, respectively. For 

A = 42 the motion past H is summarized in Table 5.15. A comparison of the numerical data 

pertaining to Fig. 5.40 (A = 43) and Fig. 5.44 (A = 42) shows that, as Lj is increased, the 

CPT yields larger stable static equilibrium solutions than the HSDT. However, it appears 

that the HSDT predicts higher amplitudes of flutter oscillations past TP1 than the CPT 

(compare Tables 5.9 and 5.14). 

With Lj = 0, as A is increased a supercritical Hopf bifurcation occurs for 

y = {—0.3914 , —0.0561 , 0.0065 , —0.0166}? at A = 281.0285, resulting in SN periodic 

motion which undergoes a period-doubling bifurcation. The results are summarized in 

Table 5.16. 

Perfect panel 

The region in the A-Lj plane where the divergence and flutter boundaries meet was 

studied (see Fig. 5.3). The motivation for this choice of parameter space is the work of 

Holmes [49], wherein it was noted that complex dynamic solutions may coexist with buckled 

equilibria in this region. 

CPT results 

Fig. 5.45 shows the static and dynamic solution (y , 21) for Lj = —5.5 as AX is varied. 

We see that the buckled panel becomes flat, following which SS periodic motion occurs 

about the flat configuration. The static solutions for L} = —5.8 and — 6.2 are shown in 

Fig. 5.46. For L} = —5.8, a Hopf bifurcation occurs for the {0} solution. The resulting 

SS solution undergoes a sequence of period-doublings (summarized in Table 5.18). The 

motion past TP was obtained for A = 36.8456 and A = 36.9456. For A = 36.8456, the 
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Poincaré section, frequency spectrum, and phase trajectory (shown in Figs. 5.47, 5.49, 

and 5.50, respectively) indicate that the motion is periodic. The limit cycle shown in 

Fig. 5.50 indicates the existence of multiple unstable equilibria (i.e., the trivial and other 

non-trivial fixed points) about which motion occurs. Similar limit cycles were obtained by 

Sipcic and Morino [40] and Dowell [44]. For A = 36.9456, the Poincaré section, frequency 

spectrum, and Lyapunov exponents and associated dimension (shown in Figs. 5.48, 5.51, 

and Table 5.46, respectively) indicate that the motion is chaotic. A similar transition from 

periodic to chaotic motion was observed by Dowell [44]. Furthermore, comparing the value 

of A at TP (= 36.7, see Fig. 5.45) with the value at which the Hopf bifurcation for {0} 

occurs (* 35.11, see Fig. 5.3), we see that a stable non-trivial static equilibrium state 

exists beyond the flutter boundary. For Lj = —6.2, the motion past TP was obtained 

for A = 34.8739. The Poincaré section, frequency spectrum, and Lyapunov exponents and 

associated dimension (shown in Fig. 5.52, 5.53 and Table 5.46, respectively) indicate that 

the motion is chaotic. 

The static solution for A = 25 with LJ varying is shown in Fig. 5.54. The motion 

past H1, H2 and H3 is summarized in Tables 5.19, 5.20 and 5.21, respectively. However, 

these results are of academic interest only, since the values of ZL} required to cause flutter 

are too high. Bounded motions about TP1 could not be obtained. For A = 34, the static 

solution is shown in Fig. 5.55. For the motion past TP1, the Poincaré section, frequency 

spectrum, and Lyapunov exponents and associated dimension (shown in Figs. 5.56, 5.57, 

and Table 5.46, respectively) indicate that the motion is chaotic. The motion past the 

supercritical Hopf bifurcation point for the trivial solution (i.e., H{0}), summarized in 

Table 5.22, starts off as SS and subsequently undergoes a symmetry breaking and period- 

doubling bifurcation. These results indicate that the panel could remain buckled or flutter 

beyond H{0}. For A = 39, only the {0} static solution exists. Motion about H{0} is 

summarized in Table 5.23. 
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HSDT results 

Fig. 5.58 shows the static solution for L] = —4.7, —4.8, —4.9, and — 5.0 when A is 

varied. It also shows the motion past H{0} for Li = —4.7, —4.8, and — 4.9. The motion 

past H{0} for Lj = —5.0 is summarized in Table 5.24. In contrast to the motion past H{0} 

for the other three values of L}, in this case the motion undergoes a sequence of period- 

doublings. We see that for L? = —4.9 and — 5.0 there exists a range of A for which the 

panel can either stay buckled or flutter. 

A comparison of flutter amplitude and frequency, obtained by the MMS and NIM2 

for motion about H{0} when Li} = —4.8, is presented in Figs. 5.59 and 5.60, respec- 

tively. Even though the basic trend, i.e., NIM2 predicting higher amplitudes and lower 

frequencies, remains the same as that obtained for the aerodynamically linear model with- 

out compressive loads (see Figs. 5.10 and 5.11), the quantitative differences are large 

except in the immediate post-flutter range. Moreover, the frequency variation predicted 

by the NIM2 is nonlinear. We see that the NIM2 yields an inexplicable discontinuity at 

A = 36.8480, i.e., a sudden drop (rise) in amplitude (frequency). However, there is no reason 

to doubt these results since convergence to a periodic solution was obtained, albeit after a 

larger-than-usual number of iterations. 

The solution past TP for Lj = —4.8 gets attracted to {0}, whereas for Lj = —4.9 it gets 

attracted to the corresponding branch originating from H{0}. For LZ} = —5.0, the motion 

past the TP was obtained for A = 26.8543 and 26.9443. For A = 26.8543 the Poincaré 

section, frequency spectrum, and Lyapunov exponents and associated dimension (shown in 

Figs. 5.61, 5.63, and Table 5.46, respectively) indicate that the motion is chaotic. Periodic 

motion about multiple unstable equilibria occurs when A = 26.9443, as indicated by the 

Poincaré section, frequency spectrum, and phase trajectory, shown in Figs. 5.62, 5.64, and 

5.65, respectively. 

For A = 18 with Lj varying, the static solution is shown in Fig. 5.66. No bounded 

motion past TP1 could be obtained. However, when investigating the dynamics prior to 

TP2 the solution converged to a new static configuration. This result was then used as a 
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starting point in the ACM which yielded the isolas shown in Fig. 5.67. This result implies 

that multiple buckled configurations of the panel are possible, i.e., the primary one of 

Fig. 5.66 and the secondary one of Fig. 5.67. Hence, as —Lj is increased the panel would 

snap-through to the secondary configuration. Thereafter, decreasing — Lj} would make it 

snap back to the primary state, whereas increasing — Lj} would lead to flutter about H1 (see 

Fig. 5.67). However, the motion about the Hopf bifurcation points and turning points in 

Fig. 5.67 was not studied due to the large compressive loads involved which would yield 

results of little practical importance. 

The static solution for A = 24 is shown in Fig. 5.68. The motion past the supercritical 

Hopf bifurcation point at {0} is summarized in Table 5.25. This indicates that for a certain 

range of the compressive load, the panel can remain buckled or flutter about {0}. Hard 

flutter oscillations are possible about H1, H2, and H3. The UN motions prior to H1, 

and H3, and past H2, are summarized in Tables 5.26, 5.29, and 5.28, respectively. Stable 

motions that occur prior to H4 are summarized in Table 5.30. The numerical data indicate 

that for a small region prior to TP1, the panel could stay buckled or flutter as shown in 

Table 5.30. 

Using the NIM1, quasiperiodic motions representing hard flutter were obtained about 

H1. These are shown in Figs. 5.69 and 5.70 for values of compressive loads past and 

prior to H1, respectively. Continuing past H1 on this branch of QPM’s, as —JLj is in- 

creased the motion becomes periodic (SN). As —Lj is increased further, the NIM2 yields 

a sequence of period-doubling bifurcations followed by a secondary Hopf bifurcation that 

results in QPM once again. These results are summarized in Table 5.27. An interesting 

feature is the appearance of wrinkles in the Poincaré sections (see Fig. 5.69), which is 

indicative of impending chaos via the Torus-Bifurcation route (see Swinney [76]). How- 

ever, chaotic motions were not obtained in this case. Continuing prior to H1 on the 

branch of QPM’s, as —Lj is decreased the Poincaré section reduces in size until all mo- 

tion ceases, i.e., the fluttering panel snaps back to the buckled equilibrium. Compar- 

ing the numerical data pertaining to the buckled solution shown in Fig. 5.54 (A = 25) 
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with that of Fig. 5.68 (A = 24), it appears that as Li is increased the CPT yields 

larger displacements than the HSDT (a similar observation was made when comparing 

Fig. 5.40 with 5.44). 

Fig. 5.71 shows the static solution for A = 27 and Lj varying. The motion past the 

Hopf bifurcation point at {0} is summarized in Table 5.31. This reveals that the buckled 

state and flutter motion coexist for certain compressive loads. Poincaré sections pertaining 

to the motion past TP were obtained for Lj = —4.9652 and — 4.9752. They have the same 

structure as that in Fig. 5.48, thus indicating that chaotic motions exist past TP. 

5.4 Effect of In-plane Edge Restraints on Post-flutter Behavior. 

Unless stated otherwise, the cases considered in this section are for a 4 x 1 mode anal- 

ysis of a square panel with k = 50, subjected to flow past both faces (with A = 0) and 

unidirectional compressive edge loads Lj, using the aerodynamically nonlinear model. 

Fig. 5.72 shows the flutter amplitudes for a perfect panel with the edges z; = 0, i, 

considered either movable or immovable. For all cases, the edges zz = 0, l2 are movable. 

Various values of 4 (i.e., 50, 75, and 100) were considered, with Lj = 0. The results 

show that the amplitudes of soft flutter motion are higher when the edges 2; = 0, ; are 

unrestrained (see results for 4 = 100). Furthermore, hard flutter motion for pre-critical 

speeds appears to result from smaller disturbances (of the flat state) when the edges are 

unrestrained rather than restrained (see results for 2 = 50). For the intermediate value 

of 4 = 75, hard flutter motion is possible only in the case of movable edges. Similar 

observations were made by Bolotin [1] when analyzing a two-dimensional panel of infinite 

span, undergoing cylindrical bending. Hence, we can conclude that panels with movable 

edges exhibit higher amplitudes of soft flutter (as 4 is increased) and are more susceptible 

to hard flutter motion. 

The remaining results discussed in this section are for a panel with edges zz = 0, lg 

being either movable or immovable and edges z; = 0, J; being movable. 
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Imperfect panel 

CPT results 

Fig. 5.73 shows the static solution when —Zj = —5.8 with A varying. The motion past 

H is summarized in Tables 5.32 and 5.33 for the case of movable and immovable edges, 

respectively. The static solution when A = 48 with —Zj varying is shown in Fig. 5.74. We 

see that the static displacements (i.e., stable static solutions) are larger when the edges are 

immovable. Tables 5.34 and 5.35 summarize the motion past H for the case of movable and 

immovable edges, respectively. 

HSDT results 

For —Lj = —4.9 with A varying, Fig. 5.75 shows the static solution, and Tables 5.36 

and 5.37 summarize the motion past H for the case of movable and immovable edges, 

respectively. The static solution for A = 46 with —L} varying, and associated motion past 

H for the movable and immovable cases, are shown in Fig. 5.76, and Tables 5.38 and 5.39, 

respectively. We see that the static displacements are larger for the panel with immovable 

edges (same as was obtained using the CPT). For the case of movable edges, the results 

indicate the existence of a turning point in the dynamic solutions. This implies that stable 

and unstable periodic motions coexist for a certain range of A. 

The results for imperfect panels appear to indicate that as A is varied with Lj held 

constant, the panel with movable edges exhibits larger amplitudes of flutter. The converse 

is true when Lj is varied with A held constant. However, these comparisons are not exact 

since the point at which flutter occurs differs for the two edge conditions. 

Perfect panel 

CPT results 

Fig. 5.77 shows the static and dynamic solution for Lj] = -—5.2 with A varying. 

We see that, as in the case of imperfect panels, the buckled state is lower when the 

edges are movable. For this case where the induced edge load is normal to the flow, the 

edge restraints have no visible effect on the critical speed and amplitudes of US motion 

that exists for pre-critical speeds (i.e., prior to the subcritical Hopf bifurcation H{0}.) 
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Tables 5.40 and 5.41 summarize the motions past H1 and prior to H2, respectively. The 

data shows that these two dynamic solution branches merge into each other. This implies 

that for the present case with immovable edges, as A is increased, the buckled panel starts 

to flutter about the unstable non-trivial static equilibrium (i.e., the panel flutters in region 

II of Fig. 5.4 — see Holmes [49]). The amplitudes of flutter gradually increase and then 

decrease until flutter ceases and the buckled state is recovered. Increasing A further would 

eventually lead to hard flutter oscillations about {0}. However, since hard flutter oscilla- 

tions may occur prior to H{0}, we see that there exists a range of X for which hard flutter 

motion about the flat state coexists with the buckled state or with soft flutter motion about 

the non-trivial equilibrium. 

Fig. 5.78 shows the static solution for A = 50 with Lj varying. We see that in the 

case of movable edges the panel remains flat prior to the subcritical Hopf bifurcation point 

H{0}. The amplitudes of US motion prior to H{0} are summarized in Tables 5.42 and 5.43 

for the case of movable and immovable edges, respectively, whereas those for motions past 

H1 and prior to H2 are summarized in Tables 5.44 and 5.45, respectively. From Tables 5.43 

and 5.45, we see that there exists a range of Lj for which hard flutter motion about the flat 

state coexists with soft flutter motion about the non-trivial equilibrium. 

HSDT results 

Fig. 5.79 shows the static and dynamic solutions for L? = —4.5 with A varying. Once 

again we obtain a lower buckled state for movable edges. Fig. 5.80 shows the static and 

dynamic solutions for AX = 40 with Lj varying. For the case of movable edges the panel 

remains flat prior to experiencing flutter. For the cases pertaining to Figs. 5.79 and 5.80 no 

motion (i.e., {0} solution) was obtained past TP. Furthermore, in the immediate post-flutter 

region the flutter amplitudes are not affected by edge restraints. 
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Figure 5.1: Stability boundaries for perfect panel; CPT; all edges movable (4; = a2, =0, 
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Figure 5.18: Poincaré section showing quasiperiodic motion (A = 81.365507). 
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Figure 5.25: Variation of non-dimensional flutter speed with thickness ratio; perfect panel; 

A = 30°; 2 x 2 mode analysis. 
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Figure 5.28: Flutter amplitude and bifurcation behavior for perfect panel; flow past both 

faces (6- = 0, bp = 2); nonlinear aerodynamics; A = 30°; 2 x 2 mode analysis; I, /h = 100; 
stable periodic motions are: SS (stable symmetric), SB (symmetry broken); US—unstable 
symmetric; QPM-quasiperiodic motion. 
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Figure 5.29: Flutter amplitude and bifurcation behavior for perfect panel; flow past 

upper face (6r = bp = 1); nonlinear aerodynamics; A = 30°; 2 x 2 mode analysis; 

I,/h = 100; stable periodic motions are: SN (stable nonsymmetric), P2 (period-2); 
UN-unstable nonsymmetric; QPM-quasiperiodic motion. 
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Figure 5.30: Flutter amplitude for perfect panel—subcritical Hopf bifurcation and resulting 
unstable symmetric (US) periodic motion; flow past both faces (6r = 0, d- = 2); nonlinear 
aerodynamics; A = 30°; 2 x 2 mode analysis; l/h = 50. 
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Figure 5.31: Flutter amplitude for perfect panel—subcritical Hopf bifurcation and resulting 

unstable symmetric (US) periodic motion (insets); flow past both faces (6r = 0, 6r = 2); 
nonlinear aerodynamics; A = 0°; 1,/h = 50. 
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Figure 5.32: Static displacement modal amplitudes; CPT; imperfect panel (@:; = 0.2); 

H-supercritical Hopf bifurcation point. 
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supercritical Hopf bifurcation point (cf. Fig. 5.32). 
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Figure 5.34: Frequency spectra of z, for period-1 up to period-8 motions that exist beyond 

supercritical Hopf bifurcation point (cf. Fig. 5.32). 

97



CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS 

  

  

      

    
  

0.030 pr TT TE TTT 

0.035 Poincaré section :2,=0,Z,>0 
4 

| | after 50000 cycles @ 1.9011134s/cycle 4 
-0.040} | 

0.045} 
2. 

“0.0507. 3 

-0.055} j 
| : 

-0.060F | 

90 OG Cac th 

0.1 0.18 0.20 0.22 0.2 0.2 0.28 

2, 

Figure 5.35: Motion beyond region of period-32 motion (cf.. Figs. 5.32, 5.33); Poincaré 

section for A = 45.106600 showing existence of strange attractor (chaotic motion following 
period-doubling sequence). 
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Figure 5.36: Frequency spectrum of z; for chaotic motion (A = 45.106600, cf. Fig. 5.35). 
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Figure 5.37: Static displacement modal amplitudes; CPT; imperfect panel (41; = 0.2); 

H-supercritical Hopf bifurcation point; TP1-, TP2- turning point. 
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Figure 5.38: Phase trajectories: Nonsymmetric periodic motion about TP1 (cf. Fig. 5.37). 
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Figure 5.39: Static displacement modal amplitudes; CPT; imperfect panel (4); = 0.2); 
H1(subcritical)-, H2(supercritical)—, H3(supercritical)—Hopf bifurcation point; TP1-, TP2- 

turning point. 

  

  

      

        
Figure 5.40: Static displacement modal amplitude (y,); CPT; imperfect panel (a1; = 0.2); 

H-supercritical Hopf bifurcation point; TP1-, TP2- turning point. 
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Figure 5.41: Motion beyond region of period-8 motion (cf. Fig. 5.40): Poincaré section for 

A=43, L] =—6.2353164, showing existence of strange attractor (chaotic motion). 
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Figure 5.42: Frequency spectrum of z, for chaotic motion (cf. Fig. 5.40): A = 43, 
LF = —6.2353164. 
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Figure 5.43: Static displacement modal amplitude (y,); HSDT; imperfect panel (41; = 0.2); 

H-supercritical Hopf bifurcation point; TP1-, TP2— turning point. 

  

  

      

        
Figure 5.44: Static displacement modal amplitude (y,); HSDT; imperfect panel (@,1 = 0.2); 
H-supercritical Hopf bifurcation point; TP1-, TP2- turning point. 
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Figure 5.45: Static and dynamic displacement modal amplitudes; CPT; perfect panel; 

H-~supercritical Hopf bifurcation point. 
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Figure 5.46: Static displacement modal amplitude (y,); CPT; perfect panel; TP-turning 

point. 
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Figure 5.47: Motion past TP (cf. Fig. 5.46): Poincaré section for \=36.845568, Lj = —5.8, 

indicating periodic behavior. 
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Figure 5.48: Motion past TP (cf. Fig. 5.46): Poincaré section for A= 36.945568, Lj =—5.8, 
showing existence of strange attractor (chaotic motion). 
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Figure 5.49: Frequency spectrum of z, for periodic motion past TP (cf. Fig. 5.46): 

A= 36.845568, DF = —5.8. 
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Figure 5.50: Phase trajectory: Periodic motion past TP (cf. Fig. 5.46): A = 36.845568, 

Ly = -5.8. 
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Figure 5.51: Frequency spectrum of z, for chaotic motion past TP (cf. Fig. 5.46): 

A = 36.945568, Lj = —5.8. 
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Figure 5.52: Motion past TP (cf. Fig. 5.46): Poincaré section for A= 34.873906, Lj = —6.2, 

showing existence of strange attractor (chaotic motion). 
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Figure 5.53: Frequency spectrum of z, for chaotic motion past TP (cf. Fig. 5.46): 

A= 34.873906, Lj = —6.2. 

  

  

      

          
Figure 5.54: Static displacement modal amplitudes; CPT; perfect panel; H1(supercritical)-, 

H2(subcritical)—, H3(subcritical)—Hopf bifurcation point; TP1—, TP2-— turning point. 
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Figure 5.56: Motion past TP (cf. Fig. 5.55): Poincaré section for A = 34, ZL} = —6.5155240, 

showing existence of strange attractor (chaotic motion). 
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Figure 5.57: Frequency spectrum of z, for chaotic motion past TP (cf. Fig. 5.55): A = 34, 

Ly = —6.5155240. 
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Figure 5.58: Static and dynamic displacement modal amplitude (y,, z,); HSDT; perfect 

panel; TP-turning point; stable periodic motions are: SS (stable symmetric), SB (symmetry 
broken); QPM-quasiperiodic motion. 
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Figure 5.59: Comparison of flutter amplitude obtained by MMS and NIM2: HSDT; perfect 

  

  

      

  

panel; Li = —4.8; SS-stable symmetric periodic motion; QPM-—quasiperiodic motion. 
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Figure 5.60: Comparison of flutter frequency obtained by MMS and NIM2: HSDT; perfect 

panel; Lj = —4.8; SS-stable symmetric periodic motion; QPM-quasiperiodic motion. 
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Figure 5.61: Motion past TP (cf. Fig. 5.58): Poincaré section for A= 26.854302, Lj = —5.0, 

showing existence of strange attractor (chaotic motion). 
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Figure 5.62: Motion past TP (cf. Fig. 5.58): Poincaré section for \=26.944302, Lt = —5.0, 
indicating periodic behavior. 
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Figure 5.63: Frequency spectrum of z; for chaotic motion past TP (cf. Fig. 5.58): 

A= 26.854302, Lj = —5.0. 
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Figure 5.64: Frequency spectrum of z, for periodic motion past TP (cf. Fig. 5.58): 

A= 26.944302, LF =—5.0. 
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Figure 5.65: Phase trajectory: periodic motion past TP (cf. Fig. 5.58): A = 26.944302, 
Ly = —5.0. 
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Figure 5.66: Static displacement modal amplitudes; HSDT; perfect panel; TP1-, TP2- 
turning point. 
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Figure 5.67: Static displacement modal amplitudes: co-existence of isolas with solution 

branch displayed in Fig. 5.66; H1-, H2- Hopf bifurcation point; TP1—, TP2-, TP3-, TP4- 

turning point. 

  

  

      

  

    
    

Figure 5.68: Static displacement modal amplitudes; HSDT; perfect panel; H1(subcritical)-, 
H2(subcritical)—, H3(subcritical)-, H4(supercritical)— Hopf bifurcation point; TP1-, TP2-, 
TP3-, TP4-, TP5- turning point. 
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Figure 5.69: Hard flutter phenomenon: Poincaré sections indicating quasiperiodic motions 

past Hi (cf. Fig. 5.68). 
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Figure 5.71: Static displacement modal amplitudes; HSDT; perfect panel; TP-turning 

point. 
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Figure 5.72: Effect of edge restraint on flutter amplitude and type of flutter (hard or soft): 

edges z2 = 0, l) movable (dy72 = 1, G2 = 0), edges z; = 0, 1; movable (6471; = 1, &; = 0) 

or immovable (641 = 0, G, = 1); HSDT; perfect panel; periodic motions are: SS (stable 

symmetric), US (unstable symmetric); QP M-quasiperiodic motion. 
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Figure 5.73: Static displacement modal amplitudes; CPT; imperfect panel (4); = 0.2); 

edges 2, = 0,1, movable (M), edges t2 = 0,l2 movable (M) or immovable (I); 

H-supercritical Hopf bifurcation point. 
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Figure 5.74: Static displacement modal amplitudes; CPT; imperfect panel (4); = 0.2); 

edges z; = 0,1, movable (M), edges z2 = 0,l2 movable (M) or immovable (I); 
H-supercritical Hopf bifurcation point. 

117



CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS 

  
2 ov ¥ vv v T ¥ v ¥ - qT ¥ ¥ 7 7v fo 

  
  

      

      

  

  

  1 A 1 | 1 4 4   
> 90S 60 80 

nr 

  

Figure 5.75: Static displacement modal amplitudes; HSDT; imperfect panel (411 = 0.2); 

edges z1} = 0,1, movable (M), edges z2 = 0,12 movable (M) or immovable (I); 
H-supercritical Hopf bifurcation point. 

  

  

  

      
        

        
Figure 5.76: Static displacement modal amplitudes; HSDT; imperfect panel (4; = 0.2); 

edges z1} = 0,1, movable (M), edges z2 = 0,l2 movable (M) or immovable (I); 
H-supercritical Hopf bifurcation point. 
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Figure 5.77: Static and dynamic displacement modal amplitudes; CPT; perfect panel; 

edges z} = 0,1, movable (M), edges z2 = 0,[, movable (M) or immovable (I); 

H1-, H2- supercritical Hopf bifurcation point; US—unstable symmetric periodic motion. 
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Figure 5.78: Static displacement modal amplitude (y,); CPT; perfect panel; edges 
z, = 0, |, movable (M), edges z2 = 0, /2 movable (M) or immovable (I); H1(supercritical)-, 
H2(supercritical)—, H{0}(subcritical)— Hopf bifurcation point. 

119



CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS 

  
      

    

  

  

      

         

  

      
  

a A AS A AAAS SA 

——— Vy encccccos %4 4 

Yo en ays QPM | 

1.0 ss at 
r SS + ¢@ 

> e 
L “” 

0.5 f . 

¥% | | 2, 
, 4 

0.0 

-0.5 eh beet ot eh el } 1 roe 

0 10 20 30 40 50 60 

Figure 5.79: Static and dynamic displacement modal amplitudes; HSDT; perfect panel; 

edges z; = 0, 1; movable (M), edges z2 = 0, l2 movable (M) or immovable (I); TP-turning 
point; SS—stable symmetric periodic motion; QP M-quasiperiodic motion. 
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Figure 5.80: Static and dynamic displacement modal amplitude (y,, z,) ; HSDT; perfect 
panel; edges zi; = 0,1; movable (M), edges z2 = 0, 12 movable (M) or immovable (I); 
TP-turning point; stable periodic motions are: SS (stable symmetric), SB (symmetry bro- 

ken); QPM-quasiperiodic motion. 
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CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS 

Table 5.1: Motion past H (cf. Fig. 5.32). 

  

  

          
  

  

  

  

  

          

A(T) T max z;: z5 = 0 | Motion type | Stability 
.44869150E+02 | .46438769E+00 | .38164241E-01 SN stable 

.45077997E+02 | .47284284E+00 | .21532889E+00 UN unstable 

.45077997E+02 | .94576682E+00 | .20601160E+00 P2 stable 

.45105864E+02 | .95063955E+00 | .26743826E+00 P2 unstable 

.45105864E+02 | .19010539E+01 | .26693264E+00 P4 stable 

.45106063E+02 | .19011134E+01 | .26707803E+00 P4 unstable 

.45106063E+02 | .38022305E+01 | .26734630E+00 P8 stable 

.45106481E+02 | .38025139E+01 | .26826008E+00 P8 unstable 

.45106481E+02 | .76050264E+01 | .26830890E+00 P16 stable 

.45106551E+02 | .76051153E+01 | .26816345E+00 P16 unstable 

-45106551E+02 | .15210230E+02 | .26846988E+00 P32 stable 

Table 5.2: Motion about TP1 (cf. Fig. 5.37). 

A(T) T max 2z,: zs =0 | Motion type | Stability 
.41690173E+02 | .14674223E+00 | .53032141E+01 SN stable 

.42548870E+02 | .14175458E+00 | .55130582E+01 UN unstable 

.42548870E+02 QPM 

A(1) T max z;: z; = 0 | Motion type | Stability 

.41690173E+02 | .14674223E+00 | .53032141E+01 SN stable 

.41670221E+02 | .14679947E+00 | .53001344E+01 SN stable 

.40454419F+02 | .14901721E+00 | .50118265E+01 SN stable 
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CHAPTER 5. NUMERICAL RESULTS AND DISCUSSIONS 

Table 5.3: Motion past H (cf. Fig. 5.37). 

  

  

          
  

  

  

          
  

  

  

          
  

  

  

  

  

  

A(T) T max z,: z; = 0 | Motion type | Stability 

.40906308E+02 | .54559788E+00 | .20795220E-03 SN stable 

.41011267E+02 | .55339957E+00 | .10365322E+00 UN unstable 

41011267E+02 | .11074027E+01 | .92148183E-01 P2 stable 

.41021192E+02 | .11112766E+01 | .12582815E+00 P2 unstable 

.41021192E+02 | .22224569E+01 | .12587073E+00 P4 stable 

.41022284E+402 | .22231401E+01 | .12672274E+00 P4 unstable 

.41022284E+02 | .44462831E+01 | .12681876E+00 P8 stable 

.41022503E+02 | .44466073E+01 | .12730508E+00 P8 unstable 

Table 5.4: Motion prior to H1 (cf. Fig. 5.39). 

-Li(1) T max 21: z; = 0 | Motion type | Stability 

.18744727E+02 | .12005298E+00 | .26747620E-01 UN unstable 

.17538763E+02 | .12073563E+00 | .64164044E+00 UN unstable 

Table 5.5: Motion prior to H2 (cf. Fig. 5.39). 

—Li(\) T max 2; : zs = 0 | Motion type | Stabiltty 
.20363203E+02 | .12244570E+00 | .61199071E-02 SN stable 

.22828150E+02 | .12388885E+00 | .29854028E+00 UN unstable 

.22828150E+02 QPM 

Table 5.6: Motion past H3 (cf. Fig. 5.39). 

—Li(T) T max z,;: z; =0 | Motion type | Stabilsty 

.648416646810E+01 | .75877913E+00 | .88366768E-04 SN stable 

.648464349177E+01 | .76733867E+00 | .28763125E-01 UN unstable 

.648464349177E+01 | .15350455E+01 | .26576941E-01 P2 stable 

.648469702835E+01 | .15403858E+01 | .23026538E-01 P2 unstable 

.648469702835E+01 | .30807199E+01 | .23650810E-01 P4 stable 

.648470420000E+01 | .30818594E+01 | .35666556E-01 P4 unstable 

.648470420000E+01 | .61637271E+01 | .35708451E-01 P8 stable 

.648470545808E+01 | .61642039E+01 | .35859140E-01 P8 unstable           
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Table 5.7: Coexisting unstable motion about H3 (cf. Fig. 5.39). 

  

  

  

  

            
  

  

  

          
  

  

  

  

  

—L3(T) T max 21: z5 = 0 | Motion type | Stability 
.64841666E+01 | .11228076E+01 | .33379227E-01 UN unstable 

.64872083E+01 | .89659804E+00 | .91244961E-01 UN unstable 

—Li(\) T max 2z,: zs = 0 | Motton type | Stability 
.64841666E+01 | .11228068E+01 | .33379818E-01 UN unstable 

.64832136E+01 | .11513977E+01 | .13268620E-01 UN unstable 

Table 5.8: Motion past H (A = 37, cf. Fig. 5.40). 

—Li(T) T max z;: 2 =0 | Motion type | Stability 
.643286189708E+01 | .66045592E+00 | .13502372E-03 SN stable 

-643415379073E+01 | .67029534E+00 | .51112414E-01 UN unstable 

.643415379073E+01 | .13433266E+01 | .39683186E-01 P2 stable 

.643418162838E+01 | .13444783E+01 | .38833094E-01 P2 unstable 

.643418162838E+01 | .26888523E+01 | .59654888E-01 P4 stable 

.643419557365E+01 | .26897397E+01 | .60120256E-01 P4 unstable 

.643419557365E+01 | .53794840E+01 | .60174020E-01 P8 stable 

.643419840529E+01 | .53799105E+01 | .60421536E-01 P8 unstable 

Table 5.9: Motion about TP1 (cf. Fig. 5.40). 

—Z3(T) T max 2z,: z =0 | Motton type | Stability 
.171248430000E+01 | .27745235E+00 | .55990937E+00 SN stable 

.191221752197E+01 | .27072663E+00 | .69340328E+00 UN unstable 

.191221752197E+01 QPM 

—L3(1) T max z;: z; = 0 | Motton type | Stability 
.171248430000E+01 | .27745235E+00 | .55990937E+00 SN stable 

.760268308664E+01 | .28398192E+00 | .52515844E+00 UN unstable 

.160268308664E+01 QPM           
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Table 5.10: Motion past H (A = 43, cf. Fig. 5.40). 

  

  

          
  

  

  

            

  

  

          

—L3(T) T max 2z,: zs = 0 | Motion type | Stability 
.620518218889E+01 | .50058650E+00 | .25023776E-03 SN stable 

.621268025521E+01 | .51175794E+00 | .87581411E-01 UN unstable 

.621268025521E+01 | .10239027E+01 | .15611906E+00 P2 stable 

.621338826743E+01 | .10283543E+01 | .17596841E+00 P2 unstable 

.621338826743E+01 | .20566988E+01 | .17604639E+00 P4 stable 

.621349002276E+01 | .20577813E+01 | .17770197E+00 P4 unstable 

-621349002276E+01 | .41155628E+01 | .17773998E+00 P8 stable 

Table 5.11: Motion past H (L] = —5.3, cf. Fig. 5.43). 

A(T) T max Zz}: z; =0 | Motion type | Stabilsty 
.399800887691E+02 | .50942077E+00 | .58574840E-03 SN stable 

.402714420357E+02 | .51737969E+00 | .15019151E+00 UN unstable 

.402714420357E+02 | .10347665E+01 | .15181899E+00 P2 stable 

.403067898132E+02 | .10398989E+01 | .18595873E+00 P2 unstable 

.403067898132E+02 | .20797946E+01 | .18588311E+00 P4 stable 

.403112433994E+02 | .20808586E+01 | .18670910E+00 P4 unstable 

.403112433994E+02 | .41617187E+01 | .18660764E+00 P8 stable 

.403118824661E+02 | .41620801E+01 | .18892821E+00 P8 unstable 

Table 5.12: Motion past H (Lj = —5.4, cf. Fig. 5.43). 

A(T) T max z;: zs =0 | Motion type | Stability 
.369517622638E+02 | .55858597E+00 | .57176982E-03 SN stable 

.371390550241E+02 | .56658003E+00 | .10184718E+00 UN unstable 

.371390550241E+02 | .11332288E+01 | .98323347E-01 P2 stable 

.371612101153E+02 | .11382635E+01 | .12546337E+00 P2 unstable 

.371612101153E+02 | .22765208E+01 | .12551513E+00 P4 stable 

.371640546192E+02 | .22775710E+01 | .12686657E+00 P4 unstable 

.371640546192E+02 | .45551427E+01 | .12691297E+00 P8 stable 

.371644886055E+02 | .45555230E+01 | .12748020E+00 P8 unstable 
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Table 5.13: Motion past H (A = 32, cf. Fig. 5.44). 

  

  

          
  

  

  

  

  

          
  

  

  

          

—Li(f) T max z,: z; = 0 | Motion type | Stability 
.552581727289E+01 | .65123105E+00 | .34689776E-03 SN stable 

.552790522668E+01 | .66214208E+00 | .59111200E-01 UN unstable 

.552790522668E+01 | .13243017E+01 | .58163373E-01 P2 stable 

.552817502353E+01 | .13312123E+01 | .73468115E-01 P2 unstable 

.552817502353E+01 | .26621734E+01 | .73474477E-01 P4 stable 

.552818919516E+01 | .26627710E+01 | .73791861E-01 P4 unstable 

.552818919516E+01 | .53255562E+01 | .73905649E-01 P8 stable 

.552819345561E+01 | .53259764E+01 | .74149908E-01 P8 unstable 

Table 5.14: Motion about TP1 (cf. Fig. 5.44). 

—-Li(T) T max z,: z; = 0 | Motton type | Stability 

.680658590000E+01 | .24836834E+00 | .25656915E+01 SN stable 

.100627577997E+01 | .24279073E+00 | .26397234E+01 UN unstable 

.100627577997E+01 QPM 

—Li(1) T max 2, : 2; = 0 | Motion type | Stability 
.680658590000E+01 | .24836834E+00 | .25656915E+01 SN stable 

.677664087946E+01 | .24922712E+00 | .25542532E+01 UN unstable 

.677664087946E+01 QPM 

Table 5.15: Motion past H (A = 42, cf. Fig. 5.44). 

—L3(T) T max2,: 2; =0 | Motion type | Stabslity 
.521708085045E+01 | .47761951E+00 | .75905771E-02 SN stable 

.523436265574E+01 | .49210247E+00 | .19741698E+00 UN unstable 

.523436265574E+01 | .98454103E+00 | .21092792E+00 P2 stable 

.523610241579E+01 | .99073338E+00 | .24282863E+00 P2 unstable 

.523610241579E+01 | .19814114E+01 | .24294207E+00 P4 stable 

-523629725010E+01 | .19826569E+01 | .24480662E+00 P4 unstable 

.523629725010E+01 | .39653179E+01 | .24506320E+00 P8 stable 

.523632801815E+01 | .39657528E+01 | .24592788E+00 P8 unstable 
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Table 5.16: Motion past supercritical Hopf bifurcation point, i.e., motion beyond Ay; HSDT; 

imperfect panel (4:; = 0.2); Li = 0 (cf. Fig. 5.9). 

  

  

          

A(T) T max z,: z5 = 0 | Motion type | Stability 
.281029450000E+03 | .58877571E-01 | .31771749E-03 SN stable 
.281204457172E+03 | .58843665E-01 | .38531796E-02 SN stable 
.281804454818E+03 | .58737366E-01 | .70789802E-02 SN stable 
.282504452053E+03 | .58635004E-01 | .85948481E-02 SN stable 
.282512822315E+03 | .58633938E-01 | .86063041E-02 UN unstable 
  

Table 5.17: Motion past supercritical Hopf bifurcation point, i.e., motion beyond Ay; HSDT 

imperfect panel (4; = 0.2); ZL} = —5.3, linear aerodynamics (cf. Fig. 5.8). 

  

  

          
  

  

  

          

A(T) T max z,: z; = 0 | Motion type | Stability 
.457982460000E+02 | .51482314E+00 | .15046569E-02 SN stable 

.461964177438E+02 | .52184748E+00 | .12109041E+00 UN unstable 

.461964177438E+02 | .10441483E+01 | .11027886E+00 P2 stable 

.462383876952E+02 | .10488966E+01 | .95525294E-01 P2 unstable 

.462383876952E+02 | .20977540E+01 | .97839594E-01 P4 stable 

.462439840983E+02 | .20987458E+01 | .15076253E+00 P4 unstable 

Table 5.18: Motion past H{0} (Lj = —5.8, cf. Fig. 5.46). 

X(T) T max 2,: zs =0 | Motion type | Stability 
.351134850000E+02 | .17528856E+01 | .61232436E-02 SS stable 

.352254848801E+02 | .16522372E+01 | .63827358E-01 US unstable 

.352254848801E+02 | .16522372E+01 | .67686926E-01 SB stable 

.352494848505E+02 | .16548883E+01 | .54255185E-01 SB unstable 

.352494848505E+02 | .33096252E+01 | .53160279E-01 P2 stable 

.392931832752E+02 | .33097591E+01 | .59084932E-01 P2 unstable 

.352531832752E+02 | .66195192E+01 | .59161574E-01 P4 stable 

.352539042249E+02 | .66200360E+01 | .60535712E-01 P4 unstable 

.352539042249E+02 | .13240069E+02 | .60495503E-01 P8 stable 

.3592540549519E+02 | .13240223E+02 | .60787566E-01 P8 unstable 

.352540549519E+02 | .26480450E+02 | .60765893E-01 P16 stable 

.352540648408E+02 | .26480475E+02 | .60763029E-01 P16 stable 
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Table 5.19: Motion past H1 (cf. Fig. 5.54). 

  

  

  

—L3(T) T max 2;: z; =0 | Motion type | Stabslity 

.287653655205E+02 | .60100231E-01 | .29585288E-02 SN stable 

.288847273777E+02 | .60353622E-01 | -.17459464E-01 UN unstable 

.288847273777E+02 QPM         
  

Table 5.20: Motion past H2 (cf. Fig. 5.54). 

  

  

    

—L3(T) T max 2, : zs = 0 | Motion type | Stability 
.357662929421E+02 | .55096270E-01 | .45471870E-02 UN unstable 

-450685866412E+02 | .56313334E-01 | .14779276E+00 UN unstable       
  

Table 5.21: Motion prior to H3 (cf. Fig. 5.54). 

  

  

    

—Li(\) T max z1: z; =0 | Motion type | Stability 
.620632687758E+02 | .12769200E+00 | .14306267E-02 UN unstable 
-618229085266E+02 | .14104101E+00 | .47054347E+00 UN unstable         
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Table 5.22: Motion past H{0} (cf. Fig. 5.55). 

  

  

    

—Li(T) T max z,: zs = 0 | Motton type | Stabilsty 

.583586809154E+01 | .34354155E+01 | .22404979E-03 SS stable 

.583607906921E+01 | .34210367E+01 | .15118345E-01 US unstable 

.583607906921E+01 | .34263391E+01 | .16205688E-01 SB stable 

.583610914485E+01 | .34519568E+01 | .12346486E-01 SB unstable 

.583610914485E+01 | .69018875E+01 | .11772454E-01 P2 stable 

.583611221860E+01 | .69061196E+01 | .13528078E-01 P2 unstable       
  

Table 5.23: Motion past H{0} (supercritical), i.e., motion beyond A¢; CPT; perfect panel; 

A = 39 (cf. Fig. 5.1 or Fig. 5.3). 

  

  

          
  

  

  

          

—Li(T) T max 2z,: zs = 0 | Motion type | Stability 
.567553046533E+01 | .92705502E+00 | .65967566E-03 SS stable 
.976737115399E+01 | .76629962E+00 | .41826169E+00 US unstable 

.576737115399E+01 | .76647105E+00 | .40865302E+00 SB stable 

.577254633910E+01 | .81989149E+00 | .56289669E+00 SB unstable 

Table 5.24: Motion past H{0} (ZT = —5.0, cf. Fig. 5.58). 

A(T) T max 2z;: z; =0 | Motion type | Stability 

.233421549911E+02 | .61562651E+01 | .15893916E-03 SS stable 

.233431449450E+02 | .61337121E+01 | .46803350E-02 US unstable 

.233431449450E+02 | .61348561E+01 | .48180423E-02 SB stable 

.233433431322E+402 | .61845389E+01 | .57743754E-02 SB unstable 

.233433431322E+02 | .12368179E+02 | .57348892E-02 P2 stable 

.233433927211E+02 | .12387630E+02 | .59932932E-02 P2 unstable 

.233433927211E+02 | .24777157E+02 | .60146850E-02 P4 stable 

.233433943134E+02 | .24778840E+02 | .60210297E-02 P4 unstable 

.233433943134E+02 | .49557629E+02 | .60211110E-02 P8 stable 

.233433947377E+02 | .49558433E+02 | .59719604E-02 P8 stable 
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Table 5.25: Motion past H{0} (cf. Fig. 5.68). 

  

  

          
  

  

  

          
  

  

  

          

—L3(T) T max 2, : z; = 0 | Motion type | Stability 
A97915733685E+401 | .24413151E+401 | .74882528E-03 5S stable 

498025189963E+01 | .24350615E+01 | .27779394E-01 US unstable 
A98025189963E+01 | .24363591E+01 | .27168439E-01 SB stable 

.498041232317E+01 | .24552778E+01 | .22986852E-01 SB unstable 

.498041232317E+01 | .49098439E+01 | .22248526E-01 P2 stable 

498043270743E+01 | .49134351E+401 | .24865734E-01 P2 unstable 
498043270743E+01 | .98269053E+01 | .25001475E-01 P4 stable 
.498043782707E+01 | .98292740E+01 | .25442032E-01 P4 unstable 

498043782707E+01 | .19658545E+02 | .25425749E-01 P8 stable 

-498043905023E+01 | .19659561E+02 | .25562331E-01 P8 unstable 

Table 5.26: Unstable motion prior to H1 (cf. Fig. 5.68). 

—Li(\) T max 2; : z5 = 0 | Motion type | Stabtlity 

.159279401748E+02 | .92265432E-01 | .78683260E-03 UN unstable 

.158760342409E+02 | .95135451E-01 | -.48128206E-01 UN unstable 

Table 5.27: Motion past H1 (cf. Figs. 5.68, 5.69). 

—Li(T) T max 2, : zs = 0 | Motion type | Stability 
.160771148936E+02 QPM 

.160771148936E+02 | .99221252E-01 | -.12893554E+00 UN unstable 

.161762027628E+02 | .99839226E-01 | -.14013450E+00 SN stable 

.164735428013E+02 | .10101666E+00 | -.16493192E+00 UN unstable 

.164735428013E+02 | .20218756E+00 | -.14373765E+00 P2 stable 

.168106621204E+02 | .20559189E+00 | -.13688439E+00 P2 unstable 

-168106621204E+02 | .41108671E+00 | -.17927960E+00 P4 stable 
.168304961206E+02 | .41087612E+00 | -.19686630E+00 P4 unstable 

.168304961206E+02 QPM 
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Table 5.28: Motion past H2 (cf. Fig. 5.68). 

  

  

          
  

  

  

          
  

  

  

          
  

  

  

          

—Li(f) T max 2, : z; =0 | Motion type | Stability 

.195338888295E+02 | .85232367E-01 | .30149467E-02 UN unstable 

.213403492042E+02 | .92009075E-01 | .14750902E+00 UN unstable 

Table 5.29: Motion prior to H3 (cf. Fig. 5.68). 

—Li(I) T max 21: 2; =0 | Motion type | Stability 
189849159923E+02 | .25309413E+00 | .14248529E-02 UN unstable 
.188296730678E+02 | .27846700E+00 | .37291706E-01 UN unstable 

Table 5.30: Motion prior to H4 (cf. Fig. 5.68). 

—Li(\) T max z,: z5 = 0 | Motion type | Stability 
.242286955037E+02 | .31784759E+00 | .15005867E-02 SN stable 

.242192340223E+02 | .31853974E+00 | .12301141E-01 UN unstable 

.242192340223E+02 | .63703018E+00 | .12959834E-01 P2 stable 

.242182564054E+02 | .63698724E+00 | .14257783E-01 P2 unstable 

.242182564054E+02 | .12739835E+01 | .14240090E-01 P4 stable 

.242181437504E+02 | .12740185E+01 | .14342875E-01 P4 unstable 

.242181437504E+02 | .25480369E+01 | .14345375E-01 P8 stable 

Table 5.31: Motion past H{0} (cf. Fig. 5.71). 

—Li(T) T max 2, : 2; = 0 | Motion type | Stability 
.488486920729E+01 | .11100582E+01 | .74174260E-03 SS stable 
.491323041842E+01 | .10891031E+01 | .14845231E+00 US unstable 

491323041842E+01 | .10921903E+01 | .16108722E+00 SB stable 
.491873041162E+401 | .11327093E+01 | .19775183E+00 SB stable 
-491883041150E+01 | .11339287E+01 | .19827104E+00 SB unstable 
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Table 5.32: Motion past H (edges zz = 0,l2 are movable, cf. Fig. 5.73). 

  

  

  

A(T) T max 2; : z; = 0 | Motion type | Stability 

.483269600000E+02 | .39466735E+00 | .18795804E-01 SN stable 

.487306970353E+02 | .40241242E+00 | .75668799E+00 SN stable         
  

Table 5.33: Motion past H (edges z2 = 0, l2 are immovable, cf. Fig. 5.73). 

  

  

  

A(T) T max z;: zs = 0 | Motion type | Stability 
.498632650000E+02 | .46810166E+00 | .14646955E-01 SN stable 

.500136380310E+02 | .48112640E+00 | .22803843E+00 UN unstable 

.500136380310E+02 | .96398701E+00 | .18882884E+00 P2 stable 

.500235439883E+02 | .96842075E+00 | .17371982E+00 P2 unstable 

.500235439883E+02 | .19367442E+01 | .18047643E+00 P4 stable 

.500253271527E+02 | .19380611E+01 | .27917738E+00 P4 unstable         
  

Table 5.34: Motion past H (edges z2 = 0, l2 are movable, cf. Fig. 5.74). 

  

  

  

—Li(T) T max z;: z; =0 | Motion type | Stability 
.583820990000E+01 | .40161201E+00 | .35502268E-03 SN stable 

.589551518192E+01 | .42687591E+00 | .57526358E+00 UN unstable 

.589551518192E+01 | .85312197E+00 | .66029033E+00 P2 stable 

.590339115481E+01 | .85634831E+00 | .78313659E+00 P2 unstable 

.590339115481E+01 | .17130425E+01 | .78386430E+00 P4 stable 

.590550939334E+01 | .17157773E+01 | .80680880E+00 P4 unstable 

.590550939334E+01 | .34315162E+01 | .80483689E+00 P8 stable 

.590563041168E+01 | .34318496E+01 | .80808361E+00 P8 stable         
  

Table 5.35: Motion past H (edges z2 = 0, l2 are immovable, cf. Fig. 5.74). 

  

  

  

—L3(T) T max 2, : z; =0 | Motion type | Stability 
.589311800000E+01 | .54241695E+00 | .16033122E-02 SN stable 

.589586603518E+01 | .55373412E+00 | .10172905E+00 UN unstable 

.589586603518E+01 | .11079986E+01 | .92015582E-01 P2 stable 

.589612980567E+01 | .11132346E+01 | .12372178E+00 P2 unstable 

.589612980567E+01 | .22264449E+01 | .12379433E+00 P4 stable 

.589616864720E+01 | .22277007E+01 | .12500396E+00 P4 unstable         
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Table 5.36: Motion past H (edges zz = 0,/2 are movable, cf. Fig. 5.75). 

  

  

          

A(T) T max Zz; : z; =0 | Motion type | Stability 

.469855780000E+02 | .39943785E+00 | .21451899E-01 SN stable 

.470865036643E+02 | .40252185E+00 | .34125278E+00 SN stable 
  

Table 5.37: Motion past H (edges z2 = 0,/2 are immovable, cf. Fig. 5.75). 

  

  

          

A(T) T max 2,: zs =0 | Motion type | Stability 
.501491550000E+02 | .46013451E+00 | .26231751E-01 SN stable 

.505683978507E+02 | .47213289E+00 | .28716658E+00 UN unstable 

-505683978507E+02 | .94458456E+00 | .30224526E+00 P2 stable 

.506556671928E+02 | .98296494E+00 | .46173414E+00 P2 stable 
  

Table 5.38: Motion past H and past turning point of dynamic solution (edges z2 = 0, [2 are 

movable, cf. Fig. 5.76). 

  

  

  

  

          

—L3(T) T max 2,: zs =0 | Motion type | Stability 
-498203220000E+01 | .41484348E+00 | .29387420E-03 SN stable 

.503653244050E+01 | .43867989E+00 | .56612462E+00 SN stable 

.503719055016E+01 | .43993564E+00 | .57335584E+00 SN stable 

.503726367431E+01 | .44216841E+00 | .57502027E+00 UN unstable 

—L3(1) T max 2z,: z; = 0 | Motion type | Stability 
.503726367431E+01 | .44216841E+00 | .57502027E+00 UN unstable 

.502956974521E+01 | .44681857E+00 | .51225250E+00 UN unstable 

.001480742759E+01 | .44961017E+00 | .41910746E+00 UN unstable 

.500960368164E+01 | .45064050E+00 | .39616661E+00 UN unstable 
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Table 5.39: Motion past H (edges z2 = 0, l2 are immovable, cf. Fig. 5.76). 

  

  

          
  

  

  

          
  

  

  

—L3(T) T max 2, : 2z; = 0 | Motion type | Stability 

.504005970000E+01 | .56472612E+00 | .11380982E-02 SN stable 

.504297809669E+01 | .57439889E+00 | .77476982E-01 UN unstable 

.504297809669E+01 | .11495515E+01 | .68436419E-01 P2 stable 

.504325178669E+01 | .11542966E+01 | .60748731E-01 P2 unstable 

.504325178669E+01 | .23084510E+01 | .58543923E-01 P4 stable 

.504328156874E+01 | .23092710E+01 | .95146317E-01 P4 unstable 

.504328156874E+01 | .46150819E+01 | .96999805E-01 P8 stable 

Table 5.40: Motion past H1 (cf. Fig. 5.77). 

A(T) T max z,: z; = 0 | Motion type | Stability 
-511534830546E+02 | .60202152E+00 | .10997608E-02 SN stable 

.514320576100E+02 | .64224457E+00 | .47564696E-01 SN stable 

.515315576426E+02 | .65514990E+00 | .48647987E-01 SN stable 

.516310474850E+02 | .66753784E+00 | .48206916E-01 SN stable 

.524064434839E+02 | .75268830E+00 | .44375268E-02 SN stable 

Table 5.41: Motion prior to H2 (cf. Fig. 5.77). 

A(J) T max z,: zs = 0 | Motion type | Stability 
.524086699438E+02 | .75291013E+00 | .24989491E-02 SN stable 

.516253196321E+02 | .66683696E+00 | .48262887E-01 SN stable 

.515258291419E+02 | .65442191E+00 | .48633937E-01 SN stable 

.514263285553E+02 | .64148339E+00 | .47437267E-01 SN stable 

.511576363492E+02 | .60268449E+00 | .92346881E-02 SN stable           
  

Table 5.42: Motion prior to H{0} (edges z2 = 0, lz are movable, cf. Fig. 5.78). 

  

  

          

~—L(1) T max z,: z5 = 0 | Motion type | Stability 

.533024067895E+01 | .53259108E+00 | .36956387E-02 US unstable 

.528047859741E+01 | .43898584E+00 | .51207456E+00 US unstable 
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Table 5.43: Motion prior to H{0} (edges 22 = 0,l2 are immovable, cf. Fig. 5.78). 

  

  

          
  

  

  

          
  

  

  

  

—L3(1) T max 2;: zs = 0 | Motion type | Stability 
.532970184251E+01 | .20364948E+01 | .36766561E-02 US unstable 

.531574575203E+01 | .12864481E+01 | .17560471E+00 US unstable 

Table 5.44: Motion past H1 (cf. Fig. 5.78). 

—Li(T) T max 2; : 2; = 0 | Motion type | Stability 

.526327070295E+01 | .63064575E+00 | .28147974E-02 SN stable 

.527887413425E+01 | .76285461E+00 | .76421171E-01 UN unstable 

.627887413425E+01 | .15253783E+01 | .75879759E-01 P2 stable 

.527997038313E+01 | .15413996E+01 | .75063319E-01 P2 unstable 

.527997038313E+01 | .30828648E+01 | .75417105E-01 P4 stable 

.528011070530E+01 | .30874753E+01 | .75900288E-01 P4 unstable 

Table 5.45: Motion prior to H2 (cf. Fig. 5.78). 

—Li(\) T max z,: z5 = 0 | Motion type | Stability 
.532744508951E+01 | .18402358E+01 | .76547166E-03 SN stable 
.532713746399E+01 | .18227675E+01 | .89896089E-02 UN unstable 

.532713746399E+01 | .36455480E+01 | .89492477E-02 P2 stable 

.532708957692E+01 | .36424322E+401 | .94135601E-02 P2 unstable 

.532708957692E+01 | .72848609E+01 | .94733674E-02 P4 stable 

.532708088291E+01 | .72839782E+01 | .97287429E-02 P4 unstable         
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Table 5.46: Lyapunov exponents and Kaplan- Yorke dimension (dz). 
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Ai A2 A3 Ms 

Case Comment dz, Motion 

ef. 

As As Ar As 

Fig. 5.18 .2187E-03 -.1688B-04 -.3989E-02 -.6216E-01 Ai 20, % 2.00 QPM 

-.6230E-01 -.1028E+00 | -.2415E+00 | -.2415E+00 A220 (T? torus) 

Fig. 5.20 .8308E+00 -2289E-01 -4776E-04 -.3047E-01 A3 x0 7.36 chaotic 

-.7561E-01 -.1349E+00 | -.2146E+400 | -.1112E+01 

Fig. 5.35 .1448E+00 -1568E-03 -.4085E+00 | -.40865+00 Qe x0 2.36 chaotic 

-.4090E+00 | -.4090E+00 | -.8155E+00 | -.9639E+00 

Fig. 5.41 -9138E+-00 .3802E+00 -1059E-02 -.1167E+00 As x0 5.69 chaotic 

-.5223E+400 | -.9506E+00 | -.1205E+01 | -.1769E+01 

Fig. 5.48 .1907E+01 -.1439E-05 -.4013E+00 | -.4085E+00 Je x0 6.38 chaotic 

-.4089E+00 | -.4165E+00 | -.7038E+00 | -.2837E+01 

Fig. 5.52 -1579E+01 .5187E+00 -9115E-04 -.2209E+00 A3 x0 6.55 chaotic 

-.4286E+00 | -.6644E+00 | -.1415E+01 | -.2638E+01 

Fig. 5.56 .3124E+01 .9493E+00 .1371E-02 -.5240E-01 As x70 7.16 chaotic 

-.4708E+00 | -.8921E+00 | -.2013E+01 | -.39165+01 

Fig. 5.61 .1967E+01 -2138E-03 -.3545E+00 | -.4054E+00 Ae x0 6.54 chaotic 

-.4071E+4+00 | -.4307E+00 | -.6725E+400 | -.2956E+01 

Fig. 5.69 -2005E-03 -.1669E-04 -.3942E+00 | -.3944E+00 di ~ 0, & 2.00 QPM 

Ly =~—15.928 | -.4328E+00 | -.4329E+00 | -.8025E+00 | -.8028E+00 A2 #0 (T? torus) 

Fig. 5.69 .6388E-03 -7795E-04 -.39565+00 | -.3958E+00 Ay 0, = 2.00 QPM 

L* =-—15.968 | -.4359E+00 | -.4360E+00 | -.6264E+00 | -.9703E+00 | 12 0 (T? torus)                 
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Chapter 6 

CONCLUSIONS AND FUTURE RESEARCH 

6.1 Conclusions 

The nonlinear dynamical behavior of a flat composite panel subjected to a high super- 

sonic gas flow of arbitrary orientation has been studied. The governing equations for a 

laterally compressed panel, possessing small initial imperfections and possible in-plane edge 

restraints, were derived using a higher-order shear deformation theory and third-order pis- 

ton theory aerodynamics. The panel flutter equations obtained via Galerkin’s method were 

solved using numerical integration in conjunction with the Arclength Continuation Method 

for the static solution. Periodic solutions were obtained by a predictor-corrector numerical 

integration technique (i.e., the NIM2) which also predicts the bifurcation of solutions. The 

amplitudes and frequency of flutter obtained by the NIM2 were compared with results from 

the Method of Multiple Scales. Based on the results obtained the following conclusions are 

drawn : 

e In the case of both perfect and imperfect panels, the CPT yields larger instability 

loads (i.e., flow speeds and compressive edge loads) than the HSDT. Moreover, only the 

HSDT model is sensitive to variations in the transverse shear rigidity of the panel, i.e., 

it predicts lower instability loads for panels with greater transverse shear flexibility. 

e As the imperfection (in the first mode) is increased, the flutter speeds are lowered 

when the compressive loads are small to moderate. For large compressive loads the 

behavior is imperfection insensitive. 
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e The compressive loads at which divergence occurs for perfect panels are lower when 

the edges parallel to the flow are restrained. However, such edge restraints have no 

visible effect on the flutter speeds. In the case of imperfect panels, the flutter speeds 

are slightly lower when the compressive load is small and the edges are restrained. 

e When considering a nonlinear aerodynamic model, multiple flutter speeds exist for 

imperfect panels. For small values of the compressive load, the aerodynamically non- 

linear model predicts higher flutter speeds than its linearized counterpart. This trend 

is reversed for larger compressive loads. 

e For perfect panels, the immediate post-flutter amplitudes and frequency obtained by 

the MMS and NIM2 compare well when an aerodynamically linear theory is considered 

and compressive loads are absent. For all cases studied, the NIM2 always predicts 

higher amplitudes and lower frequencies of flutter. 

e The presence of aerodynamic nonlinearities could result in hard flutter oscillations, 

especially in the case of thick panels. In this regard, it may be noted that the aero- 

dynamically linear model correctly predicts the immediate post-flutter behavior of 

thin panels only. Furthermore, the results obtained by the MMS and NIM2 regarding 

the type of flutter (i.e., whether hard or soft flutter oscillations exist for post-flutter 

speeds) are always in agreement. This implies that the MMS can also be used to 

determine the character of the flutter boundary (see Librescu [5,6]). 

e For an imperfect panel, it appears that the presence of aerodynamic nonlinearities 

yields higher amplitudes of soft flutter oscillations than those obtained when using 

linear aerodynamics. However, it may be argued that a true comparison of flutter 

amplitudes cannot be made since the flutter speeds predicted by the two theories are 

not the same. 

e For both perfect and imperfect panels, it was observed that the onset of flutter is 

not always preceded by a Hopf bifurcation, i.e., a sudden jump from a stable static 
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equilibrium state to one of flutter is also possible. For the case of imperfect panels 

the region in the A-Lj plane where the transition from Hopf-bifurcation instability 

to jump-type instability occurs was studied. Within this region, multiple periodic 

solutions (both stable and unstable) may be found to coexist with the stable static 

solution, i.e., the panel can remain buckled or flutter. Hard flutter motions are also 

possible within this region. 

e For the case of perfect panels, the region in the A\A-Lj plane where the divergence and 

flutter boundaries meet was studied. In this case, flutter about the trivial equilibrium 

may coexist with the buckled state or multiple buckled states may coexist, indicating 

that the panel could snap-through to a new buckled configuration and subsequently 

snap back or undergo flutter oscillations about this new buckled configuration. Hard 

flutter oscillations in the form of quasiperiodic and periodic motion were also obtained. 

e For imperfect panels, chaotic motions appear after a sequence of period-doubling 

bifurcations as either A or Lj is varied. For perfect panels, as the control parameter 

is varied beyond the turning point of the static solution, a transition from chaotic 

motions to periodic states (and vice-versa) occurs. Another scenario of chaotic motions 

was observed for perfect panels, i.e., one in which bounded non-periodic motion exists 

between three unstable periodic solutions. 

e For the case of perfect panels without compressive edge loads, a panel with movable 

edges exhibits higher amplitudes of flutter oscillations and is more susceptible to hard 

flutter than when its edges normal to the flow are immovable. 

e For the case of both perfect and imperfect panels, the static displacements are larger 

when the edges parallel to the flow are immovable than when all edges are movable. 

However, in the case of perfect panels the amplitudes of flutter oscillations in the 

immediate post-flutter region are not affected by edge restraints. 
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6.2 

e For a perfect panel with its edges parallel to the flow restrained, as the flow speed is 

increased the buckled panel may experience soft flutter oscillations about the unstable 

non-trivial equilibrium. This behavior is not obtained when the edges are unrestrained 

(for which flutter always occurs about the trivial equilibrium). Furthermore, hard 

flutter motion about the flat state may coexist with either the buckled state or these 

soft flutter oscillations about the unstable non-trivial equilibrium. 

Recommendations For Future Research 

A more sophisticated numerical integration method, e.g., one based on continuation 

techniques, should be considered so that turning points of the dynamic solution may be 

negotiated (see, e.g., Seydel[46] and Nayfeh and Balachandran[85]). This would yield 

amplitudes of hard flutter oscillations without having to resort to the straightforward 

integration method which may or may not converge to the hard flutter solution. 

The case of internal resonance arising for certain special values of the system param- 

eters, e.g., h, A, ¢, etc., when the total damping is negligible, needs to be examined. 

The effect of the modal truncations considered in the numerical examples should be 

examined (although the computations will become increasingly cumbersome as more 

terms are included in Galerkin’s method). 

An aeroelastic tailoring analysis should be performed by considering other types of 

anisotropy for the laminate, e.g., one composed of angle-ply layers. 

Various other out-of-plane boundary conditions for the panel should also be considered 

for a more comprehensive study of the panel flutter problem. 

An additional refinement of the structural model may also be considered by fulfilling 

the static continuity conditions for the transverse shear stresses between contiguous 

layers of the laminate. Such a theory would allow one to predict, with greater accuracy, 

the failure of the panel in the post-flutter regime. 
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Appendix A 

COEFFICIENTS IN GOVERNING 

EQUATIONS 

A.1 Expressions of Rigidity Quantities 
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A.2 Reduced Mass Quantities 
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A.3 Expressions of Coefficients b, c, d, and 6, é, d 
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A.4 Rigidity Coefficients for Symmetrically Laminated, 

Transversely Isotropic, Composite Panels 
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A.5 Coefficients Appearing in Equation (3.29) 
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Appendix B 

COEFFICIENTS IN PANEL FLUTTER 
EQUATIONS 

Expressions of Coefficients Appearing in C, Solution 
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B.2 Definitions of Non-dimensional Quantities 
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(3) (2) py (5) (4) (2) zy (8) 
b omnis Je pmi H sqnj + 5 omni 3 Je pmi H eqnj ) 

cosA sin?A co) He) yo) + @°?) A) Sd) 4 
qnmji* rpmi” sqnj qnmji** rpmi” sqnj 

(3) (6) (1) (4) (6) ,(2) 
Ocnmsi Hf. rpmi Jeqnj + Ojnm jt Hf. rpmi J eanj ) 
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= Ka [rpms Tg + jn anigT rysT2)s + 
Dy epqmnij = mnij’mnij Npqmnij rpmi> sqnj niz Kmnij Nogmnij rpmi~ sqnj 

3) (3) (2) 7(1) , (4) (4) (4) (2) 7(2) 
eo 1 nisl onal, ., + Amnnijmnij Npqmnijlepmilagng + 

wl) gl) 0) 62) 7) 
mnij *pqmntj’ rpmi” sqnj mnij “mntj »pqmnij\ rpmi” sqnj 

NOS) C8) C08) 2) 7) g C4) eA Cl) gl) 72) 
mnij ’mnij »pqmnij“ rpmiY aqnj mntj'’mntj *pqmnij’ rpmtY sqnj 

(3) 
mnij 

,@) 
mnij 

epemnij = Ka [(cos*A a9), + Q).. 4 sin?A Gy) HO). AO) 4 
mij mnij rmi- anj 

(- cos7A po). + Q®) ..— sin2A Gy?) HO HO) + 
mnij rmi*” snj 

(—cos7A pe). +90) _ sin?A Gy) A?) AO) + mij mnij rmi” aenj 

(cos?A B). 4. AM 4 sin? Py) HO!) Ae) + 
mtj mnij rmi* enj 

x'dsind cos (14). 73). 78) 4 7), 7) 7) 4 

  

mnij’ rmi” enj mnij’ rmiY snj 

(3) (4) 7(3 (4) 7(4) 7(4 
Tmnij J (A) J) + Trmnij si). J) ) 

(5) (P)' () (7 Gre = ri) 9 Res = ~ p4) 3 Ur sp = 20h Hyp 3 Wregq = 20 34 Haq 

4. ri) Giaé 
= — ar TF (3) 2 — a Pre = K, (6+ €)D| ge ~The 7 la é1) 

rT?) a. 4 - = K,+(6+apD|- Bl 4 Q. = Kiz(b+2)D| 3 tla G2)     

rm 7. @ 
Zremn = Ki aa [a 

b+é 
  {6adm? +¢74d—0.5)n"} — (64d—0.5)m?— ¢764dn?| 

c 

b+é 
  Yesmn = KiT@ a, [a {5adg?n? + 64d—0.5)m?h — $?(64d—0.5)n? —5,dm?| 
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where, 

T) = @+¢@ , TO sri¢e77TD , PO a14e?%sr 

rm = -e’r® , rO=s-r> , rsa , r=arl 

mM dtgn = [e%(f — h)? + de —g)"I[1 + w7S{(e- 9)? + HF — hb)? +07 + d'd?}] 

nD sgn = [e(f +A)? + de — g)?I[ + #°S{(e~ 9)? + (Ff +h)? +e? + Ga?}] 
Maton = l(F A) + Pet gt wS{(et 9)? +e (F —h) +07 + a"}] 

Magn = [(F +h)? + Pet g)I[1 + x7S{(e+ 9)? + ¢'(F +h)? +07 + g7d"}] 

(Dyan = —[2ed(e — g)(f — A)][1 + w7S{(e — 9)? + d°(f —h)? +c? + d?d?}] 

CD on = —[2ed(e — g)(f + A)I[1 + #7S{(e — 9)? + PF +h)? +0? + od"}] 

(@ an = —[ed(e + 9)(f - AL + x?*S{(e + 9)? + #(f — h)? +c? + d?d"}] 

CO ign = —[2ed(e+g)(f + AL + w7S{(e + 9)? + PF +h)? +c? + g7d?}] 

BY = ed[1—2x?S(cd— d? — g*e”)] , po) = cd[—1 — 2"? S(cd + d? + ¢’e?)] 

y) = cd[1—2x*S(¢*cd—e?—¢d*)] , 72) = cd[—1—2%7S(¢?cd+e7?+¢7d")] 

2G), = —2n*S¢edef , 9) =-6x?Sded’e? , AY), = 6x? Sd*cdefg 

ta), = ef[-1—2x7S(c— e)*] + de[-1 — 2x7S¢"(d — f)"] 

rD, = ef[-1—2x?S(c— e)*] + de[1 + 2x°S¢?(d+ f)”| 

r, = ef[1 + 2x*S(c + e)"] + de[—1 — 2x7S¢?(d — f)"| 

tD, = ef[l + 2x*S(ct e)"] + de[l + 2n°S¢7(d+ f)?] 

147



APPENDIX B. COEFFICIENTS IN PANEL FLUTTER EQUATIONS 

oO), = cdf[l — 3x2S(2df — f? — ¢%g?)] 
a), = cdf[-1—3x7S(2df + f? + ¢7g")] 

g) fo = cdf[1— 3x?S(—g? + 2¢7df — ¢?f’)] 

wo ,, = cdf[-1— 3x7S(g? + 2¢7df + ¢*f?)] 

6D 1g = b[—3edg—3x7S(—4cde f? +2ce f* + edg f?+ $7{—4edeg? + 2ce fg” + cdg*})] 
6D 4g = b[-3edg—3x7S(4ede f?—2ce f? + cdg f? + $7 {4cdeg? — 2ce fg” + edg*})] 
62) = ¢[3cdg—3x7S(4cde f? + Ice f? — cdg f? + $7 {4cdeg? + 2ce fg? — cdg*})| 

5) fg = ¢[3edg—3x7S(—4ede f? — 2ce f> — cdg f? +g? { —4edeg? — 2ce fg” — cdg*})] 

0 = ¢°|—3cdg—3x7S(phi?{—4cde f? + 2ce f* + cdg f?} — 4cdeg?+ 2cefg?+cdg?)| 

02 4 = $[3cdg—3x7S(phi?{4cde f? + 2ce f* — cdg f?} +4cdeg?-+ 2ce fg” — cdg*)| 

OD 5, = ¢"[-3edg—3x?S(phi?{4ede f? — 2ce f>+edg f?} + 4edeg”—2ce fg? + cdg*)] 
02 +6 = ¢7[3cdg—3x7S(phi?{—4cde f? —2ce f* — cdg f?} — 4cdeg? — 2ce fg? — cdg*)| 

1 

luy = / cos un€, cosumladéa = 1 if u=v=0 
0 

=5 if u=+vZ0 

=0 if ufu 

1 
Juv = / sin uré, sin urfadéa = 5 if u=vZ0 

0 

=-5 if u=-—-vZ#0 

=0 if u#Atvoru=Oorv=0 
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1 1 
@) = | sinux€, sinux€, cos(w — z)rladb, = 3 (u-»)(w-2) — Tutv)(w—z)] 

0 
1 

I?) = [ sin uxé, sinuxé, cos(w + z)xfadéa = 5 lfuew\(wt) — Tupvyw+e)! 
0 

  

1 1 
J) = | sin ux, cos uré, sin(w — 2)tba déa = 5 lJ(ute)(w-2) + Jtu—v)(w-z)] 

0 
1 1 

JQ = [ sin uxf, cos ux€, sin(w + 2)rladéa = 9 I(ute)wte) + J(u—v)(w+2)] 
o 

1 
JQ) = [ sin ux€,, sin(v — w)*bad£a = J(u)(v—w) 

0 
1 

J) = | sinux€, sin(v + w)rladla = J(uy(v4+w) 
0 

1 u _ . _ ute) : 
Huw = x | sin um€, cos Umea dba = woe (1—(-1)"T"|] if ufv 

=0 if u=itv 

1 
HY) = x | sin ux€,, cos (vu — w)*ad£a = H(u)(v—w) 

0 
1 

H(?) =n. | sin ux€, cos(v + w)tbad£a = Hiuyv4w) 
0 
1 

Ry “— Lo it Meow x | sin uxé, cos ure, cos (w—z)xbgdé, = lH (u+v)(w—z2) + H, (u—v)(w—z)] 
0 

1 
HY) =n [ sin ux, cos uxt, cos(w+z2)rl.db. = 5 Heutoyew) + Hiy—v)(w+2)] 

0 
1 1 

H®) =n | sinuxé, sinux€, sin(w—z)tladla = 5 | H(w-2)(u-v) — Hw-2)(u+v)] 
0 

1 
H{®) =. [ sinuxé, sinuxé, sin(w+z)rladla = [Hw syn») — Hiw+2)(u+v)] 

0 

  
  

2 x*h? 4 4h? 

Ky = e - ; 2. ) Ky = 

4(b + é)|1 - (52) & 14] 

_ Dh 1 x41 _ a/Dh 1 \2x+4+1 
Ks Wye a) =" GE.) 2 
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Appendix C 

RELEVANT LINEAR SYSTEMS THEORY 

C.1 Solvability Conditions for Linear Algebraic Sytems 

The systems of algebraic equations (4.23) are re-written as, 

AiG; = G& ’ t=1—->N (C.1) 

The solvability conditions for (C.1) are derived in the following manner (see, e.g., Nayfeh 

[86]). Pre-multiplying (C.1) by an arbitrary row vector b; and transposing the resulting 

equation, we obtain, 

  

-~Ty\*  saTro 
Cc; Aj b; = Cc b; 

where A; A; (the adjoint of A,;) (C.2) 

Here, the overbars denote the complex conjugate of the overbarred terms. Now if A; is 

singular then so is Aj. Thus, choosing b; as the nontrivial solution of Aj bj = 0 we obtain 

the following solvability condition (note that ¢; is bounded): 

eb; =0 (C.3) 

In most physical problems, the rank of A; is N — 1. Thus b; and hence the solvability 

conditions (C.3) are unique (up to a multiplicative constant). However, for certain special 

cases involving repeated frequencies, the rank of A; could be less than (N —1). In such cases 

b; and hence (C.3) are non-unique (since they contain two or more arbitrary constants). 
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C.2 Stability of Linear Differential Systems with Periodic Coefficients— 

Floquet Theory 

Consider the 2N-dimensional ODE system (4.38);, i.e., 

z—f[z; A, Li] (C.4) 

which has a periodic solution Z with period T, i.e., z[t] = z[f+ 7]. The stability of the 

periodic solution is determined by applying a generalized perturbation z*[t] to z[t] and 

determining how z*[t] evolves with time. The solution 2[¢] is asymptotically stable (unstable) 

if z*[t] + 0 (z*[t] + 00) as t+ 00. Thus, introducing z[t] = z[t] + z*[¢] into (C.4) we obtain 

the linearized disturbance equations (i.e., for a local stability analysis), 

a*[t] = Ale; r, L3)z"[E] 

where Alt; A, L*] Val| . (C.5) 

Here, the 2N x 2N matrix A is periodic with period T4, i.e., 

Alt; A, Lt] = Alt + Ta,;A, 13] (C.6) 

where T4 =T (T,4= T) when f contains even nonlinearities, i.e., the limit cycle is unsymmet- 

ric, (f contains only odd nonlinearities, and the limit cycle is symmetric). The symmetry 

referred to here is the inversion symmetry for which we have z[t] = —z[t + t). 

The fundamental matrix solution Z*[t] is defined as, 

Z"lé] = [z;[é], 23[#], ------ » Zan IE]] (C.7) 

where the column vectors 2% (j = 1-+2N) are linearly independent solutions of z* obtained 

using the initial conditions, e.g., z7[(0])=OVi#j, z7[0]=1. Thus, from (C.5); we have the 

matrix IVP that would yield one possible fundamental matrix solution, i.e., 

Z =Alt;\,L*]Z* , Z*0)=1 (C.8) 
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where I is the 2N x 2N identity matrix. By introducing the new variable t* = ¢ + T4 into 

(C.5); and considering (C.6), we conclude that if Z*[t] is a fundamental matrix solution 

then so is Z*[t + 74]. Further, knowing that every solution of the linear ODE system (C.5)1 

is expressible as a linear combination of any fundamental set of solutions, we can express 

Z*(t + T,4] as, 

Z*(t+ Ta] = Z*[t]S (C.9) 

where # is a constant 2N x 2N matrix which depends on the fundamental matrix solution 

chosen (and hence on Z*[0]). For Z*[0] as in (C.8)2 and considering (C.9), we obtain, 

$= $= Z*|T4] (C.10) 

where the unique, constant, 2N x 2N matrix # is called the monodromy matrix. 

Now, we consider the linear transformation, 

Z(t]P-) = Z*(¢] (C.11) 

where P is a constant, and as yet arbitrary, 2N x 2N matrix. Considering (C.11) in 

conjunction with (C.9) and (C.10), we obtain, 

Z(t + Ta] = Zt] I where J =P -'$P (C.12) 

Here, Jisa constant, 2N x 2N matrix. If @ has distinct eigenvalues rj; and we choose P 

comprising of columns which are the right eigenvectors of $, then J is the Jordan form of 

G, i.e., J is diagonal with \; (known as the Floquet multipliers) as its elements. Hence, the 

components (i.e., column vectors) of Z[t + T4] are obtained as, 

2;((+ T,] = d;2;[t] , j=1—2N 

z;[t+ MT4] = 043, [t] (C.13) 

From (C.13)2 and (C.11) we see that the periodic solution is asymptotically stable if | 4; |< 1 

for all j=1-+2N, and unstable if | \, [> 1 for any k=1—2N. 
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Differentiating the autonomous system (C.4) once with respect to t, we obtain, 

z=V2fz (C.14) 

Comparing (C.5); and (C.14), we conclude that z is a periodic solution of (C.5)1, with 

period T. Hence, % can be expressed in terms of the fundamental matrix solution obtained 

from (C.8), as, 

z(t] = 2" |e] z(0] (C.15) 

Considering (C.10), (C.15) and the periodicity of Z, we obtain, 

Ta=T: z(0] = 2[T] = #2(0] 
  

T,=T/2: £(0] = &(T] = S° g(0] (C.16) 

Equation (C.16); reveals that when T4=T, i.e., for an unsymmetric limit cycle, one of the 

Floquet multipliers of an autonomous system, say ;, is +1. For T4 = t (C.16)2 implies 

that A? = 1. Further, considering (C.13); for j =i along with the fact that the symmetry of 

the limit cycle Z is preserved only when 2; possesses inversion symmetry, we conclude that 

for T,4 = tT i.e., for a symmetric limit cycle, \; = —1. 
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