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(ABSTRACT) 

Recent developments in compact fluorescent lamps, electronic ballasts and 

adjustable speed drives have expedited the process of taping energy saving potential of 

these technologies. The proliferation of these. loads, however, has raised new concerns 

about the power quality in commercial buildings. Higher cost of repair and the reduction 

in average life of equipment, both on the supply and load sides, could become obvious if 

these issues are overlooked or ignored. As lighting loads are the largest fraction of the 

load in most of commercial buildings, a small increase in harmonic distortion level in | 

commercial buildings may jeopardize other loads in the building or the loads connected to 

the same utility bus. 

As these devices were tested to quantify their energy saving potential, it was 

found that they can create undesirable harmonic problems. Such characteristics were 

quantified for different samples. It was observed that certain combinations of these lamps 

and ballasts are much more acceptable from power quality viewpoints than when tested 

individually. A generic algorithm was developed that can help to select certain energy 

efficient lighting technologies and will minimize the harmonic distortion level in the 

building. Results from the algorithm were validated on a building load model to test the 

accuracy of the algorithm results. The proposed algorithm helps to avoid the problems of 
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selecting energy efficient technologies randomly during retrofitting of commercial 

buildings for energy savings. 

Pollution mitigation features, and a summary of environmental and power quality 

status of energy efficient lighting devices were also discussed. A brief description of 

other nonlinear loads, present in commercial facilities, was also given to evaluate their 

role in reaping the benefit of energy savings in new lighting technologies. Energy savings 

and environmental benefits of new lighting devices were highlighted in the presence of 

other nonlinear loads. This study provides a complete illustration of the benefits and 

power quality issues related to these technologies. 
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CHAPTER I 

INTRODUCTION 

The increasing environmental concerns and government legislation have forced 

electric utilities to tap the energy conservation potential to its maximum. Numbers of 

utilities are pursuing energy conservation programs in their service areas. Lighting 

accounts for 20-25% [1] of the electricity consumed in the United States. Studies made 

during late 1980's have shown that energy efficient lighting can save 50 to 80% electricity 

currently consumed in lighting. That translates into more than 10% reduction in total 

electricity demand. It will also reduce CO emission by 4%, SO2 emission by 7% and 

NO, emission by 4% of the national average. One can expect an improvement in these 

numbers as a result of progress in the lighting products. There is a significant potential of 

energy saving by making improvements in the lighting technologies. Hence the 

manufacturers of lighting products are trying to improve these technologies. The ideas 

that were not very attractive in the past are gaining popularity among the manufacturers of 

lighting products. Since 1980, manufacturers of lighting systems have shown 

extraordinary enthusiasm in bringing the energy efficient products into the market. Due 

to this improvement, consumer confidence has risen. Utilities are not finding much 

difficulty in sponsoring efficient lighting programs in Europe and North America. Since 

1987, more than 50 utilities in 11 European countries have offered financial incentives to 
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their customers to promote compact fluorescent lamps [2]. Recently other lighting 

technologies have also qualified for utility rebates. Beside conserving energy resources 

and the global environment through efficient lighting products, the manufactures are also 

addressing issues like power factor improvement and control on harmonic pollution 

caused by these products. The major technologies competing for utility rebates are: 

tungsten-halogen, fluorescent and gas discharge lamps. Among the discharge lamps, 

fluorescent, sodium and metal halide lamps are investigated. None of these technologies 

is perfect for all lighting applications. Each has one or more redeeming features. 

In the light of the current state of the art lighting technologies the direction of this 

research was to pursue the investigation of certain techniques that can help to minimize 

total harmonic distortion while saving energy and protecting environment. Factors that 

influence the decision making. while selecting energy efficient lighting technologies for 

retrofitting are investigated. 

Chapter 2 establishes the context of the research giving brief review of energy efficient 

lighting technologies. Brief account of development and status of the prominent energy 

efficient lighting technologies is presented. Issues like energy conservation, 

environmental impact, health hazards, power factor, total harmonic distortion (THD), 

color rendering index and cost effectiveness are summarized for each technology option. ° 

The chapter establishes that the most important issues to be investigated are energy 

conservation, environmental impact and THD. 

Due to significant correlation of nonlinear loads within the building loads, chapter 

3 is devoted to the investigation of nonlinear loads. Technically these loads are just 

nonlinear impedances. They are used to deliver modified electrical power to various 

equipment. Nonlinear loads have been a concern for power engineers from early days of 

alternating currents. Their use at domestic power rating has been increased greatly in 
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1970’s. Recent developments in power electronic technology has made it possible to 

improve efficiency of the energy use in different processes and systems. These 

technologies offer a better control and reliability of the systems. More recently while 

their use in energy efficient technologies have validated their vital importance, it has also 

increased the problems and concerns at system level. Rectification of these problems 

requires an understanding of the operation and characteristic of the nonlinear loads. 

Nonlinear loads have different current . requirements as opposed to their linear 

counterpart. Hence classical definition of power and its calculation methods are not 

applicable to nonlinear loads. Scientists and engineers are having a difficult time to agree 

upon a comprehensive definition of power for nonlinear loads. Very few instruments are 

available in the market that can measure true power and true power factor under nonlinear 

load conditions. This chapter addresses these issues. Only nonlinear loads that are 

commonly employed in a typical utility service area are discussed in this chapter. 

As the harmonics present in current drawn by certain equipment and loads are one 

of the most important issue, hence chapter 4 investigates this phenomenon for different 

' linear and nonlinear loads. The problem of harmonic distortion has recently become the 

focus of study of many researchers. This can be easily seen when we examine the 

numerous conferences dedicated to the subject. International engineering societies have 

also devoted working groups and committees to study this phenomenon. In this chapter 

we have covered the sources of harmonics common to the supply and load side of the 

power network. In later sections, we have investigated the effects of harmonics on 

equipment as well as some recommendations to keep the harmonic distortion level within 

the prescribed limits. 

Chapter 5 reviews the recent developments in power electronic technologies that 

have changed the requirements of electricity customers. A significant number of loads 

draw nonlinear current from the electric utility source and inject harmonics at the point of 

common connection (PCC). However, one needs to understand the phenomenon. of 
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harmonic summation, interaction, and cancellation in the presence of multiple harmonic 

sources before trying to correct the problem. Lehtonen [129] has summarized same of the 

previous work done by different people on the issue of harmonic summation and has 

proposed a general solution to the harmonic summation problem. He has used a 

probabilistic approach to solve the problem of harmonic summation. However, this 

approach does not provide much help in selecting lighting technologies that do not 

increase the harmonic level in the building. This chapter investigates the problem at the 

individual harmonic frequency level and suggests a generic algorithm to select lighting 

technologies in a specific building environment. 

The proposed algorithm for selection of energy efficient lighting technologies is 

based upon the same principles that are used in most of the harmonic analysis equipment. 

However, there is always some level of disparity between the algorithm results and the 

real time measurements made by using harmonic measuring instruments. This chapter 

starts with discussion of these factors that are responsible for the disagreement between 

the measured and the calculated values. The phenomenon of random occurrence of phase 

angles of individual harmonic frequencies and its influence on the results is explained by 

studying different harmonic sources (magnetic circuits, electronic circuits, etc.). 

Results of the algorithm are verified by comparing them with actual 

measurements for the same combinations using the signal analyzer. Two case studies are 

included in chapter 6 to verify the generic characteristic of the proposed algorithm. These 

case studies help to establish the generic nature of the proposed algorithm. The salient 

features of the algorithm are summarized in the from of its advantages and disadvantages. 

Chapter concludes with a brief summary of material covered in the discussion of results 

and verification of the algorithm. 
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Until recently focus of the most of work in this area was on energy saving 

benefits. Chapter 7 is intended to evaluate recent progress in different energy efficient 

lighting technologies on the basis of their functional and technical performance and their 

system level impact. Energy savings and environmental benefits are evaluated while 

keeping track of harmonic impact on the system. 

The last chapter comments on some features of the proposed algorithm for 

selection of energy efficient lighting technologies. Some directions to expand and extend | 

the algorithm are also identified. 
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CHAPTER II 

A REVIEW OF ENERGY EFFICIENT LIGHTING 

SYSTEMS 

2.1 Introduction 

Currently, a wide variety of energy efficient lighting products are available in the 

market. All of them are not capable of saving energy and the environment without having 

a negative impact on the power system. In most cases information provided by the 

manufacturers is not enough to decide about a product for certain applications. Every 

manufacturer tries to convince the decision makers that they have the solution to the © 

problem. Most of the manufacturers simply give a positive picture of their product. 

Issues like power factor, THD and color rendering index are often overlooked by the 

manufacturers. Under these circumstances it is very important for a decision maker to 

have a complete picture of the energy efficient lighting products available in the market 

as well as their limitations and scope in future. This chapter gives a review of the popular 

energy efficient lighting products with their up-to-date progress in the areas of energy 

savings, power quality, color rendering, life and the issue of health hazards. 

A REVIEW OF ENERGY EFFICIENT LIGHTING SYSTEMS 6



2.2 Tungsten Halogen Lamps 

Tungsten-halogen lamps are primarily incandescent lamps. Efficiency of the lamp 

is increased by introducing a halogen gas into it. The addition of halogen gas and 

maintaining a temperature around the filament at 2000 K evaporate tungsten atoms that 

combine with halogen vapors to form tungsten halide. Convection current carries the 

tungsten halide to the bulb wall. As the bulb temperature is 500 K to 1500 K, it circulates 

tungsten halide back towards the filament. The temperature close to the filament is 

around 2800 K which helps the tungsten halide to reduce itself into tungsten and halide 

vapors. Tungsten deposits on the filament and halide vapors are then free to repeat 

another cycle. This phenomenon is known as the halogen cycle. To withstand the high 

wall temperature of the bulb, tungsten the halogen lamp is made from quartz. 

The three basic configurations of tungsten halogen lamps are; . double-ended, 

single-ended and halogen capsule lamps. Double ended halogen lamps are inexpensive 

and their efficacy is 15-25 lumens per watt. Certain techniques provide an infrared 

coating on the bulb wall. This approach gives an efficacy of 32-38 lumens per watt. As 

opposed to the double ended lamps, the single ended lamps have the single base at one 

end of the lamp. Lamp life is 2000 hours in both cases. The single-ended lamp has an | 

efficacy of 20-25 lumens per watt. Infrared reflecting film enhances the efficacy of the 

single ended lamps. The halogen capsule lamps are available in different configuration: 

halogens PAR (Parabolic Aluminized Reflector) lamps, halogen PAR-IR (Parabolic 

~ Aluminized Reflector-Infra Red), bud shaped and projector type lamps. Up to 90% of the 

energy radiated in a tungsten halogen lamp is invisible infrared or heat energy. However, 

certain techniques convert part of this infrared energy to light through the application of 

thin film reflecting coating. 

During the last decade, tungsten halogen lamp technology has gone through 

significant improvements. As mentioned earlier, halogen lamps radiate 90% of the energy 
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in the near infrared. One way of increasing lamp efficacy is to increase the filament 

temperature. Wasted infrared energy is recycled into useful light. During the 1970s a 

practical approach, using wasted energy through the so called recycling procedure was 

reported. Three layers, TiO2-Ag-TiO? filter was used to reflect back the infrared energy 

on the filament. Due to temperature limitations of metal filters, they are limited to lamps 

having large surface area. Semiconductor type filters are easy to apply and have excellent 

reflection characteristics. A US manufacturer made an earlier effort to develop a 

multilayer dielectric filter and introduced a double ended quartz lamp in 1983. Bergman 

[5] has developed a compact coil and double ended quartz halogen lamp. A multilayer 

dielectric oxide film is incorporated to reflect IR radiations to the filament. This 

arrangement gives an increase in efficacy of 35% over the non-IR halogen lamp. The 

other benefits of the new design include lumen output variability up to 50% while it 

maintains most of the features of the standard halogen lamp. 

In case of an ideal filter, 75% of the infrared radiation could be returned to the 

filament and as much as 57 lumens per watt is possible to achieve. For tempratures of 

2900 K and 3000 K, the above considerations may give an efficacy from 66 to 74 lumens 

per watt [7]. This scenario gives us an efficacy very close to the compact fluorescent 

lamps, e.g., 40 to 75 lumens per watt. There are several practical limitations in achieving | 

this target. Significant work has been reported in the literature to study system optical 

performance and filament absorption. Absorption of the radiations is maximized by 

making the coil as dense as possible. 

Material selection to fabricate infrared coating is another important consideration. 

Selection criteria include: thermal expansion coefficients of the material, pairs matched to 

substrate, phase stability, resistance to oxidation, resistance to reduction, and 

environmental stability. The most important materials used for infrared reflecting film 

are Ta2O5/Si09 and TiO2/Si07. Another 46-layer TazO5/SiO? coating infrared film is 

commercialized by a US manufacturer. 
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Several different film deposition processes have been considered for fabrication of 

infrared reflecting film for halogen lamps. The most important of these are: physical 

vapor deposition, dip coating, and chemical vapor deposition. Infrared reflecting coatings 

have boosted the tungsten halogen lamp efficacy. They are becoming popular in the 

marketplace. Still there are many obstacles in lamp making and film development 

technologies. A continued improvement in lamp efficacy is expected through filament 

geometry and high efficiency filter designs. 

Tungsten-halogen lamps are presently available at market places for some 

residential and commercial applications. Manufacturers are marketing 90 watt halogen 

PAR lamps that make an excellent replacement for 150 watt R-40 lamps. Recently they 

have produced a 75 watt halogen lamp that replaces the 150 watt R-40 lamp. Another 

significant development in this category is the 60W PAR IR-halogen lamp, used for 

floodlighting. It replaces 150W PAR floodlamp. Energy saving in this case is 60% and a 

payback time of less than three months [8]. Another tungsten-halogen lamp used in the . 

United States is the MR-16 (multifaceted reflector) lamp. It has a smaller filament that 

helps in better controling light distribution. Beside this significant improvement in lumen 

efficacy, halogen lamps, in most of the cases, have a higher power factor and insignificant 

harmonic pollution. For energy conservation considerations, these characteristics bring 

the tungsten halogen lamp at par with compact fluorescent lamp. It is expected that the 

manufacturers of tungsten-halogen lamps will be able to overcome the difficulties 

involved in different processes as mentioned earlier. 

Fischer [9] has introduced an electronic dimmer for halogen lamps that gives an 

additive convenience as well as economical benefits. The author has offered an 

innovative dimmer IC for low voltage halogen lamps. The new design, SLB 0587 IC, is 

capable of driving resistive and inductive load alike. The brightness level of the lamp is 
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precisely adjusted from the minimum to the set value. Table 2.1 shows some energy 

efficient tungsten halogen lamps for different applications. 

2.2.1 Optical Hazards of Halogen Lamps 

McIntyre [10] has reported some recent work on the visual safety aspect of the 

quartz linear lamp(QLL). He has studied the biological and physical effects of incident 

radiations on the eye. The authors have concluded that there is no risk of blue light 

hazard or UV damage. To make a confident conclusion about the thermal retinal injury, 

the author has suggested more work to quantify these effects. 

Bergman, Parham and McGowan [11] made a recent review of UV emissions 

' from GE lamps. American National Standards Institute (ANSI) has circulated standard 

for “Photobiological Safety of Lamps and Lamp Systems” for discussion. Review of UV 

emissions from lamps shows that all general lighting lamps are responsible for UV 

emissions, however, the level of these emissions is much lower than the emissions from _ 

sunlight. UV emissions from some halogen lamps may exceed the limits proposed by 

ANSI standard Z-311.1. For low voltage halogen lamps, a 2-3 mm thick glass shield can 

significantly minimize the emission level. For all lamps, the use of a dopant in the glass 

or quartz can reduce the emissions. . It is encourging to know that Ta O;/Si O2 IR coating 

in halogen lamps have minimal UV emissions; however, they are the most energy 

efficient lamps among general lighting halogen lamps. 

2.3 Fluorescent Lamps 

Sir George Stokes discovered in 1852 the basic principle of transforming UV 

radiations into visible radiations. In 1920s it was discovered that a mixture of mercury 
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Table 2.1. Energy Efficient Tungsten Halo 
  
  

  

gen Lamps 
  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

      

| ‘Life Candle Beam 
tt B Base 

Watts ulb $ (hours) Power Spread 

CAPSYLITE HALOGEN PAR LAMPS 
600 55 Deg 

Medium 1800 32 Deg 
45 PAR-38 Skirted 2500 4500 15 Deg 

11500 9 Deg 
Medium 3400 26 Deg 

60 PAR-38 Skirted 2500 17500 9.5 Deg 
Medium 3500 30 Deg 

75 PAR-38 Skirted 2500 12000 13 Deg 
17500 10 Deg 
4000 30 Deg 

90 PAR-38 Medium 2500 6000 20 Deg 

Skirted 11500 15 Deg 
22500 9 Deg 
2500 55 Deg 

150 PAR-38 Medium 3000 7500 30 Deg 

Skirted 25000 10 Deg 
37500 9 Deg 
1100 42 Deg 

50 PAR-30 Medium 2500 1750 32 Deg 
6500 | 12 Deg 

1800 42 Deg 
75 PAR-30 Medium 2500 3000 32 Deg 

10500 12 Deg 

600 40 Deg 
35 PAR-20 Medium 2500 900 30 Deg 

3000 8 Deg 
50 PAR-20 Medium 2500 4600 12 Deg 

1300 30 D 55 PAR-16 Medium 2000 5000 12 Deg 
2000 30 D 75 PAR-16 Medium 2000 7500 12 Deg 

MasterLine HALOGEN PAR LAMPS 
Medium 5800 12 Deg 

45 PAR-38 Skirted 2500 2000 28 Deg 
3500 28 Deg 

60 PAR-38 Medium 2000 13500 12 Deg 

Skirted 15500 9 Deg 

Medium 4500 27 Deg 
7 PAR-38 Skirted 2500 14500 10 Deg 

Medium 4500 28 Deg 
90 PAR-38 Skirted 2500 14500 12 Deg 

1250 40 Deg 
50 PAR-30L Medium 2000 1900 30 Deg 

4200 16 Deg 
9900 9 Deg 
2200 40 Deg 

75 PAR-30L Medium 2000 3400 30 Deg 
6700 16 Deg 
15500 9 Deg 
1400 30 Deg 

50 PAR-20 Medium 2000 3200 16 Deg 
6200 9 Deg 
1 2 40 PAR-16 Medium 2000 5000 0 Dey 

2 27 D 60 PAR-16 Medium 2000 oo00 10 Deg               
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vapors and an inert gas, is 60% efficient in converting electrical energy into light. In 

April 1938 a fluorescent lamp was introduced commercially in different colors. Since 

1940, there has been very little change in the basic arc discharge system of the lamp. 

There have been significant changes in phosphors and electrode design. 

In a fluorescent lamp, free electrons are derived from the electrodes and 

accelerated by the applied field. The kinetic energy of the free electrons is transformed 

into excitation energy of the gas atoms and finally the excitation energy is radiated as 

light. The structure of the fluorescent lamp consists of a glass tube whose inside surface 

is coated with phosphor. It is filled with argon or a mixture of krypton and argon. A 

small amount of mercury present inside the glass tube is vaporized during lamp operation. 

Electrodes are located at each end of the tube. 

2.3.1 Full-Size Fluorescent Lamps 

Standard full-size fluorescent lamp contains argon gas and halophosphor. Owing 

to the federal regulations in the United States, halophosphor replaced phosphor in cool 

white lamps. Fluorescent lamps are usually classified on the basis of the electronic . 

Circuits used to regulate the lamp operating voltage. Preheat lamps have an external 

starter to heat the electrodes before the starting of the lamp. Rapid start lamps have a 

ballast that regulates the voltage as required in the beginning as well as during the 

operation. Instant start lamps have a ballast that provides the high-voltage in the 

beginning to start the lamp and normal voltage during its operation. Rapid start lamps are 

the most commonly used fluorescent lamps. In this case, flicker is the only undesirable 

characteristic, however, the lamp has a long life. The instant start lamp is popular due to 

its quick start characteristic but it has a short life. Lamp parameters like tube length and 

diameter, as well as phosphor and gas type, control the characteristics of the lamp. 
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Presently use of rapid start lamps (F40T12) is ten times more than all the other types 

combined. 

The US. Energy Policy Act of 1992 has set some energy efficiency standards for 

different lamps. Manufacturers have already developed the energy saving version of 

F40T12. Reduced wattage lamp (F40T12/ES) meets the standards set by the above 

mentioned legislation. In energy saving lamps, krypton is used instead of argon gas. 

These lamps reduce wattage up to 15%, whereas lumen reduction is up to 20%. Rare 

earth phosphor used in energy saving lamps (F40T12/ES) improves the performance of 

fluorescent lamps. They have better color rendering and higher lumen efficacy as 

compared to cool white lamps. 

In some cases the rapid start lamp is used with a heater cut-out. Lamp electrodes 

are disconnected after the lamp has started. Although this approach decreases the lamp 

life up to 25%, the energy saving potential is significant. Extended output lamp has 

thicker and more efficient phosphor and the electrodes are redesigned and have a different 

tube diameter. All of these changes improve the lamp efficacy and lamp life up to 21% 

and 20% respectively. There is significant improvement in lumen maintenance and . 

colour rendering. U-tube lamps are available in different configurations. They are 

available with holophosphor as well as rare earth phosphor coating. The average life of 

the Lamp is up to 18,000 hours. Slimline instant start lamps have a wide range of tube 

diameter and length (24-96 inch). The average life of the lamp is 12,000 hours. High 

output rapid start lamps have a length range of 18-96 inches. Very high output lamps 

have higher efficacy, yet both high output and very high output lamps are not very 

popular for retrofit applications. The five technical options to improve fluorescent lamp 

efficacy are: higher surface area to volume ratio, wattage reduction, increase in surface 

area, use of high efficacy phosphors, and reflectors. All of these options are widely used 

to improve the fluorescent lamp efficacy in different configurations. 
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An effort to investigate aging of the Fluorescent reflector was recently made by 

Nelson and Crocker [14]. A wide range of aging period for different materials was 

reported. A further investigation is suggested to fully understand the aging phenomenon. 

Numbers of studies were conducted to evaluate the performance of selected fluorescent 

products. Results of their work were very encouraging for electronic ballast | 

manufacturers. The efficacy of the lamp was very high and a THD as low as 6% [15]. It | 

was noted that the electronic ballast in industry environment needs a little modification 

for reliability purposes [17]. A dynamic mathematical model was developed for the 

electrical characteristic of fluorescent lamps. It can model the different aspects of lamp 

operation in electrical circuit. It helps significantly to design electronic ballast under 

different operating conditions [19]. Table 2.2 shows the efficacy improvements using 

different technical options. 

! 

Fluorescent lamps could be made more energy efficient by enrichment of the 

mercury isotope, an applied axial magnetic field, use of two photon phosphors, and high 

frequency operation of electrodes. The most promising approach is very high frequency 

electrodless operation. Laboratory results shows that a target of 200 Im/W and lamp life . 

up to 100,000 hours will be achieved by the turn of the century [20]. 

2.3.2 Compact Fluorescent Lamps 

Compact fluorescent lamp consists of the lamp, lamp holder and ballast. There 

are three types of compact fluorescent lamps (CFL): integral system, modular system and 

dedicated system. Both integral and modular systems are self ballasted packages. 

Modular system consists of a socket adopter, ballast and lamp. Integral systems have a 

one piece assembly, while modular systems have a replaceable lamp. Yet both are 

designed to screw into existing incandescent medium base sockets. Currently they are 

available in a power range of 5 to 55 watt. There has been a dramatic increase in the 
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Table 2.2. Performance of F40 Fluorescent Lamp Systems 

  

  

  

  

Lighting System my ‘Imwy Man). CRI 

40W F40 T-12/CW" 40 79 | 3150 67 

34W F40 T-12/CW1 34 81 2750 67 

32W F32 T-8/41K2 32 100 3190 85           
  

1Cool white lamp 

2Tri-phosphor lamp 
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potential applications of CFLs. They are available in a variety of colors and wattage. 

There is a great variety in the CFLs for commercial applications. So it is almost 

impossible to give a complete picture of the whole line of products. 

CFLs are suitable for a wide range of residential and commercial applications. 

They are appropriate for incandescent lamp replacements. Commercial applications of 

CFLs include down lighting, decorative lighting, exit signs and task lights. Colored 

lamps are also being manufactured in narrow band phosphor colors (red, blue and green) 

with yellow filter coating. Manufacturers are emphasizing on increasing the compactness 

of the fluorescent lamps. Since 1991, they are successfully making a smaller dimension 

lamp by joining three twin tube angles at 120°. Series of triple twin tube lamps were 

developed for 18, 24 and 36 watt. Another development in this regard was to arrange 

twin tubes side by side. Besides the conventional approach of producing illumination in 

CFLs, there is an excellent scope of introducing electrodless compact fluorescent lamps. 

In this new set-up electric power is coupled through induction to the discharge. Godyak 

and his colleagues [18] have demonstrated the results of RF-inductive fluorescent lamp. 

It is expected that development of the new energy efficient products will continue. 

Love [21] has reported results of the field performance of Compact fluorescent 

systems. Apart from the usual benefits of longer life and energy efficiency, he has noted 

some additional advantages, such as reduction of cooling load, elimination of heat 

damage to exit sign enclosures, increased safety due to reduced wiring in exit sign 

enclosure, etc. At present, application of CFLs for downlights is one of the major areas 

of research activity. Thermal management techniques have been applied to mitigate the 

losses due to lamp overheating. Results from the convective venting design show that 

light output of the lamp increases up to 25% [22]. CFLs are gaining ground for 

commercial applications. In a commercial interior environment, convective venting may 
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cause dirt depreciation and cause reduction in light output. Work done by Siminovitch 

and others [23] shows that convective venting causes no dirt depreciation of CFLs. 

With having all the technical knowledge about the energy efficient products, it is 

very important to study the managerial aspect of the retrofitting and switching to the 

energy efficient lighting sources. Zackrison, Jr. [25] has discussed the products from 

major manufacturers as a possible alternate for retrofitting. Besides the energy 

conservation and engineering aspects of the candidate products, he has taken into account 

management issues involved in the implementation of energy conservation programs. 

Another effort to address the management related issues, was done by Wellinghoff [26]. 

The main focus of his work is to point out the pros and cons of the retrofit game. Quite 

recently some manufacturers in US have marketed integral type compact fluorescent lamp 

(electronic ballast) with a THD lower than 10% and a power factor higher than 0.98 [27]. 

| 

2.3.3 Ballast 

Ballast is the heart of the discharge lamps. It provides high initial voltage to 

initiate the discharge and limits the current during the continued operation. Usually it is — 

designed to optimally operate only one type of lamp. As mentioned earlier, there are 

three types of fluorescent lamps: preheat, rapid start and instant start lamps. Rapid start is 

the most popular mode of operation for fluorescent lamps. The salient features of rapid 

start are smooth start, long life and dimming capabilities. 

The fluorescent lamp is a low pressure discharge lamp. A ballast is required to 

start and operate the fluorescent lamp. Construction of the magnetic ballast is very 

simple. A wire coil is wound on the iron core and connected in series with the lamp. It 

provides current for electrode heating, high voltage to start the lamp, and limits current 

during its operation. In preheat lamps, supply voltage heats the lamp filaments until 
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starter opens, causing a high voltage across the lamp. An instant start circuit provides a 

high starting voltage to initiate the lamp operation and eliminates the need of a starter. A 

rapid start lamp makes use of the principle of preheat and instant start circuits and 

eliminates the need of a starter. 

Until mid 1980s, magnetic ballasts were dominating the fluorescent ballast 

market. The electronic ballast was introduced in 1981. In some cases a premature failure 

of electronic ballasts occurred. Most of the manufacturers have improved their products. 

As a result, after five years of operation, ballast failure rate has gone down to less than 

1%. A study conducted at the University of California has demonstrated the ability of the 

manufacturers to design and manufacture electronic ballasts at the required level of 

reliability. It shows that reliable high frequency electronic ballasts could be produced and 

will last as long as magnetic ballast (10-20 year). High-frequency electronic ballasts 

operate the lamp at 20-50 kHz, reducing flicker and hum. They are 25% more efficient as 

compared to magnetic ballasts. Due to high frequency operation, the size of the ballast 

circuit is significantly reduced. It has become possible to design a CFL that replaces 

incandescent lamps, without any modification in existing sockets. Without the humming 

core, the electronic ballasts is very silent, compared with conventional magnetic ballasts. - 

They are excellent in the office environment such as conference rooms or teleconference 

suites. The energy conservation office of the University of California at Berkeley has 

shared their field experience with high frequency ballasts. They have concluded that high 

frequency ballasts not only save energy from 20 to 30%, but they are also reliable, quiet, 

and flicker-free [29]. 

In the early 1980s, hybrid ballasts were introduced in the market. The key to this 

approach is an auxiliary transformer (filament transformer) that activates when the lamp 

is not ignited. A voltage sensitive switch acts as a short circuit for open circuit ballast 

voltage and appropriate voltage is induced in the secondary of the auxiliary transformer. 

After the ignition, voltage across the lamp collapses. This design results in energy 
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Table 2.3. Hybrid Ballast Comparison With Other Ballasts 

  

  

  

            

Ballast Type Voltage Current | Power THD 

(V) (A) (W) (%) 
Energy Efficient 
Magnetic Ballast 120 0.73 86.5 17.09 

Filament 

Transformer Type 120 0.68 81.2 18.00 
Hybrid Ballast 

New Hybrid Ballast 120 0.68 80.9 16.21 
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saving. Owing to technical and economic constraints of the existing hybrid technology, a 

new design was presented in late 1990s. It maximizes energy saving, weight reduction, 

and is modular in design. The new electronic component dominant circuit has better 

control and is easy to manufacture. Table 2.3 gives a comparison of new hybrid ballasts 

with the existing approaches [30]. Recently, Garbowicz [31] has reported the results 

from a hybrid ballast developed for 32W T8 and 34W T12 lamp systems. 

In 1991, a group of researchers presented a single-ended, soft switching and high 

frequency electronic ballast. Salient features of the proposed design are unity power 

factor, high efficiency, and soft switching at turn-off and turn on. Due to single-ended 

characteristics of the lamp, the circuit is simple enough to integrate in smart power ICs 

[33]. 

Most of the manufacturers of electronic ballasts have developed state of the art 

products. Some of them are marketing electronic ballasts having a crest factor below 1.5, 

a power factor greater than 0.99 and THD less than 10%. They are offering electronic 

ballasts for a complete spectrum of fluorescent lamp applications, energy control and 

monitoring system for dimming applications. All of these systems have power factor . 

greater than 0.99 and THD less than 10%. Due to the potential benefits of the lighting 

control in energy conservation, the market has demanded a wide range of dimming 

contro! features in electronic ballasts. A common problem with the dimming circuits was 

that the discharge of the fluorescent lamp becomes unstable and the lamp extinguishes at 

a low luminance level. Researchers around the world have overcome this problem and 

have developed an electronic dimming ballast for fluorescent lamps that can dim the lamp 

from 0.3-100% [34]. 

Some new techniques and topologies are suggested to improve the harmonic and 

energy conservation status of the electronic ballasts. Tadesse, Dawson and Dewan [37] 
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have described three high frequency inverter topologies suitable for powering rapid start 

fluorescent lamps. Results from the comparison of the filter technologies show that the 

LCC and LCLC filters satisfy the criteria set by the authors in an optimal way. 

Recently, numbers of topologies have been introduced to realize efficient 

electronic ballasts. Gulko and Ben-Yaakov [38] have investigated Current-Sourcing 

Push-Pull Parallel-Inverter (CS-PPRI) as a fluorescent Jamp driver. Keeping in mind that 

fluorescent lamp requires a current source rather than a voltage source driver, the authors 

have proposed a modification in current source inverter topology. Results of this 

modification suggest that the present approach can realize a high frequency current 

source. It is particularly useful as a driver. This approach eliminates the need of an extra 

ballast. In this design the current is a function of the frequency ratio. This feature is used 

to realize a fluorescent lamp dimmer. Cosby and Nelms [39] have approached the same 

problem in a different way. They have used resonant inverter in electronic ballasts 

because of their load dependent characteristics. They have compared three types of 

resonant inverters using a fundamental approximation technique. Among the three types 

of resonant inverters, the parallel load resonant inverter is selected because of the 

possibility of large voltage gain. Jordan and O'Connor [40] have described a zero voltage . 

switched resonant converter as a driver to fluorescent lamp. The circuit is reported to 

develop efficiently high voltage, sinusoidal power to drive cold cathode fluorescent 

lamps. Emergency lighting is another potential application area of high frequency 

electronic ballasts. A smart lighting emergency ballast is proposed by Alonso and his 

colleagues [41]. The microcontroller in the control circuit performs supervision and 

control for security purposes. High frequency technique is applied to battery chargers as 

well as driver circuits for discharge lamps. High power factor, high luminance efficacy, 

small in size and weight, low in flicker, and harmonics are the prominent features of the 

circuit. 
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2.3.4 Issues in Fluorescent Lighting Systems 

Energy efficient lighting systems are acceptable as long as one does not need to 

compromise on human health, audio and visual comfort, and technological convenience. 

Whereas electric utilities are concerned with the power quality issues. Certain 

technological improvements have been made to address the concerns of the consumers as 

well as electric utilities. 

(a) Health Hazards 

Several aspects of fluorescent lighting may effect human health and visual 

comfort. Most of the studies done in this regard are not very conclusive. The following 

are the potential hazards to human health due to exposer to fluorescent lighting: 

(1) Skin cancer 

(11) Skin photosensitivity 

(111) Skin erythema and inflammation to the eye 

(iv) Lighting and stress 

(v) Mood states, the pineal gland and lighting 

(vi) Glare 

(vil) Flicker 

(viii) The ‘sick building syndrome’ and lighting 

(ix) Polychlorinated biphenyls 

Study performed by Muel and his colleagues have shown a possible skin cancer 

risk due to basal and squamous cell carcinomas cancer. They have reported 600 deaths in 

20 years over a population of 50 million. McKinlay and his colleagues [10] conducted a 
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study for another type of skin cancer. Their result shows that risk of death from this 

particular type of skin cancer is one person in 2,500,000 per annum. Studies conducted to 

test skin photosensitivity shows no correlation between fluorescent lighting and skin 

photosensitivity. Relation of lighting and stress is not well defined. This is an area that 

needs further exploration. Glare and flicker have been reduced by the improvements in 

the lighting system technology. Although there is a positive effect of fluorescent lamps 

on the radio signal fading and digital communication, automatic gain control could be 

designed to compensate for fading at twice the power line frequency [44,45,46]. 

(b) Ambient Temperature Limitations 

Compact fluorescent lamps are increasingly used as an alternate to the 

incandescent lamps. EPRI has conducted a recent survey showing that users of 

fluorescent lamps were dissatisfied with lumens output of the lamps. It was suspected 

that the improper ambient temperature may have caused this decrease in lumen output of 

the fluorescent lamps. Ouellette [47] demonstrated that performance of the fluorescent 

lamp depends upon ambient temperature. Effect of the ambient temperature is not the . 

same for all products; instead it varies greatly from product to product. Another study 

shows that at -30 °C ambient temperature lumen output of fluorescent lamp is as low as 

30%. However, lumen output increases after the start-up and reaches to 100% after 30 

minutes. It 1s observed that lumen performance at low temperatures is better for high 

wattage luminaries. It is suggested at least 13 Watt compact fluorescent lamp (CFL) 

should be installed when the temperature is -10 °C. If the temperature is lower than this, 

CFLs are not recommended [48]. An Amalgam based CFL design has been suggested for 

outdoor applications. It is believed to have better performance under low ambient 

temperature conditions [51]. 
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(c) Power Quality Issues 

It is a fact that Fluorescent lamps are very crucial in a saving substantial amount 

of electricity. The savings in electricity will decrease expensive investment in generation, 

transmission and distribution equipment. More importantly, this approach will help to 

protect the global environment by reducing the amount of pollutants e g. CO, , SO, and 

NO,. However, fluorescent lamps may degrade the power quality if they are allowed to 

proliferate without any check. In the future, power quality may deteriorate more due to 

higher penetration of nonlinear loads e.g. computers, peripherals, electronic equipments 

with switching power supplies and electronic variable speed drives. By the year 2000, the 

nonlinear loads, including lighting, are expected to become 50 percent (in industrialised 

countries) of the total load [59]. 

The leading manufacturers of lighting products are marketing T-8 lamps and 

electronic ballasts with a power factor of more than 99% and THD less than 10%. 

However, CFLs that are available in market have a power factor as low as 50% and THD 

as high as 142%. Although major manufacturers of CFLs are claiming to have high 

power factor and low THD technology, they are not implementing it due to the limitations - 

of space, weight, and cost of the products. In the future, large scale penetration of high 

power factor and low THD CFLs will depend upon utility incentives, rebate programs, 

and increasingly strict standard limits. 

2.4 Low Pressure Sodium Lamps 

Since the introduction of the low-pressure sodium lamp (LPS) more than 60 years 

ago, it is the most efficient among the artificial light sources. The higher efficacy is 

mostly due to the presence of two yellow resonance lines of sodium at 589 and 589.6 nm; 
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whereas maximum human eye sensitivity is at 555 nm. The monochromatic character of 

LPS lamp makes it suitable to see the contrast more clearly. The contrast between the 

moving and stationary object is perceived more quickly. Moreover, low luminance 

reduces the risk of glare. Sodium light saves 10% to 15% in lumens without effecting the 

visibility as compared to the other sources of artificial light. These characteristics of LPS 

sources are highly valuable in situations where recognition of the objects and contours is 

essential for safety. LPS lamps are an excellent choice for motor ways with approach 

lanes and exits, intersections, through ducts, bridges, tunnels and parking areas. 

Improvement in LPS lamp from 1932 to 1960 is mainly attributed to the 

development of sodium resistant glass. A sustained efficacy of 100 lm per watt was 

achieved through the development of sodium resistant glass. From 1960 to 1980, thermal 

insulation was the major area of activity. Better heat insulation was achieved by 

increasing the number of extra glass sleeves, a metal layer for infra-red reflection, ideal 

infra-red reflecting filters, semiconductor layers for infra-red reflection, and reflecting 

layers of IngO3. Since 1980, an enormous amount of work has been done on high 

frequency operation of LPS lamp. Low-pressure sodium lamps are available with 

efficacy as high as 200 Im per watt. High frequency operation of LPS lamps offers a lot - 

more opportunities for further improvements in lumen efficacy. A lumen efficacy of 225 

Im per watt for high frequency operation is possible with a practical ballast. Even greater 

improvements in system efficacy are possible with high frequency electronic ballasts 

[70,72,73]. Table 2.4 gives a summary of the performance of high efficiency, low 

pressure sodium lamps [73]. Since the discharge tube in the LPS lamp is not exposed to 

the atmosphere, lamp starting is not effected by the ambient temperature. It does not 

cause any starting problem until the temperature below -30 °C. However, extremely low 

temperatures may cause slight reduction in the light output. 
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Table 2.4. Performance Characteristics of Sodium Lamps 

  

  

  

  

  

    

Lamp System 
Lamp Type | Watts | (iumens per watt) | (lumens per watt) 

SOX-E 131 130 200 | 172 

SOX-E 91 90 194 165 

SOX-E 66 65 165 135 

SOX-E 36 35 163 135 

SOX-E 26 25 140 109       
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2.4.1 Electrical Control of Low Pressure Sodium Lamps 

Like the other discharge lamps, the LPS lamp also needs a driver circuit for 

starting and operation. Similarly, the lamp has a negative current voltage characteristic. 

The auto-leak transformer was used for quite a long time to limit the current. Owing to 

high open circuit voltage, auto-leak transformers have high power loss and require a 

bigger ballast. Since the 1980s, significant changes have occurred in the driving circuitry 

of the LPS lamps. The hybrid circuit was used to replace the auto-leak transformer. The 

efficiency of hybrid circuits is 10 to 30% higher than auto-leak transformers. Moreover, 

it makes 50% savings in weight and volume, and reduces mains current distortion. De 

Groot and his colleagues [72] studied the high frequency operation of LPS lamps. They 

reported the results of high frequency 

] 

operation of LPS lamps of different wattage at different frequencies. The study shows 

that the efficacy of LPS lamp drops up to 25 kHz and then rises up to 400 kHz. The 

increase in lumen efficacy at a high frequency is due to an increase in arc efficiency and 

reduction of electrode losses. All future improvements in lamp efficacy lies in the . 

development of high frequency driver circuits. The problem of main voltage dip becomes 

insignificant when the LPS lamp is driven with a high frequency ballast circuit. In 

frequency ranges of 200 to 400 kHz an efficacy gain of 10-20% could be made when 

compared with power frequency operation. 

2.4.2 Dimming of Low Pressure Sodium Lamps 

Due to the increasing cost of electricity and for the purpose of environment 

protection, all energy saving measures should be taken without compromising safety, 

comfort level, and productivity. Dimming circuits are effective sources of energy and 
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cost saving. Moreover, they offer a wide range of lighting flexibility to the users. Di 

Fraia [68] proposed a method for continuous dimming of low pressure sodium lamps. 

The proposed method does not need any modification to the existing circuitry. The only 

requirement is to install a variable frequency converter. The lamp can be operated at a 

very reduced wattage by increasing the supply frequency above the mains value. The 

author has presented the results for a 35 Watt LPS lamp at variable frequency of 50 to 

500 Hz. The lumen output, lamp power, and ballast losses decrease up to 1%, 17% and 

7%, respectively for the above frequency range. Since the introduction of the proposed 

dimming method in 1981, significant developments in the ballast circuitry have been 

made. Dimming circuits are now more compact and cost effective as compared to their 

earlier designs. 

2.5 High Pressure Sodium Lamps 

There are two maxima in the luminous efficacy curve of the sodium discharge 

lamp [79]. One is at 0.2 Pa and the second at 10° Pa. The 0.2 Pa leads to a low pressure 

sodium lamp and the 10. Pa is the characteristic of the high pressure sodium lamp. The | 

high pressure sodium (HPS) lamp was developed in 1968. The main purpose of this 

development in discharge lamps was to provide an energy efficient lighting source for 

exterior and industry applications. The Europeans have already taken the lead by 

introducing a complete family of HPS lamps. 

Vliet and Groot [79] have made an excellent early review of HPS lamp, developed 

in the first decade of its introduction. Since the early 1970s, HPS lamps have dominated 

the street light services. Researchers and manufacturers were working hard to improve 

the efficacy as well as color rendering of HPS lamps to make it acceptable for indoor 

applications. In 1987, Kemenade [81] and his colleagues explored the possibility of 
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applying HPS lamps for indoor applications. They continued their effort until they were 

able to develop a white HPS lamp with a color temperature of 2700 K while maintaining 

a color rendering index above 80. Primarily they introduced a nitrogen fill gas in the 

outer bulb to increase the arc tube wall loading. This increase in arc-tube wall loading is 

responsible for the increase in luminance and color properties of the lamp. At the same 

time Gibson [82] introduced a 70-W gas filled reflector lamp with a lumen efficacy of 77 

Im per watt. The higher lumen efficacy is due to the radical differences in the concepts 

used in the new design. In the proposed design, Krypton fill enhances the safety of the 

lamp while beam performance is improved with a smaller arc-tube. As the new design is 

completely compatible with the existing design, it works satisfactorily with existing 

driving circuits. Graser [84] has demonstrated an improvement in life of high color 

rendering HPS lamps. The lamp arc tube is filled with high pressure (200-300 mbar) 

xenon gas. This approach increases the useful lamp life by a factor of four. This is due to 

reduction in the diffusion rate of volatile components in the corrosion process. 

Pulse operation of HPS lamps was discovered in 1977 but it took quite a long 

time to fully understand the phenomena of pulse operation. As mentioned earlier, 

although high efficacy and long life are the inherent features of sodium lamps, poor color . 

qualities make it unacceptable for indoor situations. Whereas it has been proven that 

pulsed operation of HPS lamps makes it possible to improve color properties of HPS 

discharge lamps. Under an operating pressure of 200-300 mbar, the pulsed operation 

technique gives a color rendering index of 60-80 with color temperatures 2500-3100 K. 

Spectral output of the discharge depends on the height, width and frequency of the square 

pulse applied to the HPS discharge. Thermodynamic properties of the gases used in the 

discharge also influence the spectral output of the source. Ruton and his colleagues [85] 

have made a parametric analysis of the pulsed HPS discharge system. They have 

demonstrated the system with a color temperature of 2800 K and color index greater than 
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70. The system has a practical design of ballast that fulfills color, life, and lumen efficacy 

requirements of the indoor applications. 

Recent developments have made it possible to use white HPS lamps for indoor 

applications. It requires stabilization in order to keep the color rendering index (CRI) 

within the acceptable limit. Carleton and Keijser [87] have addressed this issue in their 

work. They have demonstrated an electronic control circuit to stabilize the color under 

the variable conditions of line voltage, ballast impedance, and cold spot temperature. The 

proposed design keeps the CRI above 80 under all circumstances. Pabst and Klien [88] 

with their work in Austria have introduced an electronic ballast for HPS lamps. The new 

product successfully determines the correct switching point between glow-to-arc 

transition and supplies appropriate heating power to the electrodes to overcome glow 

mode. Genes and Wyner [91] have given an excellent review of the recent developments 

in HPS lamp technology. 

2.6 Metal Halide Lamps 

Metal halide lamps are based on the principle that vapor pressures of many metal 

compounds are higher than those of metals themselves while keeping the temperature 

constant. At a certain wall temperature of the discharge tube, metal halide compounds 

start evaporating. Dissociation of the molecules occurs in the discharge area due to the 

high temperature of the molecules. Radiations are emitted from the excited ions and 

atoms. Recombination of the ions and atoms occur as soon as they move away from the 

discharge area. This cyclic process keeps on going throughout the life of the lamp. 

In 1965, when first metal halide lamps were developed, exterior lighting and 

industrial lighting were the main target for application of the new lamp. Since then, 
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efforts have been made to develop metal halide lamps for universal applications. As a 

result, metal halide lamps are now available in a range of 32-1500 watts and different 

configurations. Sugiura [101] made a review of the development of metal halide lamps 

from 1980 through 1992. He has emphasized on the following four basic types of the 

metal halide lamps. ScI-NaI lamps were very popular until early 1980s. After that, 

Dysprosium-lodide lamps took the lead due to its characteristics such as excellent color 

rendering, compact size, and low power. Due to demand of variety of color temperatures, 

tin-halide lamps have become very popular at the market place. Further improvement in 

metal halide lamps is expected through the use of electrodless technology and ceramic 

arc-tubes. Byszewski and his colleagues [92] at GTE laboratories have emphasised the 

glow discharge phase of the discharge lamp. They have developed a detailed model that 

describes glow discharge in a low wattage metal halide lamp. Accuracy of the new model 

has been considerably improved over the previous models. 

! 

Parrott [98] along with his group has developed a low wattage metal halide lamp 

with enhanced containment. It contains the forced rupture and allows cost effectiveness 

with greater color temperature. Features like higher efficacy, longer life, and controlled 

optics make it attractive for indoor applications. One of the most lucrative developments .- 

in metal halide lamps was made by Rasch and Statnic [100]. They have tested and 

compared regulated the electronic ballast (REB) with the conventional ballast. Results 

show that although REB is somewhat complicated as compared to fluorescent ballasting 

it is still cost effective. The main advantages of the REB are as follows: 

1-Smaller dimensions 

2-Lower weight 

3-Reduced Flicker 

4-Improved system efficacy 

A REVIEW OF ENERGY EFFICIENT LIGHTING SYSTEMS 31



5-Straight arc 

6-Less variation of lamp loading 

7-Less variation in color 

These features of metal halide lamps with a regulated electronic ballast make it more 

suitable for indoor applications. 

2.7 Summary 

Infra-red tungsten halogen lamps have a potential to save up to 60% energy 

without polluting the system. It competes closely to the CFL in many cases. In some 

applications it even surpasses the CFL. The new electronic technology and material 

developments are promising a lot in favor of fluorescent lamps. This is the reason that 

fluorescent lamps, particularly CFL, have drawn greater attention of the researchers and 

manufacturers. 

For outdoor and industrial applications, LPS, HPS, and metal halide lamps are ~ 

close competitors of one another. Each lamp has its merits and demerits. Their choice 

depends upon the application. Recent developments in HPS and metal halide have 

provided a chance to consider them for indoor applications. 
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CHAPTER III 

NONLINEAR LOADS AND ENERGY CONSERVATION 

DEVICES 

3.1 Introduction 

! 

A nonlinear load is one in which the load current is not proportional to 

instantaneous voltage. There is a discontinuity in the current drawn by nonlinear loads. 

They behave differently from linear loads. Load current will be non-sinusoidal even if 

instantaneous voltage is perfect sinusoidal. Technically these loads are just nonlinear - 

impedances. They are used to deliver modified electrical power to various equipments. 

Nonlinear loads have been a concern of power engineers from early days of 

alternating currents. Their use at domestic power rating has been increased greatly in 

1970’s. Recent developments in power electronic technology has made it possible to 

improve efficiency of the energy use in different processes and systems. These 

technologies offer a better control and reliability of the systems. More recently while 

their use in energy efficient technologies have validated their vital importance, it has also 

increased the problems and concerns at system level. Rectification of these problems 

require an understanding of the operation and characteristic of the nonlinear loads. 
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Nonlinear loads have different current requirements as opposed to their linear 

counterpart. Hence classical definition of power and its calculation methods are not 

applicable to nonlinear loads. Scientists and engineers are having a difficult time to agree 

upon a comprehensive definition of power for nonlinear loads. Very few instruments are 

available in the market that can measure true power and true power factor under nonlinear 

load conditions. Still, the authenticity of these measurements is questioned. This chapter 

will address these issues. Only nonlinear loads that are commonly employed in a typical 

utility service area are discussed in this chapter. 

3.2 Classification of Nonlinear Loads 

Nonlinear loads could be classified on the bases of their applications, function and 

chronological development. Resent developments in power electronic technology has 

pushed industrial, commercial and residential consumers of electricity toward automation 

and electronic control. Hence every conventional equipment that has its electronic 

version in the market has better efficiency and control. It is difficult to cover all of these 

loads on the bases of their applications. It will be more appropriate to classify nonlinear | 

loads on the bases of static and dynamic nature. Figure 3.1 gives the general 

classification of nonlinear loads. 
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3.2.1 Transformers 

Iron core devices like transformer have nonlinear relation of flux density with the 

current. Under normal operating conditions these devices produce a symmetrical non- 

sinusoidal excitation current when excited with sinusoidal voltage. It generates odd 

harmonics. However, contribution of harmonics to the magnetizing current is very small. 

Harmonic contribution to the magnetizing current is significant under following 

conditions: 

i) Magnetizing in-rush during switching transformer under no-load 

conditions. 

ii) Over-excitation of transformer caused by electric power supply 

system over-voltage. 

tii) | DC magnetization in the transformer core when loaded with 

half-wave rectifier. 

Transformer switching under no-load conditions causes up to more than twice the 

maximum flux density. This phenomenon produces an in-rush current from seven to ten 

times the full load current. It generates significant second harmonic and DC components. 

In case of 20% over-voltage, power transformers start operating in the saturation region. 

Magnetizing current exceeds the full load current and transformer operates in saturation 

region. Due to nonlinearity of the saturation region, harmonic content become more 

visible. When a transformer is loaded with rectifier, it requires only unidirectional half 

sinusoidal wave. The AC component of this secondary output current is offset by a 

supplementary ac primary current. The DC component of the secondary winding 
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produces DC magnetization of transformer core. The core is saturated for one half cycle 

and generates even and odd harmonics. 

3.2.2 Electrical Machines: - generator and motor 

Electrical generators do not generate a perfect sine wave. Pitch factor and other 

design parameters are greatly pronounced as nonlinear characteristic of generator. Degree 

of nonlinearity in electrical machines depend upon the design parameters. Standard 

generator with 4/5 or 5/6 pitch generates lower order odd-harmonics. However, fractional 

pitch winding significantly reduces third harmonics. A 2/3 pitch winding eliminates the 

third harmonics and doubles the amplitude of fifth & seventh harmonic. 

3.2.3 Discharge Lamps 

Fluorescent, high pressure sodium and metal halide lamps have significant 

nonlinear arc impedance. Applied ac voltage to the lamp ignites the arc during each half 

cycle. Impedance of the arc keeps changing through out the cycle. This phenomenon 

produces nonlinear current and voltage waveforms. Magnetic choke, used to operate . 

discharge lamp, is operated in saturation region of magnetization curve. It increases the 

harmonic content in the load current. Overall discharge lamps with conventional driving 

arrangement generate large amount of harmonics. Third and fifth harmonics are the most 

dominant harmonics in discharge lamps. Standard discharge lamps produce total 

harmonic distortion(THD) as high as 30% of the fundamental frequency. 

3.2.4 Are Furnaces 

Impedance of the arc in electric arc furnaces is nonlinear as well as unpredictable. 

It keeps changing throughout the melting process in the furnace. Melting cycle of the 
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electric arc furnace could be divided into two stages. First stage is the initial melting 

stage. It has an active arc. Arc current is non-periodic and contains harmonics of integer 

and non-integer orders. Non-integer harmonics are not very significant whereas integer 

harmonics are between second and seventh harmonics. Amplitude of the harmonics 

decrease with the frequency of the harmonics. Second part of the melting cycle is the 

refining stage. It has a stable arc. Arc current becomes stable and harmonic current is 

reduced. The current becomes symmetrical, eliminating non-integer and even harmonics. 

3.2.5 Converters 

The ac to dc converter is used in dc motor speed control, ac motor speed control, 

uninteruptible power supplies, computer power supplies and numerous other applications. 

Conventionally, diodes were used as switching devices in converter circuits. In modern 

converters diodes have been replaced with thyristors. They can be switched on and off at 

any point of the cycle by using proper firing circuits. Three-phase converters are made by 

cascading three single phase converters. Converters in all configurations are nonlinear 

loads. They draw non-sinusoidal current from the source. Converters with diodes as 

switching devices are less nonlinear as compared to thyristor based converters. As . 

nonlinearty of the converter circuit increases they draw more non-sinusoidal current and 

harmonic distortion becomes a significant problem. 

3.2.6 Inverters 

Inverter circuits are widely used for different control applications. Adjustable 

speed drives are the most common user of inverter. They are used to change a dc input 

voltage to a symmetrical ac voltage of desired magnitude and frequency. Output voltage 

waveform of the inverter is non-sinusoidal and contains certain harmonic frequencies. 

Recent developments in semiconductor devices have made it possible to minimize 
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harmonics by using certain switching techniques. As inverters are the fastest growing 

devices in modern control applications hence they are discussed in detail in this chapter. 

Classification of the inverter is shown below in Figure 3.2. 

Both single phase and three phase inverters have four categories each. Pulse 

width modulation(PWM) inverter is the most popular inverter presently used in 

adjustable speed drives and other control circuits. Followings are the commonly used 

techniques in PWM inverter: 

a) Single pulse width modulation. 

b) Multiple pulse width modulation. 

c) Sinusoidal pulse width modulation. 

d) Modified sinusoidal pulse width modulation. 

e) Phase displacement control. 

Power electronics: circuits, devices, and applications [110] is an excelent 

reference to review different types of inverters. 

3.2.7 Switch Mode Power Supplies (SMPS) 

Conventional power supplies with a transformer and iron core choke are clumsy, 

inefficient and uneconomical. They have been replaced with efficient, compact and 

economical switch mode power supplies. Presently, all manufacturers of microprocessor 

based equipment use SMPS. Switching phenomenon in these power supplies take place 

at a frequency range from 20 to 100 kHz. High switching frequency helps to reduce the 

transformer size, used in the power supply. Usually ferrite core is used instead of iron 

core. A very sophisticated control circuitry is used to produce the required voltage under 

varying 
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load conditions. Current requirements are within a very narrow time span of each half 

cycle. It makes SMPS a highly nonlinear load. 

3.2.8 Static VAR Compensators 

A static VAR compensator (SVC) supplies a variable amount of reactive power to 

a power network. It consists of numbers of fixed capacitors, in parallel and a switched 

inductor. Thyristor controlled reactor is used quite extensively as a static VAR 

compensator. It helps to reduce voltage flicker, improve power factor, power system 

Stability and correct phase imbalance. However, gating phenomenon in thyristor, being a 

nonlinear device, changes the current from sinusoidal to non-sinusoidal form. 

Nonlinearity of SVC generates harmonic currents of odd frequencies. 

Main advantages of static VAR compensator are: 

e High speed of operation. 

e Compact size. 

e Low loss. 

3.3 Power Measurements in Nonlinear Loads 

The increasing use of power electronic technology for energy conservation 

purposes has made the measurement process in nonlinear loads a bit complicated. 

Conventional instruments used for control and measurement purpose, are obsolete now. 

However, digital techniques have made it possible to measure voltage, current, power and 

power factor for nonlinear loads. Results of different measurements made during this 

research shows that nonlinearity of the loads significantly effect the measurements. 
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Although sampling technique is an effective tool to measure true power under nonlinear 

conditions but industry prefer to keep on using conventional instrumentation and 

measurement techniques. Following section is intended to clarify the discrepancies in 

power measurements that occur due to nonlinearities in the power electronics equipment 

and other nonlinear loads. 

Apparent power is a widely used term in power engineering practice and 

applications. Usual definitions are restricted only to linear loads. Whereas nonlinear 

loads are delt, separately. The procedure of determining VA takes into account the RMS 

values of harmonics and their order in case of nonlinear loads. Active power and apparent 

power in a nonlinear system is defined as: 

T 1 
Pao J V(L)i(t)At —eeannsecane scnnsscssasecsecensecesee (3.1) 

0 

S=Vouslpys = nennntnnnaennnnncnenssuseseenssnsnees (3.2) 

Where 

v(t) = Instantaneous voltage. 

i(t) = Instantaneous current. 

Vrms = RMS voltage. 

Irus = RMS current. 

One popular notation used to relate apparent power, active power, and reactive power is: 

[S|7 = P4O ——cccccccsssssasustsesessesessssessssssusvecsseen (3.3) 
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Equation 3.3 is true for a pure sinusoidal system while reactive power (S) is very much 

controversial for non-sinusoidal systems. Reason for this deviation from Eq. 3.3 is the 

fact that nonlinear loads follow the relationship: | | aS P+Q- It is due to the cross 

terms in the products of the Fourier series that coresspond to voltages and currents of 

different harmonic frequencies. Active power(P) and reactive power(Q) coresspond to 

the voltage and current products of terms of the same frequency. The Equation 3.4 

incorporates the cross terms that explains the distortion effect of nonlinear loads. 

2 92 2 22 LS = PHOHD ———aaeeessssnnnsensceseseeeeeeeeeetete (3.4) 

Where 

D = Distortion volt-amperes. 

Distortion volt-amperes correspond to the products of voltages and currents of dissimilar 

frequencies in the Fourier series of v(t) and i(t).D can also be interpreted as: 

Da|S|7- (PHO) eescsesssssssesessssssesscessesveee (3.5) 

Although the above interpretation, about the reactive power for nonlinear and 

non-sinusoidal systems is not widely accepted, a number of electrical engineers are using 

these equations for reactive power measurements. Makram [111] has developed an 

algorithm to determine the power components in a system having nonlinear loads and 

non-sinusoidal voltage and/or current waveform, based upon notion (3.1)-(3.5). 
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3.4 Impact of Nonlinearity on Power Factor 

In case of linear loads, terminal voltage is proportional to the load current and are 

displaced with certain phase angle. Cosine of the phase angle between the voltage and 

current is termed as the power factor of the linear load. The nonlinear loads only draw 

current during a portion of the voltage cycle. This results in non-sinusoidal current 

waveform. As shown in figure 3.4, current drawn by CFLs is no longer sinusoidal. 

Current waveform of CFLs is made up of fundamental frequency and number of 

harmonics, added together. Only the fundamental portion of current waveform 

contributes to the real power. Harmonics present in the current waveform do not 

contribute to the real power or the apparent power. Hence power factor calculated in this 

way is not a true power factor. True power factor consists of displacement factor and 

distortion factor. 

a) Displacement Factor 

Displacement factor is the phase displacement between the supply voltage and 

fundamental frequency component of the current. Displacement angle depends upon the 

circuit configuration of the rectifier. It needs to be calculated carefully because it has 

significant impact on the overall power factor of the system. 

P. 
Ss Displacement Factor = 

EI ,( fundamental frequency component) 

Where 
P =System Power a eeaeeee (3.6) 

E, = System Voltage 

[, = System Current 
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b) Distortion Factor 

The ratio of fundamental current to the total current is known as distortion factor. 

It is a measure of current distortion due to nonlinear character of the load impedance. 

Fundamental Current 
  Distortion Factor = 

Total Current 

Due to the complex nature of the current waveform in nonlinear loads, power 

factor could not be measured with conventional power factor meters. Recent 

developments in digital technology have made it possible to measure distortion factor 

with digital instruments. Manufacturers of nonlinear loads in general and lighting loads 

in particular do not mention the method of power factor calculations. Preliminary 

investigation shows that so called power factor in above cases is just displacement factor 

and distortion factor is not included in the power factor. 

c) Impact of Harmonic Distortion on Power Factor Calculations 

Real power drawn by nonlinear load is affected by voltage, current, phase shift 

between voltage and current, and ratio between fundamental current and total current. If 

the displacement factor is very small then the power factor of the nonlinear load will be 

the following: 
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. 1 
Distortion Factor= 

1/2 

(1+ THD (3.8) 

Power Factor = Displacement factor x Distortion factor 

Where 

Displacement Factor = Cos®@,, 

and i cantesestsecsseccesseeeeessseeeeeeees (3.9) 

. : Ii, Distortion Factor =— 

, 

Is, Power Factor = Cos®@,, x saneecececeescecssssceceeseeseees (3.10) 
S 

3.4.1 Power Factor of Nonlinear Load With Non-Sinusoidal Supply Voltage 

In case of high line impedance, current distortion has a significant impact on 

voltage distortion. Under these circumstances, both current and voltage waveforms are 

distorted and power factor calculations become more complicated. 
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Shepherd and Zand [112] have given a complete derivation of power factor for nonlinear 

load and non-sinusoidal supply voltage. 

3.4.2 Power Factor Calculations Using Sampling Technique 

Voltage and current waveforms are defined in the beginning of the program. 

Mostly voltage waveform is sinusoidal or close to sinusoidal. Current waveform is 

usually extremely nonlinear, depending upon the nonlinear load. Active power P is 

calculated using the relationship: 

N 

P=) v(t)i(t) 
t=0 

Vems and Ipms are calculated using the sampling technique. 

Hence apparent power S will be: 

S=Vemselrms 

PF= 

w~
|r
y 

3.4.3 Programming Tool and Solution Methodology 

Sampling technique can be implemented by using any programming language or 

software packages like MATLAB, Mathematica, etc. A program was written in 

MATLAB to calculate power factor for a given sinusoidal voltage and non-sinosoidal 

current. However, the program is effective for sinusoidal as well as non-sinosoidal 
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systems. One hundred and one samples from a cycle of each signal were taken to 

calculate power factor. 

First, program was tested for a sinusoidal current and voltage signal. For 101 

samples computed power factor was 0.7071 and calculated power factor was 0.7106. 

This discrepancy in power factor was due to low sampling rate. Sampling rate was 

increased to 1001 and computed power factor was 0.7068 which is close to the calculated 

power factor. Table 1 gives some results for sinusoidal signal i,(t) and non-sinusoidal 

signals i,(t), i{t) and it). Complete program is given in Appendix and flow chart for the 

program is given in Figure 3.4. 
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Table 3.1. Power Factor and Displacement Angle for Different Current 

  

  

  

  

    

Waveforms 

Current Voltage Current Displacement Angle | Power Factor 
Ref. Angle Phase Angle : 

la(t) n/4 0 31/4 0.710598687 

i,(t) m4 -m/2 31/4 -0.698440509 

i{t) 1/4 -1/2 3n/4 -0.640010217 

i,t) nW4 -m/2 31/4 -0.560379403         
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     Power = 

  

        

Figure 3.4. Flow Chart for Power Factor Calculation 

Using Sampling Technique. 
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3.5 Impact of Nonlinear Loads on Power Factor Correction Capacitor 

Shunt capacitors are used to improve the distribution system performance by 

reducing power and energy losses. Most of the techniques in this regard were developed 

for the power system that have most of its load as nonlinear load. However, with the 

growing interest in energy efficiency and advancement of power electronic technology, 

more proliferation of nonlinear loads is taking place. Capacitor on the distribution 

systems with nonlinear loads can introduce a severe harmonic resonance problem. 

Figure 3.5 shows the equivalent circuit of a two bus system with nonlinear loads. 

Harmonic load flow is carried out to identify the harmonic current source with various 

load components more precisely. 

3.6 Correlation Between Nonlinear Loads and Energy Conservation 

Technologies 

Static nonlinear loads have a very important role in achieving higher stadards of 

conservation in electrical energy use. Power electronic technology has revolutionized the 

control of power conversion in different classes of energy use. Two third of the 

electricity consumed in United states goes to rotating electrical machines. Efficiency and 

performance of electrical machines could be better controlled and improved, using power 

electonic technology. Lighting accounts for one fourth of the electricity used in 

industrilized countries. Power electronic control has made possible to save energy up to 

77% by replacing conventional lighting sources with energy efficient discharge lamps. 

Table 3.2 shows a wide range of applications of power electronic devices in different 

background. 
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Figure 3.5. Equivalent Circuit of Two Bus System With 

Nonlinear Loads 
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This category of nonlinear loads (power electronic devices) combine power, 

electronics, and control. Control is all about steady state and dynamic characteristics of 

closed-loop systems. Power deals with static and dynamic power equipment for 

generation, transmission and distribution of electronic power. Electronic devices are used 

in control circuitry of the signal processing, required to achieve desired control in 

different applications. These devices have tremendous switching speed and power 

handling capabilities and have broadened the scope of their application in every area of 

electric energy use. Table 3.2 gives a summery of selected applications of power 

electronic devices. It gives an idea about the level of involvement of nonlinear loads in 

power distribution system. 
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Table 3.2. Some Applications of Power Electronic Devices 

  

  

Advertising 

Air conditioning 

Alarms 

Appliances 

Audio amplifiers 

Battery charger 

Blenders 

Blowers 

Boilers 

Burglar alarms 

Cement kiln 

Chemical processing 

Clothes dryers 

Computers 

Conveyers 

Cranes and hoists 

Dimmers 

Displays 

Electric blankets 

Electric door openers 

Electric dryers 

Electric fans 

Electric vehicles 

Electromagnets 

Electroplating 
Electronic ignition 

Electrostatic precipitators 

Elevators 

Fans 

Flashers 

Food mixers 

Food warmer trays 

Forklift trucks 

Furnaces 

Garage door openers 

Gas turbine starting 

Generator exciters 

Grinders 

Hand power tools 

Heat controls 

High frequency lighting 

High voltage DC 

Induction heating 

Laser power supplies 

Latching relays 

Light dimmers 

Light flashers 

Linear motor control 

Locomotives 

Machine tools 

Magnetic recordings 

Magnets 

Mass transits 

Mining 

Model trains 

Motor controls 

Motor drives 

Movie projectors 

Nuclear reactor control rod 
Oil well drilling 
Oven controls 

Paper mills 

Particle accelerators 

People movers 

Phonographs 

Photocopiers 

Photographic supplies 

Power supplies 

Pumps and compressors 

Radar/sonar power supplies 

Range surface unit 

refrigerators 

Regulators 

RF amplifiers 

Security systems 
Servo systems 

Sewing machines 

Solar power supplies 

Solid-state contactors 

Solid-state relays 

Space power supplies 

Static circuit breakers 

Static relays 

Steel mills 
Synch. machine starting 

Synthetic fibers 

Television circuits 

Temperature controls 

Timers 

Toys 

Traffic signal controls 

Trains 

TV deflections 
Ultrasonic generators 

UPS systems 

Vacuum cleaners 

VAR compensators 

Vending machines 

VLF transmitters 

Voltage regulators 

Washing machines 

Welding 
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3.7 Summary 

Nonlinear loads are a growing concern for electric utilities. The increased use of 

power electronic devices on distribution system have created unusual problem for the 

customers. Consumers of electricity are spending billions of dollars to protect their 

sensitive equipment from harmonics, injected by nonlinear loads into the electric 

distribution system. Good engineering practice demands that a problem should be fixed at 

its source i.e. nonlinear loads. A filter could be installed inside the supply circuit of the 

equipment or in the vicinity of the equipment. This will significantly block the harmonics 

to effect the other sensitive loads. The other solution is to de-rate the equipment. 

Whatever measure is taken to address the issue, one should fully comprehend the problem 

of low power factor, resonance, and overheating of transformers, motors and generators. 
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CHAPTER IV 

HARMONIC DISTORTION: Sources, Effects, and Standards 

4.1 Introduction 

The phenomenon of harmonic generation has been known since the inception of 

alternating current systems. However, it has not been a threat to the power system until 

the recent developments in switching devices and the accompanying proliferation of 

power electronic devices at large scale. These devices are universally used in consumer 

products. 

The problem of harmonic distortion has recently become the focus of study of 

many researchers. This can be easily seen when we examine the numerous conferences 

dedicated to the subject. International engineering societies have also devoted working 

groups and committees to study this phenomenon. 

Voltage and current waveforms in a power network are perfectly sinusoidal under 

ideal operating conditions. In case of abnormal circumstances, however, voltage and 

current are not linearly related to each other. The current drawn by nonlinear loads is 

nonsinusoidal and results in multiples of the fundamental frequency in addition to the 

fundamental frequency component. In most of the cases, where the source is power 
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electronic equipment, the line current waveform has a half-wave symmetry. Hence, odd 

multiples of the fundamental frequency are initiated in the waveform. Without the half- 

wave symmetry, the waveform may also include some even harmonics. However, even 

harmonics are very rare in the line current, which is drawn by power electronic devices. 

In this chapter we will cover the sources of harmonics common to the supply and 

load side of the power network. In later sections, we will discuss the effects of harmonics 

on equipment as well as some recomendations to keep the harmonic distortion level 

within the prescribed limits. 

4.2. Sources of Harmonics 

In chapter II, we described the nonlinear loads. In order to focus on the harmonic 

generation aspect of these loads, we will revisit some of the characteristics of the 

nonlinear loads. Due to the nonlinearity in electrical loads in general and power 

electronic devices in particular, these loads draw a non-sinusoidal current from the 

source. It is only the fundamental frequency portion of the line current that serves the 

useful purpose. Other multiple frequencies, that are included in the sinusoidal current, 

are reflected back to the electric source. 

We can conveniently group harmonic sources into two general categories: 

conventional and non-conventional sources. Conventional sources constitute the sources 

that were in place before the recent developments in electronic technology, and the 

related concerns to energy conservation and the global environment The conventional 

harmonic sources include: 

I. A transformer operating under saturation condition. 
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A transformer inrush current. 

MMF distribution in AC rotating machines. 

Electric furnaces. 

< 
2
5
 

Fluorescent lighting. 

VI. Imperfect AC sources. 

VII. Static converters. 

Most of the conventional harmonic sources do not assert any serious threat to the 

electrical system. Electric furnaces and static converters are the only loads that generate a 

high level of harmonics. These loads are usually isolated and harmonic filters are 

installed at the site of these loads. Further discussions on these sources are beyond the 

scope of this work. 

Recent proliferation of power electronic and information technology has 

substantially changed the load culture in electric power distribution system. The non- 

conventional harmonic sources are well distributed in the electric utility network. This 

group includes: 

Desktop personal computer. 

Battery charger. 

I 

0 

I. Static VAR compensator. 

IV. Adjustable speed drives (ASD). 

V. DC converter. 

VI. Inverter. 

VII. Television. 

VIII. Visual cassette recorder (VCR). 

IX. Laser printer. 

X. Photocopier. 
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XI. High frequency electronic ballast. 

XI. Compact fluorescent lamp. 

These loads are almost uniformly distributed in residential, commercial, and 

industrial sectors. Moreover, they are the fastest growing loads in all the three electric 

load sectors. Also, energy conservation programs contitute a factor in the growth of these 

loads. Incandescent lamp is a very inefficient source of light. Compact fluorescent lamps 

(CFLs) are good replacement of incandescent lamps due to their high efficacy. 

Adjustable speed drives are also expected to find their way in residential, commercial and 

industrial applications. Adjustable speed drives (ASDs) are energy efficient compared to 

conventional electric drives. Also, their role in complex industrial processes is very 

crucial and unique. Most of the high-tech processes can be performed only with 

adjustable speed drives. Three phase power supplies are playing an important role in 

industrial automation and efficient processes. Single phase switch mode power supplies 

(SMPS) have numerous applications in domestic appliances and office equipment. 

Further discussion about sources of harmonics can be found in references [115,116]. 

4.3 Effects of Harmonics [115-117] 

Harmonics generated from different sources in a power system affect both the 

individual loads and the power system collectively. We will first discuss the effect of 

harmonics on individual loads. 

a) Capacitors 

Shunt capacitors have been traditionally used to improve power factor in 

commercial and industrial facilities. In the presence of harmonic frequencies, they may 
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create resonant conditions. If a capacitor tunes the system to resonate near any harmonic 

frequency, that is already present in the load current, it will generate a high voltage at that 

frequency. The high voltage may blow the capacitor fuse or destroy it completely. 

Another possible effect of harmonics could be additional heating and dielectric stress on 

the capacitor. 

b) Circuit Breakers and Fuses 

Load current with harmonic distortions can result in higher di/dt at zero crossing 

than a sinusoidal waveform, and hence making interruption more difficult. Fuse is an 

inherently RMS over-current device. Distortions in the load current do not have much 

impact on the operation of fuses. 

c) Conductors 

Higher frequencies in the distorted load current contribute to the heat losses in the 

conductor due to skin effect. Skin effect increases with the frequency and diameter of the 

conductor. A conductor carrying a distorted load current can distort the current 

distribution in an adjacent conductor. Usually, in commercial buildings, each phase of 

three phase four wire system is loaded with office equipment that have significantly high 

triplens in the load current. These frequencies are added up in the neutral, as upposed to 

the normal situation when all phases cancel each other in the neutral. Neutral current 

goes as high as three times of the phase current. This situation can lead to conductor 

failure. 
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d) Electronic Equipment 

The electronic equipment is affected by harmonic distortions in many ways. One 

of the most common effects is the increase in zero crossings as compared to fundamental 

frequency current due to harmonic distortions. It can disrupt the operation of electronic 

equipment. Digital clocks are the common example of malfunctioning due to additional 

zero crossings from harmonic distortions in the supply voltage. Switching in electronic 

devices is carried out at zero crossing to avoid electromagnetic interference. Increase in 

the number of zero crossings could disrupt the operation of the equipment. Voltage-peek- 

sensitive operations are affected by the presence of harmonic distortions in the voltage 

signals, that could flatten the voltage peak. 

e) Lighting 

The most common effect of harmonic distortions is the reduction in life of 

incandescent lamps for extended time. Harmonic distortions usually increase operating 

RMS voltage. The continuous operation of incandescent lamp at 105% of rated voltage 

can decrease the lamp life to 47%. Discharge lamp generates audible noise due to 

harmonic distortions present in the supply voltage. Resonance problems could occur as a 

result of inductive choke and power factor improvement capacitors in conventional 

fluorescent lamps. 

f) Meters 

Conventional voltmeter, ammeter, watt-meter, and energy meter have an 

induction type. They are not suitable for currents and voltages having harmonic 

distortions. This is due to two reasons. First, they produce error in measurements, 

depending on the level of harmonic distortions of the signals. In conventional induction 
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meters registration error could be as high as -20%. Second, there is a possibility of 

mechanical resonance failure in the range of 400-1000 Hz, when utilizing one of these 

meters. 

g) Protective Relaying 

Harmonic distortions in the current and voltage signal could cause malfunctioning 

of protective relays. Different relays may respond differently to the fault current with the 

same level of harmonic distortions. Variation of phase angle between harmonic 

frequency and fundamental frequency may significantly alter a relay response. Hence, the 

relay under may not respond to the fault or cause nuisance tripping when there is no fault. 

Most experts agree that it is very difficult to generalize the impact of harmonic distortions 

on protective relays. 

h) Rotating Electrical Machines 

The distorted supply voltage applied to electric drives may cause overheating, 

pulsating torque, and noise. Rotor overheating is another significant problem related to 

non-sinusoidal voltage supply. Both of these problems will contribute to reduction of 

motor operating life. Motor overheating due to nonsinusoidal voltage supply is not 

uniform throughout the motor structure. Instead, there are some hot spots inside the 

motor structure. This phenomenon is perceptible near the conductors within the iron core 

portions. 

Air gap flux and the fluxes produced by different harmonic frequencies, that are 

present in rotor current, interact with each other and produce pulsating torque. This 

torque could be damaging in adjustable speed drives due to possibility of mechanical 

resonance speed. 
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i) Telephone Interference 

Keeping telephone and power line together on utility poles create the problem of 

interference of power line frequencies with telephone communication. Interference 

problem is magnified at harmonic frequencies near 1 kHz, ie., the 15th and 17th 

harmonics. Details of the interference mechanism and mitigation techniques are given in 

Ref. [115]. 

j) Transformers 

The harmonic distortions related problems in transformers could be overheating, 

possibility of resonance, mechanical insulation stresses, and core vibration. Transformers 

are usually derated to compensate for additional heat losses due to harmonic distortions. 

However, the best solution to the problem is to use specialty transformers particularly 

designed for certain level of harmonic distortions in the load currents. 

4.4 Single Phase Harmonic Interaction in Power System 

The widespread use of low voltage appliances such as television, light dimmer, 

phase control load, fluorescent lamp, personal computer, laser printer, and copier may 

contribute to public supply system distortion in a significant way. Harmonic distortion 

level in the supply system depends on the collective effect of harmonic sources supplied 

by the common utility bus. If the line currents drawn by each harmonic source have the 

same phase angles at respective harmonic frequency, the total line current distortion will 

be the algebraic sum of contributions by each source. In real life, electronic equipment 

generates harmonics having a different phase angle. However, the nature of amplitude 
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and phase angles of the harmonic frequencies is probabilistic. The summation of large 

scale, of similar order, harmonic vectors, that is generated by different sources, are carried 

out using different summation techniques. Kazbwe [118] have given a comparison of 

different methods of summation, applied to study collective harmonic effect of multiple 

harmonic sources. 

In electric power system, voltage and current having mutually the same frequency 

transmit real power. In probabilistic methods of harmonic summation, the phase angle 

variation range at each harmonic frequency is an important factor. Lehtonen [119] has 

developed a probabilistic method for assessing harmonic power losses in electricity 

distribution network. 

Additive current on the neutral is a common phenomenon in personal computers 

(PCs) intensive building. Zero sequence currents (3rd, 9th, 15th, etc.), generated by PCs 

or same kind of equipment, accumulate on the common neutral wire. Single phase 

harmonic sources contribute to the harmonic current buildup on the neutral wire [120]. 

Waggoner [121,122] has discussed the problem of harmonic interaction through case 

studies of harmonic load intensive commercial buildings. 

4.5 Impact of Varying Impedances on Harmonic Distortion 

The distortion current generated from a harmonic source interacts with 

impedances of the network itself. Sizable variation in impedance on alternating sources 

feeding large nonlinear loads can create high voltage distortion. Most of critical loads, 

i.e., hospitals, data centers, critical industrial process, etc., require an emergency or 

standby electricity source. Because most of the above mentioned facilities have nonlinear 

loads, they draw nonsinusoidal current. Loads other than harmonic sources have 
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impedance as high as 20 times the impedance of the electric utility network. Most of the 

generated harmonic current will flow towards the utility network. Figure 4.1 shows flow 

of harmonic current into low impedance utility network. 

Some commercial and industrial facilities have in-plant generation. They have 

sufficient generation to meet up to 2/3 of their load demand. Electric utility in the service 

area supplies to rest of 1/3 load in the facility. In other words, in-plant generation is 

running in parallel to the utility source. Figure 4.2 shows this scenario of parallel 

operation of in-plant generator to the electric utility. 

In-plant generator has much higher impedance as compared to electric utility 

network. Although electric utility is supplying 1/3 of the facility load, it has to absorb 

almost all the harmonics generated in the plant. This makes the utilities worry about 

parallel operation of in-plant generation to that of electric utility. 
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Figure 4.1. Harmonic Current Flow and Description of Utility 

and Load Impedances 
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Figure 4.2. Parallel Operation of In-plant Generation With the 
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4.6 Resonant Phenomenon in the Presence of Harmonic Frequencies 

As mentioned in the previous section, harmonic voltages in the network result 

from the interaction of the harmonic sources with the network impedances at each 

harmonic frequency. In purely inductive network, harmonic voltage is reduced when it 

moves from the source of harmonic to the network source. In the presence of significant 

capacitance, harmonic propagation is different and a complex phenomenon to understand. 

The mixed capactive inductive networks create a resonant condition. The resonance is of 

two types, i.e., series resonance and parallel resonance. 

4.6.1 Series Resonant Network 

The magnitude characteristics of network shown in Figure 4.3 approaches zero for 

very low and very high values of w. The magnitude reaches its maximum when 

1 
O= rad/s. The peaking of magnitude is referred to as a resonant effect. The 

VLC 

condition under which peaking occurs is referred to as resonant condition or resonant 

  

network. The frequency at which the magnitude is maximum is called resonant 

frequency. The resonant effect is caused by cancellation of the imaginary components in 

the denominator of the function shown in Eq. 4.1, referred to circuit of Figure 4.3. 

vag ‘ (4.1) 
V. R+j[oL— ty 

@C 
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Figure 4.3. Series Resonance Network 
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4.6.2 Parallel Resonant Network 

A parallel resonant circuit is shown in Figure 4.4. Eq. 4.2 refers to the 

relationship between the phaser variables and the driving point impedance. Resonance 

occurs in the parallel resonant circuit of Figure 4.4 when the imaginary part of the 

denominator in Eq. 4.2 goes to zero. A parallel RLC circuit is an inductive circuit at 

frequency less than the resonant frequency. For frequencies higher than resonant 

frequency, it behaves as a capacitive circuit. At resonant frequency, the network acts as a 

pure conductance. For a constant input current the magnitude of the voltage will be a 

maximum at the resonant frequency. 

  ve (4.2) 
~ 1 

lL G+jloC-(—)] 
aL 

  

Practical examples of parallel and series resonance are given in Figure 4.5. 

Parallel resonance often produces high voltage distortion at the. source of harmonics. 

Series resonance can produce high voltage distortion remote to the harmonic source. 

While parallel resonance offers high impedance to the harmonic current, series resonance 

has low impedance for harmonic current. The high oscillation current in case of parallel 

resonance cause voltage distortion. 
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Figure 4.4. Parallel Resonant Network 

HARMONIC DISTORTION: Sources, Effects, and Standards 73



    

    
Z 

      

(a) Parallel resonance condition. 
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(b) Series resonance condition. 

Figure 4.5. Practical Examples of Parallel and Series Resonance 

Conditions 
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4.7 International Harmonic Standards 

This section covers standards, guide lines, and recommendations that govern the 

harmonic level in the power system and generation from different harmonic sources. 

These standards are intended to control the harmonic distortion level in the power system 

so that the power system equipment on the supply side, and the consumer equipment on 

the load side, could function securely. There are certain factors that influence the 

establishment of the adequate limits for harmonic distortions. These factors are 

summarized below: 

e The definition of system harmonic. 

e Total harmonic content, i.e., THD, TDD, etc. 

e System voltage reference, i.e., 69 kV, 161 kV, etc. 

e Ability of the system to withstand harmonics. 

e The definition of limiting harmonic level. 

e Data acquisition technique and equipment. 

e The type of disturbing load. 

e Possible interference with other electrical systems. 

A combination of the above mentioned factors are usually the base of any 

standard or limits. The standards by itself can be classified into system standards, 

equipment standards, or acceptance criteria and connection standards. Measurements are 

usually made to monitor harmonic distortion level in the power systems. In general, 

standards do not suggest any specific method or equipment for measurements and 

monitoring of harmonic distortion. There are few standards that suggest certain 

HARMONIC DISTORTION: Sources, Effects, and Standards 75



equipment for measurement of voltage and current harmonic distortion. The most 

significant standards in the world are: 

C1 France - Regulations Concerning the Installation of Power Converters, 

Taking into Account the Characteristics of the Supply Network. 

Germany - DIN 57160 (VDE0160/11.81). 

United Kingdom - Engineering Recommendations G5/3. 

Sweden - SEF Thyristor Committee Report. 

Australian - AS2279-1979. 

Finland - Restriction of harmonics in electrical network. 

New Zealand - Limitation of harmonic levels notice 1981. 

TEEE - Std 519-1992. 

IEC - Std 555. 

CIGRE - CIRED. O
Q
M
u
U
O
A
8
0
o
a
g
a
 
a
a
a
 

The French standard defines the total voltage distortion at a point of common 

coupling (PCC) in terms of the individual consumer’s contribution to the voltage 

distortion at the PCC. These limits are applicable to the individual even and odd 

harmonics. The United kingdom, New Zealand, and Finish standards set the limits on 

current harmonics that an individual customer is allowed to draw. The New Zealand and 

Finish standards also cover telephone interference and weighted current or voltage limit is 

used instead of total harmonic distortion (THD). In UK and Australia, limits are imposed 

on the PCC. The consumers at that point are allowed to add harmonic generated load up 

to the set limit. All the consumers are allowed to add their load until the limit is reached. 

Later on, the consumers who want to add the harmonic generating loads are required to 

add filters to mitigate the harmonic effect. In other words, a first come first serve 

approach is adopted in these standards. In New Zealand, standard harmonic capacity is 

HARMONIC DISTORTION: Sources, Effects, and Standards 76



shared by all the customers at the PCC. A portion of harmonic capacity is allocated to 

each customer at the PCC. 

4.7.1 The Most Commonly Used Standards Around the World 

The harmonic standards are set on the basis of certain requirements of the country 

or professional organization. The standards themselves could have either system, 

equipment, or acceptance approach. Indeed, each standard represents a compromise for 

the particular system between the ability of the utility to maintain its sinusoidal 

"characteristics and ability of the customer to use loads having a non-sinusoidal current 

requirement. A review of different harmonic standards shows that non of the existing 

standards is perfect for universal applications. A set of currently available standards can 

be used to make a comprehensive harmonic evaluation of the system. Following is a set 

of international harmonic standards that can help to make an evaluation of a system: 

e CIGRE WG 36.05: acceptance approach. 

e IEC Std-555: equipment approach. 

e IEEE Std-519-1992: system approach. 

CIGRE WG 36.05 

The goal of CIGRE WG 36.05 is to preserve voltage quality of the electric utility 

supply system. It gives harmonic limits for medium voltage as well as high voltage 

systems separately. Finally, the standard determines the requirements for connection 

industrial loads to the public power systems. The standard sets a compatibility criterion 

for the harmonic generating loads and industrial processes. It limits the probability of 

voltage fidelity at 95%. Planning limits set by the standard, are used to evaluate new 

loads. 
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Compatibility Criteria: 

e Describes Voltage Fidelity at 95% probability 

e Voltage THD Limit = 8% 

e Individual Harmonics from 6% to 0.2% 

CIGRE Planning Limits: 

e Used to Evaluate New Loads 

e Voltage THD Limit = 6.5% 

e Individual Harmonics From 5% to 0.2% 
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Table 4.1. Compatibility Levels for Individual Voltage Harmonics 

  

Odd Harmonics 

  

Even Harmonics 

  

  

  

  

  

  

  

  

    
            
  

Non Triplens Triplens 

Order "Voltaze. | Order Voltage. Order Voltage, 

(h) (%) (h) (%) (h) (%) 

5 6 3 5 2 2 

7 5 9 1.5 4 1 

11 3.5 15 0.3 6 0.5 

13 3 21 0.2 8 0.5 

17 2 >21 0.2 10 0.5 

19 1.5 12 0.2 

23 1.5 >12 0.2 

25 1.5 

>25 0.2+(1.3e25/h) 
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Table 4.2. Planning Limits for Individual Voltage Harmonics 

  

Odd Harmonics 

  

Even Harmonics 

  

      

  

  

  

  

  

  

  

          
    

Non Triplens Triplens 

Harmonic Harmonic Harmonic 

Order Voltage Order Voltage Order Voltage 

(h) (%) (h) (%) (h) (%) 

MV HV MV HV MV HV 

5 2 3 4 2 2 1.6 1.5 

7 4 2 9 1.2 1 4 1 1 

11 3 1.5 15 0.3 0.3 6 0.5 0.5 

13 2.5 1.5 21 0.2 0.2 8 0.4 0.2 

17 1.6 1 >21 0.2 0.2 10 0.4 0.2 

19 1.2 1 12 0.2 0.2 

23 1.2 0.7 >12 0.2 0.2 

25 1.2 0.7 

>25 | 0.24(1.3025/h)             
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IEC Std-555 

The standard IEC-555-2 sets the harmonic limits for household appliances and 

similar electrical equipment. Many household appliances and similar equipment are 

liable to generate harmonics of the supply frequency. These harmonics are reflected into 

the supply system network at the point of common connection (PCC). Classification of 

appliances and similar devices is given in the following: 

Class A: 

Balanced three phase equipment, 3-phase ASDs. 

Class B: 

Small (<5 HP) single-phase ASDs, appliances with ASDs, and portable tools.. 

Class C: 

Fluorescent Lighting (other than compact fluorescent lamp), and lighting dimmers. 

Class D: 

Computers, Compact fluorescent lighting, controllers, and consumer electronics. 

Equipment shall be deemed to be class D if the current half-wave drawn by the equipment 

is within the envelope shown in Figure 4.6. 
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Figure 4.6. Envelope of the Input Current to Define the Special 

Wave Shape and Classify an Equipment into Class D 
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Table 4.3-4.5 shows the limits for equipment Class A-D. These limits are 

applicable with effect from the beginning of 1995. For equipment other than Class A-D, 

the harmonics of the input current shall not exceed the values that can be calculated from 

Table 4.4. These values apply to line and neutral currents and for all types of power 

connection of the equipment. These limits are applicable to steady-state harmonics. For 

transitory period of few seconds the harmonics are disregarded. However, for the lower 

order harmonics these limits are equally applicable. Limits for Class B equipment are 1.5 

times the values shown in Table 4.3. 
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Table 4.3. Limits for Class A Equipment 
  

Harmonic Order Permissible Current Maximum Permissible 

  

  

  

  

  

  

  

    
  

  

  

  

    

(n) (mA/W) Current (A) 

Odd Harmonics 

3 3.4 2.30 

5 1.9 1.14 

7 1.0 0.78 

9 0.5 0.40 

11 0.35 0.33 

13 0.30 0.21 

>15 3.85/n 0.15015/n 

Even Harmonics 

2 1.8 1.08 

4 0.7 0.42 

6 0.5 0.30 

>8 3/n 1.80/n       
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Table 4.4. Limits for Class C Equipment 
  

Harmonic Order (n) Maximum value expressed as a percentage of the 

fundamental input current of luminaries. 
  

2 
  

30e(circuit power factor) 
  

10 
  

7 
  

2 

3 

5 

7 

9 5 
    11<n<39   3 
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Table 4.5. Limits for Class D Equipment 
  

Harmonic Order Permissible Current Maximum Permissible 

  

  

  

  

  

    

(n) (mA/W) Current (A) 

3 3.4 2.30 

5 1.9 1.14 

7 1.0 1.14 

9 0.5 0.44 

11 0.35 0.33 

>13 Linear extrapolation using Same as Table 4.4.   3.85/n     
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IEEE Std 519-1992 

The goal of this recommended practice is to help in the design process of a power 

system with linear and nonlinear loads. The point of interference between sources and 

loads is defined as a point of common coupling or PCC. The recommendations provided 

in this standard are designed to help to minimize interference between electrical 

equipment. The limits are set to provide quality power at the point of common coupling. 

This document establishes the guidelines to design a power system with nonlinear loads. 

These recommendations are for steady-state under the worst case conditions. Tables 4.6, 

4.7, and 4.8 gives current distortion limits for general distribution, sub-transmission, and 

transmission systems respectively. 
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4.8 Summary 

This chapter was devoted to discuss sources of harmonics, their effects on 

electrical equipment, and the standards around the world to limit the harmonics in power 

system. Sources of harmonics are classified into two groups; conventional and non- 

conventional sources. The non-conventional harmonic sources are discussed in detail; 

because they are deteriorating the most power quality of the public supply system. The 

explosion of information technology and the energy conservation devices are blamed to 

aggravate the harmonic distortions in electric power system. 

The presence of harmonics in the electric supply system is believed to affect the 

performances of different equipment, both supply-side and load-side. Effect of harmonic 

on some important equipment is studied. It is concluded that engineers and scientists need 

to devote more effort to get complete understanding of the problem. Harmonic 

interaction in the presence of a mix of linear and different types of nonlinear loads is 

another potential area of research. This problem still needs to be explored to deal with 

design of power system with nonlinear loads. 

There are so many harmonic standards around the world to limit the harmonics in 

the power system. A brief description of some international and national harmonic 

standards was given to get a universal picture of the problem. Three international 

standards were selected to evaluate harmonic distortions in power system. Each one of 

these three standards has a different approach to deal with the harmonic problem. The 

chapter concludes with the limits recommended by each standard and the approach used 

in each standard to address the harmonic distortion problem. 
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CHAPTER V 

“AN ALGORITHM FOR SELECTION OF ENERGY 

EFFICIENT LIGHTING TECHNOLOGIES 

5.1 Introduction 

Recent developments in power electronic technologies have changed the 

requirements of electricity customers. A significant number of loads draw nonlinear current 

from the electric utility source and inject harmonics at the point of common connection 

(PCC). Emanuel [127] has reported forecasts of nonlinear loads on some typical feeders in 

the northeastern USA. These feeders will constitute 60% to 73% nonlinear loads in 

commercial buildings by the year 2000. The forecast shows that the ratio of nonlinear load 

to the total load is consistently increasing. There is a number of factors that are contributing 

to the increase in nonlinear loads. The explosion of information technology and proliferation 

of personal computers and their peripherals have contributed the most to the harmonic 

distortion problem. In many countries, the legislation to promote energy conservation, and 

the electric utility’s desire to avoid new generation capacity through energy saving programs 

is also a factor that increases harmonic distortion level in the distribution network. The 

former factor has also increased the energy consumption in office equipment during the last 

decade. Energy consumption in office equipment was the fastest growing end-use of 

electricity in the commercial sector [128]. That means more harmonics at the utility bus, and 
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failure of equipment in the distribution system will become a norm of life, if the issue of 

harmonic distortion is not addressed in a proper manner. However, one needs to understand 

the phenomenon of harmonic summation, interaction, and cancellation in the presence of 

multiple harmonic sources before trying to correct the problem. 

Lehtonen [129] has summarized same of the previous work done by different people on the 

issue of harmonic summation and has proposed a general solution to this problem using a 

probabilistic approach. Such an approach, however, does not provide much help in selecting 

lighting technologies that do not increase the harmonic level in the building. This chapter 

investigates the problem at the individual harmonic frequency level and suggests a generic 

algorithm to select lighting technologies in a specific building environment. 

5.2 Selection of Appropriate Lighting Technology 

The goal of energy efficient lighting programs is to save resources for the nation, 

capacity for the electric utilities, and expenses for the customers. Constraints in achieving 

these goals are to keep the electrical system reliable and trouble free. The evaluation of 

energy and capacity savings is simple. However, the desirable level of penetration of these 

technologies into the system and the harmonic impact of these technologies on the system is 

very difficult to determine. Each harmonic generated from its source interacts with 

respective harmonic frequency, generated from all the sources sharing the same bus or point 

of common connection. If phase angles of a particular order of frequency generated from 

different sources are widely distributed then overall amplitude of the particular frequency at 

point of common connection (PCC) will be minimized. These individual frequencies 

contribute to the overall level of harmonic distortions at the PCC. 
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Loads controlled by power electronic circuits exhibit this phenomenon: they draw 

nonsinusoidal currents from the source and inject multiple harmonic frequencies into the 

system. The individual harmonic currents generated by each of the harmonic sources can be 

viewed as random phasors with random amplitude and phase angle. The total harmonic 

current injection at the point of common connection is the sum of these random phasors in 

each harmonic order. The randomness of these phasors results in large amount of vectorial 

cancellation. The proposed algorithm provides a method for evaluation of various lighting 

technologies at individual harmonic levels and assesses the impact of harmonics on the 

system in the presence of new technologies. 

5.3. Summary of the Algorithm 

The flow chart shown in Figure 5.1 gives an overview of the algorithm proposed to 

select suitable technologies for harmonic compatibility. The input to the program consists of 

a description of the various loads to be considered and their specific harmonic profiles. The 

loads are divided into two groups i.e., fixed and variable. The fixed group contains loads 

like personal computers, induction motors, etc. The contribution of these loads remains 

constant for each loading contributions. However, contribution of fixed loads can be varied 

by using appropriate data sets that represent the load make up for a given facility. This issue 

will be further elaborated in the development of the data file. The variable load group 

contains existing lighting technologies and alternate energy efficient technologies (those shall 

replace the existing ones without any reduction in the illumination level). The algorithm 

generates all possible combinations of energy efficient technologies that are candidates for 

retrofitting. Each combination of the candidate technology may contain only one technology 

or a partial contribution of more than one technology. The goal of each combination is to 

provide the same amount of light that conventional source is already providing in the facility. 

Incremental fraction is the fraction of the candidate technologies that the consecutive 
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combinations may have each time a combination is generated. The user can define any 

positive integer as the incremental fraction. For example “4” means each consecutive 

combination will be generated with 25% increment of each candidate technology. 

The program reads frequency, amplitude and phase angle of the harmonic current 

profile from the data file, explained in the next section. Individual profiles of each 

participant load are then added for each combination using rectangular vector addition. Thus 

a profile of total harmonic current is generated. These profiles are used to calculate the total 

harmonic distortion (THD). The algorithm compares the THDs from each combination with 

the base case THD, and prints all combinations. Base case is the existing load make-up of 

the building. The final output of the program is the make-up of the load contribution which 

provides an equivalent amount of lighting as the base case with a minimal THD. 
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Read Data 

Y 
Initialize load 

combinations 

Y 
—<__——_ > Compute THD 

Y 
if THD < THDmin 

THDmin=THD 

Y 

  

  

  

  

        

  

      

  

Generate next combination 

of load contribution 

      

      

  

Yes   More combination 

possible ? 

  

Output 
Best mix 

      

Figure 5.1. Flow Chart for the Algorithm to Calculate and 

Compare THDs for Different Combinations 
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5.4 Program Structure 

The program consists of one main procedure and six sub-routines written in C 

language. The main routine reads the device information and harmonic profiles from a data 

file and finds all possible combinations of alternate lighting technologies. For each 

combination, the contribution of the technology is selected by the user (i.e., 10, 20, 40 or 50 

%, etc.). For each combination of the new technologies and the base case, the sub-routine 

performs vector addition of respective harmonic frequencies. THD is calculated for each 

combination by using following formula: 

yh 
THD = ~— 

h? 

h=harmonic frequency 

h, = fundamental frequency 

t= 2,3,4,5,....n 

The base case THD is calculated for the existing system and lighting technologies. A sub- 

routine calculates the THDs for all combinations and compares that with the base case THD. 

Only those cases are printed where THD is less than the base case. At the end of the output, 

the program prints the summary with base case THD, minimum THD case and contribution 

of each load in the minimum THD case. 

5.5 Input Data File 

The program expects the data in a format shown in Figure 5.2. First part of the data 

file describes load types. Numbers of load types are mentioned in the beginning of the data 
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file. Second step is the description of each individual load group and its capacity 

requirement in the facility. As mentioned earlier, electrical loads are divided into fixed and 

variable groups. All non-lighting loads (computers, motors, office equipment, etc.) are 

considered in the category of fixed load group. From this section the program reads the 

harmonic current profile of each fixed load type. The lighting loads, both existing and 

energy efficient alternates, are placed in variable load group. The variable load group has 

two types of lighting loads i.e., fluorescent and incandescent. Our choice of lighting 

technologies in the data file is due to their universal acceptance as light sources in 

commercial and residential sectors. 

Magnetic ballast fluorescent lamps are replaced with electronic ballast T-8 lamps, and 

incandescent with CFLs with equivalent amount of lumens. The program can accept 

any number of replacement technologies. Harmonic current profile for each existing and 

candidate technology is available in the data file. Base case lighting technologies, 

fluorescent and incandescent lamps, are the last items in each sub-group among the variable 

load group. If the existing lighting technologies are selected as base case, the program will 

ignore the technology options having higher THD than the base case. The user can explore 

all possible combinations by making highest THD technologies as the base case technology 

from each sub-group. The user can set the data file the way be feels appropriate. 
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No. of load types 

  
  

  

Capacity(Watt) Load description 

    
  

  

Fix Load harmonic Profiles 
  

  

  
  

  

  

    
  

    
  

  
Variable Load harmonic Profiles 

  
  

  
  

  

  

    
      
  

Figure 5.2. Description of Input Data File 
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Figure 5.3 shows a sample of typical input data file. First line of the data file gives 

the number of load types. In this case we have four load types and lines 2 through 5 give 

capacity requirement in watts for each load category followed by the name of load type. 

Where the former two load types (computers and induction motors) are considered in fixed 

load groups and later two types (fluorescent and incandescent lamps) are in variable load 

group. Line 8 gives the total number of load items in fixed and variable load groups, 

including energy efficient lighting technologies to be tested for minimum harmonic impact 

on the system. Line 9 gives the first load category, i.e., computers (starting from 0) then 

number of frequencies in the harmonic profile and category name. Next six lines record the 

harmonic number, amplitude and phase angle, respectively, of each frequency included in the 

harmonic profile of the current drawn by the computer. The data for the induction motors is 

recorded in the same way as computers, from line 17 through 20. Here ends the data for the 

fixed loads. The data for fluorescent lamps starts from line 22. The data format is same as 

the fixed loads. All the harmonic profiles for the electronic ballast T-8 lamps are recorded 

and the last load item in this category is the magnetic ballast fluorescent lamp. Next category 

among the lighting loads is the incandescent lamps and the compact fluorescent lamps that 

replace former lamp without any reduction in the illumination level. All the compact 

fluorescent lamps are recorded first and then come the incandescent lamp at the end of data 

file. 
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53 Computers 

201 Induction Loads 
205 Fluorescent Lamps 

78 Incandescent Lamps 

9 
0 21 1.0 Computers 
123456789 11131517 19 21 23 25 27 29 31 33 
0.4513 0.0026 0.3698 0.00386 0.2512 0.00345 0.1286 0.00169 0.03495 0.03148 
0.04212 0.02869 0.01085 0.01214 0.014 0.00899 0.0057 0.00759 0.00683 
0.00403 0.00395 

2.3 105.4 4.9 111.5 6.6 120.1 5.8 134.7 -16.3 -126.1 -140.8 -149.1 172.8 92.0 
71.5 49.9 -13.2 -56.1 -75.8 -112.4 184.6 

1 8 1.0 Induction Motor 

1235791113 

2.417 0.00162 0.1507 0.04603 0.00468 0.00226 0.0032 0.00183 

-1.0 155.0 -44.8 -78.1 138.1 -24.2 -49.8 -116.6 

2 17 0.6 FI. Electronic Ballast (AT) 
1234579111315 17 19 21 23 25 27 29 
1.033 0.00213 0.1119 0.00048 0.09199 0.02282 0.02783 0.01407 0.01072 
0.00895 0.00447 0.00455 0.00272 0.00199 0.00171 0.00062 0.0007 

6.4 -187.4 -130.8 143.4 -74.6 89.4 149.9 -72.3 22.2 151.1 -88.5 17.7 160.2 
-104.5 33.2 143.4 -107.4 

2 16 1.0 Fl. Magnetic Ballast 
1234579111315 17 19 21 23 25 27 
1.726 0.00088 0.3296 0.00115 0.1513 0.04487 0.02572 0.01527 0.00692 
0.00675 0.00445 0.00323 0.00241 0.00183 0.00147 0.00104 

-1.9 -53.7 51.8 137.7 -119.4 149.2 15.6 -93.5 157.3 24.0 -98.3 121.4 -5.6 
-153.4 81.5 -66.1 

3 19 0.25 Compact Fluorescent (OS) 
1234579111315 17 19 21 23 25 27 29 31 33 

0.1606 0.00017 0.03972 0.00016 0.00951 0.0021 0.00499 0.00644 0.0024 
0.00192 0.00181 0.00169 0.00156 0.00037 0.00061 0.00084 0.00092 0.00057 40 
0.00023 

2.7 -159.4 -2.9 -135.7 -36.6 -25.6 187.5 143.2 155.3 87.1 -51.1 -30.4 -87.0 

-63.4 -173.7 88.1 116.2 40.8 183.1 

3 9 1.0 Incandescent 
1357911131519 

0.646 0.00264 0.01001 0.00751 0.00073 0.00082 0.00191 0.00046 0.00041 

-0.9 -152.8 181.0 -146.6 110.4 -152.3 54.3 -49.1 -135.0 
  

Figure 5.3. Sample of Typical Input Data File 
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5.6 Data Collection 

The harmonic current profile data for each load component was obtained on a test 

bench using HP3561A Dynamic Signal Analyzer in the laboratory. Utmost care was taken to 

keep the laboratory conditions fixed. Each device was allowed to stabilize before capturing 

the harmonic profile. Another constraint was to capture the harmonic profile at a particular 

reference phase angle. On the average it took up to six hours to capture harmonic current 

profile for 11 technologies at a particular reference phase angle. There are some state of the 

art harmonic data acquisition systems that can improve the quality and accuracy of the 

harmonic data. It is expected that in the future manufacturers of electronic equipment and 

devices will be able to provide harmonic profile for their products and results of the 

algorithm will be more realistic and precise. Moreover, the harmonic profiles of the load 

current gives a better insight into the equipment and its harmonic impact on the system. The 

higher growth in power electronic equipment and use of information technology in the 

commercial sector require more comprehensive information about harmonic current 

requirements of these technologies. The legislations like Energy Policy Act of 1992 

encourages the manufacturers to provide such information. 

5.7 Summary 

This chapter describes the current status of the end use loads. Energy efficient 

lighting programs are viewed as an attractive option for electric utilities to meet the future 

capacity requirements. At the same time, the electric utilities are worried about the adverse 

impact of these technologies on the system. The algorithm proposed in this chapter provides 

an opportunity to select the appropriate lighting technologies that save energy, reduce 
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capacity requirements in the future and do not deteriorate harmonic distortion level at the 

consumer bus. 

The role of the data file is very important in the algorithm. The chapter explains the 

structure of the data file. Different components in the data file are explained with the help of 

a sample data file. Methods and equipment used in the data acquisition process are reviewed 

briefly. The future development in the data acquisition systems and their impact on the 

accuracy of the algorithm is explored. 
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CHAPTER VI 

DISCUSSION OF RESULTS AND ALGORITHM 

VERIFICATION 

6.1 Introduction 

The proposed algorithm for selection of energy efficient lighting technologies is 

based upon the same principles that are used in most of the harmonic analysis equipment. 

However, there is always some level of disparity between the algorithm results and the real 

time measurements made by using harmonic measuring instruments. This chapter starts with 

discussion of these factors that are responsible for the disagreement between the measured 

and the calculated values. The phenomenon of random occurrence of phase angles of 

individual harmonic frequencies and its influence on the results is explained by studying 

different harmonic sources (magnetic circuits, electronic circuits, etc.). 

Results of the algorithm are verified by comparing them with actual measurements 

for the same combinations using the signal analyzer. Two case studies are included in this 

chapter to verify the generic characteristic of the proposed algorithm. These case studies 

help to establish the generic nature of the proposed algorithm. The salient features of the 

algorithm are summarized in the from of its advantages and disadvantages. The chapter 

DISCUSSION OF RESULTS AND ALGORITHM VERIFICATION 104



concludes with a brief summary of material covered in the discussion of results and 

verification of the algorithm. 

6.2 Issues in Harmonic Summation 

There is a fundamental difference between the nature of the harmonics generated by a 

magnetic ballast and an electronic ballast operating fluorescent lamps. As shown in Table 

6.1, the magnetic ballast draws current that includes the multiples of fundamental frequency. 

These harmonics are the result of the operation of the magnetic ballast in the saturation 

region. The profiles 1 and 2 are captured for the magnetic ballast with a time difference of 

0.4 degree. While the amplitudes of individual harmonic frequencies do not vary 

significantly, their phase angles show significant variations. In Table 6.1 there are two 

harmonic profiles of the current drawn by magnetic ballast. The data for harmonic current 

profile 1 was captured at a fundamental.frequency phase angle of 7.4 degree and profile 2 

was captured at a fundamental frequency phase angle of 7.8 degree. The last column in 

Table 1 shows that with a 0.4 degree increase in phase angle of fundamental harmonic 

frequency, there is a consistent increase in phase angles of ascending order harmonic current 

frequencies. 
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Table 6.1. Harmonic Current Profiles of a Magnetic Ballast 

and T-12 Lamp With a Variation in Fundamental 

Frequency Phase Angle 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

              

1 2 

re | | os || ow | 
Fundamental 839.5 7.4 839.0 7.8 +0.4 

3 152.1 76.3 152.4 77.6 +1.3 

5 74.1 -74.9 74.4 -73.6 +1.3 

7 20.5 -153.8 20.4 -151.7 +2.1 

9 12.8 93.2 12.8 96.3 +3.] 

11 8.2 -6.3 8.2 -3.2 +3.1 

13 3.4 -111.9 3.4 -107.1 +4.8 

15 3.1 142.7 3.1 148.4 +6.3 

17 1.8 44.3 1.9 50 +5.7 

19 1.5 -73 1.5 -67.7 +5.3 

21 1.2 -18] 1.2 -176.5 +4.5 

23 0.9 38.5 0.9 47.9 +9.4 

25 0.8 -61.5 0.8 -56.7 +4.8 

27 0.7 161 0.5 176.9 +15.9     
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Table 6.2. Harmonic Current Profiles of a CFL With a 

Variation in Fundamental Frequency Phase Angle 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

              

1 2 

Harmonic Amplitude | Phase | Amplitude | Phase Ad = 2-0, 
Frequency (mA) (Deg) (mA) (Deg) 

Fundamental 150 2.3 149.2 2.4 +0.1 

3 38.5 -12.3 37.1 -13.6 -1.3 

5 9.3 -29.5 9.3 -28.7 1.2 

7 1.9 -53.9 1.9 -57.1 -3.2 

9 4.5 162.9 4.0 164.1 +1.2 

11 6.0 131.7 5.8 132.2 +0.5 

13 2.7 132.9 2.7 132.8 -0.1 

15 1.4 67.8 1.5 76.6 +8.8 

17 1.7 -79.4 1.6 -79.3 +0.1 

19 2.3 -65.4 2.1 -64.9 +0.5 

21 1.3 -107.5 1.4 -105 +2.5 

23 0.4 -99.1 0.4 -83.5 +15.6 

25 1.0 105.3 0.8 117.7 +12.4 

27 0.7 61.5 0.7 60.2 -1.3 

29 1.1 74.1 1.1 78 +3.9 

31 0.3 -56.7 0.3 -33.6 +23.1     
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In Table 6.2 harmonic profiles of the load current drawn by a compact fluorescent 

lamp are given. Two harmonic current profiles in this case were measured with 0.1 degree 

difference in phase angle of fundamental frequency. In this case, the variation in phase angle 

of the harmonic frequency was observed to be random. The last column shows the pattern of 

randomness of harmonic frequencies for compact fluorescent lamps. 

Figure 6.1 shows a comparison of the phase angle variations between phase angles of 

harmonic frequencies generated by a magnetic ballast fluorescent lamp and an electronic 

CFL. The harmonic profiles 1 and 2 in Tables 1 and 2 were captured with a time delay of 0.4 

degree and 0.1 degree respectively. In case of magnetic ballast fluorescent lamp, the 

variability in the phase angles of respective harmonic frequencies increases with the order of 

the harmonic frequency. While the variability in phase angles of electronic ballast lacks any 

well defined pattern. The random occurrence of phase angles of harmonic frequency in 

electronic fluorescent lamps is one of the factors that increase the difference between the 

measured and calculated THD values. 
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Figure 6.1. Comparison of Random Occurrence of Phase 

Angles at Individual Frequencies, Between Magnetic 

Ballast Fluorescent Lamp and CFL 
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6.3 Algorithm Verification 

In view of the above discussions about harmonic amplitudes and phase angles of 

magnetic ballasts and electronic compact fluorescent lamps, let us look into the results in 

Table 6.3. Column 1 in this table lists the combinations of lighting technologies selected for 

comparison. Our goal is to compare the results of the algorithm with the actual 

measurements for respective combinations. We have selected the combinations with 100% 

contribution of each participating lighting technology. The reason for this constraint is that, 

it is practical to get the measurement results for these combinations by simply replacing 

existing lighting technologies with their energy efficient equivalents. We have selected 15 

combinations all with single technologies, and the base case for comparing the computed and 

measured results. Column 2 gives the computed values of THD for base case and each 

selected combination. Column 3 records the measured values of THD for respective 

combinations. Let the computed and measured THDs be denoted by THDc and THDy 

respectively. Column 4 gives the deviation of the algorithm results from the respective 

measured value. Column 5 gives the capacity requirement in watts, for the building load 

model used for verification of the proposed algorithm [130]. The last column in Table 6.3 

gives capacity savings as a result of retrofitting, using different technology combinations. 

Measured data of column 3 for THDs were obtained by using the HP3561A Dynamic Signal 

Analyzer. A comparison between two sets of THD values shows that the algorithm gives 

higher values of THDs than the measured ones. It was observed that the measured value of 

THD is always lower than the calculated value, but the relative changes are consistent 

between these two cases. However, the difference between the measured and calculated 

values is not consistent. The following factors are considered to be responsible for the 

inconsistency between measured and computed values: 

1. THDs of participating loads; 

2. Random characteristic of harmonic frequency phase angles; 
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3. Instrumentation and data acquisition errors; 

4. Ambient harmonics; and 

Total number of harmonic frequencies involved in the summation process 

in the program. 

As shown in Table 6.3, in most of the cases, the difference between the measured and 

the computed THD value increases with the increase of the THD of participating load. In the 

base case, a magnetic ballast fluorescent lamp and an incandescent bulb are used as the 

lighting source. An incandescent lamp does not generate any significant harmonic distortion. 

Level of randomness of the phase angles of the harmonic frequencies generated by standard 

magnetic ballast fluorescent lamp is not significant. Hence the difference between the 

algorithm results and measurement values for base case is minimal. As we proceed further, 

the level of randomness in phase angles of individual frequencies of participating load will 

increase and so will be the difference in computed and measured THD values. 

Our main goal to develop the suggested algorithm was to select energy efficient 

lighting technologies on the basis of their harmonic distortion impacts at the system 

level. In Table 3, the selected combinations were arranged on the basis of the THD of 

the participating technologies. Each set of 3 combinations contains electronic ballast 

T-8 lamps from three manufacturers that replaces the magnetic ballast T-12 lamps. The 

CFL replaces the incandescent lamp and it is same for the whole set of three 

combinations. Combinations 1-3 consist of three different electronic ballasts with T-8 

lamps and incandescent lamps. Due to insignificant THD contribution, the 

incandescent lamp keeps the difference between THDc and THDy values at low. In 

combinations 4-6, the three different electronic ballasts are repeated in the same 
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sequence as before and the incandescent lamp is replaced with low THD (<10%) CFL. 

Due to low THD of CFL, difference between THDc and THDy 1s small. In 

combinations 7-9, the sequence of the electronic ballasts is same but the CFL used has 

moderate THD (<30%). In combinations 10-12, and 13-15, again the electronic 

ballasts are the same as used in the previous combinations but CFLs used are of older 

design having THDs 114% and 138% respectively. As the THD of participating lamps 

increase, the difference between THDc and THDy values become wider. 

As the number of harmonic frequencies involved in the summation process increases, 

the level of overall randomness of phase angles also increases causing an increase in the 

difference between THDc and THDy. However, the relative order of system level THD 

impact of lighting technology combinations obtained with the algorithm is same as the 

measured THD impact for respective combinations. 
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Table 6.3. Comparison of THD;, and THDy for Different 

Combinations of Lighting Technologies 

  

Technology THDc THDy ATHD Capacity Capacity Saving 

Combination (%) (%) (%) (Watts) — (Watts) 

  

Base Case 15.2 13.6 1.6 537 - 

  

4 14.5 . 396 144 

5 13.6 403 134 

  

   
10 393 144 

11 401 136 

t2 393 144 
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6.4 Program Output 

The program output includes all combinations of energy efficient lighting 

technologies that have lower THD impact than the base case. As mentioned in Sec. 

6.3, non-lighting loads (induction motors, computers, etc.) are fixed for a particular 

case. In base case, non-lighting load is 48% of the total and lighting load is 52%. 

Figure 6.2 gives a truncated output file because the actual output file contains 525 

combinations that have lower THDs than the base case. Program prints the load 

contributions, THD, and load capacity for base case in the beginning of the output file. 

All the technologies are arranged from left to right in the order they appear in the data 

file. From top to bottom it prints the combinations that are selected for lower THD 

impact on the system and gives the percentage participation of each load and lighting 

technology for that combination. As the base case lighting technologies are replaced 

with the alternate lighting technologies of equivalent lumen output hence the lumen 

output in each combination remains constant. The program tests combinations with 

fractional contribution depending upon the increment step selected in the program. 

At the end of output file, program lists all participating loads and their percentage 

contributions in the selected combination. Contribution of lighting load and the loads 

other than lighting, depend upon data file setting. We can vary the ratio between the 

lighting load and the non-lighting loads. We can further vary the electronic power 

supply load and the induction motor load among the non-lighting load groups. 
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The algorithm serves as a tool for selection of lighting technologies on the basis of 

lower THD impact on the system. The algorithm can be used effectively to find the 

fractional technology combinations of different energy efficient lighting devices. One 

can select the best combination suitable for specific requirements of capacity savings, 

environmental benefits, harmonic reduction, etc. Energy savings depend upon the time 

of use factor. Energy savings for the same technology option will vary from facility to 

facility depending upon the requirements of lighting and work environment. 
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12.1 35.9 0.0 0.0 0.0 38.0 0.0 0.0 14.0 => THD=15.5% (529.00 W) 
  

  

] 
12.6 

13.1 

13.7 

14.3 

12.6 

13.1 

13.7 

14.8 

15.5 

16.3 

15.5 

16.3 

16.3 

15.5 

16.3 

16.3 

16.3 

a) 

37.3 05.9 

38.9 12.3 

40.5 19.3 

42.4 26.9 

37.3 00.0 

38.9 06.2 

40.5 12.9 

43.8 00.0 

46.0 07.3 

48.3 15.3 

46.0 00.0 

48.3 07.7 

48.3 00.0 

46.0 00.0 

48.3 07.7 

48.3 00.0 

48.3 00.0 

4 5 

00.0 

00.0 

00.0 

00.0 

05.9 

06.2 

06.4 

00.0 

00.0 

00.0 

07.3 

07.7 

15.3 

00.0 

00.0 

07.7 

00.0 

6 7 8 

00.0 29.6 

00.0 20.6 

00.0 10.7 

00.0 00.0 

00.0 29.6 

00.0 20.6 

00.0 10.7 

13.9 23.2 

14.6 12.2 

15.3 00.0 

14.6 12.2 

15.3 00.0 

15.3 00.0 

21.9 12.2 

23.0 00.0 

23.0 00.0 

30.7 00.0 

Base case THD = 15.48% 

After testing 525 combinations, obtained 
best THD value of 11.99% with the following mix: 

1 14.27% Computers 

42.35% Induction Motor 

0.00% FI. Electronic Ballast (AT) 

26.88% FI. Electronic Ballast (S&Y) 

0.00% FI. Magnetic Ballast 

0.00% Compact Fluorescent (OS) 

0.00% Compact Fluorescent (GE) 

16.50% Incandescent 

2 

3 
4 

5 0.00% FI. Electronic Ballast (GOLD) 

6 

7 

8 

9 

9 
00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

Corresponding capacity: 448.60 Watts 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

00.0 

04.3 

04.5 

04.7 

04.5 

04.7 

04.7 

04.5 

04.7 

04.7 

04.7 

14.5 => THD=14.6% (508.90 W) 

15.1 => THD=13.8% (488.80 W) 

15.8 => THD=13.2% (468.70 W) 

16.5 => THD=12.8% (448.60 W) 

14.5 => THD=14.5% (508.90 W) 

15.1 => THD=13.6% (488.80 W) 

15.8 => THD=13.0% (468.70 W) 

00.0 => THD=15.4% (433.30 W) 

00.0 => THD=14.7% (413.20 W) 

00.0 => THD=14.3% (393.10 W) 

00.0 => THD=14.5% (413.20 W) 
00.0 => THD=14.1% (393.10 W) 

00.0 => THD=13.9% (393.10 W) 

00.0 => THD=14.8% (413.20 W) 

00.0 => THD=14.4% (393.10 W) 

00.0 => THD=14.1% (393.10 W) 

00.0 => THD=14.5% (393.10 W) 

  

Figure 6.2. Sample Output of the Program 
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6.5 Case Study No. 1 

Our goal in this case study is to verify the proposed algorithm for different load 

configurations. Instead of replacing standard fluorescent lamps with a single electronic 

ballast technology, it is replaced with combination of two electronic ballast technologies. 

Incandescent lamp, however, is replaced with a single compact fluorescent lamp technology. 

Impact of this change in experimental design is studied on reduction in total harmonic 

distortions and on the algorithm performance. 

6.5.1 Building Load Model 

A building load model was developed using 24 hour load data for a typical 

commercial building. Actual building load was scaled down in size to 500 watt to match the 

laboratory set up consisting of different loads. Main load components of the model are 

induction motor, computer, and lighting loads. During peak hours lighting load accounts for 

51% of the building load, induction motor load is 37% and 12% computer load. This 

building load model is then used to verify the proposed algorithm for minimum harmonic 

distortion. 

6.5.2 Description of Lighting Technologies 

Most of the lighting needs in the building are met with full size fluorescent and 

incandescent lamps. A single fixture of full size fluorescent lamp contains the standard 

magnetic ballast and two T-12 fluorescent lamps. On the average, such fixture consumes 

100 watts of electricity. Energy efficient alternate to the standard full size fluorescent lamp 

contains an electronic ballast and two T-8 fluorescent lamps. On the average it saves up to 

40% energy as compared to standard full size fluorescent lamp. 
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In this case study electronic ballasts from four manufacturers are tested. These 

ballasts draw the current with total harmonic distortion (THD) in a range of 10% to 20% of 

the fundamental. The standard magnetic ballast generates total harmonic distortion in the 

order of 30% of the fundamental. Incandescent lamp used in this case study consumes 75 

watt per lamp and its harmonic contribution is negligible. For energy saving purposes 

incandescent lamp is replaced with electronic compact fluorescent lamp (CFL) that produces 

an equivalent amount of light to that of the incandescent lamp. A compact fluorescent lamp 

that replaces 75 watt incandescent, consumes less than 20 watts and produces the same 

amount of light. However, the harmonic contribution of CFLs is very significant. The 

compact fluorescent lamps available in the US market generate THD in a range of 10% to 

140% of the fundamental. In this case study we have included four popular models available 

in the US market. 

6.5.3 Discussion of Results 

In this case study each electronic ballast technology consists of 50% of each two 

available electronic ballasts. In this way six exclusive pairs of four electronic ballasts were 

generated. Each pair was used as an independent electronic ballast technology. These 

exclusive pairs will be allowed to replace standard magnetic ballast fluorescent lamps. 

Incandescent lamp will be replaced with a single compact fluorescent lamp in each 

combination generated by the proposed algorithm. Computers and induction motor load 

contribution in each combination remain constant throughout the case. 

The base case consists of the fixed load (computers and induction motors), standard 

magnetic ballast fluorescent lamps and incandescent lamp. The THD content in the load 

current drawn by the base case is 15.1% of the fundamental. A comparison of the calculated 

and the measured THDs is given in Table 6.4. All the 30 combinations listed in the table 

have lower THD than the base case. The combinations with incandescent lamp have the 

minimum THD impact on the system. In this case study we have almost same results as 
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Table 6.4. Comparison of THD¢- and THDy for Different 

Combinations of Lighting Technologies 
  

Technology THDc THDm ATHD £Capacity Capacity Saving 

Combination (%) (%) (%) (Watts) (Watts) 

  

  

Base C 930     
GS+S&Y+GE 14.0 9.4 4.6 389 141 

AT+S&Y+GE 13.9 9.3 4.6 393 137 

AT+GS+GE 14.1 9.6 4.5 387 143 

MT+S&Y+GE 14.4 9.2 5.2 393 137 

MT+GS+GE 14.6 10.0 4.6 386 144 

AT+MT+GE 14.6 96 5.0 390 | 140     

  

A’ Ee Se fs. 

GS+S&Y+PH 17.2 

  

    

    

388 142 
AT+S&Y+PH 17.1 391 136 

AT+GS+PH 17.3 384 146 

MT+S&Y+PH 17.6 392 138 

MT+GS+PH 17.8 384 146 
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obtained in our earlier experiment set up discussed in Section 6.3. The algorithm results 

gave us the same pattern of THD impact as obtained by the actual measurements obtained 

using the building load model and the Dynamic Signal Analyzer. In terms of overall 

ranking of the combinations, the ranking of last two set of combinations in Table 6.4 is 

different from that of Table 6.4. It is mainly due to the changes made in the design of the 

experiment in the latter case. 

6.6 Case Study No. 2 

We have used the same load model as in case study 1. The energy efficient 

lighting technologies and the design of the experiment are the same as the earlier case 

study. The wattage size of the model has been doubled as compared to that of case study 

No. 1. This case study was designed to verify that the algorithm results are independent 

of the size of the load model as long as the make up of the contributing loads do not 

change. All the loads in the experiment are almost two time in power requirement as 

compared to the previous one discussed in Section 6.5. Power requirement for the base 

case is 1052 watt. The fixed and variable loads are 48% and 52% respectively. 

6.6.1 Discussion of Results 

The results shown in Table 6.5 are very close to that as recorded in Table 6.4. It 

shows that by increasing the size of the model the proposed algorithm for selection of 

energy efficient lighting technologies remains valid. The only important thing is to 

extract the representative harmonic current profile for each category of the load. The 

ranking of the lighting technologies shown in Table 6.5 is exactly same as the one shown 

in Table 6.4. The difference between the measured and calculated THD values increase 

DISCUSSION OF RESULTS AND ALGORITHM VERIFICATION 120



Table 6.5. Comparison of THDc and THDy for Different 

Combinations of Lighting Technologies 
  

Technology THDc THDw ATHD Capacity Capacity Saving 

Combination (%) (%) (%) (Watts) (Watts) 

      

    
   
   

  

GS+S&Y+GE 13.9 11.6 768 284 

AT+S&Y+GE 14.0 11.4 767 285 

AT+GS+GE 14.1 11.8 759 293 

MT+S&Y+GE 14.3 11.7 770 282 

MT+GS+GE 14.6 12.3 753 299 

GS+S&Y+PH ~ 
AT+S&Y+PH 6.7 760 292 

AT+GS+PH 6.0 751 301 

MT+S&Y+PH 6.6 762 290 

MT+GS+PH 6.1 761 291 

756 296 

  

AT+MT+PH 

  

   

  

   

AT+MT+SYL 
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as we approach to the combinations with energy efficient lighting technologies having 

higher individual THD value. 

6.6.2 Effect of Ambient Harmonics 

As mentioned in Section 6.3, one of the factors that increases the difference 

between the THDc and THDy is the level of ambient harmonics. The level of ambient 

harmonics varies throughout the load cycle. As there is a significant gap between the 

time of capturing harmonic profiles used in the data file and the time when measurements 

for THDy are made to verify the results obtained from the algorithm. Hence the 

difference in the level of ambient harmonics in the supply voltage will affect the 

difference between THDc and THDy. We can observe this phenomenon clearly from the 

results of case studies | and 2. The THDc values in Tables 6.4 and 6.5 are same. There 

is no significant difference between these values because the harmonic profiles used in 

both the data files were captured within a short time span and there was no significant 

variation in the level of ambient harmonics of the power supply. If we compare THDy 

values from the results of the case studies we can see a consistant increase in the THDy 

values of the latter case. This is due to a big gap between the measurement of two values 

and level of ambient harmonics could have significantly increased. The above 

comparison shows that there is an increase of 2% to 5% in THDy in latter case as 

compared to former case. That is attributed to the increase in ambient harmonics of the 

supply voltage. 

6.7 Advantages of the algorithm 

Some of the significant advantages of the algorithm are listed in the following. 
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1. The algorithm evaluates the lighting technologies on the basis of their harmonic 

distortion impact on the system. It provides significant information in the output 

file for the decision maker to select a particular technology in a specific lighting 

environment. 

2. Only those technology combinations are presented which have lower THD impact 

than the base case (existing lighting system). Hence there is no risk of additional 

harmonic distortion, in retrofitting energy efficient lighting technologies. Instead, 

it will help to reduce harmonic distortion level if the best option is selected for 

retrofitting. 

3. The algorithm can easily be extended to select other energy efficient devices like 

adjustable speed drives (ASDs). There is no need to change the program itself. 

Modification in data file will enable one to use it for ASD retrofits in industrial 

and commercial facilities. 

4. Performance of the algorithm will improve with improvement and standardization 

of data acquisition techniques. If manufacturers of nonlinear loads in general and 

electronic equipment in particular are encouraged to provide harmonic current 

profile of their products then the results of the algorithm will be more precise. 

6.8 Disadvantages 

1. Harmonic profiles of lighting devices and other equipment are not currently 

provided by manufacturers. 

2. Methods and equipment to measure harmonic profile data are not widely 

accessible. 
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6.9 Summary 

Significant energy conservation and environmental benefits of new lighting 

technologies will encourage their market penetration. However, such proliferation of 

electronic equipment is going to cause deterioration of power quality of the supply system 

at the distribution level. Lighting devices form a significant portion of the load in a 

commercial building. Energy efficient alternates to the standard lighting sources may 

enhance or mitigate the harmonic distortion level at the PCC. However, random choice 

of energy efficient lighting technologies could deteriorate the power quality of the supply 

system. Minimum requirement is that the harmonic level in the building should remain 

the same, if not improve. 

The proposed algorithm can generate a large number of combinations of energy 

efficient lighting technologies that lower harmonic impact than the base case. Selection 

of the least harmonic impact technology can be facilitated by the use of this algorithm. 

Results have been confirmed by making actual measurements for certain combinations. 

The proposed algorithm is simple to apply and can be used at all levels of lighting 

retrofits i.e., industrial, commercial, etc. Generic nature of the algorithm can help to use 

it for other nonlinear load applications as well. We can conclude from the results of the 

case study that the proposed algorithm is independent of the size of the load model. 

Hence a building load can be conveniently scaled down to collect the data required in the 

data file of the proposed algorithm. The results obtained by doing so will be equally good 

under the actual load conditions in the building. 
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CHAPTER VII 

ENERGY SAVINGS, ENVIRONMENTAL BENEFITS AND 

RELIABILITY 

7.1 Introduction 

Energy Policy Act of 1992 has created a significant enthusiasm among 

manufacturers of energy efficient devices, electric utilities and customers in the U.S. 

Largest potential of energy savings lie in adjustable speed drives (ASD) and energy 

efficient lighting systems. Approximately 76% of the electric energy being used in the 

U.S. is consumed by motors, whereas 20% of national electricity consumption is for 

lighting. Maximum energy saving potential of ASDs is 30-50%. While energy efficient 

lighting devices can reduce energy requirement from 50 to 80% [12,131]. The higher 

energy saving potential of energy efficient lighting systems have prompted many energy 

efficient lighting programs sponsored by electric utilities. 

Recent estimates predict that the annual consumption of energy by office 

equipment will be more than 65 x 10° kWh by year 1995 [132]. The corresponding 

capacity requirements are expected to rise from 5 GW in the year 1988 to 15 GW in year 

1995 [132]. Energy efficient lighting devices are gaining popularity among residential, 

commercial and industrial customers. The potential of energy savings is the major 
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driving force for customers. On the other hand, energy efficient lighting programs are the 

most feasible option for electric utilities to meet future requirements of capacity addition. 

Capacity addition is becoming more expensive for electric utilities. This has diverted the 

electric utility attention toward demand side management options. Environmental 

Protection Agency of USA has sponsored a number of programs to encourage the use of 

energy efficient lighting products among customers resulting in both energy and capacity 

savings opportunities. Until recently focus of most the of work in this area was on 

energy saving benefits. This chapter is intended to evaluate recent progress in different 

energy efficient lighting technologies on the basis of their functional and technical 

performance and their system level impact. 

7.2 Energy Conservation Potential and Progress 

Environmental Protection Agency (EPA) in the United States has launched an 

extensive campaign to invite businesses, organizations and government agencies to join 

their Green Light Program. EPA provides information about state-of-the-art lighting 

technologies and guidance to finance lighting retrofit programs. EPA also educates 

masses about the damaging effect of pollution, caused by electricity generation, on 

environment and motivate them to participate in the Green Light Program to reduce 

environmental pollution. Although main target of EPA is to reduce environmental 

pollution, however, it is done through energy conservation programs. 

Lighting accounts for 20-25 percent of all electricity sold in the United States. 

80-90 percent of total lighting energy is consumed in public places, businesses and 

offices. If all the cost effective lighting retrofit programs are implemented, the nation’s 

demand for electricity will be reduced by more than 10 percent [133]. During last couple 

of years 1000 organizations have joined the Green Light Program of EPA. They include 
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industries like oil, manufacturing and pharmaceutical; retailers, hotel and restaurant 

chains; federal agencies, state and county governments; newspapers, cable networks, 

university and schools. Green Light Programs have been proved very effective in 

increasing productivity and boosting the moral of employees, in addition to the usual 

energy saving and environmental benefits. 

In Europe electric utilities are actively involved in pursuing their customers to 

join efficient lighting programs. Since 1987 more than 50 utility sponsored programs in 

Europe have offered financial incentives to their customers to promote compact 

fluorescent lamps. Data from different efficient lighting programs shows that cost per 

kWh saved through efficient lighting programs is less than the cost of adding new 

capacity to the system. 

There exists a clear difference between energy efficient lighting programs in 

Europe and the U.S. Manufacturers in Europe are more actively involved in such 

programs. Higher per unit cost of electricity encourage customer participation at 

individual levels. Energy is conserved at lessor cost compared to the United States. 

However, a broader spectrum of energy efficient lighting technologies exist as compared 

to Europe. Voluntary government programs like EPA and Federal Energy Management 

Program (FEMP) are in place that help to promote energy efficient lighting programs at 

different levels. 
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Table 7.1 gives a sample of recent green light upgrades, published by EPA [134]. 

Lighting load reduction ranges from 25 to 82%. Maximum saving is achieved when 

incandescent lamps are replaced with CFLs. When incandescent lamps at Westin Hotel 

and Resort in San Francisco were replaced with CFLs, Lighting load was reduced by 82% 

and project cost was recovered through the energy savings in less than one year. 

7.3 Impact of Energy Conservation Technologies on Power System 

Since the inception of integrated resource planning, energy efficient lighting 

programs are one of the most important one among DSM options. Demand Side 

Management (DSM) programs have influenced the developments in energy efficient 

lighting technologies. Tungsten halogen, fluorescent, compact fluorescent (CFL), high 

pressure sodium (HPS) and metal halide lamps are energy efficient devices, mostly used 

for different lighting applications. The latter four types of lamps fall in a bigger group 

called discharge lamps. This major group is the focus of most of the energy efficient 

lighting activities. Table 7.2 gives a comparison of important features of lamps, available 

in the current lighting market. These lamps cover most of the lighting application areas. 

They are available in wide range of color and power ratings. High pressure sodium and 

metal halide lamps are more efficient for higher ratings. They are not available in power 

ratings below 35 watts. This constraint makes them less attractive for most residential 

and commercial lighting applications. Full size fluorescent and compact fluorescent 

lamps are best suited for residential and commercial lighting applications. These lamps 

are available in wattage ratings as low as 4 watts. 
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Table 7.2. Characteristics of Energy Efficient Lighting 

Technologies 

  

  
  
  
  

Lamp Lumens Color Rendering Average Life 

Type per Watt Index (hour) 

Fluorescent 75-104 62-92 7500-30,000 

CFL 44-67 82-85 10,000 

HPS 60-140 20-85 15,000-40,000 

Metal Halide 80-125 65-93 3000-20,000         
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7.4 Energy Savings and Environmental Benefits 

In the US, average cost of a fluorescent bulb is 4%, labor is 8% and electricity 

makes up 88% of the total cost of lighting. Total operating cost of a F4OCW (cool white) 

standard bulb, over its life is $66.35'. The energy efficient alternate, FA0CW/WM (Watt- 

Miser), costs $57.77. In this case, the individual costs of the bulbs are $2.35 and $3.37, 

respectively. Although the Watt-Miser bulb 1s little expensive but the savings in 

electricity are significant [137]. Increasing the energy efficiency of lighting systems can 

achieve significant savings in the electricity required for illumination. A 20 Watt 

compact fluorescent lamp provides almost same amount of light as 75 watt incandescent 

lamp. Replacement of a magnetic ballast with an electronic ballast and a T-12 with a T-8 

lamp saves 40% electricity. This enormous potential of energy savings justifies the 

investment in energy efficient lighting technologies, even with higher initial price tags. 

From environmental considerations, the electricity required to provide lighting is 

responsible for 6% and 25% of the total CO, emissions from residential and commercial 

sector, respectively [138]. The CO, emissions from residential and service sector 

emission is shown in Figure 7.1. Use of energy efficient lighting technologies will 

significantly reduce the CO, emissions level, specially in the big metropolitan areas all 

over the world. 

The Electric Power Research Institute (EPRI) [139] predicts annual energy 

savings, through commercial lighting DSM programs, of 33 billion kWhrs in the year 

2000. The demand reduction at the same time is projected at 7.34 GW. Besides the 

direct energy savings through replacement of non-efficient lighting technologies with 

energy efficient devices, there is a significant potential for indirect saving of energy in 

  

' At $0.08/kWh over average lamp life. 
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Figure 7.1. CO2 Emissions for Residential and Service Sector, in 

OECD Member Countries 
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cooling requirement of commercial buildings. Mendelsohn [140] reports on a study to 

assess the energy savings in cooling load through energy efficient lighting products. 

Study shows that reduction in cooling load is significant even when increase in heating 

load during winter season was taken into account. However, these benefits strictly 

depend upon the local weather pattern i.e., number of cooling degree days in the year. US 

Department of Navy has prepared data for length of cooling season in weeks for the major 

US cities. It shows that cooling season in US varies from 9.4 to 50.1 weeks. Depending 

upon the weather, energy savings in cooling load can vary from 6% to 32%. These 

benefits are more pronounced for the southern and western regions of the United States. 

Moreover, Energy Policy Act of 1992 in US has reshaped the entire lighting 

industry. Many popular lighting products will be eliminated with next three years. Table 

7.3 gives lumen efficacy of energy efficient devices in comparison with incandescent 

lamps. Energy saving impact of individual lighting units on the system is very straight 

forward. Energy efficiency of individual products is translated into total saving of energy 

at system level. However, studies have shown that as a result of energy efficient lighting 

programs, summer peak demand is reduced by 3.7% for annual energy reduction of 1.3% 

[104]. This gives a significant relief to electric utilities from near future capacity 

addition. Environmental benefits are the function of utility mix. In case of higher 

dependance of utility on coal for electricity generation will realize more environmental 

benefits. The environmental benefits realized by replacing 75 watt incandescent lamp 

with 20 watt compact fluorescent lamp are as follows: 

SO2 (Acid rain component) = 6.4 Ibs 

NO, (Smog) = 3.4 Ibs 

CO? (Greenhouse gas effect) = 880 lbs 
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Table 7.3. Lumen Efficacy of Different Type of Lamps 

  

  

  

  

  

    

Minimum Maximum 
Lamp Type 

(LPW) (LPW) 

Incandescent 15 25 

Tungsten halogen 25 45 

Fluorescent 70 100 

Metal halide 80 120 

High pressure sodium 65 140       
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Natural Gas Oil Coal       
Figure 7.2. CO2 Avoided Over Lamp Life of 23 watt CFL vs 

Incandescent Lamp 
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Figure 7.2 gives a comparison of CO? avoided over lamp life of a 23 watt CFL vs 90 

watt incandescent lamps for different fuel types. This comparison gives an idea about the 

CO pollution as a result of different fuel types. 

It is interesting to note that energy saving has a correlation with color rendering 

index of the lighting technology. Figure 7.3 shows this correlation between color 

rendering index and energy saving potential of different lighting technologies. It shows 

that incandescent lamp has the best color rendering index and minimum efficacy while on 

the other extreme low pressure sodium lamp has the highest lumen efficacy and lowest 

color rendering index. 

7.5 Optimum Mix of Energy Efficient Lighting Technologies 

It is clear from our discussions in previous chapters that besides energy saving 

and environment benefits of energy efficient lighting technologies they inherit some 

power quality problems. These technologies can be divided in to following two 

categories: 

(1) Discharge lamps 

(2) Tungsten Halogen Lamps 

All discharge lamps needs device called as ballast, to start and operate the 

discharge lamp. Ballasts in energy efficient discharge lamps have non linear impedance 

and hence source of harmonic currents. Harmonic currents become a serious threat to the 

system if they exceed certain thresholds as prescribed by IEEE std 519 [135]. 

Manufacturers of lighting devices try to reduce harmonic current requirement of the 
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devices through active and passive filtering techniques. However, cost and size 

constraints on the lamps force manufacturers to compromise with certain level of 

distortion current. Our focus in chapters 5 and 6 was to find the ways and means to 

reduce harmonic impact of energy efficient lighting technologies on the system. In this 

chapter we will discuss the energy savings and environmental benefits of these 

technologies. 

Second type of energy efficient lamps, Tungsten halogen lamps have less lumen 

efficacy compared to discharge or fluorescent lamps. However, they do not need any 

additional circuit for their starting or operation. Tungsten halogen lamps have limited 

role compared to fluorescent lamps among overall lighting applications. Their common 

applications are floodlighting and spot lighting in commercial and industrial 

environment. Due to their high color rendering index (CRI), they produce light that is 

very close to natural sun light. More over they do not need any modification of the 

fixture to replace standard PAR lamps. Tungsten halogen lamp has a potential to save 

energy up to 60% compared to standard PAR lamps. 

A mix of fluorescent and CFLs can be used to keep harmonic distortion level 

within the limit. In case this mix violates harmonic distortion limit, tungsten halogen 

lamps can be inducted as per requirement to meet harmonic limits. As tungsten halogen 

lamp is considered a linear impedance, hence it does not contribute to the lighting load 

harmonic current. Instead overall harmonic distortions are reduced, depending upon 

percentage of tungsten halogen lamps among lighting devices. Energy savings and 

environmental benefits will be slightly reduced, however, power quality benefits 

overweighs the former benefits. An optimal mix of fluorescent, metal halide, HPS and 

tungsten halogen is calculated far a particular building load configuration. 
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Tungsten halogen technology is expected to play an important role in future to 

improve power quality at micro and macro system level. First, tungsten halogen 

technology has potential to be more efficient in future compared to its present day status 

[136]. Second, load forecast shows that in year 2010, approximately 74-83% of the 

commercial and 55-58% of industrial load will be of nonlinear type. That is a signal of 

more harmonic distortion at customer bus. Under these two conditions, tungsten halogen 

technology will be very important in future. Technology mix of fluorescent and tungsten 

halogen will be an option for passive harmonic mitigation in hostile environment of 

nonlinear loads. It is worth mentioning that both, commercial and industrial customers, 

have significant requirement of floodlighting and spotlighting. 

At present, a full line of energy efficient lighting products is available in market. 

Manufacturers provide information about energy savings, environmental benefits, P.F., 

and harmonic distortion for individual products. This information is not enough to assess 

the impact of energy efficient lighting devices at system level. Energy savings and color 

rendering capabilities of candidate technologies attract utility customers while utilities are 

concerned about the power quality impact of these products on the system. However, in 

the long run utility customers will too start feeling the impact of harmonic distortions on 

their sensitive equipments. That could create the so called customer backlash as a result 

of increasing proliferation of harmonic generating loads. Hence these issues need to be 

addressed now, both at building as well as system level. 

Generally performance of different lighting technologies is judged on the basis of 

their functional and technical capabilities. Figure 7.4 gives the description of the criteria 

for functional and technical performance of lighting products. This criterion helps to 

optimize energy savings, technology cost, illumination requirement and other benefits. 

Technologies are required to be tested for manufacturers claim about energy savings, 

power factor, harmonic distortions and luminance values. 
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Energy efficient lighting technologies are available in wide range of wattage and 

illuminance ratings. This flexibility facilitates to use these technologies for all kind of 

tasks. Electronic ballast fluorescent lamps are available with control circuitry that has 

capability to control lumen level from 10 to 100%. That could be used in combination 

with daylighting technologies to enhance energy savings and environmental benefits. 

7.6 Case Study Results 

7.6.1 Building Load Model 

A building load model was built, using 24 hour load data for a typical building. 

Main load components of the model are induction motor, computer, and lighting load. 

During peak hours lighting loads account for 60% of the building load, induction motor 

load is 30%, and 10% computer load. 

7.6.2. Benefits and Issues 

This research was conducted to study the impact of energy efficient lighting 

devices on the system. Building lighting needs are presently met by standard magnetic 

ballast T-12 fluorescent lamps and incandescent lamps. Magnetic ballast and T-12 lamps 

were replaced with high frequency electronic ballast T-8 lamps. Incandescent lamps were 

replaced with electronic ballast compact fluorescent lamps. Electronic ballast T-8 lamps 

have power factor and THD 0.95 and 15% respectively. Compact fluorescent lamps have 

P.F and THD as 0.96 and 26% respectively. First load, THD and power factor were 

studied without any penetration of new lighting technologies. Individual P.F. and THD 
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Figure 7.5. Block Diagram for Building Load Model 
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for standard magnetic ballast is >0.90 and 20% respectively. While incandescent lamp has 

unity P.F. and negligible current harmonics. For each penetration level parameters like 

energy savings, peak load, THD, P.F. and dominant harmonics were measured, both, before 

and after penetrating new lighting technologies. 

7.6.3 Results 

Power factor, THD and energy savings are analyzed using the building load model 

for different level of penetration of new lighting technologies. Results are analyzed for 

20, 25, 46, 54, 73, and 100 percent penetration of different lighting technologies. It is 

observed that evaluation of energy savings and power quality at lower penetration 

becomes uncertain due to following reasons: 

¢ Variation in utilization pattern of lighting in same building. 

* Requirement of different lighting technologies for different kinds of tasks. 

¢ Different attitude of the personals working in the same building towards 

energy savings and environmental protection. 

Choice of lighting area, selected for a certain penetration level will have impact 

on energy savings and power quality. If area of less use is selected, due to one or the 

other reason, for retrofitting then it will have different impact compared to other choices 

for same level of penetration. As we proceed towards higher penetration level energy 

saving become more visible and pronounced. Power quality is not different from lower 

penetration level if energy efficient lighting technologies are selected carefully. Figures 

7.6-7.11 presents the capacity and energy savings; power factor and THD at 73 and 100 

percent penetration of energy efficient lighting technologies. It is interesting to note that 

higher penetration of energy efficient technologies do not deteriorate power quality if 

technologies are selected carefully. Significant harmonic cancellation takes place for 

certain set of technologies. 
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7.7 Performance of Fluorescent Lamps 

Since 1970s there have been efforts to develop electronic ballasts to operate 

discharge lamps at high frequencies. It was not possible until early 1980s, to market a 

feasible electronic ballast. The electronic ballasts received a significant share of the 

ballast market only in late 1980s. Since then electronic ballast technology has grown very 

fast. The high frequency electronic ballast has significantly improved the life and 

efficacy of fluorescent lighting systems. Verderber [141] has reviewed the developments 

and market share of the ballast technology. Figure 7.12 gives a comparison of the 

shipment of electronic and magnetic ballasts over the last ten year period. Until 1989, the 

electronic ballasts had a very slim share in the ballast market. The electronic ballasts 

started taking over the magnetic ballasts from 1990 and onwards. After this period the 

activity has been increased by a factor of three. By the year 1993, the electronic ballasts 

have a market share of more than 27% of the total ballasts. In Figure 7.12 the data for 

years 1994 and 1995 are the projections on the basis of previous trend of the ballast 

market. Figure 7.13 gives a comparison of past and future market share of electronic and 

magnetic compact fluorescent lamps. Due to electronic ballasts and electronic compact 

fluorescent lamp (CFL) becoming a significant portion of the demand side loads, these 

technologies are required to be investigated in a system prospective. Datta [142] has 

made a comparative analysis of electronic and magnetic ballasts. He made a comparison 

between electronic and magnetic ballasts on the basis of total harmonic distortions 

(THD), power factor, light output, ballast efficacy factor, power input, and the 

temperature of the lamp and ballasts themselves. 

The electric utilities and the supplier of electricity around the world are adopting 

certain practices that allow the system to work at over and below the rated voltage and 

frequency limits. In some parts of the world the electricity suppliers operate the system at 
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frequency above the rated frequency to increase the system stability during fault 

conditions. Many underdeveloped countries are suffering from acute shortage of 

generation capacity and allow the system to work at a voltage up to 30% less than the 

rated voltage. System overloading also causes the under frequency conditions. Switching 

on and off of large industrial load also causes voltage and frequency fluctuations. Some 

researchers have also reported the problem of voltage and frequency fluctuation in an 

environment of generation mix. This section investigates the electronic and magnetic 

ballasts with T-8 and T-12 fluorescent lamps; electronic and magnetic compact 

fluorescent lamps under varying voltage and frequency conditions. 

7.7.1 Methodology to Investigate Fluorescent Lamps at Varying Supply Voltage 

Our main goal in this investigation was to compare different models of electronic 

and magnetic ballasts for the minimum supply voltage requirements to fire the fluorescent 

lamp. The investigation was carried out in following three stages: 

1. Each ballast technology was tested for the minimum supply voltage required to fire 

the fluorescent lamp. Lighting system was studied for flicker, lumens, power 

requirements, power factor, and THD under the minimum voltage conditions. 

2. The supply voltage for each ballast and lamp fixture was increased to a level where 

there is no significant flicker and the lamp has a stable discharge. This voltage was 

described as stable discharge voltage and power requirements, power factor, and THD 

was studied at the stable discharge. 

3. Performance of each lamp-ballast fixture at reduced voltage was analyzed with 

reference to the rated supply voltage. For this purpose, each lighting technology was 

studied for power requirements, power factor, and THD. 
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7.7.2 Analysis of Electronic and Magnetic Ballasts for Reduced Supply Voltage 

Table 7.4 gives a comparative analysis of fluorescent lamp ballasts for reduced 

supply voltage. There are three types of magnetic ballasts and four types of electronic 

ballasts. Fluorescent lamps are standard T-12 and energy efficient T-8 types. Description 

of each fluorescent lamp fixture is given below: 

Std. MB T-12: Standard magnetic ballast with T-12 fluorescent lamp. 

ES1 MB T-12: Energy saving type 1 magnetic ballast with T-12 fluorescent lamp. 

ES2 MB T-12: Energy saving type 2 magnetic ballast with T-12 fluorescent lamp. 

ES2 MB T-8: Energy saving type 2 magnetic ballast with T-8 fluorescent lamp. 

EB1 T-8: Electronic ballast manufacturer 1 with T-8 fluorescent lamp. 

EB2 T-8: Electronic ballast manufacturer 2 with T-8 fluorescent lamp. 

EB3 T-8: Electronic ballast manufacturer 3 with T-8 fluorescent lamp. 

EB4 T-8: Electronic ballast manufacturer 4 with T-8 fluorescent lamp. 

Among the electronic ballasts, EB! T-8 and EB3 T-8 fire at lowest voltage. 

While ES2 T-12 has the lowest firing voltage among the magnetic ballasts. Besides the 

lower firing voltage for electronic ballasts, it starts without any significant flicker as 

compared to magnetic ballast. Magnetic ballast can not start T-8 lamp at supply voltage 

lower than 100 volt. In case of electronic ballast and T-8 lamp, the only back draw of low 

voltage is that lumens output is low. For a stable discharge the supply voltage 

requirements for ES2 MB T-8 are 105 volt. While electronic ballasts can give a stable 

discharge 75 volt and provides significant lumens output without any visible flicker. 

Most of the magnetic ballasts generate more harmonics at supply lower than the 

rated voltage. Electronic ballasts generate less harmonics at lower voltage than the 
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harmonics at rated voltage. Under the reduced voltage operation electronic ballasts have 

less harmonic impact on the system as well as the loads sharing the common utility bus. 

Due to higher Ballast Efficacy Factor (BEF), the electronic ballasts consume less 

power than the magnetic ballast with equivalent lumens output. The less power 

consumption reduces the heat loss in the ballast and hence the electronic ballast improves 

the safety and reliability of the lighting system. Also greater energy savings can be 

realized by operating T-8 lamps with electronic ballasts instead of magnetic ballasts. 

EB! T-8 lighting system consumes 60 watts compare to 82 watt consumed by ES2 MB T- 

8 lighting system. 

Table 7.4 shows that in most of the cases, electronic ballasts have a slight 

decrease in THD at stable discharge compared to that at 120 volt. Ouellette and Arseneau 

[143] have also reported similar results for the old models of electronic compact 

fluorescent lamps. Their results show THDs of 82.9% and 81.5% at 120 Volt and 100 

volt supply voltage respectively. Discussions about the rectifier/filter design, presented 

by Wood [144] show that the current THD is function of the crest factor of the circuit. 

For supply voltage lower than the rated value, rectifier/filter circuit becomes oversized 

and helps to filter out more harmonic frequencies than the rated supply voltage. This 

phenomenon could be explained more precisely by making nonlinear model analysis of 

the electronic baliast. 

Table 7.4 gives a comparison of power factor for reduced and rated supply voltage 

for electronic and magnetic fluorescent lighting systems. At stable discharge voltage, 

power factor is almost the same for electronic and magnetic ballast lighting systems. In 

some cases, electronic ballast has higher power factor (0.99) than magnetic ballast (0.96). 

However, for rated supply voltage electronic ballasts have slightly better power factor 

(0.99) than magnetic ballasts. 
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7.7.3 Analysis of Electronic and Magnetic Compact Fluorescent Lamps 

Table 7.5 gives a comparison of electronic and magnetic compact fluorescent 

lamps (CFL) under reduced voltage conditions. There are six electronic CFLs and one 

magnetic CFL included in this analysis. Electronic CFLs are that of different models and 

power rating. Minimum supply voltage required to fire a magnetic CFL is 100 volt. 

While all models of electronic CFL fires at supply voltage between 60 and 90 volts. 

Magnetic CFL fires at reduced voltage with an annoying flicker and it keeps flickering at 

the 100 volt supply voltage. The electronic CFLs fire with time delay of few seconds. 

There is no flicker, but in some cases the discharge is uneven. At 110 volt, magnetic CFL 

has less flicker and lamp discharge is stabilized. All model of electronic CFLs has stable 

discharge at voltage as low as 65 volt and the glow even throughout the lamp discharge 

tube. Hence the electronic CFLs have much better performance at reduced voltage as 

compared to magnetic CFLs. 

Magnetic CFL has lower BEF and has more heat losses in the ballast as compared 

to electronic CFLs. Due to space constraints, it is difficult to include power factor 

correction capacitors in magnetic ballasts. Hence the power factor of magnetic CFLs is 

very low as compared to new design of electronic CFLs. However, in all cases, both 

electronic and magnetic CFLs, power factor at reduced supply voltage is better than the 

power factor at rated supply voltage. 

It was also noted during this course of study that in case of some models of 

electronic CFLs a reduced voltage less than the minimum voltage mentioned in Table 7.5, 

for an extended period could damage the lamp. While the magnetic ballast simply does 

not fire at voltage less than 100 volts. However, it is very rare that supply system has a 

low voltage less than 65 volts. Most of the manufacturers of electronic CFLs warn to not 

to use with dimmer circuits. 
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7.7.4 Methodology to Investigate Fluorescent Lamps at Varying Frequency of 

Supply Voltage 

The methodology provides a systematic procedure of analyzing fluorescent lamp 

under varying frequency conditions. Power supply frequency was varied from 59 Hz to 

61 Hz to test the fluorescent lamps designed for 60 Hz supply voltage. PACIFIC AC 

Power Analyzer was used to supply variable frequency voltage to the fluorescent lamp. 

Power supply frequency was varied from 59 Hz to 61 Hz with steps of 0.2 Hz. Lamp 

parameters (THD, Power, Power Factor, etc.) were measured using Voltech Universal 

Power Analyzer. The analysis procedure is given in the following: 

1. Each fluorescent lamp was tested for a frequency range of 59 - 61 Hz in steps of 

0.2 Hz. The lamps were tested for minimum supply voltage that stabilizes the lamp 

discharge, the rated and the over voltage. To test the lamp for over voltage the supply 

was increased to 130 Volts. 

2. Each lamp was tested for THD at stable, rated and over voltage with prescribed 

frequency variation. Electronic CFL was compared with magnetic CFL and electronic 

ballast T-8 fluorescent was compared with magnetic ballast T-12 fluorescent lamp for 

harmonic impact in frequency range 59 Hz to 61 Hz. 

3. Impact of frequency variation on power consumption and power factor of compact 

CFL and 48” fluorescent lamps was studied. Magnetic CFL was compared with 

electronic CFL and magnetic ballast 
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7.7.5 Impact of Varying Frequency on Compact Fluorescent Lamp 

Table 7.6 shows the analysis of a typical new design of electronic CFL in a power 

frequency range 59 Hz to 61 Hz. Table 7.7 gives same type of analysis of full size 

fluorescent lamps. Electronic CFL has no significant impact of frequency variation on 

THD of the lamp in the above mentioned frequency range. However, frequency variation 

cause fluctuation in THD of the magnetic CFL. Table 7.7 shows that THD of magnetic 

CFL fluctuate between 10.7-11.4, 9.5-10.1, and 10.7-11.1 at stable, rated and over voltage 

respectively. 

There is no significant impact of frequency variation on power consumption of 

electronic CFL within 59 Hz to 61 Hz of supply voltage. Due to frequency variation, 

there is a slight decrease in power consumption of magnetic CFL with the increase of 

supply frequency. This reduction in power consumption in magnetic CFL can be 

explained by the following relationship: 

Z = j27fL 

Where Z is impedance of the magnetic core, f is frequency of supply voltage, and L is 

inductance of magnetic core in magnetic CFL. The above relationship shows that 

impedance of magnetic CFL is directly proportional to the frequency of the supply 

voltage. Hence the lamp draws more current that increases the power consumption in the 

lamp. 
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Power factor of electronic CFL remains constant at all voltage levels in the 

frequency range shown in Table 7.6. Power factor of the magnetic ballast does not has 

any well defined impact of frequency variation. However, it keeps fluctuating between 

0.656-0.660, 0.541-0.554, and 0.497-0.515 for stable, rated and over voltage respectively. 

7.7.6 Impact of Varying Frequency on Full Size Fluorescent Lamp 

Analysis of electronic and magnetic ballast fluorescent lamp for frequency 

variation is shown in Table 7.8 and Table 7.9. All the measurements are made for stable, 

rated, and over voltage in frequency range 59 Hz to 61 Hz. Both type of lamps are 

compared for THD, power consumption, and power factor with the help of above 

mentioned tables. Electronic ballast T-8 lamp does not have any impact of frequency 

variation on THD in the range 59 Hz to 61 Hz for stable discharge voltage. For the rated 

and over voltage there is some decrease in THD of the electronic ballast while going from 

59 Hz to 6] Hz. Table 7.8 shows that impact of frequency variation becomes more 

significant with the increase of supply voltage. Magnetic ballast also has the same pattern 

of impact of frequency variation on THD as the electronic ballast. Table 7.9 shows that 

impact of frequency variation on THD of magnetic ballast becomes significant at higher 

supply voltage. 

Table 7.8 shows that there is no significant impact of frequency variation on 

power consumption of electronic ballast at stable discharge voltage. At rated and over 

voltage, there is slight reduction in power consumption with the increase in frequency of 

supply voltage. The reduction in power consumption can be explained with impedance 

analysis of electronic ballast that is beyond the scope of this work. However, it is shown 

in the Table 7.8 that reduction in power consumption is visible at higher supply voltages. 

In magnetic ballasts, reduction in power consumption with increasing frequency is more 
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pronounced than electronic ballast. Magnetic ballast mainly consists of magnetic core 

and power factor correction capacitor. Impedance relationship can be written as: 

2 
z=j— 1-47? f2LC 
  

Where Z is impedance of magnetic ballast, f is frequency of supply voltage, L is 

inductance of the magnetic core, and C is the capacitance of power factor correction 

capacitor. The above relationship reduces the impedance with the increase of frequency 

hence the ballast draws more current and increase power consumption in the ballast. 

However, power consumption for the above frequency range increases with the increase 

of supply voltage. 

In case of the electronic ballast, power factor remains almost constant in the 

frequency range shown in Table 7.8. There is slight reduction in power factor at a voltage 

lower than the rated voltage. As shown in Table 7.9, the magnetic ballasts have small 

decrease in power factor at rated and higher voltages with the reduction in the frequency 

of supply voltage. Factors that can contribute to the reduction in the power factor are (i) 

magnitude of the current, (ii) phase shift between voltage and current, and (iii) current 

total harmonic distortions. Impedance measurements show that in frequency range of 61 

to 59 Hz, the magnetic CFL has impedance drop of 27 and 30 ohms at 120 and 130 volt 

respectively. The lower impedance draws more current and contributes to the reduction 

in power factor. For magnetic CFL, THD is increasing with decrease in frequency of the 

supply voltage.. The increase in THD distortion also contributes to the reduction in the 

power factor. 
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7.8 Summary 

Energy efficient lighting technologies (e.g. compact fluorescent lamps, electronic 

ballast T-8 lamps and tungsten halogen lamps) offer significant energy and peak saving 

as well as pollution mitigation opportunities. However, they have certain drawbacks in 

terms of lower color rendering indices, harmonics and lower power factors. It is shown 

that by carefully selecting the mix of different lighting technologies for the type of 

application necessary, it is possible to minimize the aggregate impact of their undesirable 

characteristics. 

Energy savings and environmental benefits of high efficacy fluorescent lamps are 

reality of life. Electric utilities are relying on energy efficient lighting programs to 

postpone or delay their future capacity addition. However, the growing proliferation of 

nonlinear loads is offering a new challenge for electric utilities. There is much work: 

ahead to completely understand harmonic interaction between nonlinear loads in general 

and lighting and power supply loads in particular. This understanding about the 

harmonic distortion, summation, cancellation and mitigation is very much required to 

comprehend the impact of energy efficient lighting devices on the utility system in the 

presence of other type of nonlinear loads. Any technique to reduce harmonic distortion 

level through their mutual cancellation will help to reap the energy conservation and 

environmental benefits of high efficacy lighting technologies. 

Analysis of fluorescent lamps at varying frequency and supply voltage shows that 

the electronic CFLs and electronic ballast fluorescent lamps are more reliable and 

efficient than their magnetic counter parts. 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

An exhaustive study of the energy efficient lighting technologies has been 

conducted during this research. This has been a necessary step towards the evaluation of 

benefits and issues related to these technologies. Moreover, it determined the direction in 

which this research can contribute to the solution of the problem of harmonic distortions. 

Through this comprehensive study, it has been found that higher THD of individual 

lighting products do not automatically mean a higher THD impact at system level. Even 

though such information is important in initial screening of energy efficient devices,a 

complete harmonic spectrum of the current drawn by these devices provides more 

comprehensive picture of the harmonic characteristics of these technologies. Barriers and 

obstacles in the procurement of these technologies have been detailed during this 

research. Generally speaking, manufacturers have been found to be cooperative in 

passing on necessary information and the hardware required for the research. This is very 

encouraging in pursuing further research and development in this area. 

This study has presented a survey of major energy efficient technologies. 

Adjustable speed drives and energy efficient lighting devices were found to be having 
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largest potential of energy savings and environmental benefits. It was discovered that the 

developments in the energy efficient lighting technologies are superseding that of the 

adjustable speed drives. From the power quality point of view, state-of-the-art lighting 

devices are less problematic than the adjustable speed drives. Some of the lighting 

devices tested in the laboratory have total harmonic distortions as low as 10 percent. 

Whereas the manufacturers of adjustable speed drives are still struggling to reduce the 

harmonic impact of their products at system level. Moreover, the energy efficient lighting 

technologies have higher potential of energy savings, environmental protection and 

capacity reduction and less power quality impact on the system. 

This research provides an insight into the harmonic interaction problem. The 

state-of-the-art lighting technologies were tested for the harmonic generation, interaction, 

and cancellation at the building level. Results show that the individual harmonic 

frequencies generated from different sources do not have the same harmonic impact at the 

system level. The lower order triplens are the most problematic for their system level 

impact. Findings of the study show that the harmonic profile of a particular device or 

equipment provides a more comprehensive information than the total harmonic distortion. 

A methodology was designed to evaluate energy efficient lighting technologies for 

their performance, power quality and environmental impacts. It was found that the 

energy savings and environmental benefits can be calculated from the manufacturers data 

by using a simplistic approach. Most of the new models of energy efficient technologies 

have power factor as high as 0.99. There is no significant loss of real power and all 

energy savings of individual lighting fixtures shall be reflected at the system level. 

The methodology provides a generic algorithm to select energy efficient lighting 

technologies for their minimum impact of total harmonic distortions at the system level. 

It is shown that by carefully selecting the mix of different lighting technologies for 
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certain applications, it is possible to minimize the aggregate impact of their undesirable 

characteristics. It was found that some combinations of energy efficient lighting 

technologies have their minimum harmonic impact on the system, although the individual 

total harmonic distortion of the lighting technologies in the combination have relatively 

high total harmonic distortion. Results show that the energy efficient lighting 

technologies (e.g. compact fluorescent lamps, electronic ballast T-8 lamps and tungsten 

halogen lamps) offer significant energy and peak saving as well as pollution mitigation 

opportunities. 

It is known that many electric utilities around the world operate at below the rated 

voltage to reduce the electricity demand during the peak hours and times of insufficient 

generation. Similarly, some utilities operate their generation units at higher than the rated 

frequency to cope with emergency situations such as loss of generation unit. Performance 

analysis of lighting technologies shows that the electronic ballasts have superior performance 

than the magnetic ballasts under varying voltage and frequency conditions. Most of the 

electronic ballasts can operate at a voltage as low as 65 volt without any visual discomfort. 

Whereas, magnetic ballasts have visible flicker at the supply less than the rated voltage. 

Moreover, magnetic ballasts generate annoying noise and more distortions while operating at 

low voltages. At higher frequencies magnetic ballasts show significant increases in power 

consumption. Electronic ballasts have no significant impact of frequency variation on 

harmonic distortions, power factor and power consumption. 

8.2 Recommendations 

The proposed algorithm for selection of energy efficient lighting technologies for 

minimizing total harmonic distortion has provided a valuable tool in screening the use of 

these technologies. There is a significant potential of increasing the scope of the 
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algorithm. The algorithm can be extended for evaluation of energy savings, 

environmental benefits, power factor, THD, and cost effectiveness. As the harmonic 

characteristics of most of energy efficient technologies operated with electricity are 

identical, the algorithm may be extended to the non-lighting energy efficient technologies 

also. Most important among these are adjustable speed drives. Followings are some of 

the more specific topics where research in this area could be extended: 

e It has been pointed out in this study that harmonic profiles of the current drawn by 

harmonic loads provide more comprehensive knowledge than just a number 

showing the so-called THD value, because each category of the harmonic 

frequencies has unique impact on the system. For example, zero sequence 

harmonics cause more damage to the system by adding up in the neutral wire of 

the three phase four wire system. Hence it will be a beneficial to study the 

implications of making it mandatory for manufacturers of electrical equipment 

and instruments to provide harmonic profile of the current drawn by them. 

e There are many factors that influence the real spectrum of harmonic current 

profile. For example, the precision of the equipment used to measure harmonic 

current profile. Another important factor is the ambient harmonics in the supply 

system that can increase the level of harmonics of the current profile and many 

other factors. Hence it is required to set the standard procedure to capture the 

harmonic profile of current drawn by electrical loads. 

ad As mentioned in this research that there are many conclusions that one can draw 

by just having a look of the harmonic profile. For example, the current flowing in 

the neutral wire, harmonics that will cancel in a three phase system, etc. Hence a 

comparative study of harmonic current profile versus total harmonic distortions 
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will be helpful to persuade the professional bodies to develop harmonic profile 

standards. 
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APPENDIX A 

% This matlab m-file will get the power factor values for the 

% given voltage and current combinations 

% 

% t is time variable 

% vt is the voltage 

% Vrms is the rms value of voltage 

% T is the period of the waves and is 2 

% iat is the first waveform ... 

% larms is the rms value of iat ... 

% Define the voltage and current waveforms here 

% N+1 is the number of samples, si is the sampling interval 

% 

N = 100; 

T = 2; 

si =2/N; 

t = 0:si:2; 

vt = =cos(pi.*t+pi/4); 

% Current Waveform (a) 
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iat =cos(pi.*t); 

% Current Waveform (b) 

_t1_= 0:si:.5; 

_t2_ = .5+si:si:1.5; 

_t3_= 1.5+si:si:2; 

_ibtt_= 2.*t1; 

_ibt2_= 2.*(1-t2); 

_ibt3_= 2.*(t3-2); 
_ibt_= [ibt1 ibt2 ibt3}; 

% Current Waveform (c) 

_t1c_= 0:si:1; 

_t2c_= 1+si:si:2; 

_ict1_= ones(size(tic)); 

_ict2_= -1.*ones(size(t2c)); 

_ict_= [ict1 ict2]; 

% Current Waveform (d) 

_idt_= zeros(size(t)); 

_tid_= .3:si:.7; 

_t2d_= 1.3:si:1.7; 

_idt(.3/si:.7/si)_= ones(size(t1d)); 

_idt(1.3/si:1.7/si)_= -1.*ones(size(t2d)); 
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% Calculate the rms value of voltage and currents 

% vsqd is the squared value of vt, iasqd is the squared value of iat... 

vsqd_ =vt.£2; 

ilasqd = iat.A2; 

_ibsqd_= ibt.42; 

_icsqd_= ict.42; 

_idsqd_= idt.42; 

Vrms = sqrt(sum(vsqd)/T); 

larms = sqrt(sum(iasqd)/T); 

_lbrms_= sqrt(sum(ibsqd)/T); 

_lcrms_= sqrt(sum(icsqd)/T); 

_Idrms_= sqrt(sum(idsqd)/T); 

% pra is the product of iat and vt ... 

% Pa is the active power with iat ... 

% pfa is the power factor with iat ... 

pra = vt."iat; 

_prb_= vt.*ibt; 

_prc_= vt.*ict; 

_prd_= vt.*idt; 

Pa =sum(pra)/T; 

_Pb_= sum(prb)/T; 
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_Pc_= sum(prc)/T; 

_Pd_= sum(prd)/T; 

pfa = Pa/(Vrms*lams) 

pfa = 

_ 0.71059868776230 

_pfb_= Pb/(Vrms*lbrms) 

pfb = 

-0.69844050861032 

_pfc_= Pc/(Vrms*Icrms) 

pfc = 

-0.64001021690641 

_pfd_= Pd/(Vrms*Idrms) 

pfd = 

-0.56037940276967 
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