Investigation of Adhesive and Electrical Performance of Waterborne Epoxies for Interlayer Dielectric Material

Mitchell Lee Jackson

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Materials Engineering Science

Dr. Brian J. Love, Chair
Dr. William A. Davis
Dr. John G. Dillard
Dr. Ronald G. Kander
Dr. Thomas C. Ward

November 3, 1999
Blacksburg, Virginia

KEYWORDS: Waterborne epoxy, latex drying, surfactant plasticization, peel viscoelasticity, dielectric measurement, copper-epoxy adhesion

Copyright 1999, Mitchell L. Jackson
Investigation of Adhesive and Electrical Performance of Waterborne Epoxies for Interlayer Dielectric Material

Mitchell L. Jackson
Committee Chairman: Brian J. Love
Materials Engineering Science

(Abstract)

The primary differences between the solventborne and waterborne epoxy printed circuit board (PCB) impregnating resins arise from the distinct physical compositions and drying characteristics of the polymer solution and the latex emulsion. The presence of residual surfactant from the waterborne epoxy emulsion poses a concern for dielectric performance and adhesive durability. Another problem involves the crystallization of insoluble solid dicyandiamide (DICY), which is significantly different in morphology than that found in solution cast resins.

A two-stage drying model was employed to gain a better understanding of the drying and coalescence processes. The process of surface DICY crystal formation during the drying of glass prepreg sheet was related to a threshold concentration of the curing agent in the impregnating latex resin formulation. Conditions favoring faster drying lead to the rapid formation of a coalesced skin layer of latex resin, thereby trapping the curing agent in the bulk and reducing the surface deposition of DICY by percolating water. Surfactant is believed to remain concentrated in a receding wet zone until it is driven to the surfaces of the glass fibers upon the completion of drying.

The copper foil/laminate interface was evaluated by a 90° peel test as part of two different studies: an analysis of the viscoelastic response of the interface during peel and a study of the thermal durability of the copper/laminate interfacial peel strength. The surfactant acted as a plasticizer to toughen the fiber/matrix interphase, resulting in larger observed peel strengths in the latex resin impregnated materials relative to the solventborne system. Surfactant segregated to the fiber surface during coalescence to form a plasticized fiber/matrix interphase; surfactant migrated into the bulk during postcure to yield a more homogeneously plasticized epoxy matrix.

Dielectric measurements of neat resin and laminate materials revealed that the dielectric constants of the model resin-impregnated laminates met the performance criteria for PCB substrates of their class, regardless of surfactant content.

Overall, the adhesive performance, adhesive durability, and dielectric properties of PCB systems fabricated with model latex epoxy resin, containing native surfactant (5 wt %), met or exceeded the performance of an equivalent solventborne resin impregnated system.
Acknowledgements

I would like to thank the following people and organizations for their help and guidance in conducting this study, preparing this dissertation, and enjoying my many years of graduate school at Virginia Tech:

Dr. Brian J. Love, chairman of my committee, who offered me an opportunity to achieve this goal. His generosity, patience, insight, and friendship over the past several years have been invaluable. I am especially grateful for his openness in sharing valuable philosophies, which will serve me well in the future.

Dr. W. A. Davis, Dr. J. G. Dillard, Dr. R. G. Kander, and Dr. T. C. Ward for serving on my graduate advisory committee, answering my questions, and taking valuable time to review my work.

Dr. Jack Graybeal for the use of his microwave measurement facilities over the past several years.
Mr. Hal Kimrey at Microwave Materials Technologies for the use of his dielectric measurement facility, his tutelage, and his friendship.
Dr. C. Stern for his support during my early graduate career.
Dr. J. G. Dillard and his research group for the use of his laboratory facilities and analytical instruments.
Mr. Shatil Haque for his assistance in designing and preparing etch masks.
Dr. S. Corcoran and Mr. Steve McCartney for their assistance with experiments.
Dr. G. Wilkes for his guidance in dealing with the MESc program.
Mrs. Susette Sowers for her many instances of help with paperwork, her quick attendance to my problems, and her patience.
Mr. Frank Cromer for his assistance with the many aspects of surface analysis.

The combined research groups of Drs. Love and Kander, specifically: Jennifer McPeak, Rachel Giunta, Julie Dvorkin, Michelle Jensen, Scott Steward, Scott Trenor, Allison Suggs, Scott Hebner, Patricia Dolez, Steve Clay, Kelley Renshaw, Jeff Schultz, Julie Martin, Sumitra Subrahmanyan, David Brooks, and the many others who passed through the lab.

Dr. T. C Ward and the Polypkem Group for the use of the DEA and for their friendship, specifically: Emmett O’Brien, Rob Jensen, Dave Porter, Sandra Henderson, Amy Eichstadt, Mark Muggli, Kermit Kwan, Jianli Wang, and many other old timers.

The Texture Technologies Corporation for financial support in attending conferences.
The Shell Chemical Company for supplying epoxy resins and curing agents.
The National Science Foundation Science and Technology Center for funding this research.
The Center for Adhesives and Sealant Science, for their allowing me to attend several Adhesion Society conferences.

And finally, those closest to me:
My parents Robert and Jane Jackson who always had faith in me. Their love and support made me who I am. My brothers who were always willing to help. My in-laws, David and Sherry Holmes, who have gracefully accepted me into their family.

My wife Brenda, without whom I would have never made it through. Her love, encouragement, devotion, and hard work have meant everything. All of my love and thanks for your help.
Table of Contents

Chapter 1 Introduction .. 1
 1.1 Printed Circuit Board Base Materials .. 1
 1.2 Multilayer Printed Circuit Boards .. 2
 1.3 Problem Description .. 4
 1.3.1 Thesis Statement .. 5
 1.4 References ... 5

Chapter 2 Experimental ... 6
 2.1 Materials ... 6
 2.1.1 Epoxy Resins ... 6
 2.1.2 Epoxy/Glass Laminates ... 6
 2.1.3 Copper Surface Preparation ... 7
 2.2 Sample Preparation ... 8
 2.2.1 Peel Specimens ... 8
 2.2.2 Dielectric Measurement Specimens .. 9
 2.2.2.1 Microwave Frequency Analysis Samples ... 9
 2.2.2.2 Dielectric Analysis (DEA) Samples .. 9
 2.3 Measurement and Analysis ... 9
 2.3.1 Peel Testing .. 9
 2.3.1.1 The 90° Peel Test ... 9
 2.3.1.2 Viscoelastic Peel Study ... 12
 2.3.1.3 Elevated Temperature Peel Durability Study .. 13
 2.3.2 Dynamic Mechanical Analysis ... 13
 2.3.3 Thermogravimetric Analysis ... 15
 2.3.4 Dielectric Measurement ... 16
 2.3.4.1 Microwave Frequency Measurement ... 16
 2.3.4.2 Dielectric Thermal Analysis .. 18
 2.3.5 Gravimetric Latex Drying Measurement ... 21
 2.3.6 Surface Analysis .. 23
 2.3.6.1 X-ray Photoelectron Spectroscopy (XPS) .. 23
 2.3.6.2 Scanning Electron Microscopy (SEM) ... 24
 2.3.6.3 Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) 24
 2.3.6.4 Optical Microscopy .. 24
 2.3.6.5 Constituent Material Surface Characterization .. 25
 2.4 References ... 26
Chapter 3 Epoxy Drying and Coalescence ... 28
 3.1 Background and Literature Review ... 28
 3.1.1 Solventborne Resins .. 28
 3.1.2 Curing Agents .. 28
 3.1.3 Waterborne Latex Resins .. 31
 3.1.3.1 Film Formation: Drying and Latex Coalescence 31
 3.1.3.1.1 Solventborne Film Drying .. 32
 3.1.3.1.2 Latex Film Drying and Coalescence .. 32
 3.1.3.2 Residual Surfactant Effects .. 35
 3.1.3.3 Electrical Performance .. 39
 3.1.3.4 Curing Agent Solubility and Precipitate Morphology 40
 3.2 Results and Discussion .. 42
 3.2.1 Dielectric Measurement Results ... 42
 3.2.1.1 Moisture Effects ... 42
 3.2.1.2 DICY Inclusion Morphology .. 46
 3.2.2 DICY Segregation and Adhesive Strength ... 48
 3.2.3 Residual Surfactant Effects on Adhesion ... 50
 3.2.4 Two-Stage Drying Model ... 53
 3.2.5 Latex Drying ... 55
 3.2.5.1 Evaporation Rates ... 55
 3.2.5.2 Latex System Comparisons ... 59
 3.2.5.2.1 DICY Concentration ... 60
 3.2.5.2.2 Surfactant Concentration ... 69
 3.3 Summary .. 73
 3.4 References ... 74

Chapter 4 Copper/Epoxy Adhesive Performance and Durability 77
 4.1 Introduction and Literature Review ... 77
 4.1.1 Theories of Adhesion .. 77
 4.1.2 The Interphase .. 78
 4.1.2.1 Copper Adhesion .. 78
 4.1.2.1.1 Oxide Treatments .. 79
 4.1.2.1.2 Surface Primers .. 80
 4.1.2.1.3 Epoxy Degradation ... 81
 4.1.2.1.4 Copper Oxide Degradation .. 83
 4.1.2.2 Glass Adhesion .. 84
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.2.2.1 Silanes Coupling Agents</td>
<td>84</td>
</tr>
<tr>
<td>4.1.2.2.2 The Silane Interphase and Adhesion</td>
<td>85</td>
</tr>
<tr>
<td>4.1.2.3 Dynamic Mechanical Analysis and Peak Splitting</td>
<td>89</td>
</tr>
<tr>
<td>4.1.2.4 Surfactant Segregation</td>
<td>91</td>
</tr>
<tr>
<td>4.1.3 Viscoelastic Effects</td>
<td>95</td>
</tr>
<tr>
<td>4.1.3.1 Fracture Energy and Time-Temperature Superposition</td>
<td>95</td>
</tr>
<tr>
<td>4.1.3.2 Dynamic Mechanical Analysis</td>
<td>99</td>
</tr>
<tr>
<td>4.1.3.3 The Glass Transition</td>
<td>101</td>
</tr>
<tr>
<td>4.1.4 Degradation Model</td>
<td>102</td>
</tr>
<tr>
<td>4.2 Results and Discussion</td>
<td>103</td>
</tr>
<tr>
<td>4.2.1 Viscoelastic Adhesive Performance</td>
<td>103</td>
</tr>
<tr>
<td>4.2.2 Thermal Adhesive Durability</td>
<td>110</td>
</tr>
<tr>
<td>4.2.2.1 Brass Surface</td>
<td>112</td>
</tr>
<tr>
<td>4.2.2.1.1 Peel Strength Results</td>
<td>112</td>
</tr>
<tr>
<td>4.2.2.1.2 SEM Analysis</td>
<td>115</td>
</tr>
<tr>
<td>4.2.2.1.3 XPS Analysis</td>
<td>117</td>
</tr>
<tr>
<td>4.2.2.2 Copper Oxide Surface</td>
<td>118</td>
</tr>
<tr>
<td>4.2.2.2.1 Peel Strength Results</td>
<td>118</td>
</tr>
<tr>
<td>4.2.2.2.2 SEM Analysis</td>
<td>122</td>
</tr>
<tr>
<td>4.2.2.2.3 XPS Analysis</td>
<td>124</td>
</tr>
<tr>
<td>4.2.2.3 DRIFTS Analysis</td>
<td>127</td>
</tr>
<tr>
<td>4.2.3 DMA Analysis</td>
<td>130</td>
</tr>
<tr>
<td>4.2.3.1.1 Neat Epoxy Resins</td>
<td>131</td>
</tr>
<tr>
<td>4.2.3.1.2 Epoxy-Glass Laminates</td>
<td>133</td>
</tr>
<tr>
<td>4.3 Summary</td>
<td>140</td>
</tr>
<tr>
<td>4.4 References</td>
<td>142</td>
</tr>
<tr>
<td>Chapter 5 Dielectric Performance</td>
<td>145</td>
</tr>
<tr>
<td>5.1 Background and Literature Review</td>
<td>145</td>
</tr>
<tr>
<td>5.1.1 Dielectric Theory</td>
<td>145</td>
</tr>
<tr>
<td>5.1.2 Complex Permittivity</td>
<td>146</td>
</tr>
<tr>
<td>5.1.2.1 Electrical Loss Mechanisms in Glass</td>
<td>148</td>
</tr>
<tr>
<td>5.1.2.2 Loss Mechanisms in Polymers</td>
<td>148</td>
</tr>
<tr>
<td>5.1.3 Physical Models of Permittivity and Loss</td>
<td>151</td>
</tr>
<tr>
<td>5.1.4 Electrical Modulus</td>
<td>153</td>
</tr>
<tr>
<td>5.1.5 Dielectric Studies of Polymers and Composites</td>
<td>155</td>
</tr>
<tr>
<td>5.1.5.1 Polymer Blends and Plasticized Systems</td>
<td>155</td>
</tr>
</tbody>
</table>
Table of Figures

Figure 1.1: Schematic of a multilayer circuit board ... 2
Figure 1.2: Foil-capped stack-up PCB construction ... 3
Figure 1.3: Layer-by-layer PCB construction ... 4
Figure 2.1: Copper foil clad laminate fabrication schematic .. 7
Figure 2.2: Schematic of the temperature-controlled copper oxidizing bath used in foil treatment 8
Figure 2.3: Schematic of a typical peel coupon used for PCB adhesion studies 8
Figure 2.4: Photomicrograph of 1 oz. copper foil undergoing 90° peel from a glass-epoxy laminate 11
Figure 2.5: The TA-XT2i Texture Analyzer tensile frame with a 90° PCB peel test fixture 11
Figure 2.6: Temperature controlled peel test enclosure schematic ... 12
Figure 2.7: Schematic of the three-point bend configuration used in DMA testing 14
Figure 2.8: Laminate weight fraction curves during thermal decomposition as measured by TGA 15
Figure 2.9: First derivative curve of weight fraction versus temperature for laminate materials 16
Figure 2.10: Schematic of the cavity perturbation geometry using a resonant TE_{103} rectangular waveguide cavity .. 17
Figure 2.11: Schematic of the microwave frequency dielectric measurement system 18
Figure 2.12: Exploded view schematic of the DEA 2970 parallel plate electrode and furnace assembly ... 19
Figure 2.13: Phase shift in the current response to an applied sinusoidal voltage 20
Figure 2.14: Phasor representation of the measured current decomposed into conductive and capacitive components ... 21
Figure 2.15: Schematic representation of the electric field structure between parallel plate electrodes with a guard ring .. 21
Figure 2.16: Environmentally controlled drying chamber instrumented with a continuous weight monitoring system ... 22
Figure 2.17: SEM micrographs of as-made copper foil surfaces ... 25
Figure 3.1: DGEBA epoxy resin ... 28
Figure 3.2: Dicyandiamide ... 29
Figure 3.3: DICY solubility in solvents and liquid epoxy resin .. 29
Figure 3.4: One proposed DICY-epoxide cross-linking structure .. 30
Figure 3.5: Triton X-100 .. 31
Figure 3.6: The four regimes of latex drying and the stages corresponding to the two-stage model 33
Figure 3.7: The four regimes of latex drying .. 34
Figure 3.8: Hard particle obstruction effect in soft latex particle drying 35
Figure 3.9: The distribution of surfactant during latex drying ... 36
Figure 3.10: Infrared absorbance ratios of surfactant characteristic band to latex polymer band showing surfactant distribution as a function of concentration at 23°C ... 38
Figure 3.11: Infrared absorbance ratios of surfactant characteristic band to latex polymer band showing surfactant distribution as a function of aging time at 23°C .. 38
Figure 3.12: Bound water associated with surfaces is incapable of freely rotating under the applied electric field .. 40
Figure 3.13: Schematic of the DICY precipitation process and crystal formation in solventborne resins and waterborne latex resins .. 42
Figure 3.14: Tan δ vs. moisture sorption in neat epoxy resins showing the bound- to free water transition44
Figure 3.15: Tan δ vs. moisture sorption in epoxy-glass laminates 46
Figure 3.16: Ensemble tan δ plot for neat epoxy resin and epoxy resin-glass laminates as a function of moisture fraction .. 46
Figure 3.17: Optical micrograph of DICY “cigar inclusions” in cured solventborne epoxy resin47
Figure 3.18: Optical micrograph of a crevice formed from a planar DICY crystal in cured waterborne latex epoxy resin .. 48
Figure 3.19: SEM micrographs of solventborne and waterborne neat resin epoxies showing different DICY inclusion morphologies .. 48
Figure 3.20: Peel of copper foil from glass-epoxy PCB specimens exhibiting local DICY disruption of the adhesive interface .. 48
Figure 3.21: SEM images of laminate surfaces following 90° peel of copper foil 50
Figure 3.22: Peel of copper foil from glass-epoxy PCB specimens exhibiting local disruption of adhesive strength due to surfactant phase separation .. 52
Figure 3.23: Oxidized regions of stabilized copper foil corresponding to phase separation of surfactant at the copper-laminate interface of a 90° peel strip .. 52
Figure 3.24: Optical micrographs of glass-epoxy laminate surfaces .. 53
Figure 3.25: Definition of the deviation (Δx) of experimental drying data from the two-stage model........ 54
Figure 3.26: Arrhenius plot of deionized water evaporation at the three temperatures used in latex drying experiments .. 56
Figure 3.27: Evaporation rates of deionized water at three relative humidities used in latex drying experiments demonstrating a linear relationship .. 56
Figure 3.28: Drying rates of deionized water and waterborne latex epoxy resins .. 58
Figure 3.29: A comparison of two-stage drying in the latex resin and exponential drying in solventborne resins .. 58
Figure 3.30: Two-stage drying model predictions and experimental data for neat latex epoxy resins containing 1 and 3 wt % DICY .. 60
Figure 3.31: Two-stage drying model predictions and experimental data for neat latex epoxy resins containing 4.5 and 6 wt % DICY .. 62
Figure 4.11: Dynamic mechanical spectra for untreated glass beads (lower curve) and elastomer coated glass beads (upper curve) ... 88
Figure 4.12: DMA results for as-made, sized-glass reinforced epoxy. Sizing is segregated to the fibers in sample 157 and is dispersed in the matrix of sample 161 .. 90
Figure 4.13: Effect of heating rate on shifts in thermal artifact peaks ... 91
Figure 4.14: Peel energy vs. surfactant concentration for a latex film peeled from glass 93
Figure 4.15: Three different effects of surfactant on peel strength at different scales 93
Figure 4.16: A stress relaxation master curve for polyisobutylene with the associated shift factor plot 96
Figure 4.17: Peel master curve showing the interfacial and cohesive failure regimes for aluminum foil peeled from tackified polybutadiene ... 96
Figure 4.18: Tensile modulus and peel strength master curves for uncross-linked butadiene-styrene rubber adhesive on PET film .. 97
Figure 4.19: Schematic stress-strain curves for polymers exhibiting varied viscoelastic response 99
Figure 4.20: The phase angle δ between applied stress and the strain response 100
Figure 4.21: Stress-strain phasor diagram with the decomposition of the stress vector into its imaginary components .. 101
Figure 4.22: Dynamic mechanical behavior of a polymeric material .. 102
Figure 4.23: Unshifted peel fracture energy data as a function of log peel rate 103
Figure 4.24: Shifted peel fracture energy data forming a master curve ... 104
Figure 4.25: Peel master curves for the solventborne resin and waterborne latex resin impregnated PCB laminates ... 105
Figure 4.26: SEM images of peeled solventborne resin impregnated PCB specimen foil surfaces in the near-surface mixed-mode failure regime ... 106
Figure 4.27: SEM images of peeled solventborne based PCB foil surfaces in the cohesive mixed-mode failure regime .. 107
Figure 4.28: SEM images of foil surfaces peeled from the 5 wt % surfactant containing sample at 50°C-10mm/s ... 108
Figure 4.29 SEM images of the failed foil surface from the 15 wt % surfactant resin system peeled at 50°C-10mm/s .. 109
Figure 4.30: Characteristic plot of peel strength as a function of aging time at elevated temperatures 111
Figure 4.31: First-order strength degradation kinetics plot of log norm. peel strength versus aging time 111
Figure 4.32: Brass-clad laminate peel results for 180°C aging .. 112
Figure 4.33: Brass-clad laminate peel results for 200°C aging .. 113
Figure 4.34: Brass-clad laminate peel results for 220°C aging .. 113
Figure 4.35: SEM micrographs of foil failure surfaces from solventborne resin/brass foil interfaces 116
Figure 4.36: SEM micrographs of foil failure surfaces from 5 wt % surfactant latex epoxy resin/brass foil interfaces .. 117
Figure 4.37: Copper oxide-clad laminate peel results for 160°C aging .. 119
Figure 4.38: Copper oxide-clad laminate peel results for 180°C aging .. 120
Figure 4.39: Copper oxide-clad laminate peel results for 200°C aging .. 120
Figure 4.40: SEM micrographs of foil failure surfaces from solventborne resin/copper oxide foil interfaces .. 123
Figure 4.41: SEM micrographs of foil failure surfaces from 5 wt % surfactant latex resin/copper oxide foil interfaces .. 123
Figure 4.42: SEM micrographs of foil failure surfaces from 15 wt % surfactant latex resin/copper oxide foil interfaces .. 124
Figure 4.43: Oxide stabilized copper XPS spectra with aging ... 125
Figure 4.44: Growth of the carbonyl peak at 1750 cm⁻¹ with aging time as measured by DRIFTS 128
Figure 4.45: Growth of the 1750/835 ratio in brass foil clad PCB laminates with aging time 129
Figure 4.46: Growth of the 1750/835 ratio in oxidized copper foil clad PCB laminates with aging time 130
Figure 4.47: Increases in T_g during postcure as monitored by dynamic loss modulus peaks for neat solventborne and 10 wt % surfactant latex epoxy resins ... 131
Figure 4.48: Changes in T_g and peak width in neat epoxy resins with postcure time 132
Figure 4.49: Neat resin T_g values and the Fox equation predictions based on surfactant concentration... 133
Figure 4.50: Shifts in T_g during postcure as monitored by dynamic loss modulus peaks for laminates impregnated with solventborne and 5 wt % surfactant latex epoxy resins ... 134
Figure 4.51: Lorentz curve fits of split DMA peaks ... 134
Figure 4.52: Changes in peak temperature and width in epoxy/glass laminates with postcure time 135
Figure 4.53: Changes in peak temperature and width in latex epoxy/glass laminates with postcure time. 136
Figure 4.54: Schematic of surfactant migration during postcure ... 138
Figure 4.55: Laminate T_g values and Fox equation predictions based on different resins 139
Figure 5.1: Electrical polarization modes .. 147
Figure 5.2: Reorientation of a lattice vacancy pair in glass ... 148
Figure 5.3: Room temperature dielectric loss mechanisms in glass at different frequencies 148
Figure 5.4: Schematic diagram of dielectric (or mechanical) loss in amorphous and semicrystalline polymers at 1 Hz ... 150
Figure 5.5: Schematic representations of model polymer dielectric properties as a function of temperature in three frequency ranges .. 151
Figure 5.6: Approximate frequencies corresponding to polarization modes in polymers 152
Figure 5.7: Dielectric loss in Nylon 66 in original form and corrected to remove conductivity effects ... 154
Figure 5.8: Relaxations in Nylon 6 at 1 kHz represented in terms of dielectric loss e", tan δ, and electric modulus M" .. 155
Figure 5.9: Cooperativity plot of a variety of polymers, scaled by the coupling constant, suggesting a common form of segmental motion in each system ... 158
Figure 5.10: Cooperativity plot of unfilled epoxy resins as a function of surfactant concentration 159
Figure 5.11: Cooperativity plots of unfilled and glass-supported commercial latex epoxy resin 160
Figure 5.12: Cooperativity plot of a TMPC/PS blend as a function of PS concentration 161
Figure 5.13: Dielectric constant and loss factors of neat epoxy resins at 100 kHz 163
Figure 5.14: Dielectric constant and loss factors of glass/epoxy laminates at 100 kHz 163
Figure 5.15: Dielectric properties of glass/epoxy laminate measured at 1 Hz showing high temperature conductivity masking of the Tg relaxation .. 164
Figure 5.16: Electrical modulus representation of a glass/epoxy laminate ... 165
Figure 5.17: Electrical loss modulus Tg relaxations at various frequencies for cured 5 wt % surfactant neat latex epoxy resin .. 166
Figure 5.18: Cooperativity plot for a 5 wt % surfactant neat latex epoxy resin with a curve fit corresponding to Equation 5.27 ... 166
Figure 5.19: Cooperativity plots for neat epoxy resins containing varied surfactant concentrations 167
Figure 5.20: Cooperativity plots for glass/epoxy laminates containing varied surfactant concentrations. 169
Figure 5.21: Electrical loss modulus Tg peak measured for Triton X-100 at 1 Hz 170
Figure 5.22: Tg data and Fox equation predictions for neat epoxy resins containing surfactant 171
Figure 5.23: Tg data and Fox equation predictions for glass/epoxy laminates containing surfactant 172
Figure I.1: Weight loss / area vs. time plot ... 181
Figure I.2: Two-Stage Model Agreement with Latex Drying data ... 182
List of Tables

Table 2.1: XPS determined atomic concentrations of copper foil surfaces and laminate component materials .. 26
Table 3.1: Dielectric property comparison of common printed circuit component materials at 1 GHz 39
Table 3.2: Stage I Drying Rates at 15% RH .. 59
Table 4.1: Atomic concentrations of brass-treated copper foil failure surfaces bonded with solventborne epoxy resin .. 107
Table 4.2: Atomic concentrations of "brass"-treated copper foil failure surfaces bonded with latex epoxy resin containing 5 wt% surfactant ... 109
Table 4.3: Atomic concentrations of "brass"-treated copper foil failure surfaces bonded with latex epoxy resin containing 15 wt% surfactant ... 110
Table 4.4: Kinetic degradation model parameters for peel of brass clad PCB laminates 114
Table 4.5: Atomic concentrations measured by XPS for peel failure surfaces from a solventborne impregnated brass foil-clad PCB material aged at 200°C ... 118
Table 4.6: Atomic concentrations measured by XPS for peel failure surfaces from a 15 wt % surfactant latex epoxy impregnated brass foil-clad PCB material aged at 200°C ... 118
Table 4.7: Kinetic degradation model parameters for peel of oxide treated copper clad PCB laminates 122
Table 4.8: As-made peel strength statistics for factor brass and oxide treated copper surfaces 122
Table 4.9: Atomic concentrations measured by XPS for peel failure surfaces from a solventborne impregnated oxidized copper foil-clad PCB material aged at 160°C .. 125
Table 4.10: Atomic concentrations measured by XPS for peel failure surfaces from a 5 wt % surfactant latex epoxy impregnated brass foil-clad PCB material aged at 160°C .. 126
Table 4.11: Atomic concentrations measured by XPS for peel failure surfaces from a 15 wt % surfactant latex epoxy impregnated brass foil-clad PCB material aged at 180°C .. 127
Table 5.1: Relaxation parameters for neat epoxy resins .. 167
Table 5.2: Relaxation parameters for glass/epoxy laminates ... 169