List of Figures

Chapter 1

Figure 1. Optimum dietary protein for growing horses as determined by a parabolic curve fitted to data from three growth studies……………………..38

Chapter 2

Figure 1. Body condition scores during the nine week experiment were increased by training ($P = .01$) but were unaffected by diet ($P = .33$)……………………..68

Figure 2. Plasma albumin at rest during the nine week training period increased with time ($P = .005$), but was unaffected by diet $P = .53$)……………………..69

Figure 3. Plasma total protein at rest during the nine week training period decreased over time ($P = .021$) but was unaffected by diet ($P = .93$)……………………..70

Figure 4. Plasma creatinine at rest during the nine week training period was affected by time ($P = .033$) but was unaffected by diet ($P = .29$). It was increased ($P = .03$) in the LP group compared to initial values but remained unchanged ($P = .92$) in the HP group……………………..71

Figure 5. Plasma urea nitrogen and urea:creatinine ratio at rest during the nine week training period was higher ($P = .0001$) in the HP group than in the LP group. It increased over time in the HP group but decreased in the LP group($P = .01$). There was also an interaction ($P = .004$) between diet and time, that is training……………………..72
Figure 6. Urine urea nitrogen and urea:creatinine ratio at rest during the nine week conditioning period was affected by diet \(P = .011 \) but was not by time \((P = .56) \). Urine was obtained from mares only \((n=5) \)…………………………………….73

Figure 7. Urine uric acid levels and uric acid:creatinine ratio at rest during the nine week conditioning period was higher for the HP group than the LP group \((P = .0002) \). There was also a diet by time interaction \((P = .056) \) where LP decreased over time and HP remained unchanged. Urine was obtained from mares only \((n=5) \)…………..74

Figure 8. Urine creatinine levels at rest during the nine week training period was unaffected by time and diet \((P = .78) \). Urine was obtained from mares only \((n=5) \)…………..75

Figure 9. Plasma albumin at rest, during 6 sprints \((S1-S6) \) and at 5, 10, 20 and 30 minutes of recovery \((R1-R4) \) was unaffected by diet \((P = .32) \) but was increased during exercise \((P = .004) \)………………………………………………………………………………………….76

Figure 10. Plasma total protein at rest, during 6 sprints \((S1-S6) \) and at 5, 10 , 20 and 30 minutes of recovery \((R1-R4) \) was unaffected by diet \((P = .81) \) but was increased during exercise \((P = .001) \)………………………………………………………………………………………………77

Figure 11. Plasma creatinine at rest, during 6 sprints \((S1-S6) \) and at 5, 10, 20 and 30 minutes of recovery \((R1-R4) \) was unaffected by diet \((P = .39) \) but was increased during exercise \((P = .001) \)………………………………………………………………………………………….78

Figure 12. Plasma urea nitrogen and urea:creatinine ratio at rest, during 6 sprints \((S1-S6) \) and at 5, 10, 20 and 30 minutes of recovery \((R1-R4) \) was affected by diet \((P = .0001) \). Plasma urea was unaffected by exercise however the urea:creatinine ratio was affected by exercise \((P = .001) \)……………………………………………………………………………….79
Chapter 3

Figure 1. Changes in arterial plasma pCO$_2$ during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) for both diets combined……………………………………………………………………………………..96

Figure 2. Changes in arterial plasma pO$_2$ during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) for both diets combined……………………………………………………………………………97

Figure 3. Changes in venous plasma pO$_2$ during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) for both diets combined……………………………………………………………………………98

Figure 4. Changes in venous plasma lactate during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Horses fed LP were able to attenuate lactate accumulation especially during recovery…………99

Figure 5. Changes in venous plasma lactate during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) …………………………100

Figure 6. Changes in venous plasma potassium during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) ……………………101

Figure 7. Changes in arterial plasma potassium during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) ……………………102
Figure 8. Changes in venous plasma sodium during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) …………………… 103

Figure 9. Changes in arterial plasma sodium during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) …………………… 104

Figure 10. Changes in venous plasma chloride during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) …………………… 105

Figure 11. Changes in venous plasma SID⁺ during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Increases in Na⁺ and K⁺ largely offset increases in C⁻ and La⁻ for both diets with those fed LP having a tendency to maintain higher SID⁺………………………………………………106

Figure 12. Changes in arterial plasma SID⁺ during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) ……………………………107

Figure 13. Changes in venous pCO₂ during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.)……………………………………. 108

Figure 14. Changes in arterial pCO₂ during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.)……………………………………..109

Figure 15. Changes in venous plasma pH during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). The pH declined rapidly after the first sprint and slowly increased through the remainder of exercise and recovery. Those fed LP had higher pH values at rest and after the first sprint…………………110
Figure 16. Changes in arterial plasma pH during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.)………………111

Figure 17. Changes in venous plasma bicarbonate during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) …………………..112

Figure 18. Changes in arterial plasma bicarbonate during rest (R), six sprints (S1-S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.) …………………….113

Chapter 4

Figure 1. Body Condition Score during the 26-week experiment was affected by fat by protein interaction (P = .15) in which scores were lower for HFLP (contrast P = .009)……..131

Figure 2. Plasma albumin at rest during the 26-week experiment was decreased during the conditioning period (P = .0001) but was unaffected by either fat (P = .58) or protein (P =.63) level……..132

Figure 3. Plasma total protein at rest during the 26-week experiment was increased during the conditioning period (P = .0001), was increased for horses receiving HF diets (P = .067) but was unaffected by protein level (P = .21)…………………………………………………………..133

Figure 4. Plasma PUN at rest during the 26-week experiment was decreased throughout the conditioning and deconditioning periods (P = .0001) however, those horses receiving HF diets had higher levels (P = .09) as well as those receiving HP (P = .008)……134
Figure 5. Plasma creatinine at rest during the 26-week experiment was increased during the conditioning and deconditioning periods ($P = .0001$) and was affected by a fat by protein interaction ($P = .072$). Those horses receiving HF and LP had higher levels compared to the others (contrast $P = .0081$)………………………………..……135

Figure 6. Plasma albumin at rest (R), sprints 1 (S1), 2 (S2) and 6 (S6) as well as at 5, 10, 20 and 30 minutes of recovery (R1-R4) during SET 1 was increased by exercise ($P = .0001$) but was unaffected by fat ($P = .17$) or protein ($P = .28$) level…………..…136

Figure 7. Plasma albumin at rest (R), sprints 1 (S1), 2 (S2) and 6 (S6) as well as at 5, 10, 20 and 30 minutes of recovery (R1-R4) during SET 2 was increased by exercise ($P = .0001$) but was unaffected by fat ($P = .40$) or protein ($P = .80$) level…………...…137

Figure 8. Plasma total protein at rest (R), sprint 1 (S1), 2 (S2) and 6 (S6) as well as at 5, 10, 20 and 30 minutes of recovery (R1-R4) during SET 1 was increased by exercise ($P = .0001$) but was unaffected by fat ($P = .31$) or protein ($P = .36$) level…………….…….138

Figure 9. Plasma total protein at rest (R), sprint 1 (S1), 2 (S2) and 6 (S6) as well as at 5, 10, 20 and 30 minutes of recovery (R1-R4) during SET 2 was increased by exercise ($P = .0001$), HF ($P = .084$) and HP ($P = .005$)………………………………….………139

Figure 10. Plasma creatinine at rest (R), sprint 1 (S1), 2 (S2) and 6 (S6) as well as at 5, 10, 20 and 30 minutes of recovery (R1-R4) during SET 1 was increased during exercise ($P = .0001$) but was unaffected by fat ($P = .80$) or protein ($P = .20$) levels………………140

Figure 11. Plasma creatinine at rest (R), sprint 1 (S1), 2 (S2) and 6 (S6) as well as at 5, 10, 20 and 30 minutes of recovery (R1-R4) during SET 2 was increased during exercise ($P = .0001$) and with LP ($P = .0001$) but was unaffected by fat ($P = .47$) level………..141
Figure 12. Plasma creatinine at rest (R), sprint 1 (S1), 2 (S2) and 6 (S6) as well as at 5, 10, 20 and 30 minutes of recovery (R1-R4) during SET 2 was affected by a fat by protein interaction ($P = .008$) with LP increasing levels with HF (contrast $P = .0004$) ... 142

Figure 13. Plasma PUN at rest (R), sprint 1 (S1), 2 (S2) and 6 (S6) and at 5, 10, 20 and 30 minutes of recovery (R1-R4) during SET 1 was increased with HP ($P = .005$) but was unaffected by fat ($P = .39$) level or exercise……………………………………………………………………………143

Figure 14. Plasma PUN at rest (R), sprint 1 (S1), 2 (S2) and 6 (S6) and at 5, 10, 20 and 30 minutes of recovery (R1-R4) during SET 2 was affected by a fat by protein interaction ($P = .055$) with HP increasing levels with HF (contrast $P = .0007$). The PUN levels were not affected by exercise………………………………………………………….144

Figure 15. Urine urea nitrogen levels at rest during the 26-week experiment were decreased over time ($P = .0001$), increased by HP ($P = .004$) but were unaffected by fat ($P = .81$) level……………………………………………………………………………145

Figure 16. Urine uric acid levels at rest during the 26-week experiment were unaffected by time, fat ($P = .78$) or protein ($P = .21$) level……………………………………………………………………………146

Figure 17. Urine creatinine levels at rest during the 26-week experiment increased over time ($P = .001$) but were unaffected by fat ($P = .15$) or protein ($P = .57$) levels………147

Chapter 5

Figure 1. Changes in venous plasma pCO$_2$ during rest (R), sprints (S1, S2 & S6) and
recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). The pCO\textsubscript{2} was increased by exercise ($P = .0001$) and LF during recovery ($P = .052$) but was unaffected by protein ($P = .72$) …………………………………………………………….166

Figure 2. Changes in venous plasma pO\textsubscript{2} during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). The pO\textsubscript{2} was decreased by exercise ($P = .0001$) and LP ($P = .069$), especially during recovery ($P = .019$), but were unaffected by fat $P = .39$)………………………………..………167

Figure 3. Changes in venous lactate during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Lactate increased with exercise ($P = .0001$), LF ($P = .023$) and HP during sprints ($P = .11$)…………………..168

Figure 4. Changes in venous plasma Na+ during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma Na+ was increased b exercise ($P = .0001$) and LPHF ($P = .068$)………………………………………………..169

Figure 5. Changes in venous plasma K+ during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min. Plasma K+ was increased b exercise ($P = .0001$) but not protein ($P = .54$) or fat ($P = .85$)………………………………………..170

Figure 6. Changes in venous plasma Cl− during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min. Plasma Cl− was decreased b exercise ($P = .0001$) but not protein ($P = .55$) or fat ($P = .79$)………………………………………..171

Figure 7. Changes in venous plasma SID during rest (R), sprints (S1, S2 & S6) and recovery
(R1 5 min, R2 10 min., R3 20 min. and R4 30 min). A time-by-fat \(P = .034 \) as well as a time-by-protein \(P = .022 \) interaction existed with HF and LP becoming higher respectively...172

Figure 8. Changes in venous plasma pH during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min). Plasma pH was decreased by exercise \(P = .0001 \) but increased with LP \(P = .0056 \) and not affected by fat \(P = .51 \)...

Figure 9. Changes in venous plasma HCO\(_3\)- during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma HCO\(_3\)- was decreased by exercise \(P = .0001 \) but increased with LP \(P = .076 \), especially during the sprints \(P = .057 \), and not affected by fat \(P = .51 \)...

Figure 10. Changes in arterial plasma pCO\(_2\) during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma pCO\(_2\) was decreased by exercise \(P = .0001 \) but not fat \(P = .66 \) or protein \(P = .59 \)...

Figure 11. Changes in arterial plasma pO\(_2\) during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma pO\(_2\) was increased by exercise \(P = .001 \) and LPLF \(P = .0045 \) but lower with LPHF...

Figure 12. Changes in arterial lactate during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Lactate increased with exercise \(P = .0001 \) but was unaffected by fat \(P = .27 \) or protein \(P = .64 \)...

Figure 13. Changes in arterial plasma Na\(^+\) during rest (R), sprints (S1, S2 & S6) and
recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma Na^+ was increased by exercise ($P = .0009$) but not fat ($P = .36$) or protein ($P = .89$)…….178

Figure 14. Changes in arterial plasma Cl^- during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min). Plasma C^- was increased by exercise ($P = .0007$) but there not protein ($P = .85$) or fat ($P = .98$)…………………………………………………………………………….…179

Figure 15. Changes in venous plasma K^+ during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min. Plasma $^+$ was increased by exercise ($P = .0001$), HF during recovery ($P = .11$) and LP ($P = .052$)………………………………………………………………………………180

Figure 16. Changes in arterial plasma SID during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min). A time-by-protein ($P = .055$) interaction existed with LP becoming higher over the time of the SET ……181

Figure 17. Changes in arterial plasma pH during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min). Plasma pH was increased by exercise ($P = .0001$) and LP during recovery ($P = .09$) but not fat ($P = .27$)……………………………………………………………………….………182

Figure 18. Changes in arterial plasma HCO_3^- during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min). Higher levels tended to be observed with LP ($P = .13$) during recovery but fat ($P = .98$)……………………………………………………………………….………183
Figure 19. Changes in venous plasma pCO₂ during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma pCO₂ was increased by exercise ($P = .0001$), LF after the first sprint ($P = .026$) and LP during the sprints ($P = .019$)………………………………………………………………184

Figure 20. Changes in venous plasma pO₂ during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma pO₂ was decreased by exercise ($P = .0001$) but increased with HPLF ($P = .054$) during sprints and with LPLF during recovery ($P = .029$)………………………………….…….185

Figure 21. Changes in venous lactate during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Lactate increased with exercise ($P = .0001$), and LF ($P = .05$) but not protein ($P = .32$)…………………186

Figure 22. Changes in venous plasma Na⁺ during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma Na⁺ increased with exercise ($P = .0002$) and LP ($P = .007$) but not fat ($P = .67$)…………………………187.

Figure 23. Changes in venous plasma K⁺ during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma K⁺ increased with exercise ($P = .0001$) and LP ($P = .026$) but not fat ($P = .47$)……………..…188

Figure 24. Changes in venous plasma Cl⁻ during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma Cl⁻ was decreased with exercise ($P = .11$) but increased with HF ($P = .046$)……………………………………189

Figure 25. Changes in venous plasma SID during rest (R), sprints (S1, S2 & S6) and
recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min). A time-by-protein ($P = .038$) interaction existed with LP becoming higher over the SET …………………190

Figure 26. Changes in seru cortisol at rest (R), sprints (S1, S2 & S6) and recovery (R1, 5 min, R2, 10 min, R3, 20 min and R4, 30 min.). Higher values were observed with HF ($P = .006$) and with LP during the sprints ($P = .048$)……………..………………191

Figure 27. Changes in venous plasma pH during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min). Plasma pH was decreased by exercise ($P = .0001$) but increased with LPHF ($P = .022$)…………..……….……192

Figure 28. Changes in venous plasma HCO_3^- during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min. Plasma HCO_3^- was decreased by exercise ($P = .0001$) but increased with LP during sprints ($P = .13$) and with HF during recovery ($P = .10$)………………………………..………….……193

Figure 29. Changes in venous plasma HCO_3^- at rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min and R4 30 min.). A fat-by-protein interaction existed ($P = .043$) with higher HCO_3^- persisting with LPHF…………………..…194

Figure 30. Changes in arterial plasma pCO_2 during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma pCO_2 was decreased by exercise ($P = .0001$) but was higher for HF ($P = .04$)…………………195

Figure 31. Changes in arterial plasma pO_2 during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma pO_2 was increased by exercise ($P = .0001$) and LF ($P = .066$) but not protein ($P = .30$)…………………196
Figure 32. Changes in arterial lactate during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Lactate increased with exercise ($P = .0001$) and LF ($P = .097$) but not protein ($P = .16$)……………………………….197

Figure 33. Changes in arterial plasma Na\(^+\) during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min.). Plasma Na\(^+\) was increased b exercise ($P = .0002$), HF during recovery ($P = .11$) and LP during sprints ($P = .077$)………………………………………………………………………………...198

Figure 34. Changes in venous plasma K\(^+\) during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min. Plasma K\(^+\) was increased b exercise ($P = .07$) and a trend with LP ($P = .13$) but not fat ($P = .74$)…………………199

Figure 35. Changes in arterial plasma Cl\(^-\) during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min. Plasma Cl\(^-\) was increased b exercise ($P = .0003$) and HF during sprints ($P = .042$) but not protein ($P = .65$)………………………………………………………………………………………………....200

Figure 36. Changes in arterial plasma SID during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min. There was no effect o fat ($P = .69$) or protein ($P = .78$)………………………………………………………………………………...201

Figure 37. Changes in arterial plasma pH during rest (R), sprints (S1, S2 & S6) and recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min. Plasma pH was increased by exercise ($P = .0086$) but not fat $P = .76$) or protein ($P = .81$)………202

Figure 38. Changes in arterial plasma HCO\(_3\) during rest (R), sprints (S1, S2 & S6) and
recovery (R1 5 min, R2 10 min., R3 20 min. and R4 30 min. Plasma HCO$_3^-$ was decreased by exercise ($P = .0001$) and a tendency with HF ($P = .10$) but not protei ($P = .99$)……203